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Abstract

Il teorema di Noether in teoria di campo classica associa una corrente conservata ad ogni simmetria
continua. Ci sono spesso delle ambiguità nella definizione della corrente, legate alla possibilità di
aggiungere quantità che la cui divergenza è identicamente nulla off-shell, o quantità che si annullano
on-shell. Tale ambiguità è talvolta utile per ottenere correnti ”migliorate”, cioè che godono di oppor-
tune proprietà: per esempio, si può utilizzare per simmetrizzare il tensore energia impulso ottenuto
dall’invarianza per traslazioni. In questa tesi, viene descritta una procedura recentemente proposta
che consente di ottenere correnti “migliorate” direttamente attraverso il teorema di Noether e senza
necessità di correzioni ad hoc.

Noether’s theorem in classical field theory links a conserved current to every continuous symmetry.
There are often ambiguities in the definition of the current, related to the possibility of adding quanti-
ties whose divergence is identically zero off-shell, or quantities which vanish on-shell. This ambiguity
is sometimes useful to obtain improved currents, i.e. currents with desired suitable properties. For ex-
ample, this ambiguity can be used to symmetrize the stress-energy tensor obtained from the invariance
under translations. In this thesis, a recently proposed procedure is described which allows to obtain
improved currents directly through Noether’s theorem and without guesswork or ad hoc corrections.

iii



iv



Contents

Introduction 1

1 Noether’s theorem 3

1.1 Basics of group theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Standard derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Canonical stress-energy tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2.1 Improvements à la KNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Lorentz invariant theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Scale invariant theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Conformal invariant theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 When does scale invariance imply full conformal invariance? . . . . . . . . . . . 19
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Introduction

Symmetry is a concept of great importance in Physics, both for classical theories (from mechanics to
field theory), and quantum ones. As much as the general concept of symmetry fascinates the human
mind, it may be non-trivial to give a general definition in words. Richard Feynman, interpreting
Weyl’s definition of symmetry, asserted1 that “a thing is symmetrical if one can subject it to a certain
operation and it appears exactly the same after the operation”. Examples of important symmetries
that a physical model can exhibit are those under constant translations, linked to the homogeneity of
space, and those under rotations, linked to the isotropy of space. The concept of symmetry can be
easily and rigorously formulated within a group-theoretic framework. Even if the very first applications
of group theory, albeit limited to crystallography, to describe physical symmetries can be traced back
to Christian S. Weiss (1816) and Auguste Bravais (1850), a more general application of group theory
methods to the description of symmetries is due to Emmy Noether (1918).

Noether proved a fundamental result that links symmetries of physical systems with conservation
laws. Nowadays, her theorem can be considered one of the pillars of Theoretical Physics. Within the
context of a Lagrangian formulation of classical field theory, based on Noether’s theorem, symmetry
implies conservations of currents, one for each independent parameter of the symmetry (group). In
particular, the constant translational symmetry gives the (local) conservation law of stress-energy
tensor (also called energy-momentum tensor), which is linked with the (global) conservation of energy
and momenta (charges associated with currents).

However, as we will see in Chapter 1, the conserved currents derived through standard proofs of
the Noether theorem are ambiguous. This ambiguity can be exploited in order to obtain improved
currents with desired properties. For example, the stress-energy tensor can be made symmetric if the
theory has Lorentz symmetry, and both symmetric and traceless if the theory has conformal symmetry.
Nevertheless, these procedures are ad-hoc and the desired properties hold only along the solution of
the equations of motion (i.e. on-shell). In this thesis, and in particular in Chapter 2, based on the
article by Kourkoulou, Nicolis and, Sun [6], we will show that the desired properties can be achieved,
even off-shell, with a non-ad hoc procedure.

1from The Character of Physical Law, 1967, Richard Feynman
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Chapter 1

Noether’s theorem in Classical Field
Theory

In this Chapter, after recalling some basics of group theory, we will review two different proofs of
Noether’s first theorem in a field-theoretic framework. We will characterize the Poincaré group and
prove that Poincaré invariance implies the conservation of canonical stress-energy tensor (also abbr.
with SE tensor) and canonical angular momentum tensor. After having pointed out that in general
the canonical SE tensor is not symmetric, we will illustrate that Poincaré invariance guarantees that
through Belinfante procedure it is possible to obtain a symmetric SE tensor, namely the Belinfante
SE tensor, equivalent to the canonical one. Subsequently, we will characterize the conformal group
and prove that conformal invariance guarantees that it is possible to derive a traceless and symmetric
SE tensor equivalent to the canonical one. The main references used in this Chapter are [8], and [2].

When not otherwise specified, throughout this thesis, we will consider a d−dimensional spacetime
as pseudo-riemannian manifold (M, η) with the mostly minus convention (η00 = +1, ηii = −1 with
i = 1, ..., d− 1) and a generic classical field theory with Lagrangian density L(ϕ, ∂ϕ, x) function of the
multiplet ϕ of fields (where each field φ : M → T

q
rM of the multiplet belongs to T(q,r)(M), i.e. space

of (q, r) tensor fields), its derivative and the spacetime coordinates.

1.1 Basics of group theory applied to field theory

Lie groups of transformations are particularly relevant for Physics. Let us first of all provide the basic
definitions that we will need.

Definition 1.1.1. A continuous group G that is also a manifold is called a Lie group. We denote
(g, [[· , ·]]), namely the associated Lie algebra, the tangent space at the identity together with an oper-
ation which satisfies the properties of bilinearity, antisymmetry and the Jacobi identity.

Definition 1.1.2. A finite-dimensional representation of a matrix Lie group G is a Lie group homo-
morphism ρ : G → GL(V ) where V is finite-dimensional vector space and GL(V ) denotes the general
linear group of all automorphism of V . In particular, it follows from the definition of homomorphism
that:

∀ g1, g2 ∈ G ρ(g1 · g2) = ρ(g1) • ρ(g2) and ρ(e) = idV . (1.1)

Definition 1.1.3. Let ρ : G → GL(V ) be a finite-dimensional representation of a matrix Lie group
G. The subspace of V

W = {w ∈ V | ∀ g ∈ G, ρ(g)w ∈ W} (1.2)

is called invariant. An invariant subspace is called nontrivial ifW ̸= {0} andW ̸= V . A representation
that has no nontrivial invariant subspaces is called irreducible.
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1.1. BASICS OF GROUP THEORY CHAPTER 1. NOETHER’S THEOREM

In the domain of field theories, an infinitesimal transformation can be considered acting both on the
coordinates xµ and multiplet of fields as

xµ → x′
µ
= xµ + ϵa

δxµ

δϵa
and ϕ(x) → ϕ′(x′) = ϕ(x) + ϵa

δF

δϵa
(x) , (1.3)

where F(ϕ(x)) = ϕ′(x′), ϵa is an infinitesimal parameter, and a = 1, ..., n (n is the order of Lie group).
This way of seeing the action of the group on the fields and on the coordinates is called passive
viewpoint. Within this viewpoint, the fields transformation can be rewritten as

ϕ′(x′) = ϕ(x) + ϵa
δF

δϵa
(x) = ϕ(x′)− ϵa

δxµ

δϵa
∂µϕ(x

′) + ϵa
δF

δϵa
(x′) . (1.4)

Therefore, the infinitesimal generators Ga of the group, can be defined as

ϵaGaϕ(x
′) := ϕ′(x′)− ϕ(x′) = ϵa

δF

δϵa
(x′)− ϵa

δxµ

δϵa
∂µϕ(x

′) . (1.5)

If, instead, the coordinates are immutable (i.e. M is mapped by the same coordinates before and after
the transformations) and only the fields transform, we are adopting an active viewpoint.

xµ → xµ and ϕ(x) → ϕ′(x) = ϕ(x)− ϵa
δxµ

δϵa
∂µϕ(x) + ϵa

δF

δϵa
(x) (1.6)

In this perspective, an equivalent definition of the generators of the group is possible:

ϵaGaϕ(x) := ϕ′(x)− ϕ(x) . (1.7)

Frequently in literature [7], [9], the generators are defined through the relation ϵaGaϕ(x) = i(ϕ′(x)−
ϕ(x)) to assure hermiticity of operators when addressing quantum field theory.

Definition 1.1.4. Connected Lie groups T of transformations (of fields and spacetime coordinates)
under which the action SV [ϕ] =

∫

V
L(ϕ, ∂ϕ, x) ddx is invariant up to a boundary term1 are called

continuous symmetries of the classical field theory. Within the passive viewpoint (assuming that the
integration region is invariant under the transformation of coordinates) this can be specified in terms
of the infinitesimal transformations of fields and spacetime coordinates as

SV

[

ϕ(x) + ϵa
δF

δϵa
(x)

]

− SV [ϕ(x)] =

∫

V

∂µ(ϵaΛ
µ
a)d

dx , (1.8)

for all transformation belonging to T, where Λµ
a(x) is an arbitrary function. The equivalent prescription

within the active viewpoint is

SV

[

ϕ(x)− ϵa
δxµ

δϵa
∂µϕ(x) + ϵa

δF

δϵa
(x)

]

− SV [ϕ] =

∫

V

∂µ

(

ϵaΛ
µ
a − ϵa

δxµ

δϵa
L

)

ddx , (1.9)

for all transformation belonging to T. Indeed, differentiating the change of spacetime coordinates gives

ddx′ =

∣
∣
∣
∣
det

∂x′

∂x

∣
∣
∣
∣
ddx = [1 + ϵa∂µ

(
δxµ

δϵa

)

+ O(ϵ2)]ddx , (1.10)

so that the symmetry conditions within the passive and active viewpoint are equivalent (considering
only first-term in ϵa):

L(ϕ′(x′), ∂′

µϕ
′(x′), x′)

[

1 + ϵa∂µ

(
δxµ

δϵa

)]

− L(ϕ(x), ∂µϕ(x), x) = ϵa∂µΛ
µ
a

[

L(ϕ′(x), ∂µϕ
′(x), x) + ϵa

δxµ

δϵa
∂µL

] [

1 + ϵa∂µ

(
δxµ

δϵa

)]

− L = ϵa∂µΛ
µ
a , (1.11)

which implies δL = ϵa∂µ

(

Λµ
a − δxµ

δϵa
L

)

within the active viewpoint, as stated in the Equation 1.9.

1The first notion of symmetry provided by E. Noether does not include possible boundary term, at least in the passive
viewpoint. The generalization to action invariant up to a boundary term is due to Bessel-Hagen (1898-1946).

4



CHAPTER 1. NOETHER’S THEOREM 1.2. STANDARD DERIVATIONS

Definition 1.1.5. In particular, connected Lie groups T of transformations are called (continuous)
symmetries in the strict sense of the classical field theory if ∂µΛ

µ
a ≡ 0.

Definition 1.1.6. The explicit transformation of coordinates and fields within the passive viewpoint
suggests a useful distinction between symmetries:

• Internal symmetries if δxµ

δϵa
= 0. In this case, passive and active viewpoint are equivalent.

• External or spacetime symmetries if δxµ

δϵa
̸= 0.

1.2 Standard derivations of Noether’s first theorem

Noether’s first theorem. For all generator Ga, where a = 1, ..., n, of a Lie group T of order n

describing a continuous symmetry of the classical field theory, there exists a current jµa (called Noether
current) which is conserved: ∂µj

µ
a = 0 along the solutions of the equations of motion (on-shell).

Passive viewpoint proof. In this case, spacetime coordinates and fields transform as Eq. 1.4; to
simplify the notation, we define ω

µ
a := δxµ

δϵa
and ∆aϕ(x

′) := δF
δϵa

(x′) so that

ϕ′(x′) = ϕ(x′)− ϵaω
µ
a∂µϕ(x

′) + ϵa∆aϕ(x
′) . (1.12)

Here δ̄ϕ = −ω
µ
a∂µϕ + ∆aϕ and δϕ = ∆aϕ are called, respectively, the total variation and the form

variation of the fields. According to the definition of continuous symmetry, the infinitesimal element
of action must be invariant up to a boundary term:

L(ϕ′(x′), ∂′

µϕ
′(x′), x′)ddx′ − L(ϕ(x), ∂µϕ(x), x)d

dx
!
= ϵa∂µΛ

µ
ad

dx . (1.13)

A straightforward algebraic manipulation gives

ϵa(∂µω
µ
a )L+ L(ϕ′(x′), ∂′

µϕ
′(x′), x′)− L(ϕ(x), ∂µϕ(x), x)

= ϵa(∂µω
µ
a )L+L(ϕ′(x′), ∂′

µϕ
′(x′), x′)−L(ϕ′(x), ∂µϕ

′(x), x)+L(ϕ′(x), ∂µϕ
′(x), x)−L(ϕ(x), ∂µϕ(x), x) .

(1.14)

The second and the third term differ only by the transformation xµ → x′
µ = xµ + ϵaω

µ
a , while the the

forth and fifth term only by the transformation ϕ(x) → ϕ′(x) = ϕ(x) + ϵaδϕ(x).

ϵa(∂µω
µ
a )L+ ϵaω

µ(∂µL) + ϵa
∂L

∂ϕ
· δϕ+ ϵa

∂L

∂(∂µϕ)
· δ∂µϕ− ϵa∂µΛ

µ
a

= ϵa∂µ(ω
µ
aL) + ϵa∂µ

(
∂L

∂(∂µϕ)
· δϕ

)

− ϵa

[

∂µ

(
∂L

∂(∂µϕ)

)

−
∂L

∂ϕ

]

· δϕ− ϵa∂µΛ
µ
a

!
= 0 . (1.15)

The term in squared brackets vanishes because of the equation of motion; factoring out ϵa we obtain
the statement of Noether’s theorem ∂µj

µ
a = 0 with

jµa = ωµ
aL+

∂L

∂(∂µϕ)
·∆aϕ− Λµ

a . (1.16)

The Noether current jµa in the case of invariance of the action in the strict sense reduces to

jµa = ωµ
aL+

∂L

∂(∂µϕ)
·∆aϕ = −ων

a

(
∂L

∂(∂µϕ)
· ∂νϕ− δµνL

)

+
∂L

∂(∂µϕ)
· δ̄ϕ . (1.17)

Active viewpoint proof. In the first instance, we consider internal symmetries for which the fields
transform as

ϕ(x) → ϕ′(x) = ϕ(x) + ϵa∆aϕ(x) , (1.18)
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1.2. STANDARD DERIVATIONS CHAPTER 1. NOETHER’S THEOREM

according to the notation used in the former proof. In order to guarantee the invariance of action, the
Lagrangian must be invariant up to a d-divergence:

L → L+ ϵa∂µF
µ
a namely δL = ϵa∂µF

µ
a , (1.19)

where F
µ
a is some functional of the fields (which coincides with Λµ

a of the passive viewpoint). We can
explicitly calculate the variation of L as

L(ϕ′, ∂µϕ
′)− L(ϕ, ∂µϕ) =

∂L

∂ϕ
· (ϵa∆aϕ) +

∂L

∂(∂µϕ)
· ∂µ(ϵa∆aϕ)

= ϵa∂µ

(
∂L

∂(∂µϕ)
·∆aϕ

)

+ ϵa

[
∂L

∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)]

∆aϕ .

(1.20)

The last term vanishes due to the Euler-Lagrange equation. Therefore, we obtain the statement of
Noether’s theorem with:

jµa =
∂L

∂(∂µϕ)
·∆aϕ− Fµ

a . (1.21)

Within active viewpoint we can also consider spacetime symmetries. In this case, a useful strategy
for the proof is to make the infinitesimal parameter ϵa suitably spacetime modulated in the following
way:

ϕ(x) → ϕ′(x) = ϕ(x) + ϵa(x)∆a(ϕ) . (1.22)

In general, to derive the statement of Noether’s first theorem it is only necessary that the transfor-
mation reduces to ϕ → ϕ + ϵa∆a in the limit of constant ϵa. Indeed, for constant ϵa the Lagrangian
density varies as δL = ϵa∂µF

µ
a and expanding with Taylor ϵa(x), we obtain:

δL = ϵa(x)∂µF
µ
a + ∂µϵ

a(x)Gµ
a + ∂µ∂νϵ

a(x)Gµν
a + ... (1.23)

where G
µ
a , G

µν
a , ... are some functionals of the fields. Considering only functions ϵa(x) that vanish at

infinity, we can integrate δL by parts:

δS =

∫

δL ddx =

∫

ϵa(x) ∂µ [F
µ
a −Gµ

a − ∂νG
µν
a − ...]

︸ ︷︷ ︸

j
µ
a

ddx . (1.24)

The action should be stationary for all field variations that vanish at infinity,
therefore ∂µj

µ
a = 0.

In practice, to explicitly determine the Noether current within the active viewpoint, the variation of the
Lagrangian density δL for a generic ϵ

µ
a(x) is determined by direct calculation, and j

µ
a is consequently

found by comparing Eq. 1.23 and 1.24.

Preposition 1.1. Under the assumption that the configurations of the fields fall off sufficiently rapidly
at infinity, for all generator of the Lie group indexed by a there exists a conserved charge Qa.

Proof. The integration of ∂0j
0
a = −∂ij

i
a and subsequent the use of the divergence theorem gives

∫

V

d(d−1)x ∂tj
0
a = −

∫

∂V

jia · dΣi = 0 that implies conservation of Qa =

∫

V

d(d−1)x j0a(x) .

(1.25)

Remark. For all conserved j
µ
a associated with a continuous symmetry also j̃µa = j

µ
a+∂νX

µν is conserved
∀Xµν antisymmetric tensor Xµν + Xνµ = 0, since ∂µ∂νX

µν ≡ 0. This note will turn out to be
fundamental later in this Chapter to improve the properties of conserved Noether currents.
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CHAPTER 1. NOETHER’S THEOREM 1.3. CANONICAL STRESS-ENERGY TENSOR

1.3 Canonical stress-energy tensor

In the first instance, we consider the constant translational spacetime symmetry, xµ → xµ + ϵaω
µ
a ,

which is obtained with ω
µ
a = δ

µ
a . If the classical field theory exhibit constant translational symmetry,

we say that the fields belongs to a representation of the Lie group (R4,+). A basis for generators
in this representation is, based on Equation 1.5, Pa = −∂a with a = 1, ..., d. According to Noether’s
first theorem, there are in particular d conserved currents (one for each independent parameter of the
symmetry group):

jµa = −δνa

(
∂L

∂(∂µϕ)
· ∂νϕ− δµνL

)

. (1.26)

Considering the independence of the d currents, we can define a (2,0) tensor, namely the canonical
stress-energy (or energy-momentum) tensor, which is also conserved on-shell :

Tµν
c =

∂L

∂(∂µϕ)
· ∂νϕ− ηµνL with ∂µT

µν
c = 0 . (1.27)

In addition, as stated in the Preposition 1.1 there exist a conserved charge for each conserved currents.
It is evident from Eq. 1.27 that, in general, the canonical SE tensor does not have the desired properties
of symmetry and tracelessness. Furthermore, for gauge theories the canonical tensor is not necessarily
gauge invariant. In particular, the symmetry property is desirable for two reasons. In the first place,
as we will see in the following Paragraph, a symmetric SE tensor allows us to define a conserved
angular momentum tensor which is analogous to the one definable in the mechanical case. Secondly,
in general relativity the source of the gravitational interaction is precisely a symmetrical momentum
tensor.

1.4 Poincaré invariance

We recall that the Poincaré infinitesimal transformation of spacetime coordinates in the neighborhood
of identity is

xµ′ = xµ + ϵµ(x) = (δµν + ωµ
ν)x

ν + aµ ⇒ ϵµ = aµ + ωµ
νx

ν with ωµ
ν + ων

µ = 0 . (1.28)

Definition 1.4.1. The set of coordinates transformation which preserves the flat metric ηµν form the
isometry group of (M, ηµν), namely the Poincaré group.

x → x′ η′µν =
∂x′

ρ

∂xµ
∂x′

σ

∂xν
ηρσ := ηµν . (1.29)

Since our main interest is continuous symmetries of field theories (that are connected Lie group), we
consider only the component connected to identity of Poincaré group: from Eq.1.28, this component
is2 R1,(d−1) ⋊ SO(1, d− 1)+.

Accordingly to Eq. 1.28, the total variations of the field are:

• For a scalar field φ: φ′(x′) = φ(x) hence δ̄φ = 0.
• For a vector field Aµ: A

′

µ(x
′) = (δµν + ω

µ
ν )Aν(x) hence δ̄Aµ(x) = ωµνη

νρAρ(x).
• For a tensor field:

T ′µ1...µq

ν1...νr
= (δµ1

ρ1
+ ωµ1

ρ1
)...(δ

µq
ρq + ω

µq
ρq)(δ

σ1
ν1

+ ω µ1
ρ1

)...(δ σr
νr + ω µr

ρr )T
ρ1...ρq
σ1...σr . (1.30)

In general for the multiplet of fields ϕ = {ϕ1, ϕ2, ..., ϕN}, we have:

δ̄ϕr =
1

2
ωµν(S̃

µν) sr ϕs so that δ̄ϕ =
1

2
ωµνS

µν · ϕ , (1.31)

2We recall that with SO(1, d−1)+, we are indicating the proper (detΛ = 1), orthochronous (Λ0
0 ≥ 1) Lorentz group.

7



1.4. POINCARÉ INVARIANCE CHAPTER 1. NOETHER’S THEOREM

where r identifies a single field (scalar, vector or tensor) within the multiplet and s denotes the con-
traction of the indices within the multiplet. Sµν are the generators for the (irreducible) representation
of SO(1, d − 1)+ on the vector space of the tensor fields evaluated at the origin ϕ(0). Without loss
of generality we can consider the tensor Sµν completely antisymmetric in µν: a possible symmetric
component would not contribute because it is multiplied by ωµν (antisymmetric).

Considering the action of Poincaré group on both the fields and coordinates, we get from Equations
1.5 and 1.4:

• Infinitesimal spacetime translations, xµ → x′
µ = xµ + ϵaω

µ
a , with ω

µ
a = δ

µ
a , whose generators are

Pa = −∂α (Paragraph 1.3).

• Infinitesimal Lorentz transformation, xµ → x′
ν = xν+ωνρxρ with d(d−1)

2 independent parameter
in ωνρ with 0 ≤ ν < ρ ≤ d, whose generators are given by

ϕ′(x′) = ϕ(x′) +
1

2
ωµν Sµν · ϕ(x

′)− ωµν xν∂µ − xµ∂ν

2
ϕ(x′) (1.32)

Jµν = (xµ∂ν − xν∂µ) + Sµν . (1.33)

The invariance of action under SO(1, d− 1)+ implies the conservation of d(d−1)
2 independent Noether

current, one for each parameter of ωνρ, considering that δ̄ϕ = δF
δωνρ

= 1
2S

νρ · ϕ and δxα

δωνρ
= ηανxρ:

jµωνρ
= −ηανxρ

(
∂L

∂(∂µϕ)
· ∂αϕ− δµαL

)

+
1

2

∂L

∂(∂µϕ)
Sνρ · ϕ = −Tµν

c xρ +
1

2

∂L

∂(∂µϕ)
Sνρ · ϕ . (1.34)

Recalling that the parameters νρ of the transformation are antisymmetric, the conserved Noether
currents can be rewritten as

1

2

(

Tµρ
c xν − Tµν

c xρ +
∂L

∂(∂µϕ)
Sνρ · ϕ

)

= Mµνρ
c . (1.35)

The tensor M
µνρ
c of the d(d−1)

2 independent currents is called canonical angular momentum tensor.
The full Poincaré invariance implies the conservation ∂µT

µν
c = 0 and ∂µM

µνρ
c = 0. In particular from

the conservation of Mµνρ
c we obtain:

T νρ
c − T ρν

c = ∂µ

(
∂L

∂∂µϕ
· (Sνρ · ϕ)

)

︸ ︷︷ ︸

:=Y µνρ

−→ Tµν
c − T νµ

c = ∂ρY
ρµν . (1.36)

Consequently, Tµν
c is symmetric only if the multiplet is composed of only scalar fields (these transform

trivially under the Poincare group, Sµν ≡ 0).

1.4.1 Symmetric stress-energy tensor: Belinfante procedure

In order to determine, an improved SE tensor we can exploit the ambiguity in the definition of
conserved Noether current (see Remark 1.2), and consider equivalent SE tensors given by

Tµν = Tµν
c + ∂ρX

ρµν with Xρµν = −Xµρν (1.37)

which are conserved on-shell (∂µT
µν = 0) iff the canonical one is conserved. A procedure, traced back

to Belinfante (1939) [3], exploit this property in the case of a Poincaré-invariant theory, to derive a
symmetric SE tensor (hereinafter referred to as Belinfante’s tensor T

µν
B ). In the first instance, we

proceed with some guesswork: we assume that Xρµν is the ρµ antisymmetric part of Y ρµν . Exploiting
Eq. 1.36 gives

T
µν
B = Tµν

c +
1

2
(∂ρY

ρµν − ∂ρY
µρν)

= Tµν
c +

1

2
(−Tµν

c + T νµ
c )−

1

2
∂ρY

µρν

=
1

2
(Tµν

c + T νµ
c )−

1

2
∂ρY

µρν .

(1.38)
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However, even if the first term is the symmetric component of Tµν
c , the last one (and thus Tµν

B ) is not
symmetric in µν. We can replace this last term with

−
1

2
∂ρ(Y

µρν + Y νρµ) , (1.39)

that is symmetric in µν, and as long as we define

Xρµν =
1

2
(Y ρµν − Y µρν − Y νρµ) , (1.40)

we obtain a symmetric Belinfante tensor, whose full expression is

T
µν
B =

∂L

∂(∂µϕ)
· ∂νϕ− ηµνL+

1

2
∂ρ

(
∂L

∂(∂ρϕ)
· Sµν · ϕ−

∂L

∂(∂µϕ)
· Sρν · ϕ−

∂L

∂(∂νϕ)
· Sρµ · ϕ

)

. (1.41)

1.5 Conformal invariance

Exact or approximate conformal invariance is a property of many interesting models in physics. As
we will show shortly, conformal invariance of a field theory is strictly linked with the possibility of
making the SE tensor traceless.

A conformal transformation is a coordinate transformation x → x′ under which the flat metric of the
manifold M transform as:

ηρσ → η′ρσ(x
′) =

∂x′
µ

∂xρ
∂x′

ν

∂xσ
ηµν = Λ(x) ηρσ . (1.42)

In particular, if Λ(x) ≡ 1, the transformation corresponds to the Poincaré group; if Λ(x) ≡ constant,
the transformation corresponds to global scale transformation. We aim to characterize the infinitesimal
conformal transformation x′

µ = xµ + ϵµ + O(ϵ2), exploiting the definition given above.

ηρσ
∂x′

ρ

∂xµ
∂x′

σ

∂xν
= ηρσ

(

δρµ +
∂ϵρ

∂xµ
+ O(ϵ2)

)(

δσν +
∂ϵσ

∂xν
+ O(ϵ2)

)

= ηµν + (∂νϵµ + ∂µϵν)
︸ ︷︷ ︸

:=f(x)ηµν

+O(ϵ2) .
(1.43)

To determine f(x), we apply both side ηµν on its definition:

f(x)ηµνη
µν = 2(∂µϵ

µ) → f(x) =
2

d
(∂ · ϵ) . (1.44)

We apply ∂ν , then ∂ν and finally we add the symmetric µν counterpart:

d · [∂µϵν + ∂νϵµ] = 2(∂ · ϵ)ηµν

d · [∂µ(∂ · ϵ) +□ ϵµ] = 2∂µ(∂ · ϵ)

d · [∂µ∂ν(∂ · ϵ) +□ ∂νϵµ] = 2∂µ∂ν(∂ · ϵ) + µ ↔ ν

d□ (∂νϵµ + ∂µϵν) + 2(d− 2)∂µ∂ν(∂ · ϵ) = 0

(d− 1)□(∂ · ϵ) = 0 .

(1.45)

Given □ ( ∂ϵ
µ

∂xµ (xµ)) = 0, the derivative of ϵµ can be at most linear in xµ. Therefore, infinitesimal
conformal transformation are characterized by the following Equation (conformal Killing equation)

ϵµ = aµ + bµνx
ν + cµνρx

νxρ with ∂µϵν + ∂νϵµ =
2

d
(∂ · ϵ)ηµν , (1.46)

where aµ, bµν , cµνρ are (infinitesimal) constants. In particular, individually each term of ϵµ corresponds
to:

9



1.5. CONFORMAL INVARIANCE CHAPTER 1. NOETHER’S THEOREM

1. Infinitesimal spacetime translation, ϵµ = aµ with corresponding generator Pµ = −∂µ, as previ-
ously stated.

2. Infinitesimal rigid Lorentz rotation and scale transformations, ϵµ = bµνx
ν . Substituting in the

Eq. 1.46, we obtain

bµν + bνµ =
2

d
(ηρσbρσ)ηµν = 2αηµν . (1.47)

For a generic tensor b of rank (0,2) the former Equation fix a constrain on its symmetric com-
ponent:

bµν = αηµν +mµν . (1.48)

• mµν corresponds to the infinitesimal Lorentz rotations x′µ = (δµν +mµν)x
ν , whose gener-

ators are given by Eq. 1.32.

• αηµν corresponds to the infinitesimal scale transformations x′µ = (1 + α)xµ. If we denote
with ∆ the action of scale transformations on fields evaluated at the origin, we can determine
the generator, namely D, as follow:

Dϕ =
δF

δα
ϕ−

δxµ

δα
∂µϕ so that D = −xµ∂µ +∆ . (1.49)

3. Infinitesimal special conformal transformations (SCTs), ϵµ = cµνρx
νxρ. Firstly, we have to derive

another important identity in order to characterize in the explicit form SCTs; from Eq. 1.46 it
follows that

∂ρ∂µϵν + ∂ρ∂νϵµ =
2

d
ηµν∂ρ(∂ · ϵ) . (1.50)

Applying a cyclic permutation of indexes in the former Equation ( ν → µ, µ → ρ, ρ → ν) gives

∂ν∂ρϵµ + ∂µ∂ρϵν =
2

d
ηρµ∂ν(∂ · ϵ) (1.51)

∂µ∂νϵρ + ∂ν∂µϵρ =
2

d
ηνρ∂µ(∂ · ϵ) . (1.52)

Adding member by member Equations 1.51 + 1.52 − 1.50, we obtain

∂µ∂νϵρ + ∂ν∂µϵρ =
2

d
[ηρµ∂ν(∂ · ϵ) + ηνρ∂µ(∂ · ϵ)− ηµν∂ρ(∂ · ϵ)] (1.53)

∂µ∂νϵρ =
1

d
[ηρµ∂ν + ηνρ∂µ − ηµν∂ρ] (∂ · ϵ) . (1.54)

Applying the former Equation to the variation that characterize the SCTs ϵµ = cµνρx
νxρ gives

cµνρ = ηµρbν + ηµνbρ − ηνρbµ , (1.55)

where we have defined:

bν =
1

d
∂ν(∂

µϵµ) =
1

d
∂µcµνρx

ρ =
1

d
∂µc

µ
νρx

ρ =
1

d
δρµc

µ
νρ =

c
µ
νµ

d
. (1.56)

Finally the explicit expression for SCTs results

x′
µ
= xµ + 2(x · b)xµ − (x2)bµ . (1.57)

We can define a vector kµ, called the Killing vector, as the generator of SCTs for spinless fields:

kµ =
δxµ

δbν
∂ν = 2xµx

ν∂ν − x2∂µ . (1.58)

If we want to consider, instead, fields that transform according to a non-trivial representations
under SCTs, and defining κµ as the generators acting on the fields evaluated at the origin,

10
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the generators for transformation acting on fields evaluated at generic x can be determined
translating

Kµϕ(0) = κµϕ(0) (1.59)

Kµϕ(x) = [κµ + 2xµ∆− xνSµν − 2xµx
ν∂ν + x2∂µ]ϕ(x) , (1.60)

as can be checked using the Hausdorff formula, exp (−xρPρ)Kµ exp (x
ρPρ) = Kµ + [Kµ, x

ρPρ] +
1
2! [[Kµ, x

ρPρ], x
ρPρ] + ..., once the commutator [Kµ, x

ρPρ] has been determined by explicit cal-
culation.

In summary, full conformal invariance of a classical field theory is associated with

d+
d(d− 1)

2
+ 1 + d =

(d+ 2)(d+ 1)

2
(1.61)

generators, and consequently the same number of conserved Noether currents.

1.5.1 Traceless and symmetric stress-energy tensor: virial currents

In this paragraph, we are going to show that if a classical field theory has full conformal invariance,
we can find an equivalent symmetric and traceless SE tensor. In the first instance, we consider the
infinitesimal scale transformation

x′
µ
= (1 + α)xµ and ϕ′(x′) = (1 + α∆)ϕ(x) . (1.62)

Exploiting Tµν
B = T

µν
c +∂ρX

ρµν , the conserved Noether current under scale invariance may be rewritten
as

jµ = −
[
T
µν
B − ∂ρX

ρµν
]
xν +

∂L

∂(∂µϕ)
·∆ϕ

= −T
µν
B xν + ∂ρ(X

ρµνxν)−Xρµ
ρ +

∂L

∂(∂µϕ)
·∆ϕ ,

(1.63)

that is equivalent to

jµ = −T
µν
B xν −

1

2

(

ηρν
∂L

∂(∂ρϕ)
· Sµν · ϕ− ηρν

∂L

∂(∂νϕ)
· Sρµ · ϕ

)

+
∂L

∂(∂µϕ)
·∆ϕ

= −T
µν
B xν +

∂L

∂(∂µϕ)
· (∆− ηρµS

ρµ) · ϕ .

(1.64)

The last term, hereinafter V µ, is called virial current. We assume that it is writable as the divergence
of a generic (2,0) tensor field:

V µ = ∂νσ
µν . (1.65)

We denote respectively σ
µν
+ and σ

µν
−
the symmetric and antisymmetric component of σ. We define our

candidate traceless SE tensor, equivalent to the Belinfante one

Θµν = T
µν
B −

1

2
∂λ∂ρΞ

λρµν , (1.66)

with Ξ antisymmetric in µρ. With some guess work [4], we can found the right Ξ, in order to achieve
tracelessness of Θµν

Ξλρµν =
2

d− 2

[

ηλρσ
µν
+ − ηλµσ

ρν
+ + ηµνσ

λρ
+ − ηρνσ

λµ
+ +

1

d− 1

(

ηλµηρν − ηλρηµν
)

σα
+ α

]

. (1.67)

Indeed, with this choice we can rewrite the Noether current associated with scale invariance as

jµ = −Θµνxν −
1

2
∂λ∂ρ

(

Ξλρµν
)

xν + ∂ρσ
µρ . (1.68)
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We now compute the divergence of this expression in order to demonstrate the proposed Θµν trace-
lessness.

∂µj
µ = −Θµ

µ − xν∂µT
µν
B −

1

2
(∂λ∂ρΞ

λρµ
µ ) + ∂µ∂ρσ

µρ
+ = 0 (1.69)

The second term vanishes because the Belinfante tensor is conserved. We have considered only the
symmetric part of σµν because the antisymmetric part vanishes when derived ∂µ∂ρ. It remains to be
verified, and we do this by explicit calculation below, that

∂λ∂ρσ
λρ
+ =

1

2
∂λ∂ρΞ

λρµ
µ

=
1

2
∂λ∂ρ

{
2

d− 2

[

ηλρσα
+ α − 2σλρ

+ + dσ
λρ
+ − ηλρσα

+ α

]}

= ∂λ∂ρσ
λρ
+ .

(1.70)

Finally, the explicit expression of the improved SE tensor is

Θµν =
∂L

∂(∂µϕ)
· ∂νϕ− ηµνL+

1

2
∂ρ

(
∂L

∂(∂ρϕ)
· Sµν · ϕ−

∂L

∂(∂µϕ)
· Sρν · ϕ−

∂L

∂(∂νϕ)
· Sρµ · ϕ

)

−
1

d− 2

[

□σ
µν
+ − ∂ρ∂

µσ
ρν
+ + ηµν∂λ∂ρσ

λρ
+ − ∂λ∂

νσ
λµ
+ +

1

d− 1

(
∂µ∂νσα

+ α − ηµν□σα
+ α

)
]

. (1.71)

It can be proved that, when the action is invariant under the full conformal symmetry (in particular
under SCTs), our assumption (Equation 1.65) on the virial current holds.
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Chapter 2

Non-ad hoc improved Noether currents

As stated in the Chapter 1, the standard derivation of a SE tensor with the desired properties of
symmetry and tracelessness from Noether’s first theorem is ad-hoc, involving guesswork to some extent.
Another well-known approach and definition of the SE tensor is possible. It follows from the coupling
of the action functional with a non-flat metric, and the subsequent variation of the action with respect
to this metric, evaluated for gµν(x) ≡ ηµν . This SE tensor is usually referred to as Einstein-Hilbert
SE tensor, and it has been showed that is equivalent on-shell to the one derived through Belinfante
procedure [5]. However, it is not guaranteed that these tensors are equivalent off-shell. In this Chapter,
we are going to expose a recent finding (Jan 2022) by Kourkoulou, Nicolis and Sun [6], where a new
derivation of Noether’s first theorem applied to translational symmetry (subsequently extended to
generic spacetime symmetry) is provided. In particular, the authors derive without guesswork a
symmetric (for Lorentz invariant theory), traceless (for scale invariant theory) and both symmetric
and traceless (for conformal invariant theory) SE tensor. This method appears natural, it guarantees
symmetry and tracelessness of SE tensor even off-shell, and it shows that it is possible to obtain
a traceless (but non-symmetric) tensor with scale invariance (without fully conformal invariance).
We will also illustrate this result with an example for a simple scalar field theory. However, in
general the procedure of Kourkoulou, Nicolis and Sun does not guarantee gauge invariance of SE
tensor. Consequently, we are going to expose a frequently neglected derivation (1921) by Bessel-
Hagen (exposed in [1]) through which it is possible to derive the correct gauge-invariant SE tensor
with a non-ad hoc procedure in the case of free electrodynamics.

2.1 Non-ad hoc improvements à la Kourkoulou, Nicolis and Sun

As stressed out by Kourkoulou, Nicolis and Sun, the limits of the standard proof of Noether’s first
theorem within the active viewpoint for spacetime symmetry exposed in Chapter 1, is the arbitrariness
of the field transformation chosen (Eq. 1.22). We consider the fields transformation for a spacetime
modulated translation of coordinates that is a symmetry for constant ϵµ

ϕ(x) → ϕ(x)− ϵµ(x)∂µϕ(x)− ∂µϵν(x)Ψ
µν(x) (2.1)

δϕ = −ϵµ(x)∂µϕ(x)− ∂µϵν(x)Ψ
µν(x) (2.2)

13
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where Ψµν(x) is an arbitrary functional of the fields multiplet. Under this transformation, for a generic
variation ϵµ(x) the Lagrangian density varies as

δL = −
∂L

∂ϕ
· ϵµ∂µϕ−

∂L

∂ϕ
· (∂µϵν)Ψ

µν −
∂L

∂(∂ρϕ)
· (∂ρϵ

µ)(∂µϕ)

−
∂L

∂(∂ρϕ)
· (ϵµ∂ρ∂µϕ)−

∂L

∂(∂ρϕ)
· [(∂ρ∂µϵν)Ψ

µν + (∂µϵν)(∂ρΨ
µν)]

= −ϵµ
[
∂L

∂ϕ
∂µϕ+

∂L

∂(∂ρϕ)
∂µ∂ρϕ

]

− (∂µϵν)
∂L

∂ϕ
·Ψµν

− (∂µϵν)

[

−∂ρ

(
∂L

∂(∂ρϕ)

)

·Ψµν + ∂ρ

(
∂L

∂(∂ρϕ)
·Ψµν

)

+
∂L

∂(∂µϕ)
· ∂νϕ

]

− (∂ρ∂µϵν)
∂L

∂(∂ρϕ)
·Ψµν .

(2.3)

The action must be invariant for constant translations ϵµ(x) ≡ ϵµ, and if we consider a symmetry in
the strict sense, we obtain, according to respectively the Equation 2.3 and 1.9, that the variation of
Lagrangian density must be exactly equal to

δL = −ϵµ
[
∂L

∂ϕ
∂µϕ+

∂L

∂(∂ρϕ)
∂µ∂ρϕ

]

= ϵµ∂µL . (2.4)

This relation is satisfied iff the Lagrangian does not explicitly depend on the spacetime coordinates.
Considering again a generic displacement ϵµ(x), we have

δL = −∂µ(ϵ
µL)− (∂µϵν)

[
δS

δϕ
·Ψµν + ∂ρ S

ρµν +
∂L

∂(∂µϕ)
· ∂νϕ− ηµνL

]

− (∂ρ∂µϵν)S
ρµν

= −∂µ(ϵ
µL)− (∂µϵν)T

µν − (∂ρ∂µϵν)S
ρµν , (2.5)

where we have defined

T µν = Tµν
c +

δS

δϕ
·Ψµν + ∂ρ S

ρµν (2.6)

Tµν
c =

∂L

∂(∂µϕ)
· ∂νϕ− ηµνL (2.7)

S
ρµν =

∂L

∂(∂ρϕ)
·Ψµν and finally

δS

δϕ
=

∂L

∂ϕ
− ∂ρ

(
∂L

∂(∂ρϕ)

)

. (2.8)

For a generic displacement ϵµ(x), the expression of the variation of the Lagrangian density can provide
a definition of the SE tensor.

δL = −(∂µϵν(x))T
µν + total derivatives. (2.9)

Now, we integrate over the spacetime region V the former equation. Under the assumption that the
fields configuration fall off sufficiently rapidly at the boundary of the integration region, the total
derivatives vanish. An integration by parts of the first term, assuming that also ϵµ(x) vanishes at
infinity, gives

δS[ϕ] =

∫

V

ddx ϵν(x)∂µT
µν = 0 on-shell. (2.10)

Considering the arbitrariness of ϵµ(x), we can conclude the on-shell conservation ∂µT
µν = 0 because

of the fundamental lemma of calculus of variations. Now, we consider the last term of Eq. 2.5: since
∂ρ∂µϵν is symmetric in ρµ, we can add to S ρµν anything that is antisymmetric in ρµ. For this reason,
the former can be rewritten as

− (∂ρ∂µϵν)S
ρµν = −(∂ρ∂µϵν)(S

ρµν +Σρµν) = (∂µϵν)∂ρ(S
ρµν +Σρµν) + total derivatives. (2.11)

Implementing this rewriting in Eq. 2.3, and comparing it with Eq. 2.9 gives

Tµν = Tµν +∆Tµν = Tµν − ∂ρ(S
ρµν +Σρµν) with Σρµν = −Σµρν . (2.12)
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If we choose suitably the functional Ψµν , so that the field transformations in Eq. 2.1 is a symmetry of
the action for a characterizing displacement ϵµ(x) (e.g. for a Lorentz-invariant theory we chose Ψµν

such that for ϵµ(x) = ωµνxν the transformation 2.1 is symmetry), the tensor Tµν will automatically
have the properties guaranteed by the exploited symmetry. Subsequently, to obtain the conserved SE
tensor Tµν of Eq. 2.9, we have to correct Tµν through Eq. 2.12. It may seem that the procedure
exposed involves guesswork, in particular in the choice of the correct Σρµν to obtain the desired
property for Tµν ; but it is not the case, as we will show explicitly in the next paragraphs, following
what found by Kourkoulou, Nicolis and Sun. Indeed, the tensor Σρµν can be parameterized as the
general linear combination of tensor at one disposal to give rise to the desired property for Tµν .

2.1.1 Lorentz invariant theories

In this Paragraph, we consider Poincaré-invariant theories. In these theories, the transformations of
fields given by Eq. 2.1 are a symmetry in the strict sense for all ϵµ(x) = ωµνxν , such that ωµν+ωνµ = 0.
According to Chapter 1, called Sµν the generators of Lorentz group in the fields representation, the
comparison of Eq. 1.32 with Eq. 2.1 gives

Ψµν
L =

1

2
Sµν · ϕ and S

ρµν ≡ S
ρµν
L =

1

2

∂L

∂(∂ρϕ)
Sµν · ϕ . (2.13)

Since ∂µϵν = ωνµ is constant, from Eq. 2.3 it follows that

δL = −∂µ(ϵ
µL)− ωµνT

µν . (2.14)

Since Lorentz transformations are a symmetry of the field theory, the Lagrangian must be invariant
up to exactly the divergence term −∂µ(ϵ

µL). It follows, from the arbitrariness and antisymmetry of
ωµν that Tµν must be symmetric, even off-shell. We choose Σρνµ, so that the correction term of the
SE tensor, given by Eq. 2.12, is also symmetric in µν.

∂ρ(S
ρµν +Σρµν)

!
= ∂ρ(S

ρνµ +Σρνµ) (2.15)

The most general linear combination of the tensors S ρµν and ηµν , considering that S
ρµν
L = −S

ρνµ
L

(resulting from the antisymmetry of generators of Lorentz group in the fields representation) and
considering also that ηµν = ηνµ, that is antisymmetric in its first two indexes is

Σρµν = αS
νρµ + β(S ρµν − S

µρν) + γ(S σρ
σ ηµν − S

σµ
σ ηρν) . (2.16)

Applying the condition 2.15 to the former Equation gives

2S ρµν =αS
µρν + β(S ρνµ − S

νρµ) + γ(S σρ
σ ηµν − S

σν
σ ηρµ)

− αS
νρµ − β(S ρµν − S

µρν)− γ(S σρ
σ ηµν − S

σµ
σ ηρν) .

(2.17)

This relation is verified iff α = 1, β = −1 and γ = 0. Therefore, the improved symmetric SE tensor is
given by

T
µν
L =

∂L

∂(∂µϕ)
· ∂νϕ− ηµνL+

1

2

δS

δϕ
· Sµν · ϕ

+
1

2
∂ρ

(
∂L

∂(∂ρϕ)
Sµν · ϕ−

∂L

∂(∂µϕ)
Sρν · ϕ−

∂L

∂(∂νϕ)
Sρµ · ϕ

)

.

(2.18)

We note that this results coincide on-shell with the one found through Belinfante procedure, but, in
addition, the µν symmetry of 2.18 is also verified off-shell.
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2.1.2 Scale invariant theories

In this paragraph, we consider a scale transformation of coordinates, xµ′ = (1+α)xµ, namely ϵµ(x) =
αxµ, under which the fields transform as

ϕ(x) → ϕ(x)− αxµ∂µϕ(x)−∆ · ϕ(x) that suggests Ψµν
S =

1

d
ηµν∆ · ϕ (2.19)

S
ρµν ≡ S

ρµν
S =

1

d

∂L

∂(∂ρϕ)
ηµν∆ · ϕ . (2.20)

Under this transformation, the Lagrangian varies as

δL = −∂µ(ϵ
µL)− αTµ

µ . (2.21)

In order to this transformation to be a symmetry of the field theory, the variation of the Lagrangian
must be zero up to exactly −∂µ(ϵ

µL). This implies that Tµν is traceless, even off-shell. We have to
correct the tensor Tµν via Eq. 2.12:

T
µν
S = Tµν − ∂ρ(S

ρµν +Σρµν) with S
ρµν =

1

d

∂L

∂(∂ρϕ)
· ηµν∆ · ϕ . (2.22)

We choose Σρµν as the most general combination of S
ρµν
S (proportional to ηµν) that is antisymmetric

in ρµ and that preserve the tracelessness of Tµν :

Σρµν = δ(S ρµν − S
µρν) . (2.23)

Under this choice of Σρµν , the trace results

∂ρ(S
ρµ
µ + δS ρµ

µ − δS µρ
µ)

= ∂ρ((1 + δ)
∂L

∂(∂ρϕ)
·∆ · ϕ−

δ

d

∂L

∂(∂µϕ)
· ηρµ∆ · ϕ) =

(

1 +
d− 1

d
δ

)

∂µ

(
∂L

∂(∂µϕ)
·∆ · ϕ

)

. (2.24)

To get tracelessness, we have to impose δ = − d
d−1 and consequently the improved SE tensor for a

scale invariant theory is:

T
µν
S = Tµν

c +
1

d
ηµν

δS

δϕ
·∆ · ϕ+

1

d− 1
∂ρ

(

ηµν
∂L

∂(∂ρϕ)
·∆ · ϕ− ηρν

∂L

∂(∂µϕ)
·∆ · ϕ

)

. (2.25)

This result is not in contrast with what we have stated in Chapter 1, namely that to obtain a SE
tensor symmetric and traceless it is necessary full conformal invariance. Indeed, even if the SE tensor
provided by Eq. 2.25 is traceless, it is not in general symmetric.

2.1.3 Conformal invariant theories

We will show in this Paragraph that, following the approach of Kourkoulou, Nicolis and Sun (as we
will see shortly applicable when d ̸= 2), it is necessary that the action is also fully conformal invariant
to derive a symmetric and traceless SE tensor.
First of all, we notice that the mere combination of Lorentz and scale invariance does not imply a SE
tensor that is both symmetric and traceless. For a Lorentz and scale invariant theory, if one chose (in
agreement with the notation used in Eq. 2.14 and 2.19)

Ψµν = Ψµν
L +Ψµν

S and S
ρµν =

∂L

∂(∂ρϕ)
·Ψµν

L +
∂L

∂(∂ρϕ)
·Ψµν

S = S
ρµν
L + S

ρµν
S , (2.26)

the transformation of fields reduces to a constant translation if ϵµ is constant, a Lorentz transformation
if ϵµ(x) = ωµνxν and a scale transformation if ϵµ(x) = αxµ. This implies that Tµν is automatically
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symmetric and traceless. The most general combination of available tensors, S
ρµν
L , S

ρµν
S , ηµν which

guarantees the ρµ antisymmetry of Σρµν , is

Σρµν = αS
νρµ
L + β(S ρµν

L − S
µρν
L ) + γ(S σρ

L σ ηµν − S
σµ

L σ ηρν) + δ(S ρµν
S − S

µρν
S ) . (2.27)

Requiring ∆Tµν = ∆T νµ gives:

∂ρ(S
ρµν
L + S

ρµν
S + αS

νρµ
L + β(S ρµν

L − S
µρν
L ) + γ(S σρ

L σ ηµν − S
σµ

L σ ηρν) + δ(S ρµν
S − S

µρν
S ))

= ∂ρ(S
ρνµ
L + S

ρνµ
S + αS

µρν
L + β(S ρνµ

L − S
νρµ
L ) + γ(S σρ

L σ ηµν − S
σν

L σ ηρµ) + δ(S ρνµ
S − S

νρµ
S )) .

(2.28)

Exploiting the properties of SL and SS we get

2S ρµν
L − (α+β)S µρν

L +2βS
ρµν
L +(α+β)S νρµ

L − γ(S σµ
L σ ηρν −S

σν
L σ ηρµ)+ δ(S νρµ

S −S
µρν
S ) = 0 ,

(2.29)
which implies δ = 0, γ = 0, β = −1, α = +1. Requiring instead ∆T

µ
µ = 0 gives

∂ρ(S
ρµ
S µ + αS

µρ
L µ − βS

µρ
L µ + γ(dS σρ

L σ − S
σµ

L σ ηρµ) + δ(S ρµ
S µ − S

µρ
S µ)) = 0 , (2.30)

which implies δ = − d
d−1 and α − β − (d − 1)γ = 0. The two solutions are inconsistent, therefore we

cannot make the SE tensor automatically both symmetric and traceless, if the theory is only Lorentz
and scale invariant.
As anticipated, we have to consider the case of field theories that exhibit full conformal invariance,
namely the infinitesimal special conformal transformations

xµ′ = xµ + bµ x2 − 2(b · x)xµ (2.31)

are also a symmetry, where bµ is a constant vector. We can interpret this special conformal transfor-
mation as combination of spacetime modulated Lorentz and scale transformations, with ω

µ
ν(x) = bµxν

and α(x) = −2b · x, so we assume that Equation 2.26 holds. Under these assumptions, we have

∂µϵν = 2(bνxµ − bµxν)− 2(b · x)ηµν , (2.32)

and therefore the Lagrangian varies as:

δL = −∂µ(ϵ
µL) + [2(bνxµ − bµxν)− 2(b · x)ηµν ]T

µν − [∂α(2(bνxµ − bµxν)− 2(b · x)ηµν)]S
αµν . (2.33)

The invariance of the action functional under Lorentz and scale transformations implies that the
second term of the former Equation must vanish, in agreement with the symmetry and tracelessness
of Tµν .

δL = −∂µ(ϵ
µL)− 2(bµS

αµ
α − bµS

αµ
α − bµS

µα
α)

= −∂µ(ϵ
µL) + 2bµ(S

µα
α + S

µα
α − S

αµ
α )

= −∂µ(ϵ
µL) + 2bρ(S

ρα
α + 2S [ρα]

α )

(2.34)

As stressed in Chapter 1, it is not necessary that the Lagrangian is invariant in the strict sense under
a transformation for this to be a symmetry of the theory: it is sufficient that the variation of the
Lagrangian is, within the passive viewpoint, zero up to a boundary term. Therefore, we can define the
virial current, proportional to the last term of Eq. 2.34, to be a d−divergence:

V ρ = S
ρα

α + 2S [ρα]
α = ∂ασ

αρ . (2.35)

We recall that S
ρµν
L is antisymmetric in µν, S

ρµν
S is proportional to ηµν and, in particular, symmetric

in µν. This given, we can rewrite the definition of virial current as:

S
ρα
L α + S

ρα
S α + 2S

[ρα]
L α + 2S

[ρα]
S α = ∂ασ

αρ . (2.36)
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The first and last term of the LHS vanishes due to, respectively, antisymmetry and symmetry. We
can rewrite S

ρα
S α = S

ρµν
S ηµν , and multiplying both side by ηµν , we get:

S
ρµν
S =

1

d

[
∂ασ

αρηµν − 2S ρα
L α ηµν

]
. (2.37)

This implies that the correction to the energy-momentum tensor Tµν can be rewritten as

∆Tµν = −∂ρ

(

S
ρµν
L −

2

d
S

ρα
L α ηµν +Σρµν

)

−
1

d
∂ρ∂ασ

(αρ)ηµν . (2.38)

It is important to stress that the Eq. 2.37 holds only if conformal transformations, and in particular
SCTs given by Eq. 2.26, are a symmetry of the theory. Under this assumption, similarly to the
previous Paragraphs, the tensor Σρµν can be found as the most general linear combination of S ρµν

and ηµν that makes the correction ∆Tµν both symmetric and traceless. If S
ρµν
L and S

ρµν
S are instead

independent as assumed in Eq. 2.27, in general, this is not possible.

If σαρ vanishes, the correct Σρµν in Eq. 2.38 is simply achieved similarly to the case of Lorentz
invariance:

Σρµν = Σρµν
L = S

νρµ
L − (S ρµν

L − S
µρν
L ) . (2.39)

With this choice, for vanishing σµν the correction ∆Tµν is both symmetric and traceless (∆T
µ
µ =

−∂ρ(0− 2S ρα
L α + 2S ρα

L α ) = 0). Instead, if we consider a non-vanishing σµν , we can add to Σρµν
L a

d−divergence term ∂αΞ
ρµνα. The tensor Ξ must be antisymmetric in ρµ, as Σρµν

L , in order to not spoil
the symmetry of ∆Tµν , and any ρα antisymmetric component would vanish considering ∂ρ∂αΞ

ρµνα.
Therefore, in general the right Σρµν is

Σρµν = Σρµν
L + ∂αΞ

[ρµ][αν] , (2.40)

where, in addition, Ξ must be symmetric with respect to the exchange ρµ ↔ αν. Indeed, in this way
the trace of the correction term results

∆Tµ
µ = −∂α∂ρ

(

ηµνΞ
[ρµ][αν] + σ(αρ)

)

. (2.41)

The tensor Ξ[ρµ][αν] must be chosen as the most general linear combination of the available tensors,
ηµν and σ(αρ), to obtain the desired properties

Ξ[ρµ][αν] = A(ηµνσ(αρ) + ηαρσ(µν) − ηµασ(νρ) − ηνρσ(µα)) +B(ηαρηµν − ηµαηνρ)σβ
β (2.42)

We can determine through explicit calculation the values of the constant A,B

∆Tµ
µ = −∂α∂ρ

{

Aηµνη
µνσ(αρ) + σ(αρ) +Aηαρσ

β
β − 2Aσαρ + dBηαρσ

β
β −Bσ

β
β

}

= −∂α∂ρ{(A(d− 2) + 1)ηαρσ(αρ) + (A+B(d− 1))ηαρσβ
β}

!
= 0 .

(2.43)

This implies

A = −
1

d− 2
and B =

1

(d− 2)(d− 1)
, (2.44)

where, as cited above, d ̸= 2. The final expression for the stress-energy tensor for a fully conformal
invariant theory is

T
µν
C =Tµν +∆Tµν

=Tµν
c +

δS

δϕ
·

(
1

2
Sµν +

1

d
ηµν∆

)

· ϕ+

1

2
∂ρ

[
∂L

∂(∂ρϕ)
· Sµν · ϕ−

∂L

∂(∂µϕ)
· Sρν · ϕ−

∂L

∂(∂νϕ)
· Sρµ · ϕ

]

+
1

d− 2

[

ηµν∂α∂ρσ
(αρ) +□σ(µν) − ∂ρ∂

µσ(νρ) − ∂α∂
νσ(µα)

]

−
1

(d− 2)(d− 1)

[

ηµν□σ
β
β − ∂µ∂νσ

β
β

]

.

(2.45)
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This expression coincides on-shell with the one found in Chapter 1, but in addition it has the desired
properties of symmetry and tracelessness even off-shell.

2.1.4 When does scale invariance imply full conformal invariance?

We are going to prove that a scalar classical field theory with Lagrangian density given by (with d ≥ 3)

L(ϕ, ∂µϕ) = ϕ
2d
d−2 f

(

∂µϕ∂
µϕ

ϕ
2d
d−2

)

(2.46)

is scale-invariant for each possible function f . In addition, we are going to exploit the result of Kourk-
oulou, Nicolis and Sun exposed, to prove that if the function f is linear in its argument, it is possible
to derive a symmetric and traceless SE tensor. This suggests that, in the particular case of the La-
grangian given by 2.46 with f linear in its argument, the theory is also fully conformal invariant.
We can determine which specific choice of ∆, known as scaling dimension of the field ϕ, the transfor-
mations xµ → (1 + α)xµ, ϕ(x) → (1 + α)−∆ϕ(x) with α ∈ R∖ {−1}, make the action scale-invariant.
In the first instance, we have to prove that if L transform as a scalar field with scaling dimension
∆L = d, the action is scale-invariant. This is trivial, because

ddxL(x) → (1 + α)dddxL′(x′) = (1 + α)(d−d)ddxL(x) . (2.47)

Considering that ∂µ → 1
1+α

∂α, ∂
µ → 1

1+α
∂α, ϕn(x) → (1 + α)−n∆ϕn(x), with ∆, scaling dimension of

ϕ, to be determined, the Lagrangian in the Equation 2.46 varies as

L′(x′) = (1 + α)−∆ 2d
d−2ϕ

2d
d−2 f

(

(1 + α)(
4∆

d−2
−2)∂µϕ∂

µϕ

ϕ
2d
d−2

)

= (1 + α)−dL(x) . (2.48)

The last equality holds iff ∆ = d−2
2 . Defining f ′ = ∂Xf , with X = (∂ϕ)2

ϕ
2d
d−2

, the Equation 2.25 associated

with a traceless SE gives

T
µν
S = 2f ′∂µϕ∂νϕ− ηµνϕ

2d
d−2 f + ηµν

(

ϕ
2d
d−2 f − f ′(∂ϕ)2

)

−
d− 2

d
ηµνϕ∂ρ

(
f ′∂ρϕ

)

+
d− 2

d− 1
ηµν∂ρ

(
ϕf ′∂ρϕ

)
−

d− 2

d− 1
∂ν
(
ϕf ′∂µϕ

)

=2f ′∂µϕ∂νϕ− ηµνf ′∂ρϕ∂
ρϕ+

d− 2

d(d− 1)
ηµνϕ∂ρ(f

′∂ρϕ) +
d− 2

d− 1
ηµνf ′∂ρϕ∂

ρϕ−
d− 2

d− 1
∂ν(ϕf ′∂µϕ)

=
d

d− 1
f ′∂µ∂νϕ−

1

d− 1
ηµνf ′∂ρϕ∂

ρϕ+
d− 2

d(d− 1)
ηµνϕ∂ρ(f

′∂ρϕ)−
d− 2

d− 1
ϕ∂ν(f ′∂µϕ) .

(2.49)

We note that, in addition to the fact that, as expected, the trace vanishes, all terms, except the last
one, are symmetric in µν. Using the Leibniz rule on the last term, we observe that if ∂νf ′ ≡ 0, the
tensor derived is both symmetric and traceless. The condition stated is equivalent to require:

f

(

(∂ϕ)2

ϕ
2d
d−2

)

= A+B
(∂ϕ)2

ϕ
2d
d−2

with A,B ∈ R or C . (2.50)

2.2 Non-ad hoc improvements à la Bessel-Hagen

As stated in the Introduction of the Chapter, the procedure proposed by Kourkoulou, Nicolis and
Sun exposed above has totally general applications, and, importantly, returns SE tensors that have
the desired properties even off-shell. However, it does not consider possible gauge symmetries, i.e.
symmetries of the mathematical formalism of the classical field theory. As a result, in general the
derived SE tensors (Eq. 2.18, 2.25, 2.45) are not gauge invariant, although this is a desired property
for many physical theories.
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In this section we are going to briefly expose a different procedure due to Bessel-Hagen (exposed
by Baker in [1]), to correctly apply Noether’s theorem in the case of electrodynamics in the light
of the gauge symmetry of the theory and consequently derive the correct momentum-energy tensor.
Subsequent works (see reference in [1]) have reproduced the method of Bessel-Hagen and extended to
the case of arbitrary gauge field theory. A thorough discussion of gauge symmetries is beyond the scope
of this thesis; for this reason, we will limit ourselves in this Paragraph to classical electrodynamics,
that is a particular abelian gauge theory having U(1) as gauge group.

2.2.1 Free classical electrodynamics

The general theory of free (without currents) electrodynamics can be formulated in d−dimensional
space in terms of an antisymmetric field strength tensor (also called Faraday tensor) Fµν + Fνµ = 0
that satisfies

∂µF
µν = 0 equation of motion

∂µFνρ + ∂νFρµ + ∂ρFµν = 0 Bianchi identity.
(2.51)

In particular, solving the Bianchi identity in terms of a vector potential Aµ, the Lagrangian of free
electrodynamics results

L(Aν , ∂µAν) = −
1

4
FµνF

µν with Fµν = ∂µAν − ∂νAµ . (2.52)

We consider an infinitesimal change of coordinates x′µ = xµ+ϵµ(x), under which the field Aν transform
as

Aν → Aν − ϵµ(x)∂µAν − ∂µϵν(x)∆
µ , (2.53)

where ∆µ is a functional of the covector field Aν . This is a symmetry in the strict sense δL = −∂µ(ϵ
µL)

for some specific choice of ϵµ(x), in particular for constant ϵµ we will obtain the conserved currents
associated with the SE tensor.

The non-ad hoc improvement of Bessel-Hagen has its foundations in an off-shell identity (also called
Noether identity) we already stated during the standard derivation of Noether’s theorem within the
passive viewpoint (Eq. 1.15). Recalling that the Lagrangian of free electrodynamics is explicitly
independent of Aν , and that ∂L

∂∂µAν
= Fµν , the application of the cited identity to the case of the field

and coordinates transformation given by Eq. 2.53 of the vector potential gives

− ∂µF
µνδAν ≡ ∂µ (ϵ

µL+ FµνδAν) . (2.54)

If a classical field theory exhibits a gauge symmetry this must be considered appropriately in the field
transformation to derive a SE tensor that is also gauge-invariant. In particular, the transformation 2.53
is not gauge invariant, and we can expect that the resulting SE tensor is not in general gauge invariant.
Considering the fact that gauge symmetries, that are symmetry of the mathematical formalism, do
not spoil the currents associated with physical symmetries, we can promote the transformation 2.53
of the field Aν to

Aν → Aν + δAν = Aν − ϵµ(x)∂µAν −Aµ∂νϵ
µ(x) + ∂νφ(Aα, ϵ

α) , (2.55)

where φ(Aα, ϵ
α) is a generic scalar gauge parameter, linear in Aα. We want determine the specific

scalar function φ which guarantees a gauge invariant SE tensor. Requiring the gauge invariance of the
currents in LHS (and the consequently of the SE tensor) is equivalent to require the gauge invariance
of the variation of δAν . If we consider the gauge transformation Aν → Aν + ∂νC with C(x) generic
scalar function, imposing the gauge invariance of δAν we get

−ϵµ∂µAν − ϵµ∂µ∂νC −Aµ∂νϵ
µ − (∂µC)∂νϵ

µ + ∂νφ(Aα, ϵ
α) + ∂νφ(∂αC, ϵ

α)

!
= −ϵµ∂µAν −Aµ∂νϵ

µ + ∂νφ(Aα, ϵ
α) .

(2.56)

20



CHAPTER 2. NON-AD HOC IMPROVED CURRENTS 2.2. IMPROVEMENTS À LA B-H

Therefore finally, ∂ν(φ(∂αC, ϵ
α)) = ∂ν(∂αCϵα) provides an obvious solution for φ(Aα, x

α) that makes
the expression gauge invariant: φ(Aα, ϵ

α) = Aαϵ
α(x). In particular, the non-ad hoc improved trans-

formation of the field results

Aν → Aν − ϵµ∂µAν −Aµ∂νϵ
µ + ∂ν(Aµϵ

µ) = Aν − ϵµ(∂µAν − ∂νAµ)

= Aν + Fναϵ
α(x) .

(2.57)

Applying this improved transformation of Aν to Eq. 2.54, we obtain on-shell a SE tensor for free
electrodynamics that is gauge-invariant as initially claimed

Tµ
ν =

[

FµρFρν +
1

4
δµνF

αβFαβ

]

. (2.58)

It can be proved that, for d = 4, the improved transformation determined leaves the Lagrangian
invariant up to the boundary term −∂µ(ϵ

µL) if the displacement ϵµ(x), hitherto assumed general,
instead satisfies the conformal Killing equation (cfr. Chapter 1), namely the gauge improvement does
not spoil the conformal symmetry of free electrodynamics. Indeed, we can be prove easily by exploiting
the antisymmetry of Fµν and the Bianchi identities that

δL =
∂L

∂∂µAν
δ∂µAν = Fµν∂µ(ϵ

αFνα)

= −
1

2
FµνF ρ

ν

(

∂µϵα + ∂αϵµ −
1

2
ηµα(∂ · ϵ)

)

− ∂α(ϵ
αL) .

(2.59)
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