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abstract

This thesis is a theoretical and numerical work that aims at expanding the
knowledge of noise in broadband optical communication systems. The target
phenomena to be addressed is the nonlinear interaction between channels that
copropagate into the same physical medium. Since in recent times quantum
communication schemes in optical fibers are gaining interest for QKD, an effort
is done in the theoretical modeling of the interaction between quantum channels
and “classical” channels – i.e. channels for which the detection scheme does not
target the detection of a quantum state. Finally, special attention is devoted to
deriving metrics of interest for realistic optical communication systems.

Wavelength Division Multiplexing (WDM) is a major enabling technology
for wideband optical communications, however, aspects belonging to nonlinear
effects are not yet completely understood and modeled. In the scenario of WDM
systems, many intrinsic subtleties arise, such as the increased effort required
to compensate for chromatic dispersion, channel-dependent Raman on-off gain
in Raman fiber amplifiers, Four Wave Mixing (FWM) [157], and Cross Phase
Modulation (XPM). In particular, a major nonlinear penalty is the Nonlinear Inter-
ference Noise (NLIN), originated from XPM-related pulse phase perturbation due
to other channels which propagate in the same fiber medium. This is particularly
interesting in the case of coherent optical transmission. The modeling of the NLIN
phenomenon was approached in the fist place with a frequency-domain analysis
[130, 83]. However, the frequency-domain approach predicts noise spectrum
which is independent from the modulation format, in contrast with experiments
[102]. A different approach is the one in the time-domain [115] which correctly
accounts for modulation format dependence, and predicts also that a large part
of NLIN is phase noise on the received symbol. Still, the time-domain approach
fails to account for wavelength-dependent attenuation, intrinsic to silica, and gain,
which is a characteristic of many components, especially Raman fiber amplifiers
[19].

On a separate research track, quantum channels are gaining interest, as Quan-
tum Key Distribution (QKD) is a possible disruptive technology in the secure
communication field, and it is enabled by physical phenomena which can take
place in optical fibers [15]. QKD over dark optical fibers is reaching its technolog-
ical maturity [8] but models for interaction with classical channels are somehow
still lacking. An experimental study has been done for On-Off Keying [84]. Ex-
isting models for interaction between classical and quantum channels focus on
Raman scattering and optimal spectral placement for avoiding Stokes and anti-
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Stokes bands [156, 152]. At the same time, technological circumvention of the
interaction problem, such as time scheduling [20] is an interesting alternative.

The contribution of this thesis is to extend the previous NLIN model to wave-
length and position-dependent attenuation and Raman gain, give numerical
results for realistic WDM transmission scenarios, and connect the model to pre-
vious works in Raman amplification. In second place, another aspect will be to
generalize the method and its results also for quantum channels, to study the
feasibility of co-propagation of channels for various purposes inside the same
fiber, linking it to key fiber and channel properties and parameters.

sommario

Questa tesi è uno studio teorico e di simulazione numerica con l’obiettivo di
espandere la modellistica del rumore nei sistemi di comunicazione ottici a banda
larga. Tra i vari fenomeni che concorrono all rumore complessivo, quello di
interesse è l’interazione non lineare tra canali che si propagano all’interno dello
stesso mezzo materiale di una data fibra, in particolare una fibra monomodale
standard. Dato che recentemente le comunicazioni quantistiche in fibra ottica
stanno guadagnando sempre più interesse, soprattutto per la distribuzione di
chiavi crittografiche, si è valutata l’estensione del modello del rumore anche al
caso di canali quantistici, che possono interagire e subire interferenze da parte di
canali ”classici“, ovvero la cui ricezione non punta a misurare un stato quantistico.
Per l’estensione del modello di rumore classico, speciale cura è stata dedicata a
derivare delle metriche di interesse per sistemi realistici, basandosi su risultati
delle simulazioni numeriche.

La multiplazione a lunghezza d’onda (WDM) è, tra tutte, la tecnologia che
ha permesso lo sviluppo più notevole delle comunicazioni ottiche negli ultimi
decenni, tuttavia alcuni aspetti legati all’interazione nonlineare non sono com-
pletamente compresi e considerati. Nello scenario di un sistema WDM, alcune
sottigliezze rendono l’analisi difficoltosa, ad esempio la difficile compensazione
della dispersione cromatica in modo uniforme per tutti i canali, la dipendenza del
guadagno di Raman dalla lunghezza d’onda del canale, fenomeni di miscelazione
a quattro onde, e modulazione di fase. In particolare, un fattore determinante per
i sistemi moderni è il rumore dovuto all’interferenza non lineare, originato dalla
modulazione di fase inter-canale. La modellistica sviluppata per questo fenomeno
è stata incentrata dapprima su modelli nel dominio della frequenza [130, 83]. Tut-
tavia, questo approccio non consente di prevedere la dipendenza del rumore dal
formato di modulazione, effetto recentemente sperimentato [102]. Un approccio
diverso è quello di svolgere un’analisi nel dominio del tempo [115]: oltre a descri-
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vere correttamente gli esperimenti sul formato di modulazione, questo modello
indica che il rumore NLIN consiste in un rumore di fase. Tuttavia il modello
proposto non fornisce un modo per considerare gli effetti dell’attenuazione e il
guadagno di Raman dipendenti dalla lunghezza d’onda, che è una caratteristica
determinante degli amplificatori di Raman.

Su un altro fronte di ricerca, i canali quantistici in fibra ottica stanno guadag-
nando interesse, infatti la distribuzione quantistica di chiavi crittografiche è una
possibile tecnologia dirompente nel campo della sicurezza nelle telecomunicazioni
[15]. Questa tecnologia, implementata su fibre "buie" – i.e. senza la presenza di
altri canali – sta raggiungendo la sua maturità tecnologica [8]. Tuttavia sono
ancora carenti dei modelli per considerare il rumore indotto dalla presenza di
altri canali all’interno della stessa fibra. Alcuni esperimenti di compresenza di
canali classici e quantistici sono stati realizzati per la modulazione On-Off [84]. I
modelli già presenti per l’interazione tra canali si basano su effetti di conversione
parametrica, e focalizzano l’attenzione sull’evitare le bande di Stokes e anti-Stokes
[156, 152]. Allo stesso tempo, altre tecniche per evitare il problema sono state
proposte, come la multiplazione di slot di tempo [20].

Il contributo del presente lavoro è quello di estendere il modello NLIN per il
caso di reti amplificate Raman, estremamente utili nella pratica, ottenendo risul-
tati numerici per sistemi WDM realistici. Verrà prospettata anche al possibilità di
integrare questo modello di rumore in metodi di ottimizzazione per il posiziona-
mento delle pompe di Raman. In un secondo momento, la generalizzazione del
modello per interazione tra canali classici e quantistici viene studiata.
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I N T R O D U C T I O N 1
In this chapter we will start by reviewing current state of the art in optical com-
munication systems, describing WDM, Raman amplification, coherent detection,
and also optical quantum technologies.

First of all, a brief mathematical introduction about classical physical principles
of nonlinear interactions occurring in the fiber will be given. After that, the
description of the technologies of our interest, together with the review of past
literature, are presented. Finally, we will give an outline of the thesis, highlighting
original aspects, and connections to previous works.

1.1 optical field propagation model

This section will be devoted to a presentation of the main mathematical model of
interest in this study, and its physical significance. Its generalizations will be the
main topic of chapters 2 and 3.

1.1.1 Single-mode fibers

Currently used fibers in wideband systems are single-mode: this allows the
avoidance of modal dispersion, which can easily cause disruptive modal Inter-
Symbol Interference (ISI). However in the single-mode fiber two propagating
modes are present, which are the orthogonal axis of polarizations. In this work we
will consider only light polarized in one direction, supposing that the polarization
is unperturbed along the fiber, ignoring polarization random walks and other
related effects, like Polarization Mode Dispersion (PMD) [51]. This is a strong
assumption, since realistic fibers suffer heavily from polarization non-idealities.
Many phenomena of our interest, as Stimulated Raman Scattering (SRS) and
interference in coherent detection are sensitive to polarization, however, this
effect can be addressed within model without polarization via the introduction of
correction factors in the interaction coefficients. The main propagation equation
we are focusing on is called Nonlinear Schrödinger Equation (NLSE). Since this

15



1.1 optical field propagation model 16

is the main equation we are considering in this work, an extended description is
useful. The equation reads

∂A

∂z
= −

α

2
A−β1

∂A

∂t
− i
β2
2

∂2A

∂t2
+ iγ|A|2A. (1.1)

This equation derives from the separation of Helmholtz equation in cylindrical
coordinates, which model the evolution of a field with fixed polarization along a
transverse direction êτ, i.e. E = Eêτ. If z is the longitudinal direction of the fiber,
using the usual cylindrical coordinate systems (ρ,ϕ, z), the separation ansatz can
be written as

E(ρ,ϕ, z, t) = G(ρ,ϕ)A(z, t) exp(iβ0z), (1.2)

β0 being a propagation constant to be determined by the separated equations –
more precisely, by the resulting dispersion relations. The function G, obeying the
transverse part of the separated Helmholtz equation, satisfy a Sturm-Liouville
problem whose solution is the mode transverse distribution, expressed as com-
bination of Bessel functions. For single mode fibers, the transverse distribution
is well approximated by the so-called LP01 mode, which is well approximated
itself by a Gaussian transverse profile [142]. With exception of extremely powerful
and broadband pulses, the transverse distribution remains constant. Eq. (1.1), for
the function A describes the longitudinal evolution of the field. All propagation
properties of pulses are summarized by the evolution of the complex envelope A.
By choosing adequately the separation physical units, one can define A in such
a way that |A(z, t)|2 represents power flowing through the fiber cross section at
time t and position z. As for the other terms, the NLSE describes dispersion to the
second order approximation. The phenomenon of nonlinear dependence of the
propagation constant by the frequency is called also Group Velocity Dispersion
(GVD). The dispersion profile of the fiber is represented by β(ω), the frequency
dependent wave number, obtained from models of electric susceptibility of the
material and waveguide properties. By expanding around the central frequency
ω0, that is the frequency of the optical carrier, and truncating the expansion to
the second order,

β(ω) ≈ β0 +β1(ω−ω0) +
β2
2
(ω−ω0), (1.3)

it is possible to obtain the definition of the coefficients β1 and β2. The inverse of
β1 is called vg, the group velocity, which depends on the central frequency ω0.
An interesting analogy can be done with the Schrödinger equation from quantum
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mechanics [134]. By considering that equation for a free particle in the direction z

∂ψ

∂t
= −i

h

2m

∂2ψ

∂z2
, (1.4)

we see a clear analogy between the term containing the mass and the GVD
term, with the exception of having inverted time and space coordinates. A more
precise quantum-mechanical formulation of this fact, addressed in chapter 3, will
introduce the concept of dressed photon, which justify the statement that GVD
gives "mass" property to the photon.

The truncation to the second order of the propagation constant is justified
only as far as the field A has a narrow spectrum, i.e. it is slowly varying. This
assumption is called Slowly Varying Envelope Approximation (SVEA). SVEA
validity is a topic of theoretical interest, studied for example in [93].

Finally, the Kerr effect is represented by the coefficient γ, and it is due to
silica cubic nonlinear susceptibility. In the NLSE model it is considered as in-
stantaneous. This is a reasonable assumption since the relaxation time is many
orders of magnitude lower than common pulse periods, being < 1ps for common
telecommunication fibers [47]. The finite relaxation time of the Kerr medium
needs to be included in the model only when pulses which are to be analyzed
have duration comparable to the relaxation time [67].

Recalling that the NLSE model does not take into account light polarization
effects, we point out a more complete model which is able to describe also
polarization effects, and is called Manakov model [2]. It uses a system of coupled
NLSE with polarization coupling terms.

For the communication purposes, the signal launched into the fiber is physically
represented by a complex amplitude, and encodes symbols in a space of in-phase
and quadrature components. Moreover, since the optical frequencies are as high
as 193THz at 1550nm, the SVEA is acceptable even for relatively high modulation
bandwidth, which means the possibility of modeling multiple channels, as in the
case of Wavelength Division Multiplexing (WDM), without substantial changes to
the NLSE. However, if the physical scenario includes only the interaction between
multiple narrowband fields at spaced center frequencies, an useful alternative
model is the one with coupled NLSEs, one for each narrowband field, equipped
with adequate coupling coefficients which encode nonlinearity [2]. Of course
this model is unable to account for wave mixing, but it is sufficient for modeling
Cross Phase Modulation (XPM), which is the main phenomenon of interest for
NLIN. This will be the starting point of the analysis in chapter 2.
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Let us now relate the propagation model with useful telecommunication met-
rics, in particular with a frequency response formalism for linear propagation.
First of all, a common model for IM/DD transmission is the magnitude of the
frequency response of the fiber, intended as the ratio of the optical power spec-
trum at the output and at the input. This makes sense as long as the propagation
is considered to be linear. In fact, if we consider a fiber in which pulses undergo
high dispersion, and then the initial shapes are recovered just before the receiver
by using dispersion compensation, it is possible to neglect, at the zero-order
approximation, the nonlinearity. This setup is often called pseudolinear [115, 30].
By neglecting effects of nonlinearity, we can write such frequency response as
[13]

HF(ω) = AF(ω) exp
[︃
−
(ωσF)

2

2

]︃
exp[−iωtF] (1.5)

where AF is the link attenuation, σF the overall dispersion accumulated along the
link, and tF the link propagation delay. If z is the link length, and if the attenuation
coefficient α in dB km−1 and the dispersion coefficient D in ps nm−1km−1 are
available, then

AF = 10
−αz

σF = zD∆λ.
(1.6)

Despite being a commonly used frequency response, Eq. (1.5) can be misleading.
In fact, this is an equation which relates frequency response of the signal, which
is intended to be the electrical signal feeded into the light modulator at the
transmitter, and recovered from the photodetector and amplifier at the receiver,
with ideal electronic transceivers. Equivalently, dropping the assumption of ideal
transceivers, the frequency response is, as said before, the ratio between the
spectra of output optical power and input one, since it is the optical power which
is proportional to electrical amplitudes. The frequency response can be derived,
with some passages, from Eq. (1.1), by assuming Gaussian input pulses.

As for coherent systems, in which phase properties of the light are used to
encode information, this kind of frequency response in unsatisfactory. In a more
detailed way, accounting for fiber phase characteristics, the Quadratic Phase Filter
(QPF) model [124] is a useful tool for computing linear field evolution. Let us
start from a linear NLSE, from which we remove, for simplicity, the term due
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to group velocity. This accounts for a delay that can be considered in a separate
moment. Such equation reads

∂A

∂z
= −i

β2
2

∂2A

∂t2
. (1.7)

Using the shift theorem [149], it is possible to introduce the propagation operator

U(z) = exp
[︃
−i
β2
2
z
∂2

∂t2

]︃
. (1.8)

Considering this operator as an L2 operator, when written in reciprocal domain,
reads

Û(z) = exp
[︃
i
β2
2
zω2

]︃
, (1.9)

so, for example Û(L) corresponds to the frequency response of a linear dispersive
link of length L, with respect to the optical complex amplitude, and not the optical
power. It is possible to relate this frequency response to the impulse response of
the fiber. In fact, by using the Gaussian transform property

exp
[︂
−st2

]︂
F−−→
√︃
π

s
exp

[︃
−
ω2

4s

]︃
(1.10)

where F indicates Fourier transform, it is possible to find a convolution kernel

Û(z) = exp
[︃
i
β2
2
zω2

]︃
F−1

−−→ U(z, t) =

√︄
−i

2β2zπ
exp

[︃
−i

t2

2β2z

]︃
(1.11)

The linear propagation corresponds to a convolution operation by this kernel.
Since the frequency response denotes a quadratic phase term, the corresponding
filter assume the name of QPF. The convolution assumes a well-known expression,
as it coincides with the expression of a Fresnel transform:

f̄(t) =

√︃
ξ

iπ

∫︂
R

dτf(τ) exp
[︂
−iξ(t− τ)2

]︂
, (1.12)

in this case the coefficient is ξ = 1/(2β2z). It is interesting to point out that this
transformation is analogous to the one occuring in paraxial optics, which lead to
Fourier optics in far field [124, 18]. In optical fibers, it can describe pulse spreading
and chirping, with precise phase information. This fact will allow to develop an



1.2 technologies for optical communications 20

approximation of the propagated amplitude with its Fourier transform, useful to
model NLIN in pseudolinear systems [30], which will be discussed in chapter 2.

As a last remark on the transfer properties of the optical fiber, from a mathe-
matical point of view, the amplitude signal propagating into the fiber undergoes
a particular form of Linear Canonical Transform (LCT). LCT is a unifying for-
malism which includes Fourier, Laplace, Fresnel, pulse chirping and others; with
inverses. A generic transform X(u), u ∈ C of the function x(t), with parameters
(a,b, c,d) is defined as

X(a,b,c,d)(u) =

⎧⎪⎪⎨⎪⎪⎩
√︃
1

ib
exp

[︃
iπ
d

b
u2
]︃∫︁

R
dt exp

[︃
−i2π

1

b
ut

]︃
exp

[︂
iπ
a

b
t2
]︂
x(t), when b ̸= 0,

√
d exp

[︁
iπcdu2

]︁
x(du), when b = 0.

(1.13)

in which it is possible to identify, in order, a chirping term, a Laplace transform
term, and a quadratic phase one. Such transform is characterized by the matrix

T =

⎡⎣ a b

c d

⎤⎦ (1.14)

This formalism is particularly useful as it naturally gives a composition prop-
erty. The cascade of linear optical devices, represented by LCT, turns out to be
described with a LCT whose matrix is the product of the LCT matrices [73].

1.2 technologies for optical communications

In this section we will discuss technologies and physical effects that are important
for framing the discussion on nonlinear noise, by reviewing relevant literature.

1.2.1 Detection and noise

Optical detection is based on optoelectronic devices that are grouped in a pair
of different technological families: photodiodes and avalanche devices [1, 98].
Photodiodes are characterized by a large area of the semiconductor device which
is exposed to incoming radiation, and in which electron-hole pairs are simply
generated by photoabsorption. Typically te region exposed to incoming radiation
is the intrinsic region of a PIN diode. Since the rate of electron-hole generation
is proportional to the incoming photon flux, the electrical signal is proportional
to the incoming optical power. As for avalanche devices, a typical avalanche
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device used in the past is the photomultiplier tube, which consists on a first
photocatode plate and a sequence of ”dynode“ plates inserted in a potential,
and designed in a way that a single electron emission in the photocathode
triggers a series of emissions, that eventually turn out to be a macroscopically
detectable charge at the output of the vacuum tube. In a similar way, a more
recent device, the Avalanche Photodiode (APD) consists in amplification of charge
carriers generated by photoabsorption in a semiconductor region. The process,
that would proceed up to reach energies capable of destroying the device, is
quenched shortly after the event, by supply electronics, so that the increase in
total event charge is stopped. A key parameter for evaluating system performance
of a photodetector is the quantum efficiency η defined as the ratio between the
average emitted charge rate and the incoming photon rate. Moreover, especially
if multiple charges are generated from a single incoming photon, as in avalanche
devices, another useful parameter is the responsivity R defined as the average
current generated per unit of incoming optical power [1]. In a typical scenario, the
photodetection current is feeded inside a transimpedance amplifier, from which
the output voltage is used for decision or further processing. We will call ideal
photodetector a detector which provides a current which is exactly proportional to
the incoming photon flux, in a deterministic way, for some positive proportionality
constant, and does not introduce additional noise. For the present study, optical
detection is considered only as far as total system noise performance needs to be
estimated, or fundamental quantum mechanical measurement aspects have to be
considered. Optoelectronic design and device non-idealities are out of the scope
of the present work, and are not addressed.

Shot noise

Shot noise is a noise model that derives from the discreteness of photons inside
an optical signal. While the classical description of the incoming radiation field
is deterministic, a more accurate model for radiation is the semiclassical one,
which describes the arrival photon flux of a typically used laser radiation as a
inhomogeneous Poisson process [70]. Since the average power must correspond
in the two models, the photon rate Λ must be such that Λ(t) = |A(t,L)|2/(hω)

for a field of carrier frequency ω. If we consider the task of detecting a symbol by
using an ideal photodetector, if the symbol is transmitted in a symbol time T , the
average number of detected photons will be ΛT , with variance ΛT . Of course in
the limit of high average photon number, the random variable degenerates into
a number, since for a Poisson random variable of mean ΛT the variance is ΛT .
This additional fluctuations, with respect to average photon flux integrated in the
time T , is considered as noise.
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This simple model allows to introduce a fundamental limit on amplitude
detection. Consider a binary transmission, in the form of a simple On-Off Keying
(OOK), in which symbols are transmitted by zero optical power and a generic
high optical power. Let the transmitted symbol be random variable a, assuming
values a0 or a1 respectively for low and high transmitted power. Let the voltage
after the transimpedance amplifier, integrated and measured after the kth symbol
period, be vk. Since the photon arrival is inhomogeneous Poisson distributed,
and we assume ideal photodetection and neglecting thermal noise, we expect vk
to be Poisson distributed too, with parameter NR(k) > 0, the average number of
received photons in the symbol period k. If N ′

R is the expected number of photons
for a transmission of symbol a1, for every detection rule, there is a fundamental
indistinguishability between the two symbols at the detector. In fact, by using
Poisson statistics,

P[vk = 0|a = a1] = exp
[︁
−N ′

R

]︁
. (1.15)

The fundamental limit on the probability of error, for uniform symbol distribution,
is obtained using the law of total probability,

Pe >
1

2
exp

[︁
−N ′

R

]︁
. (1.16)

This semiclassical result is usually called the quantum limit for OOK communica-
tions.

Thermal noise, interaction with reservoirs at thermal equilibrium

Thermal noise occurs when information-carrying physical quantities are coupled
to thermally excited system components. An example is the perturbation in the
motion of the electrons by the thermal fluctuation of the position of nuclei in the
lattice structure of a conductor: that was the first case of thermal noise called
Johnson-Nyquist noise [70, 13]. Any case of interaction with a thermally excited
medium is a source of thermal noise. For example, when a guided wave interacts
with a guiding medium at finite temperature, by assuming thermal equilibrium,
statistical mechanics predict that every degree of freedom of every mode of
the radiation field must have an energy of kBθ/2 where kB is the Boltzmann
constant and θ is the absolute temperature [70]. This is a consequence of the
equipartition theorem [79]. The thermal noise of a guided field, which turns out
to be approximately Gaussian by the Central Limit Theorem [70], can impact
noise performances as an additive noise. This contribution is more important at
radiofrequencies and microwaves than in optical frequencies, because of the lower
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value of the energy quanta. In fact, at optical frequencies, at room temperature,
hω ∼ 1eV, whereas kBθ ∼ 10−2eV. In order to shed light onto analogies between
quantum-theoretical and classical treatment of noise, in section 3.3.4, we discuss
this aspect in more detail.

1.2.2 Amplification: Erbium doping and Raman techniques

Optical amplification is a technique which allow to increase the number of pho-
tons of an incoming signal via coupling to an excited reservoir, which undergoes
stimulated emission. Historically speaking, even if Raman amplification principle
was known before, the first efficiently implemented method to obtain optical
amplification was Erbium doping [55], in which one of the energy transitions of
Erbium dopant falls into the infrared telecommunication band. The process is de-
pendent on the absolute wavelength, because of Erbium energy levels properties.
Moreover, such amplifiers, called Erbium Doped Fiber Amplifiers (EDFAs) are
lumped, as the lenght of the doped fiber in which pumping and amplification is
realized is much less than the link length.

Another method to obtain optical amplification is the exploitation of Stimulated
Raman Scattering (SRS) [19]. This phenomenon is the frequency conversion of
pump photons due to interaction with a phonon reservoir, which is due to
molecular resonance excitation in the silica medium. A representation is given
in Fig. 1.1. In the most elementary application scheme, shown in Fig. 1.2, a
pumping wave is injected in the fiber (a standard fiber), consisting in a high-
power Continuous Wave (CW) radiation propagating in the direction of the signal
(copropagating), or in the opposite direction (counterpropagating), or from both
ends. Interaction with molecular resonances triggers the frequency conversion of
the pump wave into signal wave, due to stimulated emission, and emission of a
phonon of the corresponding energy difference. A simple semiclassical model
to understand the phenomenon, in the simplified case of a s, -ingle wavelength
pump, is the following. Let P+p represent the copropagating wave power, P−p the
(same wavelength) counterpropagating one, and Ps the signal power. They obey
the following system of differential equations:

dPs

dz
= −αsPs +CR (λs, λp)

[︁
P+p + P−p

]︁
Ps

−
dP−p

dz
= −αpP

−
p −

(︃
λs

λp

)︃
CR (λs, λp)PsP−p

+
dP+p

dz
= −αpP

+
p −

(︃
λs

λp

)︃
CR (λs, λp)PsP+p

(1.17)
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Figure 1.1: Pictorial representation of the stimulated Raman scattering [19].

Figure 1.2: Copumping and counterpumping of a Raman amplifier [19].

where αs, αp are the attenuation coefficients at the signal and pump wavelengths,
and the coupling coefficient CR is a phenomenological Raman gain coefficient.
This last coefficient has the important property to be only dependent on wave-
length difference and not to absolute wavelength. This is in fact the effect of
interaction with phonon reservoirs, which allows a conversion to a frequency
offset from the exciting wave. Notice that the frequency shifting could be pos-
itive or negative, following the elastic process of creation or annihilation of a
phonon, respectively. In the negative case, the resulting down-converted wave
is called Stokes wave, whereas in the positive one the up-converted wave is
called anti-Stokes wave. The Raman gain coefficient’s spectrum is plotted in Fig.
1.3a, exibiting a peak at about 12THz spectral distance from the excitation wave,
which is fundamentally different to the pumping and lasing of a fixed-energy
transition. In the figure, represented fibers are: Dispersion Compensating Fiber
(DCF), Non-zero Dispersion Shifted Fiber (NZDSF) and SuperLarge effective
Area fiber (SLA). Eq. (1.17) can predict the complete exchange of power, including
the pump depletion phenomenon. Notice how the wavelength ratio term λs/λp

is justified as, in absence of attenuation, by combining the three equation and
substituting power product terms like PsP±p , we obtain a Manley-Rowe equation
for photon flux [121]. Fig. 1.3b shows how the polarization or the signal impact
the magnitude of the gain. SRS is strongly sensitive on polarization. If one among
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(a) Raman gain coefficients for common fiber
types. Pump wavelength is 1450nm

(b) Polarization dependence of Raman gain.

Figure 1.3: Raman gain spectrum properties [19]
.

signal or pump radiation is completely depolarized, the effect of polarization
mismatch can be approximately addressed by dividing by 2 the gain coefficient
[19].

By going beyond this simple model which explains the physical features of
SRS, the presence of multiple pumps can be addressed in a generalized model.
Treating indistinctly signal and power wavelengths using the indices i, j, for a
fiber with N wavelengths, there are 2N equations, a counterpropagating and a
copropagating equation for each wavelength:

±dP
±
i

dz
= −αsP

±
i +

⎡⎣∑︂
j ̸=i
C

′
R i,j

[︂
P+j + P−j

]︂⎤⎦P±i , (1.18)

where the + sign is for copropagating and − sign for the counterpropagating.
CR i,j includes also the wavelength ratios discussed before, in the following way

C
′
R i,j =

⎧⎪⎪⎨⎪⎪⎩
CR(λi, λj) if λi > λj,
λi
λj
CR(λj, λi) if λi < λj.

(1.19)

From a technological point of view, Raman pumping scheme can leverage the
presence of multiple pumps as a bonus feature. The adoption of such scheme is
justified by the need of having flat gain spectra over a wide bandwidth, occupied
for example by WDM channels. In this scenario, Raman amplification is ideal,
as gives an unprecedented flexibility of placing pump wavelengths and powers.
By superimposing the gain spectra, it is possible to tune a total gain of the link,
as shown in Fig. 1.4a. Simple superposition of gain spectra may not be correct if
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(a) Example of optimized pump placement, using
only marginally high-order techniques [19].

(b) Performance of pump placement optimizer
with deep learning in a few mode fiber setup
[111].

Figure 1.4: Optimization of pump wavelength and power.

one or many pumps are affected by amplification or attenuation due to scattering
from and toward other pumps. In this case, the resulting scenario is called higher-
order pumping. These interactions, may be exploited in order to obtain a desired
pump evolution over the link length.

Optimization procedures for pump placement have been studied, some of them
using also deep learning techniques [111]. By using optimization it is possible to
obtain unprecedented wideband amplification. As an example, considering a flat
target gain profile over the C+L band, with 50 equally spaced wavelengths, the
result for a 4-mode fiber are shown in Fig. 1.4b, in which the shaded area is the
RMSE variation over the modes, and the solid line is the mean RMSE loss. This
result considers a 70km amplifier.

ASE noise

The conversion process described above may also happen in a spontaneous way.
In this case, emitted photons in the signal band are to be considered as noise,
as they are independent on the signal. Furthermore, those photons may trigger
stimulated emissions, thus being amplified. The overall phenomenon is known
as Amplified Stimulated Emission (ASE), and is a major impairment in optical
amplified systems. In order to predict the amount of ASE in a given amplifier,
power equations similar to Eq. (1.18) are used. The main difference consists in the
introduction of a noise source representing the process of spontaneous emission.

The number of equations for ASE should be equal to the number of signals we
are interested in, as every signal has to be decoded along with its in-band ASE
component. It is often possible to use a reasonable simplifying assumption in
the coupled power equations: since ASE power is usually small with respect to
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pumps and signals, it is reasonable to assume that ASE does not deplete pumps
or signals, and ASE does not pump other waves. In this way, ASE equations can
be solved in a separate moment with respect to signal and pump equations as
ASE power do not influence their evolution.

A useful parameter for evaluating link noise performance with respect to ASE
is the Optical Signal to Noise Ratio (OSNR), which is defined as the optical
power ratio between signal and noise. This definition is often referred to a single
channel bandwidth, or, as an alternative, referred to a reference bandwidth,
usually chosen to be 0.1nm for signals in C+L band [19]. We will use the symbols
OSNRs for the ratio referred to signal s bandwidth, and OSNRREF for the one
referred to the 0.1nm bandwidth

OSNRs =
Ps

Pn
powers referred to signal s bandwidth

OSNRREF =
Ps

Pn
powers referred to 0.1nm reference bandwidth

(1.20)

From the statistical point of view, it has been shown that ASE can be treated as
additive Gaussian noise [44, 19]. Typically, the noise performance of an amplifier
is indicated by its noise figure. For optical amplifiers, the overall noise performance
is obtained not just by the OSNR, but by the electrical SNR, which is the standard
signal to noise ratio measured after photodetection, in the electrical domain. The
electrical signal power is proportional to the photocurrent squared, which in turn
is proportional to the optical power squared. The same notation for bandwidth
reference is used in SNR and OSNR. Noise figure F is defined as the ratio between
SNR at the input and at the output of an amplifier, assuming an ideal detector for
SNRout. In narrow-band approximation the dependence on bandwidth reference
is no more relevant for the computation of noise figure.

F =
SNRs,in

SNRs,out
=
SNRREF,in

SNRREF,out
(1.21)

The minimum noise figure for a high gain amplifier is dictated by quantum
limitations, and it is 3dB [19, 68].

1.2.3 Coherent fiber communications

All kind of optical communications rely on detection, however notice that simple
photodetectors as those described before are not able to measure phase proper-
ties of the incoming field. Moreover, unlike in radiofrequency and microwave
communications, in optical communications there are not practical nonlinear
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(a) Balanced detector. (b) Phase-diversity detector.

Figure 1.5: Homodyne detection schemes [92]

devices that would realize a mixer, able to do frequency conversion in the base-
band by interaction with a local oscillator. So, by using only linear effects, the
detection of optical coherent transmission leverage on interference properties and
measurement using a couple of ”slow“ photodetectors. Starting from the 2000s,
some technological advancements started to open the possibility to exploit also
phase degree of freedom of the light for encode information, as it was the case in
radio communications. Those techniques involved mainly carrier estimation and
recovery, laser stabilization, and digital signal processing.

First studies on coherent optical communications have been carried out in
the 1980s, for enhancing unrepeated transmission distance, but the advent of
WDM and EDFAs in the 1990s shifted the research attention back to Intensity
Modulation / Direct Detection (IM/DD) technique [1], that, in connection with
these novel technologies, became very appealing for high-capacity systems. In
2005, interest in coherent receivers sparkled again from the demonstration of
digital carrier-phase estimation [92, 145]. This technique enable a low Bit Error
Rate (BER) regime of use for more spectrally efficient codes such as M-ary Phase
Shift Keying (M-PSK), or M-ary Quadrature Amplitude Modulation (M-QAM).
Futhermore, the recovery of the phase information allows to reconstruct and
equalize linear propagation impairments, like GVD and PMD, all via DSP in
post-processing [90].

Considering the optical part of the receiver, typical detectors are shown in Fig.
1.5. Usually these setups are called homodyne detectors, because they interfere
the incoming field with a local oscillator with the same wavelength of the car-
rier. Nomenclature is similar with respect to radiofrequency receivers, in which
homodyne refers to the technique of mixing an incoming signal with a same-
frequency local oscillator, which converts the signal to baseband [131]. In Fig.
1.5a, the interference is performed in two different fiber branches, which contain
fields E1 and E2, which have an offset component due to the local oscillator field
which typically is much larger than the incoming signal, and an interference term
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(a) Balanced detector using beam splitter [70] (b) Polarization-diversity detector [92]

Figure 1.6: Variations on the coherent detection schemes

phase-shifted by π. By detecting both fields and take the difference, the offset
component is canceled and the only remaining field represents amplitude of
the interference. This is the operational meaning of the composition operation
between I1, I2 and I in the figure, after the photodiodes. This operation is shown
more clearly in the alternative schematic in Fig. 1.6a. The setup just shown is able
to measure one quadrature of the field. Instead, the phase diversity setup in Fig.
1.5b, by interfering, in a second balanced photodetector, the incoming field with
a π/2 shifted local oscillator field, measures both the in-phase and quadrature
components [92].

Finally an issue we have not taken into account is the polarization dependence
of optical interference inside the fiber. If the fields do not share the same polariza-
tion states, photocurrent will not be proportional to the amplitude interference
term. This problem is mitigated by the usage of Polarization Controllers (PC), that
may eventually be automatized. Another solution is the usage of the polarization
diversity detector, shown in Fig. 1.6b, in which two orthogonal polarization are
processed independently by using a polarization beam splitter.

In recent times, 100-Gbit/s transmission systems, which employ quadrature
PSK (QPSK) modulation, polarization-division multiplexing, and phase-diversity
homodyne detection assisted with high-speed DSP at a symbol rate of 25 Gbaud,
have been developed and introduced into commercial networks [90]. Using this
example, by placing WDM channels at 50-GHz-spaced grids, it is possible to
transmit up to 8.8 Tbit/s through a single fiber [92].

1.2.4 NLIN effect

Starting from Eq. 1.1, it is possible to describe effects of nonlinearity in terms
of phase modulation of the complex amplitude [2]. Phase modulation effects,
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for what regards telecommunications influence pulse dynamics: the local field
amplitude modulates the refractive index, and a propagating field in the same
medium experiences additional phase shifts with respect to the linear propagation.
This effect is encoded in the coefficient γ in the following way

γ =
n2ω0
cAeff

(1.22)

where ω0 is the carrier frequency, c the speed of light, n2 is the coefficient that
models intensity dependence of refractive index,

n = nL +n2|E|
2 (1.23)

where nL is the linear part deriving from linear part of susceptibilty. As instan-
taneous Kerr effect is considered, n2 is independent on frequency, unlike nL.
Finally, Aeff is the effective modal area calculated as:

Aeff =

(︁∫︁
S ds|F|

2
)︁2∫︁

S ds|F|
4

, (1.24)

S being the cross-section of the fiber.
By describing the field as a superposition of pulses at different carrier frequen-

cies, as for example in a WDM system, the effect of phase modulation of a pulse
on itself is called Self Phase Modulation (SPM), whereas modulation on a pulse
induced by other channels pulses is called Cross Phase Modulation (XPM). From a
system perspective, assuming to have coherent detection, phase imbalance due to
nonlinear effects affects symbol detection. For example, SPM induces constellation
rotation proportional to constellation point amplitude squared. This impairment
can be easily equalized in post-processing by analysis of backpropagation. As for
XPM, the effect is very much dependent on other channels, so it is more difficult
to equalize. Recognizing that the influence of XPM constitutes noise, the effect is
called Nonlinear Interference Noise (NLIN). Because of dispersion, pulses from
different channels travels at different group velocities. Considering a train of
interfering pulses, and a single pulse from the channel of interest, the spatial
region in which the XPM interaction takes place is the collision region between
the pulse of interest and each one of the interfering pulses, which have different
launching times at the input. The outcome of this interference process can be
visualized in Fig. 1.7. Details of the computation will be furnished in Chapter 2.

A proposed model to tackle NLIN is that by Dar and Mecozzi [30]. It consists
in writing a single NLSE equation, encode into the field a couple of channels’
train of pulses: one for the channel of interest and one for an interferent channel.
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Figure 1.7: Overlap integral between power of an interfering channel and amplitude
of the channel of interest (arbitrary units), in the case of 80km Raman co-
pumping scheme, versus position. Green shades curves are collision for
different symbols (Nyquist pulses), purple line is proportional to cumulative
Raman amplification squared.

The main result is to obtain perturbative coefficients using normalized pulse
shapes, with which it is possible to evaluate the total impact of pulse collision.
The average total NLIN in this case is shown to be a phase noise term, and
it is dependent on the interfering channel modulation format. However, Dar
and Mecozzi model considers only a perfect amplification scenario, in which
the overall attenuation coefficient α in Eq.(1.1), that could be substituted with a
coefficient that jointly encode the effect of Raman gain and attenuation, is null.
The full model will be reviewed in Chapter 2, and will be the starting point of a
generalized version able to tackle also realistic attenuation and gain scenarios.

1.2.5 Quantum detection

Usually, when speaking about optical detection, we consider the measurement
of some variables, like field power, which have classical meaning, and can be
easily described in the quantum domain as observables. So the distinction between
classical and quantum detection is inessential in this setup: if we treat properly
the non-commutativity of observables, for example in in-phase and quadrature
detection, the outcomes are completely analogous. In fact, the experimental
detection setup may not even change from classical to quantum treatment. The
only aspect changing is, obviously, the prediction of noise performance, as shown
for the semiclassical model of shot noise in 1.2.1.

However, in the 1970s some studies [75, 76] started to tackle the problem of
detecting a quantum state using the formalism of projection in Hilbert spaces. This
opened up the possibility of understanding how to design optimized receivers
for sets of transmitted quantum states, instead of relying on the measurement
of the same observables as in classical detection. This framework developed
later to be the concept of a quantum channel. In this most general scenario of
communication, the transmitter chooses symbols from an alphabet of quantum
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states to be transmitted {|ψk⟩}k, and the receiver, using measurement of some
observables, detect the state. Every signal at the receiver can be characterized by
its density matrix, which is used to model an ensemble of quantum states, that
is analogous to the random variable considered in classical telecommunications.
An ensemble in which the state |ψi⟩ is associated with probability pi has density
matrix

ρ =
∑︂
i

pi |ψi⟩ ⟨ψi| . (1.25)

which is an operator. Density operators take the place of the probability density
functions of probability theory, generalizing the statistical theory to a quantum
statistical theory. In fact, it can be shown that quantum statistical theory includes
the classical as a special case [76], as classical theory is represented by so-called
incoherent ensembles, whereas also coherent ensembles can be represented in
quantum statistical theory [159], [134, p. 178], [79, p. 183-185]. The diagonal
elements of a density matrix are often called "populations", whereas the off-
diagonal terms are called "coherences". The time evolution of the density matrix
can be described through master equations of various forms, and in general
is a branch of open quantum systems theory. Often times, it happens that, by
interacting with a large environment, the time evolution of the density matrix
exibit vanishing coherences. This process is called quantum decoherence, and
it corresponds to the loss of quantum statistical properties [159, 94, 49, 139].
The measurement operation is done by projecting the density matrix by using
projector - Positive Operator Valued Measurements (POVM), which are sets of
projection operators {Π0, ...,Πn} satisfying the requirements

ΠiΠj = Πiδi,j,∑︂
i

Πi = I. (1.26)

where I is the identity operator. The measurement is intended in a probabilistic
sense, so product of the density matrix by a certain projector gives the probability
of obtaining the corresponding decoded symbol. The framework is as follows:
the transmitted state in a quantum channel is |ψ⟩i, but, by the presence of noise
in the channel, the corresponding received quantum state is described, in general,
by the density matrix ρi. Finally, a set of projector-POVM detects the density
matrix and reconstruct the symbol, including additional conditional probability.
The last step is easy to model, as it is a posteriori with respect to the physical
channel noise evaluation. The transition probability of this step is obtained in the
formalism of density matrix by taking the trace over the product of the received
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density matrix related to the transmitted symbol i, ρi and the operator Πj, which
encodes the transition from state i to state j. In this setup, the correct decision
probability is

Pc =
∑︂
i

qiTr[ρiΠi] (1.27)

where qi is the transmission probability of state i. The trace has the property to
be independent on the basis in which the computation is carried out.

So the novel perspective with respect to classical channel is the possibility to
design the projection operators in an optimized way to recover the transmitted
state. In general this is an hard task, corresponding to function optimization in a
eventually very large Hilbert space. We will refer to this problem as the quantum
detection problem. Nonetheless, an important optimization bound result was
obtained by Helstrom, in the case of binary quantum detection. Let {|ψ0⟩ , |ψ1⟩}
be the alphabet of transmitted states, and let ρ0, ρ1 the corresponding noise-
corrupted density matrices at the receiver. The receiver, being designed for binary
reception, employs two projectors Π0,Π1, with the property that Π0 +Π1 = I. By
calculating the probability of correct decision, we can factorize [21]

Pc = q0Tr[ρ0Π0] + q1Tr[ρ1Π1] (1.28)

= Tr[q0ρ0] + Tr[(q1ρ1 − q0ρ0)Π1] (1.29)

= q0 + Tr[DΠ1] (1.30)

where the D = q1ρ1 − q0ρ0 is called the difference operator. The problem is cast
into a maximization problem:

Π∗
i = arg max

Π1

Tr[DΠ1]. (1.31)

By finding the eigendecomposition of D,

D =
∑︂
k

ηk |ηk⟩ ⟨ηk| , (1.32)

we notice that quantities εk := ⟨ηk|Π1|ηk⟩ are probabilities of detection of |γ1⟩ if
the received state is in |ηk⟩, so they must be in the interval [0, 1]. Now, building
the projector as

Π̃1 =
∑︂

|ηk⟩ ⟨ηk| , (1.33)
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we maximize the value of every εk, and have a simultaneous diagonalization of
operators D and Π1. Computing the trace:

Tr[DΠ̃1] =
∑︂
ηk>0

ηk. (1.34)

by generality of the eigendecomposition of D, we can state that Π̃i = Π∗
i . So

by finding a diagonalization of the difference operator we can build the optimal
set of projectors that maximize the probability of correct decision. The explicit
calculation for the probability of error is available in the simple hypotesis of pure
states at the receiver. Consider the normalized received states to be |γ0⟩ and |γ1⟩.
The diagonalization procedure of the difference operator gives the eingenstates
that can be expressed in the basis of the received states, which are assumed to be
independent.

|η0⟩ = a00 |γ0⟩+ a01 |γ1⟩ ,

|η1⟩ = a10 |γ0⟩+ a11 |γ1⟩ ,
(1.35)

we obtain, by simple extension of the eigenvalue equations D |η0⟩ = η0 |η0⟩ and
D |η1⟩ = η1 |η1⟩, a couple of equations

q1(a0i ⟨γ0|γ1⟩+a1i) |γ1⟩−q0(a0i+a1i ⟨γ1|γ0⟩) |γ0⟩ = ηi(a0i |γ0⟩+a1i |γ1⟩) i = 0, 1

(1.36)

which in turn, by independence, can be separated in

q1(a0i ⟨γ0|γ1⟩+ a1i) − ηia0i |γ0⟩ = 0, (1.37)

q0(a0i + a1i ⟨γ1|γ0⟩) − ηia1i |γ1⟩ = 0, (1.38)

finally, by solving the system with respect to ηi,

η2i − (q1 − q0)ηi − q0q1(1− | ⟨γ0|γ1⟩ |2) = 0, (1.39)

whose solution is

η0,1 =
1

2

(︃
q1 − q0 ∓

(︂
1− 4q0q1| ⟨γ0|γ1⟩ |2

)︂1
2

)︃
. (1.40)

so, only η1 is positive, and by expressing the probability of error using 1.34,

Pe =
1

2

(︃
1−

(︂
1− 4q0q1| ⟨γ0|γ1⟩ |2

)︂1
2

)︃
(1.41)
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The exposed treatment regards a theoretical lower bound, which is the quantum
limit to binary detection of states, a much more powerful result with respect to
the quantum limit for OOK direct detection. The bound is in fact better in terms
of error probability than semiclassical detection theory in the same scenario. The
fact that full quantum detection performs better than semiclassical one is justified
by the fact that quantum detection exploit interference, which is encoded in the
density matrices [118, 117]. Some receivers designs have been ideated to get close
to the bound. Those optimized detector designs have been proposed by Kennedy
[87] and Dolinar [33], and are often based on feedback techniques in the optical
domain. The physical implementation of such devices is difficult, and it is an
active research topic [101, 41, 21, 122].

So far we have described the detection task into a well defined Hilbert space of
the received symbols. In general, the interaction with the external environment is
described in the framework of a much bigger space, of which the signal Hilbert
space is a small subspace. A phenomenon of great interest is present in this
setup. The interaction with the measurement apparatus induces intrinsic pertur-
bations to the quantum state, in an unavoidable way. The effect of measurement
interaction can be described in many ways. If we consider a strong division
between microscopic and macroscopic world, i.e. if we consider the measurement
apparatus to be completely out of the quantum-mechanical description of the
system, it is possible to encode the effect using the von Neumann postulate. The
postulate states that a measurement operation collapse the observable into one
of its eigenstates, and the quantum state, will be projected by the measurement
operation onto the eigenspace of this eigenvalue. This postulate is justified by
consistency of a sequence of immediately realized measures, as explained in
Dirac [32]. However, the correct interpretation of such postulate cannot be literal,
since the framework of quantum theory give only probabilistic predictions about
measurements [70, p. 473]. So in this work we will rely on another theory of
quantum measurements, which is the theory of decoherence [159, 158]. This theory
includes into the quantum treatment not only the system under study, but also the
measurment apparatus. The interaction with the apparatus is usually modeled
by an interaction Hamiltonian. In this framework, the measurement operation
has a precise mathematical representation: it corresponds to taking partial traces
on the density matrix [49, 94]. In the framework of fiber optics, the theory of
decoherence allow to model some of the so-called Quantum Nondemolition
measurements (QND). These measurements allow to obtain a measurement of a
physical phenomenon with the minimum perturbation to it. An excellent example
is the XPM coupling of a signal with a probe, which furnish a way to measure
the photon number of the signal [85, 61].
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In conclusion, the main difference between classical detection theory is the
inclusion of density matrices: during the propagation in the fiber the signal incurs
in disturbances, and the quantum state, that most frequently is a coherent state,
gets perturbed by states of disturbances factors, as phonons, polaritons and in
general reservoirs. In a full quantum treatment, this would be perfectly modeled
using many-body theory, however for practical purposes, the noise sources may
be encoded in the post-propagation (partial) density matrix. By using projections
of the density matrix, it is possible to obtain the probability of error of the
transmission over the quantum channel. Physical realization of the optimized and
near-optimized devices are a topic of active research. A key note is necessary: the
channel we are considering are designed to convey classical information using
quantum states. Transmitted sequences are classical information.

From the point of view of this work, the full quantum reception will not be
addressed, but the channel impairments will be related to this kind of framework
in order to facilitate further investigations.

1.2.6 Quantum Key Distribution

The measurement properties of quantum channels are particularly interesting
from the point of view of information security. Even in the absence of optimized
quantum receivers, since measurement of a quantum state has fundamental
physical limits on the perturbation of the state itself, as we have anticipated
introducing decoherence, it is possible to exploit this physical bound to prevent
sensible signals to be detected in an unnoticed manner. This allows to develop
Quantum Key Distribution (QKD) systems [21]. This allow to reach unprece-
dented levels of security with relatively simple procedures, when compared to
current techniques such as RSA system. The effective distribution of keys can
follow one of two paradigms: the prepare and measure scheme, represented in
Fig. 1.8a, the key information is generated by the transmitter and sent into a
quantum channel for reception. After correct reception, and eventual additional
passages like security amplification [105], a classical channel is used for encrypted
information. Alternatively, the entanglement-based paradigm, represented in Fig.
1.8b show how a third party can generate entangled states to both the transmitter
and the receiver, which obtain in such a way the key, and then encode the message
sent through the classical channel. The presence of quantum channels in Fig. 1.8b
is encoded into the source-measurement links in the top part. We will consider
the entanglement based paradigm, as it is mostly used in fiber optics applications.
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(a) Prepare and measure QKD. (b) Entanglement-based QKD.

Figure 1.8: Quantum Key Distribution information schemes[21]

Without entering the implementation details and security of those protocols, we
formulate the main fiber propagation problem pertaining to these technologies.
The problem is to model how other channels, along with fiber non idealities, affect
the entanglement properties of the quantum signal. So it is a decoherence problem.
The usual approach to QKD is to use the so-called Discrete Variable-QKD (DV-
QKD), in which the quantum state is encoded in discrete quantum variables of
the transmitted signal, typically polarization. This is done using a laser source of
entangled photons (for example using spontaneous parametric down conversion
in nonlinear crystals) as coherent states attenuated to the single-photon level,
and single photon detection using Single Photon Avalanche Photodiodes (SPAD).
This is the case of the famous BB84 protocol. Another more recent approach
is to encode quantum states in continuous variables of the signal, for example
amplitude and phase of a coherent field, thus using the approach of Continuous
Variable-QKD (CV-QKD) This is the basis of the GG02 protocol [63, 65].

Coexistence experiments and models

So far, some experiments of coexistence between WDM channels and QKD chan-
nels have been carried out. Recent results show how QKD is a mature technology,
as deployment ready systems have been developed [8, 9]. In particular, an ex-
periment show how transmission is available using common telecommunication
equipment, integrated with a quantum state generation and detection inserted
into a DWDM slot, which implements a version of the BB84 DV-QKD protocol.
In this scenario, a single 1Gb/s OOK modulated classical channel is sent at at
the minimum power for reception of −31dBm at the receiver, over a 13km long
standard fiber already deployed. Secret key rate of 1.7kb/s was achieved in a
relatively simple setup.
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Experiments targeting coexistence of quantum and classical channels can be
divided in scenarios with WDM channels along with CV-QKD, or, alternatively,
along with DV-QKD. Experiment show how DV-QKD channels suffer most
from the presence of other DWDM channels, as they use signal levels at the
single photons. A interesting circumvention of the problem of high sensibility of
DV-QKD with respect to nonlinear effects is the usage of Hollow Core-Nested
Antiresonant Nodeless Fibers (HC-NANF), experimented recently [3, 4]. Inter-
esting results show how 8×200Gb/s 16-QAM modulated, 50GHz spaced WDM
channels, at −9dBm/channel launch power can coexist with DV-QKD in a 2km
long HC-NANF [3]. The quantum channel was placed 75GHz out of the DWDM
spectrum. With the same experimental setup, a Single Mode Fiber (SMF) with
the same length was tested for comparison, showing that to reach the same QKD
performance (targeted around 2kb/s secret key rate using Coherent One Way
protocol) WDM launch power must be reduced by ∼ 24dB [4]. Major experiments
in SMFs consider CV-QKD, as it is more robust due to higher power level [42,
43]. In one experiment, 10km fiber was used, populated with 18x24.5Gbaud
Polarization Multiplexed-16QAM (PM-16QAM) with launch power up to 1.4dBm.
Secret key rate was shown to be stable around 24kb/s. The main investigated
impairment has been in-band ASE, injected from a noise loading source at the
transmitter [43]. The result showed how how in-band ASE spectral power as low
as −68dBm/0.1nm significatively affects the quantum channel, and for power
higher than −59.5dBm/0.1nm no secure communication is possible. Numerical
simulations have been addressed in [156].

Mathematical modeling of the impact of classical channel driven XPM in
CV-QKD has been addressed in a simple way, using a power spectral density
argument, in [25]. However this approach lacks to account for dispersion, and do
not take into account high order correlations of the interference process, as stated
in [30], addressing methods using power spectral density. The original approach
showed how in Gaussian-Modulated Coherent State (GMCS) CV-QKD protocol
the influence of XPM is negligible assuming a single OOK modulated signal at
2dBm launch power.

1.3 outline of the thesis

This thesis is articulated in two main chapters, which have different methodology
and purpose.

Chapter 2 deals with the original result of extending the NLIN model to Raman
amplified systems. This is the main novel result of the thesis. By starting from
previous mathematical formulation of the Dar and Mecozzi model, we extend
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its validity to Raman amplified links. Several results of numerical simulations
for realistic scenarios complement the treatment, and show peculiar properties
of NLIN connected to Raman amplifiers. Finally, we comment how NLIN per-
formance can be taken into account into Raman amplifier design. The purpose
of chapter 2 is to contribute to the known models for nonlinear impairments
in classical optical communication systems, and to give almost readily-usable
prompts and suggestions for design of amplified links.

Chapter 3 is devoted to explore and survey the available methods for model-
ing of quantum communication systems in optical fibers, with particular focus
on the description of field propagation. The main outcome of this chapter is a
model of NLIN based on stochastic equations, mutuated from previously used
noise models for Raman scattering and absorption. This model may represent a
starting point for further investigations aiming to link methods from different
branches of telecommunications. Some final notes are given about the phenom-
ena of quantum decoherence and quantum nondemolition measurements, and
related to the propagation description. The purpose of chapter 3 is to carry out a
preliminary study on quantum models for field propagation inside fibers, and
try to individuate, and prepare for future investigations, the relevant connections
between adjacent fields of physics of matter, information theory and classical and
quantum telecommunication system design.



N L I N M O D E L F O R R A M A N A M P L I F I E D 2
W D M L I N K S

[...] der Traum vom "Gras wachsen
hören" stellte sich wieder einmal recht
greifbar der Menschheit dar.†

W.H. Schottky [137]

The aim of the chapter is to generalize the time domain model by Dar and
Mecozzi [30], in the case of a fiber with imperfect amplification, i.e. more specif-
ically, a fiber with silica attenuation and Raman gain. A crucial property of
attenuation and Raman gain is the dependence on frequency. As explained in
1.2.2, the Raman effect is strongly dependent on frequency, and, even if the atten-
uation does not exibit such a strong dependence, its variation is not negligible
over a sufficiently broad WDM spectrum. As explained in the section 1.2.4, the
phenomenon of NLIN is characterized by the presence of overlap region between
pulses from different channels. The model by Dar and Mecozzi utilizes the evalu-
ation of a noise metric for each of the collisions, called X0,m,m [30, eq. 7]. The goal
of this chapter is to derive a convenient expression for the coefficient X0,m,m in
the generalized scenario, studying the similarities and the differences of the two
approaches. The method outlined in [30], and further developed in [28, 29, 31,
115], consists in the computation of NLIN through the definition of the coefficient
X0,m,m, which is evaluated via a double time and space integral. The separation
between the integrals allows a two-steps computation of NLIN: the time step
calculates the spatial collision shapes of the interferences, and the space step
integrates the contribution of the collision over space. This method allows for
efficient evaluation of XPM interaction that would otherwise involve, for every
choice of parameters, full computation of collisions, that typically involve several
thousands pulses. The possibility of computing the interference properties opens
up many technological possibilities, one of them being the online computation
and mitigation of NLIN, as outlined by Dar et al. [31]. In fact, by using long

†[...] the dream of “hearing the grass grow” appeared achievable to mankind.
Translation by H.A. Haus [70].

40
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temporal autocorrelation of the NLIN process, a filter can be tailored to eliminate
part of the noise. However this method is out of the scope of this thesis.

In order to compute the coefficient of interest, we will start by reviewing the
main steps of the original derivation by Dar and Mecozzi in 2.1, commenting the
utilized approximations. In the following section, 2.2, the generalization is derived,
and in section 2.3 the connections between the two models, that may seem not
straightforward, are clarified by a simple calculation. The actual computation of
X0,m,m in the Dar and Mecozzi model was performed through an approximation
called high-dispersion appproximation: under reasonable assumptions the double
integral is approximated with an elementary function of the parameters. In section
2.4, we comment this approximation by referring it to the Fresnel transform, and
assess the possibility of applying it also in the generalized scenario. Since this
is not possible in general, we explore some analytical simplifications assuming
Gaussian pulse shape. The computation of ASE noise is described in section 2.5.
Numerical simulation setup and results are reviewed in section 2.6, where we will
answer some questions of interest for the design of systems. Finally, in section
2.7, the evaluation of system performance, using the noise characterization of this
chapter, is commented.

2.1 equations for the field and assumptions

In the model developed in [30], a single NLSE is adopted to model the field
inside the fiber. Let us examine the structure of the equation. First of all, let us
define the Raman amplification profile r(z). Starting from power equations (1.18),
considering the wave corresponding to the signal wave, of subscript s, we identify
the coefficient for the amplitude gain to be the sum of all the contribution from
the pumps and signals different from s:

r(z) =
∑︂
i ̸=s
C

′
R s,i

[︁
P+i + P−i

]︁
. (2.1)

By using the definition of r(z), we can insert the effect of Raman gain into the
usual NLSE (Eq. (1.1)), dividing it by 2 in order to have an amplitude coefficient:

∂

∂z
A = −

α− r(z)

2
A−β1

∂

∂τ
A− i

β2
2

∂2

∂τ2
A+ iγ|A|2A (2.2)

where τ is the physical time. Recall that A is proportional to the electric field
inside the fiber, in a way such that the dimension of A is [|A|2] = W.
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2.1.1 Narrowband approximation

Equation (2.2) holds for a narrowband field, in other words, for the complex
amplitude A(z, t), the SVEA holds true. In a WDM system, this approximation
is still assumed to be valid, even if the usual channel spectral spacing is greater
than 12.5GHz in third window (see Appendix 4 for frequency standards). In the
presence of tens of channels, the total field may still be assumed as narrowband,
when compared to the hundreds of THz optical carrier frequency.
However, while this assumption can be used for modeling dispersion in a simple
way, using β2, it is not sufficient for assuming constant attenuation-gain terms
along all the wavelengths. In fact, a constant attenuation and Raman gain over
the signal bandwidth may be an assumption too strong to be made, especially
when interested in multiple pump Raman amplification. So the model with a
single NLSE equation holds for perfect amplification scenarios, but needs to be
modified in the generalization, to different situations.

Let us comment now about a common mathematical procedure that simplifies
the notation in the NLSE, in presence of attenuation.

2.1.2 Rescaling of fields

Let ψ(z) be defined as a solution of the following differential equation

d

dz
ψ(z) = −

α− r(z)

2
ψ(z), (2.3)

using such function, let u(z, t) be defined as the normalized field in the following
way. By assuming a moving reference frame such that time is defined as t =

τ− vgz, u(z, t) is defined by

A(z, t) = ψ(z)u(z, t). (2.4)

The above definition, when substituted in Eq. (2.2), in the scaled time t, gives the
following equation:

∂

∂z
u = −i

β2
2

∂2

∂t2
u+ iγf(z)|u|2u (2.5)

where f(z) = ψ(z)2. The advantage in using the Eq. (2.5) is that the amplitude
dynamics can be described with a space-dependent nonlinear term: γf(z).
The model by Dar and Mecozzi uses the perfect amplification assumption, i.e.
γf(z) = γ, since f(z) ≡ 1.
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2.1.3 Overview of the perturbation analysis

Let us now review the main steps of the derivation of the NLIN model in [30],
under the assumption of perfect amplification. In order to clarify the following
treatment, we summarize the steps as follows.

1. Write the field u(0, t) as a superposition of a train of modulated symbols
from the channel of interest {ak} and the interfering channel {bk}.

2. Obtain a 0th order solution of the normalized NLSE (Eq. (2.5)), u(0)(z, t).

3. Compute the first order perturbation of this solution, u(1)(z, t). This will
include collision integrals between pulses, from which X0,m,m is defined.

4. Assuming perfectly matched filter at reception, compute the first order error
induced on the first received symbol of the channel of interest: ∆ã0. A single
symbol is sufficient as it entails all the statistics of interest.

5. Utilize the expression of u(1)(z, t) to separate the interference integrals from
the modulation format dependence of ∆ã0, thus expressing it via X0,m,m.

6. Obtain a final expression for the phase noise of the received symbol.

all these steps were done assuming perfect amplification in Eq. (2.5).

2.2 generalization of nlin model

The generalization is straightforward, first of all let us recall fundamental as-
sumption used in the model. By including attenuation and gain it is required to
drop the narrowband approximation: in doing so, a useful well-known model is
the one of the coupled NLSEs.
Consider two WDM channels named A and B. The following hypotesis are made:

• channels A and B have a spectral separation of Ω (a multiple of the WDM
spectral spacing), let A be the channel of interest, and B the interfering one,

• both channels have the same nonlinear coefficient, since it depends from
modal field distribution in the core which is assumed to be the same for all
channels: γA = γB = γ,

• the group velocity profile is approximately linear in the frequency (β2 is
constant) in the whole band of interest: in this way β1B = β1A +β2Ω
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• attenuation and Raman gain depend on the channel choice, but are approx-
imately constant within the band of a given channel, so it is justified to
define αA, αB, rA(z), rB(z) for channels A and B.

2.2.1 Coupled NLS equations

Following Agrawal [2, p.263], a system of coupled NLSE, including Raman gain, is
given by(︃

∂

∂z
AA +β1A

∂

∂τ
AA

)︃
= −

αA − rA(z)

2
AA − i

β2
2

∂2

∂τ2
AA+

+ iγ(|AA|
2 + 2|AB|

2)AA

(2.6)

(︃
∂

∂z
AB +β1B

∂

∂τ
AB

)︃
= −

αB − rB(z)

2
AB − i

β2
2

∂2

∂τ2
AB+

+ iγ(|AB|
2 + 2|AA|

2)AB,
(2.7)

As discussed, subscripts denotes complex amplitude, and propagation variables,
of the channels A and B. Let us proceed in normalizing the fields AA, AB with the
respective normalization functions ψA, ψB, as described in the rescaling method
Eq. (2.3), and using the scaled time t = τ− vgAz, with respect to channel A group
velocity vgA = β−1

1A. These passages lead to:

∂

∂z
uA = −i

β2
2

∂2

∂t2
uA + iγ

(︂
fA(z)|uA|

2 + 2fB(z)|uB|
2
)︂
uA (2.8)

∂

∂z
uB = −∆β1

∂

∂t
uB − i

β2
2

∂2

∂t2
uB + iγ

(︂
fB(z)|uB|

2 + 2fA(z)|uA|
2
)︂
uB, (2.9)

where ∆β1 = β1B −β1A = β2Ω.
Following [30], a first order perturbation analysis is proposed for these equations.
Let us start from the linear propagation, i.e. the 0th order approximation.

2.2.2 Generalization of the 0th order term

Since the attenuation and gain only affect the nonlinear term, the normalized
field of the 0th order must be identical to the one derived in [30, eq. 1]. The
only exception is due to the notation used: the total field in this case can not be
expressed by a simple sum of terms u(0)A + u

(0)
B . There are in fact two notational

caveats:

• u
(0)
A and u(0)B functions represent normalized fields with different normal-

ization functions ψA, ψB,
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• u
(0)
A and u(0)B are complex amplitudes ([142, pp. 523-525]) referred to different

carrier frequency signals, and their evolution is described by different
propagators.

These aspects are addressed in section 2.3.
Consider the initial fields as sums of shifted impulses which encode a given

message. Let T be the symbol period:

uA(0, t) =
∑︂
k

akg(0, t− kT)

uB(0, t) =
∑︂
k

bkg(0, t− kT)
(2.10)

The pulses g(0, t) are assumed to be normalized, so∫︂+∞
−∞ dt|g(0, t)|2 = 1 (2.11)

Let g(0)(z, t) be the linearly propagated field in channel A. The solution for the
0th order field is:

u
(0)
A (z, t) =

∑︂
k

akg
(0)(z, t− kT) (2.12)

u
(0)
B (z, t) =

∑︂
k

bkg
(0)(z, t− kT −β2Ωz) (2.13)

because of linearity and definition of g(0).
As in [30]‡, we define the operator of linear propagation for channel A:

UA(z) = exp
[︃
−i
β2
2
z
∂2

∂t2

]︃
. (2.14)

in fact, the propagator for channel B is not required for further first order
perturbation analysis.

2.2.3 First order perturbation

The splitting in two of the equation allow us to analyze separately the effects
of SPM and XPM in a natural way, as they compare inside the nonlinear term

‡We report equations by Dar and Mecozzi with slightly changed signs, arguing that this is a
consequence of conventions in the writing of the NLSE. Keeping the NLSE with the sign chosen
in this thesis, the signs are consistent.
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in additive fashion. Let us apply the perturbation method to equation (2.8) for
channel A:

∂

∂z
u
(1)
A = −i

β2
2

∂2

∂t2
u
(1)
A + iγ

(︂
fA(z)|u

(0)
A |2 + 2fB(z)|u

(0)
B |2

)︂
u
(0)
A

(2.15)

Notice that the normalized fields u(0)A and u(0)B can not be summed together
because they are complex amplitudes with respect to different carriers. However,
their squared absolute value, multiplied by fA or fB, respectively, corresponds to
the power of the wave, so the summation of these terms makes physical sense.
Writing the integral solution to the inhomogeneous linear equation above gives

u
(1)
A (L, t) = iγ

∫︂L
0
dzUA(L− z)

(︂
fA(z)|u

(0)
A |2 + 2fB(z)|u

(0)
B |2

)︂
u
(0)
A . (2.16)

where L is the fiber length. Using this result it is possible to obtain the estimation
of the error of a receiver.

2.2.4 Generalization of estimation error

Consider now the reception of the first symbol of the sequence of the channel of
interest. Let the received symbol be ã0. The computation of the effect of NLIN on
this symbol will provide all the statistical information about noise. The choice
of the first symbol is of little effect and will be justified at the end of the section.
Using a matched filter receiver, with matching to the linearly propagated initial
pulse waveform g(0)(L, T), we obtain the following equation for the estimation
error ∆a0

∆a0̃ =

∫︂+∞
−∞ dtu

(1)
A (L, t)g(0)∗(L, t). (2.17)

Recall that UA is unitary, so it holds

UA(L− z)g
(0)∗(L, t) = g(0)∗(z, t) (2.18)

Using this identity, the expression for the error can be written as3:

∆a0̃ = iγ

∫︂L
z0

dz

∫︂∞
−∞ dtg(0)∗(z, t)

(︂
fA(z)|u

(0)
A |2 + 2fB(z)|u

(0)
B |2

)︂
u
(0)
A (2.19)

3Notice that, being that the two fibers linear propagation terms are different, the substitution
described in Eq. (2.18) is only valid because filter matching is done considering the propagated
symbol waveform over channel A.
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By substituting the modulation of choice for the symbols inside the fields u(0)A , u(0)B ,
we get an expression ready to be computed with respect to a given modulation
format. Finally, substituting the modulation and using the same notation as [30,
eq. 5, 6, 7], the resulting expression is

∆a0̃ = iγ
∑︂
h,k,m

(aha
∗
kamSh,k,m + 2ahb

∗
kbmXh,k,m) (2.20)

where

Sh,k,m =

∫︂L
0
dz fA(z)

∫︂∞
−∞ dt g(0)∗(z, t)g(0)(z, t− hT)×

× g(0)∗(z, t− kT)g(0)(z, t−mT)
(2.21)

for the SPM, and

Xh,k,m =

∫︂L
0
dz fB(z)

∫︂∞
−∞ dt g(0)∗(z, t)g(0)(z, t− hT)×

× g(0)∗(z, t− kT −β2Ωz)g(0)(z, t−mT −β2Ωz)
(2.22)

for the XPM.
These are the terms of major interest in the model, since they only include the
normalized pulse shapes. In their generalization, they include attenuation and
gain. This argument proves that the only modification to the original model is
to include the terms fA(z), fB(z), which represent the power exchanged with the
medium, into nonlinear interaction terms Sh,k,m, Xh,k,m.

It is possible, using Eq. (2.20), and Eq. (2.22), to write the expression for the
NLIN. Some approximating assumptions are useful. Since the disturbance is
greatly enhanced when interfering pulse amplitude are considered from the same
pulse, with k = m, we will concentrate on terms like Xh,m,m. In addition, we
are not interested in SPM, as it can be filtered using digital signal processing
techniques (for an example, see Tan et al. [143]). Moreover, for the same argument,
we may neglect contributions from h ̸= 0, since h = 0 greatly enhances the
product. So terms with h = 0, k = m dominate the sum, and the others will be
neglected. In this case, the coefficient in Eq. (2.22) can be expressed as

X0,m,m =

∫︂L
0
dz fB(z)

∫︂+∞
−∞ dt |g(0)(z, t)|2|g(0)(z, t−mT −β2Ω)|2 (2.23)

Let us justify the choice of the first symbol of the sequence. If the product β2Ω is
negative, we expect to have many collisions in a sufficiently long fiber, as many
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pulses interact. In practical terms, if the dispersion is normal, which is often the
case, a red-shifted channel (Ω < 0) propagates with higher group velocity, and
reaches the pulses of the channel of interest. By choosing the first symbol to be
transmitted, we maximize the number of collisions inside the fiber span. This is a
matter of convenience, and will turn out to be useful in numerical simulations,
however it is a minor assumption for the general model: in fact, in the long
transmission run, all the symbols will experience the same number of collisions,
equal to the one experienced by the first pulse. Moreover, not all the integer m
are of interest, as, for some limiting m̄, for every m > m̄, most of the collision
would take part outside the fiber span, and may be totally neglected. The choice
of m̄ can be simply done by inspecting the maximum of the collision, located
at zm = − mT

β2Ω
, and imposing zm < L. In this case m̄ ≈ −β2ΩL

T . A more refined
analysis, which includes partial collisions will be addressed later.

Finally, we can write the total noise as

∆a0̃ = i2γa0
∑︂
m

|bm|
2X0,m,m = ia0∆ϕ, (2.24)

which show a phase noise term to the first order:

a0̃ = a0 +∆a0̃ = a0(1+ i∆ϕ) ≈ a0 exp[i∆ϕ]. (2.25)

We are interested in writing the variance of phase noise, so we average over
the distribution of interfering symbols, arbitrarily selecting b0 because of the
stationarity of the process

⟨︂
(∆ϕ)2

⟩︂
= 4γ2

(︃⟨︂
|b0|

4
⟩︂
−
⟨︂
|b0|

2
⟩︂2)︃

⏞ ⏟⏟ ⏞
modulation format

∑︂
m

X20,m,m⏞ ⏟⏟ ⏞
pulse overlap

, (2.26)

this last formula shows how the computation of phase noise can be subdivided
in the – numerically heavy – computation of X0,m,m for m = 0, 1, ..., m̄, and the
lightweight computation of constellation energy variance. In fact, the constellation
energy variance can be decomposed further into a term proportional to the
average transmitted power, and a constellation form factor. If PB is the average
launch power of channel B, it holds⟨︂

|b0|
2
⟩︂
= PBT , (2.27)
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Figure 2.1: Constellation factor Eq. (2.28), normalized to 16-QAM case.

so the energy variance can be written as

(︃⟨︂
|b0|

4
⟩︂
−
⟨︂
|b0|

2
⟩︂2)︃

= (PBT)
2

(︄ ⟨︁
|b0|

4
⟩︁

⟨|b0|2⟩
2
− 1

)︄
, (2.28)

the ratio term ⟨|b0|4⟩
⟨|b0|2⟩2

is actually a well known shape factor for the constellations.

Examples of values of the factor
(︃

⟨|b0|4⟩
⟨|b0|2⟩2

− 1

)︃
are plotted in Fig. 2.1. A very

important point is that all PSK constellations have null variance, as all the symbols
have the same energy. This imply that PSK transmissions, which include 4-QAM,
are immune to NLIN. Intuitively, this can be explained as the fact that the phase
shift, in the case of interference with a PSK channel, is deterministic, so the noise
induced by random phase shifts is zero.

2.3 connection between models

In order to check that generalized model properly describes all the scenarios that
can be described with the original model, let us relate the total linear propagated
field for the single NLSE model by Dar and Mecozzi, to the separated fields uA,
uB, computed without gain and attenuation. If the generalized model is correct,
the solutions should correspond.

The fields in the original model are represented as complex amplitudes with
respect to the channel A center frequency. So the function corresponding to chan-
nel B field in the generalized model, at the initial position, needs to multiply the
complex amplitude of channel B by exp[−iΩt] in order to obtain the correspond-
ing complex amplitude with respect to channel A carrier frequency. Moreover,
the propagated field for the interacting channel are no more corresponding. In
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fact, while the linear propagator operator for the interfering field in Dar and
Mecozzi [30], called U ′, is

U ′(z) = exp
[︃
−i
β2
2
z
∂2

∂t2

]︃
(2.29)

with no walkoff term, the propagator in the coupled equations model is

UB(z) = exp
[︃
−i
β2
2
z
∂2

∂t2
−∆β1z

∂

∂t

]︃
(2.30)

so, the propagated field notation g(0)(z, t−β2Ωz) for channel B in the coupled
equations model, and the corresponding notation with corrected phasor term
exp[−iΩt]g(0)(z, t−β2Ωz) in the original model, are not coincident. This is the
reason behind the apparent discrepancy of Eq. (2.13) with respect to [30, eq. 1],
which is

u(0)(z, t) =
∑︂
k

akg
(0)(z, t− kT)+

+ exp

⎡⎢⎢⎣−iΩt− i
β2Ω

2

2
z⏞ ⏟⏟ ⏞

discrepancy

⎤⎥⎥⎦∑︂
k

bkg
(0)(z, t− kT −β2Ωz)

(2.31)

where u(0)(z, t) is the linearly propagated field corresponding to the channel
superposition. In order to clarify the meaning of the additional term, let us
introduce the following notation. Functions appearing in the original Dar and
Mecozzi model will be referred to using the subscript C, to mean comprehensive,
whereas functions in the coupled equations model will have the subscript notation
introduced before.

In the new notation, the task is to show that

exp
[︃
−iΩt− i

β2Ω
2

2
z

]︃
g
(0)
C (z, t−β2Ωz) = g(0)(z, t−β2Ωz) (2.32)

where,

g(0)(z, t−β2Ωz) = UB(z)g
(0)(0, t). (2.33)

At the fiber input, it holds

exp [−iΩt]g
(0)
C (0, t) = g(0)(0, t) (2.34)
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So now, substituting in the left term of Eq. (2.33) the left hand side of Eq. (2.34),
we can compute the propagation

g(0)(z, t−β2Ωz) = UB(z) exp [−iΩt]g
(0)
C (0, t). (2.35)

Let us do the calculation in frequency domain: indicating the transformed right
hand side of Eq. (2.35) as

ÛB(z)ĝ
(0)
C (0,ω−Ω), (2.36)

and taking the inverse transform, using square completion,

1

2π

∫︂+∞
−∞ dω exp

[︃
i
β2
2
zω2 − iβ2Ωzω

]︃
ĝC(0,ω−Ω) exp [iωt] = (2.37)

=
1

2π

∫︂+∞
−∞ dω exp

[︃
i
β2
2
z(ω−Ω)2

]︃
ĝC(0,ω−Ω) exp [i(ω−Ω)t]×

× exp [iΩt]⏞ ⏟⏟ ⏞
frequency shifting

exp
[︃
−i
β2Ω

2

2
z

]︃
⏞ ⏟⏟ ⏞

constant

.
(2.38)

The first two factor of the integrand show the application of Û(z), the propagator
from Dar and Mecozzi. By applying the inverse transform, using the definition of
the propagated field g(0)C (z, t), the expression in Eq. (2.32) is found. In this way we
have shown that, despite the diversity in the notation, the apparent discrepancy
in the results is encoded exactly in the difference between the definition of
propagated pulses.

2.4 computation of X0 ,m ,m

In order to evaluate the noise due to nonlinear interference in different realistic
scenarios, we may analyze the expression (2.23), and identify the parameter of
interest. As discussed before, the channel power and constellation can be inserted
separately in the expression of the phase noise, so the remaining part is related
to linear propagation of normalized pulses and interaction with gain-attenuation
term fB(z).

2.4.1 Gain-attenuation profile choice

The choice of the gain-attenuation profile, especially for what regards Raman
pumping, is crucial in this thesis. As anticipated in the introduction, studies have
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Figure 2.2: Optimized Raman pumping scheme. −20dBm signal launch power.

been carried out on methods to obtain spectrally flat link amplification. This is
obtained involving higher order pumping, with eventually numerous co- and
counterpropagating pumps. In order to obtain interesting and realistic results,
we use pump placement optimizer directly derived from the one developed by
Marcon et al. [111], which uses automatic differentiation and model-aware learn-
ing. The input variables of the optimizer, other than the fiber span characteristics,
are the WDM channels spectral arrangement and their average power, along with
the number of pumps and an initial condition of pump wavelengths and powers
– to be optimized – and a (flat) target gain, usually set to −3dB.

Illustrative results have been obtained for a common scenario of 80km amplified
link, with 50 channels in the C+L band, with 4 copropagating and 8 counter-
propagating pumps. The solver obtains the following performances. In Fig. 2.2a,
an example of the optimized spectral placement of pumps is shown along with
their power. The highest power pumps are the one at shorter wavelengths. This
suggests that those pumps are indeed pumping the longer wavelengths pumps,
that in turn pump the signal. Notice that the peak of the Raman gain, occuring at
≈ 12THz, corresponds, in the band of 1550nm, to ≈ 90nm. In Fig. 2.2b, the overall
gain of the link is shown for each channel of the WDM comb. The target gain of
−3dB is approximated with reasonable flatness. The values which are of most
interest for this study are the spatial evolution functions of signal and pump waves.
In Fig. 2.3a, three of the 50 channels are plotted in their evolution. Notice how
the power value at the end of the fiber approaches the desired target gain. Fig.
2.3b displays the pump power evolution along the fiber, pumps are color-coded
according to their wavelength. The role of copropagating and counterpropagating
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Figure 2.3: Evolution of signal and pump power along the bidirectionally pumped link
link, −20dBm signal input level.

pumps is clear from the direction of decay. Depletion of the short wavelength
copropagating pumps starts to happen around the end of the fiber.

In the previous section we described the derivation of fB from Raman gain
term r(z) and the corresponding power equation. In fact, the value of fB, for every
interfering channel of choice, can be readily computed from the solution of the
ordinary differential equation system integrated in the optimizer model. If PB(z)
is the power evolution of the choosen B channel, then fB represents a normalized
amplification measure corresponding to

fB(z) =
PB(z)

PB(0)
. (2.39)

Since the problem is essentially nonlinear, Raman amplified pump placement
optimization gives different results for different input channel launch power. So
this component of the X0,m,m term must be computed for all the desired pumping
schemes, and for all the desired input power.

As for the time integrals, let us review some analytical approximations.

2.4.2 Analytical approximations: high dispersion

This approximation, presented in [30, 115], is valid for pseudolinear systems, and
allow to reduce the integrals to a simple evaluation of elementary function. The
approximation relies on the model obtained in Eq. (1.12) for fiber propagation
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using a QPF. By using this model, the linear propagation of the normalized pulse
g(0)(z, t) is expressed by the convolution 4:

g(0)(z, t) =

√︄
−

i

2πβ2z

∫︂+∞
−∞ dτ g(0, τ) exp

[︃
−i

1

2β2z
(t− τ)2

]︃
. (2.40)

By expanding the square at the exponential, and reorganizing the terms,

g(0)(z, t) =

√︄
−

i

2πβ2z
exp

[︃
−
it2

2β2z

]︃ ∫︂+∞
−∞ dτ g(0, τ) exp

[︃
i
t

β2z
τ

]︃
exp

[︃
−i

τ2

β2z

]︃
.

(2.41)

When the pulse propagates through many dispersion lengths z >> LD = T2

|β2|

[2], the rightmost, chirping, term inside the integral becomes approximately 1
over the relevant span in which the signal is significatively larger than zero, that
is of the order of T . This is called the highly-dispersed pulse approximation,
and, recognizing the form of a Fourier integral at the resulting integrand, the
propagated pulse is

g(0)(z, t) ≈

√︄
−

i

2πβ2z
exp

[︃
−
it2

2β2z

]︃
ĝ

(︃
0,−

t

β2z

)︃
(2.42)

where ĝ is the Fourier transform of the input signal. Notice that − t
β2z

has the
dimension of a frequency. By using the last equation, corresponding to [30, eq.
10], it is possible to compute the coefficient X0,m,m through energy integral in
Fourier space by defining ν = t/β2z [30, 31]. If the fiber is very long, we expect
that all the relevant collisions happen in a regime of large dispersion. Let the
regime of high dispersion be considered valid for z > z0. In such case, for a
sufficiently small z0 compared to L, we can approximate X0,m,m with

X0,m,m =

∫︂L
z0

dz fB(z)

∫︂+∞
−∞

dν

4π2β2z
|ĝ(0,ν)|2

⃓⃓⃓⃓
ĝ

(︃
0,ν−Ω−

mT

β2z

)︃⃓⃓⃓⃓2
, (2.43)

by doing a change of variable of the time integral. Moreover, the strongest
overlap occurs at zm = − mT

β2Ω
, so in the spatial integral it may be possible to

write fB(z) ≈ fB(zm). This means that the integrand is non negligible only when
zm/z ≈ 1, so, if zm is inside the span [z0,L] we can extend the spatial integration

4Notice that the time delay induced by group velocity is neglected by the choice of the scaled
time t instead of the physical time.
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to infinity with negligible error. By inverting the two integration signs and using
the approximations, it is found:

X0,m,m =

∫︂+∞
−∞

dν

2π
|ĝ(0,ν)|2

∫︂+∞
−∞ dz

zmfB(zm)

2πβ2z2

⃓⃓⃓⃓
ĝ

(︃
0,ν−Ω−

mT

β2z

)︃⃓⃓⃓⃓2
. (2.44)

Notice that the integration along space allow us to use an important property
of the pulses at the input: they are of unit energy. Using Parseval identity it is
possible to eliminate the impulse waveform in the following way. Let us adopt
this change of variables:

y := −
mT

β2z
(2.45)

Recalling zm = − mT
β2Ω

, we readily obtain the change of variables

X0,m,m =

∫︂+∞
−∞

dν

2π
|ĝ(0,ν)|2

∫︂+∞
−∞

fB(zm)

2πβ2Ω

(︂
−
mT

β2z2
dz⏞ ⏟⏟ ⏞

dy

)︂ ⃓⃓⃓⃓
ĝ

(︃
0,ν−Ω−

mT

β2z

)︃⃓⃓⃓⃓2

(2.46)

=
fB(zm)

β2Ω

∫︂+∞
−∞

dν

2π
|ĝ(0,ν)|2

∫︂+∞
−∞ −

dy

2π
|ĝ (0,ν−Ω+ y)|2 , (2.47)

the integrals simplify to

=
fB(zm)

β2Ω

∫︂+∞
−∞

dν

2π
|ĝ(0,ν)|2

∫︂+∞
−∞

dy

2π
|ĝ (0,ν−Ω+ y)|2 (2.48)

finally, both integrals, by Parseval theorem, are 1, so

X0,m,m =
fB(zm)

β2Ω
, (2.49)

in the assumption that zm falls inside the fiber and in the region of high dispersion,
and 0 otherwise. This approximation is astonishingly powerful, since it works
for every kind of pulse, is readily available with attenuation-gain term fB, and it
avoids the heavy computation of the integrals, that with current desktop machine
capability would take a computation time in the order of several hours to few
days per every interfering channel.
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2.4.3 High dispersion approximation is unfit for Raman amplification scenario

Unfortunately, the assumption of high dispersion do not hold true in general for
the commonly used Raman Amplified Links (RALs) under study. Usual RALs
have lengths in the order of ∼ 102km, and for a SMF with β2 = 20ps2km−1, and
a baud rate of B = 10GHz, which corresponds to symbol time T = 100ps, the
dispersion length is LD = 500km. It is reasonable to choose the term z0 at least
equal to one dispersion length, so the approximation (2.43) is not utilizable. In
order to find another analytical approximation, and a significant simplification of
the computation, let us assume that the pulses are Gaussian.

2.4.4 Gaussian pulses

The effect of linear propagation for Gaussian pulses has a closed form expression:

g(0)(z, t) =
U0 exp

[︃
i

2
arctan(D(z))

]︃
(1+D2(z))1/4

exp

[︄
−
t2

2T20

1+ iD(z)

1+D2(z)

]︄
(2.50)

where D(z) = zβ2/T
2
0 , U0 is the initial pulse amplitude at maximum.

Assuming pulse energy normalization to 1, amplitude and width parameters
need to satisfy the following equation

U20T0
√
π = 1. (2.51)

Substituting the shape (2.50) in (2.23), after some passages, the following expres-
sion is obtained

X0,m,m =

∫︂L
0
dzfB(z)

∫︂+∞
−∞

dη√
2

U40
1+D2(z)

exp

[︄
−

η2

T20 (1+D
2(z))

]︄
exp

[︄
−

s2

2T20 (1+D
2(z))

]︄
(2.52)

where η :=
√
2t− mT+β2Ωz√

2
is a scaled temporal variable, and s := mT +β2Ωz. It

is possible to carry out the time integral, as it turns out to be a Gaussian integral

X0,m,m =

√︃
π

2
U40T0

∫︂L
0
dz

fB(z)

(1+D2(z))
1
2

exp

[︄
−

s2

2T20 (1+D
2(z))

]︄
(2.53)
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this represents a major simplification, obtained simply by assuming Gaussian
pulse shapes: the inner temporal integral vanishes, under perfectly reasonable
assumptions for RALs.

2.4.5 Local interaction approximation

The last step in the simplification procedure above is the assumption of local
interaction for z = zm = −mT/β2Ω. This assumption is a little bit stronger than
the one before. This means that the functions D(z), fB(z) can be substituted
with constants D(zm), fB(zm). By comparing the integral (2.53) result and this
approximation, using common values for RALs, we found that the approximation
is valid within a few percent of the numerically integrated value, and it increases
in precision as dispersion gets higher. The offset value can be referred to the effect
of partial collision at the borders of the fiber. This allow also to extend integration
to infinity, for every m such that zm ∈ [0,L]. Within these considerations, it is
possible to simplify the integral

X0,m,m =

√︃
π

2

U40T0fB(zm)

(1+D2(zm))
1
2

∫︂+∞
−∞ dz exp

[︄
−

s2

2T20 (1+D
2(zm))

]︄
. (2.54)

Using s instead of z as the integration variable, this turn out to be a Gaussian
integral, and it is possible to solve it as

X0,m,m =

√︃
π

2

U40T0fB(zm)

(1+D2(zm))
1
2

∫︂+∞
−∞

ds

β2Ω
exp

[︄
−

s2

2T20 (1+D
2(zm))

]︄
(2.55)

=
fB(zm)

β2Ω
U40T

2
0π. (2.56)

Recall the normalization condition for the pulse energy in (2.51): the substitution
cancels both parameters U0 and T0 from the final expression, so

X0,m,m =
fB(zm)

β2Ω
U40T

2
0π⏞ ⏟⏟ ⏞

=1

=
fB(zm)

β2Ω
. (2.57)

The expression is found to coincide with the one derived in high dispersion
approximation. This is not surprising, as Gaussian pulses have Gaussian Fourier
transform, (Eq. (2.42)).

For application in which fast computation of the coefficients is needed, the
above approximation may be useful. Moreover, if the local approximation for
the dispersion is not sufficient, we developed a simple second order correction,
given in the appendix 4, and a refined method for including border effects in
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the approximated scenario 4. However, due to the imprecision to tackle border
effects, the approximation is not used in the following analysis.

In order to conclude the analytical part of the generalization of the NLIN model,
let us give a brief summary for clarity. A coupled NLSE model was adopted
[2], by redefining the signal and the disturbing fields in a adequate way. This
formulation, when applied to the analysis of noise on a symbol, predicts SPM
and XPM effects which are formally similar to the one in the original model [30],
and in case of perfect amplification it is shown to give compatible description
with respect to the original model. Even in the generalized case, the coefficient
of interest X0,m,m consists in a nested time integral inside a space integral, and
it is computationally expensive. In order to simplify the computation of the
coefficient, the high dispersion approximation, already presented in [30] was
studied, but it has been shown to be unfit for the case of RALs, that are usually
much shorter than the dispersion length. So, another suitable simplification was
proposed, for Gaussian pulses, using which the time integral can be expressed
analytically. Finally, we have shown how, joining the Gaussian pulse assumption
with local interaction approximation, the resulting coefficient coincides with the
one obtained through the high dispersion approximation. Comparing the ap-
proximations with numerical integration results, it has be seen that, for Gaussian
pulses, the approximation is within a few percent of the X0,m,m value, however
it fails to account for partial collisions at the fiber start and end. Since the most
interesting results in literature are derived using Nyquist pulse (sinc shaped), the
approximation is dropped and numerical integration is carried out directly for
both integrals.

2.5 computation of ase noise

ASE noise model is usually formulated in terms of coupled differential equations
on steady-state noise power, which encode the interaction of ASE with pumps
and signals, analogous to Eq. (1.18). Those equations introduce the average effect
of spontaneous emission, thus taking into account the joint effect of spontaneous
emission and amplification of photons. Some approximations need to be pointed
out. First of all, since in realistic RALs, ASE power is much less than pump power,
the effect of pump photons on ASE photons is neglected. In a similar way, the
same is done for the signal and ASE interaction, so ASE is assumed to be unable to
pump the signal in a significant way. By these assumption, the evolution of pump
and signals turn out to be approximately independent from the evolution of the
ASE, and the corresponding equations are decoupled. Within this assumption
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one can, in principle, solve the pump and signal equations, and then compute the
ASE in a separate moment by integrating the corresponding equation with the
precomputed power profiles. As for the model itself, the spectrum of the ASE is
considered to be subdivided with the same subdivision as the channel spectrum.
This allow us to evaluate the amount of in-band noise power for each channel,
which is the needed information to compute the OSNR. Lastly, as anticipated in
1.2.2, recall that ASE can be modeled as additive Gaussian noise.

A simple model uses Eq. (1.18) for the pump and signal waves, and in addition
defines {Ni} as the ASE power relative to the channel i. If there are n channels,
the resulting additional n equations for the ASE are [148]:

±
dN±

i

dz
= −αiN

±
i +

⎡⎣∑︂
j

C ′
R i,j

[︂
P+j + P−j

]︂⎤⎦N±
i

+

⎡⎣∑︂
j

ηi,jC
′
R i,j

[︂
P+j + P−j

]︂⎤⎦ 2hviBref
(2.58)

the last term represents the coupling to a reservoir of phonons at thermal equilib-
rium. It is possible to tune the Raman gain factors by the phonon occupancy factor
[19], by assuming thermal equilibrium of phonons and Bose-Einstein statistics
[79], the factor is

ηi,j =
1

exp
[︁
h(νi − νj)/kBθ

]︁
− 1

(2.59)

for the energy difference h(νi−νj), which corresponds to the difference in energy
between the pump – or signal – and ASE photon. Since the energy of the phonon
corresponds to the energy difference, this process is elastic. Finally, Bref is the
reference bandwidth, which in this case is equal to the signal bandwidth, which
can be expressed as the WDM spectral spacing minus the guard width.

By integrating equations (2.58), with previously computed pump and signal
powers, we obtain the noise at the end of the fiber considering the forward
propagating noise terms {N+

i }.

2.6 numerical results

In this section we will describe the numerical simulation software and the noise
predictions for NLIN and ASE. Finally, we will answer some questions of interest
for the design of systems. In order to frame the limitations of this investigation,
let us describe the fixed simulation parameters that will be common to all the
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Figure 2.4: Simplified computational scheme to highlight the dependences. Computa-
tional times on desktop computer - without graphics hardware acceleration -
are encoded in colors. Red: some hours to few days. Orange: tens of minutes
to hours. Green: few minutes. No color: under one second.

computations. The RAL under consideration is characterized by a fiber of 80km
length. The fiber has coefficients β2 = −23ps2km−1, γ = 1.3Wkm−1 and the WDM
channels are disposed in a wavelength grid from 187.5THz to 192.4THz, for a
total of 50 channels with 100GHz spacing. The baud rate is fixed at 10GHz. Since
the modulation format can be easily integrated in the calculations, as discussed
in 2.2.4 the modulation will be fixed to 16-QAM. By using the ratios shown in
Fig. 2.1 in Eq. (2.28), the noise for every other modulation can be computed.

2.6.1 Software and structure of routines

Let us comment the structure of the numerical computation. The utilized code is
available at the GitHub repository [110]. A simplified input-output scheme, with
the subdivision of the various routines, is represented in Fig. 2.4. Notice how the
computationally intensive part, that is the calculation of time integrals of Eq. (2.23),
indicated with the red color, depends only on fiber properties, WDM spectrum,
and pulse shape with baud rate. Other parameters such as the gain-attenuation
factor fB are irrelevant for this step of computation, so the optimization procedure
can be run in a disjoint setting, and many different pumping schemes can be used
with the same collision results. Finally, the computation of NLIN includes the
results for X0,m,m from the space integration, and joins them with constellation
average energy and energy variance. On the other hand, ASE computation
depends only on average power and can be addressed separately.
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2.6.2 Systematic review of results

Let us review the results in a systematic way. We will start by describing the
Raman optimization results, then the computation of X0,m,m, and finally the
evaluation of ASE noise and NLIN, and the total link noise and OSNR. We will
concentrate only on optical measures in this section, whereas in a following
section we will discuss the adoption of metrics for the overall (electrical) link
noise.

The optimization procedure for obtaining Raman pump placement is con-
strained by the choice of the copropagating and counterpropagating pumps. For
simplicity, when referring to a pumping setup with n copropagating and m

counterpropagating pumps, we will call it a (n,m)−bidirectional pumping. If
the pumping is one-directional, one of the numbers is dropped. Moreover, in
figures, the abbreviations CO, CNT, BI, perf., will be used to indicate, respectively,
copumping, counterpumping, bidirectional pumping and perfect amplification.
The choice of these numbers is crucial, especially for what regards bidirectional
pumping. In fact, when choosing pump numbers and powers in an unbalanced
way, the optimizer may give solution very similar to the optimized co- or counter-
pumped case. In order to highlight the difference between the three setups, we
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(b) Pumps (8 waves).

Figure 2.5: Signal and pump evolution in copropagating scheme.

selected a (8, 2)-bidirectional, a (8)-copropagating, and a (10)-counterpropagating
for comparison. Signals and pumps power evolutions resulting from the opti-
mized setup are shown for a signal power level of −10dB in Figures 2.5 (CO),2.6
(CNT), 2.7 (BI).

We then show, in Fig. 2.8, the profile of fB for the two extremal channels. Recall
that the amplification function was obtained directly from signal power as the
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Figure 2.6: Signal and pump evolution in counterpropagating scheme.
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Figure 2.7: Signal and pump evolution in bidirectional pumping scheme.

ratio fB(z) = PB(z)/PB(0). In the figure, it appears that the general shape of the
amplification function stays qualitatively constant for each pumping scheme.
Copumping fB show a prominent peak near the input, and then a decay that
asymptotically reaches the intrinsic attenuation rate, due to pump depletion.
Counterpumping fB show an initial decay and then a recovery near the pump
input at the fiber end; in the bidirectional case a mixture of the two behaviors
takes place.

In order to visualize the spatial integrand, consider the set of all the collision
(time integral) curve for each m, modulated by the fB function. The evaluation of
collisions, for all the m of interest, is shown in Fig. 2.9. In particular, in Fig. 2.9b
the chosen couple of channels is the [49, 50] pair, of which chan. 49 is the channel
of interest. In fact, the collision curves of interfering channel 50 exibit great
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sensitivity to the pumping scheme, as suggested in Fig. 2.8b. Furthermore, by
comparing the two plots in Fig. 2.8, we deduce that collision curves are strongly
dependent from interfering channel position in the WDM comb. This imples that
the magnitude of X0,m,m depends on the interfering channel position, and suggest
that the total noise will vary with the choice of the set of interfering channels.
This difference is clear comparing 2.9a and Fig. 2.9b.
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Figure 2.8: fB function for the 80km, −20dBm launch power case.
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Figure 2.9: X0,m,m at various m. −20dBm launch power.

In order to describe the impact of the variability of total noise due to interfering
channel position, a particularly interesting measure is the integral of fB, for
various B channels. In fact, neglecting the dependence of time integrals from
spectral spacing, the only factor accounting for the noise due to B channel is∫︂L

0
dzfB(z). (2.60)
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Figure 2.10: Evaluation of integral of fB for all the WDM channels.

This is the value plotted in Fig. 2.10, for all the pumping schemes. It is clear that,
to the first order, the channels that are most influent on NLIN, looking at their
Raman amplification function, are the highest frequency ones. This asymmetry is
observed in Fig. 2.11. In the perfect amplification case, the grey bottom-right plot,
the distribution is symmetric, and the only variations are due to the diverse effect
of different collision numbers. All the other plots show an asymmetry which is
encoded in the respective amplification function, and reflects what shown in the
integral computation in Fig. 2.10. In order to show the dependence of the time
integrals on the choice of the interfering channel, let us neglect the influence of
fB, by considering the perfect amplification scenario. The total noise due to a
single interfering channel, placed at spacing Ω, is proportional to

NLINΩ := P
⟨︂
∆ϕ2

⟩︂
∝

∑︂
m

X20,m,m, (2.61)

and by expressing the computation of X0,m,m, as per Eq. (2.23), we notice how
the only dependence on the interfering channel choice is encoded in the spectral
spacing spacing Ω:∫︂L

0
dz IΩ,m(z), (2.62)

where

IΩ,m(z) =

∫︂+∞
−∞ dt|g(0)(z, t)|2|g(0)(z, t−mT −β2Ωz)|2. (2.63)

The total integral, for all the collisions that fall sufficiently inside [0,L], is ap-
proximately the same for every m. By assuming absence of dispersion, which
is g(0)(z, t) = g(0, t), it can be shown that the Ω has the role of a z-axis scaling
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factor on IΩ,m(z). So the integral (2.62) turns out to be inversely proportional to
the scaling factor |β2Ω|, and the total X0,m,m in the sum (2.61) is

∑︂
m

X20,m,m ∝
∑︂
m

1

|β2Ω|2
. (2.64)

The total number of collision NΩ to be counted are approximately the total length
divided by the collision spacing, so recalling the collision position zm = − mT

β2Ω
,

the number is

NΩ ≈ L|β2Ω|

T
(2.65)

so the total noise in the Eq. (2.64) is roughly proportional to

NLINΩ ∝ L

T |β2Ω|
(2.66)

similarly to what predicted in Eq. (2.49). In order to evaluate the impact of the
interaction of all the other channels in the WDM spectrum, called NLIN without
subscript, we sum over all the interfering channels each of the contributions
NLINΩ. The spectral spacing, for an equally spaced WDM system, can be de-
composed in Ω = Ω0M, where M is the index difference between the channel of
interest and its interfering one in the WDM channel list. If we call J the index of
the channel of interest, the sum reads

NLIN ∝
J−1∑︂
M=1

2

|β2Ω0M|
+

50∑︂
M=2J

1

|β2Ω0M|
(2.67)

=
1

|β2Ω0|
(2H(J− 1) +H(50) −H(2J)) (2.68)

where H are the harmonic numbers. In particular, this approximation is reported
in the bottom-right plot of Fig. 2.11, where a least square fit is carried out using
an offset term and a proportional term. This shows how, in perfect amplification,
the most impactful collision are the ones with fewer, less frequent overlaps, i.e.
the ones with lower |Ω|, nearby channels, and than the overall effect is obtained
evaluating how many of those channels are available for collisions, summing over
all the channels. Fig. 2.11 show the OSNR obtained by considering only NLIN,
and neglecting ASE. This can be viewed as the optical link performance measure
in the case of absence of post processing of NLIN using autocorrelation [44, 115,
31].
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Figure 2.11: OSNR due to NLIN for various channels. Launch power −10dBm. In the bot-
tom right plot, the dotted red curve is the fit of the analytical approximation
in Eq. (2.68)

2.6.3 Comparison of ASE noise and NLIN

Let us now concentrate on the results of ASE computations. The following results
highlight how the choice of the pumping scheme influence ASE: the evolution
of the pumps and signals is critical, as the distribution of the amplification for
the ASE along the fiber, give rise to effects totally similar to the cascade of
noisy lumped amplifiers. In other words, supposing to have two interchangeable
spans of a Raman link, with comparable excess noise and much different gains.
Interchanging high and low gain sections, while keeping the total gain constant,
alters the noise performance. It can be shown that putting the high gain part at
the input of the link is more advantageous. This is the reason why links with
copropagating Raman pumps perform better from the point of view of ASE.

In Fig. 2.12, this comparison is carried out for the case of input power. The
difference between copumping and counterpumping is remarkable, and bidirec-
tional pumping is shown to perform at an intermediate level. This phenomenon,
when compared to the performance of NLIN, is shown to entail a tradeoff : the
choice of the pumping scheme must balance between ASE noise and NLIN per-
formance. Special attention may be given to the bidirectional pumping scheme,
that can eventually be optimized for both metrics.
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Figure 2.12: ASE power evolution (for channels 1, 25, 50) along the fiber pumping scheme
comparison. −10dBm signal power.

2.6.4 Noise evaluation and answers to design questions

The numerical study allow us to answer some questions regarding the design of
systems. Those questions can be summarized in the following points.

1. How NLIN varies when varying the channel of interest in the WDM comb.

2. In terms of NLIN performance, which pumping scheme is more effective in
mitigating noise.

3. By comparing NLIN and ASE, which one is the most impactful for RALs
similar to the one studied.

4. Among the pumping schemes, is there an unconditional optimal in term of
joint NLIN and ASE noise performance?

For this set of questions, there are no quantitative answer from the analysis part,
and the previous exposition of numerical results will be of interest. Let us start
from the first question.

The variation of the NLIN with the channel of interest reflects how impactful is
composed by the channel dependence of Raman pumping profile, shown in Fig.
2.8, and the impact of the shape of the collisions, which is roughly proportional
to |Ω|−1. The resulting noise performance, summarized in Fig. 2.11, show how the
mosty affected channels are the central ones, and pumping induces an asymmetry
in the profile, which is shown in the amplification profiles in Fig. 2.8, and in a
more comprehensive way, in their integral for each channel in Fig. 2.10.

The second question is answered by Fig. 2.13, in which the noise power is
shown versus input power. It is shown that, in a way that is almost uniform
across the channels, the NLIN performance of the counterpumping scheme is
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Figure 2.13: Noise versus launch power for different pumping schemes.

better than the other approaches. The bidirectional pumping scheme assume an
intermediate position between counterpumping and copumping. For comparison,
the perfect amplification turns out to have intermediate performance.

The third and fourth questions are answered by Fig. 2.14. As for the most
important effect, it depends on the signal power at the input. NLIN varies in
a significant way with signal power, whereas ASE is approximately constant
with varying power. For signal launch powers below −17dBm for the copumping
scheme, −7dBm for the counterpumping scheme, and −8.5dBm for the bidirec-
tional pumping scheme, the dominating noise is ASE.

Analyzing Fig. 2.12, we see that better performing systems are the ones strongly
using copropagating pumps. Instead, from Fig. 2.11 and Fig. 2.13, it is clear that
systems amplifying at the end of the fiber suffer less from NLIN. So there is a
tradeoff, and no preference can be assessed in terms of joint NLIN and ASE noise.

2.7 evaluation of performances

The ultimate metric for considering the performance of an optical link is the EVM.
It is a measurement of the bit probability of error Pb. While there are other more
refined techniques for evaluate the performance of the system, such as information
theoretical mutual information estimation, the EVM metric is highly practical.
For example, it can be measured directly with a BER analyzer if the complete
system is offline and available for measures, by sending a random stream of
symbols and comparing the decoded stream counting errors. Alternatively, it can
be induced by other measures as Error Vector Measure EVM, Q-factor, which do
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Figure 2.14: Comparison of ASE and NLIN contribution to total noise.

not require knowledge of the transmitted sequence [138, 136]. In the present case,
being interested in coherent transmission, the usual scenario is an amplitude and
phase modulated constellation, typically a QAM or PSK modulation. Additive
circular white Gaussian noise, i.e. uncorrelated Gaussian with quadrature and
in-phase components with the same variance, can be easily tackled using error
functions for every QAM constellation. In this case, it is convenient to define the
metric of EVM. Let |Ei| the i-th received symbol amplitude of a sequence of I
symbols (can be viewed as proportional to integrated photocurrent). Let |Ea|2 be
the average amplitude squared of the sequence, and |Eerr, i|

2 be the magnitude of
error squared with respect to the nearest symbol of the constellation. The nearest
symbol is supposed to coincide with the transmitted symbol for low noise levels
[50, 136].

EVM =

[︂
1
I

∑︁I
i=1 |Eerr, i|

2
]︂1/2

|Ea|
(2.69)

this is called also the RMS EVM. Let the constellation be M-ary with L identical
signal levels within each dimension of the constellation (that is symmetric). Since
the overall results of the previous study are based on OSNR, let us recall useful
relations connecting it to BER and EVM. They are derived from a set of analytical
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and experimental works about connection between measures [138, 136, 106, 50].
The

EVM =

⎡⎣ 1

OSNR
−

√︄
96/π

(M− 1)OSNR

√
M−1∑︂
i=1

γie−αi +

√
M−1∑︂
i=1

γiβiΦ (
√
αi)

⎤⎦1/2 (2.70)

where Φ is the Gaussian error function, and the auxiliary variables are defined as

αi =
3β2iOSNR

2(M− 1)
(2.71)

βi = 2i− 1 (2.72)

γi = 1−
i√
M

(2.73)

and the BER can be related to this EVM measure as [50]

BER ≈
(︁
1− L−1

)︁
log2 L

Φ

[︄√︄
3 log2 L
(L2 − 1)

√
2

(EVM)2 log2M

]︄
(2.74)

While the ASE noise can be treated as Gaussian noise, NLIN can be more difficult
to tackle, as it is a phase noise. In the lack of a more refined method, it is possible
to conveniently extract the BER by treating the NLIN as a circular AWGN process.
The variance of the two noise contributions sum, as they are independent, but this
may be not sufficient to characterize BER. This is a reasonable approach, however
it lacks for taking into account properties of autocorrelation of NLIN, that may be
leveraged to further reduce the impact of noise [115, 59]. The error performance is

10

20

30

40

O
SN
R 

[d
B]

CO

30

35

40

O
SN
R 

[d
B]

CNT

20 15 10 5 0
Power [dBm]

25

30

35

40

O
SN
R 

[d
B]

BI
20 15 10 5 0

Power [dBm]

20

30

40

50

60

O
SN
R 

[d
B]

perf.

ch.1
ch.20
ch.50

Figure 2.15: Total OSNR for 16-QAM constellation.
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dependent from the input distribution of symbols, however this dependence can
be disregarded, as using channel coding it is possible to modify the statistics of
the input distribution. The computation of overall OSNR is shown in Fig. 2.15. In
the bottom right part the highly-idealized perfect amplification scenario for NLIN
is computed along a null ASE contribution. This is useful to comprehend the
NLIN contribution to the overall performance. In Fig. 2.16, the BER is computed
for a 16-QAM modulation format. The plot suggest that it may be possible to
utilize higher modulation format for channels with intermediate power levels,
as the error performance is excellent for nearly all launch power and pumping
schemes. Instead, for the copropagating case, high launch power is shown to
give more problematic error performance. Fig. 2.17 provide a detailed view of
this region. As it can be seen, the performance for launch power of 0dBm is so
degraded that BER is 10−1 for channel 50 and approximately 10−2 for channel 1.
In order to compare the results with a higher modulation, Fig. 2.18 show the
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Figure 2.16: BER versus channel power, for 16-QAM constellation. The extremely low
values of predicted BER in the approximation are reported for completeness.

effect on BER of the very high modulation format of 64-QAM. For such high
modulation, even if the NLIN power changes only slightly (due to the factors in
Fig. 2.1), the vicinity of the symbols in the constellation implies a strong increase
in the error rate. In the zoomed version, Fig. 2.19, we see that, in the worst case
scenario of channel 50 of the copropagating RAL, the error rate approaches 0.5,
the error rate of a useless channel. As a final remark, we point out that, for error
rates as high as the one represented in Fig. 2.19, the method utilizing EVM will
underestimate the error in an experimental setting, due to the many received
points whose nearest constellation symbol is not the transmitted symbol.
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Figure 2.17: BER versus channel power, for 16-QAM constellation, copropagating case
zoom.
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Figure 2.18: BER versus channel power, for 64-QAM constellation. The extremely low
values of predicted BER in the approximation are reported for completeness.
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Figure 2.19: BER versus channel power, for 64-QAM constellation, copropagating case
zoom.



Q UA N T U M P R O PA G AT I O N M O D E L S 3
A N D N L I N

Now nobody knows just where the
boundary between the classical and
quantum domain is situated

J.S. Bell [12]

The quantum nature of radiation, combined with the technological capability
of detecting physical magnitudes which are close to the single-quanta level,
opens up the possibility to interact with optical systems exibiting non-classical
behaviors. This aspect has a strong impact also in optical communications, as also
the interaction with disturbances, and so the generation of noise, is ultimately
ruled by quantum mechanics. In fact, for optical and infrared frequencies, such
as the one used in fiber-optical communications, the energy quanta hω is in
the order of ∼ 1eV: materials used in photodetection have comparable bandgap
energy and receiver electronics is thus technologically mature to detect single
photons. This chapter will provide a review of results and methods in quantum
optics, that may be utilized to address the technological problem of the coexistence
between WDM and QKD channels, with particular attention with respect to
NLIN.

3.1 introduction to quantum noise

3.1.1 From semiclassical to quantized fields models

The usual theory of shot noise in classical optical communications is a semiclassi-
cal approach that uses Poisson statistics of arrival times to take into account the
inherently quantum-mechanical distribution of photons.

In section 1.2.1, we described a simple consequence of this model for OOK,
that is the so called "quantum limit": a minimum probability of error due to
uncertainty in Poisson distributed photocount.

Such model, when used for computing systems performance, relies on classical
field propagation inside the fiber, which in practice is often computed using

73
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approximated methods such as Eq. (1.5). By deriving the average field power at
the receiver over a certain bandwidth, the complete Poisson arrival statistics is
derived. The receiver output signal is considered to be the average photodetector
current in statistical sense, plus the shot noise. In many applications, under the
assumption of sufficiently high average number of received photons, this noise
can be approximated as Gaussian.

From fundamental physics, it is known that the electromagnetic fields can
be described quantum-mechanically using the second quantization formalism,
developed by Dirac in 1927 [32]. In this treatment, the electromagnetic field is
decomposed in modes like in usual linear propagation theory, and a harmonic
oscillator Hamiltonian is associated for each mode. By identifying canonical
variables in the field, the promotion of the dynamical variables to observables
is performed and the canonical commutation relation is established for the
corresponding operator. This formalism allows to describe the system quantum-
mechanically. As a matter of fact, this is the basis for the extremely rich branch
of Quantum Field Theory (QFT) [108], whose object of interest are the quantized
field, representing electromagnetic fields, but also the matter fields (Schrödinger
fields). QFT has applications in nearly all modern physics. In particular, the
physical scenario of electromagnetic field propagation inside an optical fiber,
many interacting particles are described in principle by a many-body theory. In
this scenario [120], the description of the interaction can be approximated with
an averaged interaction potential, thus obtaining a mean-field description. It is
possible to show that the classical NLSE is a mean field equation derived from
the full quantum-field theoretical treatment.

The natural questions that one can make from the systems point of view are:
how well does the semiclassical model of detection describe the actual detection,
compared to the full quantum field detection? And also, what are the limitations
of models based on a classical field propagation, for example the NLIN model
described in this paper, in describing the quantum characteristics of detection?
Finally, how does the quantized field model contribute in describing the telecom-
munication properties of channels specifically designed to convey quantum states,
as QKD channels, and how is it difficult to set the computations? In this chapter
we will not answer to the questions in a complete and comprehensive way, but
we will provide tools for further investigation.

The framework of interest to address the interaction noise in quantum terms is
the theory of open quantum systems. Within this theory, many tools have been
developed for modeling the interaction of a quantum system with an environ-
ment. The main one is represented by a set of master equations tackling the
evolution of density matrices. Those equations are called the Redfield and Gorini
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– Kossakowski – Sudarshan – Lindblad (GKSL) equations [52, 109]. However,
the model is valid only over a set of assumptions, that we may assess critically
for the usage for the NLIN. For example, this approach utilizes the Markov
property in computing the time evolution. Another related approach is the more
general model with so-called semiclassical Langevin equations, that leverages
the phase-space representation of the quantum state in order to obtain a c-values
equation with stochastic terms. This approach have been developed for fiber
optics by Drummond and Carter [38, 37], and was used for assessing noise due to
gain, absorption and Raman processes. In addition, the quantum-mechanical de-
scription of the measurement process is of interest. The von Neumann projection
interpretation describes the measurement process as the transformation that will
provide an eigenvalue of the observable, and set the system, immediately after
such measurement event, in the corresponding eigenstate. By further developing
the measurement theory, it is possible to extend the realm of quantum descrip-
tion, without imposing such a strong characterization of classical measurement
apparatus like in the von Neumann postulate. This can be done by assessing
that coupling to external measurement apparatus consists in having the quantum
state in the product Hilbert space of the system under test and the measurement
apparatus, which can be both modeled as quantum systems. Taking statistical
averages in the measurement apparatus, Hilbert space turns out to have a mathe-
matical analogous in taking partial traces in the corresponding density matrix
[79, 159].

Let us focus on the required characteristics of the desired model. In the previous
chapter, the usage of metrics which are averaged over the constellation symbols,
such as the OSNR, and the BER, allowed one to express the performance of a
classical system. A more detailed representation of the channel would be the
transition probability matrix for all the symbols in the constellation. A quantum
channel is completely characterized by the conditional statistical description of the
output state symbol, obtained via density matrices, given the input state [21]. So
a complete model for the quantum channel is able to predict the density matrices
at the receiver, taking into account the interaction with surrounding material
and other fields. A direct modeling of all the interaction of the field mediated
by the microscopical constituents of the fiber is extremely difficult to solve,
so the utilized methods cited before follow the approach of deriving effective
macroscopic fields. The theory of open quantum systems provides a set of tools
to tackle this statistical problem. In fact, the interaction of a quantum system with
its environment, which may eventually have many degrees of freedom, can be
addressed taking into account the dynamics of the environment only in statistical
sense, using stochastic equations. Quantum dynamics predicts unitary evolution
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of the complete system. Often, the actual evolution of a system, when interacting
with the environment, is not unitary, and the Hamiltonian treatment of the system,
as it was isolated, is unsatisfactory. This is the case of optical signals occupying an
electromagnetic mode in the fiber, in which noise is generated through interaction
with the environment. Let us consider a total system state in the Hilbert space HT ,
which is the tensor product of the system Hilbert space, H, and the environment
Hilbert space HE. Let us denote by ρT the total system density matrix, composed
by system density matrix ρ, and the environment one ρE. In a typical setting,
ρ represents the matrix that will be ultimately interact with the photodetector.
Assuming the total system is isolated, the evolution of the total density matrix is
described by the von Neumann equation [134]:

ih
d
dt
ρT = −[ρT , ĤT ] (3.1)

where Ĥ is the total Hamiltonian, and the operator −[ρ, Ĥ] is often called Li-
ouvillian Lρ := −[ρ, Ĥ]. In fact, the above equation is the quantum-mechanical
equivalent of the Liouville equation for the density in phase-space [79]. In clas-
sical terms, equations regulating probability density functions are called master
equations, and are solved using tools like the versatile Fokker-Planck equations†.
In the generalized setting of quantum statistical mechanics, those equations cor-
respond to equations on the density matrix. It can be shown that the set of all
the density matrices constitute a Hilbert space [109], called Fock-Liouville space.
However, an equation in the total space, such as Eq. (3.1) is extremely difficult
to solve in practice, due to the huge number of degrees of freedom of a typical
environment. Moreover, it is not even interesting, as we are only concerned about
the evolution of ρ, in its interaction with the system, that will be the variable
from which the symbol will be decoded. Like in the previous description in 1.2.5,
average values of a operator Ô [79] are obtained through the trace operator

⟨︁
Ô
⟩︁
= Tr

[︁
ρÔ
]︁
. (3.2)

In the case of a system interacting with an environment, the density matrix can
be obtained using the partial trace over the environment, indicated by TrE. For
clarity, if the system density matrix is

ρ =
∑︂
i,j

|si⟩
⟨︁
sj
⃓⃓
,

†In the setting of classical statistical mechanics, Fokker-Planck equation can be derived from
the master equation, using Kramers-Moyal expansion and diffusive approximation, i.e. retention
of drift and diffusion terms only [133].
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and the environment one is

ρE =
∑︂
i,j

|ei⟩
⟨︁
ej
⃓⃓
,

then the total density matrix admits the representation

ρT =
∑︂
i,j,k,l

|si⟩
⟨︁
sj
⃓⃓
⊗ |ek⟩ ⟨el| , (3.3)

where ⊗ denoted the tensor product. The partial trace operator is defined as

ρ = TrE [ρT ] =
∑︂
i,j

|ai⟩
⟨︁
aj
⃓⃓
Tr

⎡⎣∑︂
k,l

|bk⟩ ⟨bl|

⎤⎦ (3.4)

A similar treatment holds for expected values. Notice that taking the trace has
some similarity with the procedure of obtaining a total probability. With respect
to the total system, ρ is called reduced density matrix.

The master equations used in quantum optics are master equations for the
reduced density matrix [16, 27, 109, 56]. In order to assess the feasibility of our
analysis using the GKSL or Redfield equations, we reproduce, following Gardiner
and Zoller [52] some steps of their derivation, and identify all the approximations
that are used. In the following, we will suppose to know the Hamiltonians.
The actual model for the Hamiltonians will be addressed later following the
quantization procedure of Drummond [38], based on the approach of Hillery and
Mlodinov [77]. Let us start from the total master equation (3.1), and write the
decomposition of the Hamiltonian in Ĥs, the system part, ĤE, the environment
one, and Ĥint the interaction. For convenience, let us transform the equation in
the interaction picture. Let ρI be the total density matrix in the interaction picture.
The transformation of Eq. (3.1) follows the standard rules for picture conversion
[134]. We obtain

ih
d
dt
ρI(t) = −[Ĥint(t), ρI(t)], (3.5)

where the time varying Hamiltonian of the interaction picture reads, with a slight
abuse of notation

Ĥint(t) = exp

[︄
+i

(Ĥsys + ĤE)t
h

]︄
Ĥint exp

[︄
−i

(Ĥsys + ĤE)t
h

]︄
. (3.6)
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As for density matrices, observe that by taking the partial trace, remembering the
inverse transform from the interaction picture:

ρ(t) = TrE

[︄
exp

[︄
−i

(Ĥsys + ĤE)t
h

]︄
ρI(t) exp

[︄
+i

(Ĥsys + ĤE)t
h

]︄]︄
. (3.7)

However, since ĤE is a function of environment variables only, by using cyclic
property of trace over the exponentials, the following is obtained:

ρ(t) = exp

[︄
−i

(Ĥsys)t
h

]︄
TrE[ρI(t)] exp

[︄
+i

(Ĥsys)t
h

]︄
(3.8)

In order to deduce the dynamics of the system, and solve Eq. (3.5), let us introduce
reasonable initial conditions. Assume that the system and the environment are
initially independent, so we have the factorization

ρT (0) = ρ(0)⊗ ρE = ρint(0) (3.9)

and we assume that the environment, that models a reservoir, is not affected in
its statistical properties by the weak coupling to the system. Using the initial
condition, we can integrate the right side of Eq. (3.5). Notice that the integral will
in principle contain the desired density matrix evolution. In order to circumvent
the problem, let us integrate twice, obtaining

ρI(t) =ρI(0) −
i
h

∫︂ t
0
dτ [Ĥint(τ), ρI(0)]+ (3.10)

+

(︃
−
1
h2

)︃ ∫︂ t
0
dτ

∫︂τ
0
dτ ′

[︁
Ĥint(τ), [Ĥint(τ ′), ρI(τ ′)]

]︁
. (3.11)

One could go on expanding the expression in a power series of the perturba-
tion Ĥint(t). Instead, by time differentiating the expression (3.10), an integro-
differential equation is obtained:

d
dt
ρI(t) = −

i
h
[Ĥint(t), ρI(0)] −

1
h2

∫︂ t
0
dτ
[︁
Ĥint(t)[Ĥint(τ), ρI(τ)]

]︁
. (3.12)

Let us reasonably assume that the partial trace TrE(ĤintρI(0)) = 0, which corre-
sponds to assuming that the interaction has no diagonal elements in the repre-
sentation that diagonalizes ĤE. By taking the partial trace in Eq. (3.12)

d
dt
ρ = −

1
h2

∫︂ t
0
dτ TrE

(︁[︁
Ĥint(t)[Ĥint(τ), ρI(τ)]

]︁)︁
. (3.13)
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Still, the integral contains the total density matrix. In order to eliminate this
dependency, let us assume weak coupling, so to have factorization ρT (t) ≈
ρ(t)⊗ ρE even in times different than zero. By applying the above assumption,

d
dt
ρ = −

1
h2

∫︂ t
0
dτ TrE

(︁[︁
Ĥint(t)[Ĥint(τ), ρ(τ)⊗ ρE]

]︁)︁
. (3.14)

Let us introduce a realistic physical assumption. Usually the environment system
is in thermal equilibrium, so the fluctuation time of the environment density
matrix is much shorter than the characteristic correlation time of the system
density matrix. Recall that, at thermal equilibrium, the density matrix and its
relative Hamiltonian commute, so in the von Neumann equation we have station-
arity. Since ρ is approximately constant in the short time in which the integrand
becomes zero, it is possible to utilize the so-called Markov approximation, i.e.
ρ(τ) ≈ ρ(t). Furthermore, the result undergoes a negligible change when the
integration range is extended to −∞. Thus, by defining s = t− τ

d
dt
ρ = −

1
h2

∫︂+∞
0

ds TrE
(︁[︁
Ĥint(t)[Ĥint(t− s), ρ(t)⊗ ρE]

]︁)︁
. (3.15)

This equation is often called the Redfield equation. To be a valid equation it
must describe for every t a valid density matrix. Its validity is not ensured by
its definition [52], and this is an issue fixed by the passages that lead to the
GKSL equation [109]. Let us describe the main one, without developing further:
consider now the operator acting on A given by the commutator [H,A], often
called the superoperator H̃A = [H,A]. The eigenvalues of this superoperator form
a complete basis of the space of operators, and by diagonalizing the superoperator
we transform the commutators in Eq. (3.15). This transformation allows one to
express the requirement of validity explained before in a more concise manner,
and the resulting equation, after some passages, is the GKSL one.

We point out that there exists an axiomatic ways to derive the GKSL equation,
that uses the concept of complete positive trace-preserving maps, which are
transformations that map density matrices into density matrices, with suitable
properties [109]. This was the approach originally proposed by the authors of the
model [60].

3.2 quantization of fields in nonlinear dispersive fiber

So far the methods for quantum (noise) dynamics were illustrated. These methods
require the knowledge of the Hamiltonian of the system, the environment and
the coupling. Our task now is to review how previous models included physical
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effects as dispersion and nonlinearity into the quantum theory. Theoretical treat-
ment of quantization in realistic media and waveguides has been developed in
the 1990s, by the pioneering work of Hillery, Mlodinov [77], Drummond [39, 37]
Haus [67] and others [14, 135], with the main focus being on the description of
the quantum dynamics of a soliton pulse. Many subleties arise when dealing with
such theoretical framework, such as non-unique definition of the Lagrangian,
that may lead to incorrect theories if not addressed. Without the pretence of
completeness, we will list some of them in the following section, in which we
will describe common methods and techniques to obtain a quantum field theory
of propagating waves in realistic fibers. Following Drummond [39], we lay down
the mathematical model for tackling quantization in guided propagation, taking
into account full nonlinearity and dispersion. The desired model should include
coupling to attenuation reservoirs (electronic and vibrational). Coupling to reser-
voirs is modeled in a way that the microscopic properties of the medium are not
needed.

In order to explain in a clear way the procedure of quantization, let us reproduce
the treatment in Drummond [39] from the most idealized scenario, the one of a
nondispersive and linear medium, then introduce dispersion and finally take into
account also nonlinearity.

3.2.1 Linear case

Let us start by expressing energy of a linearly polarized field in a fiber of length
L, made by isotropic material. By writing the energy, we obtain a hint on which
canonical variable to use in the procedure of second quantization. In particular,
the choice of the electric displacement field D was used for the first time by
Hillery and Mlodinow [77]. Assume that the fields are linearly polarized as
B = BeB, E = EeE, D = DeE with suitable transverse versors. The approximation
of transverse guided field, can be dropped by choosing to integrate in the full
space [39]). If the propagation is along the z direction, the axis of the fiber, the
total energy reads

W =

∫︂L
0

[︃
1

2µ0
B2(z) +

∫︂ t
−∞ E(τ, z)

∂D

∂τ
(τ, z)dτ

]︃
Aeffdz (3.16)

where µ0 is the vacuum magnetic permeability. For a general nonlinear medium,
the electrostatic energy density require the integration over all displacements to
be carried out. This is needed in general, as nonlinear polarization lead to non-
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constant contributions to the electric energy along the various displacements‡. In
absence of free charges ∇ · D = 0, and it is possible to introduce a dual vector
potential Λ,

µ0
∂Λ

∂t
= B (3.17)

∂Λ

∂z
= D (3.18)

A possible Lagrangian density function, whose Euler-Lagrange equations are
Maxwell equations, is

L = C

[︃
1

2
µ0Λ̇

2
(z) −U

(︃
∂

∂z
Λ(z), z

)︃]︃
(3.19)

where U is electrostatic energy density in Eq. (3.16), and C a constant. Recall the
Euler-Lagrange equation for the Lagrangian density which is dependent on a
field ψ are, in symbolic form:

∂L

∂ψ
−
∂

∂t

∂L

∂(∂tψ)
−∇ · ∂L

∂(∇ψ)
= 0 (3.20)

where ∂t and ∂z are shorthand notation for ∂
∂t and ∂

∂z . So the Euler-Lagrange
corresponding to the proposed density in Eq. (3.19) is

∂

∂t

∂L

∂ (∂tΛ)
+
∂

∂z

∂L

∂ (∂zΛ)
= 0. (3.21)

That is equivalent to Maxwell equations, when completed with the definition of
the potential Λ. By observing the Euler-Lagrange equation, it is clear that the
conjugate momentum is B, as

∂L

∂(∂tΛ)
= µ0Λ̇ = B (3.22)

The corresponding Hamiltonian can be written with the choice of a scale factor,
and by requiring the equivalence to total energy, it can be written as H =W:

H =

∫︂L
0
dz

[︃
B(z)

∂Λ

∂t
−L

]︃
(3.23)

‡We simply use the common argument of elements of electric field energy dWE = EdD
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with the choice of C = 1. Now we are ready to impose quantization of the
fields, promoting to observables the fields Λ̂, B̂, and establishing the canonical
commutator relation [32]. The equal time commutation relation is

[Λ̂(z), B̂(z ′)] = ihδ(z− z ′). (3.24)

The eigenstates which diagonalize the Hamiltonian, which will be Fock states,
since the Hamiltonian include polarization energy, must be understood as coupled
matter-field excitations, called "dressed" photons or photon-polaritons. Now let
us apply a modal decomposition to the potential operator Λ̂:

Λ̂(t, z) =
√
2π

∫︂+∞
−∞ dβ

[︂
â(β)λ(β)eiβz + â(β)†λ(β)∗e−iβz

]︂
. (3.25)

The expansion for the displacement is analogous, and it is found to be

D̂(t, z) = i
√
2π

√︄
hvε

2βV

∫︂+∞
−∞ dβ β

[︂
â(β)eiβz − â(β)†e−iβz

]︂
. (3.26)

Choosing normal ordering of operators, we obtain the Hamiltonian

Ĥ = 2π

∫︂+∞
−∞ dβ hω(β)â†(β)â(β) (3.27)

where ω(β) = ω0 for the present description of field, and will be generalized in
the following section. The above Hamiltonian have been obtained by fixing

λ(β) =

√︄
hvε

2βV
(3.28)

where V is the effective mode volume V = LAeff, v is the phase velocity of light,
such that ω(β)/β = v, in a compatible manner with respect to the total energy.

3.2.2 Treatment of dispersion

The inclusion of dispersion, and the concept of a "dressed" photon, is straightfor-
ward. It turns out that the total Hamiltonian (3.27), derived in a similar way from
a candidate Lagrangian that reproduces the classical field equations, will account
for the dispersion in the term ω(β) [40]. Observe that, if the usual classical
treatment of dispersion expands the propagation constant versus the frequency,
in this case it is more natural to do the opposite. Without deriving the dispersion
Lagrangian, let us start from Eq. (3.27), and compute the expansion to the second
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order of ω(β), as it is the case of interest for GVD. The details of the susceptibility
model are the same as the classical treatment [2]. Consider the task of describing
pulse propagation. The pulse spectrum is regarded as a narrowband spectrum
around the optical frequency ω0, or, in propagation constant terms, β0. Let us
expand the frequency as

ω(β) = ω(β0) +

∞∑︂
n=1

1

n!
dnω

dβn
(β0)δβ

n (3.29)

where δβ = β−β0. The evaluation in β0 symbol is dropped in the following for
brevity. Now, by assuming vanishing contribution to the field by components of
propagation constant less than β0 −∆ and more than β0 +∆, we can restrict the
integral in Eq. (3.27) as

Ĥ = 2h

∫︂β0+∆
β0−∆

dβ ω(β)â†(β)â(β) (3.30)

= 2h

∫︂β0+∆
β0−∆

dβ

(︄
ω0 +

∞∑︂
n=1

1

n!
dnω

dβn
δβn

)︄
â†(β)â(β). (3.31)

Let us now introduce the Fourier transform of ladder operators:

â(z) =
1

2π

∫︂+∞
−∞ dβ â(β) exp[iβz] (3.32)

â†(z) =
1

2π

∫︂+∞
−∞ dβ â†(β) exp[−iβz] (3.33)

so, using the transform representation for Eq. (3.33).

Ĥ =
h

2π

∫︂∆
−∆
dδβ

(︄
ω0 +

∞∑︂
n=1

1

n!
dnω

dβn
δβn

)︄
× (3.34)

×
∫︂
dz â†(z)

∫︂
dz′ â

(︁
z′
)︁

exp
[︁
iδβ

(︁
z′ − z

)︁]︁
. (3.35)

After some passages, the expression can be written as [70, p. 447]:

Ĥ = hω0

∫︂
dz â†(z)â(z) + h

∞∑︂
n=1

(−i)n

n!
dnω

dβn

∫︂
dzâ†(z)

∂n

∂zn
â(z), (3.36)

So far, this is the Hamiltonian with ladder operators defined for creation and
annihilation at the optical frequency. If one compute the same Hamiltonian using
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the substitution â(z) −→ â(z) exp[iω0t], and restrict the summation to the second
(GVD) term, the Hamiltonian reduces to

Ĥ = −
h

2

d2ω

dβ2
â†(z)

∂2

∂z2
â(z), (3.37)

or, using integration by parts,

Ĥ =
h

2

d2ω

dβ2
∂

∂z
â†(z)

∂

∂z
â(z). (3.38)

This is the Hamiltonian of a particle with mass, so here the concept of "dressed"
photon is defined as the coupled light and matter excitation that propagates
accordingly to a Hamiltonian like the one above. In fact, ladder operator are in di-
rect correspondance with the complex amplitude. Let us compute the Heisemberg
equation of motion from the Hamiltonian (3.38)

∂

∂t
â(z) = i

1

2

d2ω

dβ2
∂2

∂z2
â(z) (3.39)

This operator equation is very similar to the NLSE, but with exchanged time and
space variables. Observe that these variables are actually linked by the group
velocity vg = β−1

1 = dβ
dω(ω0), so it is possible to interchange the variables as

∂

∂z
â(vgt) = i

1

2

(︃
dβ

dω
(ω0)

)︃3 d2ω
dβ2

∂2

∂t2
â(vgt) (3.40)

which after a simple passage becomes completely analogous to the NLSE

∂

∂z
â(vgt) = −i

1

2

d2β

dω2
(ω0)

∂2

∂t2
â(vgt). (3.41)

Let us now discuss the inclusion of the Kerr effect into the model.

3.2.3 Nonlinear dispersive case

Kerr effect can be effectively modeled in the fiber’s Hamiltonian using the result
[39, 38].

Ĥ = 2π

∫︂
dβhω(β)â†(β)â(β) −

∫︂
d3x

[︄(︄
χ(3)(x)
4ε3 (ω0)

)︄
: |D̂|4(x) :

]︄
(3.42)

where χ(3) is the third order (Kerr) susceptibility and ε is the medium electric
permittivity. For given operator Ô, The notation : Ô : denotes operator normal (or
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Wick) ordering, i.e. the disposition of all creation operators to the left side in the
ladder operator expansion. By utilizing the rotating wave approximation [52], it
is possible to write

−

∫︂
d3x

[︄(︄
χ(3)(x)
4ε3 (ω0)

)︄
: |D̂|4(x) :

]︄
≈ −h

K

2

∫︂
dzâ†(z)â†(z)â(z)â(z) (3.43)

where K = hω0vgγ. Recall γ = n2ω0
cAeff

where c is the speed of light in vacuum.
Finally, the total Hamiltonian will be, utilizing the normalization that leads to the
complex amplitude â(z) −→ â(z) exp[iω0t]:

Ĥ = h

[︃
ω2
2

∫︂
dz

∂

∂z
â†(z)

∂

∂z
â(z) −

K

2

∫︂
dz â†(z)â†(z)â(z)â(z)

]︃
(3.44)

where ω2 = d2ω
dβ2

.
Notice that the previous formulation completely neglects attenuation. In fact,

it is not trivial to include attenuation into the Hamiltonian formulation, as it is
usually done in the phenomenological classical model. The role of attenuation
on quantum system dynamics will be addressed later in section 3.3.5. The Kerr
effect in the fiber induces light squeezing [71]. Nonlinear phenomena in quantum
optics open up a plethora of experimental methods and technological tools, like
squeezed light manipulation and quantum non-demolition measurements [94,
85].

3.2.4 Hartree ansatz and mean-field equation

There is a strong similarity between the classically-derived NLSE, and the mean-
field equation in the many-body theory of interacting bosons with δ contact
interaction potential. One can indeed argue that the NLSE is the mean field
equation from the many-body Hamiltonian of the dispersive fiber with Kerr
effect, as commented by Lai and Haus [99, 100]. Following their work, let us
derive the equation using Hartree variational principle. This point of view is
useful to strengthen the binding between many-body theory and fiber optics.
Future perspective may open up as the usage of beyond mean-field correction
terms in the treatment of quantum fields of photons inside the fiber, in a similar
way to the treatment of Bose-Einstein condensate in atomic gases using Lee-
Huang-Yang corrections.

Let us approach the problem of formulating the dynamics of the quantum
field in the Schrödinger picture, instead of the previously used Heisemberg
picture. Starting from the Hamiltonian (3.44), we recall that in Schrödinger
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picture observables, differently from states, do not evolve with time, and the
corresponding Schrödinger equation for the state |ψ⟩ reads

ih
d |ψ⟩

dt
= Ĥ |ψ⟩ (3.45)

Any quantum state of the system can be expressed in the Fock basis as

|ψ⟩ =
∑︂
n

an

∫︂
dz1...dzn

1√
n!
fn(z1, ..., zn, t)â†(z1)...â†(zn) |0⟩ (3.46)

this expression is justified as |ψ⟩ is a generic superposition of the n particle states,
which are generated by integrating the contribution of pure states regarding the
creation of photons at given set of positions (x1, ..., xn). In this case the vacuum
state must be interpreted as the tensor product of n single particle vacuum states.
The function fn serves as the many-body wavefunction for a number state n
associated with given positions. It is symmetric because of bosonic nature of
photons, and we require it to satisfy∫︂

dz1...dzn |fn(z1, ..., zn)|2 = 1 ∀n, t. (3.47)

Moreover, we impose the normalization of coefficients∑︂
n

|an|
2 = 1. (3.48)

By substituting Eq. (3.46) into Schrödinger equation (3.45), a condition for the
wavefunction is derived:

ih
dfn

dt
(z1, ..., zn, t) =

⎡⎣ω2
2

n∑︂
j=1

∂2

∂z2j
−K

∑︂
1⩽i<j⩽n

δ(zj − zi)

⎤⎦ fn(z1, ..., zn, t). (3.49)

This is the Schrödinger equation for a system of bosons with point-contact
interaction [79]. Assuming that fn is an eigensolution of the operator on the
right-hand side, it is possible to separate:

fn(z1, ..., zn, t) = fn(z1, ..., zn) exp[−iEnt] (3.50)
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where En is a separation variable, physically representing a frequency. We obtain
the separated equation⎡⎣ω2

2

n∑︂
j=1

∂2

∂z2j
−K

∑︂
1⩽i<j⩽n

δ(zj − zi)

⎤⎦ fn(z1, ..., zn) = Enfn(z1, ..., zn) (3.51)

Now it is possible to use the so-called time independent Hartree approximation, of
which the solution ansatz is called f(H),

f
(H)
n (z1, ..., zn, t) =

n∏︂
j=1

Φn(zj, t), (3.52)

in which the single particle wave functions Φn are to be found by minimization
of the following functional

⟨ψ|i ∂
∂t

− Ĥ|ψ⟩ =
∫︂
f
(H)∗
n

⎡⎣i ∂
∂t

−
ω2
2

n∑︂
j=1

∂2

∂z2j
+K

∑︂
1⩽i<j⩽n

δ(zj − zi)

⎤⎦ f(H)n

= n

∫︂
dz Φ∗

n

[︃
i
∂

∂t
− (n− 1)Φ∗

nΦn

]︃
Φn

(3.53)

The corresponding Euler-Lagrange equation is a NLSE

∂

∂t
Φn = −i

ω2
2

∂2

∂z2
Φn + iK(n− 1)Φ∗

nΦnΦn. (3.54)

The mean-field approach consists in the fact that all the particles obey the same
potential, which is not dependent on an expression like fn, which involves all the
particle positions, but only on the single-particle wavefunction itself. The Hartree
method gives a direct relationship between photon wavefunction and complex
amplitude of the field, as expected.

By using a transformation which is analogous to the one utilized in 3.2.2, the
equation can be made to correspond exactly to the NLSE, with the exception of
the factor (n− 1), which can be however normalized with different definitions
[155].

3.3 applications of quantized field methods

3.3.1 Quantization and fiber modes

Following Haus [70], we want to connect the formalism of second quantization
with usual field descriptions in an elementary setting, and describe the main
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aspects of nondispersive linear fiber propagation, from the point of view of
quantized fields. This will lead us to the quantum treatment of attenuation and
the description of quantum noise in waveguides. We represent the modes of a
ring resonator of length L as harmonic oscillators. Suppose the m mode is at a
frequency ωm: classical mode amplitude obeys the equation

dAm
dt

= −iωmAm, (3.55)

were we have assumed |Am|
2 normalized to be the mode energy. The electric

field amplitude of the mode m is proportional to the in-phase component of the
complex amplitude, called A(1)

m (t),

Em(t) ∝ A(1)
m (t) :=

1

2
[Am(t) +A

∗
m(t)], (3.56)

vice versa, the quadrature component A(2)
m (t) is defined as

A
(2)
m (t) :=

1

2i
[Am(t) −A

∗
m(t)]. (3.57)

By comparison with harmonic oscillator variables [70, p. 198], we recognize
the operator representing Am as the m-th mode annihilation operator Âm. The
creation operator Â

†
m represents its conjugate A∗

m. Representing states in Fock
basis, we have the usual relations

Âm |nm⟩ =
√
nm |nm − 1⟩ (3.58)

Â
†
m |nm⟩ =

√︁
nm + 1 |nm + 1⟩ (3.59)

and the commutation relation[︂
Ân, Â

†
m

]︂
= δnm. (3.60)

We can now write the Hamiltonian of the system, composed by all modes, as

Ĥ =
∑︂
m

hωm

(︃
Â

†
mÂm +

1

2

)︃
, (3.61)

where the vacuum energy is represented by the term 1
2 inside the brackets. From

the Hamiltonian, Heisemberg equation of motion are derivable as

dÂm
dt

= −
i
h

[︁
Âm, Ĥ

]︁
(3.62)
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So, by using equations (3.60), (3.61), we find a direct correspondence between
classical equations of field evolution and Heisemberg equation on ladder oper-
ators, via direct correspondence with harmonic oscillator conjugate variables:

dÂm
dt

= −iωmÂm (3.63)

Since the spatial integral of quantization extends to L, the observable Ĥ may be
viewed as the energy per length L. The transmission of a quantum state in a
telecommunication scenario is characterized by a specific length L corresponding
to the symbol period T via L = vgT , where vg is the group velocity. By using laser
fields, the transmitted states can be regarded as coherent states.

3.3.2 Coherent states for laser radiation

Let us suppose to concentrate in a single mode of the radiation field, and to
adopt its annihilation and creation operators – defined above – with the notation
Â and Â

†
without subscripts. Coherent states have been systematically studied

for the first time by Glauber [57, 58], addressing the solution of coherence in
quantum radiation, which, involving different ordering of operators, is different
from classical theory. They are states which can be defined in Fock basis as

|α⟩ = e−
|α|2

2

+∞∑︂
n=0

αn√
n!

|n⟩ , (3.64)

where α ∈ C. A crucial property of the coherent states is that they are the
eigenstates of the creation operator:

Â
†
|α⟩ = α |α⟩ . (3.65)

It is known that laser radiation can be represented using coherent states [5].
The coherence property of radiation is intimately connected to the quantum
behaviour [107]. For example classical interferometry is able to measure field
coherence up to the second order. Higher order correlations were measured for
the first time in a radioastronomy experiment from Hambury, Brown and Twiss
[142], and were later found to be related to quantum description of radiation.
Now we are ready to derive the semiclassical model of optical receivers. Consider
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the evaluation of the distribution of the photon number from the coherent state.
Computing the Mth order moment gives, after some passages:

⟨α|(Â†
Â)M|α⟩ = e−|α|2

∑︂
n

|α|2n

n!
nM, (3.66)

in this formulation, we recognize the probability distribution

p(n) = e−|α|2 |α|
2n

n!
, (3.67)

so the number distribution of a coherent state is Poisson’s of parameter |α|2. This
is the result used in the semiclassical treatment of shot noise.

By using coherent states, we are able to encode in the quantum domain the
properties of a classical coherent radiation field, for example from a infrared
laser device. Consider now the role of detection. We will show how the detection
performance will be affected by the quantum properties of the fields.

3.3.3 Quantum theory of detection

The creation and annihilation operators are not Hermitian, hence they cannot
represent an observable. Nonetheless, the in-phase and quadrature operators
are. In fact they represent conjugate variable analogous to the position and
momentum ones in a harmonic oscillator. From a practical point of view, they are
the variables which are ultimately measured in detection. Let us only consider
theoretical limitations on the amplitude fluctuations, without including a full
theory of detection. We may take into account the commutator relations for the
quadrature components, that plays the role of a noise term as will be described.
The ultimate noise limit on the product of the uncertainties is determined by the
commutator, via the Heisemberg uncertainty relation. Heisemberg uncertainty
relation is a simple algebraic result on Hilbert spaces. In order to illustrate that,
consider two non-commuting observables X̂, Ŷ, whose commutator is

[X̂, Ŷ] = iC (3.68)

we are interested in computing a bound on the uncertainty product⟨︂
∆X̂

2
⟩︂⟨︂
∆Ŷ

2
⟩︂
=
(︂⟨︂
X̂
2
⟩︂
−
⟨︁
X̂
⟩︁2)︂(︂⟨︂

Ŷ
2
⟩︂
−
⟨︁
Ŷ
⟩︁2)︂
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In fact, for an arbitrary state |ψ⟩, the expectation of the quadratic errors can be
written as the inner product between transformed states in the form ∆X̂ |ψ⟩:

⟨ψ|∆X̂2|ψ⟩ = ⟨ψ|∆X̂∆X̂ |ψ⟩ , (3.69)

and similarly for Y. Let us define the auxiliary operators x̂ = ∆X̂ and ŷ = ∆Ŷ.
Such inner product obey the Schwarz inequality in the Hilbert space, which reads

⟨ψ|x̂2|ψ⟩ ⟨ψ|ŷ2|ψ⟩ ⩾ | ⟨ψ|x̂ŷ|ψ⟩ |2 (3.70)

By expressing the operator product x̂ŷ in commutative and anticommutative
terms, and by using the commutator, already fixed before, we obtain

x̂ŷ =
1

2
(x̂ŷ+ ŷx̂) +

1

2
iC (3.71)

so by substitution we get the uncertainty relation⟨︂
∆X̂

2
⟩︂⟨︂
∆Ŷ

2
⟩︂
⩾
1

4
C2. (3.72)

From a practical point of view, detection of both quadrature components
is of interest in the case of coherent detection: coherent modulations encode
information in both quadratures. Instead, for IM/DD systems, we are interested
in detecting only the energy, that is associated with the photon number, which
is a combination of the quadrature components, and it is possible to reduce
the uncertainty for that particular combination, as there is no Heisemberg limit.
This technique is often called "photon antibunching", and it is achieved via light
squeezing [116, 52, 104]. The origins of this idea trace back to the first studies on
vacuum electron devices in the microwave domain, such as travelling wave tubes
and amplifiers [71].

Let us describe a simplified detection process in some detail, and compute
the fluctuations for two detection methods, direct detection and homodyne
detection, as described in section 1.2. First of all, for direct detection, we define
the photoelectron (or electron-hole pair) number operator for a symbol time T ,
corresponding to a length L = vgT , using the creation and annihilation operators
of the modes inside this fiber length. Supposing an ideal photodetector with
quantum efficiency equal to 1,

Q̂ = qÂ
†
Â. (3.73)
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where q is the elementary charge. Considering the detection of a coherent state
|α⟩ assigned to the time slot of interest, it is possible to simply compute the
moments of the photoelectron operator, and obtain the noise, expressed as the
variance.

⟨α|Q̂2|α⟩− ⟨α|Q̂|α⟩2 = q2 ⟨α|n|α⟩ = q2|α|2 (3.74)

this result corresponds to the variance of the corresponding Poisson random
variable multiplied by the charge q. So, for direct detection, the full quantum
theoretical treatment does not add more information power with respect to the
semiclassical Poisson model. However, the physical origin of this noise term is
due to the non-zero commutator of ladder operators. Indeed, it holds⟨︂

Q̂
2
⟩︂
=
⟨︂
Â

†
ÂÂ

†
Â
⟩︂

; (3.75)

in general, operator ordering plays a major role in the description of quantum
noise.

Let us consider now the description of balanced homodyne detection. Referring
to a simple setup as the one in Fig. 1.5a, we express the field operators at the
output branches of the coupler with the observables B̂1, B̂2. By using known
phase properties of the coupler, from its scattering matrix, and indicating the
local oscillator field with ÂL, it holds

B̂1 =
1√
2
(ÂL − iÂ) (3.76)

B̂2 =
1√
2
(−iÂL + Â) (3.77)

The outcoming charge after the difference detector is, after some simple algebra

Q̂ = q(B̂
†
1B̂1 − B̂

†
2B̂2) (3.78)

= q(Â
†
LÂ+ Â

†
ÂL). (3.79)

Consider the reception of a coherent state |α⟩, with the local oscillator in the
coherent state |αL⟩, some passages lead to⟨︂

Q̂
2
⟩︂
−
⟨︁
Q̂
⟩︁2

= q2(|α|2 + |αL|
2) (3.80)

This detector correspond to one of the pair of detector needed to receive a coherent
modulated signal. In particular, it is the measure of the in-phase component of
the field, as it is clearly seen by multiplying the in-phase component of the
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received field. The noise due to measurement of both in-phase and quadrature
components is subjected to the Heisemberg uncertainty relation. This is the
maximum performance of a receiver such as the one in the case of the phase-
diversity receiver shown in Fig. 1.5b.

3.3.4 Classical treatment of thermal noise

A simple and instructive quantum model is the treatment of noise in a waveguide
with losses [70]. We discuss the thermal noise case as it illustrates some useful
techniques, and highlight the parallelism between quantum and classical models.
First of all, we will consider a ring resonator of length L, which support modes that
will be equally spaced from the spectral point of view. This will be done without
loss of generality, as, taking the limit L → ∞, the modes will be represented
in a continuum of possible frequencies. Consider a mode of amplitude An
and propagation constant βn in a single mode waveguide. For example, this
could be the case of one polarization inside a single mode fiber. Let An be
normalized such that |An|

2 represents the mode energy. Let the system be at
thermal equilibrium. Since there are two degrees of freedom associated to every
mode, by the equipartition theorem [79] of classical statistical mechanics, the
statistical average of the mode energy is⟨︂

|An|
2
⟩︂
= kBθ (3.81)

where kB is the Boltzmann constant and θ is the absolute temperature. Further-
more, by the requirement that the propagation is stationary, the modes must be
uncorrelated. If n ̸= m:

⟨AnA∗
m⟩ = 0 (3.82)

Now consider the computation of the average energy per unit length, and in-
troduce another definition of the mode amplitude. Let β be the propagation
constant, and ∆β the mode spacing in reciprocal space. By taking the limit of
small spacing ∆β

∑︂
n,m

⟨︃
A∗
nAm

L

⟩︃
=

∑︂
n,m

1

L

(︃
∆βL

2π

)︃2
⟨A∗

nAm⟩ ≈
∫︂
dβ

∫︂
dβ′ ⟨︁a∗(β)a (︁β′)︁⟩︁ , (3.83)

this is done introducing the new mode amplitude definition

a(β) =

√
L

2π
An. (3.84)
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In this way the requirements on the correlation between modes translate into

⟨︁
a(β)a(β ′)

⟩︁
=
1

2π
kBθδ(β−β ′) (3.85)

Finally, it is possible to derive the Nyquist formula for the thermal power spectral
density propagating in each mode in a bandwidth B.

P = kθ (3.86)

The typical "ultraviolet catastrophe" for white noise is evident: integrating the
power spectral density for all the propagation constants, we obtain divergence.
Utilizing the Bose statistics for energy distribution at finite temperature we are
able to correct the result as in Planck black body radiation analysis [134].

Suppose now to include losses in the waveguide. For each mode amplitude in
the continuum of propagation constants β, supposing constant attenuation rate
α, it holds

d
dz
a(β) = (iβ−α)a(β) + s(β, z) (3.87)

while the introduction of s, which is a random variable, the so-called Langevin
source, seems arbitrary, it is needed for the conservation of noise spectrum. In
fact, since the waveguide is at thermal equilibrium, the noise spectrum must be
constant with respect to the position z. By imposing this property, we are able to
characterize in a stochastic manner the term s:

d
dz
[︁⟨︁
a(β)a∗(β ′)

⟩︁]︁
= −2α

⟨︁
a(β)a∗

(︁
β′)︁⟩︁+ ⟨︁s(β, z)a∗

(︁
β′)︁+ a(β)s∗ (︁β′, z

)︁⟩︁
= 0

(3.88)

Now notice that loss is physically due to coupling to charges which will be
different from point to point. This means that noise source correlation is local

⟨︁
s(β, z)s(β, z ′)

⟩︁
) = δ(z− z ′) (3.89)

The only relevant term in the expectation value of cross a and s terms is the
contribution of the noise source s to the mode amplitude. Over a length ∆z, the
average contribution is ∆z/2s(z). So the requirement (3.88) translates into

−2α
⟨︁
a(β)a∗

(︁
β′)︁⟩︁+ ∆z

2

⟨︁
s(β, z)s∗(β′, z) + s(β, z)s∗(β′, z)

⟩︁
= 0 (3.90)
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taking the limit ∆z→ 0 we are finally able to characterize the noise source

⟨︁
s(β, z), s∗(β ′, z ′)

⟩︁
=
1

2π
2αkθδ(z− z ′)δ(β−β ′) (3.91)

The generalization to frequency dependent attenuation is straightforward. Notice
that, being the noise approximately Gaussian distributed by the Central Limit
theorem, the second-moment characterization of the process specify in a unique
way the noise. We have seen that the conservation of noise correlation require
some statistical properties of Langevin sources. In the quantum domain, the same
role is played by the commutator operator.

3.3.5 Quantum treatment of loss and fluctuations

By using the formalism developed in section 3.3.1, ladder operators in the con-
tinuum of propagation constants inside the optical fiber can be introduced.
Observing the structure of the ladder operator in the ring resonator case of Eq.
(3.61), it can be noticed that the term

⟨︂
Â

†
mÂm

⟩︂
represents the average number

of photons in the mode m. By considering the normalization of the annihilation
operator as the section before, we obtain

â(β) =

√
L

2π
Âm (3.92)

and similarly for the creation operator. It is possible to obtain the commutation
relation also for continuous ladder operators as

[â(β), â†(β ′)] =
1

2π
δ(β−β ′) (3.93)

By omitting zero-point energy, which does not influence the actual Heisemberg
equations of motions, the Hamiltonian is

Ĥ = 2πh

∫︂
dβω(β)â†(β)â(β) (3.94)

Now, consider propagation in presence of losses. In an equivalent way as the
classical treatment, let us write the equation of motion which includes decay of
the mode amplitude. In order to do that, assume to normalize the field amplitude
operator replacing â(β) with â(β) exp[−iωt] and remove so the usual phase
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progression term exp[−iωt] in the dynamical description. Adding the additional,
still uncharacterized, noise term [68], the equation reads

d
dt
â(β) = −σ(β)â(β) + ŝ(β). (3.95)

where σ represent a classical decay, and ŝ is the noise source. The interpretation
of the noise term operator is the coupling to loss reservoirs, and actually the
new operator calls for a renewed Hilbert space of the system. The concept of a
reservoir is a statistical mechanics tool useful to represent a subsystem in thermal
equilibrium with which coupling of the subsystem of interest occurs. Since a full
microscopic model of the loss would be complicated, the concept of reservoir is
paramount for calculating mean effect of coupling. In this case, in order to model
noise, it is not even required to obtain an detailed expression for coupling to
loss reservoir. In fact, the commutator bracket must be preserved [52, 70], as it is
an intrinsic property of the ladder operators. Expressing this requirement in the
previous evolution equation, yields

d

dt

[︂
â(β), â†

(︁
β′)︁]︂ =−

[︁
σ(β) + σ

(︁
β′)︁]︁ [︂â(β), â† (︁β′)︁]︂

+
[︂
ŝ(β), â†

(︁
β′)︁]︂+ [︂â(β), ŝ† (︁β′)︁]︂

=0.

(3.96)

By considering the influence of the noise term into the mode amplitude, the
commutator encodes the suppression of mode photons. Its averaged effect over a
time ∆t is[︂

ŝ(β), â†(β ′)
]︂
=
1

2

[︂
ŝ(β), ŝ†(β ′)

]︂
∆t, (3.97)

and by using the commutator of the ladder operators,[︂
ŝ(β), ŝ†(β ′)

]︂
=
1

2π
2σ(β)δ(t− t ′)δ(β−β ′). (3.98)

Since the equation of motion is linear in the operators, integration can be formally
done like with c-numbers. Supposing to propagate the field until time T :

â(β, T) = exp [−σT ]

(︄
â(β, 0) +

∫︂T
0
dt exp[σt]ŝ(β)

)︄
. (3.99)

The above equation and its Hermitian conjugate allow for the computation of
the propagated field. Finally, if one carries out the calculation for a mode field
in coherent state and ground state for reservoirs, an interesting result will be
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obtained. Suppose that the coupled system is in the product state |α(β)⟩ |0⟩ :=
|α(β)⟩ ⊗ |0⟩. It is interesting to compute the average fluctuations of the in-phase
and quadrature component of the field. First of all, let us compute the average
photon number, averaging over all possible modes⟨︃

2π

∫︂
dβ â†(β, T)â(β, T)

⟩︃
= exp(−2σT)|α(β)|2 (3.100)

notice the reduction due to the absorption rate. Computing the in-phase fluc-
tuations, using the definition of this operator, and properties of coherent states

⟨︂
â(1)(β, T)â(1)(β ′, T)

⟩︂
−
⟨︂
â(1)(β, T)

⟩︂⟨︂
â(1)(β ′, T)

⟩︂
=

=
1

4

1

2π
δ(β−β ′)

(3.101)

the result for the quadrature fluctuation is identical.
In conclusion, we have seen that the argument of conservation of commuta-

tor brackets implies characterization of noise sources, in an analogous way as
Langevin sources. There is an important duality in the principles: conservation of
noise energy at thermal equilibrium and conservation of commutator brackets.
Moreover, by computing the quantum fluctuations with the loss reservoir at
the ground state, it was possible to acknowledge the resemblance of quantum
fluctuations and thermal noise.

3.4 phase-space methods

Working with operator equations in field theory is often impractical. As we have
described before, the most common way to operate in practical computations is
by using density matrices. In order to obtain representations for those matrices,
a particular basis of states must be selected. This corresponds to the choice of
a particular representation in phase-space, called also phase-space of harmonic
oscillator density operator. Since the dynamics will be described using the density
matrix, which depends on the choice of the basis, by specializing the basis on
a coherent state variables, the density matrix equations can be converted in c-
number equations. In fact, dynamics in the phase-space representation can be
readily described using Itô or Stratonovich integrals in stochastic differential
equations, under reasonable assumptions [22, 23, 107].

Let us introduce the topic by comparing the general theory of random variable
characteristic functions with the one in a quantum framework. When dealing
with continuous random variables a particularly useful tool is the so-called
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"characteristic function", which corresponds to the Fourier transform of the
probability density function (p.d.f.). If the variable is X, then the characteristic
function is defined as:

C(ξ) = ⟨exp[iξX]⟩ , (3.102)

where ⟨·⟩ indicates the expectation operator.
In a similar way, a quantum version of the characteristic function can be defined.

If X̂ is an observable, its characteristic function is:

C(ξ) =
⟨︁
exp

[︁
iξX̂
]︁⟩︁

, (3.103)

where ⟨·⟩ indicates the expected value with respect to a state. However, since the
observables are typically expressed as sums of ladder operators, the exponentia-
tion becomes inconvenient, as it may contain different orders. A useful identity,
called Baker-Hausdorff identity, relate the exponentiation procedure with simpler
steps:

exp
[︁
iξ(X̂+ Ŷ)

]︁
= exp

[︁
iξX̂
]︁

exp
[︁
iξŶ
]︁

exp
[︃
ξ2

2
[X̂, Ŷ]

]︃
. (3.104)

Let us consider a coherent state |α⟩. For such a state, the in-phase component is

⟨α|Â(1)
|α⟩ = 1

2
(a+ a∗). (3.105)

By calculating the Baker-Hausdorff expansion related to Â
(1)

, we are able to find
not only the expected value of the in-phase component, but the whole statistics.
The computation gives

C(ξ) = exp
[︃
−
ξ2

8
+ iξ

α+α∗

2

]︃
. (3.106)

This expression resembles the characteristic function of a Gaussian random
variable with mean (α+α∗)/2 and variance 1/4. Indeed, since the interpretation
of probability density is valid in this case, we found that the corresponding
in-phase component is Gaussian distributed. An analogous argument holds for
the quadrature component, for which the result is identical. A similar argument
can be carried out for the thermal state, which is

|θ⟩ =
∑︂
n

cn |n⟩ (3.107)
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where |n⟩ is the number state and cn obeys the Bose-Einstein distribution pB−E
as

⟨cnc∗m⟩ = δnmpB−E(n). (3.108)

Computing the characteristic function of the in-phase component expressed in
terms of ladder operators, it is found to correspond to a Gaussian distribution

C(ξ) = exp
[︃
−
ξ2(1+ 2 ⟨n⟩)

8

]︃
, (3.109)

that have zero mean and (1+ 2 ⟨n⟩)/4 variance. The same holds for the quadrature
component.

Now the interesting question to be asked is how this technique generalizes to
multiple observables, like for example in the case of joint in-phase and quadrature
observables. In the case of random variables, the generalization is straightforward:
given X1, and X2 jointly distributed random variables, their characteristic function
is defined as:

C(ξ1, ξ2) = ⟨exp[i(ξ1X1 + ξ2X2)]⟩ . (3.110)

The Fourier transform of the characteristic function is the joint distribution
function. In the case of observables, however, the order of the operators introduce
novel aspects that are to be considered.

3.4.1 Wigner distribution

Let us consider two non-commuting observables, X̂1 and X̂2. Let the characteristic
function be defined as:

C(ξ1, ξ2) =
⟨︁
exp

[︁
i(ξ1X̂1 + ξ2X̂2)

]︁⟩︁
. (3.111)

The Wigner function is defined as the inverse Fourier transform of the character-
istic function expressed with observables 3.

W (x1, x2) =
(︃
1

2π

)︃2 ∫︂
dξ1

∫︂
dξ2C (ξ1, ξ2) exp (−iξ1x1 − iξ2x2) (3.112)

3In probability theory it is often the case that the convention of the "reciprocal" domain is
changed of sign with respect to the usual Fourier transform. When referring to characteristic
functions, the conventional probabilistic definition is used [46].
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The "marginal", which is the integral of the Wigner function with respect to one of
the two variables, can be interpreted as a probability, whereas the Wigner function
itself cannot – it can even become negative. It turns out that, for a coherent state
|α⟩, if we define the variables corresponding to the observables as A1 and A2, for
the in-phase and quadrature components, respectively, the the Wigner function is

W (A1,A2) =
1

2π
exp

[︂
−2 [A1 − Re(α)]2

]︂
exp

[︂
−2 [A2 − Im(α)]2

]︂
(3.113)

which is represented by a bivariate Gaussian function.
When the Wigner function is computed with respect to the density operator,

we obtain a phase-space representation for the state [22]. In order to generalize
the theory of the characteristic function, we introduce the concept of quantum
characteristic function, which leverages the description in terms of ladder operators.
Given a state with density matrix ρ, it is defined as [52]:

χ(λ, λ∗) = Tr
[︂
ρ exp

[︂
λâ† − λ∗â

]︂]︂
(3.114)

This is analogous to the previous definition, but specialized to the case of ladder op-
erators. The quantum characteristic function has the property of generating all the
normally-ordered moments [52, p. 121]. So the a straightforward representation
for the density matrix is represented by the Wigner function

W(α,α∗) =
1

π2

∫︂
d2λ χ(λ, λ∗) exp (λα∗ + λ∗α) (3.115)

The Wigner representation is a symmetrically-ordered operator representation,
and it is suited for applications in which the field behaves almost classically [54].

3.4.2 Glauber-Sudarshan P representation

Since the coherent stated have many useful properties, a decomposition of the
density operator in terms of those states is particularly useful. This approach,
developed by Glauber and Sudarshan [57] is called P-representation, and the P
function is defined as:

ρ =

∫︂
d2α P(α,α∗) |α⟩ ⟨α| (3.116)
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Recall that∫︂
d2α |α⟩ ⟨α| = π

∑︂
n

|n⟩ ⟨n| = π (3.117)

and, due to the definition,

Tr[ρ] =
∫︂
d2α P(α,α∗) = 1 (3.118)

Moments are generated by⟨︂
â† râs

⟩︂
=

∫︂
d2α α∗rαsP(α,α∗) (3.119)

The Glauber-Sudarshan representation is a normally-ordered operator representa-
tion, and it is suited for applications in which the field behaves almost classically
[54].

3.4.3 Positive definite P representation (+P)

The previous functions cannot in general be interpreted as positive definite
probability distributions, however, at the cost of doubling the number of phase-
space variables, an approach from Drummond and Gardiner [35] gives the wanted
property. Because of this property, it is possble to derive a Fokker-Planck equation
with a positive definite diffusion matrix for this representation [52, p. 195]. The
definition of the positive P function can be given implicitly using the characteristic
function

χ(λ, λ∗) =
∫︂ ∫︂
d2αd2β P(α,β) exp[λβ− λ∗α] (3.120)

This is the approach of choice for the development of stochastic differential
equations in the form of Itô or Stratonovich, as illustrated by Carter [22]. Finally,
we remark that existence properties are a to be assessed for all those implicitly-
defined functions, but are out of the scope of this thesis. It turns out [52] that
Wigner function always exists, whereas other functions exist for a wide class of
states.

Thermal states and coherent states density operators

As an example, let us consider the quantum treatment of thermal radiation in
detection. This was a main problem addressed in seminal work by Helstrom [76]
and Glauber [57]. For the moment, let us restrict to the case in which strong
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assumptions are made for propagation, and the shape of the density matrix at
the receiver is not to be derived using master equations. Considering thermal
excitation of a single mode, the resulting quantum state can be written as the
maximum entropy distribution, which is geometric [21]

p(n) =

(︃
N

1+N

)︃n
1

1+N
. (3.121)

Since the average number of bosons obey the Bose-Einstein statistics,

N =
1

exp[hω/kθ] − 1
, (3.122)

then the density operator ρθ has a representation in the Fock basis

ρθ =

∞∑︂
n=0

(︃
N

1+N

)︃n
|n⟩ ⟨n| . (3.123)

Let us consider a coherent state |α0⟩, with density matrix ρ. In the Glauber-
Sudarshan P representation it is trivially represented as

ρ =

∫︂
d2α δ(α−α0) |α⟩ ⟨α| (3.124)

whereas a thermal state have the representation

ρθ =
1

πN

∫︂
d2α exp

[︃
−
|α|2

N

]︃
|α⟩ ⟨α| (3.125)

so it has a Gaussian components in the phase-space of coherent states. Glauber
[57] showed how the coherent state, when added to the thermal one, gives a
representation in P space as

ρperturbed =
1

πN

∫︂
d2α exp

[︃
−
|α−α0|

2

N

]︃
|α⟩ ⟨α| (3.126)

The detection of such state is a problem pertaining quantum receiver optimiza-
tion, however this representation can be generalized and used to compute field
evolution along the fiber.

3.5 concluding remarks

The detection problem in the case of the transmission of a QKD channel which
is disturbed by a set of WDM channels can be cast into a problem of quantum
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telecommunications in the presence of noise. However, this is not the only way to
tackle the problem. A classical and simplified model have been developed [25],
but it neglects the role of loss of coherence; the results shown suggest that NLIN
is not particularly impactful with respect to other impairments for QKD channels,
and can be neglected, at least from the point of view of its noise power level. In
fact, most experimental work concentrates on the impact of in-band ASE, Raman
scattering (both spontaneous and stimulated), and FWM. It is also true that most
experimental work focus on short to medium distance communications, which
are of interest today for QKD systems. From the technological point of view,
further numerical studies should be carried out in order to assess the impact of
NLIN in this case, and compare it with different noise sources. The study on
RALs may become in this respect particularly interesting, due to the variety and
number of copropagating waves that may couple with the QKD channels and
represent disturbances. In this scenario, many of the disturbances do already
have models, like attenuation and Raman processes [22]. From the theoretical
point of view, we have reviewed the usual methods to tackle noise using the
formalism of quantized fields: by using some assumptions on the interaction
between the system and the environment, master equations like Eq. (3.15) have
been illustrated. In the literature, the equations have been applied to various
disturbance problems [52]. However, the case of NLIN presents some difficulties.
First of all, the state of the environment field is not thermal, so taking traces
over the reservoir may not be simple. As we have seen in the case of classical
telecommunications, NLIN is much influenced by modulation format, so the
statistics of the constellation must be included into the model.

Further study may involve the development of suitable approaches similar to
Redfield or GKSL equations. An assessment of the impact and comparison of
diverse noise sources should be carried out using a numerical simulations, and
tested using both DV-QKD and CV-QKD, but concentrating especially on the
latter, which is gaining attention in recent times, and may perform better in terms
of coexistence. As for the development of NLIN coupling may require the usage
of non Markovian models. Furthermore, it would be interesting to explore the
impact of phase-matched FWM on quantum channels, a phenomenon that may
be driven by the coexistence of many signal and pump wave in a RAL.



C O N C L U S I O N S 4
Current optical communications systems utilize technologies that are based on the
sharing of the same propagation medium by waves that are differentiated from
the functional point of view. In fact, one of the most important breakthroughs in
optical communications is WDM, with which up to hundreds of channels can be
conveyed into the same optical fiber. Moreover, much effort has been put into the
development of Raman amplified links, that may supersede EDFAs in the task of
mitigating the effect of losses. These two technologies are implemented together in
systems: the Raman amplification scheme, consisting in propagating CW pumps
in the same direction of the signal and/or in the opposite direction, can be finely
tuned in order to amplify the channels of a WDM system in a equalized way, and
this is usually accomplished using various pump wavelength/power allocation
algorithms, the most efficient exploiting machine learning. In a typical Raman
amplified WDM link, some tens to hundreds of channel are sharing the same
physical medium with Raman pumps. In this scenario it is particularly interesting
to obtain noise performance metrics for the channels, as many non-idealities
of the fiber give rise to impairments. Even if many models have already been
developed, not all the aspects are completely understood.

In this thesis, the problem of modeling the XPM-induced phase perturbations
in Raman amplified links has been addressed. This is a inter-channel disturbance
phenomenon in WDM systems, and it is influenced by the Raman amplification
along the fiber, which is channel-dependent. The resulting model is a generaliza-
tion of the model proposed by Dar and Mecozzi [30], and consists in a system of
coupled NLSEs, with which the perturbative analysis for the received symbol has
been reproduced. Using this model, numerical simulations have been realized
in order to obtain realistic estimates of the noise, which is called NLIN. In the
simulations, the focus has been given on NLIN and ASE noise. SPM phase shifts
have been neglected, since noise suppression techniques are very efficient for
this kind of disturbance. In the numerical simulations, particular highlight has
been given to the characteristics of NLIN, its dependence on channel position, the
influence of the choice of the Raman amplification scheme. It turns out that the
choice of the Raman amplification scheme entails a tradeoff between NLIN and
ASE noise performance. More specifically, considering an equalized amplification,
NLIN performance is enhanced by counterpropagating schemes, as the signal
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pulses are attenuated along all the fiber, whereas in copropagating schemes, they
are amplified at the input and stay at higher power along the whole fiber. The
behavior of ASE is opposite. The numerical simulations open up the possibility of
studying in detail NLIN, and may be useful to formulate and solve optimization
problems on performance of Raman amplified WDM system. Future work may
involve the study of the impact of the link length on the NLIN and ASE tradeoff,
and the study of how bidirectional pumping can implement an optimal scheme
with respect to noises, considering also noise mitigation techniques at the receiver.

The second topic of this thesis regards quantum telecommunications, that
is a field undergoing very fast development. In recent years, increasing effort
had been given to the problem of the coexistence of QKD channels with WDM
channels, in the same physical medium. In this thesis we reviewed present
literature on this topic, in order to understand the impact of NLIN, which might
be of some relevance even in this scenario. In a second moment, by approaching
the problem in a top-down fashion, we explored methodology for describing
interaction of radiation and matter in a quantum-mechanical setting. We argued
that, for this kind of interaction in communication systems, the formalism of
quantized fields is extremely useful, both as a conceptual tool, and as a modeling
tool. The framework of open quantum systems is particularly useful as it provides
master equations for the density matrix, and introduces major simplifications in
the treatment of disturbances. Furthermore, phase-space representation has been
shown to be the main tool for the writing of stochastic equations for the quantum
variables of interest. Future work may involve the direct modeling of NLIN
utilizing master equations, keeping into account the fact that, due to the non-
thermal nature of the interacting radiation, some of the approximations typically
used in master equations are no longer valid. By using numerical simulations of
master equations or Langevin equations, it may be possible to obtain a ultimate
bound on overall system performance, for example in terms of quantum BER.
This analysis may be done in conjunction with the calculation of the impact of
FWM, Raman processes, and ASE noise, for which some models in phase-space
are already available.



A P P E N D I C E S

a - fiber optic communications standards

The used frequency band designation in optical communication technologies are
summarized in Table 4.1.

Code Description Wavelength range [nm]
O Original 1260 - 1360

E Extended 1360 - 1460

S Short 1460 - 1530

C Conventional 1530 - 1565

L Long 1565 - 1625

U Ultra-long 1625 - 1675

Table 4.1: Frequency band designation for standards for fiber optics communications.

As for WDM, technology, the standardization details include specific grid
placements for both technologies [81, 82]. As for the aspects of interest in this
thesis, we only remark the spectral spacing, that influence walkoff and pulse
collision. In the case of Coarse-WDM (CWDM) [82], the standard spectral spacing
is 20nm, which in C band corresponds to about 2.5THz. In the case of Dense-
WDM (DWDM) [81], the spacing ranges from 12.5GHz to 100GHz and above, in
steps of 12.5GHz.

b - second order correction for dispersed gaussian pulses

As shown, local interaction approximation is useful when D(z) ≈ Dm := D(zm),

with zm = −
mT

β2Ω
. In this case, the time integral is a simple Gaussian integral,

and it can be evaluated as

X
(0)
0,m,m =

fB(zm)

β2Ω
. (4.1)

this may be viewed as a zero order approximation in D. A slight improvement of
this result is available for Gaussian pulses.
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By expanding the dependence on D to the second order, around Dm, we obtain
a correction which accounts for the dispersion phenomenon within the integration
range of the collision. It turns out that the first order term is null, and

X0,m,m ≈ X(0)
0,m,m +∆X

(2)
0,m,m (4.2)

where

∆X
(2)
0,m,m =

1

β2Ω

1

Ω2T20
(4.3)

the corrected coefficient may be written as

X0,m,m ≈ 1

β2Ω

(︄
1+

1

Ω2T20

)︄
(4.4)

this correction give an excellent improvement with respect to numerical computa-
tion of the integral, when compared to the 0th order approximation.

Let us derive this result. In order to simplify the computation we introduce an
auxiliary variable, adopting σ =

√
1+D2.

dσ

dD
(Dm) =

(︄
−T0

Dm√︁
1+D2m

)︄
(4.5)

Let us compute the first order correction:

∆X
(1)
0,mm =

√
πU40T

2
0

β2Ω

∫︂
R

dζ
∂C

∂D
(Dm, ζ) · (D−Dm) =

=

√
πU40T

2
0

p2Ω

∫︂
R

dζ
1√
2σm

· exp
[︃
−
(ζ+mT)2

2σ2m

]︃ [︃
−
1

σm
+

(ζ+mT)2

σ3m

]︃
×

×

[︄
−T0

Dm√︁
1+D2m

]︄
·

(︄
ζ+mT

ΩT20

)︄
= 0

(4.6)

where C =, and ζ =by using properties of Gaussian moments, we notice that the
only moments occuring are mean and kurtosis. So the first order approximation
is null.

To compute the second order correction, let us use the chain rule twice

∂2C

∂D2
=
d2σ

dD2
· ∂C
∂σ

+

(︃
dσ

dD

)︃2
∂2C

∂σ2
(4.7)

By integrating the first term of the sum in eq (4.7) we obtain
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∆X
(1)
0,mm =

√
πU40T

2
0

β2Ω

∫︂
R

dζ
1√
2σm

exp

[︄
−
(ζ+mT)2

2σ2m

]︄[︃
−
1

σm
+

(ζ+mT)2

σ3m

]︃
×

×

[︄
T0

(1+D2m)
3/2

]︄
1

2

(ζ+mT)2

Ω2T40

(4.8)

so we have a variance, and a central moment of order 4.
As for the second term in 4.7 the integral reads

=

√
πU40T

2
0

β2Ω

∫︂
R

dζ
1√
2σm

exp

[︄
−
(ζ+mT)2

2σ2m

]︄⎡⎣(︄− 1

σm
+

(ζ+mT)2

σ3m

)︄2
+

+

(︃
1

σ2m
−
3(ζ+mT)2

σ4m

)︃]︃ (︄
−T0

Dm√︁
1+D2m

)︄2
1

2

(ζ+mT)2

Ω2T40

(4.9)

so we have a variance, and central moments of order 4 and 6. Computation of
higher order central moments is obtained by

E[(X− µ)n] = (n− 1)!!σn (4.10)

Summing the two contribution the dependence on Dm vanishes, and we are left
with eq. (4.3).

c - selection of relevant collisions

In order to setup the integration technique, it is possible to notice that only some
indexes m are to be considered as valid collision in a short fiber such as the one
of interest for the amplifier. By using a threshold on the pulse collision energy
(normalized to 1), it is possible to select only the desired m, and to filter out all
the m that give place to weak interaction. Let 0 < ξ < 1 be such threshold. Let M
be the set of the m values to be considered. The computation of M is complicated,
because of the very definition of ξ, which involves the actual computation of the
integral

M =

{︃
m

⃓⃓⃓⃓ √︃
π

2

U40T0β2Ω

(1+D2(zm))
1
2

∫︂L
0
dzfB(z) exp

[︄
−

(mT +β2Ωz)
2

2T20 (1+D
2(zm))

]︄
⩾ ξ

}︃
(4.11)
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Since we are only concerned about the selection of the m, one possible approxi-
mation is to discard the contribution of fB(z). This assumption is acceptable if
inter-collision spacing is sufficiently small. By normalizing the Gaussian and com-
puting the upper and lower extreme of integration with respect to the Gaussian
peak, and considering a new normalized threshold, which is related to the pulse
energy by

ϵ =

√︃
2

π

(1+D2(zm))
1
2

U40T0β2Ω
ξ (4.12)

it is possible to obtain a trascendental condition on m to be solved simply using
some solver or by table lookup. The alternative, simplified condition is

1

2

[︄
Φ

(︄
mT +β2ΩL√

2T0(1+D2(zm))
1
2

)︄
−Φ

(︄
mT

√
2T0(1+D2(zm))

1
2

)︄]︄
> ϵ (4.13)

where Φ is the Gaussian error function. This approximation must be validated,
but it is a good starting point to understand the behavior of the interactions.

d - comments on overall nlin computation

The procedure followed to calculate the overall NLIN consisted in obtaining one
time integral of every m, and then to integrate its contribution in space and obtain
the corresponding m. Referring to notation in Eq. (2.62), every computation of
IΩ,m(z) has a computational cost proportional to the product of the space samples
and the time samples. The overall tens to hundreds of pulses are then inserted in
the overall noise computation from a single interfering channel in the following
form

∑︂
m

X20,m,m =
∑︂
m

∫︂L
0

∫︂L
0
dzdz ′fB(z)fB(z

′)

∫︂+∞
−∞

∫︂+∞
−∞ dtdt ′|g(0)(z, t)|2|g(0)(z ′, t ′)|2×

(4.14)

× |g(0)(z, t−mT −β2Ωz)|2|g(0)(z ′, t ′ −mT −β2Ωz)|2 (4.15)
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By exchanging the summation symbol with each of the integration ones (it is
possible because finite summation is a continuous functional), one obtains

∑︂
m

X20,m,m =

∫︂L
0

∫︂L
0
dzdz ′fB(z)fB(z ′)

∫︂+∞
−∞

∫︂+∞
−∞ dtdt ′|g(0)(z, t)|2|g(0)(z ′, t ′)|2×

(4.16)

×
∑︂
m

|g(0)(z, t−mT −β2Ωz)|2|g(0)(z ′, t ′ −mT −β2Ωz)|2

(4.17)

so this simple algebraic passage suggest a novel method for computing the overall
noise, without necessarily compute the single X0,m,m for each m. The complexity
of this method is increased with respect to the previous one, however, starting
from the last expression, some approximation may be developed in order to
obtain fast estimates of the overall NLIN.
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[27] Dariusz Chruściński and Saverio Pascazio. “A Brief History of the GKLS Equation.”
In: Open Systems & Information Dynamics 24.3 (Sept. 2017), p. 1740001. issn: 1230-1612,
1793-7191. doi: 10.1142/S1230161217400017.

[28] Ronen Dar et al. “Accumulation of nonlinear interference noise in fiber-optic systems.” In:
Optics Express 22.12 (June 16, 2014). Publisher: Optica Publishing Group, pp. 14199–14211.
issn: 1094-4087. doi: 10.1364/OE.22.014199.

https://doi.org/10.1103/PhysRevA.42.4102
https://doi.org/10.1103/PhysRevA.42.4102
https://doi.org/10.1109/JLT.2009.2021537
https://doi.org/10.1007/978-3-319-15600-2
https://doi.org/10.1103/PhysRevA.51.3274
https://doi.org/10.1103/PhysRevLett.67.3757
https://doi.org/10.1103/PhysRevLett.58.1841
https://doi.org/10.1103/PhysRevLett.58.1841
https://doi.org/10.1088/0256-307X/30/11/110302
https://doi.org/10.1142/S1230161217400017
https://doi.org/10.1364/OE.22.014199


bibliography 113

[29] Ronen Dar et al. “Inter-Channel Nonlinear Interference Noise in WDM Systems: Modeling
and Mitigation.” In: Journal of Lightwave Technology 33.5 (Mar. 2015). Conference Name:
Journal of Lightwave Technology, pp. 1044–1053. issn: 1558-2213. doi: 10.1109/JLT.2014.
2384998.

[30] Ronen Dar et al. “Properties of nonlinear noise in long, dispersion-uncompensated fiber
links.” In: Optics Express 21.22 (Oct. 2013). Publisher: The Optical Society, p. 25685. doi:
10.1364/oe.21.025685.

[31] Ronen Dar et al. “Time varying ISI model for nonlinear interference noise.” In: Optical Fiber
Communication Conference (2014), paper W2A.62. Optical Fiber Communication Conference.
Optica Publishing Group, Mar. 9, 2014, W2A.62. doi: 10.1364/OFC.2014.W2A.62.

[32] Paul Adrien Maurice Dirac. The Principles of Quantum Mechanics. Clarendon Press, 1981.
340 pp. isbn: 978-0-19-852011-5.

[33] S.J. Dolinar. “An optimum receiver for the binary coherent state quantum channel.” In:
Research Laboratory of Electronics, MIT, Quarterly Progress Report 11 (1973), pp. 115–120.

[34] Justin Dove, Christopher Chudzicki, and J. Shapiro. “Phase-Noise Limitations on Nonlinear-
Optical Quantum Computing.” In: undefined (2015).

[35] P. D. Drummond and C. W. Gardiner. “Generalised P-representations in quantum optics.”
In: Journal of Physics A: Mathematical and General 13.7 (July 1980). Publisher: IOP Publishing,
pp. 2353–2368. issn: 0305-4470. doi: 10.1088/0305-4470/13/7/018.

[36] P. D. Drummond and A. D. Hardman. “Simulation of Quantum Effects in Raman-Active
Waveguides.” In: Europhysics Letters (EPL) 21.3 (Jan. 1993). Publisher: IOP Publishing,
pp. 279–284. issn: 0295-5075. doi: 10.1209/0295-5075/21/3/005.

[37] Peter D Drummond and Steve J Carter. “Quantum-field theory of squeezing in solitons.”
In: JOSA B 4.10 (1987). Publisher: Optical Society of America, pp. 1565–1573.

[38] Peter D Drummond and Joel Frederick Corney. “Quantum noise in optical fibers. I.
Stochastic equations.” In: JOSA B 18.2 (2001). Publisher: Optical Society of America,
pp. 139–152.

[39] Peter D. Drummond. “Electromagnetic quantization in dispersive inhomogeneous nonlin-
ear dielectrics.” In: Physical Review A 42.11 (Dec. 1, 1990). Publisher: American Physical
Society, pp. 6845–6857. doi: 10.1103/PhysRevA.42.6845.

[40] Peter D. Drummond and Mark Hillery. The Quantum Theory of Nonlinear Optics. Cambridge
University Press, Mar. 27, 2014. 385 pp. isbn: 978-1-139-91583-0.

[41] Mikhail Elezov et al. “Towards the fiber-optic Kennedy quantum receiver.” In: EPJ Web of
Conferences 220 (2019). Publisher: EDP Sciences, p. 03011. issn: 2100-014X. doi: 10.1051/
epjconf/201922003011.

[42] Tobias A. Eriksson et al. “Coexistence of Continuous Variable Quantum Key Distribution
and 7×12.5 Gbit/s Classical Channels.” In: 2018 IEEE Photonics Society Summer Topical
Meeting Series (SUM). 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM).
ISSN: 2376-8614. July 2018, pp. 71–72. doi: 10.1109/PHOSST.2018.8456709.

[43] Tobias A. Eriksson et al. “Joint Propagation of Continuous Variable Quantum Key Distri-
bution and 18x24.5 Gbaud PM-16QAM Channels.” In: 2018 European Conference on Optical
Communication (ECOC). 2018 European Conference on Optical Communication (ECOC).
Sept. 2018, pp. 1–3. doi: 10.1109/ECOC.2018.8535421.

https://doi.org/10.1109/JLT.2014.2384998
https://doi.org/10.1109/JLT.2014.2384998
https://doi.org/10.1364/oe.21.025685
https://doi.org/10.1364/OFC.2014.W2A.62
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1209/0295-5075/21/3/005
https://doi.org/10.1103/PhysRevA.42.6845
https://doi.org/10.1051/epjconf/201922003011
https://doi.org/10.1051/epjconf/201922003011
https://doi.org/10.1109/PHOSST.2018.8456709
https://doi.org/10.1109/ECOC.2018.8535421


bibliography 114

[44] René-Jean Essiambre et al. “Capacity Limits of Optical Fiber Networks.” In: Journal of
Lightwave Technology 28.4 (Feb. 2010). Conference Name: Journal of Lightwave Technology,
pp. 662–701. issn: 1558-2213. doi: 10.1109/JLT.2009.2039464.

[45] U. Fano. “Description of States in Quantum Mechanics by Density Matrix and Operator
Techniques.” In: Reviews of Modern Physics 29.1 (Jan. 1, 1957). Publisher: American Physical
Society, pp. 74–93. doi: 10.1103/RevModPhys.29.74.

[46] Willliam Feller. An introduction to probability theory and its applications, vol 2. John Wiley &
Sons, 2008.

[47] A. C. Ferreira et al. “Analysis of the nonlinear optical switching in a Sagnac interferometer
with non-instantaneous Kerr effect.” In: Optics Communications 285.6 (Mar. 15, 2012),
pp. 1408–1417. issn: 0030-4018. doi: 10.1016/j.optcom.2011.10.026.

[48] J. M. Fini, P. L. Hagelstein, and H. A. Haus. “Agreement of stochastic soliton formalism
with second-quantized and configuration-space models.” In: Physical Review A 57.6 (June 1,
1998). Publisher: American Physical Society, pp. 4842–4853. doi: 10.1103/PhysRevA.57.
4842.

[49] Sebastian Fortin and Olimpia Lombardi. “Partial Traces in Decoherence and in Interpre-
tation: What Do Reduced States Refer to?” In: Foundations of Physics 44.4 (Apr. 1, 2014),
pp. 426–446. issn: 1572-9516. doi: 10.1007/s10701-014-9791-3.

[50] Wolfgang Freude et al. “Quality metrics for optical signals: Eye diagram, Q-factor, OSNR,
EVM and BER.” In: 2012 14th International Conference on Transparent Optical Networks
(ICTON). 2012 14th International Conference on Transparent Optical Networks (ICTON).
ISSN: 2161-2064. July 2012, pp. 1–4. doi: 10.1109/ICTON.2012.6254380.

[51] Andrea Galtarossa and Curtis R. Menyuk. Polarization Mode Dispersion. Springer Science &
Business Media, July 27, 2005. 320 pp. isbn: 978-0-387-23193-8.

[52] Crispin Gardiner, P. Zoller, and Peter Zoller. Quantum Noise: A Handbook of Markovian and
Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer
Science & Business Media, Aug. 27, 2004. 476 pp. isbn: 978-3-540-22301-6.

[53] A. Georgiadis. “Gain, phase imbalance, and phase noise effects on error vector magnitude.”
In: IEEE Transactions on Vehicular Technology 53.2 (Mar. 2004). Conference Name: IEEE
Transactions on Vehicular Technology, pp. 443–449. issn: 1939-9359. doi: 10.1109/TVT.
2004.823477.

[54] A. Gilchrist, C. W. Gardiner, and P. D. Drummond. “Positive P representation: Application
and validity.” In: Physical Review A 55.4 (Apr. 1, 1997). Publisher: American Physical
Society, pp. 3014–3032. doi: 10.1103/PhysRevA.55.3014.

[55] C.R. Giles and E. Desurvire. “Modeling erbium-doped fiber amplifiers.” In: Journal of
Lightwave Technology 9.2 (Feb. 1991). Conference Name: Journal of Lightwave Technology,
pp. 271–283. issn: 1558-2213. doi: 10.1109/50.65886.

[56] V. Giovannetti and G. M. Palma. “Master Equations for Correlated Quantum Channels.”
In: Physical Review Letters 108.4 (Jan. 24, 2012). Publisher: American Physical Society,
p. 040401. doi: 10.1103/PhysRevLett.108.040401.

[57] Roy J. Glauber. “Coherent and Incoherent States of the Radiation Field.” In: Physical
Review 131.6 (Sept. 15, 1963). Publisher: American Physical Society, pp. 2766–2788. doi:
10.1103/PhysRev.131.2766.

https://doi.org/10.1109/JLT.2009.2039464
https://doi.org/10.1103/RevModPhys.29.74
https://doi.org/10.1016/j.optcom.2011.10.026
https://doi.org/10.1103/PhysRevA.57.4842
https://doi.org/10.1103/PhysRevA.57.4842
https://doi.org/10.1007/s10701-014-9791-3
https://doi.org/10.1109/ICTON.2012.6254380
https://doi.org/10.1109/TVT.2004.823477
https://doi.org/10.1109/TVT.2004.823477
https://doi.org/10.1103/PhysRevA.55.3014
https://doi.org/10.1109/50.65886
https://doi.org/10.1103/PhysRevLett.108.040401
https://doi.org/10.1103/PhysRev.131.2766


bibliography 115

[58] Roy J. Glauber. “The Quantum Theory of Optical Coherence.” In: Physical Review 130.6
(June 15, 1963). Publisher: American Physical Society, pp. 2529–2539. doi: 10.1103/
PhysRev.130.2529.

[59] Ori Golani et al. “Modeling the Bit-Error-Rate Performance of Nonlinear Fiber-Optic
Systems.” In: Journal of Lightwave Technology 34.15 (Aug. 2016). Conference Name: Journal of
Lightwave Technology, pp. 3482–3489. issn: 1558-2213. doi: 10.1109/JLT.2016.2578983.

[60] Vittorio Gorini, Andrzej Kossakowski, and E. C. G. Sudarshan. “Completely positive
dynamical semigroups of N-level systems.” In: Journal of Mathematical Physics 17.5 (May
1976). Publisher: American Institute of Physics, pp. 821–825. issn: 0022-2488. doi: 10.
1063/1.522979.

[61] Philippe Grangier, Juan Ariel Levenson, and Jean-Philippe Poizat. “Quantum non-demolition
measurements in optics.” In: Nature 396.6711 (Dec. 1998), pp. 537–542. issn: 0028-0836,
1476-4687. doi: 10.1038/25059.

[62] Edouard Grellier and Alberto Bononi. “Quality parameter for coherent transmissions with
Gaussian-distributed nonlinear noise.” In: Optics Express 19.13 (June 20, 2011). Publisher:
Optica Publishing Group, pp. 12781–12788. issn: 1094-4087. doi: 10.1364/OE.19.012781.

[63] Frédéric Grosshans and Philippe Grangier. “Continuous Variable Quantum Cryptography
Using Coherent States.” In: Physical Review Letters 88.5 (Jan. 16, 2002). Publisher: American
Physical Society, p. 057902. doi: 10.1103/PhysRevLett.88.057902.

[64] Frédéric Grosshans and Philippe Grangier. “Quantum cloning and teleportation criteria
for continuous quantum variables.” In: Physical Review A 64.1 (June 12, 2001). Publisher:
American Physical Society, p. 010301. doi: 10.1103/PhysRevA.64.010301.

[65] Frédéric Grosshans et al. “Quantum key distribution using gaussian-modulated coherent
states.” In: Nature 421.6920 (Jan. 2003). Number: 6920 Publisher: Nature Publishing Group,
pp. 238–241. issn: 1476-4687. doi: 10.1038/nature01289.

[66] Frédéric Grosshans et al. “Quantum key distribution using gaussian-modulated coherent
states.” In: Nature 421.6920 (Jan. 2003). Number: 6920 Publisher: Nature Publishing Group,
pp. 238–241. issn: 1476-4687. doi: 10.1038/nature01289.

[67] H. A. Haus and F. X. Kärtner. “Quantization of the nonlinear Schr\"odinger equation.” In:
Physical Review A 46.3 (Aug. 1, 1992). Publisher: American Physical Society, R1175–R1176.
doi: 10.1103/PhysRevA.46.R1175.

[68] H. A. Haus and J. A. Mullen. “Quantum Noise in Linear Amplifiers.” In: Physical Review
128.5 (Dec. 1, 1962). Publisher: American Physical Society, pp. 2407–2413. doi: 10.1103/
PhysRev.128.2407.

[69] H.A. Haus. “The noise figure of optical amplifiers.” In: IEEE Photonics Technology Letters
10.11 (Nov. 1998). Conference Name: IEEE Photonics Technology Letters, pp. 1602–1604.
issn: 1941-0174. doi: 10.1109/68.726763.

[70] Hermann A Haus. Electromagnetic noise and quantum optical measurements. Springer Science
& Business Media, 2000.

[71] Hermann A Haus. “From classical to quantum noise.” In: JOSA B 12.11 (1995). Publisher:
Optical Society of America, pp. 2019–2036.

https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1109/JLT.2016.2578983
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1038/25059
https://doi.org/10.1364/OE.19.012781
https://doi.org/10.1103/PhysRevLett.88.057902
https://doi.org/10.1103/PhysRevA.64.010301
https://doi.org/10.1038/nature01289
https://doi.org/10.1038/nature01289
https://doi.org/10.1103/PhysRevA.46.R1175
https://doi.org/10.1103/PhysRev.128.2407
https://doi.org/10.1103/PhysRev.128.2407
https://doi.org/10.1109/68.726763


bibliography 116

[72] Bing He, Qing Lin, and Christoph Simon. “Cross-Kerr nonlinearity between continuous-
mode coherent states and single photons.” In: Physical Review A 83.5 (May 18, 2011).
Publisher: American Physical Society, p. 053826. doi: 10.1103/PhysRevA.83.053826.

[73] J.J. Healy, Alper Kutay, and Haldun Ozaktas. Linear Canonical Transforms. Springer, 2016.

[74] R. W. Hellwarth. “Theory of Stimulated Raman Scattering.” In: Physical Review 130.5
(June 1, 1963). Publisher: American Physical Society, pp. 1850–1852. doi: 10.1103/PhysRev.
130.1850.

[75] C.W. Helstrom, J.W.S. Liu, and J.P. Gordon. “Quantum-mechanical communication the-
ory.” In: Proceedings of the IEEE 58.10 (Oct. 1970). Conference Name: Proceedings of the
IEEE, pp. 1578–1598. issn: 1558-2256. doi: 10.1109/PROC.1970.7983.

[76] Carl W. Helstrom. “Quantum detection and estimation theory.” In: Journal of Statistical
Physics 1.2 (June 1, 1969), pp. 231–252. issn: 1572-9613. doi: 10.1007/BF01007479.

[77] Mark Hillery and Leonard D. Mlodinow. “Quantization of electrodynamics in nonlinear
dielectric media.” In: Physical Review A 30.4 (Oct. 1, 1984). Publisher: American Physical
Society, pp. 1860–1865. doi: 10.1103/PhysRevA.30.1860.

[78] J. J. Hopfield. “Theory of the Contribution of Excitons to the Complex Dielectric Constant
of Crystals.” In: Physical Review 112.5 (Dec. 1, 1958). Publisher: American Physical Society,
pp. 1555–1567. doi: 10.1103/PhysRev.112.1555.

[79] Kerson Huang. Statistical mechanics. John Wiley & Sons, 2008.

[80] Kyo Inoue. “Quantum noise of Raman amplification in a fiber transmission line.” In: JOSA
B 35.7 (July 1, 2018). Publisher: Optica Publishing Group, pp. 1698–1707. issn: 1520-8540.
doi: 10.1364/JOSAB.35.001698.

[81] ITU-T. Recommendation database - G.694.1. ITU. url: https://www.itu.int/itu- t/
recommendations/rec.aspx?rec=11482 (visited on 08/29/2022).

[82] ITU-T. Recommendation database - G.694.2. ITU. url: https://www.itu.int/ITU- T/
recommendations/rec.aspx?rec=7057 (visited on 08/29/2022).

[83] Pontus Johannisson and Magnus Karlsson. “Perturbation analysis of nonlinear propa-
gation in a strongly dispersive optical communication system.” In: Journal of Lightwave
Technology 31.8 (2013). Publisher: IEEE, pp. 1273–1282.

[84] Fotini Karinou et al. “Experimental evaluation of the impairments on a QKD system in
a 20-channel WDM co-existence scheme.” In: 2017 IEEE Photonics Society Summer Topical
Meeting Series (SUM). 2017, pp. 145–146. doi: 10.1109/PHOSST.2017.8012692.

[85] F. X. Kärtner and H. A. Haus. “Quantum-nondemolition measurements and the “collapse
of the wave function”.” In: Physical Review A 47.6 (June 1, 1993). Publisher: American
Physical Society, pp. 4585–4592. doi: 10.1103/PhysRevA.47.4585.

[86] D. J. Kaup and B. A. Malomed. “Soliton trapping and daughter waves in the Manakov
model.” In: Physical Review A 48.1 (July 1, 1993). Publisher: American Physical Society,
pp. 599–604. doi: 10.1103/PhysRevA.48.599.

[87] R.S. Kennedy. “A near-optimum receiver for the binary coherent state quantum channel.”
In: Quarterly Progress Report 108 (1973). Publisher: Research Laboratory of Electronics,
M.I.T, pp. 219–225.

https://doi.org/10.1103/PhysRevA.83.053826
https://doi.org/10.1103/PhysRev.130.1850
https://doi.org/10.1103/PhysRev.130.1850
https://doi.org/10.1109/PROC.1970.7983
https://doi.org/10.1007/BF01007479
https://doi.org/10.1103/PhysRevA.30.1860
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1364/JOSAB.35.001698
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=11482
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=11482
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=7057
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=7057
https://doi.org/10.1109/PHOSST.2017.8012692
https://doi.org/10.1103/PhysRevA.47.4585
https://doi.org/10.1103/PhysRevA.48.599


bibliography 117

[88] T. A. B. Kennedy. “Quantum theory of cross-phase-modulational instability: Twin-beam
correlations in a X3 process.” In: Physical Review A 44.3 (Aug. 1, 1991). Publisher: American
Physical Society, pp. 2113–2123. doi: 10.1103/PhysRevA.44.2113.

[89] T. A. B. Kennedy and P. D. Drummond. “Quantum-field superpositions via self-phase
modulation of coherent wave packets.” In: Physical Review A 38.3 (Aug. 1, 1988). Publisher:
American Physical Society, pp. 1319–1326. doi: 10.1103/PhysRevA.38.1319.

[90] Kazuro Kikuchi. “Coherent Optical Communications: Historical Perspectives and Future
Directions.” In: High Spectral Density Optical Communication Technologies. Ed. by Masataka
Nakazawa, Kazuro Kikuchi, and Tetsuya Miyazaki. Optical and Fiber Communications
Reports. Berlin, Heidelberg: Springer, 2010, pp. 11–49. isbn: 978-3-642-10419-0. doi: 10.
1007/978-3-642-10419-0_2.

[91] Kazuro Kikuchi. “Digital coherent optical communication systems: fundamentals and
future prospects.” In: IEICE Electronics Express 8.20 (2011), pp. 1642–1662. doi: 10.1587/
elex.8.1642.

[92] Kazuro Kikuchi. “Fundamentals of Coherent Optical Fiber Communications.” In: Journal of
Lightwave Technology 34.1 (Jan. 2016). Conference Name: Journal of Lightwave Technology,
pp. 157–179. issn: 1558-2213. doi: 10.1109/JLT.2015.2463719.

[93] Pius Kirrmann, Guido Schneider, and Alexander Mielke. “The validity of modulation equa-
tions for extended systems with cubic nonlinearities.” In: Proceedings of the Royal Society of
Edinburgh Section A: Mathematics 122.1 (1992). Publisher: Royal Society of Edinburgh Scot-
land Foundation, pp. 85–91. issn: 1473-7124, 0308-2105. doi: 10.1017/S0308210500020989.

[94] A. V. Kozlovskiı̆. “Decoherence of the field in quantum nondemolition photon number
measurement using the Kerr nonlinearity.” In: Optics and Spectroscopy 97.5 (Nov. 1, 2004),
pp. 755–763. issn: 1562-6911. doi: 10.1134/1.1828626.

[95] Anton Kozubov, Andrei Gaidash, and George Miroshnichenko. “Quantum model of
decoherence in the polarization domain for the fiber channel.” In: Physical Review A 99.5
(May 28, 2019). Publisher: American Physical Society, p. 053842. doi: 10.1103/PhysRevA.
99.053842.

[96] Dimitar Ivanov Kroushkov et al. “Simple Estimation of the XPM-Induced Phase Error
Variance in Hybrid OOK-PSK Systems.” In: IEEE Photonics Technology Letters 24.9 (May
2012). Conference Name: IEEE Photonics Technology Letters, pp. 733–735. issn: 1941-0174.
doi: 10.1109/LPT.2012.2187332.

[97] Rupesh Kumar, Hao Qin, and Romain Alléaume. “Coexistence of continuous variable
QKD with intense DWDM classical channels.” In: New Journal of Physics 17.4 (Apr. 2015).
Publisher: IOP Publishing, p. 043027. issn: 1367-2630. doi: 10.1088/1367-2630/17/4/
043027.

[98] Shiva Kumar and M. Jamal Deen. Fiber Optic Communications: Fundamentals and Applications.
John Wiley & Sons, May 12, 2014. 573 pp. isbn: 978-0-470-51867-0.

[99] Y. Lai and H. A. Haus. “Quantum theory of solitons in optical fibers. I. Time-dependent
Hartree approximation.” In: Physical Review A 40.2 (July 1, 1989). Publisher: American
Physical Society, pp. 844–853. doi: 10.1103/PhysRevA.40.844.

[100] Y. Lai and H. A. Haus. “Quantum theory of solitons in optical fibers. II. Exact solution.”
In: Physical Review A 40.2 (July 1, 1989). Publisher: American Physical Society, pp. 854–866.
doi: 10.1103/PhysRevA.40.854.

https://doi.org/10.1103/PhysRevA.44.2113
https://doi.org/10.1103/PhysRevA.38.1319
https://doi.org/10.1007/978-3-642-10419-0_2
https://doi.org/10.1007/978-3-642-10419-0_2
https://doi.org/10.1587/elex.8.1642
https://doi.org/10.1587/elex.8.1642
https://doi.org/10.1109/JLT.2015.2463719
https://doi.org/10.1017/S0308210500020989
https://doi.org/10.1134/1.1828626
https://doi.org/10.1103/PhysRevA.99.053842
https://doi.org/10.1103/PhysRevA.99.053842
https://doi.org/10.1109/LPT.2012.2187332
https://doi.org/10.1088/1367-2630/17/4/043027
https://doi.org/10.1088/1367-2630/17/4/043027
https://doi.org/10.1103/PhysRevA.40.844
https://doi.org/10.1103/PhysRevA.40.854


bibliography 118

[101] Chi-Wung Lau et al. “Binary quantum receiver concept demonstration.” In: Free-Space
Laser Communication Technologies XVIII. Free-Space Laser Communication Technologies
XVIII. Vol. 6105. SPIE, Mar. 1, 2006, pp. 144–150. doi: 10.1117/12.660268.

[102] Xiang Liu et al. “Phase-conjugated twin waves for communication beyond the Kerr
nonlinearity limit.” In: Nature Photonics 7.7 (2013). Publisher: Nature Publishing Group,
pp. 560–568.

[103] Xue Liu, Joseph W. Haus, and S. M. Shahriar. “Modulation instability for a relaxational
Kerr medium.” In: Optics Communications 281.10 (May 15, 2008), pp. 2907–2912. issn:
0030-4018. doi: 10.1016/j.optcom.2008.01.026.

[104] Antonín Luks and Vlasta Perinová. Quantum Aspects of Light Propagation. Boston, MA:
Springer US, 2009. isbn: 978-0-387-85589-9 978-0-387-85590-5. doi: 10.1007/b101766.

[105] Norbert Lütkenhaus. “Security against individual attacks for realistic quantum key distri-
bution.” In: Physical Review A 61.5 (Apr. 6, 2000). Publisher: American Physical Society,
p. 052304. doi: 10.1103/PhysRevA.61.052304.

[106] Hisham A. Mahmoud and Huseyin Arslan. “Error vector magnitude to SNR conversion
for nondata-aided receivers.” In: IEEE Transactions on Wireless Communications 8.5 (May
2009). Conference Name: IEEE Transactions on Wireless Communications, pp. 2694–2704.
issn: 1558-2248. doi: 10.1109/TWC.2009.080862.

[107] Leonard Mandel and Emil Wolf. Optical Coherence and Quantum Optics. Cambridge Univer-
sity Press, Sept. 29, 1995. 1200 pp. isbn: 978-0-521-41711-2.

[108] Franz Mandl and Graham Shaw. Quantum Field Theory. John Wiley & Sons, May 17, 2010.
497 pp. isbn: 978-0-471-49683-0.

[109] Daniel Manzano. “A short introduction to the Lindblad Master Equation.” In: AIP Advances
10.2 (Feb. 1, 2020), p. 025106. issn: 2158-3226. doi: 10.1063/1.5115323.

[110] Gianluca Marcon and Francesco Lorenzi. PyNLIN: a Python package and scripts for the evalua-
tion of nonlinear interference noise in single mode fiber transmissions. https://github.com/geeanlooca/PyNLIN.

[111] Gianluca Marcon et al. “Model-Aware Deep Learning Method for Raman Amplification in
Few-Mode Fibers.” In: Journal of Lightwave Technology 39.5 (Mar. 2021). Publisher: Institute
of Electrical and Electronics Engineers (IEEE), pp. 1371–1380. doi: 10.1109/jlt.2020.
3034692.

[112] D. Marcuse. “Derivation of analytical expressions for the bit-error probability in lightwave
systems with optical amplifiers.” In: Journal of Lightwave Technology 8.12 (Dec. 1990).
Conference Name: Journal of Lightwave Technology, pp. 1816–1823. issn: 1558-2213. doi:
10.1109/50.62876.

[113] M. Margalit et al. “Cross phase modulation squeezing in optical fibers.” In: Optics Express
2.3 (Feb. 2, 1998). Publisher: Optica Publishing Group, pp. 72–76. issn: 1094-4087. doi:
10.1364/OE.2.000072.

[114] C. J. McKinstrie et al. “Translation of quantum states by four-wave mixing in fibers.” In:
Optics Express 13.22 (Oct. 31, 2005). Publisher: Optica Publishing Group, pp. 9131–9142.
issn: 1094-4087. doi: 10.1364/OPEX.13.009131.

https://doi.org/10.1117/12.660268
https://doi.org/10.1016/j.optcom.2008.01.026
https://doi.org/10.1007/b101766
https://doi.org/10.1103/PhysRevA.61.052304
https://doi.org/10.1109/TWC.2009.080862
https://doi.org/10.1063/1.5115323
https://doi.org/10.1109/jlt.2020.3034692
https://doi.org/10.1109/jlt.2020.3034692
https://doi.org/10.1109/50.62876
https://doi.org/10.1364/OE.2.000072
https://doi.org/10.1364/OPEX.13.009131


bibliography 119

[115] Antonio Mecozzi and René-Jean Essiambre. “Nonlinear Shannon Limit in Pseudolinear
Coherent Systems.” In: Journal of Lightwave Technology 30.12 (June 2012). Publisher: Institute
of Electrical and Electronics Engineers (IEEE), pp. 2011–2024. doi: 10.1109/jlt.2012.
2190582.

[116] Pierre Meystre and Murray Sargent. Elements of Quantum Optics. Springer Science &
Business Media, Sept. 4, 2007. 507 pp. isbn: 978-3-540-74211-1.

[117] R Momose et al. “On a Relation Between Quantum Interference and Standard Quantum
Limit.” In: NASA conference publication. 3322 (1996). Place: Washington Publisher: National
Aeronautics and Space Administration, Scientific and Technical Information Office : [for
sale by the National Technical Information Service OCLC: 106687250, p. 307. issn: 0191-
7811.

[118] R. Momose, M. Sasaki, and O. Hirota. “Physical Interpretation of Optimum Quantum
Detection Operators.” In: Quantum Communication, Computing, and Measurement. Ed. by
O. Hirota, A. S. Holevo, and C. M. Caves. Boston, MA: Springer US, 1997, pp. 289–297.
isbn: 978-1-4615-5923-8. doi: 10.1007/978-1-4615-5923-8_31.

[119] Christopher Monroe. “Demolishing quantum nondemolition.” In: Physics Today 64.1 (2011),
p. 8. issn: 00319228. doi: 10.1063/1.3541926.

[120] John W. Negele and Henri Orland. Quantum Many-Particle Systems. Boca Raton: CRC Press,
May 23, 2019. 476 pp. isbn: 978-0-429-49792-6. doi: 10.1201/9780429497926.

[121] Geoffrey New. Introduction to Nonlinear Optics. Cambridge University Press, Apr. 7, 2011.
275 pp. isbn: 978-1-139-50076-0.

[122] Michele N. Notarnicola, Matteo G. A. Paris, and Stefano Olivares. Hybrid near-optimum
binary receiver with realistic photon-number-resolving detectors. Number: arXiv:2207.07518.
July 15, 2022. doi: 10.48550/arXiv.2207.07518.

[123] Samuel L. I. Olsson, Magnus Karlsson, and Peter A. Andrekson. “Nonlinear phase noise
mitigation in phase-sensitive amplified transmission systems.” In: Optics Express 23.9
(May 4, 2015), pp. 11724–11740. issn: 1094-4087. doi: 10.1364/OE.23.011724.

[124] Athanasios Papoulis. “Pulse compression, fiber communications, and diffraction: a unified
approach.” In: Journal of the Optical Society of America A 11.1 (Jan. 1994). Publisher: The
Optical Society, p. 3. doi: 10.1364/josaa.11.000003.

[125] Matteo Paris and Jaroslav Rehacek. Quantum State Estimation. Springer Science & Business
Media, Aug. 11, 2004. 548 pp. isbn: 978-3-540-22329-0.

[126] K. A. Patel et al. “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on
Optical Fiber.” In: Physical Review X 2.4 (Nov. 20, 2012). Publisher: American Physical
Society, p. 041010. doi: 10.1103/PhysRevX.2.041010.

[127] Philip Pearle. “Simple derivation of the Lindblad equation.” In: European Journal of Physics
33.4 (Apr. 2012). Publisher: IOP Publishing, pp. 805–822. issn: 0143-0807. doi: 10.1088/
0143-0807/33/4/805.

[128] Victor E. Perlin and Herbert G. Winful. “On trade-off between noise and nonlinearity in
WDM systems with distributed Raman amplification.” In: Optical Fiber Communications
Conference (2002), paper WB1. Optical Fiber Communication Conference. Optica Publishing
Group, Mar. 17, 2002, WB1.

https://doi.org/10.1109/jlt.2012.2190582
https://doi.org/10.1109/jlt.2012.2190582
https://doi.org/10.1007/978-1-4615-5923-8_31
https://doi.org/10.1063/1.3541926
https://doi.org/10.1201/9780429497926
https://doi.org/10.48550/arXiv.2207.07518
https://doi.org/10.1364/OE.23.011724
https://doi.org/10.1364/josaa.11.000003
https://doi.org/10.1103/PhysRevX.2.041010
https://doi.org/10.1088/0143-0807/33/4/805
https://doi.org/10.1088/0143-0807/33/4/805


bibliography 120

[129] P. Poggiolini et al. “The GN-Model of Fiber Non-Linear Propagation and its Applications.”
In: Journal of Lightwave Technology 32.4 (Feb. 2014). Conference Name: Journal of Lightwave
Technology, pp. 694–721. issn: 1558-2213. doi: 10.1109/JLT.2013.2295208.

[130] Pierluigi Poggiolini et al. “Analytical modeling of nonlinear propagation in uncompen-
sated optical transmission links.” In: IEEE Photonics technology letters 23.11 (2011). Publisher:
IEEE, pp. 742–744.

[131] David M. Pozar. Microwave Engineering. John Wiley & Sons, Nov. 22, 2011. 752 pp. isbn:
978-0-470-63155-3.

[132] Gabriele Riccardi et al. “Reproducing the most general quantum channel in the lab: is it
possible?” In: 2020 IEEE Photonics Conference (IPC). 2020 IEEE Photonics Conference (IPC).
ISSN: 2575-274X. Sept. 2020, pp. 1–2. doi: 10.1109/IPC47351.2020.9252533.

[133] Hannes Risken. “Fokker-Planck Equation.” In: The Fokker-Planck Equation: Methods of
Solution and Applications. Ed. by Hannes Risken. Springer Series in Synergetics. Berlin,
Heidelberg: Springer, 1996, pp. 63–95. isbn: 978-3-642-61544-3. doi: 10.1007/978-3-642-
61544-3_4.

[134] J. J. Sakurai and Eugene D. Commins. “Modern Quantum Mechanics, Revised Edition.”
In: American Journal of Physics 63.1 (Jan. 1995). Publisher: American Association of Physics
Teachers, pp. 93–95. issn: 0002-9505. doi: 10.1119/1.17781.

[135] Eduard Schmidt et al. “Quantum theory of light in nonlinear media with dispersion and
absorption.” In: Journal of Modern Optics 45.2 (Feb. 1, 1998). Publisher: Taylor & Francis
_eprint: https://doi.org/10.1080/09500349808231696, pp. 377–401. issn: 0950-0340. doi:
10.1080/09500349808231696.

[136] Rene Schmogrow et al. “Error Vector Magnitude as a Performance Measure for Advanced
Modulation Formats.” In: IEEE Photonics Technology Letters 24.1 (Jan. 2012). Conference
Name: IEEE Photonics Technology Letters, pp. 61–63. issn: 1941-0174. doi: 10.1109/LPT.
2011.2172405.

[137] W. Schottky. “Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern.”
In: Annalen der Physik 362.23 (1918), pp. 541–567. issn: 00033804, 15213889. doi: 10.1002/
andp.19183622304.

[138] Rishad Ahmed Shafik, Md. Shahriar Rahman, and AHM Razibul Islam. “On the Extended
Relationships Among EVM, BER and SNR as Performance Metrics.” In: 2006 International
Conference on Electrical and Computer Engineering. 2006 International Conference on Electri-
cal and Computer Engineering. Dec. 2006, pp. 408–411. doi: 10.1109/ICECE.2006.355657.

[139] Jiushu Shao, Mo-Lin Ge, and Hu Cheng. “Decoherence of quantum-nondemolition sys-
tems.” In: Physical Review E 53.1 (Jan. 1, 1996). Publisher: American Physical Society,
pp. 1243–1245. doi: 10.1103/PhysRevE.53.1243.

[140] Wies aw Leo ski and Adam Miranowicz. “Kerr nonlinear coupler and entanglement.”
In: Journal of Optics B: Quantum and Semiclassical Optics 6.3 (Mar. 2004). Publisher: IOP
Publishing, S37–S42. issn: 1464-4266. doi: 10.1088/1464-4266/6/3/007.

[141] Carlo G Someda and George I Stegeman. Anisotropic and nonlinear optical waveguides.
Elsevier, 2012.

[142] Carlo Giacomo Someda. Electromagnetic waves. CRC press, 2006.

https://doi.org/10.1109/JLT.2013.2295208
https://doi.org/10.1109/IPC47351.2020.9252533
https://doi.org/10.1007/978-3-642-61544-3_4
https://doi.org/10.1007/978-3-642-61544-3_4
https://doi.org/10.1119/1.17781
https://doi.org/10.1080/09500349808231696
https://doi.org/10.1109/LPT.2011.2172405
https://doi.org/10.1109/LPT.2011.2172405
https://doi.org/10.1002/andp.19183622304
https://doi.org/10.1002/andp.19183622304
https://doi.org/10.1109/ICECE.2006.355657
https://doi.org/10.1103/PhysRevE.53.1243
https://doi.org/10.1088/1464-4266/6/3/007


bibliography 121

[143] A. Serdar Tan et al. “An ML-Based Detector for Optical Communication in the Presence
of Nonlinear Phase Noise.” In: 2011 IEEE International Conference on Communications (ICC).
2011 IEEE International Conference on Communications (ICC). ISSN: 1938-1883. June
2011, pp. 1–5. doi: 10.1109/icc.2011.5962741.

[144] Luc Thevenaz. Advanced fiber optics: concepts and technology. EPFL press, 2011.

[145] Satoshi Tsukamoto et al. “Coherent Demodulation of 40-Gbit/s Polarization-Multiplexed
QPSK Signals with 16-GHz Spacing after 200-km Transmission.” In: Optical Fiber Commu-
nication Conference and Exposition and The National Fiber Optic Engineers Conference (2005),
paper PDP29. Optical Fiber Communication Conference. Optica Publishing Group, Mar. 6,
2005, PDP29.

[146] Jin Wang and J.M. Kahn. “Accurate bit-error-ratio computation in nonlinear CRZ-OOK
and CRZ-DPSK systems.” In: IEEE Photonics Technology Letters 16.9 (Sept. 2004). Conference
Name: IEEE Photonics Technology Letters, pp. 2165–2167. issn: 1941-0174. doi: 10.1109/
LPT.2004.833033.

[147] Liu-Jun Wang et al. “Long-distance copropagation of quantum key distribution and
terabit classical optical data channels.” In: Physical Review A 95.1 (Jan. 3, 2017). Publisher:
American Physical Society, p. 012301. doi: 10.1103/PhysRevA.95.012301.

[148] Wei Wang et al. “Amplified Spontaneous Emission and Rayleigh Scattering in Few-
Mode Fiber Raman Amplifiers.” In: IEEE Photonics Technology Letters 29.14 (July 2017).
Conference Name: IEEE Photonics Technology Letters, pp. 1159–1162. issn: 1941-0174.
doi: 10.1109/LPT.2017.2707062.

[149] Norbert Wiener. “The operational calculus.” In: Mathematische Annalen 95.1 (Dec. 1, 1926),
pp. 557–584. issn: 1432-1807. doi: 10.1007/BF01206627.

[150] Ewan M. Wright. “Quantum theory of soliton propagation in an optical fiber using the
Hartree approximation.” In: Physical Review A 43.7 (Apr. 1, 1991). Publisher: American
Physical Society, pp. 3836–3844. doi: 10.1103/PhysRevA.43.3836.

[151] Lian-Ao Wu and Daniel A. Lidar. “Overcoming quantum noise in optical fibers.” In:
Physical Review A 70.6 (Dec. 10, 2004). Publisher: American Physical Society, p. 062310.
doi: 10.1103/PhysRevA.70.062310.

[152] Tiejun J Xia et al. “In-band quantum key distribution (QKD) on fiber populated by high-
speed classical data channels.” In: Optical Fiber Communication Conference. Optical Society
of America, 2006, OTuJ7.

[153] Xin Lu Ye and Qing Lin. “Efficient and flexible generation of entangled qudits with
cross-phase modulation.” In: JOSA B 29.7 (July 1, 2012). Publisher: Optica Publishing
Group, pp. 1810–1814. issn: 1520-8540. doi: 10.1364/JOSAB.29.001810.

[154] Esra Unal Yilmaz et al. “Manakov model of coupled NLS equation and its optical soliton
solutions.” In: Journal of Ocean Engineering and Science (Mar. 17, 2022). issn: 2468-0133. doi:
10.1016/j.joes.2022.03.005.

[155] B. Yoon and J. W. Negele. “Time-dependent Hartree approximation for a one-dimensional
system of bosons with attractive delta-function interactions.” In: Physical Review A 16.4
(Oct. 1, 1977). Publisher: American Physical Society, pp. 1451–1457. doi: 10.1103/PhysRevA.
16.1451.

https://doi.org/10.1109/icc.2011.5962741
https://doi.org/10.1109/LPT.2004.833033
https://doi.org/10.1109/LPT.2004.833033
https://doi.org/10.1103/PhysRevA.95.012301
https://doi.org/10.1109/LPT.2017.2707062
https://doi.org/10.1007/BF01206627
https://doi.org/10.1103/PhysRevA.43.3836
https://doi.org/10.1103/PhysRevA.70.062310
https://doi.org/10.1364/JOSAB.29.001810
https://doi.org/10.1016/j.joes.2022.03.005
https://doi.org/10.1103/PhysRevA.16.1451
https://doi.org/10.1103/PhysRevA.16.1451


bibliography 122

[156] Dimitris Zavitsanos et al. “Coexistence of Discrete-Variable QKD with WDM classical
signals in the C-band for fiber access environments.” In: 2019 21st International Conference
on Transparent Optical Networks (ICTON). IEEE, 2019, pp. 1–5.

[157] Wolfgang Zeiler et al. “Modeling of four-wave mixing and gain peaking in amplified
WDM optical communication systems and networks.” In: Journal of Lightwave Technology
14.9 (1996). Publisher: IEEE, pp. 1933–1942.

[158] Wojciech Hubert Zurek. “Decoherence and the Transition from Quantum to Classical —
Revisited.” In: Quantum Decoherence: Poincaré Seminar 2005. Ed. by Bertrand Duplantier,
Jean-Michel Raimond, and Vincent Rivasseau. Progress in Mathematical Physics. Basel:
Birkhäuser, 2007, pp. 1–31. isbn: 978-3-7643-7808-0. doi: 10.1007/978-3-7643-7808-0_1.

[159] Wojciech Hubert Zurek. “Decoherence, einselection, and the quantum origins of the
classical.” In: Reviews of Modern Physics 75.3 (May 22, 2003). Publisher: American Physical
Society, pp. 715–775. doi: 10.1103/RevModPhys.75.715.

https://doi.org/10.1007/978-3-7643-7808-0_1
https://doi.org/10.1103/RevModPhys.75.715




colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosić. The style was inspired by Robert
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