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Chapter 1

Introduction

Systems composed of quantum gases which follow the Bose-Einstein statistics (introduced in 1924) or
the Fermi-Dirac statistics (introduced in 1926) have been thoroughly studied in the last century, and
are of fundamental importance in modern physics of matter. Quantum statistical mechanics has been
essential in successfully describing a variety of phenomena ranging from the superfluidity of helium-4
to the heat capacity of metals.
The study of quantum gases has been object of a renewed interest in the last decades due to the
experimental results obtained thanks to the development of new techniques in laser cooling and evap-
orative cooling. With these techniques it was possible to bring dilute alkali-metal atoms to very low
temperatures (of the order of 100 nK) and achieve Bose-Einstein condensation (BEC) in 1995 [1] and
the Fermi quantum degeneracy in 1999 [2].
In this thesis we will firstly rederive the formulas for the finite temperature spatial distributions of
fermionic and bosonic quantum gases in a generic external potential, along with the Fermi tempera-
ture and the Bose transition temperature for the rigid box case, but generalizing those formulas for
D-dimensional spaces. We will show that these predictions are consistent with recent experiments
with ultracold gases.
Then we will study the case of the isotropic power-law potential in a D-dimensional space, deriving
the momentum distribution and eventually the Fermi temperature, Bose transition temperature and
the formula for the condensed fraction of a Bose gas, deducing the condition that allows a bosonic gas
to show the BEC. The power-law potential covers many common potentials studied in the theory and
used in recent experiments, the most important probably being the harmonic potential.
Throughout this thesis we will follow the approach introduced in [3] for studying quantum ideal gases
by solving integrals in a 2D-dimensional phase space.
The study of these systems in D-dimensional spaces is not just a mathematical abstraction but it is
motivated by recent experiments with reduced dimension.
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Chapter 2

External potential and rigid box in D
dimension

2.1 Quantum gases and the semiclassical limit

In this chapter we will consider a confined quantum gas of noninteracting identical fermions or bosons
in a D-dimensional space. We will call |α〉 the single-particle eigenstate of the Hamiltonian H, and
the corresponding energy eigenvalue εα.
We recall that, due to the different behavior of the wavefunction of fermions and bosons with respect
to exchange which leads to the Pauli exclusion Principle, calling Nα the number of particles in the
state |α〉 we have

Nα =

{
0, 1, 2, 3 . . . for bosons

0, 1 for fermions
(2.1)

Working in the grand canonical ensemble of equilibrium mechanics [4] we can write the average number
Nα of particles in the state |α〉 as

Nα =
1

eβ(εα−µ) ± 1
(2.2)

where the sign + is for fermions and the sign − is for bosons, while following the standard notation µ
is the chemical potential and β = 1

kT , with k the Boltzmann constant and T the absolute temperature.
Summing over all the values of εα we can obtain the average total number of particles N

N =
∑
α

Nα (2.3)

This condition fixes the chemical potential, which becomes a function of β and N .
In the case of fermions µ has no limitations, at zero temperature it is called the Fermi energy and
denoted by EF . From the Fermi energy we immediately find the Fermi temperature

TF =
EF
k

(2.4)

Below this temperature the particles begin to fill the lowest available single-particle states, with only
one particle being allowed per state in accordance with the Pauli exclusion Principle shown in equation
2.1. This phenomenon is called the Fermi quantum degeneracy.
In the case of bosons on the other hand we have that µ < ε0, where ε0 is the lowest single-particle energy
level. When µ approaches ε0 the function N0 diverges. The physical meaning of this is that the lowest
single-particle level becomes macroscopically occupied: this is the Bose-Einstein condensation
(BEC). One can calculate the condensed fraction N0

N and the Bose transition temperature TB by
studying the system at µ = ε0.
One can see the interpretation of the difference between bosons and fermions at low temperature in
figure 2.1.
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Figure 2.1: The different behavior of bosons and fermions approaching T = 0 K

If the number of particles is large and the energy level spacing is smaller than kT we can work in the
semiclassical limit. In this approximation the D-dimensional system is described by a continuum of
states, therefore instead of εα we can use the classical single-particle phase space energy ε(~r, ~p), where

~r =


r1
r2
r3
...
rD

 ~p =


p1
p2
p3
...
pD

 (2.5)

are respectively the position vector and the linear momentum vector.
In this context equation 2.2 becomes

n(~r, ~p) =
1

eβ(ε(~r,~p)−µ) ± 1
(2.6)

We will follow the usual procedure [5] and set the quantum elementary volume of the 2D-dimensional
phase space cell to hD = (2π~)D where h and ~ are respectively the Planck constant and the reduced
Planck constant. We can then write the average number N of particles in the D-dimensional space as

N =

∫
dDrdDp

(2π~)D
n(~r, ~p) (2.7)

If we introduce the spatial distribution

n(~r) =

∫
dDp

(2π~)D
n(~r, ~p) (2.8)

and the momentum distribution

n(~p) =

∫
dDr

(2π~)D
n(~r, ~p) (2.9)

it follows that N can also be written in the following ways:

N =

∫
dDrn(~r) =

∫
dDpn(~p) (2.10)
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The semiclassical formula for the density of states reads

ρ(ε) =

∫
dDrdDp

(2π~)D
δ(ε− ε(~r, ~p)) (2.11)

where δ(x) is the Dirac delta function. With this we can easily see that

N =

∫
dDrdDp

(2π~)D
n(~r, ~p) =

=

∫
dDrdDp

(2π~)D
1

eβ(ε(~r,~p)−µ) ± 1
=

=

∫ ∞
0

dε

(∫
dDrdDp

(2π~)D
δ(ε− ε(~r, ~p))

)
1

eβ(ε−µ) ± 1

It follows that we can write

N =

∫ ∞
0

dερ(ε)
1

eβ(ε−µ) ± 1
(2.12)

It is important to notice that for fermions in the limit β →∞ (so at zero temperature) where µ→ EF
the phase space distribution becomes

n(~r, ~p) = Θ(EF − ε(~r, ~p)) (2.13)

where Θ(x) is the Heaviside step function, as can be seen in figure 2.2.

EF
0

1

E

n
(~r
,~p

)

T0
T1
T2
T3

Figure 2.2: Fermi-Dirac distribution for different temperatures.

In the case of bosons equation 2.6 only describes the noncondensed thermal cloud. In this thesis we
will avoid studying the density profile of the condensed fraction, but the most important properties of
the Bose-Einstein gas at low temperatures (i.e. the BEC transition temperature TB and the condensed
fraction N0

N ) can be obtained by studying the noncondensed fraction (thermal cloud).

2.2 Confining external potential

We will now consider an ideal Fermi or Bose gas in an external confining potential U(~r), again in a
D-dimensional space. We know that the classical single-particle energy can be written as

ε(~r, ~p) =
~p 2

2m
+ U(~r) (2.14)

where ~p 2

2m is the kinetic energy and m is the mass of the particle.
We can now begin our study by showing a preliminary result:
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Theorem 2.2.1. The semiclassical density of states can be approximated as

ρ(ε) =
( m

2π~2
)D

2 1

Γ
(
D
2

) ∫ dDr(ε− U(~r))
D−2
2 (2.15)

where Γ(x) is the Euler gamma function.

Proof. From equations 2.11 and 2.14 we have

ρ(ε) =

∫
dDrdDp

(2π~)D
δ(ε− ε(~r, ~p)) =

=

∫
dDrdDp

(2π~)D
δ

(
ε−

(
~p 2

2m
+ U(~r)

))
To solve this we will recall a formula which will be used frequently throughout this thesis [6]. Suppose
we have a function f such that f(~x) = f(|~x|) (f only depends upon the distance from the origin) and
λn is the Lebesgue measure in Rn, we have∫

Rn
f(~x)dλn(~x) = sn−1

∫ +∞

0
rn−1f(r)dr (2.16)

where sn−1 = λSn−1(Sn−1) is the measure of the (n− 1)-dimensional unit sphere, which reads

sn−1 = nλn(Bn) = n
π
n
2

Γ
(
n
2 + 1

) (2.17)

Bn being the n-dimensional unit ball.
With this we can write

ρ(ε) =
1

(2π~)D

∫
dDrD

π
D
2

Γ
(
D
2 + 1

) ∫ +∞

0
dppD−1δ

(
ε−

(
p2

2m
+ U(~r)

))
We now need to exploit the following property of the Dirac delta function:

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

(2.18)

where xi are the points such that
g(xi) = 0

so that we can substitute1

δ

(
ε−

(
p2

2m
+ U(~r)

))
= δ

(
ε− p2

2m
− U(~r)

)
=

=
δ
(
p−

√
2m(ε− U(~r))

)
√

2(ε−U(~r))
m

We then get

ρ(ε) =
Dπ

D
2

(2π~)D
1

Γ
(
D
2 + 1

) ∫ dDr

√
m

2(ε− U(~r))
(2m)

D−1
2 (ε− U(~r))

D−1
2

which eventually leads to equation 2.15, after a few calculations and remembering that for n ∈ N

Γ(n) = (n− 1)!

1Remembering that we are integrating in [0,+∞].
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It is essential now to introduce the Fermi function and the Bose function [7] [8].
The Fermi function is given by

fn(z) =
1

Γ(n)

∫ ∞
0

dy
ze−yyn−1

1 + ze−y
(2.19)

while the Bose function is

gn(z) =
1

Γ(n)

∫ ∞
0

dy
ze−yyn−1

1− ze−y
(2.20)

These two functions are connected by the property

fn(z) = −gn(−z)

For |z| < 1 they can be rewritten as

fn(z) =

∞∑
`=1

(−1)`+1 z
`

`n
(2.21)

and

gn(z) =
∞∑
`=1

z`

`n
(2.22)

Another property of the gn function which we will need later on is that gn(1) = ζ(n), where ζ is the
Riemann ζ-function.
We can now state two theorems about ideal Fermi and Bose gases in an external potential.

Theorem 2.2.2. For an ideal Fermi gas in an external potential U(~r) and D-dimensional space the
finite temperature spatial distribution is

n(~r) =
1

λD
fD

2

(
eβ(µ−U(~r))

)
(2.23)

where

λ =

(
2π~2β
m

) 1
2

is the thermal length and µ the chemical potential. The zero temperature spatial distribution is

n(~r) =
( m

2π~2
) 1

Γ
(
D
2 + 1

)(EF − U(~r))
D
2 Θ(EF − U(~r)) (2.24)

where EF is the Fermi energy.

Proof. To find the spatial distribution defined in equation 2.8 we need to integrate 2.6 over the
momenta with the sign +. Using again the formula 2.16 we have

n(~r) =

∫
dDp

1

(2π~)D
1

e
β
(
~p 2

2m
+U(~r)−µ

)
+ 1

=

=
1

(2π~)D
Dπ

D
2

Γ
(
D
2 + 1

) ∫ +∞

0
dp

pD−1

e
β
(
p2

2m
+U(~r)−µ

)
+ 1

=

=
1

(2π~)D
Dπ

D
2

Γ
(
D
2 + 1

) ∫ +∞

0
dp
pD−1eβ(µ−U(~r))e−β

p2

2m

1 + eβ(µ−U(~r))e−β
p2

2m

If we now define z = eβ(µ−U(~r)) and y = β p2

2m we can rewrite the integral as follows

n(~r) =
π
D
2

(2π~)D

(
2m

β

)D
2 1

Γ
(
D
2

) ∫ +∞

0

ze−yy
D
2
−1

1 + ze−y
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It is clear that using the definition of the Fermi function and of thermal length this becomes

n(~r) =

(
m

2π~2β

)D
2

fD
2

(z) =

=
1

λD
fD

2
(z)

which is the result we were looking for.
In the limit T → 0 we need to integrate the distribution 2.13

n(~r) =
1

(2π~)D

∫
dDpΘ

(
EF −

~p 2

2m
− U(~r)

)
=

=
1

(2π~)D
Dπ

D
2

Γ
(
D
2 + 1

) ∫ +∞

0
dppD−1Θ

(
EF −

p2

2m
− U(~r)

)
As a function of p the Θ is different from 0 only in

[
0,
√

2m(EF − U(~r))
]
, we can then restrict the

domain and compute the integral

n(~r) =
1

(2π~)D
Dπ

D
2

Γ
(
D
2 + 1

)Θ(EF − U(~r))

∫ √2m(EF−U(~r))

0
dppD−1 =

=
1

(2π~)D
Dπ

D
2

Γ
(
D
2 + 1

)Θ(EF − U(~r))
1

D
(2m(EF − U(~r)))

D
2

which leads to the desired result.

The second theorem is analogous to the one we just discussed but this time we are considering an
ideal Bose gas.
Theorem 2.2.3. For an ideal Bose gas in an external potential U(~r) and D-dimensional space the
finite temperature spatial distribution is

n(~r) =
1

λD
gD

2

(
eβ(µ−U(~r))

)
(2.25)

where λ is the thermal length and µ the chemical potential.

Proof. The proof is identical to the one already provided for fermions, one only need to substitute the
sign + with a − in equation 2.6, then again using the substitution z = eβ(µ−U(~r)) one gets the finite
temperature spatial distribution.

These theorems are a generalization of the classical results for ideal homogeneous Fermi and Bose
gases, they allow us to study the system in the 3-dimensional space or in a space with reduced dimen-
sion and in a generic confining external potential.

2.3 The D-dimensional rigid box

We can now show how these last two theorems allow us to study the Fermi temperature and Bose
transition temperature in the rigid box case, and comparing the results we will obtain with the classical
ones will assess the validity of our methods.
Setting U(~r) = 0 (which translates to studying the box of volume V ) and imposing the normalization
condition 2.10 to the zero temperature spatial distribution for a Fermi gas 2.24 we have∫

dDrn(~r) =

∫
dDr

( m

2π~2
) 1

Γ
(
D
2 + 1

)E D
2
F Θ(EF ) =

= V
( m

2π~2
)D

2 1

Γ
(
D
2 + 1

)E D
2
F =

= N
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By solving for EF = kTF we can easily get

kTF =

(
2π~2

m

)[
Γ

(
D

2
+ 1

)
n

] 2
D

(2.26)

where n = N
V is the homogeneous density of particles.

For the Bose transition temperature we must remember that at low temperatures we have µ = ε0 and
that in the case of a box of volume V → ∞ we have ε0 → 0. This is due to the wavenumber of the
lowest single-particle energy state being inversely proportional to the volume of the box, which causes
the momentum to approach 0. It can be easily seen for a particle in a 1-dimensional box but it holds
in general.
Keeping this in mind along with the fact that gn(1) = ζ(n) we can write∫

dDrn(~r) =

∫
dDr

( m

2π~2
)D

2
gD

2
(eβε0) =

= V
( m

2π~2
)D

2
ζ

(
D

2

)
=

= N

In the end we have

kTB =
2π~2

m

(
n

ζ
(
D
2

)) 2
D

(2.27)

We can now compare these formulas with the known ones for the D = 3 case. Setting v = 1
n equations

2.23 and 2.25 become

λ3

v
=

{
f 3

2
(z) for fermions

g 3
2
(z) for bosons

(2.28)

remembering that the second equation only describes the noncondensed cloud. These are the well
known formulas for ideal quantum gases in a 3-dimensional box.
We can now compute the Fermi temperature and Bose temperature for D = 3, using the fact that
Γ
(
5
2

)
= 3

4

√
π

kTF =
~2

2m

(
6π2

v

) 2
3

(2.29)

kTB =
2π~2

m
(
vζ
(
3
2

)) 2
3

(2.30)

These results are the same one can find in [4], showing the effectiveness of our approach.
Another thing we can notice is that for D = 2 the Riemann ζ function diverges, which shows us that
Bose-Einstein condensation can not happen in 2-dimensional spaces (in the box potential case, we
will see that this does not hold for different potentials later on). This is another known fact and a
confirmation of the validity of equation 2.27.

2.4 Experimental results for a 3-dimensional box

Despite being the simplest and most studied system, the low temperature quantum gas confined in a
box potential is extremely difficult to achieve, as it is usually much easier to create a harmonic trap. It
wasn’t until these last years that state-of-the-art experiments with ultracold gases managed to create
quasi-uniform box potentials.
We will now briefly describe a recent experiment [9] which achieved Bose-Einstein condensation in a
3-dimensional box. Without entering into the detail, a sample of 87Rb atoms has been pre-cooled in
a harmonic trap and then loaded in a box trap. Figure 2.3 shows a scheme of the apparatus: in a)
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we can see that the box is composed of three 532 nm laser beams (one ”tube” beam and two ”sheet”
beams) confining the gas in a cylindrical region. These green beams are created reflecting a single
Gaussian beam on a phase-imprinting spatial light modulator, as shown in b). The gravitational force
is also cancelled by a magnetic field gradient.
c) shows the loading of the atoms in the box after being cooled in a harmonic trap, while in d) we can
see the images of the cloud just before and after being loaded in the box, along with the corresponding
density profiles. The colors represent the optical density (OD), which is the standard way of measuring
the atomic density in these experiments (it is obtained recording the absorption of a probe beam and
the resulting intensity is related to the atomic density).
The blue and green dashed lines are the predicted density profiles of a respectively harmonic potential
and box potential, and we can see that the green line perfectly fits the profile of the box trap.

Figure 2.3: A scheme of the experimental apparatus and the images of the gas before and after being loaded
into the box. Adapted from [9].

Evaporative cooling is then used to bring the N ≈ 6× 105 atoms (which after being confined in the box
have temperature of T ≈ 140 nK) below the condensation temperature. Evaporative cooling roughly
consists in selecting the hottest atoms of the sample and removing them from the trap, then waiting
for the system to re-thermalize at a lower average temperature and then iterate the procedure until
the desired temperature is reached.
The results are shown in figure 2.4: P and P0 are respectively the trapping power and the total laser
power, we can see that as the evaporative cooling brings down the temperature there is no dramatic
effect on the atomic distribution. This confirms that the system is approximately a uniform box poten-
tial, as with harmonic trapping the condensation is both in the position space and in the momentum
space.
We can however study the momentum distribution by turning off the trap and letting the gas expand
for a time τ = 50 ms and then taking an image of the result. This way one can study the momentum
profile of the gas. We can see (again in image 2.4) that as the temperature gets lower eventually a
peak in the momentum distribution starts to appear, which indicates the presence of Bose-Einstein
condensation.
Fitting the experimental data one can find a Bose temperature TB = (92± 3)nK, which is consistent

with the theoretical prediction for a uniform gas in a rigid box T 0
B = (98± 10)nK.
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Figure 2.4: Evaporation and Bose-Einstein condensation in a 3-dimensional box. Adapted from [9].

We have thus seen that the approach we have followed leads us to results which are consistent both
with the milestone equations for ideal Fermi and Bose quantum gases confined in a box and with the
experimental results achieved in recent studies.





Chapter 3

Power-law potential in D dimensions

3.1 Power-law potential and the density of states

As we have already seen it is very difficult to create a uniform potential in experiments, so it is
important to study other types of confining potentials. The power-law potential has the form

U(~r) = Arn (3.1)

where r = |~r| =
(∑D

`=1 x
2
`

) 1
2

and it is important since it includes the harmonic potential, which is the

most widely used one in modern applications. Power-law potentials are also important for studying
the effects of adiabatic changes in the trap.

We introduce now a mathematical result that will be useful to us in the solution of the next integrals [8].
Let µ, ν ∈ C, λ ∈ R with Reµ > 0,Re ν > 0 and λ > 0. Then∫ 1

0
xµ−1(1− xλ)ν−1dx =

1

λ
B
(µ
λ
, ν
)

(3.2)

where B(x, y) is the Euler beta function, which can be written as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

We can now prove the following result:
Theorem 3.1.1. The density of states of a quantum gas in a power-law potential can be written as

ρ(ε) =
( m

2~2
)D

2

(
1

A

)D
m Γ

(
D
m + 1

)
Γ
(
D
2 + 1

)
Γ
(
D
2 + D

m

)εD2 +D
m
−1 (3.3)

Proof. We need to substitute the potential 3.1 in equation 2.15. Since we are working in the semiclas-
sical approximation, the integral is defined for ε > U(~r). We can then write

ρ(ε) =
( m

2π~2
)D

2 1

Γ
(
D
2

) ∫
ε>U(~r)

dDr(ε−Arn)
D−2
2 =

=
( m

2π~2
)D

2 1

Γ
(
D
2

) Dπ
D
2

Γ
(
D
2 + 1

) ∫ ( εA)
1
n

0
drrD−1(ε−Arn)

D−2
2

where we have followed the usual procedure of solving D-dimensional integrals since the potential is
a function of |~r|.

15
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We will now make use of the substitution x =
(
A
ε

) 1
n r which allows us to write the density of states in

the following form

ρ(ε) =
( m

2~2
)D

2 D

Γ
(
D
2

)
Γ
(
D
2 + 1

) ( 1

A

)D
n

ε
D
2
+D
n
−1
∫ 1

0
dxxD−1(1− xn)

D−2
2

We can now use the formula 3.2 and write

ρ(ε) =
( m

2~2
)D

2 D

n

(
1

A

)D
n

ε
D
2
+D
n
−1 Γ

(
D
n

)
Γ
(
D
2

)
Γ
(
D
2

)
Γ
(
D
2 + 1

)
Γ
(
D
2 + D

n

) =

=
( m

2~2
)D

2

(
1

A

)D
m Γ

(
D
m + 1

)
Γ
(
D
2 + 1

)
Γ
(
D
2 + D

m

)εD2 +D
m
−1

which is what we wanted to prove.

3.2 Fermi temperature and condensate properties

After finding the density of states we now have to find a formula for the momentum distribution
of both bosons and fermions, then we will be able to calculate the information we need about our
quantum gases, i.e. Fermi temperature, Bose transition temperature and the condensate fraction for
bosons.
We will begin with the Fermi gas:
Theorem 3.2.1. Let us consider an ideal gas of fermions in a power-law isotropic potential. The
finite temperature momentum distribution is

n(~p) =
1

(2~
√
π)D

Γ
(
D
n + 1

)
Γ
(
D
2 + 1

) ( 1

βA

)D
n

fD
n

(
eβ(µ−

~p 2

2m
)

)
(3.4)

The zero temperature momentum distribution is

n(~p) =
1

(2~
√
π)D

1

Γ
(
D
2 + 1

) ( 1

A

)D
n
(
EF −

~p 2

2m

)D
n

Θ

(
EF −

~p 2

2m

)
(3.5)

The Fermi energy EF and the Fermi temperature TF are given by

EF = kTF =

[(
2~2

m

)D
2

A
D
n

Γ
(
D
2 + 1

)
Γ
(
D
n + 1

)Γ

(
D

2
+
D

n
+ 1

)
N

] 1
D
2 +Dn

(3.6)

Proof. To find the momentum distribution we need to use formula 2.9 integrating the function 2.6

with the sign +, with ε(~r, ~p) = ~p 2

2m +Arn

n(~p) =

∫
dDr

1

(2π~)D
1

e
β
(
~p 2

2m
+Arn−µ

)
+ 1

=

=
1

(2π~)D
Dπ

D
2

Γ
(
D
2 + 1

) ∫ +∞

0
drrD−1

e−βAr
n
e
β

(
µ− ~p 2

2m

)

1 + e−βArne
β
(
µ− ~p 2

2m

)

with the substitutions z = e
β

(
µ− ~p 2

2m

)
and y = βArn and using the definition of Fermi function we get

n(~p) =
1

(2π~)D
Dπ

D
2

Γ
(
D
2 + 1

) 1

n

(
1

βA

) 1
n
(

1

βA

)D
n
− 1
n
∫ +∞

0
dy
y
D
n
−1e−yz

1 + e−yz
=

=
1

(2π~)D
Dπ

D
2

Γ
(
D
2 + 1

) 1

n

(
1

βA

)D
n

Γ

(
D

n

)
fD
n

(z) =

=
1

(2
√
π~)D

Γ
(
D
n + 1

)
Γ
(
D
2 + 1

) ( 1

βA

)D
n

fD
n

(z)
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and so we have found the momentum distribution.
The zero temperature momentum distribution on the other hand can be found by integrating equation
2.13:

n(~p) =

∫
dDr

1

(2π~)D
Θ

(
EF −

~p 2

2m
−Arn

)
=

=
1

(2π~)D
Dπ

D
2

Γ
(
D
2 + 1

) ∫ +∞

0
drrD−1Θ

(
EF −

~P 2

2m
−Arn

)

The Θ function is nonzero only for Arn < EF − ~p 2

2m , so we can write

n(~p) =
1

(2~
√
π)D

D

Γ
(
D
2 + 1

)Θ

(
EF −

~p 2

2m

)∫ ( 1
A)

1
n

(
EF− ~p 2

2m

) 1
n

0
drrD−1 =

=
1

(2~
√
π)D

1

Γ
(
D
2 + 1

) ( 1

A

)D
n
(
EF −

~p 2

2m

)D
n

Θ

(
EF −

~p 2

2m

)
Now we only need to find the Fermi temperature. To do this we need to use once again the normal-
ization condition 2.10 with the zero temperature momentum distribution

N =

∫
dDpn(~p) =

=
1

(2
√
π~)D

1

Γ
(
D
2 + 1

) ( 1

A

)D
n Dπ

D
2

Γ
(
D
2 + 1

) ∫ +∞

0
dppD−1

(
EF −

p2

2m

)D
n

Θ

(
EF −

p2

2m

)
=

=
1

(2~)D
DE

D
n
F(

Γ
(
D
2 + 1

))2 ( 1

A

)D
n
∫ √2mEF
0

dppD−1
(

1− p2

2m

)D
n

Setting now x = p2

2mEF
we get

N =
1

(2~)D
D(

Γ
(
D
2 + 1

))2 ( 1

A

)D
n

m
D
2 2

D
2
−1E

D
n
+D

2
F

∫ 1

0
dxx

D
2
−1(1− x)

D
n

and using equation 3.2 we can write

N =
( m

2~2
)D

2

(
1

A

)D
n Γ

(
D
n + 1

)
Γ
(
D
2 + 1

)
Γ
(
D
2 + D

n + 1
)E D

2
+D
n

F

finally by inverting this we can find EF = kTF .

The final part of our study will consist in finding the momentum distribution for bosons and the
essential properties of the condensate.
Theorem 3.2.2. Let us consider an ideal gas of bosons in a power-law isotropic potential. The finite
temperature noncondensed momentum distribution is

n(~p) =
1

(2~
√
π)D

Γ
(
D
n + 1

)
Γ
(
D
2 + 1

) ( 1

βA

)D
n

gD
n

(
e
β

(
µ− ~p 2

2m

))
(3.7)

The Bose transition temperature TB is

kTB =

[(
2~2

m

)D
2

A
D
n

Γ
(
D
2 + 1

)
Γ
(
D
n + 1

) 1

ζ
(
D
2 + D

n

)N]
1

D
2 +Dn

(3.8)

and the condensed fraction reads

N0

N
= 1−

(
T

TB

)D
2
+D
n

(3.9)

where N is the number of bosons in the gas, N0 is the number of condensed bosons.
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Proof. To find the finite temperature momentum distribution one only has to follow the same proce-
dure shown in the Fermi gas case, integrating equation 2.6 with the sign −.
Finding the Bose transition temperature is a little bit trickier. Using the semiclassical approximation
we have that the chemical potential µ is zero since the potential U(~r) has a minimum for rmin = 0 in
which U(rmin) = 0 and at the Bose temperature the chemical potential is the minimum of the energy.
Writing the Bose function as a power series as shown in 2.22 we have

N =

∫
dDp

1

(2~
√
π)D

Γ
(
D
n + 1

)
Γ
(
D
2 + 1

) ( 1

βA

)D
n

gD
n

(
e−β

~p 2

2m

)
=

=
1

(2~
√
π)D

Γ
(
D
n + 1

)
Dπ

D
2

Γ
(
D
2 + 1

)
Γ
(
D
2 + 1

) ( 1

βA

)D
n
∫ +∞

0
dppD−1gD

n

(
e−β

p2

2m

)
=

=
1

(2~)D
Γ
(
D
n + 1

)
Γ
(
D
2 + 1

)
Γ
(
D
2 + 1

)D( 1

βA

)D
n
∞∑
`=1

1

`
D
n

∫ +∞

0
dppD−1e−`β

p2

2m

We now need to set x = `β p2

2m and notice that∫ +∞

0
dxx

D
2
−1e−x = Γ

(
D

2

)
This way we can write

1

`
D
n

∫ +∞

0
dppD−1e−`β

p2

2m =
1

`
D
n
+D

2

(
2m

β

)D
2 1

2

∫ +∞

0
dxd

D
2
−1e−x =

=
1

`
D
n
+D

2

(
2m

β

)D
2 1

2
Γ

(
D

2

)
This way we can write N as

N =

(
m

β~2

)D
2 Γ

(
D
n + 1

)
Γ
(
D
2 + 1

) ( 1

βA

)D
n
∞∑
`=1

1

`
D
n
+D

2

We must now use the definition of the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
s ∈ C (3.10)

Now N becomes

N =
1

β
D
2
+D
n

( m
2~2

)D
2 Γ

(
D
n + 1

)
Γ
(
D
2 + 1

) ( 1

A

)D
n

ζ

(
D

n
+
D

2

)
Finally by solving this for β = 1

kTB
one gets the Bose transition temperature.

Below TB a macroscopic number N0 of particles occupies the single-particle ground-state of the system.
The previous equation as a function N(T ) gives the total number of particles for T = TB, and the
number N−N0 of noncondensed particles for any other value of T . Therefore we can find the condensed
fraction

N0

N
=
T
D
2
+D
n

B − T
D
2
+D
n

T
D
2
+D
n

B

= 1−
(
T

TB

)D
2
+D
n

We can make some important observations on these last theorems.
By setting n = 2 we have the case of the harmonic potential in a D-dimensional space, which has been
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thoroughly studied in the last decades. We have A = 1
2mω

2, where ω is the angular frequency of the
trap. We can also write this potential as

U(~r) =
1

2

U0

R2
r2

where R is a range parameter for the potential, so

A =
1

2

U0

R2

Substituting this in 3.8 we get

TB =
~
k

√
U0

m
ρ

1
D ζ(D)−

1
D

where ρ = N
RD

.
This result is exactly the same one that can be found in the literature for a Bose gas in D dimen-
sions [10], proving once again the correctness of this approach.

Finally we can see that in the formula of the BEC transition temperature one can find the function
ζ
(
D
2 + D

n

)
. The Riemann zeta function ζ(x) diverges for x ≤ 1, therefore in the case of an ideal Bose

gas in a power-law potential Bose-Einstein condensation is possible if and only if

D

2
+
D

n
> 1 (3.11)

This inequality is very useful as it covers many different cases.
For D = 3 one can see from 3.11 that BEC is possible both for the rigid box (Dn → 0) and for the
harmonic potential (n = 2).
When D = 2 we have that condensation is impossible for the potential box case since the ζ function
diverges, but it can happen for example for the harmonic trap.
Lastly, for D = 1 we have that BEC is possible for n < 2.





Chapter 4

Conclusions

In this thesis we have seen how using the grand canonical ensemble of equilibrium mechanics and the
semiclassical approximation it is possible to compute the main properties of quantum bosonic and
fermionic gases and predict the temperature at which phenomena such as the Fermi degeneracy and
the Bose-Einstein condensation occur. This has been done in a generic D-dimensional space and with
both a homogeneous and a power-law potential, which is useful for studying systems with reduced
dimensions and with different kinds of magneto-optical traps.

The study of quantum gases is a very fertile field, as there are many interesting effects that can only
be seen at extremely low temperatures. For example, in a Bose-Einstein condensate one can solve
the Gross-Pitaevskii equation (the Schrödinger equation for bosons which are in the same quantum
state) and find peculiar solutions such as the soliton or quantum vortices, which have been recently
observed.
Another interesting phenomenon that has been studied and observed is the BCS-BEC crossover, where
at very low temperatures weakly-correlated pairs of Fermions (Cooper pairs) can behave as bosons and
thus form a condensate. Cooper pairs are important in the description of superconductivity, neutron
stars and other quantum systems, so further studies on this subjects will probably lead to interesting
results.

Quantum gases are a field of study that is fundamental in physics of matter, and future research in
low temperature systems could lead to important applications hereafter. Of course a more thorough
treatment of theoretical and experimental advances in this field would require a more advanced math-
ematical formalism and an in-depth examination of recent experimental methods, which are beyond
the scope of this thesis.
We have nonetheless covered some extremely important aspects of fermionic and bosonic gases at very
low temperatures, which can be the basis for further studies.
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