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Abstract

Autonomous identification and evaluation of safe landing zones are of paramount importance
for ensuring the safety and effectiveness of aerial robots in the event of system failures, low bat-
tery, or the successful completion of specific tasks. In this thesis it is presented a novel approach,
for detecting and assess potential landing sites for safe quadrotor landing. The proposed so-
lution efficiently integrates both 2D and 3D environmental information and eliminates the
need for external aids such as GPS and computationally intensive elevation maps. Semantic
data derived from a Neural Network (NN), is combined with geometric data obtained from a
disparity map, to extract environmental features and critical geometric attributes such as slope,
flatness, and roughness. In particular, this method efficiently combines both metric and se-
mantic information, making it also more robust, compared to other solutions that solely relies
on one type of information only. Based on those attributes, several cost metrics are defined to
evaluate safety, stability, and suitability of regions in the environments and identify the most
suitable landing area. In this waywe have a comprehensive evaluation of all the relevant aspects
related to the safe site detection. This approach runs in real-time on quadrotors equippedwith
limited computational capabilities. Experimental results conducted in diverse environments
demonstrate that the proposed method can effectively assess and identify suitable landing ar-
eas, enabling the safe and autonomous landing of a quadrotor in unknown environments.
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1
Introduction

Unmanned Aerial Vehicles (UAVs) have become increasingly popular platforms to assist hu-

mans in several complex and dangerous applications such as surveillance, law enforcement,

mapping, search and rescue, delivery services andprecision agriculture [1, 2]. Thedevelopment

of novel autonomous algorithms coupled with the drop in price/performance ratio of proces-

sors and sensors supported also the execution of complex tasks such as collaborative transporta-

tion [3], autonomous flight [4], collision avoidance [5], exploration [6] as well as shipping and

delivery [7] or industrial inspection [8].

One of the most important aspect, that must be considered for autonomous aerial vehicles, is

related to the hazards that theymight pose to people and structures, in case of system failure or

other dangerous situations. In order to ensure safety and overall mission success in the afore-

mentioned applications, it is commonplace to equip aerial robots with intelligent landing capa-

bilities [9, 10, 11]. These mitigate the risks posed by mechanical and sensory failures, ensuring

secure operations in challenging scenarios. This not only minimizes potential threats posed to

individuals and structures, but also enables the successful execution of tasks that require such

capabilities.
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Figure 1.1: AI‐generated pictures of drone applications such as package delivery, industrial inspection, environment
mapping and collaborative transportation.

For example, in the case of a drone delivery system that operates in urban environments,

the ability to accurately identify suitable landing zones becomes crucial for the successful deliv-

ery of packages. In agriculture, drones play a pivotal role in monitoring crops, assessing plant

health, and optimizing agricultural practices. Upon completing these tasks, the drone requires

a reliable and safe landing procedure. In a low battery scenario, the ability to accurately iden-

tify suitable landing zones becomes crucial to avoid catastrophic outcomes. The drone must

quickly assess the available options for landing, taking into account terrain factors such as slope,

obstacles, roughness and safety for both the drone and the people on the ground. Once a suit-

able landing zone is identified, the drone can execute an emergency landing, avoiding any po-

tential threat. In these situations, the drone’s ability to autonomously identify safe landing

sites can mean the difference between a successful mission completion, or not.

However, current state-of-the-art solutions tend to be fragile and computationally intensive,

often require preliminary environment knowledge and still offer limited autonomy. Similarly,

themajority of commercially available landing solutions often relies onmanually designed, pre-

defined navigation policies to aid humans in guiding the robots to land near the intended or

required location, therefore offering minimal or no autonomy also for the landing process.
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To address those limitations, this thesis presents several significant contributions. First, it is

used a novel visual environment detection and assessment approach for the safe autonomous

landing of aerial robots. Compared to the state-of-the-art solutions, this method efficiently

combines metric and semantic information, leveraging both RGB images and disparity maps

extracted from the environment, to assess the suitability of a possible landing zone. Specifi-

cally, the 3D points of the environment, generated from the disparity map, are projected onto

the segmented RGB image to efficiently process only the ones associated with safe regions, ob-

taining an effective and efficient solution. Second, several cost metrics are defined, based on

critical geometric attributes such as slope, flatness, and roughness, extracted from the visual

information. The points are processed to verify if they respect those attributes, making us able

to classify them as hazardous or safe for landing. Furthermore, this method does not need to

build and store expensive elevationmaps. Instead, it directly generates and updates a 2Dbinary

map of safe and unsafe landing zones, without sacrificing any relevant information compared

to other existing approaches. From the mapped environment it is finally retrieved the most

suitable landing zone, by minimizing a cost function that takes into account the drone’s dis-

tance and the obstacle’s distance from a possible landing area. Finally, this pipeline operates

on-board, without relying on any off-board streaming of data, GPS or pre-obtained informa-

tion.

Through several tests, in different and challenging indoor environments, this thesis demon-

strates that the proposed framework successfully enables safe quadrotor landings.

1.1 Agile Robotics and Perception Lab

This thesis’s project was developed at the Agile Robotics and Perception Lab (ARPL), within

the New York University (NYU). The ARPL [12] is dedicated to conducting both fundamen-

tal and applied research in the field of robotics autonomy. The lab’s primary objective is the de-

velopment of agile autonomous machines capable of independent navigation in unstructured,

dynamically changing environments, relying solely on onboard sensors, and without the need

for external infrastructure like GPS or motion capture systems. These machines are designed
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to operate proactively, fostering collaboration with humans and among themselves, while ef-

fectively exploring and extracting valuable insights from unknown environments.

1.2 Thesis structure

Beginning with Ch. 2, the state-of-the art (SOTA) solutions are presented and discussed, in

order to compare the works that have been done in the safe site detection and autonomous

landing field. Following, a brief introduction on the proposed system, where the main steps to

derive a safe landing zone are introduced, together with an overview of the quadrotor dynam-

ics, the Robot Operating System (ROS) and the camera calibration procedure. In Ch. 4 and

Ch. 5 are discussed in details the data processing,map creation and autonomous landing proce-

dures. Here we can find all the steps that are implemented, in order to map the safe and unsafe

landing zones of the environment, in order to lead the drone to land in the most suitable land-

ing area. Finally, in Ch. 6 are given some results of our framework. In particular, the system

setup, the Neural Network training and evaluation and the environmental assessment results

are discussed. Following, in Ch. 7 the thesis is concluded by introducing some discussion and

future works, useful for improving the proposed framework.
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2
RelatedWork

Several works address the problem of identifying a safe landing zone and implementing au-

tonomous landing procedures. The vast majority of the existing approaches are vision-based,

given the Size, Weight, and Power (SWaP) constraints of small-size aerial robots.

For example in [13] the authors compute the local slope and roughness of a Digital Elevation

Model (DEM) to detect and avoid hazards such as steep slopes, rocks, cliffs, and gullies. The

DEM is generated employing a Structure fromMotion (SfM) algorithm, since a single monoc-

ular camera is used. SfM is used to track the features’ motion between consecutive images and

derive the environment depth of the selected features. First, theDEM is partitioned into square

regions the size of the lander footprint. In each region both the slope and roughness thresholds

are evaluated, creating an associated map of safe and unsafe landing locations. The lander will

have constraints on the maximum slope and maximum roughness that can be handled by the

mechanical landing system. These thresholds are set by the user. Selection of the safe site will

occur by generating binary images from the slope and roughness maps; parts of the maps that

are above the threshold are hazardous while parts that are below are not a hazard.

Another approach, as described in [14], defines a cost function that evaluates the physical prop-
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erties of the local neighborhood within an elevation map region to identify safe landing areas.

Also in this case, a single monocular camera is used to estimate the depth of the environment.

REMODE [15], a probabilistic approach to monocular dense reconstruction, is used to com-

pute the depth maps. This method combines Bayesian estimation and convex optimization

for image processing, to produce a compact and efficient representation of a depth map. A

robot-centric, fixed size map is used to store the mapped environment. Even if this solution

could be less subject to drift, however, it confines the environmental knowledge exclusively to

the region beneath the drone.

The solution proposed in [10] instead infers a safe landing zone by evaluating slope and rough-

ness from the DEM of the environment, obtained using a SfM algorithm. Here, a robot-

centric,multi-elevationfixed sizemap is used. Therefore, also in this case environmental knowl-

edge is confined to only the region beneath the drone. To analyze the safeness of a possible land-

ing area, the detector first evaluates the coarsest layer for slope and roughness, and if successful

then performs a hazard analysis in the finer layers. If an area is declared as unsafe in a coarse

layer it is no longer evaluated in subsequent layers, saving computation time. The landing site

detector result is a binarymapwhich annotates if amap cell is a valid landing site or not. Finally,

by applying a distance transform, locations with a maximum distance to any obstacles can be

selected and collected in a list of landing site candidates.

Conversely, the authors in [9] apply a slope and roughness threshold to the DEM image gradi-

ent, to only retain flat terrains. Since the elevationmaps are pre-determined, aNeuralNetwork

(NN) segments the RGB images of the possible landing area as a final evaluation step. The se-

mantic information is used to asses the validity of the area and to overcome the fact that the

maps could be outdated. However, relying on pre-determined maps constrains the applicabil-

ity of thismethod to regions where suchmaps are available. Additionally, it necessitates the use

of other technologies, such as GPS, to verify the drone’s position relative to the pre-obtained

map, making it less versatile for general-purpose applications.

Other works such as [11] and [16] directly implement semantic segmentation on a DEM. Seg-

mentation is employed to classify hazardous and safe landing locations without resorting to

planefitting techniques or gradient thresholding. However, these approaches rely onpre-collected
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LiDAR data to get the elevation models, which may not be suitable for small-size UAVs and

might not always have access to up-to-date maps.

Yet, it is essential to develop general-purpose solutions that do not rely on GPS [13, 9] or

pre-determined maps [9, 11, 16]. The former would be unsuitable for indoor or GPS-denied

environments, while the latter’s reliance on pre-defined environment poses a challenge in dy-

namic settings, potentially leading to catastrophic outcomes. [14] and [10] further illustrate

this by employing a fixed-sizemap, limiting environmental awareness to the area directly below

the drone, thus disregarding a big portion of the overflown area. In [17], the 3D information

are lacking, consequently failing to comprehensively address crucial factors like slope, flatness,

and roughness.

Compared to the aforementioned existing solutions, we directly construct a variable dimen-

sion 2D binary map to guide the drone toward a safe landing location. In such a way, our

approach does not need to derive any elevation map, resulting in a lighter and more efficient

implementation, while still evaluating all the relevant aspects related to the safe site detection.

In addition, our pipeline stands out by its independence from external aids such as GPS, off-

board or pre-obtained geometric information and autonomously implements inspection and

landing behaviours.
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3
SystemOverview

Figure 3.1 gives an overview of the entire system’s pipeline. The drone leverages a stereo cam-

era pair combined with data coming from an Inertial Measurement Unit (IMU) to compute

Visual-Inertial Odometry (VIO). VIO is an advanced sensor fusion technology used for real-

time localization. Combining the data from a stereo pair and an IMU it estimates the position

and orientation (pose) of a device or vehicle. VIO operates by simultaneously tracking visual

features across stereo images and leveraging the IMU’s measurements of linear accelerations

and angular velocities. Inertial data, integrated over time, assists in compensating for short-

term motion and accelerations, enhancing robustness. VIO algorithms fuse the visual and in-

ertial information to continuously update pose estimates, providing accurate localization even

in GPS-denied environments. The real-time estimation of the drone’s position and orienta-

tion, with respect to the fixed world reference frame (FW), is essential for autonomous flight

capabilities such as exploration and autonomous landing.

The 2D occupancy grid, on the other hand, is generated considering the segmented RGB im-

ages and the disparity maps obtained from a stereo pair. This occupancy grid directly embeds

both semantic and geometric information, representing the safe and unsafe landing regions of

9



Figure 3.1: Overview of the autonomous safe site detection and landing system: it is used the ARPL’s quadrotor with a
NVIDIA Jetson NX for computation and a stereo camera for VIO & mapping the environment. All the algorithms run in

real‐time onboard.

the environment. A two-dimensional representation has been chosen, since it is an efficient

on-board map representation for UAVs with SWaP constraints. At the perception level, one

key distinction between this approach and other methodologies lies in the way the map of safe

and unsafe landing locations is generated. Inmost other approaches, the workflow involves the

initial construction of a DEMor an elevationmap. Subsequently, a binarymap of the environ-

ment is created, and safe landing areas are identified within this map. In contrast, our method

simplifies this process by directly creating a 2D variable-dimension occupancy grid, without

the need for elevation maps. This grid encodes a binary classification, distinguishing safe and

unsafe landing locations, while still retaining all the essential 3D information. Furthermore, it

also employs both metric and semantic information, unlike many other approaches that rely

solely on one type of information, increasing the robustness of the overall solution. The grid

is dynamically updated based solely on the safe point cloud data that meet all the safe site crite-

rion. This representation is essential to understand the distribution of safe and unsafe landing

locations over the environment.

Finally, based on this representation, in the evaluation step it is found the actual landing zone.

From the 2D map and the drone’s position we exploit the best landing zone by minimizing a
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cost function that considers

(a) the drone’s distance from a potential safe area;

(b) the distance of the closest unsafe point to a possible safe area.

This process is iterated across the entire map to find a safe zone, large enough to accommo-

date the drone during landing while also ensuring a safety margin. Once the inspection be-

haviour concludes, or the necessity of landing arises, the safe landing coordinates are retrieved

and the landing behaviour is performed autonomously.

Figure 3.2: Top: the drone navigating and mapping the environment. Bottom: the associated 2D binary map of the safe and
unsafe landing locations (left) and the chosen safe landing spot in the 2D map (right). The black areas are the safe landing

locations, while the gray ones are unsafe.

11



3.1 Robot Operating System

The whole system relies on the Robot Operating System (ROS) middleware [18], a robust

and widely adopted framework that plays a central role in facilitating seamless communication

and integration among the various modules of the proposed architecture. ROS, specifically

designed for robotic applications, offers a comprehensive suite of tools, libraries, and conven-

tions that streamline the development and operation of complex robotic systems.

ROS operates on theUbuntu 20.04 operating system and is installed on theNvidia Jetson plat-

form, enhancing its compatibility and performance in resource-constrained environments.

In the context of our real-time and resource-constrained applications, ROS proves to be an in-

valuable asset. It follows amodular and distributed architecture that allows developers to break

down complex robotic systems into smaller, manageable components called nodes. These

nodes can communicate with each other through a publish-subscribe mechanism, known as

the ROS topic system. This decentralized architecture enhances fault tolerance and scalabil-

ity while promoting code reuse and maintainability, enhancing the good software engineering

principles [19].

Additionally, ROS provides a range of built-in libraries and tools for tasks such as perception,

motion planning, and control. It also offers a thriving ecosystem of open-source packages

and community support, which accelerates development and reduces the time-to-market for

robotic projects.

3.2 Quadrotors Dynamics and Control

Quadrotor control is needed to implement trajectory tracking capabilities, used during the

room inspection andautonomous landing. Abrief introduction and explanationon thequadro-

tor dynamics is here given, to better understand how an attitude and position control can then

be implemented, to track the desired pose given to the drone.
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3.2.1 The standard n-rotor model

The standard n-rotor is made of a rigid body with n propellers spinning about their own axis.

In particular, the number n of propellers and the axes mutual orientations determine if the n-

rotor is an under-actuated or fully-actuated system. To describe the dynamics of the n-rotor,

we introduce the body frameFB, whose originOB coincideswith theCenter ofMass (CoM)of

the platform, and the inertial world frameFW : the position ofOB inFW and the orientation

of FB with respect to FW are respectively denoted by the vector p ∈ R3 and by the rotation

matrix R ∈ SO(3), hence the pair X = (p;R) ∈ R3 × SO(3) describes the full-pose of the

vehicle in FW . The twist of the platform is indicated by the pair (v, ω) where v = ṗ ∈ R3

denotes the linear velocity ofOB inFW , and ω ∈ R3 is the angular velocity ofFB with respect

toFW , expressed inFB. Thus, the kinematics is governed by the relation

ṗ = v

Ṙ = R[ω]x
(3.1)

where for the last expression we recall the expression of the tangent plane to SO(3) at R

(where [ω]x is also represented with the hat map and ω̂ : R3 → so(3)). The motion equations

are derived using the standard Newton-Euler approach for the dynamics and considering the

forces and torques that are generated by each propeller. The i-th propeller, with i = 1 ... n, ro-

tates around its own spinning axis passing through the centerOP⟩ with a controllable spinning

rate ωi ∈ R. There exist two kinds of propellers, spinning clockwise (CW) or counterclock-

wise (CCW) with respect to their axis (ûzi). If the propeller is CW then its angular velocity in

FB is −ωiûzi , otherwise is +ωiûzi . We define ui = ωi‖ω‖ ∈ R as the control input. The

propeller applies atOP⟩

• 1. a thrust force fi ∈ R3 that, expressed inFB, is equal to fi = cfiuiûzi where cfi ∈ R+ is
a constant parameter.

• 2. a dragmoment τdi ∈ R3whose direction is opposite to the angular velocity of the pro-
peller and whose expression inFB is τdi = cτiuiûzi where cτi ∈ R is a constant parameter
(positive if the propeller is CW and negative otherwise).
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Considering now the entire UAV (as shown in Fig. 3.3), τti = pi × fi ∈ R3 represents the

thrust moment associated to the i-th propeller, and the total control force fc ∈ R3 and the

total control moment τc ∈ R3 applied atOB and expressed inFB are

fc =
n∑
i=1

fi =
n∑
i=1

cfi ûziui

τc =
n∑
i=1

(τti + τdi ) =
n∑
i=1

(cfipi × ûzi + cτi ûzi)ui

(3.2)

Figure 3.3: Schematic picture of a quadrotor.

A summary of forces and torques acting on a quadcopter is given as an example in the left

of Fig. 3.3. Introducing the control input vector u =
[
u1 · · · un

]T
∈ Rn, Eq. (3.2) can be

shortened as

fc = Fu; and τc = Mu; (3.3)

where the control force input matrix F ∈ R3×n and the control moment input matrixM ∈
R3×n depend on the geometric and aerodynamic parameters introduced before. In the case of

the standard coplanar quadrotor, the computation above gives:

14



F =


0 0 0 0

0 0 0 0

cf cf cf cf



M =


0 lcf 0 −lcf

−lcf 0 lcf 0

−‖cτ‖ ‖cτ‖ −‖cτ‖ ‖cτ‖


where l is the arm length.

Neglecting the second-order effects (such as the gyroscopic and inertial effects due to the rotors

and the flapping), the dynamics of the n-rotor is described by the following system ofNewton-

Euler equations:

mp̈ = −mge3 +Rfc = −mge3 +RFu; (3.4)

Jω̇ = −ω× Jω+ τc = −ω× Jω+Mu; (3.5)

where g > 0,m > 0, and J ∈ R3×3 are the gravitational acceleration, the total mass of the

platform, and its positive definite inertia matrix, respectively. Here, ei is the i-th canonical basis

vector ofR3 with i = 1, 2, 3.

Finally, it can also be provided a unified overview of the kinematics and dynamics equations,

with respect to an X = (p,R) ∈ R3 × SO(3) representation:

ṗ = v (3.6)

Ṙ = R[ω]x (3.7)

mp̈ = −mge3 +RFu (3.8)
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Jω̇ = −ω× Jω+Mu (3.9)

3.2.2 Platform control

Figure 3.4: Cascade control scheme for a quadrotor platform.

An example of full control scheme is given in Fig. 3.4 where the idea of cascaded control is

shown: the controller is partitioned into two main blocks, one related to position control and

the other related to attitude control. The former takes a position reference pref as the input

together with the feedback position (and velocity) signal; the latter considers the information

related to the body frame orientation (reference rotations, feedback signals). More importantly,

the position controller may produce a desired rotation to reach the position reference, which

has to be alignedwith the orientation reference inside the attitude controller. These two blocks

produce the wrench pair (force andmoment), which is translated through the wrenchmapper

into the actual n-rotor commands (rotational speed of the propellers). A note about an addi-

tional feedback acting on the position controller is due: the vertical force to compensate the

gravity may change according to the platform orientation, as, for example, in the case of the

quadrotor. For this reason, a solution could be to take into account (possibly non-zero) the

roll and pitch angles, in order to get exact vertical compensation.

Considering the system dynamic equations, starting from a diagonal inertia matrix and the
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control inputs given in the body frame, we can now design the control action. In this case, a

non-linear SE(3) controller [20] has been chosen. A brief explanation of the controller is here

given for reference.

Geometric Tracking Control on SE(3)

[20] develops a controller to follow a prescribed trajectory xd(t) of the location of the center of

mass and the direction of the body-fixed axis representing the yawing (or heading) angle of a

quadrotor UAV.This controller is developed directly on the nonlinear configuration Lie group

and thereby avoid any singularities and complexities that arise in local coordinates. As a result,

it is able to achieve almost global exponential attractiveness to the zero equilibrium of tracking

errors.

The overall controller structure is similar to what illustrated in Fig. 3.4.

Tracking Errors: the tracking errors are defined for x, v,R, and ω as

ep = p− pd, (3.10)

ev = v− vd. (3.11)

for the position and the velocity. The attitude and angular velocity tracking error instead are

chosen to be modeled by the error function on SO(3)

Φ(R,Rd) =
1
2
tr[I−RTRd], (3.12)

whereRd is the desired attitude. This is locally positive-definite aboutRTRd = Iwithin the

regionwhere the rotation angle betweenR andRd is less than 180◦. This set can be represented

by the sublevel set of Φ where Φ < 2, namely L2 = {Rd,RR ∈ SO(3)|Φ(R,Rd) < 2},
which almost covers SO(3).

From this representation we can then derive the attitude tracking error, considering the deriva-
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tive of the error function, as

eR =
1
2
(RTRd −RTRd)

∨. (3.13)

where the vee map∨ : so(3) → R3 is the inverse of the hat map. Also the tracking error for

the angular velocity follows:

eω = ω−RTRdωd, (3.14)

where ωd is the desired angular velocity. This instead is attained comparing the tangent vec-

tors Ṙ andRd˙ , however, since they lie in different tangent spaces,Rd˙ is transformed to a vector

inTRSO(3).

Tracking Controller: for given smooth tracking commands and some positive gains kx, kv,

kR, kω, the control inputs fc andM are chosen as follows:

f3 = −
(
−kpep − kvev −mge3 +mp̈d

)
·Re3, (3.15)

M = −kReR − kωeω + ω× Jω− J
(
ω̂RTRdωd −RTRdω̇d

)
, (3.16)

where f3 ∈ R, the desired attitudeRd is given by

Rd = [xB,d⃗ ; yB,d⃗ ; zB,d⃗ ] ∈ SO(3), (3.17)

and fc is given by

fc = [0; 0; f3]T ∈ R3, (3.18)

These control inputs fc andM are designed to achieve asymptotic stability of the complete

dynamics. Proof of the propositions are left in the paper.
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3.3 Camera Calibration

Camera calibration is a fundamental process in computer vision, serving as the foundation for

accurate and reliable image-based measurements and 3D reconstructions. At its core, camera

calibration involves the precise determination of a camera’s intrinsic and extrinsic parameters,

which define how a 3D world is projected onto a 2D image. The intrinsic parameters encom-

pass factors like the camera’s focal length, principal point, and lens distortions, while extrinsic

parameters describe the camera’s position and orientation in relation to the world.

The importance of camera calibration cannot be overstated. It is the cornerstone of various

applications and inaccurate calibration can introduce distortions, leading to significant errors

in analyses and visualizations. In this case, camera calibration is of outmost importance given

the needs of accurate environment perception. Bad camera calibration would translate to inac-

curate point cloud generation and reprojection, leading to badly mapped environments.

Camera calibration is typically achieved by capturing images of a known pattern or scene

from multiple angles, allowing for the estimation of the camera’s internal characteristics and

its relationship to the world. Advanced algorithms, often involving nonlinear optimization,

are used to fine-tune these parameters, minimizing the difference between observed and pre-

dicted image features. The usual pattern used for camera calibration are either the chessboard

or Aprilgrids, as shown in Fig. 3.5.

As an example, after having collectedN images of a chessboard pattern, the camera calibration

process can be summarized in the following steps:

• For each image:

1. list theM 3D corner position in the pattern reference frame;

2. find the corner position in the image reference frame.

• Initialize the calibration parameters to default values.

• Solve the minimization problem.
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Figure 3.5: Example of Aprilgrid table for camera calibration.

Where the minimization problem is:

arg min
k,f,u,v

N−1∑
i=0

M−1∑
j=0

∥∥∥K[I|0]TiP̃ij − p̃ij
∥∥∥2

, (3.19)

and P̃ij is the corresponding point in the real world of the camera point p̃ij. k, f, u and v

are the intrinsic parameters of the camera matrixK andT is the rigid transformation between

camera frame and world frame.

The resulting calibrated camera parameters, including focal length, distortion coefficients,

and camera pose, are invaluable assets in the field of computer vision, providing the foundation

for accurate and consistent image-based measurements and analyses.

3.3.1 Kalibr camera calibration toolbox

In order to calibrate the cameras used on-board the quadrotor, the Kalibr toolbox has been

used. In particular, the multiple camera calibration tool [21, 22] is employed to get the intrin-
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sic and extrinsic parameters of the stereo cameras.

First of all, a rosbag of the camera topics is needed. A bag is a file format in ROS for storing

ROS message data. Bags (so named because of their .bag extension) have an important role

and a variety of tools are available to store, process, analyze, and visualize them. Rosbag, which

subscribe to one or more ROS topics, can store the serialized message data in a file as it is re-

ceived. In this case, they are used for camera data logging. In particular, they are provided to

the Kalibr toolbox, along with the camera models (pinhole, omnidirectional, ...), the topics

name and the calibration target configuration (chessboard or Aprilgrids) in order to run the

calibration process.

The output of the toolbox is similar to what presented here below:

cam0:

cam_overlaps: [1, 2]

camera_model: pinhole

distortion_coeffs: [0.10991964802569217, -0.20591315602062998,

-0.0010625517472595677, -0.00010589144830592429]

distortion_model: radtan

intrinsics: [871.2883628468551, 869.9645091763605,

642.0717149764321, 363.99973152427737]

resolution: [1280, 720]

rostopic: /camera/color/image_raw/compressed

cam1:

T_cn_cnm1:

- [0.99968194380927, -0.025033648220278145,

-0.0030541248338636384, -0.015170353376510008]

- [0.025035195581193274, 0.9996864601381954,
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0.0004694662647537339, 0.000319965166510877]

- [0.0030414147906621647, -0.0005457775606470463,

0.999995225950066, -0.000128806986730986]

- [0.0, 0.0, 0.0, 1.0]

cam_overlaps: [0, 2]

camera_model: pinhole

distortion_coeffs: [0.010655057217719139, -0.013653134712594252,

0.00013491679277989854, 0.0003197993006507017]

distortion_model: radtan

intrinsics: [407.2156773067505, 407.21439757381,

425.8518697539763, 237.3132280207186]

resolution: [848, 480]

rostopic: /camera/infra1/image_rect_raw/compressed

cam2:

T_cn_cnm1:

- [0.999997706883476, -0.0001446954247101149,

0.002136654162360765, -0.04988974835464921]

- [0.00013491105315555164, 0.9999895084595456,

0.004578730154728138, -0.00011693324290381489]

- [-0.00213729426687157, -0.004578431396903121,

0.9999872348880992, 6.568259336910408e-05]
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- [0.0, 0.0, 0.0, 1.0]

cam_overlaps: [0, 1]

camera_model: pinhole

distortion_coeffs: [0.00937010510626876, -0.008377459723644879,

0.0006704570497315444, -0.00044930741452454086]

distortion_model: radtan

intrinsics: [407.1511945970345, 407.2256475460319,

425.1052640602839, 237.25284644837876]

resolution: [848, 480]

rostopic: /camera/infra2/image_rect_raw/compressed

where for each camera we can retrieve the distortion parameters, the intrinsic parameters

and even the rigid transformation between camera frames, if needed. If the calibration has

been done correctly then the cameras’ parameters will be accurate, otherwise the calibration

process needs to be repeated.

An indication on how accurate the camera parameters are, can be given by the reprojection

error. The reprojection error of a camera calibration is a measure of how well the estimated

intrinsic and extrinsic parameters fit the observed image points. The reprojection error is re-

lated to the accuracy of the estimated parameters. In particular, when the reprojection error

is low, it means that the estimated intrinsic and extrinsic parameters, when used to project 3D

world points onto the 2D image plane, closely match the actual observed image points. In

other words, the calibration process has accurately modeled how the camera transforms 3D

points into 2D image coordinates. Conversely, a high reprojection error indicates that there

is a significant discrepancy between the projected 2D points based on the estimated parame-

ters and the actual observed image points. This suggests that the estimated parameters are not

accurate in describing the camera’s behavior. So, the lower the reprojection error, the more

accurate the intrinsic and extrinsic parameters are in describing the camera’s behavior. In our

case, reprojection errors lower than 1 gave good results. This is shown in Fig. 3.6.
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Figure 3.6: Example of camera reprojection errors.

In the following chapters it is detailed how the safe site detection and assessment process are

implemented. In particular, in Ch. 4 it is shown how the metric and semantic information are

obtained and processed to update the 2D binary map of the safe and unsafe landing zones. In

Ch. 5 instead, it is discussed the final evaluation step and the autonomous landing procedure.

Finally, in Ch. 6 are givenmore details about the system setup, theNN training and evaluation

and some qualitative and quantitative results of the proposed framework.
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4
Safe Site Detection

In the following sections it is shown how the semantic and metric information are obtained

and processed, to define the suitability and safeness of a safe landing zone. Starting with sec-

tion 4.1, it is presented how environmental features are extracted through a NN from RGB

images. In section 4.2 instead, the terrain properties such as flatness, steepness and roughness

are extrapolated from the point cloud of the environment, to evaluate critical 3D attributes for

the safe landing. Combining both 2D and 3D information, a comprehensive evaluation of the

environment can be done, not disregarding any relevant aspect.

4.1 Semantic information

4.1.1 Semantic image segmentation

Semantic image segmentation is a fundamental computer vision task that involves classifying

each pixel in an image into a predefined category or class. It plays a crucial role in understanding

and interpreting visual content, as it provides a detailed and meaningful understanding of the
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objects and regions present within an image. This technology has found extensive applications

across various domains, revolutionizing fields such as autonomous driving, medical image anal-

ysis, robotics, and more.

At its core, semantic image segmentation is used for scene understanding. By assigning a spe-

cific label or class to each pixel, it allows machines to differentiate between objects, people, an-

imals, and background elements within an image. For instance, in the context of autonomous

vehicles, semantic segmentation enables the car’s perception system to identify pedestrians,

road signs, other vehicles, and road boundaries, facilitating safe and efficient navigation.

The continual advancement of semantic image segmentation techniques has beendrivenby the

pursuit of higher accuracy, faster processing speeds, and improvedmodel generalization. Inno-

vations in deep learning, particularlyConvolutionalNeuralNetworks (CNNs) [23], have been

pivotal in achieving remarkable progress in this field. The development of more complex and

deeper neural network architectures, such as U-Net [24], SegNet [25], and DeepLab [26], has

significantly enhanced segmentation performance.

Furthermore, the availability of large annotated datasets, like COCO [27] and Pascal VOC

[28], has played a pivotal role in training sophisticated segmentation models. Transfer learn-

ing, where pre-trained models on vast datasets are fine-tuned for specific tasks, has become a

standard practice, further boosting segmentation accuracy.

Several techniques have been proposed to address the challenges of class imbalance, pixel-wise

labeling, and real-time processing in semantic segmentation. The utilization of attentionmech-

anisms,multi-scale feature fusion, and novel loss functions has contributed tomore robust and

accurate results. Additionally, the integration of semantic segmentation with other computer

vision tasks, such as object detection and instance segmentation, has opened up new possibili-

ties for holistic scene understanding.
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In the proposed framework, segmented images are needed for assessing the suitability of a

landing zone, a delicate procedure, crucial for the safety and success of aerial missions. In the

context of landing zone assessment, the drone must process the captured imagery to identify

suitable areas for landing, taking into account factors such as obstacles, terrain, and environ-

mental conditions. To achieve this, a deep neural network is employed for image segmentation.

However, the challenge lies in striking a balance between the accuracy of the segmentation re-

sults and the inference time of the network, given the limited computational resources available

on the drone. In particular, for small aerial vehicles the on-board resources are limited, there-

fore a trade-off between computational speed and accuracy is often encountered. Optimizing

this balance is critical because a more accurate segmentation can lead to safer and more precise

landing zone identification, but it may also increase the time required for the drone tomake de-

cisions and take action. Conversely, prioritizing inference speed might sacrifice segmentation

accuracy, potentially leading to sub-optimal landing zone assessments. Therefore, in the con-

text of resource-constrained UAVs, it becomes imperative to develop and deploy efficient algo-

rithms and models that can provide a good compromise between accuracy and inference time.

This compromise ensures that the drone can make timely and reliable assessments of landing

zones while operating within its computational limitations. This is why the BiSeNetV2 [29]

model has been adopted. Compared to an encoder-decoder structure or the pyramid pool-

ing modules often used in semantic segmentation, this network proposes a bilateral structure,

namely treats the spatial details and categorical semantics separately to achieve high accuracy

andhigh efficiency for real-time segmentation tasks. The features extractedby the twobranches

of the dual-pathway backbone are then merged together by an aggregation layer. Additionally,

to enhance the inference time of the network, the trained BiSeNetV2 model is optimized it

through the NVIDIA TensorRT library [30]. This significantly accelerates the network’s per-

formance and also reduces the model dimensions.

The overall goal of the network is to recognize image regions that are suitable for landing such

as grass fields, pavements, roads, floors, etc. For each pixel in the image the NN associate a

semantic meaning to it

f : (u, v) 7→ C (4.1)
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where at each location (u, v) the pixel is characterized by a label C. Knowing the relation be-

tween the label C ∈ R+ and the corresponding class (e.g., C : 0 7→ safe landing, C : 1 7→
people, C : 2 7→ obstacles, ...) we are able to infer if the region is suitable for landing.

An example of the segmentation results is given in fig. 4.1.

Figure 4.1: Segmentation result: on the left column the RBG image, on the right column the segmentation result.

4.2 Geometric information

Semantic information alone is not sufficient for a comprehensive understanding of the environ-

ment. With only 2D information from the segmented images, assessing critical terrain prop-

erties such as slope, roughness, and elevation variations becomes challenging. Hence, it is of

utmost importance to also consider 3D information of the environment, which in this case is

obtained through stereo vision.

4.2.1 Stereo vision and Epipolar geometry

Stereo vision, also known as stereo correspondence or stereomatching, is a technique used to re-

cover depth information from a pair of stereo images taken from slightly different viewpoints.

The key concept behind stereo vision is to find correspondences between points or features

in the ”left” and ”right” images and use these correspondences to compute the disparity map,
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which encodes the depth information.

1. The first step is to rectify the stereo images. Rectification is essential to ensure that corre-

spondingpoints in the left and right images lie on the same scanlines, simplifying the correspon-

dence search. This process involves finding the epipolar lines (lines along which corresponding

points must lie) and warping the images accordingly. To better understand this processed a

brief explanation on the epipolar geometry follows.

Epipolar geometry

Epipolar geometry is a fundamental concept in stereo vision that describes the relationship

between two cameras and their images when establishing correspondences. It helps constrain

the search for correspondences by defining epipolar lines and epipoles.

Consider a stereo camera setup with two cameras: the left camera (C1) and the right camera

(C2). These cameras have their respective image planes, with the left image plane (i1) and the

right image plane (i2). There’s a baseline distance (B) between the two cameras, representing

how far apart they are.

For a given point in the left image x1, there is a corresponding epipolar line in the right image.

This epipolar line is the intersection of the right image plane (i2)with a plane called the epipolar

plane (P). The epipolar line in the right image corresponding to point x1 in the left image can

be represented as:

a2x2 + b2y2 + c2 = 0 (4.2)

Here, (x2, y2) are the coordinates of any point on the epipolar line in the right image, and

a2, b2, and c2 are coefficients determined by the camera’s parameters.

The epipolar constraint states that the corresponding point x2 in the right image must lie on

the epipolar line associated with point x1 in the left image.

The epipole (e2) in the right image is the point where all epipolar lines intersect. A similar

epipole (e1) exists in the left image.
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Figure 4.2: Visualization of the epipolar geometry for stereo vision.

The essentialmatrix (E) encapsulates information about the relative pose of the two cameras

and is crucial for stereo vision. It is defined as:

E = [t]xR (4.3)

Here, t represents the translation vector between the cameras, andR is the rotation matrix

representing their relative orientation.

The fundamental matrix (F) relates image points to epipolar lines in both images and is com-

puted from the essential matrix and camera intrinsic matrices. It is defined as:

F = K2
−TEK1

−1 (4.4)

WhereK2 andK1 are the intrinsic matrices of the left and right cameras, respectively.

By understanding epipolar geometry and the principles of stereo vision, we can efficiently find

corresponding points and calculate disparity maps, enabling the estimation of depth and 3D

reconstruction.
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2. After rectification, the goal is to find correspondences between points in the left and right

images. This is often done by comparing pixel values along the epipolar lines. One common

method for correspondence search is sum of squared differences (SSD) or normalized cross-

correlation (NCC)matching. For each pixel in the left image, a window (often a small square)

is defined around it. Let’s denote this window asWL(x, y), where (x, y) represents the center

pixel coordinates. A corresponding window is defined in the right image along the same epipo-

lar line. This right image window, denoted as WR(x′, y′), corresponds to the same physical

point as the left window due to the epipolar geometry. At this point, the similarity between

these windows is computed using one of the following two formulas: Sum of Squared Dif-

ferences (SSD), that measures the sum of squared pixel intensity differences between the two

windows and is defined as

SSD(x′, y′) =
∑
i,j

[IL(x+ i, y+ j)− IR(x′ + i, y′ + j)]2 (4.5)

where IL(x+ i, y+ j) is the intensity of the pixel at coordinates (x+ i, y+ j) in the left image,

IR(x′+ i, y′+ j) is the intensity of the pixel at coordinates (x′+ i, y′+ j) in the right image and

the summation is performed over the window size.

Normalized Cross-Correlation (NCC), tahtmeasures the normalized cross-correlation between

the two windows as

NCC(x′, y′) =
∑

i,j[IL(x+ i, y+ j) · IR(x′ + i, y′ + j)]√∑
i,j[IL(x+ i, y+ j)]2 ·

√∑
i,j[IR(x′ + i, y′ + j)]2

(4.6)

where IL(x+ i, y+ j) and IR(x′+ i, y′+ j) are pixel intensities as before and the summation

is performed over the window size.

The position (x′, y′) of the minimum SSD or maximum NCC is considered the correspon-

dence, indicating the matching point in the right image for the selected point in the left image.
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3. Disparity is the horizontal shift between corresponding points in the left and right im-

ages. It’s inversely proportional to the depth of the scene. Disparity can be computed from the

disparity equation:

D = x1− x2 (4.7)

whereD is the disparity value, x1 is the x-coordinate of the point in the left image and x2 is

the x-coordinate of the corresponding point in the right image.

Once we have the disparity map (a map of disparity values for each pixel), we can convert it

to depth values using the stereo camera parameters. The depth Z is inversely proportional to

disparityD and directly proportional to the baseline between the two cameras B and the focal

length f:

Z =
f · B
D

(4.8)

where Z is the depth, f is the focal length of the cameras, B is the baseline between the two

cameras andD is the disparity.

Incorporating 3D data allows for a more holistic assessment, enabling the drone to make

informed decisions about landing zones that consider both semantic andmetric characteristics.

Consequently, from the stereo pair it is derived a disparity map that enables us to capture and

analyze the encoded depth of the scene.
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However, this representation is not suitable for the next processing steps. In order to analyze

the terrain properties we first need to convert the disparitymaps into point clouds. By utilizing

the camera’s intrinsic and extrinsic parameters, the Cartesian coordinates (x, y, and z) of each

point can be calculated, generating the associated point cloud as shown in Eq. (4.9)


x

y

z

 =


z · u−cx

fx

z · v−cy
fy

f·B
D

 , (4.9)

where x, y and z are the 3D coordinates in the point cloud and u, v are the pixel coordinates

in the image corresponding to the point. cx and cy are the principal point offset (usually half

the image width and height), f is the focal length of the camera, B the baseline between the left

and right cameras andD the disparity value at the corresponding pixel in the disparity map.

Once the point cloud has been generated, it is re-projected onto the segmented image to only

keep the points associated to a safe landing region. This is done as shown in the following

equation


u′

v′

w

∗

 =


fx 0 cx 0

0 fy cy 0

0 0 1 0

0 0 0 1
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SL tRGBSL
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x

y

z

1

 , (4.10)

where f is the focal length and c is the optical center. Starting from a point (x, y, and z) we

determine its corresponding pixel coordinate (u, v), using the transformation equations

u =
u′

w
, v =

v′

w
. (4.11)

It is important to note that in this case, the RGB camera frame (FRGB) and the left stereo

camera frame (FSL) are not perfectly aligned. Thus, it is taken into account the rigid trans-

formation between the two frames (HRGB
SL ∈ SE(3)), as indicated in the second term of the

right-hand side of Eq. (4.10). This adjustment ensures the accurate projection of 3D points,

perceived by the stereo camera, onto the 2D image, taken by the RGB camera. This idea is also
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Figure 4.3: Transformation between frames.

pictured inf Fig. 4.3.

Once we have the pixel coordinates (u, v), we check if the corresponding image location falls

within a class C associated with a safe landing site. In the positive case, we retain the 3D point;

otherwise, it is flagged as unsafe and discarded. By only considering the safe points we speed-up

the computation, improving the performance of the algorithm.

Subsequently, the point cloud is filtered and down-sampled to enhance its quality and suit-

ability for safe landing site detection. This process is implemented by utilizing the Point Cloud

Library (PCL) [31]. The point cloud is initially down-sampled using a voxel grid filter. The

”leaf size”parameter controls the voxel size,with larger values resulting in greater down-sampling.

In our case, we choose to retain one point each 0.1×0.1m2, striking a balance between process-

ing speed and accuracy. Then, a statistical outlier removal filter is applied in order to remove the

points that significantly deviate from the heuristic distribution of the point cloud. To further

improve the point cloud quality, we employ aMoving Least Square (MLS) smoothing filter, re-

sulting in a smoother point cloud less affected by noise. Finally, a plane fitting algorithm [32]

is executed to identify planar regions within the point cloud. This allows to retain only the

points associated to a flat surface, that also satisfy predefined slope and roughness thresholds.
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Figure 4.4: Point cloud processing: the point cloud of the environment (top left) is projected onto the segmented RGB
image (center) to only retain the safe point based on the semantic information. The remaining points are further processed

to evaluate also the slope and roughness thresholds.

However, to correctly assess the metric properties of the scene, we first have to ensure that the

point cloud is alignedwith theworld reference frame (FW), which conveniently coincideswith

ourmap reference frame (F2DM). To this endwe consider the rigid transformation between the

left stereo frame and the world frameHW
SL ∈ SE(3), since the point cloud is originally aligned

with FSL. By leveraging the drone’s odometry, we can compute HW
SL and apply the necessary

compensation to get the true plane’s inclination. Moreover, in this way, we also compensate

for the drone’s Roll, Pitch, and Yaw (RPY) rotation since it can be tilted with respect to the

surface, thus influencing the plane’s orientation. If the drone is not parallel to the plane and

its orientation will not be compensated then, the drone’s orientation will be considered as the

plane’s orientation, affecting the ture plane’s inclination.

Subsequently, the plane’s inclination can be computed considering the angle between its nor-

mal vector n̂ = (nx, ny, nz) and the z-axis of the world frame (parallel to the gravity vector ĝ)

as

φx = atan2(z, ny), φy = atan2(z, nx). (4.12)

In our specific setup, any planes with inclinations exceeding 15° are considered unsafe. Fur-

thermore, we can establish whether a point qualifies as a plane inlier or not by evaluating its

distance to the fitted plane, thus defining the maximum roughness admitted. To retrieve the
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distance of a point from the fitted plane, we compute the magnitude of the perpendicular vec-

tor connecting the point to the plane as

dist =
|Ax+ By+ Cz+D|√

A2 + B2 + C2
, (4.13)

where x, y and z are the point’s coordinates and A,B,C andD are the plane coefficients. In

our case if a point is more than 0.05 m away from the plane it is considered unsafe. The slope

and roughness thresholds are reported in Tab. 4.1.

THRESHOLD VALUE
SLOPE 15°

ROUGHNESS 0.05m

Table 4.1: Thresholds parameters.

This pipeline is executed separately for each scene, thereby contributing to an enhanced so-

lution. The overall map is a composition of processed images and point clouds, all of which

satisfy the safe site criteria detailed in this section.
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5
Environment Assessment and Autonomous

Landing

In this chapter it is discussed the final evaluation process and the autonomous landing pro-

cedure. In particular, in section 5.1 it is shown how, from the 2D map and the drone’s po-

sition, the most suitable landing area is computed. In section 5.2 instead, it is presented the

autonomous landing behaviour.

5.1 Environment Assessment

Up to this point, the knowledge acquired has given a general understanding of the distribution

of safe and unsafe points across the map. However, the objective is to pinpoint the optimal

landing location.

To achieve this, one should search for a patch on the map that spans an area approximately

1.85 times the size of the drone. This patch must be a sufficiently large region consisting exclu-

sively of safe points and accounting for an additional safety margin. The patch is considered
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safe when every cell within it has a safety probability ”p” of 95% or higher. This means that

we ensure all cells in the designated patch are highly likely to be safe, with safety probabilities

ranging from 0% to 100%, where 100% indicates complete safety. Once this area is found, we

compute the associated cost

J = α · Jd + β · 1
Jun

(5.1)

with α + β = 1 and α, β ∈ [0, 1], Jd is the distance between the center of the safe zone and

the drone while Jun is the distance between the center of the safe zone and the closest unsafe

point. Jd and Jun are both computed as Euclidean distances.

This approach prioritize landing zones that are not only closer to the drone, but also farther

away from unsafe areas. Fine-tuning the parameters α and β enables us to adjust the behavior

for identifying the safest landing zone. By increasing α and reducing β, the algorithm tends to

find a safe landing zone that is closer to the drone, but potentially nearer to obstacles. Instead,

by increasing β and reducing α the algorithm tends to find safe landing zones farther from the

obstacles but at the same time farther from the drone. The parameter’s choice depends on the

desired behaviour. If we want to minimize the drone’s distance from a possible landing area

then we will choose a scenario where α > β, otherwise if we want to maximize the distance

from the surrounding obstacles we will choose α < β.

Additionally, our final evaluation takes into account the drone’s battery consumption, which is

influenced by the Euclidean distance between the drone and the 3D landing location, as shown

in [33]. By iterating this last step over thewholemapwe aim tominimize the cost function and

only keep the safest landing zone, namely the one associated to the lowest cost possible. When-

ever new areas are overflown or the drone changes its position, the environment is re-perceived,

the map is continuously updated, and the best safe landing zone is published accordingly.

In summary, our safe site detection pipeline employs a comprehensive evaluation of region

safety, taking into account both semantic information and geometric information, including

flatness, roughness, steepness, a distance transform and the drone size.
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5.2 Autonomous Landing

The landing step is pretty straightforward and doesn’t require any particular process to be in-

volved. Once the landing is required, aminimum snap trajectory generation algorithm [34, 35]

is used to find a path from the drone’s actual position to the safe landing spot. The ”snap” here

pertains to the fourth derivative of position concerning time, signifying the rate of change in

acceleration. Therefore, a ”snap trajectory” considers not just the drone’s basic motion param-

eters (position, velocity and acceleration) but also its jerk profile throughout the entire flight.

The core principle of the ”minimum snap” trajectory generation algorithm is to identify and

compute trajectories that keep jerk to a minimum. This is paramount for attaining smoother

and more precisely controlled drone movements, particularly in scenarios demanding rapid

and agile flight maneuvers.

In fact, given a curve that we want to follow, we can calculate the necessary force and torque

tomove the quadrotor along it, as shown from the quadrotor’s dynamic equations introduced

in chapter 3.2. We can observe that the quadrotor can create a net force along the direction

of its propellers. This net force has to move the quad along the curve, thus the quadrotor’s

orientation needs to be tangent to the curve. The quadrotor also create a torque around all 3

world axis. Thus the quadrotor’s torque needs to change its orientation as it moves along the

curve. Now, to calculate the torque needed to change the orientation of the quadrotor along

the curve, we take the second derivative of the quadrotor’s orientation. This is defined by the

acceleration direction, so we take the second derivative of the acceleration, which is the fourth

derivative of the position. So, torque is directly related to the fourth derivative of position (the

snap). Overall, byminimizing the snapwewill have a curve that requires the least reorientation

of the quadrotor and will guarantee smoothness.

Once the trajectory between the starting and the goal destination is found, the drone follows

this two-steps behaviour:

• Fly above the safe landing zone.

• Decrease the height until it reaches the ground level.
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This approach is employed since no collision avoidance behaviour has been utilized, thus pri-

oritizing safety and avoiding any possible crash. However, map knowledge could be integrated

in this process to make the drone aware of the obstacles distribution in the environment. In

such a way a single-step landing behaviour could be implemented, since the trajectory would

be generated also considering the obstacle’s locations.

5.3 SafeSiteDetectionandEnvironmentalAssessment

Pseudocode

The overall visual environmental assessment pipeline can be condensed in pseudocode 5.1.

Algorithm 5.1 Safe Landing Site Detection and Evaluation
1: for each RGB image and corresponding PC
2: Project PC onto segmented RGB
3: if Segmented Label at (u, v) is Safe (C = CS)
4: Extract Safe PC Points→ PC_S : (x, y, z)
5: end if
6: if PC_S : (x, y, z) has Safe SlopeAND Safe Roughness
7: Store Safe Landing Site→ PC_SL : (x, y, z)
8: Update 2Dmap : PC_SL : (x, y, z)→ 2D_MAP
9: end if
10: end for

11: for each cell of 2D_MAP
12: if Probability of 5x5 Patch> 95%
13: Identify Safe Patch→ SAFE_PATCH
14: end if
15: if Cost Function J(SAFE_PATCH) is Minimal
16: Update Best Landing Site→ BEST_LANDING
17: end if
18: end for

19: return BEST_LANDING

For each perceived scene we first verify the semantic andmetric attributes, to update the 2D
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occupancy grid of the safe and unsafe location, here called ”2D_MAP”. Simultaneously, each

time the drone moves or the environment is updated, we check if there is a large enough area,

to fit the drone and guarantee a safety margin for safe autonomous landing. Once this area is

found, we compute its relative cost based on Eq. (5.1). If the patch found has a lower cost than

the previous or initial patch, then a new best landing area has been found. Once the landing is

required, the drone will fly towards the most suitable landing zone.
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6
Results

To validate the proposed approach, a series of real experiments are executed in a challenging,

large indoor environment measuring 26 × 10 × 4 m3, situated at the Agile Robotics and Per-

ception Lab (ARPL, New York University). In particular, the validation process involved two

key aspects:

(a) environmental changes, to simulate different evaluation and landing scenarios;

(b) waypoints diversification, to simulate different inspection strategies.

6.1 System Setup

The employed drone is a compact and versatile system, with a diameter of 0.27m and a weight

of 1.1 kg, built and developed within the NYU’s ARPL laboratory. It is equipped with a PX4

Autopilot flight controller, for high level position control, and aNvidia JetsonNX computing

board. The PX4 flight controller has been calibrated through the QGroundControl control
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station interface [36].

For convenience, without loss of generality of the proposed approach, two stereo cameras are

employed to decouple the localization and safe landing evaluation, due to the camera charac-

teristics, introducing as well some redundancy in the system. The first one, a RealSense T265

tracking camera, employed to obtain a robust VIO and the second one, the RealSense D435i,

responsible for mapping the environment and detecting the safe landing zone. Depending

on mission requirements and constraints, it is also possible to effectively operate with a single

stereo camera, either pointing directly downward or tilted at a 45-degrees angle, not affecting

the approach and results of this work.

In Fig. 6.1 it is shown the drone structure.

Figure 6.1: Drone structure.

To efficiently manage the different modules of the system, it is employed a nodelet-based

approach, a feature inherent to ROS. Nodelets optimize computation and minimize latency

by sharing memory space among individual processing nodes within a single ROS node. This

design choice significantly reduces the need for inter-process communication, eliminating the

associated overhead. Byharnessing the power ofROSand the efficiency of nodelets, this system

not only achieves real-time performance but also ensures optimal resource utilization. This syn-

ergy allows us to meet the stringent demands of these applications, where timely and resource-

aware processing is of paramount importance.
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6.2 Neural Network Training and Evaluation

To train the network, it is leveraged the ADE20K semantic scene parsing dataset [37], since it

provides a wide set of indoor and outdoor environments, covering a wide range of classes and

examples relevant for addressing the safe landing task. Also other datasets were taken under

consideration, for example the Pascal context 59 Dataset [38] and the CityScapes Dataset [39].

However, those datasets does not provide a comprehensive set of environments. In particular,

they only provides outdoor examples thus disregarding all the indoor environments, needed

for this project. Other minor datasets were also analyzed but not considered as well, given their

limited size and examples.

Rather than using the original 150 classes, we have manually clustered them into 11: water,

people/animals, sky, trees, man-made obstacles, nature obstacles, safe landing site, light, vehicles,

background, buildings. In particular, for each of the new 11 classes, the previous 150 were clus-

tered in a meaningful way, i.e. in the ”building” class we will find walls, buildings, edifices,

windows, doors, houses, skyscrapers and so on. In the ”man-made obstacles” class we will find

beds, tables, chairs, desks, boxes, shelves, pillows, etc. In such a way we enhance the inference

time and we only keep classes meaningful to our task.

The training pipeline is based on the robust and versatile PyTorch-based mmsegmentation

framework developed by openMMLab [40]. OpenMMLab is renowned for its contributions

to computer vision and deep learning, andmmsegmentation is a shining example of their com-

mitment to advancing the field. It provides a user-friendly and highly customizable platform

for developing state-of-the-art semantic segmentationmodels, making it an ideal choice for our

training pipeline. One of the standout features of mmsegmentation is its extensive collection

of pre-implemented segmentation algorithms, network architectures, and pre-trained models.

These resources serve as a solid foundation for the training process, allowing us to efficiently

explore various model architectures and fine-tune them for our specific use cases. Moreover,

mmsegmentation seamlessly integrates with the PyTorch ecosystem [41], capitalizing on Py-

Torch’s flexibility and scalability.

The training consists in an iteration-based process using a Stochastic Gradient Descent (SGD)
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optimizer for 160 K iterations, and two NVIDIA GPUs with batch size equal to 8. The opti-

mizer parameters are reported in Table 6.1.

Optimizer parameters Value

LR 0.05

Momentum 0.9

Weight Decay 0.0005

LRDecay Type Polynomial Decay

Polynomial Decay parameters Value

LRmin 1× 10−4

Power 0.9

Table 6.1: NN Training parameters

6.2.1 AdvancedNeural Network training

In the quest for optimizing neural network training, it has been chosen a combination of tech-

niques that go beyond the conventional use of Stochastic Gradient Descent (SGD) alone. The

reason for adopting momentum and weight decay is because they offer a comprehensive and

more advantageous approach. Collectively, they serve as the pillars of enhanced convergence,

regularization, and adaptable learning rates. Through this combination, we not only accelerate

convergence but also improve the network’s generalization capabilities, making it more robust

and versatile in handling complex tasks.

Momentum [42] is a key technique used to accelerate the training process and improve conver-

gence in neural networks. It addresses the problem of SGD being sensitive to noisy gradients,

especially in regions of the loss landscape with shallow or flat minima. By introducingmomen-

tum, we can achieve the following advantages:

• Smoothing Gradients: Momentum accumulates a moving average of past gradients,
reducing the impact of noisy gradient updates. This leads to smoother convergence and
faster training.
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• Escape Local Minima: The accumulated momentum allows the optimizer to escape
shallow local minima and explore the loss landscape more effectively. This helps in find-
ing better and more generalized solutions.

Mathematically, momentum can be incorporated into the update rule as follows:

vt = β · vt−1 +∇L(θt)

θt+1 = θt − α · vt
(6.1)

where vt is the momentum at iteration t, β is the momentum coefficient,∇L(θt) is the gra-

dient of the loss function with respect to the model parameters θt and α is the learning rate.

Weight Decay [43], also known as L2 regularization, is employed to combat overfitting by

adding a penalty term to the loss function. It encourages the model to have smaller weight val-

ues, which results in a simpler andmore generalizable model. The key benefits of weight decay

are:

• Regularization: It acts as a form of regularization, helping to prevent the model from
fitting the training data too closely, which can lead to overfitting.

• Improved Generalization: Smaller weight values often lead to a model that generalizes
better to unseen data, improving its performance on validation and test sets.

Weight decay can be applied by adding a regularization term to the loss function:

Ltotal = Ldata + λ
∑
i

‖θi‖22 (6.2)

whereLtotal is the total loss,Ldata is the data loss (e.g., cross-entropy loss), λ is theweight decay

coefficient and θi are the model weights.

Finally, polynomial Decay [44] is a learning rate scheduling technique often used with SGD.

It gradually reduces the learning rate during training, startingwith a higher value and smoothly

annealing it towards a minimum value. This approach is useful because:

• Stable Training: Initially, a high learning rate allows for rapid convergence, while grad-
ually reducing it helps stabilize training as it approaches a minimum.
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• Fine-Tuning: The learning rate reductionnear the endof training allows for fine-tuning
the model, enabling it to settle into a better minimum.

Polynomial decay can be defined as:

LR(t) = LRmin + (LR− LRmin) · (1− T/t)power (6.3)

where LR(t) is the learning rate at iteration t, LR is the initial learning rate, LRmin is the

minimum learning rate,T is the total number of iterations andpower is a parameter controlling

the rate of decay.
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To further improve the quality of our segmentation results, we also performed a fine-tunig

on the NN using a custom indoor dataset. The dataset includes approximately 1.2 K images

of common scenes within our lab environment. Notably, the environments created for testing

differ from the ones used during the fine-tuning phase, since they incorporate new scenes and

objects for evaluation. Since manual labeling is a very time-consuming activity, the Segment

AnythingModel (SAM) [45] is used to facilitate the mask creation process.

SAM is designed to address the challenges of creating high-quality masks for various objects in

images. It is trained on 11M images with over 1B masks and can produce valid segmentation

masks in real-time, when prompted with different types of inputs such as points, boxes, and

text. Once the masks are retrieved, we can assign the correct labels to each one of them, thus

identifying the ground truth of each image.

To further accelerate this process it was also tried to use a fine tuned version of SAM. Personal-

ize SAM [46] present an efficient one-shot fine-tuning variant that make us able to address the

attention on the mask-generation process to the ones that are needed to be extracted from the

image. Personalize SAM enables a more automatized way of finding segmentation masks. By

providing some examples of already segmented images it is possible to fine-tune an added layer

and make the model extract only the segmentation masks that are under interest by the user.

However, without success, the fine tuning didn’t improve the results as desired. In the end this

solution was not adopted.

Furthermore, during training we employ a data augmentation pipeline to increase the dataset

size. This pipeline is based on random resizing, random cropping, random flipping and pho-

tometric distortion. The fine-tuning parameters coincide with the one specified in Table 6.1,

with the exception that training continued for another 80 K iterations. This resumed from

LR = 10−4 and finished with LRmin = 1× 10−5.

TheNNruns on-board the JetsonNXat 7.1Hz andobtains amean IntersectionoverUnion

(mIoU) of 67.51% and ameanAccuracy (mAcc) of 85.21%. For a qualitative evaluation of the

segmentation results, please refer to Fig. 6.2.

In particular, we can observe in Tab. 6.2 the Intersection over Union (IoU) and the accuracy
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Class IoU (%) Acc (%)
buildings 68.25 80.27

landing_site 61.61 69.87
water 33.66 52.18
sky 85.21 92.36

people_animals 33.06 55.84
vehicles 36.61 60.83

background 25.74 35.68
trees_poles 53.44 71.2

light 7.08 7.59
man_made_objects 45.98 69.53
nature_objects 0.0 0.0

Table 6.2: IoU and accuracy values for the BiSeNetV2 11 classes segmentation, before the fine‐tuning

Class IoU (%) Acc (%)
landing_site 80.57 83.71

unsafe_landing_site 54.45 86.71

Table 6.3: IoU and accuracy values for the BiSeNetV2 binary segmentation, after the fine‐tuning

results of the 11 classes, before the fine tuning.

And after the fine tuning, where all the classes unsafe for landing were clustered together,

the results are presented in Tab. 6.3.

We can clearly see that before the fine tuning, the mean accuracy (mAcc) and the mean IoU

(mIoU)where 59.24% and 46.26% respectively. While after the fine tuning both values where

increased to 85.21% and 67.51%.

6.3 EnvironmentAssessmentandAutonomousLand-

ing

In our test scenario, we operate with a map resolution of 0.1 meters, while the designated safe

landing zonemeasures 0.5×0.5m2. The acquisition ofRGB images and the stereo pair occurs

at a rate of 30 Hz, whereas the disparity maps runs at 3 Hz, which suffices for our operational

speeds. The processed point clouds are instead published at a frequency of 1.1 Hz, which are
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Figure 6.2: Segmentation results of the BiSeNetV2 model. On the left column the RGB images, on the right column the
segmentation results.
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then used to update the 2D map, while the safe landing locations have a slightly higher fre-

quency. However, if better performances are required, we have the flexibility to increase the

updating frequency of the processed points. Finally, VIO runs at 100 Hz.

For our tests, we select α = 0.65 and β = 0.35. As detailed in Eq. (5.1), we empirically observe

that these settings prioritize the term related to the drone’s proximity to the safe landing area

over the distance between the safe landing site and obstacles. Moreover, the slope and rough-

ness thresholds are set respectively to 15° and 0.05 m.

Figure 6.3: (a) Data acquisition & processing pipeline for the map creation and (b) Site evaluation and safe autonomous
landing experiment in a low height, middle density environment scenario with an ”8” navigation pattern.

The proposed pipeline is tested in several scenarios, including different obstacle heights and

densities and different navigation patterns and speeds. In Fig. 6.3, we showcase the mapping

process and a full experiment in a low height, middle density obstacles environment. After

take-off, the drone follows an ”8” navigation pattern and performs a couple of flight runs over

the environment. As we can see from the succession of images in Fig. 6.3 (b) and 6.4, each

time the drone perceive new areas, by following its path, themap is updated accordingly. Once

the navigation behaviour is concluded, the 2D occupancy grid is fully updated and the drone

can implement the final environmental assessment. When the safest landing area is identified,

the drone finally implements the autonomous landing. The last picture in Fig.6.3 (b) and 6.4

show thewholemapwith the safe landing zone location and thedrone’s path. Outof 7 tests per-
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Figure 6.4: Full site evaluation and safe autonomous landing experiment in a low height, middle density environment
scenario with an ”8” navigation pattern. Succession of images showing the perceived environment and the mapping process.
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Figure 6.5: Confusion matrix

formed in different challenging environments, the drone is able to safely lands 6 times, showing

its capability to detect a safe landing zone with an overall success rate of 85.71%. The unsuc-

cessful landing is not attributed to any errors in segmentation or metric data but rather to the

grid discretization. In this specific experiment, the grid size was excessively large in comparison

to certain low-height obstacles. Through testing with a slightly smaller grid, it can effectively

be addressed this issue without impacting computational efficiency. By overlaying the created

2D occupancy grid with the top view of the environment, we can also quantitatively evaluate

the number of zones correctly ”classified” as safe or unsafe.

To evaluate the classification accuracy we consider the following formulation:

Acc =
TP+ TN

TP+ FP+ FN+ TN
, (6.4)

where TP are the true positive, TN the true negative, FP the false positive and FN the false

negative. To better understand this concept we can refer to Fig. 6.5.

The pixel accuracy represent the percent of pixels that are classified correctly. The true posi-
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tives are the number of pixel correctly classified as safe landing zones and the false positives are

the number of pixel erroneously classified as safe landing zones. Analogously, true negatives

and false negatives are the pixels that are correctly and incorrectly classified as non-safe landing

zones respectively.

However, accuracy can be a misleading metric for imbalanced data sets. In the case of safe site

detection, if the result of the segmentation is such that there are no hazards, the accuracy value

can still be very high even in images in which there actually are different obstacles.

For this reason a tuned version of the accuracy metrics is considered: the Balance Accuracy

(BAcc). The BAcc normalizes true positive and true negative predictions by the number of

positive and negative samples, respectively, and divides their sum by two. In a binary classifica-

tion task the formulation is given by

Balanced Accuracy (BAcc) =
TPR + TNR

2
(6.5)

where TPR = TP/(TP + FN) is the true positive rate (or recall), TNR = TN/(TN + FP) is

the true negative rate. TPR and TNR are also called sensitivity and specificity respectively.

Other two useful metrics for the performance evaluation are the precision, which indicate how

accurate the model predict the safe (positive) points, and recall (or true positive rate) which

indicates how many positive points the model correctly detected with respect to the total real

positive ones.

Precision =
TP

TP + FP
(6.6)

Recall =
TP

TP + FN
= TPR (6.7)

The last metric is the F1 score, or Dice Coefficient, which combines precision and recall (it

is the harmonic mean of precision and recall).

F1 = 2× Precision · Recall
Precision + Recall

(6.8)
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Geometrically it represents two times the area of overlap divided by the total number of pix-

els in both the detected and real masks. F1 is very similar to the Intersect over Union quantity.

In Fig. 6.6, we show some of the results obtained during testing in four environments, con-

sidering different obstacles heights, densities, and navigation patterns. The mean accuracy

(mAcc) in identifying safe landing zones is approximately 81.4%, where 5, 4% are false neg-

atives and 13, 2% are false positives.

Finally, in Tab. 6.4 we present the several metrics values, as discussed before. In particular,

for each image of Fig. 6.6 the Acc, BAcc, Precision, Recall and F1 are computed.

Image Acc BAcc Precision Recall F1

Image (a) 0.765 0.614 0.784 0.937 0.854

Image (b) 0.826 0.609 0.888 0.915 0.901

Image (c) 0.914 0.668 0.923 0.985 0.953

Image (d) 0.751 0.609 0.777 0.921 0.843

Table 6.4: Metrics results.

Thesemetrics collectively provide insights into howwell the classification is performed, con-

sidering aspects like correctness, class balance, and the balance between precision and recall.

The accuracy (Acc) measures how many of the classifications were correct for each image. On

average, about 81.4% of the classifications across the proposed examples.

Balanced Accuracy (BAcc) takes class imbalance into account and computes the average accu-

racy across all classes. It helps handle imbalanced datasets. On average, the balanced accuracy

is approximately 62.5%.

Precision quantifies howmany of the positive predictionsmade by themodel were correct. On

average, about 84.3% of the positive predictions were correct.

Recall (sensitivity) measures how many of the actual positives were correctly identified by the

model. On average, about 93.9% of the actual positives were correctly identified.

Finally, the F1 Score, which is the harmonic mean of precision and recall, provides a balanced

measure of both precision and recall. On average, the F1 score across is 88.8%.
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(a) High density, low height obstacles scenario. Acc =
76.5%.

(b) Long waypoints navigation pattern scenario. Acc =
82.6%.

(c)Medium density, medium height obstacle scenario 1.
Acc = 91.4%.

(d)Medium density, medium height obstacle scenario 2.
Acc = 75.1%.

Figure 6.6: 2D binary map of safe and unsafe landing locations, overlayed to the real environment. The light green regions
are unsafe while the dark green are unknown and still to be explored. Both of them are hazardous areas for landing.
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7
Conclusion

In this work, it has been presented a visual approach to autonomously detect safe landing sites

on-board a quadrotor, with limited SWaP resources. The proposed approach allows accurate

and efficient safe landing detection since it combines both semantic and metric information

and directly computes a 2D binary map of the overflown environment, thus avoiding the cre-

ation of expensive elevation maps. Furthermore, through several tests, it is shown the ability

to guarantee real-time, safe autonomous landing in real-world environments.

7.1 Discussion

In the proposed framework there are some considerations that needs to bemade. In particular,

a couple of limitations needs to be taken under consideration.

• NN performances: given the fact that the point cloud data is first processed based on
the semantic information, theNNaccuracywill in part limit the overall accuracy in iden-
tifying a safe landing zone.
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• Mapping: since it has been adopted a framework that makes the drone able to map the
entire overflown environment, namely it does not make use of fixed-size, robot-centric
maps, we need to take into account the possibility of drift over large scale environments.

• VIO: the odometry is obtained through a tracking camera, thus, we are not fully inde-
pendent with our software.

This is why it should be considered to enhance the NN performances by adopting more

sophisticated architectures. In such a way the accuracy in identifying a safe landing zone could

be improved. However, optimization will be needed to obtain similar inference times, given

the higher model complexity.

For example, we can see that the DeepLabV3+ [47] network obtains better results, compared

to the BiSeNetV2 model, as shown in Fig. 7.1 and Tab. 7.1.

Class IoU (%) Acc (%)
buildings 85.91 93.13

landing_site 84.62 91.08
water 76.34 88.27
sky 93.47 96.44

people_animals 76.77 86.71
vehicles 75.54 82.73

background 51.76 70.05
trees_poles 70.87 83.23

light 52.3 62.13
man_made_objects 74.44 84.66
nature_objects 29.68 43.06

Table 7.1: Intersection over Union (IoU) and Accuracy (Acc) values for 11 classes segmentation - DeepLabV3+

In particular, after the fine-tuning the results are given by Tab. 7.2.

Class IoU (%) Acc (%)
unsafe_landing_site 96.44 98.58
safe_landing_site 85.06 90.31

Table 7.2: IoU and Acc values for 2 classes segmentation - DeepLabV3+

We can clearly see that the mean accuracy (mAcc) and the mean Intersection over Union

(mIoU), respectively of 94.45% and90.75%, are higher than theones obtainedwith theBiSeNetV2
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Figure 7.1: mIoU, aAcc&mAcc of 11 classes training - DeepLabV3+

model.

However, as pinpointed before, this network requires much more resources. On the Nvidia

Jetson its inference time is less than 1 Hz. So, in order to obtain real-time performances as the

BiSeNetV2 model, more sophisticated optimization techniques are required.

Moreover, we aim to enhance the point cloud processing and the mapping procedure. In

particular, the current setup does not incorporate Simultaneous Localization and Mapping

(SLAM) capabilities [48], therefore it is prone to drift for flights of extended duration. Simul-

taneous Localization andMapping addresses the challenge of accurately tracking the position

and orientation of a drone in real-timewhile simultaneously building amap of its environment.

This is particularly valuable since it compensate for the drift that drones may experience dur-

ing extended-duration flights, given that SLAM continuously corrects these errors, allowing

the drone to maintain accurate localization throughout the entire flight.

Finally, our implementation make use of odometry information obtained from a tracking

camera, thus reducing the versatility of our approach. However a solution has already been

taken under consideration. In fact, a tuned version of OpenVINS [49] is being developed, to

work also with the RealSense T265 tracking camera. In this way the odometry computations
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would be done on-board, and not by the camera itself.

7.2 Future works

In the future, we are thinking of using a monocular camera and learning-based, efficient depth

estimation techniques for perceiving the depth of the environment. Several works have already

tried to address this problem, such as [50, 51, 52]. By employingmonocular cameras for depth

estimation we would therefore avoid the use of stereo cameras, thus reducing the cost and the

weight of the drone.

Additionally, we would like to develop exploration strategies to autonomously scan the en-

vironment. This process can still leverage the multiple cost metrics employed in this work. By

prioritizing areas with lower costs, we can autonomously guide the drone to directly explore

areas that appears to be safer, making our drone entirely self-sufficient.

On top of that, we would like to improve our framework by solving the limitations analyzed

in the ”Discussion” chapter (7.1). By improving the NN performances and the mapping pro-

cedure we would further improve the method accuracy in identifying a safe landing zone.
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