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Abstract

The IceCube Neutrino Observatory is currently the largest active neutrino detector in the
world, aiming to detect high-energy emissions from astrophysical sources. Assuchitisa corner-
stone of experimental astroparticle physics. Particularly, it is an important part of the efforts
to pursue a multimessenger approach to astronomical detections, being able to send alerts to
collaborating observatories when a significant event is observed.

With the intention of staying at the forefront of efficiency in its detection, IceCube is con-
stantly updating their techniques for reconstruction of physical parameters from detected events.
Taking this into account, the work presented in this thesis secks to improve on the reconstruc-
tion of energy by implementing Graph Neural Networks, machine learning algorithms de-
signed to recognize patterns from data structured in an irregular manner without loss of in-
formation.

Graph Neural Networks are a good candidate for the reconstruction of parameters. They
have historically shown their ability to perform efficient observations in record times. This fact
makes them a good candidate for implementation in systems that reconstruct event parameters
during online data taking. The greatest challenge for the implementation of these kinds of algo-
rithms then is the training process, where network architectures need to be trained on proper
datasets so they can be deployed without constant supervision.

The work on this thesis focuses on applying Graph Neural Networks algorithms for en-
ergy reconstruction on the full energy spectrum arriving to the IceCube neutrino Observatory.
Configuring the network was a challenge because of the need of implementing a graph repre-
sentation that is efficient in the roo GeV range as well as the roo PeV range.

From the results in this work, we observe that even when trained conservatively, the GNN
method is comparatively effective to the currently implemented methodsin the Real Time Alert
System at IceCube. The precision is noticeably improved in the low energy range, while also
showing significant accuracy in the rest of the energy spectrum. These results are obtained
while maintaining efficient runtimes across the board, with the possibility of increasing the
performance by further management of CPU and GPU resources.

we conclude that Graph Neural Networks are effective in the reconstruction of energy in
the full energy range of the samples produced from the RealTime Alert System in IceCube,
highlighting their possible implementation in online systems as well as possible improvements
in the training process.
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Introduction

Neutrinos are some of the most elusive particles currently present in the Standard Model of
particle physics. Once they are produced, their neutral charge and low cross section makes
them very hard to observe. Nevertheless, this also makes them excellent probes of the processes
that take place at the location of their production. Neutrinos are also key players in determining
the answers to many currently relevant physics questions [1]: Are they truly stable or do they
interact with matter not yet predicted by the Standard Model? Can they be considered part of
the hot dark matter permeating the universe? What is the origin of cosmic Rays?

To access information that reveals the mysteries of physical phenomena beyond the Standard
Model, high energies are needed. At the energy scales of accelerators available on Earth, particles
show no clear evidence of new physics. This leads scientists to look to natural sources of high
energy particles. From this, as well as the original observation of Cosmic Rays by Victor Hess
in 1912, the discipline of astroparticle physics was born. Astroparticle physics focuses on using
the natural occurring highly-energetic particles to study and observe mechanisms currently not
observable on the surface of the planet.

In recent years, astronomy and astroparticle physics have given increasing importance to a
multimessenger approach of observations. The processes involved in creating electromagnetic
radiation through which we observe astronomical sources are intrinsically connected to the
production of other messengers like cosmic rays and neutrinos. Taking this into account, a
multimessenger approach integrates observatories of many different kinds of particles to create

a complete picture of high-energy particle physics phenomena.



An important player in the multi-messenger approach is The IceCube Neutrino Observa-
tory. IceCube is a cubic-kilometer detector located deep in the Antarctic ice and designed to
perceive the flux of neutrinos arriving to the Earth. The detector has been fully functional since
2011 and since then it has been able to provide insight on many mysteries surrounding particle
and astroparticle physics, confirming the existence of an astrophysical neutrino flux on Earth
and identifying a number of detailed neutrino emitters in the night sky.

One of the systems in place in IceCube that make it very relevant in the multimessenger
landscape is the Real Time Alert System, which processes events as they arrive to the detector to
produce a sample of neutrino candidate events which can be used for alerting the astrophysics
community worldwide of exceptional emissions. From this sample, the Gamma-Ray Follow
Up (GFU) program identifies the clustering of these significant events from known Gamma-
Ray emitters and sends notices not collaborating Gamma Ray Telescopes.

An important highlight from the history of IceCube and the GFU program is the detection
of neutrinos from the flaring blazar TXS o506+0506 [2]. When a high energy neutrino was de-
tected in IceCube coming from the direction of said blazar, an established alert system automat-
ically sent notices to gamma rays observatories throughout the world, prompting a coordinated
worldwide observation of this object. This observation has been a cornerstone of the multimes-
senger approach to astronomical observations, where observations of neutrinos alongside Very
High Energy Gamma Rays provide not only information on the location of sources, but also
the mechanisms that govern the production of cosmic messengers. Particularly, this detection
highlights the usefulness of neutrino detectors like IceCube, which are able to detect events
from the whole sky with virtually no downtime, to prompt multimessenger studies.

An important part of the systems in place for alerts is the reconstruction of physical parame-
ters from detected events like energy and angular direction. Although no method is completely
effective at reconstruction, the observatory is constantly updating and testing new technolo-
gies for this effort. From this idea, machine learning algorithms have been tested in the past
years, showing their efficiency in obtaining results with very fast runtimes. Considering this,
the present work aims to test the energy reconstruction capabilities from Graph Neural Net-
works, machine learning algorithms designed to process complex and irregular data structures
without loss of information.

The following thesis is structured in the following manner: Chapter 2 presents an overview
of Multimessenger Astrophysics, describing the production mechanisms that link different cos-
mic messengers and how they can be detected on Earth; Chapter 3 then explains how the Ice-

Cube detector functions, with particular emphasis on the characterization of events as well as



the reconstruction of physical parameters from said events; Afterwards, Chapter 4 explains the
functioning of the RealTime Alert system, particularly, how it creates a sample of neutrino-
candidate events for analysis; In Chapter 5 instead we introduce the concept of machine learn-
ing techniques, with focus on the context of reconstruction of physical parameters from neu-
trino experiments through the use of Graph Neural Networks; Finally, Chapter 6 explains how
we implement a Graph Neural Network to energy reconstruction, emphasizing the challenges
to apply them to samples relevant to the IceCube Real Time Alert system and how the imple-
mentation compares to current energy reconstruction methods. A summary and evaluation,

including future possibilities are given in Chapter 7.






Multimessenger Astrophysics

Throughout history, astronomers have pointed instruments to the sky in the hope of observ-
ing objects outside of our planet, identifying their properties, and use them to gain insight on
physical phenomena, beyond what can be tested on ground. In contrast, grounded particle
physicists have historically devised ways to study the properties of matter on Earth. In typical
Earth conditions, particles behave in conformity to macroscopic properties of systems. Nev-
ertheless, as energies increase, fundamental particles are allowed to interact freely according to
the intrinsic properties of the physical processes that govern them, For this purpose, physicists
have built particle accelerators that allow for the study of particle physics at high energies, not
naturally occurring on Earth.

The perspective that particle physics was limited to what scientists can recreate at labs on
Earth changed in the year 1912, when Victor Hess took the skies in a number of hot air bal-
loon flights to measure the radiation in the atmosphere. Upon the observation that radiation
increased with height and that there is no significant change at night or an eclipse, Hess con-
cluded: ”The results of the present observations seem most likely to be explained by the assumption
that radiation of very high penetrating power enters from above into our atmosphere” [3]. Victor
Hess had for the first time observed Cosmic Rays, charged particles at high energies arriving
to the Earth from sources in space. With this discovery, the field of astroparticle physics was
started. There are natural sources of high energy particles in the Universe, and the methods
used for detection in Earth accelerator lab environments can be applied to these types of radia-

tion. Furthermore, this natural sources can reach energies still unavailable on Earth.



However, Astroparticle physics has been historically somewhat disconnected from tradi-
tional astronomy. Astronomers study physical objects using the electromagnetic radiation they
emit, applying methods from spectroscopy to study their composition. On the other hand, as-
troparticle physicists aim to detect the particles penetrating through the atmosphere. In recent
years, this separation has become increasingly more diffuse, the same process that produce flares
of electromagnetic radiation in astrophysical objects also lead to the acceleration of cosmic rays,
making the fields intrinsically connected. The recognition of this has lead to the discipline of
Multimessenger Astrophysics. Which consists of combining the study of different messengers
from astronomical sources in order to obtain a better picture of the physical processes that gov-
ern particles at this high energies. There are 4 types of distinct messengers typically considered

in these kind of studies:

1. Cosmic Rays
2. Gamma Rays
3. Neutrinos

4. Gravitational Waves

Although Electromagnetic radiation and Cosmic Rays have been used as messengers for
years, the quick development in recent years for neutrino and gravitational wave detection has
solidified the possibility of performing studies on astrophysical phenomena by taking a multi-
messenger approach. An example of the fruits of the Multimessenger approach was evidenced
in 2017. In September of that year, a high energy Neutrino event, IceCube-170922A, was de-
tected at an energy of 290 TeV in the IceCube Neutrino Observatory. Because its direction
was consistent with the astrophysical object TXS 0506+0506, several follow-up observations
were performed in the same direction, identifying a flare-up in activity with the detection of
several highly energetic Gamma Rays [2]. Identifying for the first time a source in coincidence
of high-energy neutrinos and very high energy gamma rays.

In this section, three main messengers are presented: Cosmic Rays, Gamma Rays and Neu-
trinos. A simplified sketch of these messengers being detected on Earth from one source is
presented in Figure 2.1. Among these, neutrinos are the most important for this thesis and the
experimental methods used for their detection are explored throughout the following chapters
in the context of the IceCube Observatory.

Gravitational waves are an important messenger in the this field, they are perturbations in

space-time caused by the accelerated movement of massive objects, like neutron stars in-spiraling

6



before merging. While observations have related the production of gravitational waves and
gamma rays [4], processes that correlate gravitational waves and neutrinos have not been defini-

tively determined, and therefore they are not a focus on this thesis.

air shower
v

Figure 2.1: Simplified sketch of an astrophysical source producing different messengers, and
the path they take to arrive on Earth. Taken from [s]

2.1 Cosmic Rays

Cosmic Rays are an example of high energy messengers, charged particles traveling at enormous
speeds through space. Typically coming from outside the Solar System, they traverse long dis-
tances from sources before they can be detected on Earth. Understanding the mechanisms
that govern their production and dispersion through the Universe promises to ofter rich in-
sights into the processes that govern particles in and outside of the Standard Model of Particle

Physics.

2.1.1 ENERGY SPECTRUM OF CosMIC Rays

Cosmic rays can be observed in a wide range of energies, reaching up to around 300 EeV when

they are detected on Earth. The full spectrum of cosmic rays include a variety of compositions.



99% are composed of nuclei, mostly very light like protons, but heavier ions have been observed.
The Pierre Auger Observatory [6] has performed observations that identify a composition of
light nuclei like protons with mixing of heavier nuclei up to iron at higher energies [7]. On the
other hand, data from the Telescope Array indicates a composition of mostly light nuclei at
all energies [8]. Although these observations can be considered contradictory, the uncertainty
associated with them makes them compatible with each other. Then, in combination they
poiny to the main component of the cosmic ray spectrum being protons, with at least some

mixing of higher nuclei as detected energies increase.

The energy spectrum of Cosmic Rays span from a few 10° eV up to 102 eV, presenting steep
falls with increasing energies. The shape of this spectrum can be observed of Figure 2.2. The

energy flux can be parameterized by the following power law equation:

dp EN’
5~ %o <E_0> (2.1)

where @ and Ej define normalization constants while y, called the spectral index, deter-
mines the steepness of the power law’s spectral shape. Two particular structures can be high-
lighted from Figure 2.2: the knee and the ankle, both of which indicate notable changes in
the slope of the spectrum and therefore spectral index. Before the knee, the spectrum can be
characterized by a spectral index of y = —2.7, while after the knee it drops toy = —3.1. An
interpretation for the drop is that, at this energy, the main contribution shifts from galactic
source to extragalactic sources [10]. For lower energies, cosmic rays from outside the Milky
Way are dissipated by interstellar matter, and do not arrive to the Earth. Furthermore, at higher
energies, Cosmic Rays produced inside the Milky Way are no longer bound by the galactic
magnetic field and can therefore escape from possible detection. Additionally, after the knee,
the composition of cosmic rays start to include heavier nuclei. On the other hand, the ankle
instead shows a softening from y = —3.1to y = —2.5, the full nature of which is still subject
to debate.

When cosmic rays carry energies greater than 1 EeV, they are referred to as Ultra High En-
ergy Cosmic Rays (UHECRSs). At these energies, Cosmic Rays are less likely to be deflected
from their original production or acceleration site, being useful tools for multimessenger stud-
ies of sources. Additionally, these energies are beyond the current scope of the LHC, offer-
ing perspectives on physics mechanisms at this otherwise unavailable range. These facts make
UHECRS particularly interesting to study. However, it should be noted from the spectrum,

that the maximum energy of detection is around 300 EeV, at which point there is a sudden

8
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Figure 2.2: Image taken from [9] detailing the observed Cosmic Ray spectrum gathering
data from many experiments on Earth. The different trends correspond to dif-
ferent particle compositions, including hadronic, leptonic and photonic, as well
as neutrinos. The different shaded areas represent different orders of magnitude
of the expected detection fluxes. The maximum energy achieved by the Large
Hadron Collider is also marked to signal the potential of Cosmic Rays to eluci-
date mechanisms relevant to particle physics.

drop in detection. The suppression at these energies is an interesting question in understand-
ing the production mechanisms of Cosmic Rays. On one hand, hypothesis exist that this is the
maximum range that cosmic accelerators can produce. On the other hand, this phenomenon
is explained by the proposed Greisen-Zatespin-Kuzmin (GZK) cut-off [11, 12]. This explains
that the interaction of cosmic ray protons with the Cosmic Ray Background can limit the en-
ergies of CRs [13]:

p+7°
pHYas— AT = Lt (2.2)
n+w



This is a process that can occur at energies higher than so EeV, with the cross-section increas-
ing with energy. The nucleons produced in these interactions then carry lower energies than
the originals, continuing to interact, while pions decay into photons or neutrinos, making this

process an effective limit for Cosmic Rays to be able to cross large distances in space.

2.1.2 CosMIiCc RAY SOURCES AND ACCELERATION MODELS

In order to produce UHECRS, there need to exist mechanisms violent enough to accelerate
charged particles to this energy. On Earth, this is obtained by accelerators creating powerful
magnetic fields over large effective sizes. Similar mechanisms to this must be at play in the Uni-
verse to generate the observed energies of Cosmic Rays. Based on this idea, a tool was developed
to classify potential candidates for acceleration of Ultra High Energy Cosmic Rays. This tool is
called the Hillas Plot, shown in Figure 2.3. The horizontal axes shows the size of of candidate
sources, with the magnetic field strength presented on the vertical axis. Diagonal lines show the
limits necessary to attain observable energies of cosmic rays, with types of sources displayed on
shaded areas.

According to observations, Cosmic Rays should be observed from Galactic and Extragalac-
tic sources. One type of sources proposed for galactic cosmic rays are Supernovae Remnants
(SNRs) [15]. When a star of sufficient mass (bigger than 1.4 solar masses) dies, it collapses in a
violent process that results in an explosion of the star’s material [16]. This process leaves behind
an expanding front of accelerated matter which can produce a shock center for acceleration of
matter.

The natural question is how a system like this works for acceleration of Cosmic Rays. When
a particle at an initial energy £ hits a plane wave shock front, it gets imbued with an Energy
gain AE = £F where £is directly proportional to the speed of the shock front 8. The charged
particle can bounce and collide with the shock front many times until it achieves an energy
sufficient to escape this cycle. The fact that the energy gain is linear with respect to the speed
of the shock front leads to the name fzrst-order Fermi acceleration [16].

This name comes from the mechanism previously derived by Fermi: The second-order Fermi
acceleration [16]. Fermi designed his theory for this acceleration mechanism assuming the ex-
istence of localized irregular portions of concentrated interstellar magnetic fields. By constant
scattering in these clouds, charged particles gain energy proportional to the square speed of the
traveling cloud (82. This process is comparatively slow so it would be inefficient in providing

the necessary energy to CRs.
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Figure 2.3: Hillas diagram of candidates for UHECR sources. Difterent candidates are pre-
sented according to their size and the strength of the magnetic fields. Graph
Taken from [14].

As the Hillas Diagram suggests (Figure 2.3), one of the possible type of sources for cosmic
rays up to 100 EeV are Active Galactic Nuclei (AGN), compact regions in the centers of galaxies
with high radiation activity. A diagrammatic picture of an AGN is presented in Figure 2.4. At
the core of these galaxies, there is a super massive black hole. Because of its gravitational pull,
matter falling in into it forms a rotating accretion disk from which radiation is emitted. Matter
also shoots outwards from the plane of the accretion disk in form of Jets of relativistic radiation.
Finally, a torus of dusty matter surrounds the nucleus, obscuring radiation from the accretion
disk [16]. It should be noted that AGNs can be classified into different types according to their
observation on Earth. Depending on the angle of observation to the accretion disk plane they
can be sorted as Blazars, Radio Quasars, Radio Galaxies or Seyfert Galaxies, but in reality they
refer to the same kind of objects.

Due to their complex structure, Active Galactic Nuclei present many cites for acceleration
of charged particles. The Pierre Auger Collaboration has identified a degree of correlation be-

tween the direction of Ultra High Energy Cosmic Rays and the position of AGNss in the sky
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the observed objects. Taken from [17].

[18]. However, these results were not unambiguous and haven’t been confirmed. Finally, the
different mechanisms at play provide sites for the production not only of Cosmic Ray accel-
eration, but also high energy Gamma Rays (Section 2.2) and neutrinos (Section 2.3), making

them very interesting objects for Multi-Messenger observations.

2.1.3 DETECTION OF CosMIC RAYs oN EARTH.

At this point, we have a good understanding of Cosmic Rays as they run through the Uni-
verse, before they reach the Earth. To complete the picture, now we turn to their arrival on
Earth. When the charged particles arrive to Earth, they have to pass through the atmospheric
layers before they touch the Earth surface. At the moment of arrival, they are referred to as
primaries, they interact with the atmospheric components which leads to the development of
wide-spanning showers of secondary particles. A sketch of a typical development of a shower
is depicted in Figure 2.5. When the primary interacts with the nuclei in the atmosphere, the

hadronic interaction ultimately leads to the production of light mesons, like pions 7%, The

I2



pions then decay or interact with further atmospheric components, leading to the development
of subsequent hadronic cascades, composed mainly of charged mesons, as well as electromag-
netic showers, which are composed primarily of photons and electrons. After enough interac-
tions, the particles in the shower reach a threshold energy where the decay process take over the
interactions, so the particles decay. The products of the electromagnetic shower tend to dissi-
pate into the atmosphere. Conversely, some mesons decay into muons and neutrinos, which
are highly penetrating and reach the ground as a front of the shower. Neutrinos from show-
ers compose the atmospheric neutrino flux, while muons, being charged particles, provide the
main avenue for Cosmic Ray detection on Earth.

The more secondary particles detected from the shower, more quality information is gained
to reconstruct the physical parameters of the primary incoming Cosmic Ray. Then, because
secondaries expand outwards from the axis of the primary’s trajectory, it is important to build
detectors that span a wide area on the surface of the Earth. One prominent example of such
detector is the Pierre Auger Observatory [6]. This Observatory consists of an array of Water
Cherenkov Detector (WCD) array spanning 3000 km?* in Western Argentina, with the support
of 24 Fluorescent Radiation Detectors to observe the development of the shower secondaries
in the atmosphere. This hybrid method of detection leads to clearer pictures in the reconstruc-
tion of Cosmic Ray Energies and trajectories. A similar technique is employed in the northern
hemisphere by The Telescope Array[20]. The system at place here consists of 507 surface scin-
tillation detectors (SDs) distributed in a 762 km? grid Millard County in Utah with 3 Fluores-
cence Radiation Detector overlooking the array.

It should furthermore be noted that, looking back at the spectrum of Cosmic Ray energies
(Figure 2.2), the small rate of flux at high energies require detector spanning large areas to im-
prove probabilities for detection. This is a fact that turns out to be common for all kinds of

high energy messengers.

2.2 GAMMA RAys

The processes and sources described in the previous sections lead not only to the production
of Cosmic Rays, but other kinds of prominent, high energy messengers. In this section, we
discuss Gamma Rays, high energy photons that can be produced from energetic processes in
the Universe. Photons are neutrally charged bosons, which means they do not get curved along
their trajectory like cosmic rays do, therefore pointing directly towards sources.

Gamma Rays can be produced in many manners, but we highlight two main general avenues.
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Figure 2.5: Sketch of a primary cosmic ray proton entering the atmosphere and producing
a Shower of secondaries. The different components of the Shower are shown
separately for illustrative purposes. Image taken from [19].

The first one is through what we refer to as leptonic mechanisms: electrons produced at sources
typically do not arrive to Earth. Instead they interact with galactic and extragalactic magnetic
fields as well as with lower energy radiation permeating the universe. Through this interactions,
Gamma Rays are produced. On the other hand, hadronic mechanisms typically refer to pho-
tons produced by the interactions of Cosmic rays with permeating radiation backgrounds as
well with other charged particles in the Universe. These high energy interactions can ultimately

result in mesons, from which the neutral pion 7° decays into a photonic pair.

Photons are highly penetrating, but as their energy increase, they are likely to interact with
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Figure 2.6: Image of the sky in galactic sources with the position of sources identified in the
Third Catalog of Hard Fermi-LAT Sources (3FHL) and classified according to
the speculated type of source. Image taken from [22].

background radiation in space, producing electron pairs and limiting the maximum energy
at which Gamma Rays may travel through the Universe. At low energies (below 100 GeV),
gamma ray photons are mostly dissipated into the atmosphere. Because of this, detections at
this range need to be carried out by satellites outside from the Earth. An example of such exper-
iment is carried out by the Fermi-LAT mission from NASA [21], which has obtained rich in-
formation on the full night sky, leading to a very comprehensive catalog of gamma-ray sources,

as can be observed in Figure 2.6 [22].

At energies higher than 100 GeV, and below 100 TeV, Gamma Rays are classified as Very-
High Energy (VHE) Gamma Rays. In this range, photon detections are suppressed due to
their interaction with Extragalactic Background Light (EBL), limiting the effective distance
at which we can observe Gamma Ray sources. Because of the lowered flux, satellites are in-
appropriate for detection and larger effective areas for detection at necessary. Luckily, at this
energy Gamma Rays can penetrate into the atmosphere, where the photons interact with the
atmosphere producing an electromagnetic shower. The leptons traveling downwards from this
showers through air lead to the production of Cherenkov radiation in a cone expanding down-
wards. Using this as a medium for detection, instruments known as Imaging Air Cherenkov
Telescopes (IACTs) have been devised, this type of detectors reflect the Cherenkov radiation
into Photomultiplier tubes, allowing to reconstruct a large area of Cherenkov radiation and re-

construct the incoming Gamma from said information. Relevant and operating IACT experi-
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ments include MAGIC in La Palma, Canary Islands [23, 24], H.E.S.S in the Khomas region of
Namibia [25], and VERITAS in Southern Arizona [26]. These experiments have led to a good
exploration in the Very High-Energy range, offering detailed catalogs on sources, with promis-
ing developments in the future from more sensitive planned detectors, like the Cherenkov Tele-
scope Array (CTA). The disadvantage from this kind of detectors is that, due to their reduced
field of view, they are directional, so detector need to be pointed towards sources of incoming
Gamma Rays. This disadvantage is fixed by a multi-messenger approach, using other messen-
gers such as lower energy photons from satellite experiments or neutrinos to prompt detections
from Very-High Energy Gamma ray Experiments. However, it should be noted that this exper-
iments are still limited in the distance at which they can observe sources due to the interaction
of Gamma Rays with EBL and the catalogs are restricted to this area.

Beyond the VHE range, above o.1 PeV, events are called Ultra-High-Energy Gamma Rays.
These events are heavily suppressed, therefore their detection requires instruments spanning
large areas. An example of this is LHAASO in China [27], which has been successful in identi-
tying a number of UHE Gamma Rays [28]. The mechanisms governing photon messengers at
this range are still somewhat of a mystery, but they are very interesting in the search of sources
for Cosmic Rays, since they are expected to be produced from interactions of charged particles
in the UHECR range and point directly to their production site. Nevertheless, the mecha-
nisms that limit observing distances for Gamma Rays at higher energies make it so only nearby

galactic objects are typically observable in the UHE range.

2.3 NEUTRINOS

The final messengers to discuss in this Chapter, and the central object for the context of this
thesis, are neutrinos, ». Neutrinos are neutral particles that interact seldom and only through
weak interactions. They belong to the leptonic families, typically identified by the associated
lepton that intervenes in their interaction (electron, muon or tau). The Standard Model pre-
dicts the existence of massless neutrinos, however they have been found to possess a small mass
which allows the phenomenon of neutrino oscillations, where a neutrino identified as one fla-
vor (i.e. electron neutrino »,) might oscillate into a different flavor (i.e muon neutrino »,) upon
traveling some distance [13].

Because neutrinos are neutral and interact rarely, they arrive from straight paths from the
sources of production. Many possible types of sources have been identified. Among of those

most relevant to this work are:
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1. Atmospheric Neutrinos. As explained in Section 2.1.3, cosmic rays arriving on Earth
produce showers of particles. When the particles in this shower interact and/or decay,
neutrinos maybe produced. These neutrinos span energy ranges starting from below the
GeV range and can be found at increasingly higher energies up to above 500 TeV [29, 30].
Because of their characteristics, and the volume at which they are produced naturally on
Earth, atmospheric neutrinos provide an effective source on information to understand
phenomena like neutrino oscillation [31]. They nevertheless provide a significant back-
ground for the observation of neutrinos coming from astrophysical sources.

2. Astrophysical Neutrinos. When Cosmic Rays interact with matter or radiation in their
trajectory, this results in violent processes with many different products. The interac-
tions with matter result in the ultimate production of light mesons:

p+N— 7t 4+ KF + others... (2.3)

Similarly, the interaction with radiation result in the production of light mesons like
pionsasdescribed in equation 2.2. The decay of the charged mesons from these reactions
is a direct source of neutrino production.

7 = 1+ 7,(%) (2.4)

On the other hand, neutral mesons lead to the production of electromagnetic radiation
in the form of Gamma Rays. Because the production mechanisms are connected, the
joint detection of high energy neutrinos and gamma rays provide a direct avenue to un-
derstand the mechanisms of production and interaction of Cosmic Rays, an serve as
indications of interesting activity in production sites Additionally, astrophysical neutri-
nos can occur at energies above the TeV limits currently in place for accelerators on Earth,
making them probes for physics phenomena Beyond the Standard Model [1].

Neutrinos can also be found naturally in the sun, radioactive deposits on Earth, as well as
the cosmological background [32]. Artificially, they are produced by nuclear reactors and ac-
celerators on Earth. Nevertheless, they are produced outside of the energy range relevant to
astrophysical sources, so we do not mention them in detail. All sources are however in the
energy spectrum depicted in Figure 2.7.

Although rarely, neutrinos do interact through the weak force, mediated by the W+ and
Z° bosons. Although neutrinos are neutral, the products of this interaction lead to charged
particles. This provides the main avenue for particle detection, therefore there is a need to
build instruments that are favorable to the detection of such products. The first thing to take
into account is the dimension requirements of such a detector. Waxman and Bahcall studied

cosmic ray observations to set an upper bound for the flux of high energy neutrinos on Earth
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Figure 2.7: Neutrino energy spectrum depicting the flux from the different known sources
as a function of energy. Taken from [32].

[33]. Based on their observations, and the low cross section for neutrino interactions, they
suggest that neutrino detectors need to reach an effective volume of approximately 1 km? to be
able to detect neutrinos from astrophysical sources.

The need for high volume detectors has led to the development of large-scale experiments,
embedded into large bodies of water or ice, to take advantage of the optical qualities. Further
details that motivate specifications on detectors are explored in the next chapter.

Throughout this chapter, we have explored the different messengers that carry information
about particle physics processes at astrophysical sources. We have also highlighted the diffi-
culties for their detection, particularly at high energies where they offer the clearest insight
into unexplored phenomena. However, it should be noted that this difficulty is precisely what
leads to the motivation to explore a multimessenger approach. While the sections in this chap-
ter have been presented separately, the processes that govern them are all inextricably linked,
which means thata proper model of astrophysical events will take into account the information
they can all provide together. Neutrinos are elusive, therefore it is hard to get the full picture
from astrophysical sources just from the detection of neutrinos, but they arrive directly from
sources which makes the search for them a prompt to follow-up observations from gamma-ray
observatories. Especially because at Very High Energies, IACTs need to be pointed in the right
direction, consequent Cosmic Ray observations are also very important, they offer the models

and expectations that integrate the different messengers into place.
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Overview of the IceCube Neutrino

Observatory

As explored in the previous chapter, neutrinos provide an excellent but elusive messenger for in-
formation on astrophysical sources. Because neutrinos don’t interact through the electromag-
netic force, the method to detect them consists of detecting the product of their interactions.
When a neutrino interacts, it produces charged particles that then can be detected through sev-
eral methods. Neutrinos however, interact very rarely. Therefore detectors that span a huge
volume are required to increase the probability of detection. Additionally, since astrophysical
events happen at high energies, large detectors provide an opportunity for events to deposit

more energy and therefore richer information for analysis.

A method to detect charged particles is through the use of Cherenkov radiation. When a
charged particle passes through a medium, if its speed is larger than the phase speed of light in
said medium, the particle will produce light whose wavefront will be defined by a cone in the
direction of the traveling particle. This light then can be detected by the use of photo-multiplier
tubes (PMTs), providing signals proportional to the event’s energy. In order to take advantage
of this phenomenon a detector should be built into a medium with a high refractive index while
also being transparent to radiation. Fortunately, water provides an effective medium for this to

occur, leading to the idea of developing a large volume detector built into water.
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3.1 THEICECUBE DETECTOR

It should be noted that building artificial structures that can house a sufficient volume of water
for astrophysical neutrino detection is unreasonable according to the Waxman-Bahcall bound,
at least by current technology standards. Instead the idea is to take advantage of the naturally
occurring large volumes of water likes seas or lakes, which lead to the developments of detectors
like ANTARES [34] and the currently in construction KM3Net [35]. On the other hand an
alternative is to build the a detector on the naturally occurring deep Antarcticice. Thisidealead
to the construction of the Antarctic Muon And Neutrino Detector Array (AMANDA),
which was eventually succeeded by the IceCube Neutrino Observatory [36].

3.1.1 PROPERTIES OF ICE AT THE SOUTH POLE

There are many advantages to the choice of the ice to house a neutrino detector. The Antarctic
ice in particular offers a very clear medium for the detection of Cherenkov light while also being
very still in comparison to other possible mediums like water. However, ice does trap dust
and air bubbles which offer scattering and absorption centers. Nevertheless, the fact that the
detector is positioned below over 1 km of ice makes it so the pressure of the glacier minimizes
the presence of these air bubbles.

The interaction Length for the absorption of light is significantly smaller in the Antarctic ice
when compared to water, however it still takes place. As well as the scattering on dust particles.
Both of which are not uniform throughout the volume of the detector. Because of this reason,
the IceCube Collaboration has studied these properties by using the built-in flasher in the Digi-
tal Optical Module units to test and parameterize the properties [37] with the results presented
in Figure 3.1. This Figure characterizes the effective scattering and absorption for light at 400
nm throughout the depth of the IceCube detector positioned between 1450 and 2450 km of
depth. Although the distribution is fairly stable, the existence of a peak is to be noted at around
2000 meters of depth. This peak in absorption and scattering can be attributed to a layer of
trapped dust observed in the ice [38] accumulated in the history of the formation of the ice at
approximately 65000 years ago.

The ice is the medium in which detections for IceCube take place, and the proper under-
standing of its properties helps contextualize events, as well as create simulations that are re-
alistic to observations. Because of this, IceCube continuously performs studies refining the

estimation of the properties studied in this section
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Figure 3.1: Effective absorption an scattering coefficients for light at a wavelength of 400
nanometers. The solid line represents the SPICE MIE model for the ice obtained
by using the IceCube DOM flashers, with the shaded area covering the uncer-
tainties. Additionally, the dotted lines represent the Additional Heterogeneous
Absorption (AHA) model from the ice description obtained years prior in the
context of the AMANDA detector. Image taken from [37].

3.1.2  STRUCTURE OF THE ICECUBE DETECTOR

TheIceCube Detector is located on the geographic South Pole. The IceCube Laboratory (ICL)
is found on the surface of the ice and is dedicated to housing the South Pole system that handles
data acquisition and filtering software. The full operational detector then consists of three

distinct parts: the in-Ice Array, DeepCore, and IceTop [36].

The main section of the detector is the In-Ice Array, 78 vertical strings are deployed from
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the surface of the ice into a depth of 2500 meters. The effective detector volume is contained
between 1450 and 2450 meters below the surface. In this range, each of the strings includes 6o
Digital Optical Modules (DOM:s), which are the main unit of the detection in IceCube and
responsible for recording light pulses from events. Strings are separated by 125m from each
other, and the DOMs in each string have a vertical spacing of 17m.

Then, 8 additional strings are deployed as part of DeepCore, a sub-array within IceCube
designed for the detection of lower-energy neutrinos (5 GeV to 100 Gev). The DeepCore array
of DOMs are placed in a more condensed range, the bottom 50 DOMs in each string are placed
with a vertical spacing of 7 meters from each other between 2100 and 2450 meters. then the
remaining 10 DOMs are place above a depth of 2000 with a spacing of 10 meters and act as a
veto. DeepCore’s design is optimized for atmospheric neutrino oscillation experiments among
other physical problems [39].

The final component of the detector system is IceTop, a cosmic ray air shower array located
at the surface of the ice. This array is composed of 81 stations, each consisting of two tanks
filled with a height of 0.90 meters of ice. Each of the tanks also include 2 DOM:s for detect-
ing Cherenkov radiation produced by incoming charged particles. The main purpose of the
IceTop array is to detect primary cosmic rays in the PeV to EeV range, although this is lim-
ited by the reduced size of the detector. Additionally, it also serves as a veto to reject vertical
atmospheric events that reach the in-Ice array.

The sketch presented in Figure 3.2 shows the different parts of the IceCube detector, pro-

viding a full overview on the system described in the previous paragraphs.

3.1.3 DicitaL OpticaL MoDULES (DOMs)

The units for detection deployed throughout the length of the strings in the IceCube array are
called Digital Optical Modules (DOMs). These electronic structures where developed by Ice-
Cube to house the full system for receiving photons and communicating signals. The Modules
are housed inside a spherical shell of 13” in diameter. The shell is made of pressurized glass, that
can withstand the pressures at over 1500 meters of depth in ice[36]. An image depicting the
structure of the DOM is presented on Figure 3.3.

Each DOM houses a downward-facing photo-multiplier tube (PMT), 10” in diameter, de-
veloped by Hamamatsu. Each of these PMTs are capable of detecting light in the range of 300
to 650 nanometers of wavelength, with an efficiency of 25% at 390 nanometers. When a pho-

ton is received by the PMT it propagates through the neck of the PMT where the amplification
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Figure 3.2: Schematic of the IceCube detector, depicting the In-Ice Array, DeepCore, Ice-
Top as well as the IceCube Laboratory. Taken from [36].
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Figure 3.3: Schematic of the Digital Optical Module (DOM), Left: The internal structure,
including the photo-multiplier tube (PMT) and the electronics systems. Right:
Schematic of how DOM:s are deployed along a string.

process produces a distinct signal.

The DOM also houses a system of electronics, including a High Voltage system, a Main
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Board, a Delay Board, among others [36]. The High Voltage system is responsible for setting
and reading the voltage to and from the PMT. The Main Board on the other hand is in charge
of the main operations in the DOM: control of the components, calibration, communication
with other DOMs and the data acquisition system on the surface; as well as sampling and digi-

tizing the PMT waveforms.

When the PMT signal crosses a threshold corresponding to o.2.5 photo-electrons, the system
records a waveform for photons arriving up to 6.4 microseconds later [40]. At this point, the
DOM defines this as a hit”. When a DOM receives a hit, it communicates through cables
to the adjacent modules on the string to check for local coincidences. If a hit is detected on
neighboring or next-to-neighboring DOMs within 1 microsecond, this is defined as a hard local

coincidence and the full information of the pulse waveform is sent to the surface.

The system additionally contains a Flasher Board capable of generating light for calibration
purposes, measuring PMT positions, as well as checking the properties of the Antarctic Ice.
The electronics boards are set in place, being bolted down to the PMT structure which is se-
cured in its position inside a silicone gel that surround the entire photocatode area, mechani-
cally supporting the PMT. This gel’s refractive index matches the glass sphere, so that the re-
flection when light passes from the glass into the gel and the PMT is minimal into the gel is
minimal. Additionally a Mu-Metal cage surrounds the PMT to ensure magnetic fields do not
interfere with detections. The whole internal system as a whole is put in place to ensure a fixed

system that works properly for detections.

Approximately, 5500 DOMs were delivered to the South Pole, of which 5484 have been
deployed in the detector. From this, 55 modules have failed due to malfunctions early in the
deployment process, possibly due to water leaks or freeze-in damage. After deployment, 32
more DOM:s have failed during regular operation, with no discernible pattern except for the
failure occurring during non-standard events such as a power outage, a filesystem upgrade or
during calibration runs. At a mean failure rate of 4 DOM:s per year (eftectively less than 2 per
year in recent time), around 97% of the DOM:s are expected to be functional after 25 years of

original deployment in 2006 [36].

As explained in this section, the DOMs represent the essential detection unit of the IceCube
Observatory. Events will be recorded in the system as a collection of signals in many DOM:s in
coincidence. This signals in coincidence then take many shapes and signatures depending on
which modules are activated. Therefore, identifying the characteristics that form these differ-

ent event signatures is key to understanding how IceCube detects a variety of physical events.
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3.2 CHARACTERIZATION OF EVENTS INICECUBE: TYPES AND

SIGNATURES

IceCube records the detection of neutrino as events. These events are defined by a grouping
of signal pulses received by the DOMs in coincidence. In order to properly characterize these
events, we have to understand how IceCube looks at events in the sky. The direction of events
passing through the detector are characterized by the The zenith angle, 4, measured from the
detectors vertical axis, pointing out of the surface of the Earth at ¢ = 0, and the azimuth angle,
@ which defines the projected direction on the horizontal plane of the detector.

These definitions then allow us to define two categories important for IceCube detection:
up-going and down-going events. An up-going event is, as the name describes, an event passing
through the Earth and towards the surface of the ice through the detector. Typically described
by a zenith angle & > 82°. Because up-going events detected in IceCube have to pass through
the Earth, the muon background is mitigated as the muons get absorbed into the Earth and
events in this direction can offer clearer reconstruction of high-energy astrophysical events.

Conversely, down-going events come from the Southern Sky and enter through the surface
of the ice, with zenith angles & < 82°. Because particles coming from this side have to traverse
less distance inside of the planet, the muon background can enter the detector. Therefore,
events coming from this part of the sky are subject to more complex analysis to overcome this
background and offer clearer reconstructions.

In IceCube, there are about 100,000 neutrinos detected each year. Out of these, typically
10 come from astrophysical sources, with the rest forming the neutrino background coming
from every direction. For every neutrino detected, there are approximately 1 million muons
detected, the majority of which come from the Southern sky as explained previously.

A simplified graph depicting up-going and down-going events is oftered in Figure 3.4

3.2.1 TYPES OF NEUTRINO EVENTS AND SIGNATURES IN THE DETECTOR

Neutrinos, being charge-less particles, cannot be detected directly . Instead, they must be ob-
served through the charged products of their interactions. When a neutrino arrives in the
Antarctic ice they can interact through different processes that offer distinct detections at Ice-
Cube. Charged Current (CC) interactions occur when the neutrino interacts with the particles
in the ice, via an intermediary charged boson w+ producing a charged lepton which is then

detectable by the PMT array through Cherenkov emission:
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Figure 3.4: Simplified sketch of particles arriving to the detector volume evidencing the dif-
ference between up-going events (coming from the Northern Sky) and down-
going events (coming from the Southern Sky) In the IceCube detector. Atmo-
spheric muons (purple) ans neutrinos (green) as well as astrophysical neutrinos
(orange) are presented to show how this two types of events have different charac-
teristic backgrounds.

1/1+XE>Z—|—X

Additionally, neutrinos can interact via the intermediate Z° boson in what is called a neutral

current interaction.

V1+X£> v+ X

Both of these type of interaction can occur for the three lepton families I =e, #, 7. At the
energies IceCube operates, both types of interactions occur through Deep Inelastic Scattering
(DIS), which leads to a portion of the energy being deposited into the components of the in-
teracting nucleons, leading to jets of hadrons that can produce signals in the detector. DIS
can occur for both NC and CC interaction, but they can be identified depending on the mor-

phology of the event as detected in IceCube. Several of the typical morphologies are shown in
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Figure 3.5 and detailed in the following sections.

(a) Up-going Through

muon track

(c) Cascade Event

i

(d) Muon Bundles from an (€) Tau Double Bang (f) Two coincident low en-
Air Shower ergy muons

Figure 3.5: Different kinds of event signatures identified in IceCube. Each bubble repre-
sents 2 DOM activated by the event. Sizes increase with the amount of charge
registered at each module, while the color represent the time of detection from
red (earliest) to blue (latest)

CASCADES: ELECTROMAGNETIC AND HADRONIC

Cascades can be produced by the decay of the hadronic products from either NC or CCinterac-
tions as well as showers produced by the electron or tau leptons produced in CC interactions,

where the tau can as well decay into electrons or hadronic jets *. The full development of a

"For tau at very high energies, IceCube will detect a ’Double Bang”3.se. The first part of this morphology
corresponds to the production of the tau lepton, while the second one comes from the following decay.
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cascade is composed from the original interaction as well as any subsequent decays along the
development of the event.

Electromagnetic cascades occurs as the charged particles are scattered and deflected in the ice.
Because of this characteristic, the light is spread out in a spherical manner. Similarly, hadronic
cascades occur as particles decay inside the detector, producing different types of particles, in-
cluding muons from meson decays. These are not energetically enough to be confused with
high-energy events and instead their signature form an important part of the reconstruction of
the cascade signature.

Although these types of events develop over some distance inside the detector, by compar-
ison of the full development, they tend to appear spherical with a centered interaction point.
This makes it more likely that a cascade event will be contained inside the detector, therefore
the full energy of events is usually well registered within the DOMs. This characteristic makes
it so that the energy of events is well reconstructed (with an average uncertainty of approxi-
mately 10% [41]) Conversely, also because of the shape, the general direction of the event is
more difficult to reconstruct, with high uncertainties. Searches for sources using these types
of events have to take all of the mentioned characteristics into consideration when performing

analysis and show increasingly effective results [42].

Mvuon Tracks

As opposed to cascade events which are spherical in shape, another distinct kind of events
are called track events which can usually be seen developing from an identifiable straight line
through the detector. Muons are the only kind of particle able to produce this track morphol-
ogy due to their small cross section with matter. The In contrast to cascade events, track events
offer better angular resolution when compared to cascade events due to the identifiable long
lever arm of the event. In fact, the average resolution for this type of events is around 0.6 °[36].
The main purpose of IceCube is to detect muons coming from CC interactions of muon neu-
trinos, but they can also be produced from the decay of tau leptons coming from the tau neu-
trino CC interaction, as well as atmospheric muons from air showers, the latter of which creates
a significant background for track events.

Because of the quality of the angular resolution in track events, they are excellent to point
towards astrophysical sources. Therefore they are the focus of this thesis. There are three dif-
ferent types of tracks that can be identified in the detector depending on their location:

* Through-going tracks. Tracks generated by muons produced outside of the detector
volume and passing through before decaying outside.
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* Starting Tracks. For this type of track the neutrino interacts within the detector volume
so the detector captures the start of the track. These type of tracks allow IceCube to work
as a calorimeter.

* Contained Tracks. These type of tracks develop from interaction vertex to final decay
inside of the detector geometry. Because most of the muon energy is deposited in the
detector, the energy reconstruction of this events is the most accurate.

* Stopping tracks. Muons are produced outside of the detector and lose their energy
inside of its volume, eventually decaying.

* Skimming tracks. These refer to muons that pass near the detector but don’t directly
enter its volume, the Cherenkov light they produce is however perceived by the modules.

It should be noted that the last two events presented in Figure 3.5 are also produced by
muons entering in the detector. Nevertheless, they are unlikely to correspond to astrophysi-
cal sources. The first one (3.5d) is a combination of muon events coming from an air shower
produced by a cosmic ray proton, producing a full event that corresponds to the background
of more interesting events. On the other hand, the other signature (3.5f) corresponds to two
atmospheric muons crossing the volume in a short window of time. Although these events are
usually too low in energy to survive the data acquisition system, their coincidence can be mis-
construed for a full track. This types of possible background events need to be considered in
the data acquisition to properly identify interesting events. The process through which track
events are filtered is detailed in Chapter 4.

In general, the energy reconstruction for track events is worse than for cascades. An estimate
of the energy is made by understanding the loss of muon energy along the tack and obtaining
an initial estimate for that. However, because muons coming from outside the detector are pro-
duced at an unknown distance, like those of through-going tracks, the energy reconstruction
can only offer a lower bound for the neutrino energy. Methods currently in place for energy
and angular direction reconstruction are explained in the next section while the rest of this work
focuses on the implementation of an algorithm to improve this reconstruction in the context
of the Real Time Alert System.

The tracks described in this section are a collection of electrical signals forming a picture that
correspond to physical events. But in order to characterize them properly, the system needs
to use the information provided by the signals to reconstruct physical parameters. The most

important of which are the energy and the angular direction of events.
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3.3 RECONSTRUCTION METHODS FOR ICECUBE EVENTS

As explained in the previous section, different types of events produce different track mor-
phologies. This occurs as a result of the nature of the particles and interactions involved in
the detected events. This also means that depending on the type of event, different processes
are used to infer the original physical properties from the raw data in the DOMs. Starting at
this section, the work presented in this thesis focuses on events in IceCube that produce a lin-
ear track morphology in the detector. Thereby, the items explored will focus on events that
are likely produced by a highly energetic muon crossing the detector. With this hypothesis in
mind, this section explains different methods currently implemented in IceCube for the recon-

struction of angular direction and energy for muon events coming from the detector volume.

3.3.1 RECONSTRUCTION OF ANGULAR DIRECTION

There are many different methods for reconstructing the direction of events based on the signal
received. The many different methods currently in place have advantages over each other based
on the speed of their implementation for the online reconstruction of events, as well as the
precision.

The most basic among this is the so called LineFit Method. This methods models the
muons central track in a very simple way. Considering a muon that passes a position 7 at a

time #, with a velocity 7, the position at time t can be expressed as:

) = 7o(50) + (2 — 5)d (3.1)

Then, a fully defined track is obtained from the position and velocity parameters of the track.
Then, assuming the signal pulses in the DOM:s are produced by plane waves, the LineFit algo-
rithm minimizes the square distance x; between a DOM activated at time ¢, and the position of

the muon along the track as given by the following expression.

Z |17:(2) — % (3.2)

This method is quick for reconstruction because the above expression has analytical solu-
tions for all the reconstruction parameters [43]. Therefore the determination of the track can
be made very quickly. As a final result, this algorithm offers a rough estimate of the direction as

well as an estimation of the velocity of the particle. The latter can be then used as a parameter
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Figure 3.6: Sketch of a cone of Cherenkov light emitted along a muon track at an arbitrary
point in space 7 and time #,. Also in the sketch a Digital Optical Module that
detects the Cherenkov light at an arbitrary position. Image taken from [44]

for event selection. On the other hand, the angular estimation of direction then acts as as a

starting point for more refined calculations of event direction.

In order to obtain a better estimation of the direction, the Single Photo-electron Fit (SPE)
fitimplements a more realistic model of the light emission. According to the Cherenkov model,
a high-energy muon traveling in ice at a speed larger than the phase space in the medium pro-

duces light in a cone defined by the Cherenkov angle:

cosf, =

1
- 33
. (3
where 3 is the velocity of the muon (£ ~ 1for relativistic muons, and n is the refractive index

in the ice (n ~ 1.32). Then, along the muon track, #, and 7y define the time and position at

which the muon emits the cone of Cherenkov light. A full sketch can be seen on Figure 3.6.

Taking in mind this simplified model of Cherenkov emission, the algorithm defines the ex-
pected time #,,, and the #,,, residual time between this and the actual detected time of observa-

tion.

v(ry — x;) + dtand,
Lew = Lo + ( : 3 (3.4)
0
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Lreg = Lobs — tgm (35)

With this definition in mind, the SPE method implements a maximum likelihood test for
the time residuals to correspond to a specific set of track parameters (Equation 3.6). From the
way it is currently implemented, a first hypothesis for the likelihood comes from the LineFit

Model. Full details on the minimization function are explored in [44].

N
L= le(trfj,i’};(ga 6) ¢) (36)

n=1

The SPE method will only take into account the first photon detected at each DOM. This
works on the reasoning that the first photon is the least scattered and provides the most quality
information. However, because of this, the method has shortcomings at higher energies, where
turther photons at each DOM provide quality information from the event’s structure. In this
case the Multi Photo-electron Fit (MPE) method is applied by modifying the expression for
the Likelihood.

N inf Ni—1

L= H N; P (tm,i> ' Pl(tre:,i) (3-7)
n=1 res,i

A further refinement in the reconstruction of angular is performed with the Spline Multi
Photo-electron Fit (SplineMPE). For this method, the analytical function for the expression
of the parameter p; is replaced by interpolating splines*. These Splines have been prepared
based on simulations of photon propagation on the ice sheet. This method allows the recon-
struction to take into account the structure-dependent properties of the ice in an effective quick
way, that allows for the methods to be implemented on online reconstructions.

Further improvements to the angular reconstructions algorithms that take into account
more refined models of the ice as well as the stochastic energy losses that might affect the shape
of the reconstructed track [46, 47]. Some of these further improvements take into account
segmented models for the ice interactions for more accurate adjustments or combine different
versions of the previously mentioned algorithm to increase speed of reconstruction and opti-

mize the estimation for further parameters.

*Splines [45] are piece-wise functions defined by polynomials so that they are continuous up to a certain or-
der. They are very useful to fit and save values for simulations like in this case. Particularly, the reduce memory
consumption and execution times.
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3.3.2 RECONSTRUCTION OF ANGULAR ERROR

Besides the reconstruction of the angular direction, another important parameter to obtain
for the physical events is the angular error of said reconstruction per event. Besides offering a
region around the direction of events to search for point sources, the angular direction ofters an

important parameter in statistical analysis for determining how well events are reconstructed.

Although a general error estimation for every track could be applied in order to determine
this parameter, a proper error reconstruction for tracks needs to take into account the circum-
stances of each event. For this reason, methods that reconstruct the direction for each event is
necessary. There are three main methods currently in place for the reconstruction of angular

€rror.

The first method involves the application od Cramer-Rao’s inequality. [48, 49] Taking
the parameters from the reconstructed track of the muon event, this method states that the
covariant matrix is bounded by the inverse of the Fisher Information matrix I(«7, #;), where ¥

refer to the reconstructed track parameters ¥ = (7o, 9, @):

R )
](xi,xj) = —(m log[,(x|tm)> (3.8)
Cov(x;, %) > I(x;, )" (3.9)

the diagonal elements of the covariance matrix offer estimates for the variances for the zenith

and azimuth (o3, a%p) In a way that a circularized error can be effectively defined [44].

a5 + a%sin®f

c=\— (3.10)

Fortunately, the covariance matrix elements can be determined from analytical expressions.
Since there is no need of numerical minimization, it is the fastest method of approximating the

angular error. However, it is also the least precise.

On the other hand, a more detailed approach is oftered by the Paraboloid Method.[s0] As
the reconstruction of the direction of the muon event is performed by a likelihood function,
the shape around the likelihood extrema of said function is expected to be related to the angular

resolution. By modeling the function as a Gaussian for which the standard deviation can be
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estimated by [44]:

—logl(x £ 0,) = L(x) 4+ 0.5 (3.11)

By using the zenith and azimuth of the parameters as definitive in determining the shape
of the likelihood, a paraboloid fit of the extrema can be used to determine the angular error.
In order to obtain this fit, a sample of 24 points are taken. Then after minimization the error

taken is reported as

o=\ — (3.12)

This method yields the best estimation of the error, making it the choice by excellence in
offline analysis. However, this requires a number of numerical minimization that make it im-
proper to be implemented perfectly in online analysis.

Finally, the last method takes a Bootstrapping approach [51]. This kind of method takes
the parameters that characterize the track of the event and randomly re-sample some of the
parameters requiring the total charge recorded by the DOMs to be the same as the original
event, then reconstructing a nw track from this re-sampling. This process is repeated many
times, so that the system obtains a sample of tracks defined by the sub-sampling of a single
event. Finally, the median separation between the re-sampled tracks and the original can be

taken as an estimation of the angular error.

3.3.3 RECONSTRUCTION OF ENERGY

In the previous section, we evidenced the algorithms for the reconstruction of angular direc-
tion of events. Now, we turn our attention to the energy of the events. A well-reconstructed
energy parameter can be useful as a discriminator between background and signal events. Ad-
ditionally, an event with a well-defined energy is useful to study the spectrum from neutrino
sources, making it a fundamental part of the analysis.

Nevertheless, it should be acknowledged that signatures detected in the volume of IceCube
correspond to a part of the event. Neutrino interactions are likely occurring outside of the
detector volume at an unknown distance, generating through-going tracks from which only
the muon energy in the detector can be measured, at the very least offering a lower bound on
the neutrino event.

Events passing through IceCube produce near-constant light emissions which scale linearly
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with the energy of the event. Thanks to this, a reconstruction method can be devised starting
from the light yield of reference simulated events (usually of around 1 GeV), scaling from those
through template functions that take into account the detector response and the ice properties
[s2]. If an event produces A photons per unit energy, the number of detected photons is ex-
pected to follow a Poisson distribution with a mean of A = AE. Therefore, the likelihood that
an event of True Energy E produces k photons can be modeled as:

2>,

L= e (3.13)

by adding noise depositions and other possible contributions, A — AE + p, where p is the

expected number of noise photons. The function of the likelihood to maximize becomes:

log £ = klog(EA + p) — (EA + p) — log(k!) (3.14)

The maximization of this expression does not have an analytical solution for all cases, in case
different algorithm have to be implemented while considering the most appropriate models for
the template function A.

A first approximation comes from the MuEx (Muon Energy Estimation) method. This
considers the muon to emit Cherenkov light in an uniform manner along its track. Then, the
only dependence between the number of detected photons k at any DOMs s to the distance
from the track. Near to the track, the dependence will go like 1/r, due to a dominance of absorp-
tion processes over scattering ones, while at larger distances, the behavior is approximated and
made compatible with the lower distance regime by use of simulations and data benchmarks
[52]. The model then consists on simply maximizing the expression for the likelihood taking
into account these models of production. The accuracy of the method then also depends on
taking into account other possible stochastic emissions.

An alternative reconstruction is the Truncated Energy method [53]. In order to estimate
the energy, this technique starts by segmenting the energy track. Based on the principle that
the mean energy loss of the muon (dE/dx) is directly related to its energy, the method will
calculate the energy at each of its segments to estimate the full energy of the muon track. The
segments are defined at approximately 120 meters to be similar to the distance between the
DOMs. The cuts are designed to include the modules with the most robust estimates of the
energy, meaning not the one closest to the track and definitely excluding those further than
8o meters . The track hypothesis obtained from SplineMPE reconstructions are used to define

this tracks and then the likelihood shown previously is maximized for every segment. Finally,
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an extrapolation is made for the muon energy. By coming from different segments, this method
is robust with respect to the stochastic variations happening from segment to segment.

This Truncated method is very effective at providing accurate energy readouts, with the dis-
advantage of requiring large enough tracks to be consistent. On the other hand, the MuEx
method is consistent at every track length. Because of this, it is usually presented as a bench-
mark in studies that cannot make the quick distinction between tracks, particularly Real Time
studies.

Additionally, in recent times there have been methods that take advantage of machine learn-
ing algorithms to reconstruct the energy based on the training with simulated events. A widely
implemented example of this is presented in [54]. In that work, they explored the use of Con-
volutional Neural Networks (CNNs) on energy reconstruction for Cascade Events (For a brief
explanation on CNN, see Section 5.1.1). CNNs were first applied on image data and are able
to offer predictions based on the properties of pixels of data and those of their surrounding
pixels. IceCube Events can be extrapolated into an image’s framework by considering DOM:s
as pixels with properties representing the charge of pulses as well as time of arrival.

This Neural Network method takes in data from an event and divides it into arrays represent-
ing the In-Ice Array and the columns of DeepCore. To normalize the hexagonal structure of
the IceCube detector, the In-Ice array is approximated to an orthogonal structure with padding
corners set to values of zero. Then, the input consists of arrays containing information for all
the DOMs, including the padding ones. the features that express this information are for each
DOM:

1. Total DOM charge

2. Charge within 100 ns of the first pulse.

3. Charge within 500 ns of the first pulse.

4. Relative time of the first pulse.

5. Time at which 20% of charge is collected.

6. Time at which 50% of the charge is collected.

7. Time of last pulse.

8. Mean Time of pulse arrival weighted by charge.

9. Standard Deviation of the mention Mean Time of pulse arrival.
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Figure 3.7: Correlation between true deposited energy of simulated events and the energy
reconstruction offered by standard methods (left) and the CNN method (right).
Residuals are presented showing how well the reconstruction adjusts to the data.
Plots taken from [54]

These 9 parameters are used to account for the full picture of events in a wide energy range,
while keeping the input structured as a CNN requires. Then, after the CNN is trained it is
ready to perform the task of Energy reconstruction. Results from implementing trained net-
works for energy reconstruction in cascade events are presented in [54] (As seen on Figure 3.7).
These results show the performance of this kind of algorithm when compared to traditional
likelihood methods on cascade events. The Neural Network shows a more robust performance
on reconstruction with less outliers. It should be noted that some bias is observed in the edges
of the region of estimation, which can be attributed to biases on the boundaries of the dataset.

Additionally,it should be noted that this method improves substantially on the runtime of
energy reconstruction methods. The CNN has a median runtime of 0.024 seconds per event
when compared to standard reconstruction methods at 10s making them very interesting for
applications to online data-taking [54].

With thisidea in consideration, the next chapter explores the structure of the Real Time Alert
System, which is a framework in place for filtering and reconstruction of events during online
data acquisition. Particular emphasis will be placed on the algorithms currently in place in the
system, focusing again on muon track events; as well as the timing requirements presented for

such a system.
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The IceCube Real Time Alert System

In Chapter 2, We have explored the discipline of Multimessenger astrophysics, explaining how
an approach of this style is useful at providing rich information about the astrophysical sources
and processes. However, in order for this approach to be effective, the scientific community
capable of detecting the different messengers needs to be observing sources in a similar time
window. In this context, IceCube serves as an excellent starting point from which to prompt
observations. The IceCube detector is sensitive to events from the full sky while being consis-
tently operational and taking data at a rate of 99.8% of the time [55]. This allows IceCube to
be constantly on the lookout for events of note.

Taking advantage of this, IceCube can serve as a system that triggers follow up searches for
astrophysical phenomena from observatories all over the world. For this purpose, the collabora-
tion has set up a RealTime Alert System that quickly identifies these significant events during
data acquisition and reports them as alerts for the scientific community. IceCube sends dif-
ferent types of alerts through public and private channels which are mainly sent through the
Astrophysical Multimessenger Observatory Network (AMON) as notices in Gamma-Ray Co-
ordinate Network format (GCN)[56, 57]. These notices include the energy, direction, angular
uncertainty and probability of the event potentially coming from an astrophysical source. All
of which need to be reconstructed eftectively and quickly after data acquisition.

This work develops specifically in the context of the Gamma-Ray Follow Up (GFU) Pro-
gram [58]. This program is based on the fact that Astrophysical sources of gamma rays are

believed to be sources of high energy neutrinos as well. Therefore, GFU searches for neutrino

39



flares whose direction corresponds to the location of sources of gamma rays from known cata-
logs. The GFU selection processes large amounts of data during data acquisition. However the
number of full alerts per year is considerably small, at approximately 1o alerts per year. These
alerts are sent privately to Gamma Ray Telescopes that form part of the program which include
IACTs like MAGIC [23, 24], VERITAS [26],and H.E.S.S. [25].

The datasets we use for energy reconstruction in this work comes from the context of these
systems, therefore this chapter describes the data processing that occurs in the context of the
RealTime Alert system. In the following sections I present the architecture of the system and
the steps for filtering and reconstruction of events that produce the samples a energy recon-

struction system would have to run on.

4.1  STRUCTURE OF THE REALTIME ALERT SYSTEM

This section provides an outline of the processes involved in the Real Time alert system, as vi-
sualized on 4.1. at the start of the process is the signal produced in the PMTs at each of the
DOM:s, each of this digitizes the waveforms received in order to be processed. The data in this
form is then passed through trigger processes that group electronic signals by physical events.
Then, passes through filters that select data by quickly reconstructing parameters in a coarse
manner, reducing the dataset progressively until they arrive to the final GFU filter. The end
result of which is a sample with well reconstructed parameters. If an event or a cluster of events
then crosses a significant threshold, an alert is sent.

The process then aims to reduce quickly the enormous volumes of data flowing through the
IceCube detector by identifying well-reconstructed muon track events. The triggers and filters

in place are detailed in the following sections.

4.2 LEVEL 1 TRIGGER

The first step in the real time system is the Level 1 Trigger that aims to select detected events
by identifying groups of coincident pulses on nearing PMTs. When a pulse is perceived in a
specific DOM, the internal software of the module checks for the "Hard Local Coincidence”
(HLC) condition[36]: If a signal is detected on neighboring or next-to-neighboring DOMs
within & 1 s of the pulse, the hitsatisfies the condition and the full digitized waveform is passed

to surface computer. Otherwise, it is considered as noise and only the amplitude of the is passed.
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Figure 4.1: Scheme of the procedure in place for real time event selection and reconstruction.
The algorithms in place occur at different stages that flow in the direction follow-
ing the arrow in the graph. Blue boxes correspond to reconstruction steps while
orange boxes correspond to filtering steps. The resulting approximate data rate
after each filter is presented on the right. This chart has been adapted from the
one presented in [44].

This information is then passed to the Simple Multiplicity Trigger (SM'T-8) which checks
for at least 8 HLC hits during a sliding time window of s us. If this condition is met, a time
window for data acquisition is started, whose end comes once the sliding time window does not
contain HLC hits. This gets combined with other trigger time windows into a global trigger
time window with the hope of identifying the full shape of a physical event. The hits recorded
during the time window are then passed to base processing as Data Acquisition Events (DAQ

Events). The median trigger rate for these events is quite large (2.7 kHz) at which point they
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need to be processed to properly separate significant events from the background

The previously described trigger condition is quite conservative and aims mainly at eliminat-
ing noise from the data. Because DAQ Events are accumulated in time, they might correspond
to multiple particles detected in the same window. These events need to be separated using a
Trigger Splitting method. By taking information from the SMT-8, the system identifies sin-
gle events by identifying time separations between clustered events. Because this trigger splits
events in time but not space, events in different parts of the detector occurring at the same time
are still processed as a single event. This is inappropriate for event reconstruction and should

be split further in the Real Time reconstruction.

4.3 BASEPROCESSING AND MUON FILTER

After the first trigger is done processing, the system still has a large input of events shall be
further processed by analysis in IceCube. For the purpose of the Alert system, the amount of
events needs to be trimmed down and event parameters need to be reconstructed. To satisty
these requirements the next step in the system’s architecture is Base Processing. The main
objective at this point is to work with the hypothesis that the detected events correspond to a

track morphology to reconstruct the direction from which the event originated.

At this point the algorithm executes the simplest methods outlined in section 3.3.1, the Lin-
eFit which then feeds the initial seed of the SPE method. As a result, the system identifies the
direction parameters from the reconstructed track as well as the maximized likelihood that it
corresponds to the physical event. Using this information, the system needs to reduce the vol-
ume of data by selecting the events which most likely correctly correspond to a muon track.

This is what is called the Muon Filter.

If the reconstructed direction indicates that the event is a candidate for an up-going muon *,
the likelihood value is used as a measure of the quality of reconstruction to discriminate shower-
like events. For down-going candidates, the event rate is larger due to the volume of the back-
ground atmospheric events. Considering that the astrophysical neutrino spectrum is harder

than the one for atmospheric muons (77(/”]’1”) RS -2 VS ;/(”””) ~ -3.7 ), the filter selects events based

2
on the total integrated charge of the track (Q,,), depending on declination. The full criteria is

'Reminder that an up-going muon arrives from the Earth core and up the detector while a down-going muon
enters the detector from the top of the detector. (See Section 3.2)
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as such:

]i?gi <87 for —1.0 < cos8< 0.2,
ch
log Qe > 3.9cos0+0.65 for 0.2 <cosf <0.5, (4.1)

log Q;y > 0.6cosd+2.3 for 0.5 < cosd < 1.0,

At this point, the rate of events is reduced to 40 Hz. These events can be sent daily through
satellite links to data warehouses in Madison, WI where they can be used for offline analysis.
Additionally the rate at this point is low enough that more complex operations are able to be

performed as part of the real system.

4.4 ONLINE LEVEL 2 FILTER. RECONSTRUCTION AND FIL-

TERING

After the Muon Filter, the system has been able to identify muon tracks with a reasonable rate
for data transfer and offline analysis. However, the Real Time studies taking place at the South
Pole require further filtering and reconstruction. This is the work that occurs as part of the
Online Level 2 Filter. It receives this name being the next step after the Level 1 Trigger and

Processing while also occurring during online data acquisition.

As mentioned in Section 3.3.1, the SPE fit performed before the Muon filter is effective at a
coarse track reconstruction. With the results obtained from this fit as a new first seed, the MPE

algorithm runs over the reduced dataset to better reconstruct the physical tracks of the events.

This new determination of event direction is enough to provide a more stringent selection
(Online L2 Selection). A similar type of cuts is applied as during the Muon Filter, but with
a more strict criteria as detailed in [59]. With this cuts applied the event rate is reduced from
40Hz to 6 Hz. At this point the direction is finally reconstructed using the SplineMPE algo-

rithm which is very efficient at the current volume of data.

During this section, the Energy is reconstructed by using the SplineMPE hypothesis track
using the MuEX and Truncated methods explained in section 3.3.3. Finally, at this stage the
full reconstructed event is passed into the final steps of the RealTime alert system, called the
GFU filter because of it being developed traditionally for the Gamma Follow-Up program, but

now applied more generally as a selection in IceCube for different analyses.
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4.5 GammAa-Ray Forrow-Upr (GFU) FILTER

At this stage of the Online system, the filtered sample consists of events reasonably expected to
correspond to muons passing through the detector. However, the selection at this point will
still include of a majority of misreconstructed down-going particles produced in air showers.
This events need to be filtered out by more sophisticated algorithms. The so called Gamma-
Ray Follow-Up (GFU) Filter aims at performing this task. After this filter is applied the final
reduced rate of events goes down to 6.5 mHz or around 200000 events per year and will consist
in its majority of well reconstructed significant track events.

The main filtering mechanism applied during this selection consists of the implementation
of a Boosted Decision Tree (BDT) algorithm. This type of algorithm aims at classifying data
by implementing a set of gradually more specific binary decisions based on an elements char-
acteristics, in the end assigning a final value, based on the decisions starting from the stem of a
tree and going to the most outward leaves. The Boosted part of the name refers to the process of
gradient boosting, that allows the tree to make errors in their predictions. Then, the algorithm
trains a new tree that aims to solve the discrepancy from the previous tree. This occurs in a
sequential manner until a series of trees is combined to offer final classification data.

In the case of the GFU filter, the BDT takes the events from the previous filters and uses a set
of different variables from the reconstruction to assign to each a value of probability that the
event is effectively a signal. This is then used to automatically make the decisions that filter out
the events. It should be noted that the implementation of the BDT is different for up-going
and down-going events, taking into account the volume and characteristics of each grouping

of events.

4.5.1 THE NORTHERN SKY (UP-GOING EVENTS)

The northern sky is defined in IceCube as the part of the sky from where up-going events are
coming from. Remembering that up-going events are those that pass through a significant sec-
tion of the planet before interacting with the detector, this filter treats them with a similar cut
as the Online L2 Filter (with a zenith angle of > 82°). In this section of the sky, the back-
ground of events which need to be excluded from the sample consists of down-going events
not reconstructed properly, and misidentified cascades. And therefore the following variables

are used as classifiers on the BDT [44]:

1. Goodness of Track Likelihood. The Likelihood maximized from the SplineMPE angu-
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lar reconstruction fitis normalized to the number of modules and then used as a measure
of compatibility for the event to fit a well-reconstructed track morphology.

Shape of the Likelihood. By using the Cramer-Rao method of angular resolution, the
system obtains a measure of the second derivative of the angular direction likelihood.
This provides a measure of how well reconstructed the maximum is.

. Speed of the Particle. The LineFitalgorithm used during Base Processing offers a coarse

reconstruction of the speed of the particle. A muon’s speed should not be significantly

different than the speed of light.

Angle difference between the LineFit and SplineMPE. Well reconstructed events
should be robust to increasingly effective methods of angular direction reconstruction.
Although the SplineMPE provides a more accurate reconstruction it should not offer
results drastically different from the first LineFit.

. The Split Fits. At this point the system could have reconstructed as track events the

incidence of two muons in coincidence in different parts of the detector. To eliminate
this, the pulse series is split and then reconstruction algorithms are applied to the splits.
The directions from this events shouldn’t be significantly different from each other or
the full track reconstruction for an event corresponding to a single muon.

. A Bayesian Likelihood method is used to consider down-going events in the formula

for track reconstruction. This modified likelihood being to different from the original
indicates the possibility of a misreconstructed down-going event.

. The Center of Gravity. Tracks that are only detected in a small part of the detector

may be improperly reconstructed. Then a useful discriminator is the center of gravity,
calculated based on the position of hit DOMs and deposited charge. The radial and
depth components of this center of charge are then used as part of the BDT to help
discriminate events too close to detector borders.

. Number of direct hits. A direct hitis defined as one where the residual time ¢,,, between

the expected photon arrival and observed arrival time to a DOM is within a short time
window. Then the number of direct hits for a track should be above a minimum for a
track to be considered well-reconstructed

. The Direct Length. Simply calculated as the distance between the first and last direct

hit. Is a measure of the track’s lever arm

Smoothness of Direct Hits. Additionally, direct hits should be distributed smoothly
along the track’s length. So a measure of the deviation of the hits of the track is used as
an additional measure.
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11. Distribution of hits. The general distribution of hits along a track can also be used
as a measure of the quality of reconstruction. One of this measures is the Empty Track
Length, defined as the maximum distance along the track for which no hits are observed
nearby and should be small for a track corresponding to a single muon. Furthermore, a
Separation Length is defined for the track as the distance between the center of gravity
for the first and last quarter of hit DOM, which should be long for full tracks. Finally, a
measure of the average distance of the hit DOMs to the track is calculated and weighed
by the charge deposited. This is useful as the most charge should be deposited near to
the track.

Before passing to the BDT discrimination, early cuts are made based on this variables, as
well as the values of previous reconstructions. Then the BDT is applied on them. It should be

noted that this BDT has been previously trained on a sample of well-defined simulated events.

4.5.2 THE SOUTHERN SKY (DOWN-GOING EVENTS)

When dealing with down-going events, a different background of events should be taken into
account. As explained in Section 3.2.1, muons coming from air showers are less mitigated by
traversing the inside of the Earth and therefore produce muon bundles in the detector which
can be reconstructed as tracks during the previously implemented process. A possibility to im-
plement a veto could be considered to eliminate this kind of events. This possibility neverthe-
less risks eliminating a number of significant through-going tracks and rely heavily on a small
number of DOMs working effectively at all times. Instead, to separate these events a number

of different variables are applied as discriminators for the BDT [44].

1. Northern Sky Variables. The system of variables implemented for the Northern sky is
reliable to remove the same kind of misreconstructed events in the Southern sky so they
are re-applied in this analysis.

2. Time Residuals. Muon bundles coming from air showers are often reconstructed as
tracks used. However, because of their difference in how light reaches the DOMs, the
distribution of time residuals #,, should differ slightly. The produced light should arrive
at earlier or later times than that of muon tracks. Then a likelihood expression can be
implemented to establish the probability that an event correspond to a muon track or a

bundle.

3. Light Deposition Profile. A high-energy signal muon producing a track is likely to
suffer stochastic energy losses along its development. However, lower energy muons
coming from air showers are less likely to sufter these losses, offering a smoother profile
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of Cherenkov light along the reconstructed track. To quantify this difference a DDDR
(Data-Derived Deterministic Differential Deposition Reconstruction) method is
defined that reconstructs the energy losses of segments of the tracks in an approach sim-
ilar to the Truncated Energy method. Then stochastic losses are observed as segments
of high loss followed by dim segments of low energy loss, indicating the behavior of a
single energetic muon. A likelihood is then built on this statistic that helps discriminate

bundles.

The process of application and training is then applied in a similar manner to that of the
Northern Sky. The only difference is that some variables are only used for pre-cuts, to avoid

overtraining by increasing the number of training variables.

4.5.3 ANGULAR ERROR RECONSTRUCTION.

As mentioned in Section 3.3.2, the angular error is an important element to report neutrino
events. It is a parameter to be used in the search for sources as well as a measure of the well-
ness of reconstruction. As mentioned previously, the most precise method is the Paraboloid
method. However, because of the need of minimizing 24 points from the likelihood function,
this is a time-consuming process, often too large for the requirements of the online system. On
the other hand, the Bootstrapping method’s efficiency depends on the number of re-samples
performed. At 8 steps of resampling, the performance is similar to Paraboloid. However, it is
equally slow. Because of this, a compromise is made in implementing the algorithm consist-
ing of 6 six iterations of sampling. However the time of execution is still proportional to the
number of hits. The least accurate method explored was Cramer-Rao, and it offers a solution
when the other algorithms cannot converge in time.

Because of these characteristics, the system applies cuts to the events to decide what error
reconstruction method to use [44]. For Low Energy events (MuEx Energy < 4TeV ), the
Paraboloid method is able to converge in sufficient time and is the preferred one. For higher
energies, the Bootstrapping method is applied as long at the number of hit DOMs is below 300
channels. For cases of high energy with a large number of hits, then the reconstruction defaults
to the Cramer Rao method. Unfortunately this means that the most energetic events, which
tend to be the most interesting, cannot be reconstructed to the best accuracy.

All of these methods offer some bias in the reconstruction of angular errors when compared
to the true angular error for simulated events. Improvements to the method have been tested,

but require computational times excessive for online implementation. Other methods for the
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reconstruction of angular error have been tested in different selections such as the use of ma-
chine learning algorithms like Boosted Decision Trees [60]. These possibilities are still being
explored within the context of the GFU selection and should offer alternatives in the future.
Finally, Table 4.1 shows the execution time of the algorithms in place at the Real Time Alert
System. As shown the total reconstruction time per event has a median of approximately 1
second. Once events pass of all the filters they are reported as part of the Gamma-Ray Follow

up Analysis sample, consisting of well-reconstructed muon events and used for further analysis.

Execution Time (seconds)
Reconstruction Algorithm  Type Median Max
Online L2 Fllter
SPE Fit Direction 0.04 1.25
MPE Fit Direction 0.03 2.71
SplineMPE Direction 0.04 2.68
MuEX Energy 0.06 0.53
TruncatedEnergy Energy 0.015 0.04
Cramer-Rao Angular Error 0.01 0.03
Total 0.40 7.76
GFU Filter
Paraboloid Angular Error 0.24 10.6
Bootstrapping Angular Error 0.17 4.7
Total 0.40 13.18
Total Online Execution ‘ 0.99 ‘ 14.83

Table 4.1: Execution times per event for the algorithms described in this section. The total
Execution time for each section takes into account the full time for the filter sec-
tion to execute beyond the individual algorithms. Table adapted from [44].

4.6 THE GFU DATA SAMPLE AND ANALYSIS

Finally, the system has processed the input of data and offers a set of events corresponding
to neutrino-induced muon candidates. This data is sent to IceCube servers and saved within
the collaboration as part of the GFU Sample. While the data has been cleaned in the process,
there is still a significant background of events. The distribution of the different types of events
can be seen in Figure 4.2 based on simulated samples. It is evident that the composition of

events is different in the Northern and the Southern Sky. Because the algorithm for selection
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of up-going events focuses on eliminating misreconstructed events, the sample on this region
is composed exclusively of neutrino events, mostly muon-neutrinos. On the other hand, since
the system in place for the Southern Sky selects events at higher energies, atmospheric neutrinos

are suppressed, and the sample consists of mostly atmospheric muons in this region.
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Figure 4.2: Distribution of events present on the GFU sample by declination. The different
colors represent the different contributions of particles. Dotted events are astro-
physical in origin while solid colored events are atmospheric. Image taken from

[44].

Nowadays, the GFU sample of events is used in many high-level analyses that focus on the
identification of astrophysical emissions. However, as the name implies, it was first developed as
part of the analysis for the Gamma-Ray Follow-Up Program. As mentioned previously, this
program generates alerts for significant events to be followed-up by collaborating institutions
like MAGIC [23], VERITAS[26] and H.E.S.S. [25].

The GFU analysis [58] works by implementing a time-dependent approach. Because neu-
trino sources are expected to show temporal variability in their emission. The system needs to
be designed to look for an accumulation of events in a significant time window. In pursue of
these goal, a Time Clustering Algorithm is implemented. Because many sources are expected
to have time-dependent emissions, this algorithm looks for grouping of events in a similar time
window from the same region in the sky. Essentially, it performs a likelihood analysis including
the timing of these events on the GFU Sample.

Now that we have described how the Real Time Alert system constructs samples of events

designed for searches of neutrino sources, this thesis focuses on the Energy reconstruction sec-
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tion of the Analysis. As evidenced in this chapter, the energy is obtained during the Online L2
Filter.

This work seeks to implement an energy reconstruction method based on machine learn-
ing algorithms in the context of the RealTime Alert System architecture, testing its perfor-
mance against the methods currently in place. Chapter 5 explains the algorithms used in this

work and then Chapter6 explores the implementation of this algorithm as well as results ob-
tained.
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Machine Learning Algorithms

A Machine Learning algorithm is a tool designed to offer predictions on data based on input
features. This type of algorithms are based on specific tasks recognizing patterns on datasets.
After being t7ained on a prepared data sample, the system then is able to provide results from
datasets different from the one it was trained on. A way to understand them is to consider them
like black-box functions that take input features (x) to offer a predicted output. The function

is composed of trainable parameters (w) which are optimized to fit a specific task.

PREDICTION = f(x, w) (5.1)

There are two main types of Machine Learning Algorithms: Classification and Regression.
Classification Algorithms focus on making decisions based on input data in order to assign
them to a specific category. A classical example of this is identifying features of animal images
to classify them as separate species, cats and dogs for example. On the other hand, regression
algorithms aim to offer numerical results based on the input data. One of the best-known
regression algorithms is the Linear Regression, which adjusts a set of data to a linear function
and is then able to predict information in the continuous range even if it is not covered by the

data.

Algorithms can be supervised, if the training of the algorithm is performed on labeled data.
Basically, the training process occurs by constantly minimizing the difference between the re-

sults offered by the algorithm and the true value of the prediction. Conversely, unsupervised
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learning algorithms work on unsupervised data, identifying patterns in the data without the
need for guidance and are particularly useful in identifying relationships in datasets where they
are not apparent initially, as well as reducing human bias that might misidentify patterns based
on different experiences.

Once an algorithm has been trained, it can be used to swiftly obtain predictions on new data
obtained from the same source. For physics experiments, this is very useful to obtain parameters
where typical numerical minimization might have a hard time converging. Also, they are able to
be adjusted to the requirements of each experiment, providing a tool that goes from experiment-
specific information to widely understandable physical parameters while avoiding the problem
of biased and simplified assumptions.

In IceCube in particular, Machine Learning Algorithms have been widely implemented to
the reconstruction and classification of data. As explained in Section 4.5, the GFU Filter im-
plements a Boosted Decision Tree (BDT) Learning algorithm as a method for identifying and
classifying events inside and outside of the data sample by assigning a probability of the event
corresponding to a signal rather than the background. It performs this task by training the al-
gorithm on the reconstructed event characteristics and identifying what makes an event more
”signal-like”. Furthermore, BDTs have been implemented in different analyses to reconstruct
parameters such as the angular error [60]. Additionally, Section 3.3.3, presented a machine
learning algorithm implementation for Energy reconstruction based on Convolutional Neu-
ral Networks [54]. This method takes the structure of the detector and deconstructs it into
hexagonal pieces to identify patterns in event signatures to offer the energy of the events, effec-
tively providing a method with increased accuracy and reduced runtime.

In this thesis, we implement a Graph Neural Network Algorithm for the task of energy re-
construction, seeking to improve the accuracy on previously presented methods. This section
explains the functioning and construction of Neural Networks as well as the current frame-
work for implementation within IceCube using the package known as GraphNet. Addition-
ally we will present some examples of how this framework has been used within IceCube to

tackle reconstruction challenges.

5.1 THEIDEA FOR NEURAL NETWORKS

The idea is born from an analogy to the functioning of neurons in the human brain. A single
neuron is taken to be the computational unit of the human brain. Neurons are able to com-

municate with each other based on electrical signals. Every unit receives many signals from the
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neighboring units. When a certain unit reaches a specific threshold, it fires a new signal. In
another way, if we observe the system of neurons as a network, the state of each unit in the net-
work is defined by the previous states of itself as well as nearby neurons. An algorithm based
on this reasoning is called a Perceptron [61].

A Perceptron algorithm is a neural network of a single Neuron. The unit receives the input
signals, it weighs them based on a specific function, then aggregates the weighed inputs. The
aggregated result of this operation then is passed by an activation function. This function de-
fines the final output. For instance, a classification Perceptron then will define the ranges at

which the input is assigned a value. Essentially, this can be defined in the following manner:
y :ﬂz wix; + b) (5.2)
=1

1 fory>a

f(y) = (5-3)

0 fory<a

Where x; represent the inputs, w; the applied weighs and 8(y) represents a simple binary step
activation function with a threshold z for activation. A bias &, which is also an optimizable
parameter, offers additional flexibility to the Perceptron

When this gets extended to a combination of Perceptron units, the algorithm becomes what
is conventionally called an artificial neural network (ANN), or just neural network (NN). From
this point forward, we use the terms Perceptron and Neuron interchangeably.

This type of algorithm receives a vector of input features, these are matched by an equal
number of Neurons which process the information. This is called the input layer. Then, one
or more layers can be implemented where the inputs to the next layer of units come from the
previous layers, this is applied consecutively until you reach an output layer, returning a result
of the desired type. This can be better visualized in Figure s.1.

A general neural network is not immediately prepared to solve a physical problem. Being a
Machine Learning Algorithm, it needs to be trained on labeled data. At its first state, a Neu-
ral Network will be initialized to a random state. Then it will evaluate the performance of the
algorithm by measuring its output to the true label via a loss function. The purpose of the
algorithm will then be to minimize the loss function on subsequent applications. The algo-
rithm for optimization is called Gradient Descent [63]. What this algorithm does is calculate
the gradient for the loss function, basically obtaining the direction in which the loss function

has the steepest rate of increase and then updating the next iteration of the networks’ weights
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Figure s.1: Sketch showing the functioning of an artificial neural network with 3 hidden
processing layers, 6 input features and 2 output features. Image adapted from
[62].

and biases in the opposite direction. Essentially, if the vector of weights is defined as w;, the

next iteration will be defined as:

Wiy = wW; — 77v£(wz) (54)

, where 7 is called the learning rate and is an input parameter of the training process.

An adaptation of this method, and the one used in this work, is the Mini-Batch Gradient
Descent. Usually, the loss function and the gradient is calculated on the full dataset, averaging
the loss from the all of the data. For the mini-batch version instead, the network is trained on
a piece of the dataset at a time, applying the gradient descent on a smaller piece. This type of

algorithm is useful on large datasets since it manages computational resources effectively.

5.1.1 CONVOLUTIONAL NEURAL NETWORKS (CNNs)

As we have explored, a neural network receives an input of data in the form of a vector, a one-
dimensional representation. However, problems frequently rely on inputs that favor a two-
dimensional grid of features. A good example of this is an image, for an picture to be reduced
to a one dimensional representation, an enormous amount of information needs to necessarily
be lost. This problem has led to the development of Convolutional Neural Networks.

These networks take information in higher-dimensional representations, essentially a tensor.
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An image, for example can be represented as list of 3 matrices, each of which contains a grid
representing the values of intensity of a specific color (red, green, blue) for each pixel in the
image). A Convolutional Layer is applied on this representation, aggregating the information
from pixels into a “feature map.” This is the algorithm then fed into the network which can
then be managed by reducing information to more meaningful representation in subsequent
layers. Eventually reaching the activation layer that offers outputs desired by the algorithm.

Because of the way they are built, CNN Neurons are connected to a small set of neighbors
rather than the whole batch, making them computationally efficient, while still being powerful
recognizing patterns in the data.

As presented in Section 3.3.3, IceCube has explored Convolutional Neural Network meth-
ods for Energy reconstruction in cascade events. For this method, the IceCube structure is
extrapolated to an orthogonal shape and the pulses are summarized into 9 features for each
DOM. This is done because of the requirement of Neural Networks for structured data inputs.
However, this is a simplification of the irregular geometry and structure present at IceCube,
which cannot be handled by a CNN. An attempt to solve this problems is explored in this the-
sis through the use of a type of neural network algorithm that generalizes to less conventionally

structured data representations: Graph Neural Networks.

5.2 GRAPH NEURAL NETWORKS

In a simple manner, graphs are a type of data structure very useful for many kinds of datasets.
A graph is composed of zodes, which are entities possessing certain features; and edges, which
define the relationship between the nodes. A graph is a natural representation for many real
life problems like atoms in a molecule connected through chemical bonds; people on a social
network connected by follows and likes; and very interesting to our case, IceCube events that
can be defined as hit DOMs connected by proximity.

Graph neural networks then follow a similar workflow to general neural networks by apply-
ing the layers in a space defined by the graph features [64]. In this thesis, we are interested in a
type of Graph Neural Network called Message-Passing Neural Network (MPNN), which are
defined in a similar manner as typical Convolutional Networks but applied to graph data. In a
sense, an image can be seen as a type of graph for which the nodes are the pixels and the edges
connect it to the nearest neighbouring pixels. By extending this to general graphs, a GNN takes
anode and updates its information in each layer based on their connected neighbors. The name

comes from considering the updating process as a message passed through the edges to each
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node. Each message (m;;) is constructed by the connected node features and their relationship:

My = fou(bry by, €9) (s-5)

Then, the full message m, passed to the node h; is the aggregation of the individual messages

and the node in the next layer will be defined based on this information.

m;=> i

BV — (O, m) (5:¢)

At each layer where a convolution is performed, a new graph is defined, whose space can be
increasingly more abstract.

From a computational perspective, GNNs present similar advantages to CNNs where a
problem can be approximated by reducing the identification of solution to local neighbor-
hoods of nodes. They differ heavily in which kind of data they are best adapted for. Inputs
to 2 CNN should be well structured in a grid like manner and can only offer results in similar
structures. On the other hand, GNNs work well for less structured datasets by taking advantage
of the abstraction for a graph representation, allowing them to handle problems with irregu-
lar structures and scale them to different graph representations for the same task. Because the
IceCube detector is a system composed of many units (i.e the DOMs) embedded in an irreg-
ular geometry, a GNN offers a natural approach to reconstruct event parameters taking full
advantage of the information available.

The computing costs of training and implementing a Graph Neural Network then depend
on transforming data to graph representation. The training process can be lengthy in propor-
tion to the number of steps and volume of data at which the Gradient Descent algorithm needs
to be employed. However, experiments have shown that 5-15 iterations over a simple graph are
sufficient to reach good results [64].

The following section explores a framework established for the implementation of GNNs

in the context of neutrino-detection experiments, the GraphNet framework.

5.3 THE GRAPHNET FRAMEWORK

GraphNet [65] is a python-based open-source framework whose purpose is to create a pipeline
to train and implement Graph Neural Networks for the reconstruction of event parameters for

neutrino events. The objectives of the team developing GraphNet is to provide tools that are
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adaptable to different neutrino telescopes, taking the data provided from optical modules to
train GNNs in order to reconstruct event parameters like energy and direction. The models
developed using GraphNet should additionally be able to run in an efhicient manner, provid-
ing results for an event’s physical parameters in real time with better precision than traditional

reconstruction methods.

The way GraphNet constructs a Neural Network is by taking each event as a graph. The
pulses detected in the DOM:s are the nodes and then each node is connected to its nearest 8
neighbors using the Euclidean distance as a measure of space. The features in each node are
then: the characteristics of the DOM that recorded the pulse, as well as the time of detection

and recorded charge. The process of convolution is applied on these features.

On the programming side, GraphNet integrates state-of-the-art packages and tools in Python.
Among these, the implementation of Torch handles the constructions of tensor structures for
construction of neural networks [66], while lightning [67] provides structure to the code and
awkward provides the handling the variable-size data arrays common for neutrino experiments
[68]. The integration of these different packages into specific modules allows users to focus
their effort on the particular challenges required by the task at hand. Specifically, the GraphNet
modules allow users to separate the workflow into: preparation of the data (using the graph-
net.data ); configuring and building the models (graphnet.models ); the Training of the GNN
(graphnet.training ) and the implementation of already trained models (graphnet.deployment).
Figure 5.2 shows a schematic of a typical workflow using these modules. Additionally, the

following paragraphs offer a brief overview of these modules and their operation

graphnet.deployment

1818
Labelled training data Unlabelled data R ot > B
% (Demain-specific fermat) {Domain-specific format) ’11 ; : :

Predictions

graphnet.data graphnet.models graphnet. training

Convert Read > Configure Build > Train

Develop | Experiment

GraphNeT

Figure s.2: High Level Overview of a typical GraphNet workflow using the different mod-
ules in a sequential way, from converting data until the application of trained
models. Taken from [65]
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5.3.1 THE GRAPHNET DATA MODULE

The first of the modules included in GraphNet is the Data Module. The functions included
in this module are used to read data from raw, detector specific formats as well as convert them
to intermediate formats applicable to Torch GNNE.

Particularly for IceCube, the DataConverter functions use configurable extractors that im-
plement the IceCube internal data handling functions (through the icetray framework) to ob-
tain the relevant features from the IceCube 73 files *.

The end goal of this part of the workflow is to prepare Dataset objects that can be fed to sub-
sequent steps to build a GNN. A properly built Graphnet dataset includes features obtained
for the detector responses from an event that serve as input parameters to the GNN, this typ-
ically include the position of the activated DOMs, the accumulated charge and the time of
photon arrival. Additionally the dataset must include 7ruth data, meaning the data that will
be reconstructed or classified by the network, like energy, direction or Particle ID. Finally, the
Dataset also needs to include a GraphDefinition that handles the transforming of the features
to proper implementation in a Graph. For this work we use the built in definition of graph for
IceCube.

5.3.2 THE GRAPHNET MODELS MODULE

Models in GraphNet are the main communication between the data and the implementation
of the algorithm. Additionally, they define the physics operation that will govern the process
of training and reconstruction as they pass the layers of the network. These models are built
in such a way that they can be instantiated from a specific type of configuration depending
on the objective of the work (called 7ask inside the Model). A model should be built on an
appropriate Graph Definition. This part of the model, as the name implies, defines how the
system will convert events into the graphs. As mentioned previously, each event corresponds
to a single graph. Typically, each DOM will correspond to a single node but there exist other
possible node definitions implemented in IceCube. In this work we implement the "Nearest
Neighbors” Graph Definition connecting each node to its 8 nearest neighbors.

Additionally, the way the convolution will be performed across the different layers of the
network is defined through the Backbone. In this work, the implementation is based on the

Dynedge architecture [69]. The implementation performs the convolution by using an Edge-

'13 files encode the information from experimental and simulated events in IceCube. They contain the raw
information from the DOMs as well as higher-level reconstructions for each event stored in “frames”.
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Conv algorithm, essentially a Perceptron algorithm with inputs of the DOM features as well as
the difference between it and the 8 nearest neighbors in Euclidean space as the connected nodes.
This redefines the graph in a more abstract space. After completing 4 layers of convolution, the
algorithm passes the combined input of the 5 graphs from each layer to another Multi-layer Per-
ceptron that maps it into a unified set and then aggregates the nodes into a single feature list,
combined with § global parameters that characterize the number of pulses as well as the ratio
of DOMs hit multiple times. The final step of Dynedge passes this list to a final Perceptron
that offers the prediction. A simplified sketch of the algorithm is presented in Figure 5.3 with
a more in depth description available in [69]
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Figure s5.3: Sketch of the architecture in place at Dynedge. The input presents a simplified
graph whose embedding space corresponds to Euclidean space. For the follow-
ing convoluted State Graphs, the embedding space becomes more abstract and
connectivity changes at each redefinition. The inner workings of the EdgeConv
blocks are presented to the right. Taken from [69].

A GraphNet Model should be easily redeployable to different tasks and datasets by changing
the Graph Definitions and Tasks. In this work, we implement that built-in StandardModel
class that allows for quick customization of the Dynedge on the Nearest Neighbors Graph

Definition for the Task of Energy reconstruction.

5.3.3 THE GRAPHNET TRAINING AND DEPLOYMENT MODULES

When Data and Models have been defined, the training module is able to effectively create

GNNs from datasets by calling the appropriate functions. The training requires determining
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a set of features to take from the dataset which will serve as the inputs to correlate with the
target of the task of the model. Additionally, the training requires setting the Loss Function
to be minimized at after every step of training, as well as the implementation of the Gradient
Descent algorithm.

During training, the dataset can be split into training and validation sets. This way, at every
epoch, the performance of the model can be tested so that the algorithm for training can be
adjusted as the training occurs. On top of that, the validation allows for the performance of
hyperparameters can be tested. Because GraphNet is built on Torch, the main hyperparame-
ters to tune are batch size, learning rate and number of epochs. Further explanation of these
hyperparameters are explored in Section 6.2.1.

After the model is built, it is saved as the configuration of the tasks defined in the previous
section, as well as the state of the weighs on which the GNN architecture is built. The Deploy-
ment then consists mainly on two steps: first, the definition of the GNN according to the saved
model is set by an "Inference” function; then a "Deployer” function takes this implementation
and applies it on the data containing the input information for reconstruction. In the context

of IceCube, they can be directly deployed on 73 files by use of a well-defined Deployer.

S-4 PrREVIOUS USES OF GRAPHNET FOR RECONSTRUCTION

CHALLENGES

As a framework for implementation of GNNs into neutrino physics challenges, GraphNet is
still relatively new and in continuous development. It has nevertheless been implemented into
a number of studies for neutrino classification and reconstruction, demonstrating its effective-
ness. The development of Dynedge is explained in [69], alongside its deployment for neutrino
events of low energies. Typically, these types of events suffer from a large background of at-
mospheric neutrinos, which motivated the implementation of the GNN. In said work, the
performance of the GNN was tested for six different tasks: the classification of events into
muon or neutrino (v/x), as well as classification intro track or cascade events (T/C) and the
reconstruction of deposited energy (E), direction of the events (¢, ¢ ) and interaction vertex
(V). For each of the tasks, the training dataset included simulations of neutrinos produced
through the GENIE framework, typically used in oscillations, with an interest in neutrinos be-
low 1 TeV, the majority of which are below 100 GeV of energy. Those for the classification

tasks were selected so that the sample contained equal numbers of both types of event classifi-
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cations in each while the reconstruction training sets are selected to contain equal numbers of
all neutrino flavors.

The performance of the reconstruction algorithm is tested against the RETRO algorithm
[70], which is the standard for low energy reconstructions. This algorithm is complex in that
it is a likelihood method that models events in a full 8-parameter space that account for a full
event reconstruction, allowing for minimization of all reconstruction parameters. Although
the algorithm is very efficient, itis relatively slow, with a mean application time of 40 seconds per
event on a single CPU core, because of this, it is usually applied at late stages of analysis, when
samples have been trimmed down significantly. Conversely, the performance of classification
is tested against a Boosted Decision Tree (BDT) Algorithm.

For classification, this study compares the results of the GNN and BDT Receiver Operating
Characteristic curves (ROC), which plot the True Positive rates (TPR) against the False Posi-
tive rates (FPR) from the binary classification, estimating the score of the task using the area
under the curve (AUC). For both classification tasks, the score is clearly improved (by 4% for
the v/u task, and 6% for the T/C task). Particularly, for the »/u classification, at a fixed FPR
of 0.025%, the TPR is improved by the GNN from 0.6 to 0.78. Otherwise at a fixed TPR of
0.6, the FPR improves from 0.02 to 0.003. Overall, the classification offers a clearer and more
accurate separation between event types.

On the other hand, for the reconstruction tasks, the GNN is shown to over-estimate de-
posited energy for low-energetic events. For all reconstructed parameters, the distribution of
results differ slightly from both the true value and the RETRO reconstruction, but show over-
all better resolutions of the estimation. A visualization of this results taken from [69] is pre-
sented in Figure 5.4. This graph shows the width of the residuals distribution as a function
of energy for both GNNs and RETRO to quantify the resolution of the reconstruction. The
improvement appeared to be the most evident at very low energies (1 GeV to 30 GeV), where
Dynedge exhibits an improvement of up to 20% for all parameters. However, at higher ener-
gies in the sample, the improvement decreases heavily. This has been ascribed to lower statistics
in the training sample and is something that should be taken into account for reconstruction
tasks that aim to be accurate in the full spectrum of energies.

A turther implementation of GraphNet on low energy events is presented in [71] in the con-
text of neutrino oscillation studies taking advantage of the expected IceCube upgrade. In this
work, the effectiveness of the classification is improved when compared to the previous study
[69] through the implementation of a larger sample. On the other hand, the reconstruction of

parameters has been improved in the whole low energy range.
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Figure 5.4: Performance of GNN reconstruction of event parameters as presented in [69].
The Resolution is defined as the width of the residuals distribution for each
reconstructed parameter. Each graph shows the resolution distributed in the
energy range of the testing samples, with the thickness representing the 1o un-
certainty, also showing the improvement in resolution when compared to the
benchmark RETRO algorithm.

Another implementation of GraphNet is presented in [72] in the context of searches for
neutrino sources on the night sky, focusing on NCG1068. They studied the possibility of
improving the reconstruction of energy, by training a Dynedge model on a small sample. In
this work, the performance of the GNN is compared to a DNN algorithm, the training of
the GNN was performed on one sixth of the data used for the DNN, while showing similar
performances, suggesting that a GNN is at the very least able to be configured with more ease
in comparison to other neural network methods. Another proposition is that, when trained

on similarly-sized datasets, the GNN could improve over other machine learning methods, but
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this possibility requires further study.

The implementations explained above show the potential of GNN to ofter improved preci-
sion in energy reconstruction, in contrast to current methods used in IceCube while evidencing
the need of training on rich samples in the energy range needed for the specified tasks. From this
starting point, this determines the work needed for this study. We work on the reconstruction
of energy events in the context of GFU, which spans a wide range of energies, because this se-
lection focus on the determination of astrophysical sources, the energy range is expanded when
compared to the previous studies. The following chapter explains the selection of the datasets
from which we train a Dynedge GNN as well as the implementation of the modules explained
previously in this chapter for energy reconstruction. This chapter will explore the preparation
of the Datasets as well as the results of training for the tuning of hyperparameters and the final

deployment of trained models on relevant sets.
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Implementation of Graph Neural Networks
for Energy Reconstruction for RealTime

applications in IceCube

In this work, the objective is to implement the GraphNet framework in the context of the Re-
alTime System, focusing on on the reconstruction of energy. As shown previously, GNNs
have been able to precisely reconstruct event energy for well reconstructed samples on offline
data. Particularly, [69, 71] have shown that the use of GNNs are effective at reconstructing and
classifying neutrino events at low energy. On the other hand, [72] has shown that even when
trained conservatively. These results approximate current methods effectively, while demon-
strating their efficiency at improving runtime. Although this implementations show eftective
results, they also demonstrate the biases that can arise from the choice of training sample. When
the training datasets do not contain even statistics in the energy range, the GNN tends to bias
to the energies with higher event statistics in the sample. The suggestion made in these studies
is that this bias would decrease when training on samples that contain more information on
events at all energies. For an application in the RealTime Alert System, a model should be able
to reconstruct energies in a wide range, especially at high energies, if they are expected to be

useful for alerts.

The challenge posed for this section is using sets of simulated data for training that include
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tagged energy data in the full IceCube energy range. Therefore the choice of training sam-
ple is important, as well as studying who the GNN behaves in different energy ranges. While
previous studies have focused on very low energies, in this work we focus on a wide energy
spectrum starting at 100 GeV and up to 100 PeV. The training of a GNN is simpler for low
energies, where the number of pulses is small, as the computational difficulties in training will
increase as the graph representation size increases. In the following sections, the configuration
of'a GraphNet architecture appropriate to handle the full energy range is explained, looking out
for the best implementation and finally comparing it against the results offered by the methods
currently implemented for online energy reconstruction 3.3.3.

For this work we implement the Dynedge algorithm [69] with the task of energy reconstruc-
tion. The input parameters chosen to train the GNN comes from the pulses detected by the
DOM:s. Specifically, the features used are: the positions of the DOM:s triggered for each event
in cartesian coordinates (DOMy, DOMy, DOM_, ); the built up charge at each DOM (Q); the
time relative to the trigger of the event start (t); and the Relative DOM Quantum Efficiency
of each unit (RDE). This results in an input array of dimension [n,,, 6], corresponding to
a single value of energy. This number then scales with the number of events in the training
dataset to account for the amount of input data into the training algorithm. The end result of
training is therefore a model that takes an input of N,y arrays of [n,,,, 6] and the outputs
are a prediction of Energy for each event.

Similarly to [69], A LogCosh [73] function is used as the loss function for the training:

Loss = log(cosh Rp) (6.1)

where Ry denotes the energy residual for training:

Ry = loglo(Em,,/GeV) - loglo(EmM/GeV) (6.2)

the choice to embed the Energy in the logarithm space is made to account for the large range
of deposited energies. The LogCosh loss is chosen because it is symmetric around o, avoiding
biases to under or over-estimation. Additionally, the function is smooth and differentiable
everywhere, making it optimal for the gradient descent calculation.

Furthermore, the Adam [74] optimizer algorithm is used for the application of the gradient
descent. This algorithm saves the information from previous gradients to improve on memory
usage while converging faster than classical algorithms. At the same time, it implements an

adaptive learning rate, making the training process flexible without the need of precise user
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supervision.

The GraphNet algorithm pipeline has been modified so that upon data extraction and con-
version it takes the true energy of the muon that creates the track, calculated differently for
through-going tracks, starting tracks and skimming tracks, which is the energy we aspire to
reconstruct. Additionally, we implement our algorithm in a way that we can test hyperparam-

eters to be used on a reduced set before proceeding to a full training of the GNN.

First of all, We explain the simulation sets that were used for this work, and how they were
processed for use within GraphNet. Then we will show the process of optimization of hyper-
parameters, the subsequent training of the GNN, and finally the results of efficiency of the

trained models on relevant sets of data.

6.1 (CHARACTERISTICS OF THE SIMULATION DATASETS

The simulated events that are used in the context of this work need to consist of rich sample
of neutrino events in the full energy range, so that our energy reconstruction can tackle the
determination of which events are energetic enough to be considered for alerts. The selection
of events to train on are generated from the Neutrino Generator (NuGen) framework [75] that
injects neutrinos inside the Earth and propagates them until they arrive to the detector volume,
where they are forced to interact based on the provided Ice Model and a model of the detector

response.

NuGen simulation sets are generated for neutrinos of different generations and energy cuts.
Since we focus on the reconstruction of muon tracks to identify high-energy sources, in this
work we use sets of generated muon neutrinos. The implementation proceeds on selected sets

of different energy cuts.

For training and validation, we use high statistics sets denoted with IDs: 21633 for low en-
ergy (100 GeV to 10 TeV), 21634 for medium energies (10 TeV to 1 PeV) and 2163 5 for high
energies. Meanwhile we use sets 21813, 21814 and 21938 (low, medium and high energy re-
spectively) for the testing of results. These sets have been further processed to include the filters
and reconstruction appropriate for GFU. Further characteristics of these sets are summarized
on Table 6.1
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Dataset ID Energy range Spectral Index | Events per File | Number of Files
21633 100 Gev to 10 Tev -2 100,000 10,000
21634 10 TeV to 1 PeV -1.5 10,000 20,000
21635 1 PeV to 100 PeV -1 500 10,000
21813 100 Gev to 10 Tev -2, 100,000 20,000
21814 10 TeV to 1 PeV -1.5 10,000 20,000
21893 1 PeV to 100 PeV -1 250 10,000

Table 6.1: NuGen Simulation datasets used for the training and testing of the GNN imple-
mentation

6.2 TRAINING OF THE GRAPH NEURAL NETWORK

On the studies presented on the previous chapter, the GNNGs for reconstruction were trained
on datasets containing an order of magnitude of 10° events. In this work, we have to consider
the datasets available at all energies as well as their characteristics. Low Energy datasets are pro-
cessed easily and there is very little issue with using 10° and higher orders of magnitude of events.
However, datasets for high energy neutrino events are computationally expensive to process in
the training of a GNN. To maintain reasonable execution times and memory consumption for
the training of the Graph Neural Network, we limit the number of high energy events for train-
ing to 10* events. Based on this, in order to maintain a degree of uniformity in the training set
statistics, we limit the selection from the medium and low energy sets to orders of magnitude

of 10° events.

6.2.1 HYPERPARAMETER OPTIMIZATION

Before training the GNN that will provide final results, we need to investigate the hyperparam-
eters that guide the training of the model. In order to do this we implement a version of the

training/validation algorithm on different sets of hyperparameters. These are:

1. Learning Rate: Determines how much the algorithm gets corrected at each step of train-
ing. A learning rate too big will lead to divergence while a learning rate to small might
prevent the algorithm from obtaining proper results. The learning rate set in the code
is the aim learning rate of the optimizer. The Adam optimizer starts at a learning rate of
10> and sets up a linear scheduler to scale it up to the set value at fixed intervals to op-
timize results during the training process. Typically becoming smaller to fine-tune the
reconstruction in the later steps.
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2. Batch Size: We implement GraphNet using the mini-batch method described in Chap-
ter 5, defining the number of events included in every batch. larger batch sizes might pro-
duce coarser corrections, but small batch sizes might lead to over-fitting while increasing
training times due to a large amount of steps.

In previous works [69], the batch size was chosen to be 1024. However, this poses a
computational challenge. When processing the training, the batches have to process this
number of events, which have to be converted to a graph representation. For low energy
events, this does not pose too much a problems, but as the number of pulses gets larger,
as can be expected for events at increasingly higher energies, the graph representation
size will increase exponentially, which places strains on the computing systems.

To solve this problem, we reduce batch sizes by an order of magnitude of 1o, maintain-
ing the convention of using powers of 2. In order to tackle the new arising problem of
possible overfitting, we implement an accumulation of gradients in the algorithm. What
this process does is to delay the calculation of the gradient and updating the weighs until
a certain number of batches have passed. This creates a larger effective batch size while
keeping the computational cost low. Because we reduce the batch size by an approxi-
mate order of 10 with respect to [69], we choose to accumulate over the same number

of batches.

3. Number of epochs: The number of times the training will go over the entire dataset.
Having a bigger number of epochs can lead to better functioning of the training algo-
rithm with an adaptive learning rate as the task gets more precise in each iteration. Essen-
tially, it is analogous to a person revisiting a situation with more experience and abilities.
This of course increases training times, while not always significantly increasing preci-
sion.

The values we test for the hyperparameters are presented in Table 6.2. Additionally, to avoid
overfitting, we allow for the training to stop after 3 epochs if no significant improvement on

the loss function is observed.

Learning Rate 0.01 | 0.03 | 0.05

Batch Size 128 | 192 | 256
Number of Epochs | 5 7 10

Table 6.2: Values to test for the different training hyperparameters. The values were chosen
by taking into account computational restrictions while keeping them consistent
to previous studies [69, 72].

We set a proportion of 0.9 to o.1 for training/validation. Therefore, at the start of the train-

ing, the algorithm selects at random 90% of the events from the input dataset to perform the
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training. Then, after every epoch, a validation step is performed on the remaining 10% of
events. We obtain the metrics to judge the parameters configuration from this validation step.

We perform this optimization separately on each of the energy sets. This allows us to save
computer time and resources by distributing the tasks while also observing the performance of
the models on different energy scales. By the end of this process, we are able to evaluate which
subset, or subsets of hyperparameters will provide the best results to train the final architecture

of the network.

6.2.2 OPTIMIZATION ON Low ENERGY EVENTS

We perform this first section of optimization by training on 80,000 events from the low energy
section (100 GeV to 10 TeV). The validation is performed automatically after the training and
we study the performance of the model on the validation sample. In order to evaluate the

performance of the model, we take the mean absolute error from the validation prediction.
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Figure 6.1: Performance of different hyperparameter settings for a graph Neural Network
model for Energy Reconstruction in Low Energy Events (100 GeV to 10 TeV).
Each graph represents a different learning rate setting (left: 0.o1, center:0.03,
right: 0.05). The dots’ positions on the graphs represent the hyperparameter
configuration (batch size on the x axis, max epochs on the y axis. The size of the
dots is related directly to the value of the mean average error, also written next to
each dot. The color of the dots represent the value of the error within the single
graph (blue = smallest to yellow = largest).
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Results from optimization are presented in figure 6.1, the different configurations of hyper-
parameters are presented as dots with definite coordinates in the graphs, with the size of each
dot representing the value of the mean absolute error. Immediately, a few features jump out.
The first thing to be noticed is that the highestlearning errors occurring for the highest learning
rate (Ir=0.05), with the lowest errors happening for the smallest value of learning rate (Ir=o0.01).
For the Max number of epochs, it seems that the choice for 8 epochs rather than 5 does not im-
prove the MAE significantly, worsening it in half of the cases. Nevertheless, it should be noted
that in most cases, the differences are too close together to make definite statements about this.
For the batch size on the other hand, there does not seem to be an overall trend. However,
we can identify a set of 4 best configuration of hyperparameters, and it is notable that none of

them include the smallest batch size of 128:
1. Ir = o.01, batch size = 192, max epochs = 3 (MAE = 524.494)
2. Ir = o.01, batch size = 256, max epochs = 3 (MAE = 524.870)
3. Ir = 0.03, batch size = 192, max epochs = s(MAE = 524.810)

. Ir = 0.03, batch size = 256, max epochs = 5 (MAE = 524.773)

N

6.2.3 OPTIMIZATION ON MEDIUM ENERGY SETS

At this point, when moving into the optimization of hyperparameters for medium energy sets
(10 TeV to 1 PeV), a problem arises. The first step in the algorithm converts a dataset in ap-
propriate format into a number of graph representations, where each event is represented by
a single graph with the each node representing every pulse that composes the detection in Ice-
Cube. The problem in the context of the GNN is that, as energies increase, the number of
pulses per event increases exponentially, and with it the number of nodes and consequently
size of the graph representation of each event. This means that for a set of events of similar
size to the ones in low energies, the medium energy events take many times longer to train and
occupy unreasonable memory resources.

To solve this issue, we take an approach similar to the one used in [54] for a Convolutional
Neural Network. Instead of taking every pulse as a node, we represent every node as a DOM
and take the 1oth, soth and goth percentiles in buildup of time and charge. Effectively, this

changes the dimensionality from [y, 6 features] dimensions to [Nueiedoms> 6 features X 3
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percentiles]. This reduces the memory consumption of training while maintaining a reason-
able characterization of events for training. Using this implementation, we look for the most
optimal set of parameters in the same manner we did for low energy events, training networks

with different configurations on sets of 50,000 events.

9learning rate = 0.01 learning rate = 0.03 learning rate = 0.05
sl @ e a e -a
v - w v
27713.129 27046.084 29110.465 28401.937 29619.983 28733.349 36260.025 36249.295 29232.551
(%)
S7
o
)
« 6
o
C
25l @ a a a ™Y a e
2 g Y g N d ! 4 d
g 27887.131 29280.514 33486.983 28927.524 27983.830 27750.832 27014.503 27681.906 27177.572
S
x
©
2. & o e e e e o a a
‘! = w b 4 v 4 L 4 v?
29306.594 26304.422 27722.053 27361.755 27164.416 26990.784 28561.674 28515.097 29562.685
27125 150 175 200 225 250 275 125 150 175 200 225 250 275 125 150 175 200 225 250 275

Batch Size

Figure 6.2: Performance of different hyperparameter settings for a graph Neural Network

model for Energy Reconstruction in Medium Energy Events (10 TeV to 1 PeV).
Each graph represents a different learning rate setting (left: 0.01, center:0.03,
right: 0.05). The dots’ positions on the graphs represent the hyperparameter
configuration (batch size on the x axis, max epochs on the y axis. The size of the
dots is related directly to the value of the mean average error, also written next to
each dot. The color of the dots represent the value of the error within the single
graph (blue = smallest to yellow = largest).

This results are shown in a similar manner to the previous section in Figure 6.2. Immediately,
the differences in the size of the mean absolute error are more evident. Again, the biggest er-
rors are found for the highest learning rate, while the lowest learning rate also offers the smaller
errors. Nevertheless, the range these errors span is larger than the previous case. On the other
hand, forIr = 0.03, the errors are more consistent for all configurations. Overall, the best config-
uration of hyperparameters seems to be the same at the one for the low energy case, by a much

wider margin in this case (Ir = 0.01, batch size=192, max epochs = 3).

6.2.4 OPTIMIZATION ON HiGH ENERGY EVENTS

While it could be expected that the same issue encountered for medium energies would happen
when scaling to higher energies, the method of clustering on percentiles for DOMs described
in the previous section is robust enough that it avoids unreasonable increases in memory con-

sumption. Therefore at this point, the architecture of the network is found to be stable compu-
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tationally. However, the files containing the information still consume a lot of memory when
being loaded into the training, in fact for this reason each file contains less elements. For this
reason, the training is performed on less events than the previous two sections at rooooevents.
Then we look at hyperparameter configurations in the same way as we did for the previous two
cases.

This results can be similarly observed in Figure 6.3. From this figure it is more complicated
to observe overall trends in the performance of the algorithm. However, we can identify the
two best performing configurations, and compare them to the observations from the previous

sections:

1. Ir = 0.03, batch size = 192, max epochs = 5 (MAE = 5.189 x10°)

2. Ir = o.01, batch size = 192, max epochs = 3 (MAE = 5.260 x10°)
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Figure 6.3: Performance of different hyperparameter settings for a graph Neural Network
model for Energy Reconstruction on High Energy Events (1 PeV to 100 PeV).
Each graph represents a different learning rate setting (left: 0.01, center:0.03,
right: 0.05). The dots’ positions on the graphs represent the hyperparameter
configuration (batch size on the x axis, max epochs on the y axis. The size of the
dots is related directly to the value of the mean average error, also written next to
each dot. The color of the dots represent the value of the error within the single
graph (blue = smallest to yellow = largest).

From the observations made in this section we can conclude that the performance of the the
neural network depends on the combination of the 3 hyperparameters. However, by noting
the common patterns of the best-performing configurations in all three cases, we choose the

best configuration from the most frequently occurring one:
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* Learning Rate: o.o1
* Batch Size: 192

* Number of Epochs: 3

6.3 RESULTS FROMIMPLEMENTATION OF THE TRAINED GRAPH

NEURAL NETWORK

Having defined the configuration to train our GNN architecture, we choose a sample of 4.5
% 10°events to train the neural network, consisting of low energy events, medium energy events,
high energy events. The sample was chosen to take into account the computational costs of im-
plementing the training with GraphNet compatible files while maintaining significant statistics
across the full energy range. The training of the GNN require 48 hours to complete on this set
of events while maintaining a reasonable handling of memory (below 10 GB).

Having trained the architecture of our Network model, we apply it on the test datasets de-
scribed earlier in the chapter, a combined sample of 2.3 X 10° events are used in this section
(1.4 x 10° low energy events, 9 X 10* medium energy events, and 6 x 10* high energy events).

The runtime of the application of the GNN depends heavily on transforming IceCube data
into a graph representation, and as explained previously, this is heavily dependent on the energy
of the event. After training on our chosen datasets, we found an average time of implementa-
tion of 0.004 seconds per event on low energy datasets, 0.01 seconds per event on medium
energy datasets and 1.4 seconds per event on high energy datasets. In comparison to the me-
dian values for the runtime of MuEx (0.04 s) and Truncated Energy (o.01) presented in Table
4.1, the performance is improved by the GNN in the low and medium energy ranges (from
100 GeV), while the performance is worsened for the high energy case. However It should be
noted that an advantage for runtime is that a GNN can be deployed on multiple CPU cores.
For the implementation in this work, we use 10 cores, but this could be expanded to increase
the speed of reconstruction if the resources are available. On the other hand, a deployment on
a GPU would be expected to increase the rate of processing by a few orders of magnitude.

Figure 6.4 shows the spectrum of the energy reconstructions applied to the datasets men-
tioned above. Because of the different statistics managed in each section, each of the dataset

reconstructions is presented on a different histogram. Each graph also includes the true muon
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Figure 6.4: Distribution of true values of energy (shaded grey) from simulated sets in com-
parison to the energy reconstructed for the same events using our GNN Dynedge

energy distribution from the simulated events as well as the reconstructions performed during

the Online L2 Filter’s process. From this figure we can see that, as expected, the MuEx method

Method (blue) and compared against the Online L2 methods: Truncated En-

ergy (Orange), and MuEx (green). Each of the graphs corresponds to events from
datasets with different features: Low Energy sets (top-left), Medium Energy Sets
(top-right), High Energy Sets (bottom-left) and the full studied dataset (bottom-

right).

offers consistently the worst adjustment to the true energy distribution.

For the low and medium energy datasets, the GNN method seems to have a bias towards
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lower energies. For the low-Energy Datasets and medium-energy, this shows an under-performing
in the 1 TeV to 10 TeV range while over-performing in the 100Gev to 1 TeV range. This fea-
ture implies a bias from the algorithm towards lower energies in this range. This fact was also
observed in previous works using GraphNet for low energy datasets, and has been attributed
to a feature of low statistics in certain regions of the datasets. Given that this region lies in the
border of the low and medium energy datasets, this can explain this feature in the distributions.
A less severe version of this phenomenon can also be observed in the distribution for the high
energy dataset, as energies on the higher end of the distributions tend to be reconstructed as
lower energies. Suggesting that this border effect might be indeed very relevant to consider for

the training of a Graph Neural Network.

Out of the 3 distributions, the one coming from the low energy set shows the clearest im-
provement when compared to the Truncated energy and MuEx methods, being contained
within the true energy distribution range and having a peak in the same region as that one.
For the Medium Energy Datasets, The GNN method improves substantially from the MuEx
method but is comparatively worse than that of Truncated Energy. However it is reasonable
that this is a feature of the previously noted effect and could be smoothed out by an appro-
priate redefinition of the training sample. The bottom-right figure is the aggregation of the 3

distributions on the full range of energies and gathers the features explored in this section.

Furthermore, Figure 6.5 shows the correlation between the true energy and the reconstructed
energy for both the Graph Neural Network Dynedge method implemented in this work, as well
as the Truncated Energy Method. As well as the distribution of residuals calculated as:

Erew - Etmf

Ry = ——7—— 6.
£ Etme ( 4)

The graph shows an additional plotted line representing the median correlation of the method
at each value of true energy, as well as a black line that follows E,., = E, .. From this data we can
compare and contrast the accuracy of both methods. We can confirm that the GNN method
clearly performs better than the Truncated energy method at very low energies. While the me-
dian reconstruction is typically good for both, the reconstruction for the truncated energy is
consistent although typically higher than the true value of energy. Conversely, our Dynedge
method shows a median reconstruction that matches the central line very well around 10°GeV,

in the center of the the full range

It should be noted that the precision of both methods, as observed by the width of the resid-

ual distribution, is inversely related to the true energy of the muon, with the Dynedge method
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Figure 6.5: Correlation plots of reconstructed and true energy for the currently imple-
mented Truncated Energy and our GNN Dynedge methods. The intensity of
the colors represent the concentration of points, the black line represents the line

E o = Eie and the green line represents the median reconstruction at each value
of True Energy.

improving significantly asit rises. On the other hand, the Truncated Energy precision decreases

more slowly with energy. Finally, it should be highlighted that the distribution of residuals is
typically narrower for the Truncated method rather than Dynedge.
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Conclusion

7.1 SUMMARY OF RESULTS

recap of theory and intro and icecube

At the time of this work, the development of Graph Neural Networks (GNNs) for neutrino
event reconstruction is an active field of research, with many promising results being offered in
the past few years in the context of the IceCube collaboration, especially considering low neu-
trino energies (below 100 GeV) relevant to oscillations in the DeepCore section of IceCube
[69, 71]. This thesis in particular explored the implementation of the state-of-the-art Graph-
Net algorithm to the reconstruction of event energy in the range relevant to the Real Time Alert

System in IceCube.

After studying the configuration of best hyperparameters, we trained a Neural Network ar-
chitecture on simulated neutrino events from roo GeV to 100 PeV and tested the performance
of this algorithm on a set of neutrino events with similar characteristics. The results from this
implementation show that a GNN method of reconstruction for energy ss able to produce ef-
fective results across the energy range, with a similar accuracy to currently implemented meth-
ods. Additionally, when implemented on 10 CPU cores, the reconstruction runtime was im-
proved in comparison to current methods in the medium and low energy ranges. While the
performance is worsened in the high energy case. However the runtime performance can be

scaled linearly by increasing the number of cores, or exponentially if applied on a GPU. Show-
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ing how the implementation can be further improved to the relevantapplication in the IceCube
RealTime Alert System.

We additionally identified a problem in low energies, where the algorithm tends to underes-
timate the energy of neutrinos between 1 Tev and 10 TeV as lower energy, this bias is likely due
to overfitting of the networks architecture on this region. This is consistent to previous obser-
vations which have suggested that uneven statistics across the energy range can lead to worse
performance of the algorithm. It should be noted that this effect is not observed clearly at
higher energies. At these energies however, the neutrino spectrum is expected to be smoother.
Which might make the training samples naturally more even, disfavoring overtraining on a sin-
gle region.

This work can serve as a starting point to fully develop the implementation of Graph Neural
algorithms in neutrino detectors, not only in IceCube, but in many present and future astro-
physical neutrino detectors. As such, care has to be taken on how the results presented in this
thesis are improved and built on in the coming years. The next section describes some proposals

to start looking at improvements on this system.

7.2 EVALUATION AND FUTURE OUTLOOK

While the results obtained for the GNN architecture show the power thata method of this type
can offer to the reconstruction of energy, there are many possibilities to improve the accuracy
of the algorithm that can be considered to increase the effectiveness of the Neural Network.
The first thing to consider is the fact that the distribution of residuals becomes narrower with
increasing energy, with the reconstruction suffering from wider error margins below 10 TeV.

A fundamental part of the process involved in GraphNet requires defining IceCube events
as graphs. On previous studies of neutrino events at very low energies (below 100 GeV) [69,
71, 72], the graphs are defined taking each pulse waveform as a node in the graph. However,
the number of pulses increases drastically with energy, increasing the computational cost of
training a GNN. Because we need to handle events above 10 TeV, we instead defined graphs by
taking each DOM as a node, and summarize the detected pulses in percentiles for the activation
time and charge build-up. Although this change of definition is useful and provides good re-
sults, we can anticipate that there is a loss of information that could significantly impact events
where the amount of information is smaller, such as those containing a neutrino energy below
10 TeV.

With this in mind, a proposal could be made to change the Graph Definition to one that loses
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less information at lower energies. One potential solution is that we could reasonably expand
the number of features by taking more than three percentiles in charge and time for the features
of each node, which could be expected to increase precision across the whole energy range while
maintaining computational costs reasonable. However, the impact for the precision of low
energy events would be minimal.

A difterent approach could be considered to split the implementation of the algorithm into
two architectures that would acct at two different energy regimes, one for low energy events and
one for high energy events. A discriminator can be applied that takes a first approximation from
the MuEx reconstruction to decide which Neural Network implementation to apply. This
kind of solution would not only tackle the possible problem of loss of information in the input,
butalso smooth out the defects observed at the borders of the training datasets in Figure 6.4 for
all energies. By training separate architectures, biases to energy ranges with higher statistics in
the datasets could also be eliminated. Since every architecture would be trained solely on their
designed energy range.

However, it should be noted that other methods also present problmes

A different approach one could consider is looking at the training sample. Increasing the
richness of the samples at lower energies can expand upon the training of the neural network
to account for biases in this range. Nevertheless, it should be noted that events below 1o TeV
already compose the majority of the training sample in this work and increasing the number of
events in this range might lead to overfitting, increasing the errors across the entire range rather
than improving it. If an approach of this style is implemented, it should take care to increase
statistics only in the underrepresented sections of the sample.

However, when considering the issues arising from the training dataset, we should remember
that we use a smaller number of events when compared to previous implementations of Graph-
Net. This was done to save on computational times while maintaining significant statistics be-
tween events across the range. Improvements can be made by uniformly increasing training set
statistics at all energies. This should however be implemented with care to avoid overfitting of
results. Further studies should be performed to understand how the precision of the method
changes as the training sample is increased. Nevertheless, in order to properly increase the train
sample, GraphNet also needs to be adapted to work with lighter file formats. Although we im-
proved on computational memory consumption, high energy files are large even before being
loaded into training and this limits the training sample at this range.

Furthermore, we should remember that we applied our GNN architecture to simulated

events. While, at the moment, there does not exist a rich enough sample to perform proper
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training of the neural network, the performance of the network on real data should be tested
to confirm the results presented in this thesis.

Additional studies should also take into account and maximize the use computational re-
sources, studying the feasibility of deployment conditions in the South Pole. Because GNNs
can be implemented on multiple CPU cores, as well as GPU cores, the full computational
implementation across different configurations of computational resources should be studied
within the context of IceCube machines.

Finally, while in this work we have explored the implementation of the GNN architecture
for energy reconstruction, previous studies have shown that this tool is powerful in the deter-
mination of other parameters such as angular direction and interaction vertex on low energies
[69]. A similar work to the one performed on this thesis, extending the reconstruction of this
parameters into higher energies can be expected to offer important insights into how GNN
algorithms can be further implemented in IceCube.

In conclusion, this work has shown that the application of Graph Neural Networks across
the relevant energy range for IceCube offers a promising approach to the reconstruction of a
physical parameter such as energy. As GraphNet develops, the potential for GNNs for neutrino
detectors will continue to show their power to reconstruct events is an efficient and fast wave.
This becomes particularly relevant as IceCube continues to grow, increasing its capabilities for
detection with further enhancements such as the coming IceCube Upgrade and the eventual
construction of IceCube-Gen2. While these plans for the future of IceCube are encouraging
in the landscape of neutrino detection, they also promise to increase both the volume of data
and the complexity of detected events, therefore making the application of novel tools such as

GNN’s more and more relevant.
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