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Introduction: Where is George?

This dissertation will analyse the problem of searching for a mathematical founda-
tion and explanation behind human mobility patterns. This search is not driven
by a purely theoretical and abstract desire for knowledge but has strong tangible
applications, the following quotation captures this aspect:

The dynamic spatial redistribution of individuals is a key driving force
of various spatiotemporal phenomena on geographical scales [1].

Such phenomena have always been of great interest; from international trade to
the spread of diseases, from traffic flows to the propagation of information, the
knowledge of human travel dynamics and its statistical properties have a crucial
role. Thus, the modelisation of human mobility patterns aims to determine some
underlying structures and dynamics of human behaviour.

Being able to make predictions is useful, if not essential, to many fields of science,
with logistics as a primary example, however, this problem is particularly challeng-
ing due to human behaviour’s inherent complexity. Many factors, including social
interactions, primary needs and geomorphological characteristics influence humans
and their choices. Additionally, human behaviour can be context-dependent, making
it difficult to capture with simple mathematical models.

Since humans mobility is governed by complex environmental, sociological, techno-
logical, and urban factors, we shall define what data should be used to build such
a model and how to collect them: an idea would be to utilise data on the circula-
tion of banknotes through an online bill tracking system like www.whereisgeorge.com
and to infer the statistical properties of human dispersal with high spatiotemporal
precision.

Hank Eskin, a database consultant, founded the website www.whereisgeorge.com
in 1998. This website gathers information from users to follow a bill (e.g. local
ZIP code of the finding site and serial number of the bill) reporting the interval
between sightings and the distance traveled. Initially, some rubber stamps were
produced to encourage the tracking procedure, but they were discontinued due to
falling under the offence of advertisement on U.S. currency. In response, Eskin
enabled a point system which stimulated bill entering and the search for an already
registered bill, thus creating an interesting database tracking every bill’s positions
at different times.
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Where is George?

Figure 1 : Here are some examples of marked banknotes.

Even though this site exists for fun and because it had not been done yet [2], it has
become a perfect database for the study of human mobility patterns.

The purpose of "Where is George?" is to track the natural and geographic
circulation of money [2].

If we reasonably assume that dollar bills are generally carried by a person, it becomes
a way to track human mobility. If we note that they are also exchanged between
people, it also offers an intuitive parallelism with the spread of diseases and the
propagation of information. Such a simple and fun project has become an ever-
growing database that Brockmann et al. analysed in the seminal work [1].

Brockmann’s analysis showed that the dispersal of banknotes (hence the human
travel pattern) can be described by a continuous random walk process incorporating
scale-free jumps and long waiting times between displacements. This result was the
first empirical evidence for such an ambivalent process in nature and, consequently,
a starting point for the development of a novel class of models accounting for the
universal features of this problem quantitatively.

We will hereafter illustrate two of the most appreciated mathematical model to
describe these patterns, highlighting their strengths and weaknesses. In particular,
we shall investigate the problem of commuters between two locations.

• in Chapter 1, we shall present the Gravity Model;

Starting from an intuitive idea, this model is the most historical one and is
still used and studied to this day due to its simplicity. However, there often
are inconsistencies with its results and its validity is all but verified by the
collected data. In particular, an example comparing two predictions in Utah
and Alabama (U.S.) will play a central role. While the variables for the Gravity
Model are very similar hence producing a similar prediction on the number of
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Introduction

commuters between the pair of chosen locations, the U.S. Census registered a
substantial difference (more on Section 1.1.3).

• in Chapter 2, we shall present the Radiation Model;

This model tried to solve some of the biggest problems of the previous one
and succeeded, even becoming parameter-free. While the Gravity Model was
inspired by Newton’s gravitational law, the Radiation Model was created in
analogy with the absorption-emission processes of particles [3]. Although we
cannot consider this search concluded, it has surely heightened our compre-
hension of the mathematical structure behind human mobility patterns.

• in Chapter 3, we shall present some numerical results comparing these two
models in a fictional case and the Utah-Alabama case, which will have accom-
panied the reader throughout this dissertation.
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Chapter 1

Gravity Model

The Gravity Model is one of the most important models used in location analysis
to describe mobility patterns. Introduced in 1946, but with roots that go back to
the eighteenth century, this model is built in analogy with Newton’s law of the
gravitational force. This law states that the gravitational force Fij between two
masses mi and mj separated by a distance dij is given by

Fij = γ
mimj

d 2
ij

where γ is a constant.

Since our analysis is concerned with the spatial locations of activities, such as the
journey from home to work, we shall hereafter consider Tij as the number of indi-
viduals that move per unit of time, mi the population of the origin location i, mj

the population of the destination location j and dij as the travel distance between
locations i and j per unit of time. We define a first form of the Gravity Model
through the law

Tij = k
mimj

d 2
ij

(1.1)

where k is a constant.

This law could be generalised by noting that there is no reason to think that Tij

is inversely proportional to the square of the distance dij, but only that there is
a relationship between Tij and cij, a generalised cost of travelling from i to j. A
further generalisation would be to consider that Tij is proportional to some power
of mi and mj, and decays with the cost cij.

Definition 1. Given the following

i, j locations in Region A;

Tij the number of individuals that move per unit of time between i and j;

mi the population of the origin location i;

mj the population of the destination location j.

5



1.1. Some problems of the Gravity Model

Then, the Gravity Model [GM] is defined by the law

Tij =
mα

i mβ
j

f(cij)
(1.2)

where α, β are adjustable exponents, cij is the generalised cost of travelling from i
to j and f(cij) is the deterrence function chosen to fit the empirical data.

i

j

k

l

T ij

Tik

T
jk

T il

Region A

Tab = k mamb

d 2
ab

, a, b ∈ A

Figure 1.1 : In this Figure, we present an intuitive visualisation of the amount Tij

using the law defined in Equation (1.1). Inside the Region A are the locations i, j,
k and l. Assuming

dil > dij ∼ dik ∼ djk where dab = |a − b| for a, b ∈ A,

we can deduce that, if mi = mj = mk = ml, then

Til < Tij ∼ Tik ∼ Tjk.

Whereas, if mi = mj = mk << ml, it may not be the case. These obvious notes
emphasise how few variables can totally alter the result, much less considering the
form presented in Equation (1.2).

1.1 Some problems of the Gravity Model
Despite its widespread use, this law has some notable limitations that left researchers
doubtful of its actual validity. Let us note that the simplicity and intuitivity of this
model still attract today, allowing its use in some areas of logistics.

The above-mentioned limitations will be hereunder listed and analysed:

(i) lacking a rigorous derivation of Equation (1.2);

Although many studies have proved the effectiveness of the GM [4], it has yet
to be rigorously deduced. Looking at the particular case of the gravity law
with α = β = 1, it is possible to use the entropy maximising method to obtain
a derivation. However, it has to be noted that this result does not resolve
the substantial problem, which therefore remains, but only helps in giving a
clearer vision of this law.

This result will be presented in Section 1.1.1.
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Chapter 1. Gravity Model

(ii) lacking theoretical guidance, the deterrence functions used are of various forms
and have many parameters;

The pursuit for a universally valid function has lasted decades and while many
results confirm the GM’s validity, they still fail to provide its theoretical deriva-
tion. With this in mind, it has been proposed that the empirical success of
the GM, although not matched with its theoretical counterpart yet, shall be
accepted as a fact of life [4].

This result will be presented in Section 1.1.2.

(iii) this model is unable to predict mobility in regions where systematic traffic
data are lacking;

The ability to use this model with limited data is crucial, thus this barrier
remains quite visible. This may be one of the most critical problems of this
model since it would difficult to calibrate the law without adding many pa-
rameters, which is something that would divert us from a universal description
of human mobility.

(iv) it has systematic predictive discrepancies;

An example of the predictiveness unreliability will be presented subsequently:
two pairs of U.S. counties with similar origin and destination populations and
comparable distance will highlight how, although the GM predicts that they
should have a similar flux of people, their fluxes of people differ of an order of
magnitude.

This result will be presented in Section 1.1.3.

(v) Equation (1.2) predicts that the number of commuters increases without limit
as we increase the destination population mj, yet it cannot exceed the origin
population mi, highlighting an analytical inconsistency;

It will be later shown in Section 1.1.1 how to overcome this problem by adding
certain constraints.

(vi) being deterministic, it cannot account for fluctuations in the number of trav-
ellers between the two populations, while this trait would be of great interest.

1.1.1 Derivation through the entropy maximisation
It is possible to consider a particular case of the gravity law, with α = β = 1, and
use the entropy maximisation [5][6] to derive Equation (1.2). However, it still fails to
offer the functional form of f(cij) making this work only partially satisfying.

Remark 1. The aforementioned introduction is slightly improper: we shall use the
entropy maximisation method on a probability distribution. It will be now used
{Tij} to define the distribution of trips.

Remark 2. In order to better illustrate this example, the following notation will
be helpful. Let the number of trip origins in i be noted as Oi and the number of
trip destinations in j be noted as Dj, both are proportional to Tij, which will now
represent the total number of trips from i to j.
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1.1. Some problems of the Gravity Model

Remark 3. As previously stated in Item (v), the analytical inconsistency of the
number of commuters needs to be addressed. To correct such behaviour, let us add
two constraints: ∑

j

Tij = Oi, (C.1)
∑

i

Tij = Dj. (C.2)

These can be satisfied by introducing a set of Ai and Bj sometimes called balanc-
ing factors. Still, these constraints cannot solve the substantial problem of Equa-
tion (1.2).

Definition 2. In light of the above notations and remarks, the gravity law with
α = β = 1 will be henceforth written as

Tij = AiBjOiDjf(cij) (1.3)
where f(cij) is some decreasing function cost, and

Ai = 1∑
j BjDjf(cij)

,

Bj = 1∑
i AiOif(cij)

satisfy Equations (C.1) to (C.2). It will be also assumed another constraint∑
i,j

Tijcij = C (C.3)

which implies that the total amount spent on trips in the region from which i and
j are located at a certain point in time is a fixed amount C.

The crucial assumption of the entropy maximising method is now stated.

Assumption. The probability P of the distribution {Tij} occurring is proportional
to the number of states of the system which satisfy the constraints. Thus, if w(Tij)
is the number of ways in which individuals can be arranged to produce the overall
distribution {Tij}, then it can be written as

P({Tij}) ∝
∑

w(Tij)
where the summation is restricted to those Tij that satisfy the constraints Equa-
tions (C.1) to (C.3).

Supposing
T =

∑
i

Oi =
∑

j

Dj (1.4)

is the total number of trips, the number of distinct arrangements of individuals
which give rise to {Tij} is

w(Tij) =
(

T

T11

)
·
(

T − T11

T12

)
· . . .

= T !
T11!������(T − T11)!

· ������(T − T11)!
T12!((((((((((T − T11 − T12)!

· . . .

= T !∏
i,j Tij!
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Chapter 1. Gravity Model

and the total number of possible states is then

W =
∑

w(Tij)

where the summation is restricted to those Tij that satisfy the constraints Equa-
tions (C.1) to (C.3).

All of the necessary ingredients for proving the following have now been given.

Proposition 1. It is possible to derive

Tij = AiBjOiDjf(cij)

through the entropy maximisation method. In particular, it will be obtained f(cij) =
exp [−βcij] where β is a Lagrangian multiplier.

Proof. The study of
W =

∑
w(Tij)

shows that the maximum values of w(Tij) dominate the other values of the sum
to such an extent that the distribution {T ij} such that maxTij

w(Tij) = w(T ij) is
predominantly the most probable distribution.

Hence this method is a probability-maximising method.

The maximum will now be obtained through the maximisation of the function w(Tij)
subject to the constraints

hi
def==

∑
j

Tij − Oi,

kj
def==

∑
i

Tij − Dj,

l
def==

∑
i,j

Tijcij − C.

We shall use the method of Lagrange multipliers to find it.

Theorem 1 (Lagrange multipliers Theorem). Let A ⊂ Rn be an open set, f ∈ C1(A)
and M ∈ A a differentiable manifold of dimension d ∈ {1, . . . , n − 1} such that

M
def== {h = 0} where h ∈ C1(A;Rn−d).

If f attains a local extremum at x̄ ∈ A∩M , then there exist λ1, . . . , λn−1 ∈ R, called
Lagrangian multipliers, such that

∇f(x̄) =
n−d∑
j=1

λj∇hj(x̄).

Since it is more convenient to work with log w rather than w and, therefore, be able
to use Stirling’s approximation

log N ! = N log N − N (1.5)
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1.1. Some problems of the Gravity Model

to estimate the factorial terms, let f be log w and let the constraints hi, kj, l define
M . Let us define a new function Q as

Q
def== f −

∑
i

λ
(1)
i hi −

∑
j

λ
(1)
j kj − βl

= log w +
∑

i

λ
(1)
i

Oi −
∑

j

Tij

+
∑

j

λ
(2)
j

(
Dj −

∑
i

Tij

)
+ β

C −
∑
i,j

Tijcij


where λ

(1)
i , λ

(2)
j and β are Lagrangian multipliers.

The values that maximise Q, which as previously stated constitute the most probable
distribution of trips, are the solutions of

∂

∂Tij

Q = 0 (1.6)

and the constraints Equations (C.1) to (C.3). Using Equation (1.5), note that

∂

∂N
log N ! = ∂

∂N
N log N − ∂

∂N
N = log N

thus
∂

∂Tij

log w(Tij) = ∂

∂Tij

log T !∏
i,j Tij!

=
�

���
��∂

∂Tij

log T ! − ∂

∂Tij

log
∏
i,j

Tij!

= − ∂

∂Tij

∑
i,j

log Tij! = − log Tij

which gives
∂

∂Tij

Q = − log Tij − λ
(1)
i − λ

(2)
j − βcij

that, in order to obtain Equation (1.6), implies that

Tij = exp
[
−λ

(1)
i − λ

(2)
j − βcij

]
. (1.7)

Substituting Equation (1.7) in Equation (C.1), it is possible to obtain λ
(1)
i :∑

j

Tij = Oi,

∑
j

exp
[
−λ

(1)
i

]
exp

[
−λ

(2)
j − βcij

]
= Oi,

exp
[
−λ

(1)
i

]∑
j

exp
[
−λ

(2)
j − βcij

]
= Oi,

hence
exp

[
−λ

(1)
i

]
= Oi∑

j exp
[
−λ

(2)
j − βcij

] . (1.8)

Analogously, it is possible to obtain λ
(2)
j from Equation (C.2):

exp
[
−λ

(2)
j

]
= Dj∑

i exp
[
−λ

(1)
i − βcij

] . (1.9)
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Chapter 1. Gravity Model

The same result can be expressed in a more familiar form by writing

Ai =
exp

[
−λ

(1)
i

]
Oi

,

Bj =
exp

[
−λ

(2)
j

]
Dj

and then
Tij = AiBjOiDj exp [−βcij]

where, using Equations (1.8) to (1.9),

Ai = 1∑
j BjDj exp [−βcij]

,

Bj = 1∑
i AiOi exp [−βcij]

.

It is yet to be explained why is the entropy involved.

Definition 3. Given a number of system states with a significant probability of
being occupied and letting pi be the probability that the system is in i-th state, the
entropy is defined as

S = −kB

∑
i

pi log pi

where kB is the Boltzmann constant.

If we define
pij

def== Tij

T
and H = −

∑
i,j

pij log pij

it is easy to check that maximising H under the constraints Equations (C.1) to (C.3)
gives the same answer as the previous approach.

Thus, such a method is called entropy maximisation. ■

1.1.2 The choice of the deterrence function
The choice of the deterrence function is an important step that defines the gravity
model. It is often proposed an exponential function f(dij) = exp [γdij], where dij

is the distance between the origin and destination location and γ an appropriate
parameter.

As an example, in the field of multi-scale mobility networks, Table 1.1 presents
values for the parameters α, β, γ of the gravity law

Tij = C
mα

i mβ
j

exp [γdij]
(1.10)

where C is a constant and the other variables assume the roles previously stated,
such as mi for the population of the origin location i, mj for the population of the
destination location j and dij for the travel distance between i and j.
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1.1. Some problems of the Gravity Model

d(km) Parameter Estimate Standard Error

≤ 300
α 0.46 0.01
β 0.64 0.01
γ 0.0122 0.0002

> 300 α 0.35 0.06
β 0.37 0.06

Table 1.1 : In this Table, we present the exponents of the gravity law given by
Equation (1.10) as obtained by applying a multivariate analysis to global commuting
data [7].

While probing for the appropriate exponents’ tuning, the existence of two different
regimes in Tij emerged [7]: we observe a flattening of the commuter flows at around
300 km. Considering this fact, it seemed appropriate to subdivide this inquiry into
two and tune the parameters accordingly. For the foregoing reasons, if dij > 300
km, the value of f(dij) is definitely constant and thus it is possible to solely search
for the parameters α and β.

However, this formulation of the deterrence function is not accepted by all, and many
have defined and empirically fit other forms. These attempts to theoretically derive
the gravity law have nevertheless regrettably met poor success. On this note, Alan
Deardorff, professor emeritus of International Economics, wrote the following

I suspect that just about any plausible model of trade would yield some-
thing very like the gravity equation, whose empirical success is therefore
not evidence of anything, but just a fact of life [4].

1.1.3 Real-life application: Utah and Alabama
In this section are shown two pairs of U.S. counties with similar origin and destina-
tion populations and comparable distances that exemplify how, despite the gravity
model estimating a similar flux of people for the two for them, the U.S. Census has
collected data that differ by an order of magnitude.

For our purpose, it suffices the following version of the gravity law

Tij =
mα

i mβ
j

d γ
ij

. (1.11)

The counties taken into consideration are Davis County and Washington County
(Utah) and Madison County and Houston County (Alabama) and the travel starts
from the first to the second one of each set.

Fitting the gravity model to U.S. workflow data, 3109 counties in 49 continental
U.S. states have been used, yielding 161,710 pairs of counties with a non-zero flow
of workers [8]. To better illustrate the gravity model behaviour, the parameters are
fitted separately for distances above and below 119 km (similarly to what has been
observed in Section 1.1.2). Up to this threshold, a rapid decline in the movements
to the destination j in respect of the distance dij has been observed which means
that the value γ makes dij highly relevant. On the other hand, beyond that, a small

12



Chapter 1. Gravity Model

flux of movements is nearly independent of distance, meaning that the value γ is
close to zero.

Utah Alabama
mi 240,000 280,000
mj 90,000 89,000
dij 447 410

(a)

dij < 119 km dij ≥ 119 km
α 0.30 0.24
β 0.64 0.14
γ 3.05 0.29

(b)

Table 1.2 : In these Tables, we present the values used in the gravity law defined
by Equation (1.11) and fitted to the dataset above. In Table 1.2a are the values of
the population and distance for the location i and j of each set as collected by the
U.S. Census 2000 [3] and in Table 1.2b the values of the parameters α, β and γ.
Although Table 1.2b includes findings for both distance ranges for completeness, we
shall focus on the last column.

The U.S. Census 2000 dataset for the commuters amount between counties, i.e. the
values Tij, has been removed from the government site, however, by calculating the
prediction using the available data from the U.S. Census 2010, compatible results
are obtained.

Using the information in Table 1.2, it is possible to obtain an estimation of the flux
from i to j for each set as follows

T UT
ij =

mα
i mβ

j

d γ
ij

= (240000)0.24(90000)0.14

(447000)0.29 ∼ 2, 22,

T AL
ij =

mα
i mβ

j

d γ
ij

= (280000)0.24(89000)0.14

(410000)0.29 ∼ 2, 36.

Theoretically, since the values of T UT
ij and T AL

ij are close, if the GM has good pre-
dictive power, we should have similar results from the dataset. However, the U.S.
Census 2000 reports a flux that is an order of magnitude greater between the Utah
counties:

Utah Alabama
mi 240,000 280,000
mj 90,000 89,000
dij 447 410
C 44 6

GM 2 2

Table 1.3 : Starting from Table 1.2a, we add the flux of people from location i to
location j as observed by the U.S. Census 2000 [C] and as predicted by the Gravity
Model defined by Equation (1.11) and fitted with the parameters from Table 1.2b
[GM].

13



1.1. Some problems of the Gravity Model

Figure 1.2 : In this Map, we highlight the counties used as an example in this
section, using the same scale to show the similar distance.

This example will be later resumed using a different model capable of capturing
better results.

14



Chapter 2

Radiation Model

To overcome the limitations above-analysed, many variants of the Gravity Model
have been proposed but did not solve all of them. Even alternative approaches
like the Intervening Opportunity Model and the Random Utility Model only par-
tially solved these problems. They still contained, withal, context-specific tunable
parameters, and their predictive power was at best comparable to the gravity law.
A point in favour of these new approaches is the idea to derive a new model from
first principles, thus, comprehending what actually determines the commuting of
people. We shall present a new model that became a serious contender to the GM:
the Radiation Model [3].

Ergo, the core of the model hereunder presented is that, while commuting is a daily
process, its origin and destination are determined by a decision made over longer
timescales: the job selection.

Using the natural partition of a country into counties (as in Section 1.1.3), the job
selection is assumed to consist of two steps:

1. an individual seeks job offers from all counties, including theirs;

The number of opportunities in each county is proportional to its popula-
tion, n, assuming that there is one job opening for every njobs individuals.
Let us capture the benefits of a potential employment opportunity from a
distribution p(z), where z represents a combination of working schedule, in-
come, conditions, and the like. Every county with n population is, thus,
assigned n̄ = n/njobs employment opportunities z1, . . . , zn̄, hinting that larger
a county’s population, the more employment opportunities it offers.

2. the individual chooses the closest job to their home, whose benefits z are higher
than the best offer available in their home county.

Note that lack of commuting has priority over the benefits.

This model has three unknown parameters:

p(z) the benefit distribution;

njobs the job density;

T the total number of commuters (as used in Equation (1.4) in Section 1.1.1).

15



Our aim is to need the least amount of parameters possible. It will be later shown
that the commuting fluxes Tij are independent of p(z) and njobs, and that T does
not affect the flux distribution, making this model parameter-free. As the model
can be formulated in terms of radiation and absorption processes, it will be referred
to as the Radiation Model.

Definition 4. Given the following

i, j locations in Region A;

Tij the number of individuals that move per unit of time between i and j;

mi the population of the origin location i;

mj the population of the destination location j;

dij the euclidean distance between i and j;

sij the total population in the circle of radius dij centred at i excluding the
origin and destination locations.

i j

l

p

k

sij

dij

Region A

Figure 2.1 : In this Figure, an intuitive visualisation of the amount sij is presented.

The average flux predicted by the Radiation Model [RM] is then

⟨Tij⟩ = Ti
mimj

(mi + sij)(mi + mj + sij)
(2.1)

where
Ti =

∑
j ̸=i

Tij

is the number of commuters with origin location i and destination location j ̸= i.

Remark 1. The Equation (2.1) is independent of both p(z) and njobs. Since Ti is
proportional to the population of the origin location i,

Ti = mi

(
T

N

)
(2.2)
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Chapter 2. Radiation Model

where T is the total number of commuters and N is the total population of the
country.

Remark 2. Another form of these two parameters would be

T =
∑

i

Oi =
∑

j

Dj and N =
∑

i

mi

where we recall Oi being the number of trip origins in i, and Dj being the number
of trip destinations in j. This formulation will not be further used, but it is effective
in showing the difference between the two.

Briefly summarising the prior study, the major problems were the following

(i) lacking a rigorous derivation of Equation (1.2);

(ii) lacking theoretical guidance of the deterrence function, particularly in regard
to the parameters;

(iii) the GM is unable to predict mobility in regions where systematic traffic data
are lacking;

(iv) the GM has systematic predictive discrepancies;

(v) Equation (1.2) predicts that the number of commuters increases without limit
as we increase the destination population mj, yet it cannot exceed the origin
population mi, highlighting an analytical inconsistency;

(vi) being deterministic, it cannot account for fluctuations in the number of trav-
ellers between the two populations, while this trait would be of great interest.

The radiation model defined by Equation (2.1) resolves the limitations exhibited in
Items (i) to (vi) and analysed throughout Section 1.1.

It has a rigorous derivation (resolving Item (i)) and no free parameters (resolving
Item (ii) and Item (iii)). The problem exposed in Item (iv) is addressed by observing
the population density around i: for uniform population density

sij ∼ mid
2
ij and m = mi = mj, ∀i, j (⋆)

from the RM we obtain

Tij

∣∣∣RM
= Ti

mimj

(mi + sij)(mi + mj + sij)
(⋆)−→ Ti

�
�m2

��m(1 + d 2
ij)��m(2 + d 2

ij)
(2.2)−−→ m

T

N

1
(1 + d 2

ij)(2 + d 2
ij)

∼ m

d 4
ij

on the other hand, using

f(dij) = d γ
ij, γ = 4, α + β = 1 (⋆⋆)

in the GM, we obtain

Tij

∣∣∣GM
= C

mα
i mβ

j

f(dij)
(⋆⋆)−−→ C

m(α+β)

d γ
ij

= C
m

d 4
ij

∼ m

d 4
ij
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showing that the radiation law reduces to the gravity law. This result may hint
that no progress has been made by switching the approach regarding the exhibited
problem, but this is true only under the assumption that the population density is
uniform, which is false in most cases.

Figure 2.2 : If we now revisit the example between the counties of Utah and Al-
abama and observe the value sij for dij ∼ 480 km, it is clear that the population
density around Utah is significantly lower than the U.S. average, making work op-
portunities within the same distance even ten times smaller in Utah than in Alabama.
This implies that commuters departing from Utah have to travel farther.

Utah Alabama
mi 240,000 280,000
mj 90,000 89,000
dij 447 410
sij 2 · 106 2 · 107

C 44 6
GM 2 2
RM 66 2

Table 2.1 : Starting from the Table 1.3, the total population in the circle of radius
dij centred at i excluding the origin and destination locations [sij] and the flux of
people from location i to location j as predicted by the RM defined by Equation (2.1)
[RM] are added. Let us note that the RM applied to Utah’s example, using the U.S.
Census 2010 dataset, gives an approximate value of 76, which is compatible with the
population growth and, thus, commuters rise.
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Chapter 2. Radiation Model

The physical inconsistency highlighted in Item (v) is not present anymore:

lim
mj→+∞

Tij = lim
mj→+∞

mi
T

N

mimj

(mi + sij)(mi + mj + sij)

= m2
i

(mi + sij)
lim

mj→+∞

T

N

mj

(mi + mj + sij)
(⋆)= m2

i

(mi + sij)
lim

mj→+∞�
�

�
�N − Q

N
��mj

��mj

(
mi

mj
+ 1 + sij

mj

)
= m2

i

(mi + sij)
≤ mi

where Q is the number of non-commuters, which completes T to N , thus

mj < N = T + Q. (⋆)

Finally, Tij is now a stochastic variable predicting both the average flux between two
locations (Equation (2.1)) and its variance, as it will be illustrated in the following
section.

2.1 An alternative formulation of the Radiation
Model

Another way to present the RM is by analogy with radiation emission and absorption
processes.

Let us begin by imagining the origin location i as a source emitting an outgoing flux
of identical and independent units, the process of emission-absorption is defined by
two steps:

1. a number zi
X is assigned to every particle X emitted from location i, which rep-

resents the absorption threshold for that particle; this value correspond to the
maximum number obtained after mi random extractions from a distribution
p(z).

Remark 1. Since mi is the population of the location i, particles emitted from
a highly populated location have, on average, a higher absorption threshold
than those emitted from a lower populated one.

2. the surrounding locations have a certain probability of absorbing the particle
X: a number zj

X is assigned to the surrounding location j, which represents
the absorbance of location j for that particle.

Remark 2. The particle is absorbed by the closest location whose absorbance
exceeds its absorption threshold.

By iterating this process for all emitted particles, the fluxes across the country are
obtained. The probability of an absorption-emission event occurring will be now
calculated.

Definition 5. Given the following
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2.1. An alternative formulation of the Radiation Model

i, j locations in Region A;

mi the population of the origin location i;

mj the population of the destination location j;

dij the euclidean distance between i and j;

sij the total population in the circle of radius dij centred at i excluding the
origin and destination locations.

The probability that a particle emitted from i is absorbed in j, according to the
RM, is

P(1 | mi, mj, sij) =
∫ +∞

0
Pmi

(z)Psij
(< z)Pnj

(> z) dz (2.3)

where

1. Pmi
(z) = P(maxk xk = z, k ≤ mi) is the probability that the maximum value

extracted from the PDF p(z) after mi trails is equal to z

P(max
k

xk = z, k ≤ mi) = P(xk ≤ z, ∀k ≤ mi − 1)P(xk = z)
⋆= mi[P(x < z)]mi−1P(x = z)
= mi[p(x < z)]mi−1p(x = z)
⋆⋆= mi[p(x < z)]mi−1 d

dz
p(x < z)

where in ⋆ is assumed that there is only one location k at distance dij from i
with the maximum absorbance value, and in ⋆⋆ is used

P(x ≤ z) =
∫ z

0
P(x = s) ds

d
dz

P(x ≤ z) = P(x = z)

2. Psij
(< z) = P(xk < z, ∀k ≤ sij) is the probability that sij numbers extracted

from the p(z) distribution are all lower than z

P(xk < z, ∀k ≤ sij) = [P(xk < z)]sij = [p(x < z)]sij

3. Pnj
(> z) = P(xk > z, ∃k ≤ mj) is the probability that among mj numbers

extracted from the PDF p(z) at least one is greater than z

P(xk > z, ∃k ≤ mj) = 1 − P(xk < z, ∀k ≤ mj)
= 1 − [P(x < z)]mj

= 1 − [p(x < z)]mj

Therefore, Equation (2.3) represents the probability that one particle emitted from
an origin location i, with population mi, is absorbed by a destination location j,
with population mj, while not being absorbed by any closer location.
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Chapter 2. Radiation Model

Evaluating Equation (2.3) with Items 1 to 3, we obtain

P(1 | mi, mj, sij) =
∫ +∞

0
Pmi

(z)Psij
(< z)Pnj

(> z) dz

=
∫ +∞

0
P(max

k
xk = z, k ≤ mi)P(xk < z, ∀k ≤ sij)P(xk > z, ∃i ≤ mj) dz

=
∫ +∞

0
mi[p(x < z)]mi−1 dp(x < z)

dz
[p(x < z)]sij (1 − [p(x < z)]mj ) dz

= mi

∫ +∞

0

[
p(x < z)mi+sij−1 − p(x < z)mi+mj+sij−1

]
dp(x < z)

t = p(x<z)−−−−−−→ mi

∫ 1

0

[
tmi+sij−1 − tmi+mj+sij−1

]
dt

= mi

[
1

mi + sij

− 1
mi + mj + sij

]

= mimj

(mi + sij)(mi + mj + sij)
(2.4)

Remark 3. The Equation (2.4) is independent of the distribution p(z) and invariant
under rescaling of the population by the same factor (njobs).

The probability for a particular sequence of absorption of the particles emitted at
origin location i, P(Ti1, Ti2, . . . , TiL) into L destination locations is given by

P(Ti1, Ti2, . . . , TiL) =
(

Ti

Ti1

)
pTi1

i1 ·
(

Ti − Ti1

Ti2

)
pTi2

i2 · . . .

= Ti!
Ti1!������(Ti − Ti1)!

pTi1
i1 · ������(Ti − Ti1)!

Ti2!((((((((((Ti − Ti1 − Ti2)!
pTi2

i2 · . . .

=
L∏

j=1

Ti!
Tij!

p
Tij

ij generalized with
∏
j ̸=i

(2.5)

where ∑
j ̸=i

Tij = Ti and pij ≡ P(1 | mi, mj, sij)

Remark 4. The distribution P(Ti1, Ti2, . . . , TiL) is normalized because

∑
j ̸=i

pij = mi

∑
j ̸=i

[
1

mi + sij

− 1
mi + mj + sij

]
= 1 (2.6)

To prove the normalization, let us introduce zij as the sum of mi and sij or, in other
words, the sum of the population of all the locations in

Bdij
(i) = {k ∈ Region A | d(i, k) < dij}.

The series is telescopic and, therefore, its value is easily calculated.

mi

∑
j ̸=i

[
1

zij

− 1
zij + mj

]
⋆= mi

(
lim

zij→+∞

1
zij

− 1
mi

)
= 1

where in ⋆ is used the following property of the telescopic series.
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2.1. An alternative formulation of the Radiation Model

Proposition 2. Given the telescopic series

+∞∑
k=1

ak where ak = Ak+1 − Ak,

then, the partial sums sN consist of

sN =
N∑

k=1
= AN − A0

and the value of the series is

+∞∑
k=1

ak = lim
N→+∞

sN .

Thus, the result in Equation (2.6) is obtained.

Finally, the probability that exactly Tij particles emitted from the origin location i
are absorbed in the destination location j is obtained through the marginalization
of the probability defined in Equation (2.5): considering

T =
Tik : k ̸= i, j;

∑
k ̸=i

Tik = Ti


the probability is the

P(Tij | mi, mj, sij) =
∑
T

Pi(Ti1, Ti2, . . . , Tij, . . . , TiL)

=
(

Ti

Tij

)
p

Tij

ij (1 − pij)Ti−Tij

= Ti!
Tij!(Ti − Tij)!

p
Tij

ij (1 − pij)Ti−Tij

which is a binomial distribution with average

⟨Tij⟩ ≡ Tipij = Ti
mimj

(mi + sij)(mi + mj + sij)

and variance
Tipij(1 − pij).

Thus, obtaining Equation (2.1).
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Chapter 2. Radiation Model

i
j1 j2

jL

(a) Initial state of zij where dij = dij1,
hence zij = mi.

i
j1 j2

jL

(b) Second state of zij where dij = dij2,
hence zij = mi + mj1.

i
j1 j2

jL

(c) The process will progressively enlarge
dij.

i
j1 j2

jL

(d) Last state of zij where dij = dijL,
hence zij = mi +

∑L
l=1 mjl

.

Figure 2.3 : In these Figures, we present an intuitive visualisation of zij.
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Chapter 3

Comparison between Gravity and
Radiation Model

This Chapter will present and compare a visual representation of the results obtained
from the gravity and radiation model. After a preliminary presentation of a fictional
situation, the Utah example will be retaken into consideration by choosing Davis
County as the origin location i and the other counties in this State as the destination
locations j (similarly to Section 1.1.3 and Figure 2.2).

3.1 Fictional Case
First and foremost, let us have a clear vision of these models’ predictions by con-
cocting a simple yet effective base case.

Starting from an m × n grid, let the cell in position a, b for 1 ≤ a ≤ m and
1 ≤ b ≤ n be the origin location i (also origin cell) and all the other cells the
destination locations j (also destination cells). The cells will be also referred to
with (·, ·) where · calls for the cell’s row and column in the grid.

j j j

j j j

j j j

j i ja

b

Figure 3.1 : Let it be m = 4, n = 3, a = 3, b = 2.

Now, in order to devise an interesting case which highlights these models, the value
sij has a prominent role. Let us give three distinct subcases where sij determines
three different outcomes:

25



3.1. Fictional Case

Subcase A: where only in the origin cell and in a single destination cell is the popu-
lation value positive, otherwise null;

Subcase B: the population has a uniform density throughout the grid, making every
cell have the same population value (as used on page 17);

Subcase C: similarly to what happens in reality, there often are agglomerations of
people and this behaviour can be implemented by defining a certain cell
as the center of the agglomeration, with a positive population value, and
the adjacent cells (also periphery cell) with a lesser positive population
value.

× × ×

× × ×

× i ×

× j×

a

b

(a) Subcase A

j j j

j j j

j i j

j jj

a

b

(b) Subcase B

× × ×

ji ji ji

ji i ji

ji jji

a

b

(c) Subcase C

Figure 3.2 : In these Figures, the Subcases above are presented from left to right.
The × symbol refers to an empty cell, i.e. a cell with population value null. In
Figure 3.2b it is implied mi = mj hence every cell has the same population value
(positive, otherwise this analysis is trivial). In Figure 3.2c, ji refers to the population
value around the origin cell that, for easier visualisation, is assumed to decrease
uniformly.

Remark 1. We assume the following:

• we use the gravity law defined in Equation (1.11) and the parameters defined
in Table 1.2b from Section 1.1.3;

• the population value is always non-negative and null outside of the grid.

Let us start with Subcase A. Supposing origin cell in (3,2) and destination cell in
(2,3) and giving population values

mk =


100 if k = i = origin cell
10 if k = j = destination cell
0 otherwise

.

If we now apply the GM, only the destination cell will give a positive value since
all the other non-origin cells have population value null; the same reason will be
obtained with the RM. It is indeed useless to use the RM, reason being

Tij

∣∣∣RM

A
= Ti

mimj

(mi + sij)(mi + mj + sij)

∣∣∣∣∣
A

= Ti
mimj

mimj

= Ti
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Chapter 3. Comparison between Gravity and Radiation Model

where we recall Ti being the total amount of commuters departing from i which,
having no other destination for the job selection process, will converge in j. Let us
stress that the RM forte is the ability to use the surrounding population values to
increase the precision and prediction power of the model, thus it is not interesting
to use it for such a Subcase.

Proceeding with Subcase B, let us change from the previous one only the population
values as mk = 10, ∀k. Using these simple data, the GM’s prediction is readily
obtained and it states that the commuter flow will uniformly decrease with the
distance. There still is little use in applying the RM because there won’t be any
improvements if the population is uniformly distributed (refer to page 17).

Lastly, Subcase C is the closest to reality among these three. It emulates a simple
example of a city, where there is a highly populated area (main districts) surrounded
by some lesser populated areas (outskirts). The population values used are

mk =



100 if k = i = origin cell
10 if k = j = destination cell
5 if k = ji = periphery cell
0 otherwise

.

In this Subcase, the RM’s prediction differs from the GM’s: with a non-zero popu-
lation value, different from the origin one, the value sij plays a role. It is, yet, not
very visible because these Subcases were all simple. Their purpose was to introduce
the next Section, where a real scenario will be taken into consideration.

Figure 3.3 : From left to right: we show the population values in logarithmic scale,
the GM values which have little relevance in this Subcase and their 2D-view. The
red column (3D) and cell (2D) represent the origin cell i, whereas the blue ones
represent the destination cell j.
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3.1. Fictional Case

Figure 3.4 : In this Subcase, these Figures produce a more interesting effect. In
the rightmost Figure, we present the expected GM prediction using shades of black
where the darker the shade of a cell, the higher the number of commuters arriving
at that cell from the origin location.

Figure 3.5 : We present two rows of Figures, each showing the GM and RM’s
prediction respectively.
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Figure 3.6 : The results of this Section are here collected for clarity and ease of
comparison (from top to bottom: Subcase A with GM, Subcase B with GM, Subcase
C with GM and Subcase C with RM)
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3.2. Real Case: Utah

3.2 Real Case: Utah
Let us now consider the real-life application of this model that has been used
throughout this dissertation. We begin by noting that Utah’s Counties’ subdivi-
sion is already easy to use for this visualisation, however, we will further adjust it
to obtain a more practical grid.

1 2 3 4 5
1 Box Elder N Cache Rich - -
2 Box Elder S Weber W Weber E - -
3 Tooele N Davis Morgan Summit Dagget
4 Tooele C Salt Lake Wasatch Duchesne N Uintah N
5 Tooele S Utah W Utah E Duchesne S Uintah C
6 Juab W Juab E Sanpete N Carbon Uintah S
7 Millard N Sanpete SW Sanpete SE Emery N Grand N
8 Millard S Sevier W Sevier E Emery S Grand S
9 Beaver Piute Wayne W Wayne E San Juan N
10 Iron Garfield W Garfield C Garfield E San Juan C
11 Washington Kane W Kane E San Juan SW San Juan SE

Table 3.1 : Starting from the Counties’ subdivision, some adjustments are presented
above to obtain a perfect 11 × 5 grid.

Henceforth, a uniform population distribution inside each County is assumed, un-
burdening the attribution of this value: data from the U.S. 2012 Census has been
used and allocated in accordance with a, sometimes approximate, proportion of each
Counties territory inside of each cell (the letters at the end of each name represent
approximately which portion of that County has been allocated to that particular
cell following the cardinal points).

It is clear that this procedure cannot maintain a perfect correspondence with the
real case, but still offers an opportunity to visualise the models’ prediction.

1 2 3 4 5
1 1/3 1 1 - -
2 2/3 1/2 1/2 - -
3 1/3 1 1 1 1
4 1/3 1 1 1/2 1/3
5 1/3 1/2 1/2 1/2 1/3
6 2/3 1/3 1/3 1 1/3
7 1/2 1/3 1/3 1/2 1/2
8 1/2 1/2 1/2 1/2 1/2
9 1 1 1/3 2/3 1/3
10 1 1/3 1/3 1/3 1/3
11 1 1/2 1/2 1/6 1/6

Table 3.2 : An approximate proportion of the Counties mentioned in Table 3.1 will
be now used to produce the following.
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1 2 3 4 5
1 17,145 117,638 2,311 - -
2 34,290 119,260 119,260 - -
3 20,030 316,737 10,032 37,593 1,105
4 20,030 1,059,323 24,843 9,768 11,376
5 20,030 267,700 267,700 9,768 11,376
6 7,138 3,568 9,533 22,106 11,376
7 6,430 9,533 9,533 5,634 4,682
8 6,430 10,655 10,655 5,634 4,682
9 6,655 1,591 971 1,941 5,139
10 48,418 1,765 1,765 1,765 5,139
11 142,123 3,744 3,744 2,569 2,569

Table 3.3 : Combining the information from Table 3.1 and Table 3.2 this Table
shows the population value of each cell.

Using Subcase C as inspiration, we apply the same procedure here, with the dif-
ference that the population outside of our grid is not null. After noting that the
population in a certain range outside of Utah does not present excessive differences
in the density amount, we may assume a uniform density to ease the computational
phase. With a non-zero population amount, the effect of sij will highly affect the
RM’s prediction.
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Figure 3.7 : From top to bottom: we show the population values in logarithmic
scale, the GM and RM’s prediction.
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Conclusions

The problem of searching for a mathematical underlying model for human mobility
patterns and their impacts, e.g. spread of diseases and propagation of information,
has lasted decades if not centuries. The Gravity Model monopolised the researchers’
attention until some inconsistencies of this model made them question its actual
validity.

Focusing on the case of commuters between two locations, we presented this model
because it remains a pillar of this branch of science, making its study and compre-
hension still useful to those who want a deeper knowledge of this theme. Indeed,
with intuitiveness as its forte, many still hope to adjust its law without having to
consider different models [4].

As for us, there were many clear obstacles and inconsistencies which lead us astray
from a further optimisation of it. In particular, the necessity of fitting context-
specific tunable parameters underlined the limitations of this model, at least in
searching for a universal model to predict mobility patterns. Most of these difficulties
were overcome by the parameter-free Radiation Model [3] which we subsequently
presented. Even though its law is not as simple as the Gravity model, which only
considers the masses (e.g. population value) in two locations and their distances, it
still is easy to implement.

This new model’s core is looking at what determines human mobility, which often is
job selection. Taking this into consideration, what ultimately differs the radiation
law from the gravity law is the use of the total mass value around the location from
which the movement begins up until the distances between the origin and destination
location. In other words, the RM’s prediction highly differs if the commuter starts
its journey from a widely or sparsely populated area.

Nevertheless, this recent take on the modelisation of human patterns should not be
taken as the definitive answer. There already are some more generalised forms [9]
and new models which aim to surpass it.

As an example, recent studies have shown another intuitive and parameter-free
model adapted from Ohm’s law of electricity, called the Impedance Model, which
provides even more accurate estimations of human mobility, especially when the
population distribution is highly heterogeneous [10].

Lastly, we presented some short computational results, which aimed to solidify their
differences, both in a fictional and in a real case scenario.
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Appendix

In this Appendix, the Mathematica codes used in Chapter 3 are collected.

Some useful functions are:

• GM gives the law defining the Gravity Model;

• RM gives the law defining the Radiation Model;

• cuboid creates a Graphic3D structure;

• FFind eases to find a cell when the grid is flattened.
GM[ci_, cf_] := (ci[[3]]^alpha cf[[3]]^beta)/ Sqrt[(ci[[1]] - cf[[1]])

^2 + (ci[[2]] - cf[[2]])^2]^gamma
RM[ci_, cf_, sif_, Ti_] := If[ cf[[3]] == 0, 0, Ti (ci[[3]] cf[[3]])/((

ci[[3]] + sif) (ci[[3]] + cf[[3]] + sif))]
cuboid[c_] := Cuboid[{c[[1]] - 1, c[[2]] - 1, 0}, {c[[1]], c[[2]], Max

[0, Log[10, c[[3]] + 0.001]]}]
FFind[i_, j_] := n*(i - 1) + (j - 1) + 1

Let us begin with the Fictional Case by introducing the parameters needed.
alpha = 0.30;
beta = 0.64;
gamma = 3.05;
m = 4;
n = 3;
ai = 3;
aj = 2;
bi = 2;
bj = 3;

For Subcase A:
grid = Table[{i, j, 0}, {i, 1, m}, {j, 1, n}];
am = 100;
bm = 10;
grid[[ai]][[aj]][[3]] = am;
grid[[bi]][[bj]][[3]] = bm;

a = Map[cuboid, Flatten[grid, 1]];
a[[FFind[ai, aj]]] = {Red, cuboid[grid[[ai]][[aj]]], White};
a[[FFind[bi, bj]]] = {Blue, cuboid[grid[[bi]][[bj]]], White};
aa = Flatten[a, 1];

SUBA = Graphics3D[aa, Ticks -> {Range[11], Range[5], Automatic},
ViewPoint -> {2, -1, 2}];

(* Export["subA.png",SUBA]*)
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b = Map[GM[grid[[ai]][[aj]], #] &, Drop[Flatten[grid, 1], {FFind[ai, aj
]}]];

b1 = Insert[b, am, FFind[ai, aj]];
bb = Partition[b1, n];
gridGM = Table[{i, j, bb[[i]][[j]]}, {i, 1, m}, {j, 1, n}];
maxGM = Max[b];

c = Map[cuboid, Flatten[gridGM, 1]];
c[[FFind[ai, aj]]] = {Red, cuboid[gridGM[[ai]][[aj]]], White};
c[[FFind[bi, bj]]] = {Blue, cuboid[gridGM[[bi]][[bj]]], White};
cc = Flatten[c, 1];
gmSUBA = Graphics3D[cc, Ticks -> {Range[11], Range[5], Automatic},

ViewPoint -> {2, -1, 1}];
(*Export ["bgmsubA.png",gmSUBA]*)

cub[c_] := {Opacity[(c[[3]])/maxGM, Black], Cuboid[{c[[2]] - 1, -c[[1]]
+ 1}, {c[[2]], -c[[1]]}]}

rectedge[c_] := {EdgeForm[Thickness[Medium]], Transparent, Rectangle[{c
[[2]] - 1, -c[[1]] + 1}, {c[[2]], -c[[1]]}]};

d = Map[cub, Flatten[gridGM, 1]];
d1 = Map[rectedge, Flatten[gridGM, 1]];
d[[FFind[ai, aj]]] = {Opacity[1, Red], Last[cub[gridGM[[ai]][[aj]]]]};
d[[FFind[bi, bj]]] = {Opacity[1, Blue], Last[cub[gridGM[[bi]][[bj]]]]};
dd = Flatten[d, 1];
dFIN = Join[dd, d1];
GMSUBA = Graphics[dFIN];
(*Export["GMsubA.png",GMSUBA]*)

LA = {SUBA, gmSUBA, GMSUBA};
GLA = GraphicsGrid[{LA}, ImageSize -> {1000, 1000}, FrameStyle ->

Directive[Thick, Dashed], Frame -> All];

Export["GLA.png", GLA]

For Subcase B:
mB = 10;
grid = Table[{i, j, mB}, {i, 1, m}, {j, 1, n}];
am = mB;
bm = mB;

a = Map[cuboid, Flatten[grid, 1]];
a[[FFind[ai, aj]]] = {Red, cuboid[grid[[ai]][[aj]]], White};
a[[FFind[bi, bj]]] = {Blue, cuboid[grid[[bi]][[bj]]], White};
aa = Flatten[a, 1];

SUBB = Graphics3D[aa, Ticks -> {Range[11], Range[5], Automatic},
ViewPoint -> {2, -1, 2}];

(* Export["subB.png",SUBB]*)

b = Map[3*GM[grid[[ai]][[aj]], #] &, Drop[Flatten[grid, 1], {FFind[ai,
aj]}]];

maxGM = Max[b];
b1 = Insert[b, maxGM, FFind[ai, aj]];
bb = Partition[b1, n];
gridGM = Table[{i, j, bb[[i]][[j]]}, {i, 1, m}, {j, 1, n}];
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c = Map[cuboid, Flatten[gridGM, 1]];
c[[FFind[ai, aj]]] = {Red, cuboid[gridGM[[ai]][[aj]]], White};
c[[FFind[bi, bj]]] = {Blue, cuboid[gridGM[[bi]][[bj]]], White};
cc = Flatten[c, 1];
gmSUBB = Graphics3D[cc, Ticks -> {Range[11], Range[5], Automatic},

ViewPoint -> {2, -1, 1}];
(*Export ["bgmsubA.png",gmSUBA]*)

cub[c_] := {Opacity[(c[[3]]*0.85)/maxGM, Black], Cuboid[{c[[2]] - 1, -c
[[1]] + 1}, {c[[2]], -c[[1]]}]}

rectedge[c_] := {EdgeForm[Thickness[Medium]], Transparent, Rectangle[{c
[[2]] - 1, -c[[1]] + 1}, {c[[2]], -c[[1]]}]};

d = Map[cub, Flatten[gridGM, 1]];
d1 = Map[rectedge, Flatten[gridGM, 1]];
d[[FFind[ai, aj]]] = {Opacity[1, Red], Last[cub[gridGM[[ai]][[aj]]]]};
d[[FFind[bi, bj]]] = {Opacity[1, Blue], Last[cub[gridGM[[bi]][[bj]]]]};
dd = Flatten[d, 1];
dFIN = Join[dd, d1];
GMSUBB = Graphics[dFIN];

(*Export["GMsubA.png",GMSUBA]*)

LB = {SUBB, gmSUBB, GMSUBB};
GLB = GraphicsGrid[{LB}, ImageSize -> {1000, 1000}, FrameStyle ->

Directive[Thick, Dashed], Frame -> All];
Export["GLB.png", GLB]

For Subcase C :
grid = Table[{i, j, 0}, {i, 1, m}, {j, 1, n}];
am = 100;
bm = 10;
grid[[ai]][[aj]][[3]] = am;
grid[[bi]][[bj]][[3]] = bm;

di = Min[m - ai, Abs[ai - bi]];
dj = Min[n - aj, Abs[aj - bj]];
Cond[x_] := If[And[And[Abs[x[[1]] - ai] <= di, Abs[x[[2]] - aj] <= dj],

Nor[And[x[[1]] == ai, x[[2]] == aj], And[x[[1]] == bi, x[[2]] ==
bj]]], xtemp = x; xtemp[[3]] = 5; xtemp, xtemp = x; xtemp[[3]] = 0;
xtemp];

Tsif = Map[Cond, Flatten[grid, 1]];
TTsif = Partition[Tsif, n];

a = Map[cuboid, Flatten[TTsif, 1]];
a[[FFind[ai, aj]]] = {Red, cuboid[{TTsif[[ai]][[aj]][[1]], TTsif[[ai

]][[aj]][[2]], am}], White};
a[[FFind[bi, bj]]] = {Blue, cuboid[{TTsif[[bi]][[bj]][[1]], TTsif[[bi

]][[bj]][[2]], bm}], White};
aa = Flatten[a, 1];

SUBC = Graphics3D[aa, Ticks -> {Range[11], Range[5], Automatic},
ViewPoint -> {2, -1, 2}];

(* Export["subC.png",SUBC]*)

grid2 = TTsif;
grid2[[ai]][[aj]][[3]] = am;
grid2[[bi]][[bj]][[3]] = bm;
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b = Map[GM[grid2[[ai]][[aj]], #] &, Drop[Flatten[grid2, 1], {FFind[ai,
aj]}]];

maxGM = Max[b];
b1 = Insert[b, maxGM, FFind[ai, aj]];
bb = Partition[b1, n];
gridGM = Table[{i, j, bb[[i]][[j]]}, {i, 1, m}, {j, 1, n}];

c = Map[cuboid, Flatten[gridGM, 1]];
c[[FFind[ai, aj]]] = {Red, cuboid[gridGM[[ai]][[aj]]], White};
c[[FFind[bi, bj]]] = {Blue, cuboid[gridGM[[bi]][[bj]]], White};
cc = Flatten[c, 1];
gmSUBC = Graphics3D[cc, Ticks -> {Range[11], Range[5], Automatic},

ViewPoint -> {2, -1, 1}];
(*Export ["bgmsubC.png",gmSUBC]*)

cub[c_] := {Opacity[(c[[3]]*0.85)/maxGM, Black], Cuboid[{c[[2]] - 1, -c
[[1]] + 1}, {c[[2]], -c[[1]]}]}

rectedge[c_] := {EdgeForm[Thickness[Medium]], Transparent, Rectangle[{c
[[2]] - 1, -c[[1]] + 1}, {c[[2]], -c[[1]]}]};

d = Map[cub, Flatten[gridGM, 1]];
d1 = Map[rectedge, Flatten[gridGM, 1]];
d[[FFind[ai, aj]]] = {Opacity[1, Red], Last[cub[gridGM[[ai]][[aj]]]]};
d[[FFind[bi, bj]]] = {Opacity[1, Blue], Last[cub[gridGM[[bi]][[bj]]]]};
dd = Flatten[d, 1];
dFIN = Join[dd, d1];
GMSUBC = Graphics[dFIN];
(*Export["GMsubC.png",GMSUBC]*)

LC = {SUBC, gmSUBC, GMSUBC};
GLC = GraphicsRow[LC, Frame -> All];
(*Export["GLC.png",GLC]*)

T1sif = Tsif;
T1sif[[FFind[ai, aj]]][[3]] = am;
T1sif[[FFind[bi, bj]]][[3]] = bm;
TT1sif = Partition[T1sif, n];
mlist = Table[T1sif[[i]][[3]], {i, 1, Length[Tsif]}];
mT = Total@mlist;
sifP[ai_, aj_, bi_, bj_] := mT - mlist[[FFind[ai, aj]]] - mlist[[FFind[

bi, bj]]]
Ti = mlist[[FFind[ai, aj]]]/2.0;

b = Map[RM[TT1sif[[ai]][[aj]], #, sifP[ai, aj, #[[1]], #[[2]]], Ti] &,
Drop[T1sif, {FFind[ai, aj]}]];

maxRM = Max[b];
b1 = Insert[b, maxRM, FFind[ai, aj]];
bb = Partition[b1, n];
gridRM = Table[{i, j, bb[[i]][[j]]}, {i, 1, m}, {j, 1, n}];

c = Map[cuboid, Flatten[gridRM, 1]];
c[[FFind[ai, aj]]] = {Red, cuboid[gridRM[[ai]][[aj]]], White};
c[[FFind[bi, bj]]] = {Blue, cuboid[gridRM[[bi]][[bj]]], White};
cc = Flatten[c, 1];
rmSUBC = Graphics3D[cc, Ticks -> {Range[11], Range[5], Automatic},

ViewPoint -> {2, -1, 1}];
(*Export ["brmsubC.png",rmSUBC]*)

cub[c_] := {Opacity[(c[[3]]*0.85)/maxRM, Black], Cuboid[{c[[2]] - 1, -c
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[[1]] + 1}, {c[[2]], -c[[1]]}]}
rectedge[c_] := {EdgeForm[Thickness[Medium]], Transparent, Rectangle[{c

[[2]] - 1, -c[[1]] + 1}, {c[[2]], -c[[1]]}]};
d = Map[cub, Flatten[gridRM, 1]];
d1 = Map[rectedge, Flatten[gridRM, 1]];
d[[FFind[ai, aj]]] = {Opacity[1, Red], Last[cub[gridRM[[ai]][[aj]]]]};
d[[FFind[bi, bj]]] = {Opacity[1, Blue], Last[cub[gridRM[[bi]][[bj]]]]};
dd = Flatten[d, 1];
dFIN = Join[dd, d1];
RMSUBC = Graphics[dFIN];
(*Export["RMsubC.png",RMSUBC]*)

LC1 = {SUBC, rmSUBC, RMSUBC};
GLC1 = GraphicsRow[LC1, Frame -> All];
(*Export["GLC1.png",GLC1]*)

GLCT = GraphicsGrid[{LC, LC1}, ImageSize -> {1000, 1000}, FrameStyle ->
Directive[Thick, Dashed], Frame -> All];

Export["GLCT.png", GLCT]

GLT = GraphicsGrid[{LA, LB, LC, LC1}, ImageSize -> {1000, 1000},
FrameStyle -> Directive[Thick, Dashed], Frame -> All]

Export["GLT.png", GLT]

Let us comment on some functions and parameters:

• cub and rectedge give a Graphics structure;

• Cond helps us increment the population values around the origin location;

• sifP gives a pseudo-value of sij, it suffices this form since in this Subcase the
problem is significantly simplified;

• Ti is the value Ti of the Radiation Model.

Finally, the Real-life Case.
alpha = 0.24;
beta = 0.14;
gamma = 0.29;
PopCellUtah = {{17145, 117638, 2311, 0, 0}, { 34290, 119260, 119260, 0,

0}, {20030, 316737, 10032, 37593, 1105}, {20030, 1059323, 24843,
9768, 11376 }, { 20030, 267700, 267700, 9768, 11376 }, { 7138,
3568, 9533, 22106, 11376 }, { 6430, 9533, 9533, 5634, 4682}, {6430,
10655, 10655, 5634, 4682}, {6655, 1591, 971, 1941, 5139}, {48418,
1765, 1765, 1765, 5139}, {142123, 3744, 3744, 2569, 2569}};

m = 11;
n = 5;
ai = 3;
aj = 2;
TTsif = Table[{i, j, PopCellUtah[[i]][[j]]}, {i, 1, m}, {j, 1, n}];
Tsif = Flatten[TTsif, 1];

a = Map[cuboid, Tsif];
a[[FFind[ai, aj]]] = {Red, cuboid[TTsif[[ai]][[aj]]], White};
aa = Flatten[a, 1];
UT = Graphics3D[aa, Ticks -> {Range[11], Range[5], Automatic},

ImageSize -> {2000, 1000}];
(* Export["UT.png",UT]*)
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di = Min[m - ai, ai, Abs[ai - bi]];
dj = Min[n - aj, aj, Abs[aj - bj]];
grid2 = TTsif;
b = Map[GM[grid2[[ai]][[aj]], #] &, Drop[Flatten[grid2, 1], {FFind[ai,

aj]}]];
maxGM = Max[b];
b1 = Insert[b, maxGM, FFind[ai, aj]];
bb = Partition[b1, n];
gridGM = Table[{i, j, bb[[i]][[j]]}, {i, 1, m}, {j, 1, n}];

c = Map[cuboid, Flatten[gridGM, 1]];
c[[FFind[ai, aj]]] = {Red, cuboid[gridGM[[ai]][[aj]]], White};
cc = Flatten[c, 1];
gmUT = Graphics3D[cc, Ticks -> {Range[11], Range[5], Automatic},

ImageSize -> {1000, 1000}, ViewPoint -> {2, -1, 1}];
(*Export ["bgmUT.png",gmUT]*)

cub[c_] := {Opacity[(c[[3]])/maxGM, Black], Cuboid[{c[[2]] - 1, -c[[1]]
+ 1}, {c[[2]], -c[[1]]}]}

rectedge[c_] := {EdgeForm[Thickness[Medium]], Transparent, Rectangle[{c
[[2]] - 1, -c[[1]] + 1}, {c[[2]], -c[[1]]}]};

d = Map[cub, Flatten[gridGM, 1]];
d1 = Map[rectedge, Flatten[gridGM, 1]];
d[[FFind[ai, aj]]] = {Opacity[1, Red], Last[cub[gridGM[[ai]][[aj]]]]};
dd = Flatten[d, 1];
dFIN = Join[dd, d1];
GMUT = Graphics[dFIN, ImageSize -> {1000, 1000}];
(*Export["GMUT.png",GMUT]*)

LGUT = {UT, gmUT, GMUT};
GGLUT = GraphicsRow[LGUT, Frame -> All];
(*Export["GGLUT.png",GGLUT]*)

Utahsize = 219887;
NEcell = 11.0*5 - 4;
cellsize = Utahsize/NEcell;
Wyomingsize = 253596;
Wyomingpop = 580803;
WNcell = Wyomingsize/cellsize;
AVcellpop = Wyomingpop/WNcell;

ddi[bi_] := Min[m - ai, ai, Abs[ai - bi]];
ddj[bj_] := Min[n - aj, aj, Abs[aj - bj]];
InsideUT[x_, bi_, bj_] := Abs[x[[1]] - ai] <= ddi[bi] && Abs[x[[2]] -

aj] <= ddj[bj] && Not[x[[1]] == 0 || x[[2]] == 0]
InsideRange[x_, bi_, bj_] := Abs[x[[1]] - ai] <= Abs[ai - bi] && Abs[x

[[2]] - aj] <= Abs[aj - bj]
czero = 0;
Countcond[x_, bi_, bj_, czero_] := If[InsideRange[x, bi, bj], If[

InsideUT[x, bi, bj], cz = czero; cz += PopCellUtah[[x[[1]]]][[x
[[2]]]]; cz, cz = czero; cz += AVcellpop; cz], cz = czero; cz]

mm = Floor[m*1.5];
nn = Floor[n*1.5];
mTotP = Table[Total@Map[Countcond[#, i, j, 0] &, Flatten[Table[{k, l},

{k, -mm, mm}, {l, -nn, nn}], 1]], {i, 1, m}, {j, 1, n}];
mTot = Table[mTotP[[i]][[j]] - PopCellUtah[[ai]][[aj]] - PopCellUtah[[i
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]][[j]], {i, 1, m}, {j, 1, n}];
mTot[[ai]][[aj]] = 0;
Ti = PopCellUtah[[ai]][[aj]]/2.0;
b = Map[RM[TTsif[[ai]][[aj]], #, mTot[[ai]][[aj]], Ti] &, Drop[Tsif, {

FFind[ai, aj]}]];
maxRM = Max[b];
b1 = Insert[b, maxRM, FFind[ai, aj]];
bb = Partition[b1, n];
gridRM = Table[{i, j, bb[[i]][[j]]}, {i, 1, m}, {j, 1, n}];

c = Map[cuboid, Flatten[gridRM, 1]];
c[[FFind[ai, aj]]] = {Red, cuboid[gridRM[[ai]][[aj]]], White};
cc = Flatten[c, 1];
rmUT = Graphics3D[cc, Ticks -> {Range[11], Range[5], Automatic},

ImageSize -> {1000, 1000} , ViewPoint -> {2, -1, 1}];
(*Export ["brmUT.png",rmUT]*)

cub[c_] := {Opacity[(c[[3]]*3)/maxRM, Black], Cuboid[{c[[2]] - 1, -c
[[1]] + 1}, {c[[2]], -c[[1]]}]}

rectedge[c_] := {EdgeForm[Thickness[Medium]], Transparent, Rectangle[{c
[[2]] - 1, -c[[1]] + 1}, {c[[2]], -c[[1]]}]};

d = Map[cub, Flatten[gridRM, 1]];
d1 = Map[rectedge, Flatten[gridRM, 1]];
d[[FFind[ai, aj]]] = {Opacity[1, Red], Last[cub[gridRM[[ai]][[aj]]]]};
dd = Flatten[d, 1];
dFIN = Join[dd, d1];
RMUT = Graphics[dFIN, ImageSize -> {1000, 1000}];
(*Export["RMUT.png",RMUT]*)

LRUT = {UT, rmUT, RMUT};
GRLUT = GraphicsRow[LRUT, Frame -> All];
(*Export["GLUT.png",GLUT]*)

FGLUT = GraphicsGrid[{{UT, SpanFromLeft}, {gmUT, GMUT}, {rmUT, RMUT}},
FrameStyle -> Directive[Thick, Dashed], Frame -> All];

FFGLUT = Show[FGLUT, ImageSize -> Full];
Export["FGLUT.png", FFGLUT]

Let us comment on some functions and parameters:

• alpha, beta and gamma are changed accordingly to Table 1.2b;

• PopCellUtah contains the values of Table 3.3;

• AVcellpop is the value given to the cells surrounding Utah;

• InsideUT checks if a cell is inside the grid;

• Inside Range checks if a cell is inside the range of sij, i.e. dij;

• CountCond ultimately gives mTotP and then mTot which is the collection
of sij for every cell in the grid.
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