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Abstract

After reviewing the theoretical and phenomenological aspects of axion physics, the thesis focuses on the

modifications of axion properties in systems at finite baryonic density. Those are especially relevant for

highly dense stellar environments such as supernovae and neutron stars, which are typically employed

to set stringent limits on axion couplings from anomalous stellar cooling. Specifically, we consider

finite density modifications of axion couplings to nucleons within the framework of Heavy Baryon

Chiral Perturbation Theory and assess their consequences for astrophysical constraints on the axion

parameter space.

Moreover, we analyse the effect of finite density corrections on nucleophobic axion models, i.e.

ultraviolet completions of the axion effective field theory in which the axion couplings to nucleons

are suppressed. These models have the advantage of evading some of the astrophysical bounds on

the axion parameter space. Since these bounds are obtained from highly dense systems, we question

whether the nucleophobia condition is spoiled by finite density effects.
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Chapter 1

Introduction

Despite being one of the most successful theories in the history of Physics, the Standard Model (SM)

of particle physics is believed to be insufficient to give a complete description of the fundamental laws

of Nature. In particular, it fails to explain some experimental evidences, such as matter-antimatter

asymmetry, neutrino masses, and dark matter. Moreover, the theory turns out to be burdened by

many parameters taking unnaturally small values. Among these small-value problems it is worth

recalling the ones associated to the value of the cosmological constant in units of the Planck mass

Λ ∼ 10−31mPl, to that of the vacuum expectation value of the electroweak Higgs field v ∼ 10−17mPl,

and the so-called strong CP problem, i.e. the exceedingly small value taken by the CP-violating theta

parameter of Quantum Chromodynamics (QCD),
⃓⃓
ϑ̄
⃓⃓
≲ 10−10.

The necessity to give a physical explanation to all these questions has led the scientific community

to put much effort on the attempt to extend the SM. Of course, an extension of the SM is deemed more

attractive when it is able to account for more than one of these problems at once. This is the case of

the QCD axion: this pseudoscalar particle was recognised in the late 1970s by Steven Weinberg and

Frank Wilczek [1, 2] as the low-energy remnant of the Peccei-Quinn solution to the strong CP problem

[3, 4]. The QCD axion is believed to be a very light and feebly interacting particle, thus representing

a valid candidate for dark matter [5–7]. Moreover, the axion turns out to appear naturally in the

spectrum of string theories, see for example [8–11], which are believed to be one of the most appealing

formalisms for a quantum theory of gravity. Finally, differently from particles predicted by other

extensions of the SM, the axion is light enough to make its observation be within the possibilities of

current experimental facilities.

In order to guide experiments towards the observation of the QCD axion, it is necessary to place

constraints on its parameter space. These may stem both from theoretical arguments and from

experimental evidence. A class of bounds which turns out to be particularly stringent is given by

those obtained by determining how the presence of a cooling channel associated to axion production

would modify the evolution of astrophysical systems.

In this work we will focus, in particular, on the bound stemming from core-collapse supernovae,

associated to the observation of the neutrino flux originated in the SN1987A event [12–17]. The current

value of this bound, obtained in [18, 19], was computed without fully taking into account the fact that

supernovae are extremely dense objects, whose baryonic density is of the order of nuclear saturation

density n0 = 0.16 fm−3. At such high densities the coupling constants for interactions between axions

and nucleons, which are those that determine the supernova bound, are sizeably modified by in-

medium effects, heavily affecting the value of the bound. The aim of this work is therefore to obtain

1



2 CHAPTER 1. INTRODUCTION

a reliable expression of the axion-nucleon couplings as functions of density, following [20], in order

to properly take into account the corrections due to the nuclear medium in the calculation of the

supernova bound.

We then want to apply this formalism to the specific case of nucleophobic axion models [21]. This

is a class of axion models in which the axion interactions with nucleons are suppressed, allowing them

to relax some of the most stringent astrophysical bounds. In particular, if the axion-electron coupling

is also suppressed, which is the case in the so-called astrophobic axion models, the allowed region in

the axion parameter space gets enlarged by up to an order of magnitude, allowing also for axions with

mass ma ∼ 0.1 eV. Since the main feature of the nucleophobic models is their evasion of astrophysical

axion bounds, it is necessary to test whether the nucleophobia conditions are spoiled by finite density

effects. We will analyse this issue in Chapter 6, which represents the main original result of this thesis.

The structure of the present work is the following. In Chapter 2 we will give an introduction to the

strong CP problem and the Peccei-Quinn mechanism, leading to the construction of the axion effective

field theory (EFT). Chapter 3 will be devoted to the description of the main axion models, used as

benchmarks in literature. In Chapter 4 we will then analyse the main astrophysical axion bounds,

with particular detail on the supernova bound. Then, in Chapter 5, we will build the formalism

needed to describe axion physics at finite baryonic density, with detailed calculation of the in-medium

corrections to the axion-nucleon couplings. Finally, as anticipated, Chapter 6 will be devoted to the

analysis of finite density effects in nucleophobic axion models. We will then sum up our conclusions in

Chapter 7, while more technical details on the topics of Baryon Chiral Perturbation Theory, Thermal

Field Theory, and the phenomenon of meson condensation are discussed in the appendices A, B, and C,

respectively.



Chapter 2

The QCD axion

During the 1970s, the discovery by Adler, Bell, and Jackiw [22, 23] of the chiral anomaly brought

to a solution of the so-called U(1) problem, i.e. the nonobservation of a light meson associated to

a spontaneously broken approximate global U(1)A symmetry of QCD. However, due to the presence

of instantons, it also introduced a source of CP violation in the theory. The nonobservation in

experiments of this violation yields a small-value problem known as the strong CP problem.

Our goal in this chapter is to introduce in detail the strong CP problem and discuss its most

appealing solution, the Peccei-Quinn mechanism, implying the existence of a new pseudoscalar particle,

the axion.

2.1 The strong CP problem

2.1.1 QCD instantons and the QCD vacuum structure

The QCD instantons

QCD is the current theory of the strong interaction. It is a gauge theory with gauge group SU(3)C ,

known as the colour group, describing the dynamics of the gluon and quark fields. In absence of matter

fields, QCD is a quantum Yang-Mills theory described by the Lagrangian

LQCD = −1

2
Tr[GµνG

µν ] +
g2sϑ

16π2
Tr
[︂
GµνG̃

µν
]︂

= −1

4
Ga

µνG
a,µν +

g2sϑ

32π2
Ga

µνG̃
a,µν ,

(2.1)

where Gµν = λa

2 G
a
µν , with G

a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAa
µA

a
ν , is the gluon field strength tensor and

G̃µν = λa

2 G̃
a
µν , with G̃

a
µν = 1

2εµνρσG
a,ρσ and ε0123 = −1, is its dual. The first term in eq. (2.1) is the

usual Yang-Mills kinetic term, while the second term is known as the theta term or topological term.

It is a CP -odd operator, which introduces some interesting features in the QCD dynamics.

One can show that the topological term can be written as a total derivative

Ga
µνG̃

a,µν = ∂µK
µ, Kµ ≡ εµαβγ

(︂
Aa

αG
a
βγ −

gs
3
fabcAa

αA
b
βA

c
γ

)︂
, (2.2)

where Kµ is known as the Chern-Simons current. This property gives rise to two puzzles regarding

the role of this term.

3



4 CHAPTER 2. THE QCD AXION

The first puzzle stems from the fact that, by defining the Hamiltonian starting from the Lagrangian

eq. (2.1), this turns out to be independent of ϑ. However, quantum dynamics boils down to the time

evolution of states, |ψ⟩ → eitH |ψ⟩, which appears to be unaffected by the presence of the theta term.

The second puzzle, instead, arises in the path integral formulation, where the dynamics is de-

termined by the generating functional. Wick rotating to a Euclidean spacetime this reads, up to a

normalisation,

Z =

∫︂
DAe−SE [A]. (2.3)

However, we observe that the contribution of the topological term to the Euclidean action SE ,

g2sϑ

32π2

∫︂
E4

d4xGa
µνG̃

a
µν =

g2sϑ

32π2

∫︂
E4

d4x ∂µKµ =
g2sϑ

32π2

∫︂
∂E4

dσµKµ, (2.4)

vanishes for configurations such that Kµ goes to zero faster than r−3 as r → +∞, which seems to be

the case for all configurations with finite static Yang-Mills energy, stemming from the kinetic term in

the Euclidean action. In fact, naively one has for finite energy configurations

EYM =

∫︂
d3x⃗H ∼

∫︂
d3x⃗

(︂
E⃗2 + B⃗2

)︂
< +∞. (2.5)

But
⃓⃓⃓
E⃗
⃓⃓⃓
vanishes faster than r−2, implying that the GG̃ term, which has the same spatial dependence

as the GG term, must vanish faster than r−4. Then, being GG̃ ∼ ∂µK
µ ∼ Kµ/r, the Chern-Simons

current must indeed vanish faster than r−3.

We start by trying to solve this latter puzzle. We observe that if we were able to find classical

configurations of the gluon field for which the integral in eq. (2.3) does not vanish, then the topological

term would actually contribute to the generating functional. To find these configurations, we start by

considering those field configurations which minimise the static Yang-Mills energy of QCD [24]. This

can be easily shown to take only nonnegative values, so that a minimum is reached for configurations

with vanishing field strength. The simplest of them is the trivial configuration in which the gluon

field vanishes Aµ = 0. We can then perform a gauge transformation so that our new configuration

will not be vanishing, but it will instead be a pure gauge A′
µ = i

gs
U−1∂µU . Such a configuration

still satisfies the classical equations of motion and has a null Euclidean action, since the kinetic term

−1
2

∫︁
d4xTr[GµνGµν ] is left invariant by the gauge transformation. These pure gauge configurations

are called classical vacua.

The gluon field for a pure gauge configuration is uniquely determined by the x-dependent SU(3)C

matrix U . Let us first consider a SU(2) subgroup of the QCD gauge group. The group manifold

of SU(2) is the three-sphere S3. Choosing the temporal gauge A0 = 0, in order for the residual

gauge transformations to be time-independent, and assuming the following boundary condition on U ,

lim|x⃗|→+∞ U(x⃗) = U0, the three-dimensional space gets compactified to S3 for what concerns the gauge

transformations, since the points at infinity cannot be distinguished by means of U(x⃗). Therefore, U

turns out to be a continuous map U : S3 → S3.

We now need to introduce a fundamental concept in algebraic topology, homotopy. Let X,Y be

two topological spaces and let f, g : X → Y be two continuous maps. f and g are said to be homotopic

if there exists a continuous function H : X × [0, 1] → Y such that H(x, 0) = f(x) and H(x, 1) = g(x).

Homotopy defines an equivalence relation between continuous maps; the equivalence classes associated

to this equivalence relation are known as homotopy classes. Let πn(X) be the set of homotopy classes
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of maps f : Sn → X, where Sn is the n-sphere. With an appropriate choice of a binary operation, the

set πn(X) has the structure of a group, and it is known as the n-th homotopy group of X. A very

important result on homotopy groups is that the n-th homotopy group for the n-sphere is isomorphic

to the group of integer numbers with the sum operation:

πn(S
n) ≃ Z. (2.6)

Applying this result to the U matrices, we understand that gauge transformations, and therefore

classical vacua, can be classified in terms of the homotopy class they belong to. Moreover, due to the

isomorphism eq. (2.4), different homotopy classes can be uniquely identified by specifying an integer

number, known as the winding number. Gauge transformations belonging to different homotopy

classes cannot be continuously deformed one into the other. This implies that one cannot move from a

classical vacuum to another one with a different winding number by keeping the gluon field in a pure

gauge configuration throughout the process. It follows that any configuration interpolating between

two classical vacua must have a positive Euclidean action SE > 0. However, in general, the U matrices

are not elements of SU(2), but of SU(3). Fortunately, a theorem by Bott [25], states that mappings

from S3 to any simple Lie group G, like SU(3), can be deformed continuously, i.e. are homotopic,

to mappings to a SU(2) subgroup of G; hence, the homotopy classes are exactly the same described

above.

Belavin, Polyakov, Schwartz, and Tyupkin [26] showed that it is possible to build topologically

nontrivial configurations of the gluon field for which the integral in eq. (2.3) does not vanish: the BPST

instantons. They are configurations continuously interpolating between classical vacua with different

winding number with minimal Euclidean action. Since they minimise the action, they are solutions of

the classical equations of motion. When evaluated on an instanton solution G
(ν)
αβ interpolating between

two vacua with winding numbers m and n, with m = n+ ν, the integral in eq. (2.3) takes the value∫︂
E4

d4xG
(ν)a
αβ G̃

(ν)a
αβ =

32π2

g2s
ν. (2.7)

The kinetic term in the Euclidean action for a ν = 1 BPST instanton takes the finite value

−1

4

∫︂
E4

d4xGa
µνG

a
µν =

8π2

g2s
. (2.8)

QCD vacuum structure

The existence of instanton solutions in classical QCD has deep implications on the structure of the

corresponding quantum theory. To show this, we start by observing that, in the semiclassical ap-

proximation, we can associate to each classical vacuum a corresponding quantum vacuum state. The

amplitude for the tunnelling between two vacuum states of winding numbers m and n, with m = n+ν,

is

⟨m|n⟩ ∼ e−Sν , (2.9)

where Sν is the Euclidean action corresponding to the instanton solution interpolating between the

corresponding classical vacua. So we understand that the complex topological structure of the QCD

gauge group introduces a nontrivial structure for the ground state of the theory, which is characterised

by the presence of infinite degenerate vacuum states each identified by an integer index. These vacua
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are connected by gauge transformations of nontrivial winding number. In particular calling U (n) the

gauge transformations belonging to the homotopy class of winding number n, one has

U (1) |n⟩ = |n+ 1⟩ , U (n) =
[︂
U (1)

]︂n
. (2.10)

The noninvariance of these states under gauge transformations is, however, a clear indicator of

the fact that these states cannot be used to describe the actual vacua of the theory. To find the

correct expression of the vacuum states we exploit a fundamental property of relativistic quantum

field theories: cluster decomposition. This is just the requirement that distant enough experiments

must yield uncorrelated results. Let us consider a large Euclidean spacetime region Ω which is split

into two large regions Ω1 and Ω2. Let O be a local operator with support on Ω1. Denoting by ϕ the

set of fields of the theory, so as to generalise the discussion to the case in which we introduce also

quark fields, one has in the path integral formulation that the vacuum expectation value of O is

⟨O⟩Ω =

∑︁
ν f(ν)

∫︁
ν Dϕ e

−SΩ[ϕ]O[ϕ]∑︁
ν f(ν)

∫︁
ν Dϕ e−SΩ[ϕ]

=

∑︁
ν1,ν2=ν−ν1

f(ν1 + ν2)
∫︁
ν1
Dϕ e−SΩ1

[ϕ]O[ϕ]
∫︁
ν2
Dϕ e−SΩ2

[ϕ]∑︁
ν1,ν2=ν−ν1

f(ν1 + ν2)
∫︁
ν1
Dϕ e−SΩ1

[ϕ]
∫︁
ν2
Dϕ e−SΩ2

[ϕ]
,

(2.11)

where we summed over all the topological sectors, denoted by ν, each weighed by an appropriate factor

f(ν). Cluster decomposition requires

f(ν1 + ν2) = f(ν1)f(ν2). (2.12)

This equation has solution

f(ν) = eiϑν , (2.13)

where ϑ is an arbitrary parameter. But now we have

⟨O⟩Ω =

∑︁
ν e

iϑν
∫︁
ν Dϕ e

−SΩ[ϕ]O[ϕ]∑︁
ν e

iϑν
∫︁
ν Dϕ e−SΩ[ϕ]

=

∑︁
n,m=n+ν e

iϑme−iϑn ⟨m|O|n⟩∑︁
n,m=n+ν e

iϑme−iϑn ⟨m|n⟩
.

(2.14)

This is just the vacuum expectation value taken between vacuum states defined as the following linear

combinations of the topological vacua

|ϑ⟩ ≡
+∞∑︂

n=−∞
eiϑn |n⟩ , (2.15)

known as the theta vacua. These kets are eigenvectors of the U (1) operator defined above, with a

phase as eigenvalue

U (1) |ϑ⟩ =
+∞∑︂

n=−∞
eiϑnU (1) |n⟩ =

+∞∑︂
n=−∞

eiϑn |n+ 1⟩ = e−iϑ |ϑ⟩ . (2.16)

This, together with the relation U (n) =
[︁
U (1)

]︁n
, implies that the theta vacua are left invariant by
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gauge transformations, and therefore can describe the actual vacua of QCD.

Moreover, theta vacua introduce a superselection rule in the Hilbert space of the theory. In fact, if

O1,O2, . . . are gauge invariant operators, the matrix element of their time-ordered product between

two different theta vacua |ϑ⟩ , |ϑ′⟩ is given by

⟨︁
ϑ′
⃓⃓
T (O1O2 · · · )

⃓⃓
ϑ
⟩︁
=
∑︂
m,n

e−imϑ′+inϑ ⟨m|T (O1O2 · · · )|n⟩ . (2.17)

The matrix element in the last expression just depends on the difference ν = m−n since, due to gauge

invariance, U (1)−1T (O1O2 · · · )U (1) = T (O1O2 · · · ), so that m and n change in the same way under a

gauge transformation. Thus, we can write it as a function F = F (ν). Then

⟨︁
ϑ′
⃓⃓
T (O1O2 · · · )

⃓⃓
ϑ
⟩︁
=
∑︂
n

ein(ϑ−ϑ′)
∑︂
ν

ei
ν
2
(ϑ+ϑ′)F (ν) = 2πδ(ϑ− ϑ′)

∑︂
ν

eiνϑF (ν), (2.18)

which vanishes for ϑ ̸= ϑ′. Hence, gauge invariant operators cannot connect vacua with a different

value of ϑ. This implies that each value of ϑ characterises a different theory: only a specific value of

ϑ corresponds to our universe.

Theta vacua and topological term

We are now ready to show the relation between the nontrivial vacuum structure of QCD and the

topological term in eq. (2.1). In particular, we want to show that the latter can be obtained as a

result of the former. With this aim, let us consider the standard Yang-Mills Lagrangian for QCD

LQCD = −1

4
Ga

µνG
a,µν . (2.19)

Fixing the value of ϑ, the vacuum-to-vacuum amplitude in presence of external sources can be written

as

⟨ϑ|ϑ⟩J =
∑︂
ν

eiϑν
∑︂
m

⟨m|m+ ν⟩J . (2.20)

In the path integral formalism, making use of eq. (2.5), this can be rewritten as

⟨ϑ|ϑ⟩J =
∑︂
ν

eiϑν
∫︂

DAe−
∫︁
d4x 1

4
Ga

µνG
a,µν+

∫︁
d4xJ ·A

=
∑︂
ν

∫︂
DAe−

∫︁
d4x 1

4
Ga

µνG
a,µν+iϑ

g2s
32π2

∫︁
d4xGa

µνG̃
a,µν+

∫︁
d4xJ ·Aδ

(︃
ν − g2s

32π2

∫︂
d4xGa

µνG̃
a,µν

)︃
.

(2.21)

Hence, the theta parameter appearing in eq. (2.1) can be identified with the theta angle specifying

the vacuum of our theory. This gives a solution to our first puzzle: even though the Hamiltonian does

not depend on the topological term, this fixes the specific vacuum state of QCD, giving a fundamental

contribution to the dynamics of the gluon field.
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2.1.2 The strong CP problem

As stated before, the topological term

LQCD ⊃ g2sϑ

32π2
Ga

µνG̃
a,µν (2.22)

is CP -odd. Therefore, it introduces a source of CP violation in the theory of the strong interaction.

Another source of CP violation appears when we consider quarks in our description:

LQCD = −1

4
Ga

µνG̃
a,µν +

g2sϑ

32π2
Ga

µνG̃
a,µν +

∑︂
q

q̄
(︂
i /D − eiϑqγ5mq

)︂
q, (2.23)

where Dµ = ∂µ − igs
λa

2 A
a
µ, /D = γµDµ, and we introduced a CP -violating phase depending on an

angle ϑq in the quark masses.

Let us consider the redefinition of a single quark flavour through an axial transformation of the

form

q → eiγ5αq. (2.24)

Under this redefinition, the angle ϑq gets shifted as

ϑq → ϑq + 2α. (2.25)

The transformation in eq. (2.24) is however anomalous in QCD. In the Fujikawa approach [27], the

anomaly manifests itself in a noninvariance of the path integral measure in the generating functional.

In particular, this varies as

DqDq̄ → e−iα
g2s

16π2

∫︁
d4xGa

µνG̃
a,µν

DqDq̄ , (2.26)

yielding a shift of the QCD ϑ parameter of the form

ϑ→ ϑ− 2α. (2.27)

Since, by the S-matrix equivalence theorem [28, 29], physical quantities must be invariant under the

field redefinition eq. (2.24), we understand that neither ϑ nor ϑq are observable. Only the combination

ϑ̄ = ϑ+ ϑq (2.28)

is observable. This object completely describes CP -violation in QCD.Within the SM, the CP violating

phase in the mass terms finds its origin in the diagonalisation of the Yukawa sector, and therefore the

observable theta parameter reads

ϑ̄ = ϑ+ arg det(YUYD), (2.29)

YU,D being the Yukawa matrices, respectively, of up and down quark flavours.

A bound on this parameter can be found experimentally, by exploiting some observable which is

particularly sensitive to CP violation. The observable of choice is the neutron electric dipole moment

(nEDM). It is defined in terms of the nonrelativistic Hamiltonian
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H = −dnE⃗ · Ŝ, (2.30)

which can be written in terms of a relativistic-invariant operator as

L = −dn
i

2
n̄σµνγ5nF

µν . (2.31)

The most accurate theoretical prediction for the value of dn is obtained from QCD sum rules [30]:

dn = 2.4(1.0)× 10−16ϑ̄ e cm = 1.2(0.5)× 10−2ϑ̄ eGeV−1. (2.32)

Comparing this result with the current experimental bound [31]

|dexpn | < 3.0× 10−26 e cm = 1.5× 10−12 eGeV−1 (90% C.L.), (2.33)

one obtains a very stringent upper bound on the value of the observable theta parameter

⃓⃓
ϑ̄
⃓⃓
≲ 10−10. (2.34)

This bound gives us an extremely small value for the CP -violating parameter, compared to the naive

expectation ϑ̄ ∼ O(1). This small value problem is known as the strong CP problem.

The strong CP problem has some characteristics which make it qualitatively different from other

small value problems, like the cosmological constant problem or the neutrino mass problem. First of

all, the value of ϑ̄ turns out to be radiatively stable to a very good degree. In fact, since ϑ̄ contains is

also sensititve to the CKM CP -violating phase, its radiative corrections must be proportional to the

Jarlskog invariant JCKM = ImVudV
∗
cdVcsV

∗
us [32], and, just by considering spurionic properties, they

should be given by

Imdet
[︂
YUY

†
U , YDY

†
D

]︂
=

(︃
26

v12

)︃ ∏︂
i>j=u,c,t

(︁
m2

i −m2
j

)︁ ∏︂
k>ℓ=d,s,b

(︁
m2

k −m2
ℓ

)︁
JCKM ≈ 10−20, (2.35)

which would diagrammatically correspond to a 6-loop diagram with 12 Yukawa insertions connected by

6 Higgs propagators [33]. However, an accidental symmetry of the SM Yukawa sector under H ↔ H̃,

uR ↔ dR, YU ↔ YD makes all 6-loop contribution vanish, so that radiative corrections only start at 7

loops. They are of the form δϑ̄div. ≈ 10−33 log ΛUV, so that if the observable theta parameter is small

at some heavy energy scale ΛUV it remains small under renormalisation group (RG) evolution.

Another typical feature of the strong CP problem is the seemingly absent anthropic explanation

of the bound in eq. (2.34). In fact, even if this bound were relaxed by various orders of magnitude,

as long as ϑ̄ < 1% [34, 35], nothing catastrophic would happen, differently from cases like that of the

cosmological constant.

2.1.3 The Peccei-Quinn mechanism

A mechanism to solve the strong CP problem was proposed by Peccei and Quinn in [3, 4]. The main

idea is to exploit an anomalous global symmetry in the theory to rotate away the topological term,

and thus fix ϑ̄ = 0. We first observe that no such symmetry exists within the SM. In fact the global

symmetry group of the SM is U(1)B×U(1)L1 ×U(1)L2 ×U(1)L3 , which is not anomalous under QCD,

and so it cannot generate the correct anomaly operator to rotate away the theta term. The symmetry



10 CHAPTER 2. THE QCD AXION

required by the Peccei-Quinn (PQ) mechanism must therefore be introduced by extending the SM.

However, the SM gives us a correct description of particle physics phenomena at the scales of current

experimental facilities, so we understand that such a new symmetry must be spontaneously broken

at low energies in order to account for its nonbservation. We call this anomalous and spontaneously

broken U(1)PQ symmetry the Peccei-Quinn symmetry.

Weinberg and Wilczek [1, 2] soon realised that the spontaneous symmetry breaking (SSB) of the

PQ symmetry implied, through the Goldstone theorem [36, 37], the existence of a pseudo Nambu-

Goldstone boson (pNGB), which due to the fact that its existence “washed away” the strong CP

problem was given by Wilczek the name axion, after a known brand of detergents. The presence of

the axion makes it possible to test the PQ mechanism at low energies through the observation of a

remnant, the QCD axion itself.

2.2 Axion EFT

We have introduced the QCD axion as the pNGB associated to the spontaneous breaking of a U(1)PQ

anomalous symmetry. Since there is only one broken generator, from the Goldstone theorem we find

that the axion must have only one degree of freedom, i.e. it must be a real spin-0 field. Moreover, its

Lagrangian must be endowed with a quasi-shift symmetry a→ a+κfa, where fa is a mass scale known

as the axion decay constant and, as we are going to see, is closely related to the order parameter of

the PQ symmetry spontaneous breaking. This shift transformation should leave the action invariant

up to a term

δS =
g2sκ

32π2

∫︂
d4xGa

µνG̃
a,µν . (2.36)

An appropriate choice of κ can thus be used to remove the topological term of the QCD Lagrangian,

implementing the PQ mechanism.

In an EFT approach, the axion is therefore described by a nonrenormalisable Lagrangian of the

form [38]

La =
1

2
(∂µa)(∂

µa) +
g2s

32π2
a

fa
Ga

µνG̃
a,µν +

1

4
g0aγaFµνF̃

µν +
∂µa

2fa

∑︂
f

f̄ c0fγ
µγ5f. (2.37)

A few comments are now in order regarding the terms appearing in eq. (2.37). We first observe

that the only necessary interaction term is the axion-gluon one, which stems from the anomaly of the

U(1)PQ under QCD to solve the strong CP problem. We note however, that this term could potentially

be problematic: in fact if ⟨a⟩ ̸= 0 this term would generate again CP violation in the strong sector.

Fortunately, the Vafa-Witten theorem [39] implies ⟨a⟩ = 0 in a vector-like theory like QCD, so that

the PQ solution is not spoiled. Since Ga
µνG̃

a,µν is a P -odd object, in order for the whole operator to

be invariant under parity the axion must be a pseudoscalar field.

The axion-photon interaction is again due to an anomaly, i.e. that of U(1)PQ under Quantum

Electrodynamics (QED). This term is model-dependent, in the sense that the specific value of the

coupling constant g0aγ depends on the specific UV completion of the axion EFT. Also the axion

interactions with SM fermions are model-dependent. Moreover, we observe that the axion must appear

only through its derivatives in these interaction terms, due to the pseudo-shift symmetry. Finally, the

axion only couples to the axial fermion currents, because of the axial nature of the U(1)PQ.
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Let us consider for simplicity two-flavour QCD, with q = (u, d)T . Including also the quark mass

term, one has

La =
1

2
(∂µa)(∂

µa) +
g2s

32π2
a

fa
Ga

µνG̃
a,µν +

1

4
g0aγaFµνF̃

µν +
∂µa

2fa
q̄c0qγ

µγ5q − q̄LMqqR + h.c., (2.38)

where c0q = diag(c0u, c
0
d) and Mq = diag(mu,md). It is convenient to rotate away the axion-gluon

interaction term by means of the axion-dependent field redefinition

q → e
iγ5

a
2fa

Qaq, (2.39)

where Qa is an arbitrary 2 × 2 matrix with unit trace: TrQa = 1. The noninvariance of the path

integral measure under this transformation cancels the aGG̃ term, while modifying also the aF F̃

operator. Moreover, also the quark kinetic and mass terms change under this field redefinition. It

follows that the couplings of our theory are modified as

g0aγ → gaγ = g0aγ − (2Nc)
α

2πfa
Tr
(︁
QaQ

2
)︁
, Q = diag(2/3,−1/3), (2.40a)

c0q → cq = c0q −Qa (2.40b)

Mq → Ma = e
i a
2fa

QaMqe
i a
2fa

Qa , (2.40c)

and the effective Lagrangian in the new basis reads

La =
1

2
(∂µa)(∂

µa) +
1

4
gaγaFµνF̃

µν +
∂µa

2fa
q̄cqγ

µγ5q − q̄LMaqR + h.c. (2.41)

We note that in this basis the axion-photon and axion-quark interaction terms acquire a model-

independent contribution.

Working at even lower energies, one can describe the axion EFT in terms of interactions with

hadrons. A very useful way to do this is by exploiting chiral perturbation theory (ChPT) techniques.

We map the Lagrangian in eq. (2.41) to the corresponding axion-dressed ChPT Lagrangian

La =
f2π
4

Tr
[︂
(DµΣ)

†(DµΣ)
]︂
+
Bf2π
2

Tr
[︂
ΣM†

a +MaΣ
†
]︂
+
∂µa

2fa

1

2
Tr[cqσ

a] Ja
µ , (2.42)

where fπ = 92.3MeV, B is related to the quark condensate, and Σ = e
iπ

aσa

fπ . Here we have kept

only the iso-triplet part of the axion coupling to the axial current, since the iso-singlet part would be

associated to the heavy η′, which we do not include in the ChPT description. The current is given by

Ja
µ =

i

2
f2π Tr

[︂
σa
(︂
ΣDµΣ

† − Σ†DµΣ
)︂]︂
. (2.43)

Finally, up to now we have worked in the implicit assumption that the energy scale of interest was

below that of the electroweak phase transition. However, as we are going to see, there are valid reasons

to assume that the spontaneous breaking of the PQ symmetry happens at energies much higher than

1TeV. Therefore the axion should be present also in the unbroken phase of the SM. This is encoded
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in the axion EFT Lagrangian [40]

La =
1

2
(∂µa)(∂

µa) +
g2s

32π2
a

fa
Ga

µνG̃
a,µν + cW

g2

32π2
a

fa
W i

µνW̃
i,µν + cB

g′2

32π2
a

fa
BµνB̃

µν

+
∂µa

fa

⎡⎣∑︂
f

(︁
f̄LcfLγ

µfL + f̄RcfRγ
µfR

)︁
+ cHH

†i
↔
DµH

⎤⎦, (2.44)

where H†
↔
DµH ≡ H†(DµH)− (DµH)†H.

2.2.1 The axion potential

We now exploit the ChPT description of the axion EFT, eq. (2.42), to find some information on the

properties of the axion. In particular we are interested in studying the scalar potential, i.e. (minus)

the nonderivative part of the Lagrangian

V (a, πa) = −Bf
2
π

2
Tr
[︂
ΣM†

a +MaΣ
†
]︂
. (2.45)

By expanding one finds

V (a, πa) = −Bf2π(mu +md) +
1

2
B(mu +md)π

2 +
i

4

Bf2π
fa

aTr[Σ{Qa,Mq}] + h.c. + . . . , (2.46)

where π =
√︁
(π0)2 + 2π+π−. The third term introduces a mass mixing between the axion and the

neutral pion. This can be removed my making an appropriate choice of the matrix Qa: the form we

use is Qa = M−1
q /TrM−1

q . This choice removes also any interaction term linear in a and with an

arbitrary number of pion fields: for an odd number of pions that is because Tr[σa] = 0, while for an

even number of pions there is a cancellation with the hermitian conjugate.

Then our potential, expanded for a/fa ≪ 1, reads

V (a, πa) = −m2
πf

2
π cos

(︃
π

fπ

)︃
+

1

2

mumd

(mu +md)2
m2

πf
2
π

f2a
a2 cos

(︃
π

fπ

)︃
+O

(︃
a3

f3a

)︃
. (2.47)

where m2
π = B(mu +md), as one can read from eq. (2.46).

By setting the pion field to its ground state ⟨π⟩ = 0, we find the value of the axion mass

m2
a =

mumd

(mu +md)2
m2

πf
2
π

f2a
=⇒ ma ≃ 5.7

(︃
1012GeV

fa

)︃
µeV. (2.48)

The relation m2
af

2
a ∼ m2

πf
2
π is a result of the fact that the QCD axion solves the strong CP problem.

Other pseudoscalar particles with properties similar to those of the axion, but that do not solve the

strong CP problem, and therefore do not satisfy this constraint, are known as axion-like particles

(ALPs).

Finally, we observe that the potential in eq. (2.48) is minimised for ⟨a⟩ = 0, in agreement with the

Vafa-Witten theorem.

2.2.2 Axion-pion kinetic mixing and axion-pion coupling

Let us now examine the current part of the Lagrangian in eq. (2.42). By expanding, we obtain
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∂µa

2fa

1

2
Tr[cqσ

a] Ja
µ ≈ −1

2

(︃
mu −md

mu +md
+ c0d − c0u

)︃
fπ
fa
∂µa∂

µπ0

+
1

3

(︃
mu −md

mu +md
+ c0d − c0u

)︃
1

fπfa
∂µa
(︁
2∂µπ0π+π− − π0∂µπ+π− − π0π+∂µπ−

)︁
.

(2.49)

The first term gives a kinetic mixing between the axion and the neutral pion. Since we want kinetic

terms to be canonically normalised, we need to diagonalise this mixing. To do that we consider the

quadratic part of the axion-pion Lagrangian

Lquad.
a =

1

2

(︂
∂µa ∂µπ

0
)︂(︄1 ε

ε 1

)︄(︄
∂µa

∂µπ0

)︄
− 1

2

(︂
a π0

)︂(︄m2
a 0

0 m2
π

)︄(︄
a

π0

)︄
, (2.50)

with

ε ≡ −1

2

(︃
mu −md

mu +md
+ c0d − c0u

)︃
fπ
fa

(2.51)

and ma/mπ ∼ O(ε). We perform in sequence:

(i) an orthogonal transformation to diagonalise the kinetic term;

(ii) a rescaling to make the kinetic terms canonical;

(iii) another orthogonal transformation to diagonalise again the mass term, which does not affect the

kinetic term.

The net effect of this procedure are the shifts a → a − επ0 and π0 → π0 + (m2
a/m

2
π)εa. We observe

that the axion component in π0 is suppressed at the level of ε3, making this diagonalisation completely

negligible when considering experimental sensitivities and astrophysical bounds.

The second term in eq. (2.49), instead, gives the axion-pion interaction term

La ⊃ caπ
fπfa

∂µa
(︁
2∂µπ0π+π− − π0∂µπ+π− − π0π+∂µπ−

)︁
, (2.52)

where

caπ ≡ 1

3

(︃
mu −md

mu +md
+ c0d − c0u

)︃
. (2.53)

Such a coupling is especially relevant for the axion thermalisation rate in the early universe [41–43]

2.2.3 Axion-nucleon couplings

Nucleons were not included in our description of the axion EFT up to now, the reason being that

a consistent description of nucleons within a ChPT framework, although possible, encounters some

technical difficulties due to the small difference between the nucleon mass mN and the scale at which

ChPT breaks down Λχ, see Appendix A. In order to overcome these problems, we work in the non-

relativistic limit for Baryon ChPT, where the axion-dressed Lagrangian for two light quark flavours

takes the form (see Appendix A)
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LaN = N̄vµ∂µN + 2gAc−
∂µa

2fa
N̄Sµτ3N + 2gud0 c+

∂µa

2fa
N̄SµN + . . .

= N̄vµ∂µN + 2gAc−
∂µa

2fa
(p̄Sµp− n̄Sµn) + 2gud0 c+

∂µa

2fa
(p̄Sµp+ n̄Sµn) + . . . ,

(2.54)

where N = (p, n)T , c± = (cu ± cd)/2, v
µ is the four-velocity of the nucleon,

Sµ =
i

2
γ5σ

µνvν = −1

2
γ5(γ

µ/v − vµ) (2.55)

is the spin operator, gA, g
ud
0 are low-energy constants and the axion enters as an axial external current,

with components both in the isotriplet and isosinglet directions.

By matching eq. (2.54) with the axion effective Lagrangian written in terms of quarks over a

one-nucleon matrix element

∂µa

2fa
cu ⟨N |ūγµγ5u|N⟩+ ∂µa

2fa
cd ⟨N |d̄γµγ5d|N⟩ = ∂µa

2fa
gAc− ⟨N |2p̄Sµp|N⟩+ ∂µa

2fa
gud0 c+ ⟨N |2p̄Sµp|N⟩

(2.56)

and by exploiting the relation 2p̄Sµp ≈ p̄γµγ5p in the nonrelativistic limit, see Appendix A, so that

∂µa

2fa
cus

µ∆u+
∂µa

2fa
cds

µ∆d =
∂µa

2fa
gA
cu − cd

2
sµ +

∂µa

2fa
gud0

cu + cd
2

sµ, (2.57)

where sµ is the spin of the nucleon at rest and we defined sµ∆q = ⟨p|q̄γµγ5q|p⟩, one finds

gA = ∆u−∆d, gud0 = ∆u+∆d. (2.58)

Therefore, the axion-nucleon Lagrangian can be written as

LaN =
∂µa

2fa
N̄cNγ

µγ5N, (2.59)

where the coupling constant matrix cN = diag(cp, cn) has elements

cp = gAc− + gud0 c+ = −
(︃

md

mu +md
∆u+

mu

mu +md
∆d

)︃
+ c0u∆u+ c0d∆d, (2.60a)

cn = −gAc− + gud0 c+ = −
(︃

mu

mu +md
∆u+

md

mu +md
∆d

)︃
+ c0u∆d+ c0d∆u. (2.60b)



Chapter 3

Benchmark QCD axion models

As we have seen in the previous chapter, QCD axion physics is described in terms of a nonrenormal-

isable EFT Lagrangian. This, of course, calls for a UV completion of the axion theory, i.e. what is

commonly known as an axion model. During the years there have been many proposals of specific

axion models, some of which have already been dismissed by experimental evidence. Here, we aim to

give a brief introduction to the main axion models present in literature.

3.1 The anomaly coefficients

Before describing the benchmark QCD axion models, we need to analyse more in detail the coefficients

due to the anomaly of U(1)PQ under QCD and QED. Let us consider the most general case in which

the anomaly is generated by a set of fermion fields Q, of PQ charge XQ, each transforming under the

(CQ, IQ,YQ) irreducible representation of the SM gauge group SU(3)C × SU(2)L × U(1)Y . We recall

that, given a generic anomalous global continuous symmetry group G in a gauge theory with gauge

group G, the four-divergence of the Noether current associated to this group is given by

∂µJ
a,µ
G =

g2

16π2
Tr
[︂
T a
G

{︂
tbG , t

c
G

}︂]︂
F b
αβF̃

c,αβ, (3.1)

where T a
G are the generators of G, taG the generators of G, g is the gauge coupling of G and Fµν the

field strength of the corresponding gauge boson. The trace is taken both in flavour space and on gauge

group indices. In the specific cases of QCD and QED this expression becomes

∂µJ
a,µ
G =

g2sN

16π2
Gb

αβG̃
b,αβ, (3.2a)

∂µJ
a,µ
G =

e2E

16π2
FαβF̃

αβ. (3.2b)

The value of the coefficients N and E can be obtained by representation theory arguments. They both

receive contributions by each fermion irreducible representation, which we assume to be all left-handed,

with XQc
L
= −XQR

:

N =
∑︂
Q
NQ, E =

∑︂
Q
EQ, (3.3)

where [38]

15
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NQ = XQd(IQ)T (CQ), (3.4a)

EQ = XQd(CQ) Tr q2Q = XQd(CQ)d(IQ)
(︃

1

12

(︁
d(IQ)2 − 1

)︁
+ Y2

Q

)︃
. (3.4b)

Here d(·) indicates the dimension of the representation, T (CQ) is the colour Dynkin index, and qQ is

the electromagnetic charge matrix of the fermion.

In the case in which the anomaly is generated by the SM quarks with a generation-independent

PQ charge assignment, the QCD anomaly coefficient takes the form

N = ng
2XqL −XuR −XdR

2
, (3.5)

where ng = 3 is the number of quark generations, and with T (3) = 1/2 being the Dynkin index for

the fundamental representation.

3.2 Origin of model-dependent axion couplings

We have already observed that the coupling constants in the effective Lagrangian of eq. (2.41) receive

both model-dependent and model-independent contributions. We discussed the origin of the model

independent part in the previous chapter, and now we are ready to analyse the model-dependent

terms.

The axion is the pNGB associated to the spontaneous breaking of an anomalous U(1)PQ. If we

denote by JPQ
µ the Noether current associated to the PQ symmetry, we know that this is conserved

up to anomalous terms:

∂µJPQ
µ =

g2sN

16π2
Ga

µνG̃
a,µν +

e2E

16π2
FµνF̃

µν , (3.6)

where N and E are, respectively, the QCD and QED anomaly coefficients. The Goldstone theorem

implies that ⟨0|JPQ
µ |a⟩ = ivapµ, where va is the order parameter of the SSB of the PQ symmetry. By

anomaly matching, we find that the axion effective Lagrangian must contain terms of the form

La ⊃ a

va

g2sN

16π2
Ga

µνG̃
a,µν +

a

va

e2E

16π2
FµνF̃

µν +
∂µa

va
JPQ
µ , (3.7)

where we also introduced a term describing the coupling of the axion to the PQ conserved current,

which depends on the charges of the fields under PQ transformations. Choosing the same normalisation

for the aGG̃ that was chosen in eq. (2.37), we find

fa =
va
2N

, (3.8)

which relates the axion decay constant to the order parameter va. Moreover, we can rewrite our

Lagrangian: considering for simplicity just two chiral fermions fL,R charged under PQ, so that JPQ
µ =

f̄LXfLγµfL + f̄RXfRγµfR, eq. (3.2) becomes
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La ⊃ g2s
32π2

a

fa
Ga

µνG̃
a,µν +

e2

32π2
E

N

a

fa
FµνF̃

µν +
∂µa

fa

1

2N

[︁
f̄LXfLγµfL + f̄RXfRγµfR

]︁
≡

≡ g2s
32π2

a

fa
Ga

µνG̃
a,µν +

1

4
g0aγaFµνF̃

µν +
∂µa

2fa
f̄ c0fγ

µγ5f,

(3.9)

where in the second step we neglected the coupling with the conserved vector current since it vanishes

under integration by parts. Then the model-dependent axion couplings to photons and fermions have

the form

g0aγ =
α

2πfa

E

N
, (3.10a)

c0f =
XfR −XfL

2N
= −

XHf

2N
, (3.10b)

where in the last step we assumed a Yukawa interaction term with a PQ-charged scalar Hf of the kind

f̄LHffR, yielding the relation XfL −XfR = XHf
.

3.3 PQWW axion model

Historically, the first axion model was proposed in the very papers where the axion itself was introduced

[1, 2]. In this model, known as the Peccei-Quinn-Weinberg-Wilczek model (PQWW), the U(1)PQ

anomaly is generated by the usual SM quarks, and the scalar sector is extended by the introduction

of a second Higgs doublet. The model is therefore an example of a two Higgs doublet model (2HDM).

The necessity of extending the scalar sector can be understood by looking at the Yukawa terms. In

the PQWW model these read

−LY = q̄LYUHuuR + q̄LYDHddR + h.c., (3.11)

where uR, dR are three-dimensional vectors whose components are the right-handed quarks, qL is

again a three-dimensional vectors, whose components are the left-handed quark doublets, YU,D are the

Yukawa matrices, and Hu,d the two Higgs doublets. Denoting by XqL , XuR , XdR , and Xu,d respectively

the PQ charges of the left-handed quark doublets, of the up and down right handed quark fields, and

of the two Higgs doublets, invariance of eq. (3.6) under PQ transformations yields

XqL −XuR = Xu (3.12a)

XqL −XdR = Xd (3.12b)

By summing the two expressions

Xu +Xd = 2XqL −XuR −XdR =
2N

ng
, (3.13)

which allows for a nonzero value of the QCD anomaly coefficient. The same is not true if we only

have a single Higgs doublet H, yielding a Yukawa sector

−LY = q̄LYUHuR + q̄LYDH̃dR + h.c., (3.14)
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where H̃ = iσ2H∗. In fact, since XH = −XH̃ , PQ invariance would imply

0 = XH +XH̃ = 2XqL −XuR −XdR =
2N

ng
, (3.15)

so that the PQ symmetry could not be anomalous.

Let us now assume that below some energy scale the two Higgs doublets acquire a nontrivial

vacuum expectation value (VEV)

Hu ⊃ vu√
2
ei

au
vu

(︄
1

0

)︄
, Hd ⊃ vd√

2
e
i
ad
vd

(︄
0

1

)︄
, (3.16)

where we neglected the radial modes, since they do not play an important role in our discussion. The

contribution of these fields to the PQ current is given by

JPQ
µ ⊃ −XuH

†
u

↔
∂µHu −XdH

†
d

↔
∂µHd ⊃

∑︂
i=u,d

Xivi∂µai. (3.17)

We can now define the axion field as

a =
1

va
(Xuvuau +Xdvdad), v2a = X2

uv
2
u +X2

dv
2
d, (3.18)

so that, in agreement with the Goldstone theorem ⟨0|JPQ
µ |a⟩ = ivapµ. Moreover, we observe that

under a PQ transformation ai → ai + κXivi the axion field transforms as a→ a+ κva.

One can then define the electroweak Higgs boson as a linear combination of Hu and Hd. In

particular, the order parameter of electroweak symmetry breaking v can be written as

v2 = v2u + v2d. (3.19)

In order to avoid a kinetic mixing between the axion and the Z boson, which would not allow us to

integrate out the heavy Z boson when writing down the axion EFT, we require the PQ current to

be orthogonal to the hypercharge current JY
µ

⃓⃓
a
=
∑︁

i Yivi∂µai, which, if the two Higgs doublets carry

opposite hypercharge, implies

Xu

Xd
=
v2d
v2u
. (3.20)

Combining these results, we can introduce an angle β such that

sinβ =
vu
v
, cosβ =

vd
v

=⇒ tan2 β =
v2u
v2d

=
Xd

Xu
. (3.21)

One can then write down the order parameter for PQ symmetry breaking in terms of v as

v2a = v2 sin2(2β). (3.22)

We therefore observe that in the PQWW model va ∼ v. This possibility has been ruled out exper-

imentally [44–47], and therefore the PQWW model has been abandoned in favour of the so-called

invisible axion models, where the scale va is decoupled from v.
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3.4 DFSZ axion model

The Dine-Fishler-Srednicki-Zhitnitzky (DFSZ) model is a generalisation of the PQWW one, in which

the scalar sector is further extended by the introduction of a complex scalar singlet Φ ∼ (1, 1, 0)SM of

PQ charge XΦ. The structure of the scalar potential in the model is

V (Hu, Hd,Φ) = Ṽmoduli(|Hu|, |Hd|, |Φ|, |HuHd|) + λHuHd(Φ
†)2 + h.c., (3.23)

where the last term represents a source of explicit breaking of the global U(1)3 symmetry of the

moduli terms into the product of two U(1) subgroups to be identified with those associated to PQ

and hypercharge symmetry:

U(1)Φ × U(1)Hu × U(1)Hd
→ U(1)PQ × U(1)Y . (3.24)

The PQ charge assignment of fermions is again assumed generation-independent, and it is related

to that of the scalars through the Yukawa sector. There are two possible choices for the Yukawa terms

in the lepton sector, defining two different DFSZ models:

• The DFSZ-I model corresponds to the choice

LY
DFSZ-I = −q̄LYUHuuR − q̄LYDHddR − ℓ̄LYEHdeR + h.c. (3.25)

• The DFSZ-II model, instead, corresponds to the choice

LY
DFSZ-II = −q̄LYUHuuR − q̄LYDHddR − ℓ̄LYEH̃ueR + h.c. (3.26)

By choosing appropriately the scalar potential, one can impose that the three scalars all acquire a

nontrivial VEV

Hu ⊃ vu√
2
ei

au
vu

(︄
1

0

)︄
, Hd ⊃ vd√

2
e
i
ad
vd

(︄
0

1

)︄
, Φ ⊃ vΦ√

2
e
i
aΦ
vΦ , (3.27)

where we assume vΦ ≫ vu,d, which by the identification v2 = v2u + v2d implies vΦ ≫ v, and neglected

radial modes and modes charged under QED, which do not contain the axion.

As we did for the PQWW model, to identify the axion we consider the contribution of these scalars

to the U(1)PQ Noether current

JPQ
µ ⊃ −XΦΦ

†i
↔
∂µΦ−XHuH

†
ui

↔
∂µHu −XHd

H†
di

↔
∂µHd ⊃

∑︂
i=Φ,u,d

Xivi∂µai. (3.28)

We define the axion field as

a =
1

va

∑︂
i=Φ,u,d

Xiviai, v2a =
∑︂

i=Φ,u,d

X2
i v

2
i , (3.29)

so that JPQ
µ

⃓⃓
a
= va∂µa implying ⟨0|JPQ

µ

⃓⃓
a
|a⟩ = ivapµ. Under a PQ transformation ai → ai + κXivi

the axion thus defined transforms as expected a→ a+ κva.

We again require the orthogonality between JPQ
µ and the hypercharge current JY

µ

⃓⃓
a
=
∑︁

i Yivi∂µai

to avoid axion mixing with the physical Z boson, which yields
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∑︂
i=u,d

Xiv
2
i = −Xuv

2
u +Xdv

2
d = 0. (3.30)

From the PQ invariance of the term HuHd(Φ
†)2 in the scalar potential one finds

Xu +Xd − 2XΦ = 0 (3.31)

This latter result fixes the PQ charges of the scalars up to a normalisation. We choose to normalise

them by requiring XΦ = 1; with this choice eq. (3.31) becomes Xu +Xd = 2, allowing us to write

Xu = 2 cos2 β, Xd = 2 sin2 β =⇒ tan2 β =
Xu

Xd
. (3.32)

Combining this result with eq. (3.30) we find

tan2 β =
Xd

Xu
=
v2u
v2d
. (3.33)

We are now ready to understand the effect of the introduction of the scalar singlet Φ. From the

definition of va, we find

va = vΦ + v2 sin2(2β) ≈ vΦ, (3.34)

where we exploited the fact that vΦ ≫ v. The presence of Φ therefore drives the value of va far from

v, implementing the invisibility of the model.

We are now interested in finding the bare effective axion couplings. To do that we start by

expressing au,d in terms of a in the DFSZ Lagrangian, which after the selection of the axion-dependent

terms, gives for the DFSZ-I model

LDFSZ-I ⊃ −mU ūLuRe
iXu

a
va −mDd̄LdRe

iXd
a
va −mE ēLeRe

iXd
a
va + h.c. (3.35)

Then, if one performs the field redefinitions

u→ e−iγ5Xu
a

2va u, d→ e−iγ5Xd
a

2va d, e→ e−iγ5Xd
a

2va e, (3.36)

the anomaly generates the aGG̃ and aF F̃ terms, with the anomaly coefficients which, from the general

expressions of eq. (3.4), can be shown to take the values

N = ng

(︃
Xu

2
+
Xd

2

)︃
= 3, (3.37a)

E = ng

(︄
3

(︃
2

3

)︃2

Xu + 3

(︃
−1

3

)︃2

Xd + (−1)2Xd

)︄
= 8. (3.37b)

In particular, we observe that for this model fa = va/2N = va/6.

The couplings with fermions, instead, come from the noninvariance of the kinetic terms under the
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transformation in eq. (3.36)

δ(ūi/∂u) = Xu
∂µa

2va
ūγµγ5u =

(︃
1

3
cos2 β

)︃
∂µa

2fa
ūγµγ5u, (3.38a)

δ(d̄i/∂d) = Xd
∂µa

2va
d̄γµγ5d =

(︃
1

3
sin2 β

)︃
∂µa

2fa
d̄γµγ5d, (3.38b)

δ(ēi/∂e) = Xd
∂µa

2va
ēγµγ5e =

(︃
1

3
sin2 β

)︃
∂µa

2fa
ēγµγ5e, (3.38c)

yielding

c0ui
=

1

3
cos2 β, c0di =

1

3
sin2 β, c0ei =

1

3
sin2 β. (3.39)

where i = 1, 2, 3 denotes the fermion generation. Of course, the discussion can be extended without

any difficulty to the DFSZ-II model, where one can find that E = 2, c0ei = −1
3 cos

2 β.

By imposing a tree-level perturbative unitarity bound on Yukawa-mediated 2 → 2 fermion scat-

tering amplitudes at
√
s ≫ mHu,d

, i.e. by imposing |Re aJ=0| < 1/2, where aJ=0 is the J = 0 partial

wave, one can find the allowed range for tanβ. Ignoring renormalisation group effect, and taking into

account group theoretical factors [48, 49], we get [50] yDFSZ
t,b <

√︁
16π/3 from QLūR → QLūR, with

the initial state prepared into a SU(3)c singlet. The label DFSZ reminds us that these are not the

Yukawa couplings of the SM, which in turn can be obtained as

yt = yDFSZ
t sinβ, yb = yDFSZ

b cosβ. (3.40)

This bound can be converted on a bound on tanβ:

tanβ ∈ [0.25, 170]. (3.41)

This bound holds both for DFSZ-I and DFSZ-II models, since the τ Yukawa plays a subleading role

for perturbativity.

3.5 KSVZ axion model

The Kim-Shifman-Vainshtein-Zakharov (KSVZ) model is the other benchmark invisible axion model.

In this model, differently from the previously discussed ones, the PQ anomaly is generated by a Beyond

the SM (BSM) vector-like fermion Q = QL+QR with zero bare mass, transforming as Q ∼ (3, 1, 0)SM

under SU(3)C × SU(2)L × U(1)Y . The scalar sector of the SM is extended by the introduction of a

complex scalar singlet Φ ∼ (1, 1, 0)SM, which, as we are going to see, is needed to make the model

invisible.

The Lagrangian of the model reads

LKSVZ = |∂µΦ|2 + Q̄i /DQ−
(︁
Q̄LYQΦQR + h.c.

)︁
− V (Φ). (3.42)

It features a symmetry under PQ transformations of the form Φ → eiαΦ, Q → eiαγ5Q. The potential

is defined in such a way to give rise to the SSB of the U(1)PQ symmetry

V (Φ) = λΦ

(︃
|Φ|2 − v2a

2

)︃2

, (3.43)
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with order parameter va which we assume much larger than the electroweak one v. We write the

scalar field Φ as

Φ =
va + ρa√

2
ei

a
va . (3.44)

The Goldstone mode is identified with the axion field, while both the radial mode and the fermion Q
acquire a mass: mρa =

√
2λΦva, mQ = YQva/

√
2.

In the broken phase, the Lagrangian contains a term

LKSVZ ⊃ −mQQ̄LQRe
i a
va + h.c. (3.45)

Performing the field redefinition

Q → e−iγ5
a

2va Q, (3.46)

the heavy fermion gets decoupled from the axion, and can be integrated out. Moreover, the anomaly

of the transformation in eq. (3.46) generates the aGG̃ term in the axion effective Lagrangian

δLKSVZ =
g2s

32π2
a

fa
Ga

µνG̃
a,µν , (3.47)

where we used the fact that, since Q is in the fundamental of SU(3)C and XQ = 1, we have N = 1/2

and therefore fa = va.

The effective coupling of the axion to photons can be deduced from the same anomaly matching

procedure described in the previous section. In particular since E ∝ Tr q2Q = 0, being the fermion Q
uncharged under SU(2)L × U(1)Y , the axion-photon coupling vanishes. For what concerns the bare

couplings to SM fermions, these too all vanish in the KSVZ model, because the PQ Noether current

just depends of the BSM fermion Q.

We mention that the KSVZ model can be generalised by considering BSM fermions Q transforming

under a more general representation of the SM gauge group
∑︁

Q(CQ, IQ,YQ), as long as at least one

of the CQ is nontrivial, to allow for N ̸= 0, see eq. (3.4a). It is also possible to define a set of

phenomenological criteria to determine a preferred range of values for the ratio E/N in realistic

models, the so-called axion band, see [51, 52].



Chapter 4

Axion astrophysics

As we have seen from the previous chapters, the experimental observation of the QCD axion would

give us an important test of the PQ solution of the strong CP problem. Moreover, being the axion a

very light and feebly interacting particle, it would certainly contribute to the observed dark matter

(DM) relic density, thus solving, at least partially, two outstanding problems in present day high

energy physics.

We have also seen how the model-independent physics of the axion is essentially determined just

by one parameter, the axion decay constant fa, which fixes the axion mass and its coupling constants

to SM particles. It is then clear that, in order to design experiments aiming to the direct observation

of the QCD axion, it is necessary to set bounds on the value of fa, or, equivalently, on the values of

the axion couplings to SM particles.

Among the various bounds on the axion parameter space, the most stringent ones are those stem-

ming from astrophysical systems [38, 53–55]. The rationale behind these bounds is that, even though

a direct measurement of the axion flux produced by these systems cannot be carried out due to the

extremely feeble interactions of the axion with SM particles, the emission of axions would still have

an effect on the evolution of the system, in the form, e.g., of an increase in its cooling rate.

In this chapter we will review the main astrophysical bounds on the axion parameter space, with

a particular focus on the supernova (SN) bound on the axion-nucleon couplings, which, as we will see,

represents the main source of interest towards the role of finite density effects on the axion dynamics.

4.1 Stellar evolution

In this section, we aim to give a brief introduction to the topic of stellar evolution. This can be studied

by looking at the so-called Hertzsprung-Russel (HR) or colour-magnitude (CM) diagram, in which the

absolute magnitude of the star is represented as a function of the temperature of the star.

In the initial stage of their evolution, stars belong to the so-called Main Sequence (MS). MS stars

are burning hydrogen in their core. The existence of this phase is largely independent from the initial

mass, provided that this is above a minimal limit of roughly 0.1M⊙, where M⊙ ≃ 2 × 1030 kg is

the solar mass. On the other hand, the qualitative evolution during the following stages is heavily

determined by the initial mass of the star.

• If the mass is close to that of our Sun, when the hydrogen in the core starts to run out, the star

passes first through a sub-giant phase, in which hydrogen is burnt in a thick shell, to move to

the Red Giant Branch (RGB), where hydrogen fusion happens in a thin shell around an inert

23
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helium core. When the temperature becomes high enough to ignite helium burning in the stellar

core (He-flash), the star moves to the Horizontal Branch (HB), and finally ends its life cycle by

becoming a White Dwarf (WD), made up primarily of carbon and oxygen, since the temperature

needed to ignite fusion of heavier nuclei is never reached. Stars with a mass a few times that

of the Sun do not show a He-flash and ignite helium burning right after their MS stage, still

leaving a WD as a remnant.

• For stars with mass M ≳ 8M⊙, the gravitational attraction between the constituent particles

is strong enough to cause a core collapse, followed by a recoil shock triggering an explosive

event known as type-II supernova (SN). After the supernova, the stellar remnant can either be

a neutron star (NS) or a black hole (BH), depending on the initial mass of the star.

4.2 Main astrophysical axion bounds

4.2.1 White Dwarf bound

The White Dwarf Luminosity Function (WDLF) gives the number density of WDs in terms of their

brightness, expressed in terms of absolute bolometric magnitudes Mbol. If the WD birth rate is

assumed to be constant, the slope of this curve gives the cooling rate. In the early stages, while

the WD is still very hot, the main cooling channel is through neutrinos from the plasmon decay

γ → ν̄ν. However, while the star cools down, the neutrino emission is suppressed, as the efficiency

of the neutrino cooling depends steeply on the temperature. Eventually, the photon cooling becomes

predominant. If axions exist, they would also contribute to the cooling. Interestingly, the axion effect

would be predominant in the time between the neutrino and the photon cooling. In [56] an analytic

expression for the WDLF was obtained

dN

dMbol
= B3 2.2× 10−4 pc−3mag−1 10−4Mbol/35L⊙

78.7L⊙10−2Mbol/5 + Lν + La

(︃
M

M⊙

)︃5/7∑︂
j

Xj

Aj
, (4.1)

where Xj is the mass fraction of element j with atomic mass Aj , B3 is the birth rate normalised to

10−3 pc−3Gyr−1, Lν the neutrino luminosity, and La the axion luminosity.

e− e−

a

I

e−

Figure 4.1: Axion production by electron bremsstrahlung

Production of axions through electron bremsstrahlung e−I → Ie−a, see Fig 4.1 would change the

WDLF both in shape and in amplitude. We can therefore exploit this fact to set a bound on ce. The

current bound was found in [57] and reads

gaee < 2.8× 10−13 (99% C.L.), (4.2)
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where gaee = ceme/fa.

4.2.2 Red Giant bound

As we described in Sec. 4.1, after a star runs out of hydrogen in its core, it moves from the MS to

the RGB until it becomes hot enough to trigger helium fusion, reaching the HB. The tip of the RGB

(TRGB), i.e. the point of the HR diagram at which helium burning is ignited, heavily depends on

the density and the temperature of the star. So, if an additional cooling channel is introduced, like

axion production by electron bremsstrahlung, the star will grow brighter and more massive before the

He-flash.

The main cooling channel near the TRGB in standard RG models is given by neutrino emission

by plasmon decay γ → ν̄ν. A bound on gaee was found in [58] by studying the TRGB of stars in a

sample of 22 Globular Clusters and reads

gaee < 1.48× 10−13 (95% C.L.). (4.3)

4.2.3 Horizontal Branch bound

Stars in the HB have an inner core in which helium undergoes fusion, with production of carbon and

oxygen, and an outer shell in which hydrogen is still burning. The effect of additional energy loss due

to Primakoff emission of axions γ Ze → Ze a, see Fig. 4.2 would be that of decreasing the lifetime of

the HB star, due to an acceleration in helium consumption.

γ a

Ze

Figure 4.2: Axion production by Primakoff process

One can introduce a parameter R defined as the ratio between the number of stars in the HB and

the number of stars in the RGB that are brighter than those in the HB, which is equal to the ratio of

the respective lifetimes

R =
NHB

NRGB
=

tHB

tRGB
. (4.4)

The parameter R depends both on gaγ and gaee, since gaee conditions the evolution in the RGB,

while gaγ influences the lifetime in the HB. An analytic expression of R can be found in [59]. In a

model with no tree-level couplings to electrons, as in KSVZ models, one can then translate any bound

on R on a bound on gaγ . In the DFSZ model, in which axions couple to electrons at tree level, a

bound on R just yields a contraint on a combination of gaγ and gaee.

The current bound, stemming from the analysis of a sample of 39 Globular Clusters, was obtained

in [60, 61]:

gaγ < 0.65× 10−10GeV−1, (95% C.L.). (4.5)

For KSVZ axion this is equivalent to fa > 3.4× 107GeV.
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4.2.4 Neutron Star bound

The cooling rate of NSs can be used to constrain the axion-nucleon bound. In particular, according to

the current models, NSs cool down by neutrino emission in the first stages of their life, while photon

emission dominates later on. The introduction of an additional nucleon bremsstrahlung NN → NNa

cooling channel should change the cooling rate of the NS, allowing to set a bound on the relevant

axion-neutron coupling cn.

The most stringent bound comes from from the Magnificent Seven NSs together with PSR J0659,

and, in the case of the DFSZ model, reads [62]

ma <
(︁
33− 17 sin2 β − 1.8 sin4 β

)︁
meV, (4.6)

and varies between 33 and 14meV for 0 ≤ sin2 β ≤ 1.

4.3 Supernova bound

4.3.1 Core-collapse supernova

As anticipated in Section 4.1, when a particular fuel goes off in a star, the lack of the pressure which

was generated by the nuclear reactions breaks the hydrostatic equilibrium, so that the star undergoes

gravitational collapse. Usually, this collapse heats the stellar core enough to ignite the fusion of a new

element. However, successive burning stages require hotter and hotter temperatures to overcome the

larger and larger Coulomb barriers between heavier elements. For stars with mass M < 8M⊙, the

energy provided by the gravitational collapse never reaches the value needed to ignite carbon fusion,

and the star ends up becoming a carbon-oxygen WD sustained by electron degeneracy pressure.

However, if the mass of the original star was higher, M ≳ 8M⊙, the fusion of heavier elements can

be initiated, until a Fe core is generated. Nuclear fusion of iron is not energetically favoured, so that

this Fe core never ignites. Hence, the gravitational collapse of the iron core will eventually lead it to

reach the Chandrasekhar mass, at which electron degeneracy pressure is not enough to overcome the

gravitational pressure, and to become a proto-neutron star (PNS).

However, this collapse gets halted very rapidly. This is due, on the one hand, to the fact that

the equation of state of the PNS becomes stiffer at higher density, due to the repulsive nature of

short-range strong interactions between nuclei, and on the other hand to the pressure coming from

the neutrons becoming degenerate. This generates a recoil shock wave in the inner region of the PNS,

which is rapidly transferred to the outer core, losing energy through dissociation of iron nuclei in their

constituent nucleons. Hence, the shock wave loses intensity and is counterbalanced by the pressure

stemming from the accretion of the PNS by gravitational attraction of the mass surrounding it.

However, the high temperature and density yield the production of a large number of neutrinos,

which then scatter and thermalise with the nuclear medium. The neutrino heating, together with other

effects, allows to break the balance and trigger an explosion, see [63] for more details. This explosive

event is known as type-II supernova or core-collapse supernova. The neutrinos are then emitted from

a thin layer, known as the neutrinosphere, beyond which they do not undergo further scattering. This

blackbody-like neutrino signature will be fundamental in Section 4.3.2. In the meantime, the density

of the PNS core reaches the nuclear saturation density n0 = 0.16 fm−3, i.e. the baryon number density
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found in atomic nuclei. 1 The extremely high density of the PNS makes its inner core completely

opaque to all species of neutrinos, making it the only astrophysical system, except for the early

universe, in which neutrinos are trapped.

The mass of the PNS core then determines the fate of the stellar remnant. If this is small, then

we can model the matter within the PNS as a mixture of a nonrelativistic Fermi gas of nucleons and

a ultrarelativistic Fermi gas of electrons. Since the electrons which could be emitted by β-decay of

the nonrelativistic neutrons would have a small momentum, falling well within the Fermi sphere, this

decay is suppressed. Then, electron capture e−p→ nνe is favoured, increasing the neutron fraction in

the system. The gravitational collapse is then counterbalanced by the neutron degeneracy pressure,

giving rise to a stable system, a neutron star.

If the PNS has a gravitational mass larger than 2.1M⊙ − 2.4M⊙ then the degeneracy pressure is

insufficient to balance the gravitational pull, and the collapsing matter shrinks to a radius smaller

than the Schwarzschild radius, generating a black hole.

4.3.2 The SN1987A axion bound

On the 23rd of February of 1987 a flux of neutrinos associated to the SN1987A core-collapse supernova

event were observed in the IBM, Kamiokande-II and BUST experiments [12–17]. The dominant

detection channel was inverse β-decay ν̄ep → ne+. The observed flux is in good agreement with

theoretical models [54], and can be used to set a bound on the axion parameter space.

As we have seen from the description of the type-II supernova in the previous section, the main

energy loss channel for the SN is given by the emission of neutrinos. The existence of another light

and feebly intercating particle, like the axion, which can be ejected from the PNS core, would provide

an additional cooling channel for the SN, which would affect the observed flux of neutrinos.
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Figure 4.3: Main contributions to axion production by nucleon bremsstrahlung

One of the main production channels for the axion within the SN is given by nucleon bremsstrahlung

NN → NNa, see Fig 4.3, and the energy loss due to axion emission is therefore determined by the

value of the axion-nucleon couplings cp,n. An upper bound on the energy loss per unit mass due to

1The number density of an atomic nucleus is given by

n =
A

4π
3
R3

,

where A is the mass number and R is the nuclear radius. This, for typical nuclei, satisfies R ≈ r0A
1/3, where r0 ≃ 1.25 fm.

It follows that, for typical nuclei

n =
3

4πr30
≡ ntheory

0 ≃ 0.122 fm−3.

The observed value of n0 is nexp.
0 ≃ 0.16 fm−3.
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axion production was obtained in [64] assuming a free-streaming regime for axion propagation within

the SN. This reads

εa ≲ 1× 1019 erg g−1 s−1. (4.7)

The current SN bound stemming from nucleon bremsstrahlung was obtained by ab initio methods

in [18] where the nucleon-nucleon interactions were described by taking into account both a one pion

exchange (OPE) contribution and a two pion exchange one, modelled as a ρ exchange, see Fig. 4.3. It

can be written as

ma <
7.0meV√︂

c2p + 1.64c2n + 0.87cpcn
. (4.8)

For KSVZ axions, this is equivalent to

fa > 4× 108GeV. (4.9)

In the last years another axion production process has been taken into account for the supernova bound

[19, 65] (see also [66–68]); this is pion-nucleon scattering π−p → na, see Fig. 4.4. Even though the

number density of one species of thermal pions in the SN is expected to be nπ = 3×10−15 fm−3 ≪ n0,

the pions contribute to the thermodynamic equilibrium between nucleons and the chemical potential

of charged pions is µπ = µn − µp, favouring negative pions over positive ones. This generates an

enhancement in the abundance of pions approximately given by eβµπ , yielding a sizeable rate for

π−p→ na.

π−

p n

a

Figure 4.4: Pion-nucleon scattering axion production channel

The bound on the axion-nucleon couplings due to pion-nucleon scattering can be expressed as

follows [69]

ḡaNN < 0.6× 10−9, (4.10)

where

ḡaNN =
1

2

(︁
g2app + g2ann

)︁(︁
1 + g−4

A

)︁
+

1

3
gappgann

(︁
1− 3g−4

A

)︁
, gaNN =

cNmN

fa
. (4.11)

We finally mention that the electric dipole portal term in the axion effective Lagrangian

La ⊃ − i

2
caNγ µN

a

fa
N̄γ5σ

µνNFµν , (4.12)

where µN = e/2mp is the nuclear magneton, introduces an emission channel γN → Na for the axion,

see [70], which becomes dominant in the SN only if the couplings between axions and nucleons are
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somehow suppressed. Axion models in which this is the case will be described in Chapter 6.

4.3.3 Relevance of finite density effects for the SN axion bound

As we have already discussed, the SN is an extremely dense object, whose baryonic number density is

of the order of the nuclear saturation density n0. The production of axions inside a SN will therefore

be influenced in a non-negligible way by the dense nuclear medium. It is therefore clear that, in order

to obtain a reliable bound from the cooling argument, it is necessary to determine how finite density

corrections affect axion-nucleon interactions.

To find the bounds presented in the previous section, the presence of nonvanishing chemical po-

tentials for proton and neutron numbers, µp and µn, was considered to find the expression of axion

emissivity, i.e. the energy emitted through the axion cooling channel per unit time and volume. In

particular, it was necessary to properly take into account Pauli blocking, through factors depending

on the Fermi-Dirac distribution function [18, 19, 71]

fN =
1

exp[β(E(p)− µN )] + 1
, (4.13)

where, working in the nonrelativistic limit for nucleons

E(p) =
√︂
p2 +m∗2

N ≈ mN +
p⃗ 2

2mN
+ U, (4.14)

where

m∗
N = mN +ΣS , U = ΣS +ΣV , (4.15)

ΣS and ΣV being respectively the scalar and vector contribution to the nucleon self-energy.

However, this calculation did not take into account the modifications to the axion-nucleon couplings

which are introduced when the interactions happen inside a highly dense medium, and which can

sizeably modify the SN bound. Taking into account such corrections will be the main focus of the

rest of this work, following the steps outlined in Ref. [20]. In particular, in the next chapter we will

develop the formalism needed to describe the in-medium corrections to the axion-nucleon couplings,

and in Chapter 6 we will apply this formalism to study the behaviour at finite density of a particularly

interesting class of axion models.



Chapter 5

Finite density effects in axion physics

In this chapter we want to analyse how the behaviour of the axion is modified in systems at finite

baryonic density n, following Ref. [20]. Our main focus will be on densities in the proximity of the

nuclear saturation density n0 = 0.16 fm−3, i.e. the baryonic density of standard nuclear matter, which

is the expected density in astrophysical systems of interest in axion physics like supernovae (SNe). At

this density, quarks are still confined in hadrons, so that a description of strong interactions in terms

of hadronic degrees of freedom is still possible.

5.1 Quark condensates at finite density

A finite baryonic density affects axion physics in two main ways: it modifies the axion potential and it

changes the axion-nucleon couplings. To understand how these effects appear, we start from the fact

that, as explained in detail in Appendix C, the SU(3)L × SU(3)R-breaking quark condensate ⟨q̄RqL⟩
can be parametrised as as ⟨︂

q̄iRq
j
L

⟩︂
≡ ⟨q̄q⟩0 (Σ0)

ij

Σ0 = cosϑ13 + i sinϑn⃗ · λ⃗, |n⃗| = 1,
(5.1)

where ⟨q̄q⟩0 is a constant number, ϑ ∈ [−π/2, π/2), λ⃗ = (λ1, . . . , λ8) are the Gell-Mann matrices,

i, j = u, d, s are flavour indices, and Σ0 transforms as Σ0 → LΣ0R
†. The matrix Σ0 characterises the

orientation of the ensemble average, which for the usual QCD vacuum is trivial, Σ0 = 13.

The change in the axion potential is then due to two effects: on the one hand, as we are going to

see, the presence of baryons gives corrections to ⟨q̄q⟩0, whose value acquires a dependence on density;

on the other hand, at high enough density, kaon condensation can occur, see Appendix C. The effect

of kaon condensation is that of giving a nontrivial orientation to the QCD vacuum, Σ0 ̸= 13, so that

the axion potential acquires a dependence on the orientation of the ground state. Since these effects

are expected to appear at densities higher than those we are interested in, as explained in [20], we will

neglect the effect of kaon condensation and set Σ0 = 13.

The explicit density dependence of the chiral condensates can be obtained, following [20], by

exploiting the Hellmann-Feynman theorem [72]

ζq̄q(n) ≡
⟨q̄q⟩n
⟨q̄q⟩0

= 1 +
1

⟨q̄q⟩0
∂∆E(n)

∂mq
, q = u, d, s. (5.2)

In this formula, ∆E(n) represents the shift in the QCD ground state energy due to the presence of

30
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the nucleonic background. This receives two contributions: a first one from the free baryonic Fermi

gas Efree and a second from nuclear interactions Eint.

We take the so-called linear approximation for the chiral condensates, which is obtained by neglect-

ing both interactions and relativistic corrections. Next, we discuss the validity of this approximation.

In this limit, in fact, ∆E =
∑︁

x=n,pmxnx, so that

ζq̄q(n) = 1 +
1

⟨q̄q⟩0

∑︂
x

nx
∂mx

∂mq
, q = u, d, s. (5.3)

We observe that the change in the quark condensates is entirely determined by the derivatives

∂mx/∂mq . Even though there are six of these derivatives, being x = n, p and q = u, d, s, only

three of them turn out to be independent. These can be described in the isospin basis for the quark

masses

m̄ ≡ 1

2
(mu +md), ∆m ≡ 1

2
(mu −md), (5.4)

by introducing the sigma terms

σπN ≡ m̄

(︃
∂mp

∂m̄

)︃
= m̄

(︃
∂mn

∂m̄

)︃
, (5.5a)

σ̃πN ≡ ∆m

(︃
∂mn

∂∆m

)︃
= −∆m

(︃
∂mp

∂∆m

)︃
, (5.5b)

σs ≡ ms

(︃
∂mp

∂ms

)︃
= ms

(︃
∂mn

∂ms

)︃
, (5.5c)

such that

mn = mN + σπN + σ̃πN + σs, (5.6a)

mp = mN + σπN − σ̃πN + σs, (5.6b)

where mN is the nucleon mass in the chiral limit mq → 0, q = u, d, s.

By using the relation ⟨q̄q⟩0 (mu +md) = −m2
πf

2
π , we can then rewrite the ζq̄q(n) as

ζūu(n) = 1− b1
n

n0
+ b2

[︂
2
np
n

− 1
]︂ n
n0
, (5.7a)

ζd̄d(n) = 1− b1
n

n0
− b2

[︂
2
np
n

− 1
]︂ n
n0
, (5.7b)

ζs̄s(n) = 1− b3
n

n0
, (5.7c)

where n = np + nn and we defined the b-terms

b1 ≡
σπNn0
m2

πf
2
π

= 3.5× 10−1
(︂ σπN
45MeV

)︂
, (5.8a)

b2 ≡
σ̃πNn0
m2

πf
2
π

m̄

∆m
= −2.2× 10−2

(︃
σ̃πN

1MeV

)︃
, (5.8b)

b3 ≡
σ̃sn0
m2

πf
2
π

2m̄

ms
= 1.7× 10−2

(︂ σs
30MeV

)︂
. (5.8c)

We observe that the ⟨s̄s⟩n condensate is only weakly affected by the nucleonic background. Moreover,
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⟨ūu⟩n ≈
⟨︁
d̄d
⟩︁
n
up to a small isospin correction [73].

We now want to discuss the validity of the linear approximation we have used, in order to give an

estimate of the densities up to which our results can be trusted, as done in [20]. First of all, we should

include relativistic corrections. In the fully relativistic limit, the free part of the energy of a fermion

x is given by

Efree
x = 2

∫︂ kxF d3k⃗

(2π)3

√︁
k2 +m2

x = mxnxF (k
x
F /mx), (5.9a)

F (q) =
3q
√︁
q2 + 1

(︁
2q2 + 1

)︁
− 3 sinh−1(q)

8q3
= 1 +

3q2

10
+O(q4), (5.9b)

where kxF is the Fermi momentum, kxF =
√︁
m2

x − µ2x, which fixes the number density

nx = 2

∫︂ kxF d3k⃗

(2π)3
=

(kxF )
3

3π2
. (5.10)

We note that relativistic corrections become important at large densities, where also the corrections

from nuclear interactions become important. These are mainly due to one pion exchange, but they also

come from four-nucleon contact interactions. They clearly become sizeable when nx/Λχf
2
π becomes

of order one, where Λχ ≃ 700MeV is the energy scale at which ChPT breaks down. This density

corresponds to that at which ChPT is beyond control, kxF ∼ Λχ. In addition, since Λχ ≈ mp ≈ mn,

relativistic corrections are approximately controlled by the same expansion parameter

k2F
Λ2
χ

≈ (3π2n/2)2/3

Λ2
χ

≈ (15%)

(︃
n

n0

)︃2/3(︃700MeV

Λχ

)︃2

, (5.11)

where we took kF = kpF ∼ knF . It follows that the best way to assess the validity of our approximation

is to compute the relevant NLO corrections. This has been done in [74–78]. These authors found O(1)

deviations from the linear approximation for densities slightly above n0.

5.2 Axion-nucleon couplings at finite density

In Sec. 2.2.3 we introduced the axion-nucleon interactions by matching the axion-dressed HBChPT

Lagrangian

LaN = N̄

(︃
v · ∂ + 2gAc−

∂µa

2fa
Sµτ3 + 2gud0 c+

∂µa

2fa
Sµ

)︃
N (5.12)

to the effective axion-quark Lagrangian. The result of this matching were the expressions of the

axion-nucleon couplings

(cp)0 = (gA)0(c−)0 + (gud0 )0(c+)0, (5.13a)

(cn)0 = −(gA)0(c−)0 + (gud0 )0(c+)0, (5.13b)

where we introduced the index “0” to underline that these expressions hold at zero density, and where

(gA)0 = (∆u)0 − (∆d)0, (gud0 )0 = (∆u)0 + (∆d)0, sµ∆q = ⟨p|q̄γµγ5q|p⟩ , (5.14)

with values (gA)0 = 1.2723(23) and (gud0 )0 = 0.521(53).
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In a three flavour formalism, the same approach gives us expressions taking into account also a

correction stemming from the contribution of the strange quark

(cp)0 = (gA)0(c−)0 + (gud0 )0(c+)0 + (∆s)0(cs)0, (5.15a)

(cn)0 = −(gA)0(c−)0 + (gud0 )0(c+)0 + (∆s)0(cs)0, (5.15b)

where (∆s)0 = −0.026. In these expressions the cq are the axion-quark couplings, which, as we found

in Sec. 2.2 have the form cq = c0q − [Qa]q where c0q is the model-dependent axion-quark coupling of

eq. (3.10b) and Qa is the transformation matrix introduced in eq. (2.39). The specific form of Qa is

chosen so as to remove axion-pion mass mixing (see Sec. 2.2.1), and reads

(Q∗
a)0 =

diag (1, z, zw)

1 + z + zw
, (5.16)

where z = mu/md = 0.47+0.06
−0.07 and w = md/ms = (17− 22)−1.

Since we are working in an effective theory at energies way lower than the PQ-breaking scale fa

at which these axion-quark couplings are defined, we need to take into account renormalisation group

(RG) effects. Following [79], we employ the approximate formula, keeping only the leading top quark

contribution,

cIRq ≈ cq + rtq(mBSM)ct, (5.17)

where cIRq is the axion-quark coupling at the IR scale, which we take to be 2GeV, ct is the axion

coupling to the top quark at the scale fa, and mBSM is the heavy mass scale associated to the Higgs

doublets of our axion model. Assuming mBSM ≃ fa and fa ∼ 1012GeV, the function rtq(mBSM) takes

the values

rtu(fa) = −0.291859, rtd(fa) = 0.294052. (5.18)

where u and d stand for up-type and down-type quarks.

Taking into account these RG effects, the axion-nucleon couplings take the form

(cIRp )0 = (gA)0(c
IR
− )0 + (gud0 )0(c

IR
+ )0 + (∆s)0(c

IR
s )0, (5.19a)

(cIRn )0 = −(gA)0(c
IR
− )0 + (gud0 )0(c

IR
+ )0 + (∆s)0(c

IR
s )0. (5.19b)

Now we are interested in analysing how these couplings change in presence of nonzero baryon

number and electromagnetic charge densities. The effects of finite density are twofold, in fact we now

want to show that both the axion-quark couplings and the hadronic matrix elements acquire a density

dependence.

5.2.1 In-medium mixing angles

The change in the chiral condensates at finite density has an important consequence: it modifies the

scalar potential correcting the quark masses as mq → (⟨q̄q⟩n / ⟨q̄q⟩0)mq. This implies that, at finite

density, the form of the matrix Qa which diagonalises the axion-pion mixing matrix changes, becoming

(Q∗
a)n =

diag (1, zZ, zZwW )

1 + zZ + zZwW
. (5.20)

Here,
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Z =
⟨ūu⟩n⟨︁
d̄d
⟩︁
n

= 1− 2b2
n− 2np
n0

, (5.21a)

W =

⟨︁
d̄d
⟩︁
n

⟨s̄s⟩n
= 1−

[︃
b1 − b2

(︃
1− 2np

n

)︃
− b3

]︃
n

n0
, (5.21b)

where we made use of eq. (5.7).

This, of course, yields a change in the in-medium values of the axion-quark couplings, which now

read

(cIRq )n ≈ (cq)n + rtq(mBSM)ct =
(︂
c0q − [(Q∗

a)n]q

)︂
+ rtq(mBSM)ct, (5.22)

where we neglected the density dependence of ct.

5.2.2 In-medium matrix elements

We are now interested in describing the in-medium corrections to the hadronic matrix elements of

eq. (5.14). Let us start by observing that ∆s is already subleading at zero density with respect to

gA and gud0 , and since finite density corrections are expected to be even smaller we can safely neglect

them and work with the zero density value (∆s)0. We therefore need to find a suitable formalism to

obtain the in-medium corrections to gA and gud0 . As shown in sec. 2.2.3, they can be identified with

the low energy constants (LECs) appearing in the Baryon ChPT Lagrangian describing the coupling

of the nucleonic isotriplet and isoscalar axial currents to external fields, which in our case, as shown

in eq. (5.12), describe the axion.

We first of all outline the programme to obtain the in medium corrections to gA: we start by

considering the matrix elements of the spatial components1 J i,a
5 of the isotriplet axial current in

Baryon ChPT in the presence of the corresponding external field and in the nonrelativistic limit,

taken between the initial and final one-nucleon states |α⟩ and |β⟩; this provides us the very definition

of gA in vacuum. Following [80], we then include the effects of the nuclear medium by exploiting an

independent particle approximation, i.e. by using as initial and final states the simple products of |α⟩
and |β⟩ with a Fock state |F ⟩ describing the Fermi sea

|F ⟩ =
∏︂
h∈F

a†h |0⟩ , (5.23)

where |0⟩ is the vacuum state, and h denotes a one-nucleon state in the Fermi sea. We then end up

with matrix elements between two-nucleon states, which need to be antisymmetrised to impose the

Fermi statistics:

1We consider only the spatial components since, in the nonrelativistic limit, the time component turns out to be
higher order in m−1

N . In fact, from the expansion in the Dirac basis

ur(p) =
/p+mN√︁

2mN (Ep⃗ +mN )

(︃
φr

0

)︃
=

1√︁
2mN (Ep⃗ +mN )

(︃
(Ep⃗ +mN )φr

p⃗ · σ⃗φr

)︃
where r = 1, 2, φ1 = (1, 0)T , φ2 = (0, 1)T one finds

ūr′(p
′)γ0γ5ur(p) =

1

2mN
φT

r′

(︂
p⃗

′
· σ⃗ + p⃗ · σ⃗

)︂
φr =

P⃗ · σ⃗
mN

where P⃗ = (p⃗+ p⃗
′
)/2.
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⟨β;F |J i,a
5 |α;F ⟩ =

∑︂
h∈F

[︂
⟨β, h|J i,a

5 |α, h⟩ − ⟨β, h|J i,a
5 |h, α⟩

]︂
. (5.24)

Here the first term is known as the Hartree term, while the second one is called the Fock term. Working

in the limit in which the momentum carried by the external field goes to zero, the momenta of the

one-nucleon states |α⟩ , |β⟩ must lie on the surface of the Fermi sphere, so that

p⃗α = p⃗β ≡ p⃗, |p⃗| = kF , (5.25)

where kF if the Fermi momentum. Then, by averaging over the direction of p⃗ we obtain the desired

correction ∫︂
dΩp̂

4π
⟨β;F |J i,a

5 |α;F ⟩ = δgAτ
±
βασ

i
βα, δgA = δHgA + δF gA, (5.26)

where τa, with a = 1, 2, 3, are the isospin Pauli matrices, τ± = (τ1 ± iτ2)/2, σi, with i = 1, 2, 3, are

the spin Pauli matrices, τ±βα = ⟨β|τ±|α⟩, σiβα = ⟨β|σi|α⟩, and we split the correction δgA into its

Hartree and Fock contributions. This method was exploited in [81] to explain the observed quenching

of β-decay rates.

To carry on this calculation explicitly, we first of all need to write down the relevant terms of the

Baryon ChPT Lagrangian 2, see Appendix A

LπN = L0 + L1 (5.27a)

L0 ⊃ B̄[iv ·D + 2i(gA)0S ·∆]B (5.27b)

L1 =B̄

[︃
vµvν − ηµν

2mN
DµDν + 4c3i∆ · i∆+

(︃
2c4 +

1

2mN

)︃
[Sµ, Sν ][i∆µ, i∆ν ]

]︃
B

− 4id1B̄S ·∆BB̄B + 2id2ε
abcεµνλκv

µ∆ν,aB̄Sλτ bBB̄Sκτ cB + · · · .
(5.27c)

Here, vµ is the four-velocity of the nucleon field B, Sµ is the spin operator, and we work in the rest

frame of the nucleon, where vµ = (1, 0⃗) and Sµ = (0, σ⃗/2). Moreover,

ξ = exp

(︃
i
τ · π
2fπ

)︃
, (5.28a)

DµB = (∂µ + Γµ)B, (5.28b)

Γµ =
1

2

[︂
ξ†, ∂µξ

]︂
− i

2
ξ†
τa

2
aaµξ +

i

2
ξ
τa

2
aaµξ

†, (5.28c)

∆µ =
1

2

{︂
ξ†, ∂µξ

}︂
− i

2
ξ†
τa

2
aaµξ −

i

2
ξ
τa

2
aaµξ

†, ∆µ =
τa

2
∆a

µ, (5.28d)

where aaµ is the isotriplet axial vector external field. The index n in Ln denotes the order in the

following power counting scheme. A Feynman diagram for an A-nucleon process scales as Qν , where

Q is a small momentum, and

ν = 4−A− 2C + 2L+
∑︂
i

Vi∆i, ∆i = di +
ni
2

− 2, (5.29)

where C is the number of separately connected subdiagrams, L is the number of loops, Vi is the

2From now on we will denote three-vectors in Minkowski space by an arrow, v⃗, while we will denote vectors in isospin
space by a bold letter, v.
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number of vertices of type i, di is the number of derivatives or powers of mπ in the vertex of type i,

and ni is the number of nucleon lines attached to a vertex of type i. The Lagrangian Ln has only

vertices with ∆i = n.

As a last observation we note that, in the nonrelativistic limit, the d1 term and the d2 term in

eq. (5.27c) turn out to be equivalent, as shown in [82], so that we can substitute these terms with a

single one

L1 ⊃ −i cD
f2πΛχ

B̄S ·∆BB̄B, (5.30)

where cD = 4f2πΛχ(d1 + 2d2).

The leading order contributions to the axial current coupling to aaµ come from the ∆i = −1 and

∆i = 0 two-body currents. The spatial components of the former are actually vanishing in the rest

frame of the nucleon, since they turn out to be proportional to vµ = (1, 0⃗). So, the first nontrivial

in-medium corrections to gA come from the ∆i = 0 two-body currents, which receive contributions

from one pion exchange (OPE) and four-nucleon contact graphs, see fig. 5.1.

(a) (b)

Figure 5.1: Leading order contributions to the in-medium corrections to gA: OPE graphs and four-nucleon contact
graphs in presence of the external field aa

µ. Figure inspired by fig. 1 of [80]

By expanding ξ up to second order in f−1
π

ξ = exp

(︃
i
τ · π
2fπ

)︃
≈ 1+ i

τ · π
2fπ

− (τ · π)2

8f2π
,

ξ† = exp

(︃
−iτ · π

2fπ

)︃
≈ 1− i

τ · π
2fπ

− (τ · π)2

8f2π

(5.31)

we can then obtain an expansion of Γµ and ∆µ:

Γµ ≈ i

2fπ
(π × τ ) · aµ +

i

4f2π
(π × ∂µπ) · τ , (5.32a)

∆µ ≈ − i

2
(τ · aµ) + i

τ · ∂µπ
2fπ

− 1

4f2π
π · ∂µπ. (5.32b)

By substituting these expansion in the Lagrangian of eq. (5.27) we obtain the relevant interaction

terms for our calculation. In particular, the four-nucleon contact term is given by

L1 ⊃ − cD
4f2πΛχ

B̄σiτaaaiBB̄B (5.33)

The relevant diagrams are
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1

2

1

2

+

1

2

1

2

, (5.34)

corresponding to the amplitude

iM = −i cD
4f2πΛχ

[︁
ū1σ

i
1τ

a
1 a

a
i u1ū2u2 + ū2σ

i
2τ

a
2 a

a
i u2ū1u1

]︁
. (5.35)

In the nonrelativistic limit ūu→ 1, so that

iM = −i cD
4f2πΛχ

(︁
σi1τ

a
1 + σi2τ

a
2

)︁
aai . (5.36)

The OPE contributions instead come from the terms

LπN ⊃ 2i(gA)0B̄S ·∆B + B̄

[︃
vµvν − ηµν

2mN
DµDν + 4c3i∆ · i∆

+

(︃
2c4 +

1

2mN

)︃
[Sµ, Sν ][i∆µ, i∆ν ]

]︃
B

(5.37)

Upon substitution of the expansion of ∆µ, the first term gives us the πNN vertex without external

field instertions:

LπN ⊃ −(gA)0
2fπ

B̄σiτa∂iπ
aB (5.38)

The πNN vertex with one external field insertion can instead be obtained from the other terms:

LπN ⊃ i

4mNfπ

[︁
B̄(π × τ )aaai ∂

iB − ∂iB̄(π × τ )aaaiB
]︁

− 2c3
fπ
B̄aaµ∂

µπaB +
1

fπ

(︃
c4 +

1

4mN

)︃
B̄εijkεabcaai ∂jπ

bτ cσkB

(5.39)

The relevant diagrams are

q

p1 p′1

p2 p′2

+ q

p1 p′1

p2 p′2

, (5.40)

with corresponding amplitude in the nonrelativistic limit
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iM =

{︃
− i

2

2

(gA)0
2mNf2π

1

q⃗ 2 +m2
π

(τ1 × τ2)
a(︁P i

1σ⃗2 · q⃗ + P i
2σ⃗1 · q⃗

)︁
− i

(gA)0
f2π

c3
1

q⃗ 2 +m2
π

(︁
qiσ⃗2 · q⃗τa2 + qiσ⃗1 · q⃗τa1

)︁
− i

(gA)0
2f2π

(︃
c4 +

1

4mN

)︃
1

q⃗ 2 +m2
π

(τ1 × τ2)
a
[︂
(σ⃗1 × q⃗)iσ⃗2 · q⃗ + (σ⃗2 × q⃗)iσ⃗1 · q⃗

]︂}︃
aai ,

(5.41)

where
q⃗ = p⃗

′
2 − p⃗2 = p⃗1 − p⃗

′
1,

P⃗1,2 =
p⃗1,2 + p⃗

′
1,2

2
.

(5.42)

By combining these results, we finally obtain the expression of the axial current

J⃗±
5 (q⃗) = − (gA)0

mNf2π

1

q⃗2 +m2
π

{︃
i

2
(τ1 × τ2)

±
(︂
P⃗1σ⃗2 · q⃗ + P⃗2σ⃗1 · q⃗

)︂
+ 2c̄3q⃗

(︁
τ±1 σ⃗1 · q⃗ + τ±2 σ⃗2 · q⃗

)︁
+

(︃
c̄4 +

1

4

)︃
(τ1 × τ2)

±[(σ⃗1 × q⃗)(σ⃗2 · q⃗)− (σ⃗2 × q⃗)(σ⃗1 · q⃗)]
}︃

− 2(gA)0
mNf2π

c̄D
(︁
τ±1 σ⃗1 + τ±2 σ⃗2

)︁
,

(5.43)

where we defined

c̄3,4 = mNc3,4, c̄D =
mN

4(gA)0Λχ
cD. (5.44)

We now consider the limit P⃗1 = P⃗2 = 0⃗. In this limit, the Hartree contribution to the matrix

element vanishes, since the condition 2P⃗1 = p⃗α+p⃗β = 0⃗ is incompatible with eq. (5.25). So, we just need

to consider the Fock contribution. Given a state h in the Fermi sea with momentum k⃗, observing that,

due to rotational invariance each spatial component of the current must give the same contribution

to δF gA, and using the identities
∑︁

i q
i(σ⃗ · q⃗) = −

∑︁
i σ

iq⃗ 2 and (σ⃗1 × q⃗)iσ⃗2 · q⃗ − (σ⃗2 × q⃗)iσ⃗1 · q⃗ =

−4iqi(σ⃗ · q⃗) + 4iq⃗ 2σi, one finds that

⟨β, h|J i,±
5 |h, α⟩ = −4(gA)0

mNf2π
τ±βασ

i
βα

[︃
−1

3

(︃
c̄3 − 2c̄4 −

1

2

)︃
q⃗ 2

q⃗ 2 +m2
π

+ c̄D

]︃
, (5.45)

so that, by summing over all the h ∈ F , or, equivalently, by integrating over the Fermi sea, one finds

δgA
(gA)0

=
4

mNf2π

∫︂
dΩp̂

4π

∫︂ kF d3k⃗

(2π)3

[︃
−1

3

(︃
c̄3 − 2c̄4 −

1

2

)︃
q⃗ 2

q⃗ 2 +m2
π

+ c̄D

]︃
= − 4

mNf2π

∫︂ kF d3q⃗

(2π)3

[︃
−1

3

(︃
c̄3 − 2c̄4 −

1

2

)︃
q⃗ 2

q⃗ 2 +m2
π

+ c̄D

]︃
,

(5.46)

where we used the fact that q⃗ = k⃗ − p⃗. Now, the integral can be solved as
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∫︂ kF d3q⃗

(2π)3
q⃗ 2

q⃗ 2 +m2
π

=

∫︂ kF d3q⃗

(2π)3
−
∫︂ kF d3q⃗

(2π)3
m2

π

q⃗ 2 +m2
π

=
k3F
6π2

− m3
π

2π2

∫︂ kF
mπ

0
dw

w2

1 + w2

=
k3F
6π2

− m2
πkF
2π2

+
m3

π

2π2
arctan

(︃
kF
mπ

)︃
,

(5.47)

where w = q/mπ. Hence,

δgA
(gA)0

=
n

mNf2π

[︃
c̄D − I(mπ/kF )

3

(︃
2c̄4 − c̄3 +

1

2

)︃]︃
, (5.48)

where n is the density of the Fermi gas n = 2k3F /3π
2, and

I(x) = 1− 3x2 + 3x3 arctan

(︃
1

x

)︃
. (5.49)

Finally, one can write down the expression of gA as a function of n

(gA)n
(gA)0

= 1 +
n

f2πΛχ

[︃
cD

4(gA)0
− I(mπ/kF )

3

(︃
2ĉ4 − ĉ3 +

Λχ

2mN

)︃]︃
, (5.50)

where we defined ĉ3,4 = c3,4Λχ.

The values of the LECs can be obtained by a fit of the amplitudes for πN scattering obtained

through HBChPT on experimental data: the values reported in [81] are

cD = −0.85± 2.15, (2ĉ4 − ĉ3) = 9.1± 1.4. (5.51)

Using these values, in [20] it was found that

(gA)n
(gA)0

≈ 1− (30± 20)%
n

n0
. (5.52)

A similar calculation could be performed to obtain, from the operators

LπN ⊃ −4c̃3
Λχ

B̄∆µ∆̃µB − 4c̃4
Λχ

B̄[Sµ, Sν ]∆µ∆̃νB − i
c̃D
f2πΛχ

B̄S · ∆̃BB̄B, (5.53)

the expression of gud0 as a function of density. However, the LECs appearing in the Lagrangian are

currently not known, so that we can at most parametrise our ignorance, as in [20], by introducing an

unknown parameter κ such that

(gud0 )n

(gud0 )0
≈ 1 + κ

n

n0
. (5.54)

Using the behaviour of gA as a reference, we will set κ = ±0.3 as the benchmark values of κ.

Finally, one can write down the density-dependent axion-nucleon couplings as

(cp)n ≃ (gA)n(c
IR
− )n + (gud0 )n(c

IR
+ )n + (∆s)0(c

IR
s )n, (5.55a)

(cn)n ≃ −(gA)n(c
IR
− )n + (gud0 )n(c

IR
+ )n + (∆s)0(c

IR
s )n, (5.55b)



Chapter 6

Finite density effects in nucleophobic

axion models

The aim of this chapter is to study finite density effects for the so-called nucleophobic axion models,

introduced for the first time in [21]. These are UV completions of the axion EFT characterised

by a suppression of the axion-nucleon couplings gaN , a condition known as nucleophobia. We will

show that nucleophobia can only be implemented in nonuniversal axion models, i.e. models with

fermion generation-dependent PQ charge assignment. Nucleophobic axion model turn out to be very

interesting due to their phenomenological consequences. In particular, the nucleophobia condition

allows to relax the SN and NS bounds on the axion parameter space, see Chapter 4

An interesting subclass of nucleophobic models is given by the astrophobic axion models, in which

also the axion-electron coupling is suppressed (electrophobia), allowing to relax also the WD and RG

bounds and thus yielding an axion in the heavy mass window ma ∼ O(0.1 eV), about one order of

magnitude heavier than in standard axion models.

It was shown in [21] that the nucleophobia conditions can be realised in a consisten way in vacuum;

however, since the main feature of such models is to relax the astrophysical bounds stemming from

SNe and NSs, it is of the utmost importance to test whether these conditions survive finite density

effects.

The first section of the chapter will be devoted to a formal introduction to these models, whilst

in the second section we will consider the effects of finite density corrections on the nucleophobia

condition.

6.1 Nucleophobic axion models

6.1.1 Nucleophobia and nonuniversality

Our starting point is the effective axion Lagrangian for the two-flavours case

L ⊃ αS

8π

a

fa
Ga

µνG̃
a,µν +

α

8π

E

N

a

fa
FµνF̃

µν

+
∂µa

2fa

∑︂
Q=U,D

[︃
Q̄L

XQL

N
γµQL + Q̄R

XQR

N
γµQR

]︃
,

(6.1)

where N and E are respectively the QCD and QED anomaly coefficients, and fa is the axion decay

constant fa = va/2N , where va =
√
2 ⟨Φ⟩ and Φ is U(1)PQ-breaking singlet field, see Chapter 3.

40
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QL,R = UL,R, DL,R are vectors containing respectively the left-handed and right-handed quarks of

the three generations and XQL,R
are the corresponding PQ charges. In the KSVZ model these are

vanishing, while in the DFSZ model they are nonzero but universal, i.e. independent of the quark

generation.

We now want to show that nucleophobia cannot be realised in universal models. We start, as usual

by removing the axion-gluon term by the field redefinition of the first generation quarks

qL,R → e
∓i a

2fa
fqqL,R, q = u, d, (6.2)

where fq = [Qa]q and we choose Qa in such a way to remove axion-pion mixing. Then, by defining

z = mu/md, one has

fu =
1

1 + z
≈ 2

3
, fd =

z

1 + z
≈ 1

3
, Tr[Qa] = fu + fd = 1. (6.3)

After the rotation (6.2), the coefficient of the QED term changes as E/N → E/N+fγ , with fγ ≃ 1.92,

while the axion coupling to the first generation quarks becomes

Laq =
∂µa

2fa

∑︂
q=u,d

[︃
q̄γµγ5

(︃
XqR −XqL

2N
− fq

)︃
q

]︃
≡ ∂µa

2fa

∑︂
q=u,d

[︁
q̄γµγ5

(︁
c0q − fq

)︁
q
]︁
,

(6.4)

where the vector coupling vanishes due to the equations of motion and we introduced the axion-quark

couplings as outlined in Section 2.2. The axion-nucleon couplings can then be obtained by matching

the nonrelativistic axion-nucleon Lagrangian with (6.4) over a single nucleon matrix element, as seen

in Section 2.2.3. The resulting interaction terms have the form

LaN =
∂µa

2fa
cN N̄γ

µγ5N, (6.5)

with N = n, p. The matching gives

cp + cn = 0.50(5)
(︁
c0u + c0d − 1

)︁
− 2δs, (6.6a)

cp − cn = 1.273(2)
(︁
c0u − c0d − fud

)︁
, (6.6b)

with fud = fu − fd ≈ 1/3, and the 1 in eq. (6.6a) is just fu + fd. δs is a correction dominated by the

strange quark contribution.

The conditions for nucleophobia are

cp + cn ≈ 0, (6.7a)

cp − cn ≈ 0, (6.7b)
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which, due to eq. (6.6), can be rewritten as

c0u + c0d ≈ 1, (6.8a)

c0u − c0d ≈ fud. (6.8b)

To understand why these conditions require nonuniversal PQ charge assignment we have to look at

the QCD anomaly coefficient. Recalling eq. (3.4a), this is given by

N =

3∑︂
i=1

∑︂
fi

Xfid(Ifi)T (3), (6.9)

where d(Ifi) is the dimension of the weak isospin representation for the quark fi, while T (3) = 1/2 is

the colour Dynkin index for the fundamental representation. We then find that N can be expressed

as the sum of contributions coming from each irreducible representation of the SM gauge group (all

taken to be left-handed, so that XfL = −XfR)

2N =

3∑︂
i=1

(Xui +Xdi − 2Xqi), (6.10)

where ui, di are the right-handed chiral fields, and qi the left-handed ones. The contribution from first

generation quarks is

2Nℓ = Xu1 +Xd1 − 2Xq1 . (6.11)

The condition of eq. (6.8a) can then be written as

c0u + c0d =
Nℓ

N
≈ 1. (6.12)

One then observes that

• In the KSVZ model c0u = c0d = 0, so

cp + cn = −0.50− 2δs ̸= 0, (6.13a)

cp − cn = −1.273× 1

3
̸= 0. (6.13b)

• In the DFSZ model, c0u, c
0
d ̸= 0, but their value is independent of the fermion generation, so that

eq. (6.12) implies

c0u + c0d =
Nℓ

N
=

1

3
̸= 1. (6.14)

So, we understand that nucleophobia requires the model to be nonuniversal.
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6.1.2 Two Higgs doublet models

Nucleophobia in 2HDMs

We can now proceed and build explicitly a nucleophobic axion model, following the steps outlined

in [21]. The defining properties of a nucleophobic model are just the conditions (6.7), so we are left

with a great amount of freedom in the choice of the specific model. We will make two simplifying

assumptions:

i) The scalar sector is composed of the PQ-breaking Higgs singlet Φ with PQ charge XΦ and two

Higgs doublets H1,2 with PQ charges X1,2 and hypercharge Y = −1/2. The doublets interact

with the SM quarks via Yukawa operators, so that we can relate their PQ charges to those of

the quarks by imposing PQ invariance of the Yukawa terms;

ii) The PQ charges are assigned in such a way to allow all SM Yukawa operators.

The first assumption defines what are known as two Higgs doublets models (2HDMs).

The SM quarks are described as usual, with the left-handed components collected into SU(2)L

doublets qi and the right-handed components ui, di that transform as SU(2)L singlets. One then has

c0ui
=
Xui −Xqi

2N
, c0di =

Xdi −Xqi

2N
. (6.15)

We now have to assign PQ charges to the quarks. To do that we start by observing that a generic

PQ charge matrix for a left-handed or right-handed quark generation Q can be written as

XQ = X0
q13 +X8

qλ8 +X3
qλ3, (6.16)

where 13 = diag(1, 1, 1), λ8 = diag(1, 1,−2), λ3 = diag(1,−1, 0). Under the assumptions above one

can show that two generations must have the same charges, so that we can drop the term proportional

to λ3. Hence, in general

XQ = X0
q13 +X8

qλ8. (6.17)

This matrix satisfies an SU(2) symmetry on the generation indices {1, 2} and we therefore refer to

this structure as 2+1.

We now note that the nucleophobia condition of eq. (6.12) can be satisfied if either

i) N2 = −N3, N = N1,

ii) N1 = N2 = 0, N = N3,

where we used two different orderings for the fermion generations in the two cases, in particular having

the light quarks correspond to the first generation in i) and to the third generation in ii).

To study which Yukawa structures can enforce either of these conditions we exploit the SU(2)

symmetry in the quark PQ charge matrices and therefore consider just one generation in 2 together

with the generation in 1 carrying the {3} index ad write

q̄2u2H1, q̄3u3Ha, q̄2u3Hb, q̄3u2H1+a−b,

q̄2d2H̃c, q̄3d3H̃d, q̄2d3H̃d+a−b, q̄3d2H̃c−a+b,

(6.18)
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where H̃ = iσ2H∗, and we assignedH1 to the first term without loss of generality, while the other Higgs

indices must take values in {1, 2}. One can see that in each line the charges of the first three quark

bilinears determine the fourth one, while the third term of the second line is obtained by equating

Xq3 −Xq2 as extracted from the second and third terms of both lines.

Denoting the Higgs ordering in the two lines by their indices, we have

i) For the case N1 = N2 = −N3 there are two models:

M1: (1, 2, 1, 2)u (2, 1, 2, 1)d,

M2: (1, 2, 2, 1)u (2, 1, 1, 2)d;

ii) For the case N1 = N2 = 0, N = N3 there are two models:

M3: (1, 1, 1, 1)u (1, 2, 2, 1)d,

M4: (1, 2, 2, 1)u (1, 1, 1, 1)d.

Let us now discuss the second nucleophobia condition (6.8b). We set tanβ = v2/v1, with v1,2 =√
2 ⟨H1,2⟩, and we introduce the shorthand notation sβ = sinβ, cβ = cosβ. Imposing the orthogonality

condition between the U(1)PQ and U(1)Y Noether currents, we find

X1v
2
1 +X2v

2
2 = 0, (6.19)

yielding

X1

X2
= − tan2 β. (6.20)

The charge normalisation is given in terms of the light quark anomaly

X2 −X1 = ±2Nℓ, (6.21)

where the upper signs correspond to models M1, M2, M3 and the lower sign to model M4. In all cases

c0u − c0d = −X1 −X2

2N
= ±

(︁
s2β − c2β

)︁
. (6.22)

Then condition (6.8b) is realised for s2β = 2/3 in models M1, M2, M3 and for s2β = 1/3 in model M4.

We make an important observation: even under our very restrictive assumptions we were able

to find four different ways to realise nucleophobia. Even more possibilities could become viable by

relaxing some of the assumptions, e.g. by allowing for PQ charges to forbid some SM Yukawa operator

[83]. We also observe that condition (6.7a) is imposed just by PQ charge assignment, while the second

condition needs a specific value of tanβ ≈ 2±1/2.

Finally, since we need our model to describe an invisible axion, it is necessary to couple H1,2 to

Φ via a nonhermitian operator, so that the PQ symmetry gets spontaneously broken at the scale

va ≫ v1,2, suppressing all axion couplings. There are two possibilities, i.e. the operator H†
2H1Φ, for

which |XΦ| = 2N and the number of domain walls is NDW = 1, and the operator H†
2H1Φ

2 for which

|XΦ| = Nℓ = N and NDW = 2.
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Electrophobia in 2HDMs

In 2HDMs electrophobia can be induced at the cost of tuning a cancellation between c0e and a correction

coming from flavour mixing in the lepton sector [21]. This requires large lepton mixings and one fine

tuning. Since the lepton sector is indeed characterised by large mixings, the first requirement is not

unplausible.

We can assign the electron either to the doublet or the singlet in 2+1. We denote the former case

by E1 and the latter by E2, and in both cases we can consider (1, 2, . . . )ℓ or (2, 1, . . . )ℓ structures and

combine these with the four quark cases. Moreover, for (a, b, a, b)ℓ-type of structures, electrophobia

is enforced by a cancellation from LH mixing, while for (a, b, b, a)ℓ the cancellation comes from RH

mixing. We therefore have a total of 2 × 2 × 4 × 2 = 32 physically different astrophobic 2HDMs.

However, these correspond to just four values of the ratio E/N , i.e. of the axion-photon coupling g0aγ

(see Ref. [21] for details).

6.1.3 Three Higgs doublet models

We saw that in a 2HDM, the lepton sector is necessarily charged under U(1)PQ, and electrophobia

requires an extra fine tuning. There is, however, a more elegant way to impose electrophobia within

the so-called three Higgs doublet models (3HDMs) [50]. In this kind of models, we introduce a third

Higgs doublet H3 with PQ charge X3 coupled only to the lepton sector, and in order to impose

electrophobia it is enough for the condition X3 ≈ 0 to be consistent with nucleophobia. In this case,

in fact, the lepton sector turns out to be approximately uncharged under U(1)PQ, and in particular

the axion decouples from the electron.

Let us consider such a model, in which H1,2 couple only to the quarks, with the same couplings as

in the previous case, while H3 couples to the leptons. Five conditions must be satisfied in order for

the model to be well defined:

i) The two conditions for nucleophobia, eq. (6.7);

ii) The orthogonality between U(1)PQ and U(1)Y Noether currents;

iii) The two conditions stemming from the requirement that the U(1)4 rephasing symmetry of the

kinetic terms of the scalars H1,2,3, Φ is broken down to U(1)Y × U(1)PQ. These conditions can

be implemented either by coupling H3 to both H1,2 or by coupling one between H1,2 to one of

the other doublets

H†
3H1Φ

m +H†
3H2Φ

n or H†
3H1,2Φ

m +H†
2H1Φ

n. (6.23)

For renormalisable operators one has, without loss of generality, m = 1, 2 and n = ±1,±2 where

negative values mean hermitian conjugation: Φn =
(︁
Φ†)︁|n|.

Assuming cp + cn ≈ 1 to be satisfied, and choosing the first type of operator in eq. (6.23), our

conditions can be written as

1)
X1

X2
= −md

mu
,

2) X1v
2
1 +X2v

2
2 +X3v

2
3 = 0,
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3) −X3 +X1 +m = 0,

4) −X3 +X2 + n = 0.

Let us now set X3 → 0, so as to check whether there is a consistent charge assignment compatible with

both electrophobia and nucleophobia. In this limit, 2) reduces to 1), while 3), 4) imply X1/X2 = m/n,

which, together with 1) yields

md

mu
= −m

n
. (6.24)

Hence, electrophobia can be consistently implemented for the following values of the light quark

mass ratio: md/mu = 2, 1, 1/2. Fortunately, the measured value is mu/md = 0.48(3) [84], which is

compatible with the first possibility.

By contrast, if we had chosen the second operator in eq. (6.23), electrophobia would have required

md/mu = 1,∞ choosing H1 in the first term, and md/mu = 1, 0 choosing H2, resulting incompatible

with nucleophobia.

Implementation of astrophobic 3HDMs

We now want to study the constraints on the axion parameter space arising in astrophobic 3HDMs.

We start by assuming that the scalar potential contains the following terms

H†
3H1Φ

2 +H†
3H2Φ

†, (6.25)

which correspond to the choice m = 2, n = −1. For the quark sector we instead assume a 2+1

structure with equal PQ charges for the first two generations. We therefore need to list only the

Yukawa operators involving the second and third generations. For the M1 model

q̄2u2H1, q̄3u3H2, q̄2u3H1, q̄3u2H2,

q̄2d2H̃2, q̄3d3H̃1, q̄2d3H̃2, q̄3d2H̃1.

(6.26)

We now assume that the lepton sector couples to a third Higgs doublet with universal PQ charge

assignment

ℓ̄iejH̃3. (6.27)

The conditions −X3 +X1 +m = 0 and −X3 +X2 + n = 0 imply, for our choice of m and n,

X1 = X3 − 2, X2 = X3 + 1. (6.28)

Neglecting mixing effects, the diagonal axion couplings read
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c0u,c =
2

3
− X3

3
, c0t = −1

3
− X3

3
,

c0d,s =
1

3
+
X3

3
, c0b = −2

3
+
X3

3
,

c0e,µ,τ =
X3

3
.

(6.29)

Inserting the expressions of c0u,d in eq. (6.8b) one gets

X3 =
1

2
− 3

2
fud ≈ −0.03, (6.30)

which confirms that the suppression of the axion-electron couplings is indeed compatible with nucle-

ophobia.

We can now parametrise the vacuum expectation values of the Higgs doublets as

v1 = vc1c2, v2 = vs1c2, v3 = vs2, (6.31)

where si = sinβi, ci = cosβi, and tanβ1 = v2/v1, tanβ2 =
√︁
v23/(v

2
1 + v22). In this parametrisation,

the orthogonality condition reads

X3 =
(︁
3c21 − 1

)︁
c22. (6.32)

Requiring the Yukawa couplings to be perturbative restricts the allowed regions in the (β1, β2) space.

In particular, we can obtain a conservative limit by imposing the tree-level partial wave unitarity bound

on the 2 → 2 fermion scattering, |Re aJ=0| < 1/2, in the 3HDM involving Yukawas as
√
s ≫ MH1,2,3 .

Ignoring RG effect, and taking into account group theoretical factors [48, 49], we get

• y3HDM
t,b <

√︁
16π/3 from QLūR → QLūR, with the initial state prepared into a SU(3)c singlet;

• y3HDM
τ <

√︁
4
√
2π from QLQ̄L → uRūR, with the initial state prepared into a SU(2)L singlet.

The label 3HDM reminds us that these are not the Yukawa couplings of the SM, which in turn can

be obtained as

yt = y3HDM
t s1c2, yb = y3HDM

b c1c2, yτ = y3HDM
τ s2. (6.33)

These unitarity bounds can then be translated into perturbativity bounds in the (β1, β2) plane, and

they correspond to the black hatched region of Fig. 6.1.

6.2 Finite density effects in nucleophobic axion models

In this section, we want to study how finite density corrections affect nucleophobic axion models.

This is an important analysis, since one of the main advantages of nucleophobic axion models is the

possibility to relax the SN and NS bounds, and, as we have seen, both these astrophysical systems are

characterised by extremely high baryonic densities. A similar analysis was performed in [86] on RG

corrections, showing that the nucleophobia condition survives running effects, although with a shift

in the cancellation point of cp − cn. We will consider for simplicity a specific nucleophobic model, the
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Figure 6.1: cN =
√︁

c2p + c2n (black) and |ce| (yellow) on the (β1, β2) plane for the astrophobic 3HDM. For reference, we
show the contour lines corresponding to the values of cN and ce for the KSVZ (cN = 0.48 dotted line) and the DFSZ
axion models (grey region between cN = 0.24 and cN = 0.66 and ce = 1/6 yellow dotted line) [85]. The light (dark) blue
shaded area represents the region where the SN bound is relaxed with respect to the KSVZ case by a factor of 10 (20).
The figure is reproduced from [50].

M1 model with the choice H†
2H1Φ for the nonhermitian operator in the scalar potential; however, our

analysis can be easily generalised to the other models with analogous results.

Our starting point is the determination of the density-dependent axion-quark couplings in the M1

model. The Yukawa structure of the model is (1, 2, 1, 2)u(2, 1, 2, 1)d. The Yukawa matrices then read

Y u
1 =

⎛⎜⎝y
u
11 0 yu13
0 yu22 yu23
0 0 0

⎞⎟⎠, Y u
2 =

⎛⎜⎝ 0 0 0

0 0 0

yu31 yu32 yu33

⎞⎟⎠,

Y d
1 =

⎛⎜⎝ 0 0 0

0 0 0

yd31 yd32 yd33

⎞⎟⎠, Y d
2 =

⎛⎜⎝y
d
11 0 yd13
0 yd22 yd23
0 0 0

⎞⎟⎠.
(6.34)

Imposing U(1)PQ invariance of the Yukawa sector yields, see e.g. [87],

−XqY
u
1,2 + Y u

1,2Xu +X1,2Y
u
1,2 = 0, (6.35a)

−XqY
u
1,2 + Y u

1,2Xu +X1,2Y
u
1,2 = 0, (6.35b)

so that

Xu1 −Xq1 = −X1, (6.36a)

Xd1 −Xq1 = X2, (6.36b)

Xd2 −Xq2 = X2. (6.36c)

Then, by using eq. (6.15) we find
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c0u = −X1

2N
, c0d,s =

X2

2N
. (6.37)

With the normalisation XΦ = 1 we have

X2 −X1 = 1 =⇒ X1 = − sin2 β, X2 = cos2 β. (6.38)

Moreover, the first nucleophobia condition implies

c0u + c0d =
X2 −X1

2N
=

1

2N
= 1 =⇒ 2N = 1. (6.39)

Hence, the model-dependent contribution to the axion-quark couplings reads

c0u = sin2 β, (6.40a)

c0d,s = cos2 β. (6.40b)

The full density-dependent axion-quark couplings, taking into account also RG effects through eq. (5.17),

are then given by

(cIRq )n ≃ c0q − [(Q∗
a)n]q + rtq(fa)(ct)0, (6.41)

where (Q∗
a)n is given by eq. (5.20), we chose fa as the UV scale, and we are neglecting the density

dependence of ct. From this expression of the axion-quark couplings, we immediately obtain the

axion-nucleon couplings by means of eq. (5.55).

We observe that there are three free parameters in our result, i.e. tanβ, κ (the unknown parameter

of eq. (5.54)), and obviously the density n. Since our goal is to test the nucleophobia condition against

finite density corrections, we first of all need to determine if there exists a value of tanβ which realises

the second nucleophobia condition. Moreover, we need to check wheter the first nucleophobia condition

is spoiled by in-medium corrections. Finally, due to our ignorance about the actual value of κ, we also

need to analyse the behaviour of our couplings under changes in its value.

The second nucleophobia condition, cp − cn = 0, is realised at zero density for tanβ =
√
2 in

model M1. We now want to show that this cancellation point for cp − cn is left invariant to a good

approximation by finite density effects.

Let us start from the finite density expressions of cp and cn, neglecting for the moment running

effects:

(cp)n = (gA)n(c−)n + (gud0 )n(c+)n + (∆s)0(cs)n, (6.42a)

(cn)n = −(gA)n(c−)n + (gud0 )n(c+)n + (∆s)0(cs)n. (6.42b)

Subtracting the latter from the former, we get

(cp)n − (cn)n = 2(gA)n(c−)n = (gA)n
(︁
c0u − c0d − (fud)n

)︁
= (gA)n

(︃
c0u − c0d −

1− zZ

1 + zZ + zZwW

)︃
.

(6.43)

The cancellation point corresponds to the value of tanβ such that c0u − c0d = fud. We are considering

the case of symmetric nuclear matter, np = n/2, so that from eq. (5.21) we immediately get
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Z = 1, W = 1− (b1 − b3)
n

n0
. (6.44)

Hence,

(fud)n =
1− z

1 + z + zw
[︂
1− (b1 − b3)

n
n0

]︂ , (6.45)

to be compared with the value at zero density

(fud)0 =
1− z

1 + z + zw
. (6.46)

In order to make this comparison, we observe that

(fud)n
(fud)0

=
1

1− zw(b1−b3)
1+z+zw

n
n0

, (6.47)

which yields the relative difference

(fud)n − (fud)0
(fud)0

=

zw(b1−b3)
1+z+zw

n
n0

1− zw(b1−b3)
1+z+zw

n
n0

. (6.48)

This is an increasing function of n/n0, and in our interval of values of n it is always small:

(fud)n − (fud)0
(fud)0

< 0.02 ∀n ∈ [0, 2n0]. (6.49)

Thus, to a good approximation, the value of fud is unaffected by finite density corrections, and the

cancellation point of cp − cn stays the same, as shown in Fig. 6.2.

|cp + cn|

|cp - cn|
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Figure 6.2: Dependence on tanβ of the two combinations |cp + cn| (orange) and |cp − cn| (purple) for three values of
density, n/n0 = 0 (full lines), n/n0 = 1 (dashed lines), and n/n0 = 2 (dotted lines), and for κ = 0.3. The figure on the
left does not take into account running effects, which are instead considered on the right. We observe that density does
not affect the cancellation point of |cp − cn|, in agreement with our analytical argument, which is instead shifted to a
lower value of tanβ by RG effects.

A similar argument can be used to show that also cp+ cn is only slightly modified by finite density

effects. In fact, by summing eq. (6.42a) and eq. (6.42b) we find
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(cp)n + (cn)n = 2(gud0 )n(c+)n + 2(∆s)0(cs)n =

= (gud0 )n

⎡⎣c0u + c0d −
1 + z

1 + z + zw
[︂
1− (b1 − b3)

n
n0

]︂
⎤⎦

+ 2(∆s)0

⎡⎣c0s − zw
[︂
1− (b1 − b3)

n
n0

]︂
1 + z + zw

[︂
1− (b1 − b3)

n
n0

]︂
⎤⎦,

(6.50)

which, since in nucleophobic models c0u + c0d = 1, yields

(cp)n + (cn)n = (gud0 )n

⎡⎣1− 1 + z

1 + z + zw
[︂
1− (b1 − b3)

n
n0

]︂
⎤⎦

+ (∆s)0

⎡⎣c0s − 1 +
1 + z

1 + z + zw
[︂
1− (b1 − b3)

n
n0

]︂
⎤⎦.

(6.51)

We again observe that

(f+ud)n ≡ 1 + z

1 + z + zw
[︂
1− (b1 − b3)

n
n0

]︂
=

1 + z

1 + z + zw

1

1− zw(b1−b3)
1+z+zw

n
n0

,

(6.52)

which can be compared to the value at zero density

(f+ud)0 =
1 + z

1 + z + zw
(6.53)

to give

(f+ud)n − (f+ud)0

(f+ud)0
=

zw(b1−b3)
1+z+zw

n
n0

1− zw(b1−b3)
1+z+zw

n
n0

< 0.02 ∀n ∈ [0, 2n0]. (6.54)

Hence, both c+ and cs are essentially left unaffected by finite density corrections. Moreover, since

(c+)n ≈ (c+)0 ≈ 0 ∀n ∈ [0, 2n0], it follows that the contribution of (gud0 )n can be safely neglected,

making our result independent of κ to a good approximation, as one can see in Fig. 6.3, where we

fixed the value of tanβ so as to impose the second nucleophobia condition.
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Figure 6.3: Dependence on κ of |cp + cn|, for tanβ corresponding to the cancellation point of |cp − cn| and three values
of density, n/n0 = 0 (orange), n/n0 = 1 (dark pink), and n/n0 = 2 (pink). RG effects are neglected on the left, and
taken into account on the right.

We therefore showed that the nucleophobia conditions are left unspoiled by in-medium corrections

for values of density within theoretical control. In Fig. 6.4 we show the density dependence of |cp + cn|
and |cp − cn| when both nucleophobia conditions are satisfied and for κ = 0.3.
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0.020

n/n0

Figure 6.4: Density dependence of |cp + cn| (orange) and |cp − cn| (purple) for model M1, at the cancellation point for
cp − cn and for κ = 0.3. Running effects are taken into account.

To understand the entity of the suppression of the couplings, we plot in Fig. 6.5 the axion-nucleon

couplings as functions of density for the model M1 and for the two benchmark axion models, the

KSVZ model and the DFSZ model.
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Figure 6.5: Depedence of |cp + cn| (left) and |cp − cn| (right) on density for the KSVZ and DFSZ-I benchmark axion
models, as well as for the nucleophobic model M1, for tanβ corresponding the cancellation point of cp − cn of model M1,
and κ = 0.3. RG effects are taken into account.



Chapter 7

Conclusions

The QCD axion is a theoretically well motivated beyond the Standard Model particle which, if ob-

served, would allow to solve both the strong CP problem and the problem of the nature of DM.

Moreover, it is, in principle, within reach of current and future experiments. An accurate determi-

nation of the bounds on the parameter space of the axion is therefore fundamental to determine the

allowed region in which this particle could be observed.

The SN1987A bound on the axion-nucleon couplings finds its origin in a highly dense stellar system,

in which the interactions of the axion with nucleons are heavily affected by in-medium corrections.

In this work, we discussed in detail the problem of the determination of the finite density corrections

to axion-nucleon couplings, first independently of the axion model and then for the specific case of

nucleophobic axion models.

In Chapter 5, we analysed how the chiral quark condensates are modified by finite density, and

how this affects the axion-quark couplings. Moreover, we computed the in-medium corrections to

the isotriplet hadronic matrix element gA by exploiting a Fermi gas approximation for the nuclear

medium. By means of these calculations, we were able to find an expression of the couplings cp and

cn as functions of baryon number density. This, although incomplete, due to the missing corrections

to the isoscalar matrix element gud0 , was enough to show that the nucleophobia condition, i.e. the

suppression of axion-nucleon couplings, is left unspoiled by finite density corrections. This was the

main result of Chapter 6.

The lack of an explicit expression for gud0 as a function of density offers a possible direction for

future work, with the aim of obtaining a complete description of the density dependence of axion-

nucleon couplings in more general axion models. This, in turn, would allow us to update the value of

the SN1987A bound.
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Appendix A

Baryon Chiral Perturbation Theory

A.1 Relativistic Baryon ChPT

Baryon Chiral Perturbation Theory, Baryon ChPT for short, is an EFT of QCD which allows a

consistent description of the low energy dynamics of the light meson and baryon octets. To build such

an effective theory we need to construct an effective Lagrangian written in terms of these hadronic

degrees of freedom. We will follow a bottom-up approach, where we will build the Lagrangian based

on symmetry arguments, and then match its predictions with those of QCD to obtain the values of

the low energy constants.

We start from the following expression of the QCD Lagrangian for the three light quarks given by

Gasser and Leutwyler in [88, 89]

LQCD = −1

2
Tr[GµνG

µν ] + q̄i /Dq + q̄γµ
(︃
vµ +

1

3
v(s)µ + γ5aµ +

1

3
γ5a

(s)
µ

)︃
q − q̄(s− iγ5p)q. (A.1)

Here, q = (u, d, s)T and we have introduced the external fields vµ = vaµλ
a/2, v

(s)
µ , aµ = aaµλ

a/2, a
(s)
µ ,

s = saλa, and p = paλa, where the λa are the Gell-Mann matrices in flavour space. We will denote

this set of external fields as (v, a, s, p).

The matching will be carried over the connected transition amplitude between two one-baryon

states in the presence of the external fields [90]

F (p⃗, p⃗ ′; v, a, s, p) =
⟨︁
p⃗ ′, out

⃓⃓
p⃗, in

⟩︁c
v,s,a,p

, (A.2)

where |p⃗, in⟩ and |p⃗ ′, out⟩ are respectively the asymptotic one-baryon in and out states. The usual

three-flavour QCD Lagrangian can be obtained from eq. (A.1) by the substitutions vµ, v
(s)
µ , aµ, a

(s)
µ , p→

0 and s→ Mq = diag(mu,md,ms).

We now want to build our Lagrangian. To do that we first of all need a field operator to represent

the baryons. We associate to each baryon in the light octet a Dirac fermion field which we arrange in

a matrix in flavour space

B =

⎛⎜⎜⎝
1√
2
Σ0 + 1

6Λ Σ+ p

Σ− − 1√
2
Σ0 + 1

6Λ n

Ξ− Ξ0 − 2√
6
Λ

⎞⎟⎟⎠ (A.3)

This field is required to transform as an octet under SU(3)V isospin transformations:
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B → B′ = V BV †, ∀V ∈ SU(3)V . (A.4)

The transformation law under more general chiral transformations (L,R) ∈ SU(3)L × SU(3)R can

instead be chosen arbitrarily, since many possibilities agree with eq. (A.5) and, in the presence of the

pseudo-Goldstone bosons associated to chiral spontaneous symmetry breaking, they can be shown to

be connected by field redefinitions. We make a choice which is particularly advantageous to construct

the Lagrangian. Let

Σ = exp

(︃
i
πaλa

fπ

)︃
(A.5)

be the meson field, transforming as Σ → LΣR† under SU(3)L×SU(3)R. We define a field ξ such that

ξ2 = Σ. Hence

ξ = exp

(︃
i
πaλa

2fπ

)︃
. (A.6)

We now introduce a function K = K(Σ, L,R) such that under a chiral transformation

ξ → ξ′ =
√
LΣR† ≡ LξK−1(Σ, L,R). (A.7)

Hence,

K(Σ, L,R) = ξ′−1Lξ =
(︂√

LΣR†
)︂−1

L
√
Σ. (A.8)

We then choose as the transformation law for our baryon field B under chiral transformations

B → B′ = K(Σ, L,R)BK(Σ, L,R)† (A.9)

We observe that this realisation of the SU(3)L × SU(3)R group is nonlinear and local, since the

transformation matrix K(Σ, L,R) depends on the spacetime coordinates through Σ(x).

To build a Lagrangian invariant under chiral transformations, following [91, 92], we will then need

covariant derivatives associated to the local transformation. We define it as

DµB = ∂µB + [Γµ, B], (A.10a)

∇µΣ = ∂µΣ− irµΣ+ iΣℓµ, (A.10b)

where rµ = vµ + aµ and ℓµ = vµ − aµ and where we introduced the so-called chiral connection

Γµ =
1

2

[︂
ξ†, ∂µξ

]︂
− i

2
ξ†rµξ −

i

2
ξℓµξ

†, (A.11)

The covariant derivatives thus defined correctly transform as (DµB) → (DµB)′ = K(DµB)K† and

(∇µΣ) → (∇µΣ)
′ = L(∇µ)R

† under chiral transformations.

We also define the vielbeins

∆µ =
1

2

{︂
ξ†, ∂µξ

}︂
− i

2
ξ†rµξ +

i

2
ξℓµξ

† (A.12a)

∆̃µ = − i

2

[︂
ξ†a(s)µ ξ + ξa(s)µ ξ†

]︂
= −ia(s)µ , (A.12b)
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which also transform as ∆µ → ∆′
µ = K∆µK

† and ∆̃µ → ∆̃′
µ = K∆̃µK

†. These are the building

blocks which can be combined to obtain the expression of the Lagrangian.

We are just missing an ingredient, i.e. a power counting scheme to organise the infinite terms of

our effective Lagrangian. Regarding the meson sector of the theory, the power counting is the same

as the one in regular Chiral Perturbation Theory. Let q ≪ Λχ be a small momentum, where Λχ is

the breaking scale of ChPT. Assuming the Σ field to count as O(q0), the derivatives ∂µΣ count as

O(q). Similarly, the external fields vµ, aµ appearing in the covariant derivative ∇µΣ alongside ∂µΣ

also count as O(q). The field s is instead proportional to the quark mass matrix, and, since meson

masses squared are linear in quark masses, we must count s as O(q2). Finally, since p appears always

with s we count it too as O(q2). In summary:

Σ ∼ O(q0), ∂µΣ, vµ, aµ ∼ O(q), s, p ∼ O(q2). (A.13)

The power counting in the baryonic sector is defined in a similar fashion, but with an important

subtlety: the masses of the baryons are not small, so the action of the derivative does not produce

a small quantity. To understand how to determine the correct power counting rule, we consider the

positive-energy plane wave solution to the Dirac equation

ψ(+)(t, x⃗) = e−ip·x
√︁
E +mB

(︄
χ

σ⃗·p⃗
E+mB

χ

)︄
, (A.14)

where χ is a Pauli spinor and p = (E, p⃗) =
(︂√︂

p⃗2 +m2
B, p⃗

)︂
. In the limit in which p is a small

momentum, i.e. the nonrelativistic limit p ≪ mB, the small component is suppressed with respect

to the large one. The action of the derivative on the plane wave in eq. (A.14) gives pµ = (mB, 0⃗) +

(E −mB, p⃗), where the second term is a small momentum of O(q). Therefore (i/∂ −mB) acting on

the baryon field gives a quantity of O(q). The Dirac bilinears can instead be studied by noticing that{︁
1, γ0, γ5γ

i, σij
}︁
mix large and large components, while

{︁
γ5, γ5γ

0, γi, σi0
}︁
only mix large and small

components. Finally, the action of the covariant derivative Dµ on the baryon field does not imply the

lowering of a small momentum, so it counts as O(q0). Hence,

B,DµB ∼ O(q0),
(︁
i /D −mB

)︁
B ∼ O(q),

1, γµ, γ5γ
µ, σµν ∼ O(q0), γ5 ∼ O(q),

(A.15)

where we only give the minimal order.

We can now write down the leading order Lagrangian for Baryon ChPT

LLO
BChPT = L(2)

ππ + L(1)
πN

=
f2

4
Tr
[︂
(∇µΣ)

†(∇µΣ)
]︂
+
f2

4
Tr
[︂
χ†Σ+ χΣ†

]︂
+Tr

[︁
B̄(i /D −mB)B

]︁
− iDTr

(︁
B̄γµγ5{∆µ, B}

)︁
− iF Tr

(︁
B̄γµγ5[∆µ, B]

)︁
− iD̃Tr

(︂
B̄γµγ5∆̃µB

)︂
(A.16)

where we introduced the field χ = 2B0(s + ip) and where f ≈ fπ = 92.3MeV, B0 is related to the

value of the chiral condensates, D = 0.80, and F = 0.50.

One can similarly write down the Baryon ChPT Lagrangian for the two-flavour QCD case. In this

case the chiral group becomes SU(2)L × SU(2)R, the Goldstone bosons are just the pions, organised
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in the field

Σ = exp

(︃
i
πaτa

fπ

)︃
, (A.17)

where τa are the isospin Pauli matrices, and the relevant baryons are the nucleons, organised in an

isospin doublet

N =

(︄
p

n

)︄
. (A.18)

The transformation law for the nucleon doublet under chiral transformations is

N → N ′ = K(Σ, L,R)N, K(Σ, L,R) =
(︂√

LΣR†
)︂−1

L
√
Σ. (A.19)

The covariant derivatives in this case take the form

DµN = (∂µ + Γµ − iv(s)µ )N, (A.20a)

∇µΣ = ∂µΣ− irµΣ+ iΣℓµ, (A.20b)

and the power counting rules are totally analogous to the previous case. The leading order Lagrangian

then reads

LLO
BChPT = = L(2)

ππ + L(1)
πN

=
f2

4
Tr
[︂
(∇µΣ)

†(∇µΣ)
]︂
+
f2

4
Tr
[︂
χ†Σ+ χΣ†

]︂
+ N̄

(︂
i /D −mN + igAγ

µγ5∆µ + igud0 γµγ5∆̃µ

)︂
N

(A.21)

where mN is the nucleon mass, gA ≃ 1.27, and gud0 ≃ 0.52.

A.1.1 Chiral power counting

Let us consider the meson sector of our theory. We want to find a consistent scheme to determine the

contribution of each renormalised diagram to a given amplitude, where by renormalised diagrams we

mean the diagrams computed by taking into account also the counterterms.

To this end, let us perform a mathematical trick. Starting from a generic amplitude M(pi,mq),

where pi are the external momenta and mq the quark masses, we perform a rescaling of both the

momenta and the quark masses, pi → tpi andmq → t2mq. here we exploited the fact thatmq ∼ O(q2).

Under this rescaling, the amplitude can be shown to scale as [93]

M(tpi, t
2mq) = tDM(pi,mq), (A.22)

where the chiral dimension D of the amplitude is given by

D = 2 + (n− 2)NL +

+∞∑︂
k=1

2(k − 1)N2k ≥ 2 (for n = 4), (A.23)

NL being the number of independent loops in the diagram, N2k the number of vertices from L2k, and

n the number of spacetime dimensions.



60 APPENDIX A. BARYON CHIRAL PERTURBATION THEORY

By choosing 0 ≤ t ≤ 1 we go to smaller momenta e quark masses, and we observe that diagrams

with higher chiral dimensions get suppressed with respect to the ones with lower chiral dimension.

Moreover, loop diagrams are always suppressed due to the term (n− 2)NL.

This relation introduces a correspondence between the loop expansion and the chiral expansion,

since, due to eq. (A.23), for a given chiral dimension, the number of loops is bounded from above.

A.2 Heavy Baryon ChPT

The formalism outlined in the previous section allows for a consistent description of baryons within

the framework of ChPT. However, it has an important flaw which makes its direct application difficult.

In the meson sector, the Lagrangian is organised in powers of a small momentum, that we can identify

with the momentum of the initial and final mesons. This identification relies on the fact that if the

meson masses are small, and even vanish in the chiral limit, so that at the low energies at which we

can apply ChPT we can lightheartedly assume q ≪ Λχ. The same, however, cannot be done in the

baryon sector; the baryon masses do not vanish in the chiral limit, and even the lightest baryons, the

nucleons, have a mass mN ∼ Λχ. Then, while, as we have seen, a correspondence between the chiral

power counting and the loop expansion can be built in the meson sector, the same cannot be done in

the baryon sector [94], so that an amplitude of a given chiral dimension receives contributions from

diagrams at all loop orders. A solution to this problem is given by the Heavy Baryon ChPT formalism,

proposed by Jenkins and Manohar [95], which we are going to discuss in detail in this section.

Let us consider for simplicity the two-flavour case. As we have seen the pion-nucleon Lagrangian

reads

L(1)
πN = N̄

(︂
i /D −mN + igAγ

µγ5∆µ + igud0 γµγ5∆̃µ

)︂
N. (A.24)

Let us write the nucleon four-momentum as

pµ = mNv
µ + kµ, (A.25)

where vµ is a four-vector satisfying

v2 = 1, v0 ≥ 1 (A.26)

and k is a small residual momentum with v · k ≪ mN . We observe that, if we choose as vµ the

four-velocity of the nucleon, the first term is just the nonrelativistic four-momentum of the nucleon,

while kµ gives a negligible correction. We are therefore considering the extreme nonrelativistic limit

of our theory. We choose to work in the nucleon rest frame where vµ = (1, 0, 0, 0).

The Dirac equation for the nucleon field gives (/p−mN )N = 0. In the nonrelativistic limit kµ ≈ 0,

this is just (1− /v)N ≈ 0. By introducing the projectors

Pv± =
1± /v

2
, (A.27)

satisfying, for our choice of vµ,

Pv+ + Pv− = 1, P 2
v± = Pv± , Pv±Pv∓ = 0, (A.28)
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we introduce the fields

Nv(x) = eimNv·xPv+N, (A.29a)

Hv(x) = eimNv·xPv−N. (A.29b)

We observe that in the nonrelativistic limit Hv ∼ (1− /v)N ≈ 0, so that by writing

N = e−imNv·x(Nv +Hv), (A.30)

we have N ≈ e−imNv·xNv at such low energies.

We now consider the equation of motion for N stemming from the Lagrangian in eq. (A.24)

(︂
i /D −mN + igA /∆γ5 + igud0 /̃∆µγ5

)︂
N = 0. (A.31)

Let us substitute the decomposition eq. (A.30) in this expression to find

(︂
i /D + igA /∆γ5 + igud0 /̃∆γ5

)︂
Nv +

(︂
i /D − 2mN + igA /∆γ5 + igud0 γµγ5 /̃∆µ

)︂
Hv = 0. (A.32)

Exploiting the gamma matrix algebra relations, {γµ, γν} = 2ηµν and {γµ, γ5} = 0, we can rewrite

eq. (A.32) as two independent equations(︂
iv ·D + igA /∆⊥γ5 + igud0 /̃∆⊥γ5

)︂
Nv +

(︂
i /D⊥ + igAv ·∆γ5 + igud0 v · ∆̃γ5

)︂
Hv = 0, (A.33a)(︂

i /D⊥ − igAv ·∆γ5 − igud0 v · ∆̃γ5
)︂
Nv +

(︂
−iv ·D − 2mN + igA /∆⊥γ5 + igud0 /̃∆⊥γ5

)︂
Hv = 0. (A.33b)

where we introduced the notation Aµ = v ·Avµ +Aµ
⊥ for a generic four-vector Aµ.

We can then integrate out the field Hv, which as we have seen is not excited in the nonrelativistic

limit, by solving eq. (A.33b) in terms of it and substituting in eq. (A.33a). The resulting equation of

motion for Nv is(︂
iv ·D + igA /∆⊥γ5 + igud0 /̃∆⊥γ5

)︂
Nv

+
(︂
i /D⊥ + igAv ·∆γ5 + igud0 v · ∆̃

)︂(︂
2mN + iv ·D − igA /∆⊥γ5 − igud0 /̃∆⊥γ5

)︂−1

×
(︂
i /D⊥ − igAv ·∆γ5 − igud0 v · ∆̃

)︂
Nv = 0

(A.34)

which can be traced back to a Lagrangian

LHBChPT = N̄v

(︂
iv ·D + igA /∆⊥γ5 + igud0 /̃∆⊥γ5

)︂
Nv

+ N̄v

(︂
i /D⊥ + igAv ·∆γ5 + igud0 v · ∆̃γ5

)︂(︂
2mN + iv ·D − igA /∆⊥γ5 − igud0 /̃∆⊥γ5

)︂−1

×
(︂
i /D⊥ − igAv ·∆γ5 − igud0 c · ∆̃γ5

)︂
Nv

(A.35)

We observe that the second line is suppressed by the mN at the denominator, so, at leading order in

m−1
N our Lagrangian reads

LHBChPT = N̄v

(︂
iv ·D + igA /∆⊥γ5 + igud0 /̃∆⊥γ5

)︂
Nv. (A.36)

We can now introduce the spin operator
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Sµ =
i

2
γ5σ

µνvν = −1

2
γ5(γ

µ/v − vµ), (A.37)

satisfying

(Sµ)† = γ0Sµγ0, (A.38a)

v · Sµ = 0, (A.38b)

{Sµ, Sν} =
vµvν − ηµν

2
, (A.38c)

[Sµ, Sν ] = iεµνρσvρSσ. (A.38d)

One can show that N̄vγ
µγ5Nv = 2N̄vS

µNv, so that our Lagrangian finally takes the form

LHBChPT = N̄v

(︂
iv ·D + 2igAS ·∆+ 2igud0 S · ∆̃

)︂
Nv. (A.39)

Let us comment on this result. The first thing we observe is that the linear dependence on mN

of eq. (A.24) has disappeared in the nonrelativistic limit, so that the leading order Lagrangian is now

completely independent of the nucleon mass. The terms we neglected can instead be organised in a

series in powers of m−1
N , with each term suppressed with respect to previous one. Moreover, also the

problem regarding the small momentum expansion has disappeared. The action of a derivative on

Nv gives ∂µNv ∼ ∂µe
imNv·x−ip·x ∼ −ikµ, where kµ is now a small momentum. Hence, whenever the

physics of the problem allows us to take the nonrelativistic limit, the Heavy Baryon ChPT formalism

allows us to recover the lost correspondence between the chiral power counting and the loop expansion.



Appendix B

Basics of Thermal Field Theory

Thermal Field Theory (TFT) is the formalism which generalises the usual tools of statistical mechanics

to the case in which the microscopic theory is a quantum field theory (QFT). In particular, it provides

the techniques to compute the thermal Green’s functions, which in turn allow the determination of the

thermodynamic state functions associated to the system of interest, e.g. by means of linear response

theory. Our aim in this section is to give a brief and self-contained introduction to TFT, mainly

focusing on the problem of the description of systems at finite density. We will, in particular, find

a prescription to include the effects of a nonzero chemical potential, and therefore of a nonvanishing

value of the corresponding density, in the Lagrangian of a QFT.

B.1 The grand canonical ensemble

Let us consider a physical system S described by a Hamiltonian H, and characterised by a set of

mutually commuting conserved charges Qk. Let us assume that our system is put in contact with an

external bath B through rigid walls which allow S and B to exchange energy and charges, which are

then free to fluctuate around their average values ⟨E⟩ and ⟨Qk⟩ determined by the equilibrium values

of the temperature T and chemical potentials µk.

To connect the microscopic and macroscopic descriptions of the system, we consider an ensemble

of copies of our system, each corresponding to a different microscopic state, but all compatible with

the same macroscopic state characterised by the fixed values of T and µk and by the volume V of

the system. The quantum state associated to the ensemble is described by the density operator ρ.

To find the explicit form of the density operator, we maximise the entropy under the following three

constraints:

Tr ρ = 1 (B.1a)

Tr(ρH) = ⟨E⟩ (B.1b)

Tr(ρQk) = ⟨Qk⟩ (B.1c)

The von Neumann entropy associated to our ensemble is (in units of kB = 1)

S = −Tr(ρ log ρ). (B.2)

To impose the constraints of eq. (B.1), we introduce a set of Lagrange multipliers αi, so that the

maximisation condition becomes

63
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δ

{︄
−Tr

(︄
ρ log ρ+ α0ρ+ αEρH +

∑︂
k

αkρQk

)︄}︄
= 0, (B.3)

which yields

ρ = exp

[︄
(α0 − 1) + αEH +

∑︂
k

αkQk

]︄
. (B.4)

Taking the trace of this expression and imposing eq. (B.1a) we find

Z(αE , {αk}) ≡ exp(1− α0) = Tr

[︄
exp

(︄
αEH +

∑︂
k

αkQA

)︄]︄
, (B.5)

where we introduced the grand canonical partition function Z(αE , {αk}).
From eq. (B.4) one easily finds, by imposing the remaining constraints of eq. (B.1),

− logZ(αE , {αk}) + αE ⟨E⟩+
∑︂
k

αk ⟨Qk⟩+ S = 0, (B.6)

which, by the identifications αE = −1/T and αk = µk/T , becomes

Ω(T, {µk}) ≡ − logZ(T, {µk}) = ⟨E⟩ − TS −
∑︂
k

µk ⟨Qk⟩ , (B.7)

which is the thermodynamic definition of the Landau free energy or grand potential.

The density operator can therefore be written as

ρ =
e−β(H−

∑︁
k µkQk)

Tr e−β(H−
∑︁

k µkQk)
=

1

Z(T, (µk))
e−β(H−

∑︁
k µkQk), (B.8)

where β = 1/T , and where the grand canonical partition function now reads

Z(T, {µA}) = Tr e−β(H−
∑︁

k µkQk). (B.9)

B.2 Thermal Field Theory: real time formalism

We now want to study the case in which the microscopic dynamics of our system is described by a

QFT, following [96]. For simplicity, let us consider the case of a single real multi-component scalar

field Φ(x) evolving in the Heisenberg picture

Φ(x) = eitHΦ(t, x⃗)e−itH . (B.10)

We assume our time coordinate t to be a complex function of a real variable v, t = t(v). Fixed a path

C in the complex plane, we define the path-dependent functions

ϑC(t− t′) = ϑ(v − v′), (B.11a)

δC(t− t′) =

(︃
∂t

∂v

)︃−1

δ(v − v′). (B.11b)

We are interested in computing the thermal Green’s functions
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GC(x1, . . . , xn) = ⟨TCΦ(x1) · · ·Φ(xn)⟩β , (B.12)

where ⟨·⟩β is the thermal average in the grand canonical ensemble

⟨O⟩β =
1

Z(β, {µk})
Tr
(︂
e−β(H−

∑︁
k µkQk)O

)︂
, (B.13)

and TC is the path-ordering defined as

TCΦ(t1, x⃗1) · · ·Φ(tn, x⃗n) =
∑︂
k

⎛⎝n−1∏︂
j=1

ϑC(tkj − tkj+1
)

⎞⎠Φ(tk1 , x⃗k1) · · ·Φ(tkn , x⃗kn), (B.14)

where k runs over all the possible permutations of the indices {1, . . . , n}.
By defining a rule for functional differentiation for c-number-valued functions f(x) whose time

argument is defined on C

δf(x)

δf(x′)
= δC(t− t′)δ3(x⃗− x⃗ ′), (B.15)

we can introduce a generating functional ZC(β, {µk}, j) for the thermal Green’s functions (B.12), such

that

GC(x1, . . . , xn) =
1

Z(β, {µk})
δnZ(β, {µk}, j)
iδj(x1) · · · iδj(xn)

⃓⃓⃓⃓
j=0

. (B.16)

It is easy to see that such a generating functional must have the form

Z(β, {µk}, j) = Tr

[︃
e−β(H−

∑︁
k µkQk)TC exp

(︃
i

∫︂
C
d4x j(x) · Φ(x)

)︃]︃
, (B.17)

where
∫︁
C d4x ≡

∫︁
C dt

∫︁
d3x⃗. We observe that by setting the sources j(x) to zero, eq. (B.17) becomes

the grand canonical partition function (B.9). This object has also a path integral representation

Z(β, {µk}, j) =
∫︂

DΠDΦ exp

[︄
i

∫︂
C
d4x

(︄
Π(x) · ∂0Φ(x)−H(Φ, π) +

∑︂
k

µkJ
0
k (x) + j(x) · Φ(x)

)︄]︄
(B.18)

where the integration is carried over configurations satisfying Φ(t, x⃗) = Φ(t − iβ, x⃗), Π is the field

canonically conjugated to Φ, and we used the relation between the conserved charges Qk and the

corresponding Noether currents Jµ
k

Qk(t) =

∫︂
d3x⃗ J0

k (x). (B.19)

Equation (B.19) has an important implication: in fact, starting from it, one can show that the

net effect of the presence of the chemical potential terms in the generating functional is to introduce

a shift in the time derivatives

∂0 → ∂0 + i
∑︂
k

µkT
R
k , (B.20)

where the TR
k are the generators of the symmetry group associated to the charge Qk in the appropriate

representation R.
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We have still to choose a specific path C in order to obtain the explicit expressions of the Green’s

functions. In order to find a suitable path we need to study the analyticity properties of the two-point

function.

DC(x, x
′) = ϑC(t− t′)D>

C (x, x
′) + ϑC(t

′ − t)D<
C (x, x

′), (B.21)

where we defined the advanced and retarded propagators

D>
C (x, x

′) =
⟨︁
Φ(x)Φ(x′)

⟩︁
β
, (B.22a)

D<
C (x, x

′) =
⟨︁
Φ(x′)Φ(x)

⟩︁
β
= D>

C (x
′, x). (B.22b)

The two-point function satisfies the symmetry property

DC(x, x
′) = DC(x

′, x). (B.23)

Given a set of common eigenstates of the Hamiltonian H and of the charges Qk, {|n⟩ , {qnk}}, with
H |n, {qnk}⟩ = En |n, {qnk}⟩, we can write

D>
C (x, x

′) =
⟨︁
Φ(x)Φ(x′)

⟩︁
β
=

1

Z(β, {µk})
Tr
[︂
e−β(H−

∑︁
k µkQk)Φ(x)Φ(x′)

]︂
=

1

Z(β, {µk})
∑︂
n,m

⟨︂
m, {qmk }

⃓⃓⃓
Φ(0, x⃗)ei(t

′−t)H
⃓⃓⃓
n, {qnk}

⟩︂
×

×

⟨︄
n, {qnk}

⃓⃓⃓⃓
⃓Φ(0, x⃗ ′)e−β+it−it′

(︄∏︂
k

eβµkq
m
k

)︄⃓⃓⃓⃓
⃓m, {qmk }

⟩︄
,

(B.24)

which yields

D>
C (x, x

′) =
1

Z(β, {µk})
∑︂
n,m

eβ
∑︁

k µkq
m
k e(−β+it−it′)Eme−i(t−t′)En

× ⟨m, {qmk }|Φ(0, x⃗)|n, {qnk}⟩
⟨︁
n, {qnk}

⃓⃓
Φ(0, x⃗ ′)

⃓⃓
m, {qmk }

⟩︁
.

(B.25)

We observe that the convergence of the sum implies that the advanced propagator is analytic for

−β < Im(t − t′) < 0. A similar calculation shows that the retarded propagator is analytic in the

interval 0 < Im(t− t′) < β. Since the limit of an analytic function at the boundary of its analyticity

domain is a distribution, we can consider also the extreme values in the previous intervals. This

implies that the full two-point function is analytic in the interval −β ≤ Im(t− t′) ≤ β if ϑC(t) = 0 for

Im(t) > 0. In other words, looking at the definition of ϑC , the path C must be chosen in such a way

that Im(t) is a nonincreasing function of v.
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Another property of the path C can be found by looking at the generating functional. We have

Z(β, {µk}, j) = Tr

[︃
e−β(H−

∑︁
k µkQk)TC exp

(︃
i

∫︂
C
d4x j(x) · Φ(x)

)︃]︃
=

∫︂
DΦ ′

⟨︃
Φ′(ti, x⃗)

⃓⃓⃓⃓
e−β(H−

∑︁
k µkQk)TC exp

(︃
i

∫︂
C
d4x j(x) · Φ(x)

)︃⃓⃓⃓⃓
Φ′(ti, x⃗)

⟩︃
=

∫︂
DΦ ′

⟨︃
Φ′(ti − iβ, x⃗)

⃓⃓⃓⃓
e
∑︁

k βµkQkTC exp

(︃
i

∫︂
C
d4x j(x) · Φ(x)

)︃⃓⃓⃓⃓
Φ′(ti, x⃗)

⟩︃
,

(B.26)

where {|Φ′(ti, x⃗)⟩} is a set of instantaneous eigenstates of the field operator in the Heisenberg picture,

evaluated at some initial time ti. Equation (B.26) implies that if our path starts at time ti it must

end at time t− iβ.

A path that satisfies these two constraints and that contains the real axis, as it should since we

want to work with a real time variable, is the one depicted in Figure B.1.

Re(t)

Im(t)

C1

C3

C2C4

ti −ti

−ti − iσti − iσ

ti − iβ

Figure B.1: Inspired by Fig. 3.6 of [96]

Out path starts at a time ti → −∞ on the real axis, then moves through a segment C1 to −ti.
A segment C3 then follows, carrying the path to a point −ti − iσ, where σ ∈ [0, β] can be chosen

arbitrarily. Then a segment C2 moves towards ti − iσ, followed by a final segment C4 bringing the

path to its end at ti − iβ.

One can prove that the contributions of C3 and C4 to the generating functional can be neglected,

so that we end up with a doubled time axis composed of the oppositely directed infinite segments C1

and C2. We can then denote by an index i = 1, 2 our fields and sources depending on whether their

time coordinate lies on C1 or C2; what we obtain is a doubling of our degrees of freedom, which must

be taken into account in perturbation theory. Of course, external lines of correlation functions only

depend on the “physical” degrees of freedom with time coordinate on C1, but internal legs can be of

either type.



Appendix C

Meson condensation

We want to give a brief introduction to meson condensation, an important effect of finite density in

QCD, following closely [97]. Let us consider the case Nf = 3. Taking for the moment the assumption

of massless quarks, the QCD Lagrangian has a global symmetry group SU(3)L × SU(3)R × U(1)V .

The chiral subgroup SU(3)L × SU(3)R is spontaneously broken to SU(3)V at low energies, when the

chiral condensate ⟨q̄RqL⟩ becomes nonzero. Moreover, due to the spontaneous breaking of the chiral

symmetry, the condensate is not invariant under SU(3)L×SU(3)R, but rather it transforms under the

(3, 3̄) representation. We then have infinite degenerate vacuum configurations, connected by chiral

transformations, each characterised by a specific value of the condensate.

In absence of chemical potential, the nonvanishing condensate can be parametrised as ⟨q̄RqL⟩ =

⟨q̄q⟩0 13, with ⟨q̄q⟩0 a fixed value. The condensate for the other degenerate vacua can then be obtained

by specifying a chiral transformation (L̃, R̃):

⟨q̄RqL⟩ → L̃ ⟨q̄RqL⟩ R̃† = L̃(⟨q̄q⟩0 13)R̃
† = ⟨q̄q⟩0 L̃R̃

† ≡

≡ ⟨q̄q⟩0Σ.
(C.1)

As shown in [98], assuming Σ = Σ(x), one can recognise in it the field describing the light meson octet

in ChPT, Σ(x) = e
i
πa(x)
fπ

λa

.

Taking into account the explicit symmetry breaking due to the nonvanishing masses of the quarks,

the degeneracy between the various vacua is lost, and one can find the homogeneous and time inde-

pendent ground state configuration of the meson fields Σ0 by maximising the static Lagrangian

Lstatic =
f2πB0

2
Tr
[︂
M(Σ0 +Σ†

0)
]︂
, (C.2)

corresponding to minus the scalar potential. In this case, the vacuum configuration in the trivial one

Σ0 = 1.

We can now exploit the main result of Appendix B, i.e. the prescription of eq. (B.20), to include

the effects of nonvanishing chemical potentials for isospin, µI , and strangeness, µS , in the Lagrangian

∂0Σ0 → ∂0Σ0 + i[µ,Σ0], µ = diag
(︂µI
2
,−µI

2
,−µS

)︂
, (C.3)

It introduces another source of explicit symmetry breaking, with pattern SU(3)V ×U(1)B → U(1)I ×
U(1)Y × U(1)B, where the first two subgroups are generated by λ3/2 and λ8/2, thus modifying the

ground state configuration, which can be obtained by maximisation of

68
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Lstatic = −f
2
π

4
Tr
{︂
[Σ0, µ]

[︂
µ,Σ†

0

]︂}︂
+
f2πB0

2
Tr
[︂
M(Σ0 +Σ†

0)
]︂
. (C.4)

To perform this maximisation, we parametrise the matrix Σ0 as

Σ0 = eiϑn⃗·λ⃗ = cosϑ13 + i sinϑn⃗ · λ⃗,

|n⃗| = 1, ϑ ∈ [−π/2, π/2],
(C.5)

where λ⃗ = (λ1, . . . , λ8) is a vector whose components are the Gell-Mann matrices. In principle, we

can then use the angle ϑ and the eight components of n⃗ as variational parameters to find the ground

state configuration Σ0. This is, however, extremely difficult to do. What is done instead, as described

in [97], is to use group theory arguments to impose constraints on n⃗ in the various cases of interest,

and then perform the maximisation with a reduced number of variational parameters.

The presence of nonvanishing chemical potentials modifies also the dispersion relations of the light

mesons, which now have masses

mπ0 = mπ, (C.6a)

mπ± = mπ ∓ µI , (C.6b)

mη =

√︃
4m2

K −m2
π

3
, (C.6c)

mK± = mK ∓ 1

2
µI ∓ µS , (C.6d)

mK0,K̄0 = mK ± 1

2
µI ∓ µS , (C.6e)

where mπ and mK are the meson masses for µI = µS = 0. We observe that for given values of the

chemical potentials some of the mesons can become massless. By group theory arguments, it can be

shown that these massless modes correspond to Goldstone bosons for the spontaneous breaking of a

subgroup of U(1)I ×U(1)Y ×U(1)B, and that the corresponding fields acquire a nonvanishing vacuum

expectation value. This regime is known as meson condensation.

The chiral condensate can be parametrised as

⟨q̄RqL⟩ ≡ ⟨q̄q⟩0 e
iαΣ0, (C.7)

where Σ0 characterises the orientation of the ground state, and where we added a phase eiα associated

to the anomalous U(1)A symmetry. Nonperturbative effects generate a potential for α, which is

minimised for α = 0. Meson-condensed phases correspond to nontrivial orientations of the QCD

vacuum, Σ0 ̸= 13.

C.1 Kaon condensation

Let us explore more in detail the possibility of kaon condensation. As discussed in detail in [20], kaon

condensation has interesting effects on axion physics. It modifies the axion potential, with an effective

change in the axion mass. This, in turn, could lead, at even higher densities, to an axion-condensed

phase in which CP symmetry is spontaneously broken in the neutral sector of the theory.

Our starting point is the modification of the dispersion relation of the charged kaons when a

chemical potential for electric charge µ is introduced
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ωK±(k⃗) =
√︂

(m2
K±)n + k2 ± µ. (C.8)

Here we defined the in-medium kaon mass

(m2
K±)n =

1

f2π

(︃
−
⟨ūu+ s̄s⟩n

2
ms −

1

2
(n+ np)µ

)︃
, (C.9)

where the first contribution is just the usual kaon mass term in which we took into account the

change in the value of the quark condensate at finite density, and the second term just stems from the

introduction of the chemical potential in the kinetic term of the baryon field. By using eq. (5.7), one

finds

−
⟨ūu+ s̄s⟩n

2f2π
ms = m2

K

{︃
1− 1

2

[︃
b1 − b2

(︃
2np
n

− 1

)︃
+ b3

]︃
n

n0

}︃
, (C.10)

where m2
K = −ms ⟨q̄q⟩0 /f2π is the neutral kaon mass in vacuum, neglecting O(mu,d/ms) terms. It

follows that, since b1 ≫ b2, the kaon mass decreases with density. This is different from the case of

the in-medium charged pion mass

(︁
m2

π±
)︁
n
=

1

f2π

(︃
−
⟨︁
ūu+ d̄d

⟩︁
n
m̄+

1

2
(n− 2np)µ

)︃
, (C.11)

where m̄ = (mu + md)/2, which, in a neutron-rich background np/n < 1/2, becomes larger with

increasing density. This, together with an increase in the in-medium pion mass due to higher order

ChPT corrections [73], makes pion condensation in systems like NSs less likely than kaon condensation.

Condensation of the negative kaons occurs when ωK− (⃗0) = (µK±)n − µ = 0. This introduces a

nontrivial orientation of the QCD vacuum

Σ0 =

⎛⎜⎝ cosϑ 0 i sinϑ

0 1 0

i sinϑ 0 cosϑ

⎞⎟⎠, (C.12)

which gives a potential

V (ϑ) = −1

2
µ2f2π sin

2 ϑ− f2π(m
±
K)n cosϑ, (C.13)

that, if minimised, gives

cosϑ = min

[︃
1,

(m2
K±)n

µ2

]︃
. (C.14)

Now, assuming electric charge neutrality in the medium nEM = −⟨∂L/∂µ⟩ = 0, we obtain the

condition

−f2πµ sin2 ϑ+ cosϑnp − sin2
ϑ

2
nn − ne(µ)− nµ(µ) = 0, (C.15a)

nℓ(µ) = ϑ(|µ| −mℓ) sgn(µ)
(µ2 −m2

ℓ )
3/2

3π2
, ℓ = e, µ, (C.15b)

where np is the proton number density and nn = n − np is the neutron number density. Equa-

tions (C.14) and (C.15a) together yield the values of ϑ and µ as functions of the density n and the

proton fraction np/n. One can see that, for symmetric nuclear matter, np/n = 1/2, kaon condensation
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happens for n ≃ 2.5n0, so way above the density within control of our approximations in Chapter 5.
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