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Schauder Space Counterparts of Some Theorems on The Neumann-Poincaré
Operator of D. Khavinson, M. Putinar and H.S. Shapiro

by Khai An TRAN

Layer potentials entered early into the main stream of mathematics as mathe-
matical tools. Their role in the development of the main problems of Mathematical
Physics of the XIX-th Century is well known. The dawn of modern spectral analysis
is also rooted in the attempts to exploit layer potentials as integral transforms with
a singular kernel.

The aim of Dissertation is studying spectral analysis properties of the double
layer potential operator, also known as Neumann-Poincaré operator. More specifi-
cally, we study Poincaré variational problems examined by D. Khavinson, M. Puti-
nar and H.S. Shapiro in Sobolev spaces in the frame of Schauder spaces.

The Dissertation is organized as follows. Chapter 1 collects the preliminaries
and notation of Functional Analysis and Potential Theory. In Chapter 2, we present
some properties of single and double layer potentials for the Laplace equation and
some basic results of potential theory in Schauder Spaces. In Chapter 3 we consider
boundary integral operator for the Laplace equation. After that, we collect some
results of spectral theory for the Laplace operator. Chapter 4 exploits the material of
Chapter 3 in order to prove the spectral properties of boundary integral operators
and a characterization of the ball. At the end of the Dissertation, we have enclosed
some Appendices with some results that we have exploited.
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1

Introduction

This Dissertation explains how the balance of inner-outer harmonic field energies
led Poincaré to an early discovery of a discrete spectrum of real critical values for
the Neumann-Poincaré operator.

The Neumann–Poincaré operator is a boundary integral operator which appears
naturally when solving classical boundary value problems using layer potentials.
We mention V.G. Mazya [Maz91]; S. Agmon, A. Douglis, L. Nirenbert [Nir59]; P.
Ebenfelt [Sha01; Sha02]; J.L. Lions; E. Magences [Mag72] as an example of their
works. Its study (for the Laplace operator) goes back to C. Neumann [Neu87] and
H. Poincaré [Poi97; Poi99] as the name of the operator suggests, and appeared in
the first time in T. Carleman’s Dissertation [Car16]. C. Neumann’s series method
was successfully applied it towards the solvability of Dirichlet’s problem on con-
vex domains. More general method to solve the Dirichlet problem was discovered
by Poincaré and called by him “balayage”. However, the convergence of Neumann
series and in general the invertibility of the double layer potential operator on the
boundary were computationally more accessible techniques.

In a long and technical memoir of 1897, Poincaré attacked the convergence of the
Neumann series on non-convex boundaries [Poi97]. Poincaré concludes his remarks
by the following words: ”After having established these results [concerning convergence
of the Neumann series] rigorously, I felt obliged in the two final chapters to give an idea of
the insights which initially led me to foresee these results. I thought that, despite their lack
of rigor, these could be useful as tools for research insofar as I had already used them suc-
cessfully once.” Poincaré’s variational principle was formulated in modern terms in a
recent D. Khavinson, M. Putinar and H.S. Shapiro’s article [Sha07] which serves as a
strarting point. The study of spectral properties of the Neumann-Poincaré operator
was initiated by S. Zaremba [Zar04]. In D. Khavinson, M. Putinar and H.S. Shapiro
paper [Sha07], the Neumann-Poincaré operator is not self-adjoint. Generally, in L2,
Neumann-Poincaré operator can be realized as a self-adjoint operator in the H−1/2

Sobolev space, provided a new inner product is introduced there.
One of the aims of this Dissertation is establishing the counterpart of some re-

sults Poincaré variational problem and related problems which were obtained by D.
Khavinson, M. Putinar and H.S. Shapiro in Sobolev Spaces in the frame of Schauder
spaces.

This dissertation consists of four chapters. We now describe in details the content
of each chapter.

Chapter 1: In this chapter we introduce some preliminary classical knowledge in
real analytic functions, Hölder continuous functions and the Schauder spaces
that we use thoughout the Dissertation. Terminology and basic facts of New-
tonian Potential Theory can be found in N.S. Landkof [Lan72] or D. Gilbarg;
N.S. Trudinger [Tru01]. We can also consult the monographs G.B. Folland’s
book [Fol99] L.C. Evan’s book [Eva10] or V.I. Burenkov’s book [Bur13].

Chapter 2: For the properties of harmonic functions, we refer to the classical text-
books of Evans [Eva10] and Folland [Fol95]. This content is not included in the
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dissertation. We warn that there is no consensus in the vast literature on the
subject of signs and constants in the definitions of potentials. We hope this will
not be a cause of any confusion.

Chapter two is devoted to the Green Identities and to the investigation of some
properties of the layer potentials corresponding to the fundamental solution of
the Laplace operator in Schauder spaces. This results are applied to the special
case of Laplace equations.

In Section 2.1, we introduce the Green Identites. The Green Identities play
an important role in the representation of the solutions for boundary value
problems. For more details of the proofs, we refer to Folland’s book [Fol95]
or to M. Dalla Riva, M. Lanza de Cristoforis and P. Musolino [CPM19] or the
monograph of M. Lanza de Cristoforis [Criad].

In Section 2.2, we introduce the Newtonian kernel, a fundamental solution for
the Laplace operator,

Sn(x− y) =


1
sn

log |x− y| (n = 2)

1
(2− n)sn

|x− y|2−n (n ≥ 3)

for all x, y ∈ Rn, x 6= y, where sn is the surface area of the unit sphere in Rn .
Then, we introduce

vΩ[φ](x) ≡
∫

∂Ω
Sn(x− y)φ(y)dσy ∀x ∈ Rn

as single (or simple) layer potential, and if ψ ∈ C0(∂Ω), we denote

wΩ[ψ](x) ≡
∫

∂Ω
ψ(y)

∂

∂νΩ(y)
Sn(x− y)dσy ∀x ∈ Rn

as double layer potential. We introduce classical Schauder Regularity results
and the Jump Formulas of the potentials for the normal derivative of a sin-
gle layer potential and for the limit value of the double layer potential on the
boundary.

In section 2.3, we shall consider the basic boundary value problems for the
Laplace operator in an open, bounded set of Ω class C1,α for some α ∈ ]0, 1]
and in its exterior Ω−.

In the last section, we consider the Dirichlet problem for Laplace equation a
bounded domain. In particular, by the third Green Identity, we can reformu-
late the Laplace equation by integral equations, the so called Fredholm equa-
tion of second kind. Using the Fredholm Alternative Theorem, such integral
equation has a unique solution and accordingly the second layer potential sat-
isfies Dirichlet problem in Ω.

Chapter 3: In this chapter, we demonstrate certain properties of boundary integral
operators related to the single layer potential vΩ and double layer potential
wΩ.

In Section 3.1, we will review certain results of Fredholm operators in dual sys-
tems. We also recall some classical theorems of Functional Analysis on Banach
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spaces by following Chapter 5 of M. Dalla Riva, M. Lanza de Cristoforis and P.
Musolino [CPM19]. We do not include any proof.

In Section 3.2, we study the boundary integral operators associated to the sin-
gle and double Layer potentials. We define the Neumann-Poincaré operator
WΩ from C1,α(∂Ω) to itself and its transpose operator Wt

Ω from C0,α(∂Ω) to
itself defined by setting

WΩ f (x) = −
∫

∂Ω
f (y)νΩ(y)∇Sn(x− y)dσy, ∀ f ∈ C1,α(∂Ω),

Wt
Ω f (x) =

∫
∂Ω

f (y)νΩ(x)∇Sn(x− y)dσy, ∀ f ∈ C0,α(∂Ω).

Then we rewrite the jump formulas in terms of the boundary operators WΩ
and Wt

Ω.

In Section 3.3, we shall be concerned with the relation between the spectral
analysis of the Neumann-Poincaré operator and some extremal problems from
comparing the energies in Ω, Ω− of the single layer potentials. For that pur-
pose, we will use the space of harmonic function in Shauder Space,

H ={h+ ∈ C1,α(Ω)|∆h+ = 0 in Ω}
× {h− ∈ C1,α

loc (Ω
−)|∆h− = 0 in Ω−, h− harmonic at infinity}.

Then we consider the finite enegry semi-norm

‖h‖2
H =

∫
Ω
|∇h+|2dx +

∫
Ω−
|∇h−|2dx.

Then we have
H = S⊕D

where S,D are subspace of single and double layer potentials, respectively
(c.f. D. Khavinson, M. Putinar, H.S. Shapiro [Sha07]). Plemelj’s symmetrization
principle and a non-trivial observation of general nature lead to the following
theorem, whose main points were foreseen by Poincaré [Poi97].

Chapter 4: This chapter presents results on Sobolev spaces of D. Khavinson, M.
Putinar, H.S. Shapiro’s paper [Sha07]. Then, we shall construct similar results
on Schauder spaces by using potential theory.

In Section 4.1, we study Poincaré’s variational problem: as study of an angle
operator between decompositions of the subspace of single and double layer
potentials. We have two Hermitian forms on H

J+[ f ] =
∫

Ω
|∇VΩ[ f ]|2dx, J−[ f ] =

∫
Ω−
|∇VΩ[ f ]|2dx

Poincaré proposes to analyze the characteristic value of the Reyleigh quotient
J−[ f ]− J+[ f ]
J−[ f ] + J+[ f ]

. Poincaré’s variational principle was formulated in modern terms

in a recent article [Sha07]. Now, we extend there results in Schauder spaces.

In Section 4.2 and Section 4.3, we consider the case in unit ball and another
characteristic property of the ball. Poincaré has conjectured (by analogy with
the sphere) that the spectrum of WΩ is always non-negative in Rn, n ≥ 3 and
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moreover that WΩ is injective. These assertions are true in the case the bound-
ary is a sphere. WΩ is never self-adjoint unless Ω is a ball. However, using the
so-called symmetrization procedure one can show that WΩ has indeed a real
spectrum and its eigenfunctions do span the Schauder space.

The Appendix: The Appendix contains some results and proofs that support the
results in the main text. It includes Spectral Theory in Functional Analysis, c.f.
B. Helffer [Hel13]; E.B. Davies [Dav95], and Spherical Harmonics, c.f. Folland
[Fol95]; R.P. Feynman, R.B. Leighton, M. Sands [San], N.N. Lebedev [Leb72]
which are useful to solve the Laplace equation on the ball.
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Chapter 1

Preliminaries and Notation

We denote by N, Z, R, C, the set of integer numbers, the set of real numbers, the set
of complex numbers, respectively. We denote K be either field R or C. Let a real
number α ∈ ]0, 1[ and Ω be open bounded subset of Rn of class C1,α. We denote by
Ω− ≡ Rn \Ω is a exterior of Ω. We also remark that, when no misunderstanding
is possible, we will use the symbol I instead of IC0,α(∂Ω) or IC1,α(∂Ω) for the identity
operator from C0,α(∂Ω) to itself and from C1,α(∂Ω) to itself, respectively.
Let X be a set. We denote by DX = {(x1, x2 ∈ X × X : x1 = x2)} the diagonal of
X× X. If Y is also set, we denote by YX the set of maps from X to Y.
Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be normed spaces on K. Let U and V be subsets of X
and Y, respectively. We denote by U be the closure of U, by ∂U the boundary of U,
and by diam(U) ≡ sup{‖x− y‖X : x, y ∈ U} the diameter of U. We denote either by
U+ or U̇ the interior of U and U− by exterior of U. We set U+ ≡ U̇ and U− ≡ X \U.
We endow the space X × Y with the norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X + ‖y‖Y
for all (x, y) ∈ X×Y while we use the Euclidean norm for Rn.

The symbol | · | denotes the Euclidean modulus in Rn or in C. For all R ∈
]0,+∞[, x ∈ Rn, xj denotes the j− th coordinate of x, and Bn(x, R) denotes the ball

Bn(x, R) ≡ {y ∈ Rn : |x− y| < R},

and Bn be the unit ball {y ∈ Rn : |y| < 1}.
Let Ω be an bounded subset of Rn. The space of m times continuously differen-

tiable real-valued (resp. complex-valued) functions on Ω is denoted by Cm(Ω, K),
or more simply by Cm(Ω). Let r ∈ N \ {0}, f ∈ Cm(Ω)r. The s− th component of f
is denoted fs and the gradient matrix of f is denoted D f . Let β = (β1, . . . , βn) ∈Nn

and |β| = β1 + . . . + βn, xβ = xβ1
1 . . . xβn

n . Then Dβ = ∂|β|

∂xβ1
1 ...∂xβn

n
.

The subspace of Cm(Ω) of those functions f such that f and its derivatives Dβ f of
order |β| ≤ m can be extended with continuity to Ω is denoted Cm(Ω, K) or more
simply Cm(Ω̄). We consider the space

Cm
b (Ω) ≡ { f ∈ Cm(Ω) : Dβ f ∈ B(Ω), ∀β ∈Nn, |β| ≤ m}

endowed with the norm

‖ f ‖Cm
b (Ω) ≡ ∑

|β|≤m
sup
x∈Ω
|Dβ f (x)|

is a Banach space.
For some fixed α ∈ ]0, 1], then f is α-Hölder continuous provided that

| f : D|α ≡ sup
{
| f (x)− f (y)|
|x− y|α : x, y ∈ D, x 6= y

}
< ∞.
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If α = 1, we say that f is Lipschitz continuous provided that f is 1 - Hölder continu-
ous and set Lip( f ) ≡ | f : D|1.

Let m ∈N, α ∈ ]0, 1]. The Schauder space of exponents m, α is defined as

Cm,α(Ω) ≡ { f ∈ Cm(Ω) : Dη f ∈ C0,α(Ω), ∀η ∈Nn, |η| = m}.

We define the norm in Cm,α(Ω) as follows

‖ f ‖Cm,α(Ω) = sup ‖ f ‖Cm(Ω) + ∑
|η|=m

|Dη f |α, ∀ f ∈ Ck,α(Ω).

We define the spaces Cm,α(∂Ω) for k ∈ {0, . . . , m} by exploiting the local parametriza-
tions (cf. Gilbarg and Trudinger [Tru01]). The trace operator from Ck,α(Ω) to Cm,α(∂Ω)
is linear and continuous. For standard properties of functions in Schauder spaces,
we refer to Gilbarg and Trudinger [Tru01].
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Chapter 2

Layer Potentials in Schauder
Spaces

2.1 Green Identities

We remind the first Green formulae in interior and exterior domain

Theorem 2.1 (First Green’s Identity in interior domains).
Let Ω be an open bounded subset of Rn of class C1,α. If u, v ∈ C1(Ω), v ∈ C2(Ω) and

u∆v ∈ L1(Ω), then ∫
Ω
∇u∇vdx +

∫
Ω

u∆vdx =
∫

∂Ω
u

∂v
∂ν

dσ.

Proof. See for example in [Fol95], page 69.

Theorem 2.2 (Second Green’s Identity in interior domains).
Let Ω be an open bounded subset of Rn of class C1,α. If u, v ∈ C1(Ω)∩ ∈ C2(Ω) and

u∆v, v∆u ∈ L1(Ω), then∫
Ω

∆uv− u∆vdx =
∫

∂Ω

∂u
∂ν

v− u
∂v
∂ν

dσ.

Proof. See for example in [Fol95], page 69.

Corollary 2.1 (First Green’s Identity in exterior domains).
Let Ω be an open bounded subset of Rn of class C1,α. Let u, v ∈ C1(Ω−) be harmonic in

Ω− and harmonic in infinty. Then

lim
R→+∞

∫
Ω−∩Bn(0,R)

∇u∇vdx = −
∫

∂Ω
u

∂v
∂ν

dσ.

Proof. See for example in [Fol95], page 69.

Corollary 2.2 (Second Green’s Identity in exterior domains).
Let Ω be an open bounded subset of Rn of class C1,α. Let u, v ∈ C1(Ω−) be harmonic in

Ω− and harmonic in infinty. Then∫
∂Ω

∂u
∂ν

v− u
∂v
∂ν

dσ = 0.

Proof. See for example in [Fol95], page 69.

Theorem 2.3. (Third Green’s Identity)
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Let α ∈ ]0, 1]. Let Ω be an open bounded subset of Rn of class C1,α. If g ∈ C1,α(∂Ω),
and ∆u is integrable in Ω, then the following formula holds.

u(x) =
∫

Ω
∆u(y)Sn(x− y)dy +

∫
∂Ω

u(y)
∂

∂νΩ(y)
Sn(x− y)− ∂u

∂νΩ
(y)Sn(x− y)dσy,

(2.1.1)
for all x ∈ Ω, where νΩ denotes the outward unit normal to ∂Ω and

∂

∂νΩ(y)
Sn(x− y) ≡ −νΩ · ∇Sn(x− y), ∀(x, y) ∈ Rn × ∂Ω, x 6= y.

Proof. See for example [CPM19], Chapter 4.

2.2 Single and Double Layer Potential

We denote Sn(x− y) be the fundamental solution of Laplace equation,

Sn(x− y) =


1
sn

log |x− y| (n = 2)

1
(2− n)sn

|x− y|2−n (n ≥ 3)

for all x, y ∈ Rn, x 6= y, where sn is the surface area of the unit sphere in Rn. The
signs were chosen so that ∆Sn(x− y) = δ (Dirac’s delta function).

If φ ∈ C0(∂Ω), we denote

vΩ[φ](x) ≡
∫

∂Ω
Sn(x− y)φ(y)dσy ∀x ∈ Rn

as single (or simple) layer potential of support ∂Ω and moment φ associated to the
fundamental solution Sn, and if ψ ∈ C0(∂Ω), we denote

wΩ[ψ](x) ≡
∫

∂Ω
ψ(y)

∂

∂νΩ(y)
Sn(x− y)dσy ∀x ∈ Rn

where

∂

∂νΩ(y)
Sn(x− y) ≡ −νΩ(y)∇Sn(x− y) ∀(x, y) ∈ Rn × ∂Ω, x 6= y.

as double layer potential of support ∂Ω and moment ψ associated to the fundamen-
tal solution Sn.

We set

v+Ω[φ] = vΩ[φ]|Ω v−Ω[φ] = vΩ[φ]|Ω−

We have the following theorems, which clarifies the behavior of v−Ω[φ] and w−Ω[φ] at
infinity.

Theorem 2.4. Let α ∈ ]0, 1] and let Ω be bounded open subset of Rn of class C1,α. Let
φ ∈ C0(∂Ω), the following statments hold

1. For n ≥ 3, limx→∞ v−Ω[φ](x) = 0 and accordingly v−Ω[φ] is harmonic at infinity.

2. For n = 2, If
∫

∂Ω φ = 0, then limx→∞ v−Ω[φ](x) = 0 and accordingly v−Ω[φ] is
harmonic at infinity.
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Proof. see for example [CPM19], Chapter 4.

Theorem 2.5. Let α ∈ ]0, 1] and let Ω be bounded open subset of Rn of class C1,α. Let
ψ ∈ C0(∂Ω), the following statments hold

1. wΩ[ψ] is harmonic in Rn \ ∂Ω.

2. limx→∞ w−Ω[ψ](x) = 0 and accordingly wΩ[ψ] is harmonic at infinity.

Proof. see for example [CPM19], Chapter 4.

We have the following classical Schauder Regularity results for the restriction of
the single layer potential to Ω and Ω−. For a proof we refer to Miranda [Mir65],
page 307.

Theorem 2.6. Let α ∈ ]0, 1] and let Ω be bounded open subset of Rn of class C1,α.

1. If φ ∈ C0,α(∂Ω), then v+Ω[φ] belongs to C1,α(Ω). Moreover, the map v+Ω[·] is linear
and continuous from C0,α(∂Ω) to C1,α(Ω).

2. If φ ∈ C0,α(∂Ω), then then v−Ω[φ] belongs to C1,α
loc (Ω). Moreover, if r ∈ ]0, ∞[ and

Ω ⊂ Bn(0, r), then the map v−Ω[·]|Bn(0,r)\Ω is linear and continuous from C0,α(∂Ω)

to C1,α(Bn(0, r) \Ω).

In the next theorem, we introduce a know formula for the first order partial
derivatives of a single layer potential

Theorem 2.7. Let α ∈ ]0, 1] and let Ω be bounded open subset of Rn of class C1,α. Let
φ ∈ C0,α(∂Ω). Let j ∈ {1, . . . , n}. Let x̃ ∈ ∂Ω.

1. The principal value

p.v.
∫

∂Ω
φ(y)

∂

∂xj
Sn(x̃− y)dσy = lim

ε→0

∫
∂Ω\Bn(x̃,ε)

φ(y)
∂

∂xj
Sn(x̃− y)dσy

exists finite and we have the jump formula for the first order partial derivatives of a
single layer potential

lim
t→0∓

∂

∂xj
vΩ[φ](x̃ + tνΩ(x̃)) = ∓1

2
φ(x̃)(νΩ)j(x̃) + p.v.

∫
∂Ω

φ(y)
∂

∂xj
Sn(x̃− y)dσy.

2. The function νΩ∇Sn(x− y)φ(y) is integrable in y ∈ ∂Ω and we have the following
jump formula for the normal derivative of a single layer potential

∂

∂νΩ
v±Ω[φ](x̃) = ∓1

2
φ(x̃) +

∫
∂Ω

νΩ(x̃)∇Sn(x̃− y)φ(y)dωy.

Proof. see for example [CPM19], Chapter 4.

If Ω is a bounded open subset of Rn of calss C1,α for some α ∈ ]0, 1], then the
boundary ∂Ω is a compact local graph of Rn of class C1,α, and we can consider the
double layer potential∫

∂Ω
ψ(y)

∂

∂νΩ(y)
Sn(x− y)dσy = −

n

∑
l=1

∫
∂Ω

∂

∂xl
Sn(x− y)(νΩ)l(y)ψ(y)
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corresponding to Hölder continuous function ψ defined on ∂Ω. Next we introduce
the following known jump formula for the limiting value of the double layer poten-
tial on the boundary.

Theorem 2.8. Let α ∈ ]0, 1] and let Ω be bounded open subset of Rn of class C1,α. Let
ψ ∈ C0,α(∂Ω) and x̃ ∈ ∂Ω. Then we have the following jump formula for the double layer
potential

lim
t→0∓

wΩ[ψ](x̃ + tνΩ(x̃)) = ±1
2

ψ(x̃) + wΩ[ψ](x̃).

Proof. see for example [CPM19], Chapter 4.

The following theorem statement Schauder Regularity of double layer potential
to Ω and Ω−.

Theorem 2.9. Let α ∈ ]0, 1] and let Ω be bounded open subset of Rn of class C1,α.

1. If ψ ∈ C1,α(∂Ω) then the restriction wΩ[ψ]|Ω extends to function w+
Ω[ψ] of class

C1,α(Ω). Moreover, the map w+
Ω[·] is linear and continuous from C1,α(∂Ω) to C1,α(Ω).

2. If ψ ∈ C1,α(∂Ω) then the restriction wΩ[ψ]|Ω extends to function w−Ω[ψ] of class
C1,α

loc (Ω
−). Moreover, if r ∈ ]0, ∞[ and Ω ⊂ Bn(0, r), then the map w−Ω[·]|Bn(0,r)\Ω is

linear and continuous from C1,α(∂Ω) to C1,α(Bn(0, r) \Ω).

3. If ψ ∈ C1,α(∂Ω) and x̃ ∈ ∂Ω, then νΩ(x̃)∇w+
Ω[ψ](x̃) = νΩ(x̃)∇w−Ω[ψ]().

Proof. see for example [CPM19], Chapter 4.

2.3 Statement of the Fundamental Boundary Value Problems
for Laplace Operator

We now introduce the following boundary value problems for the Laplace operator
in the bounded open subset of Rn of class C1,α for some α ∈ ]0, 1] and on the exterior
Ω− which are important in the applications.

The interior Dirichlet boundary value problem
Given g ∈ C1,α(∂Ω), find u ∈ C1,α(Ω) ∩ C2(Ω) such that{

∆u = 0 in Ω,
u = g on ∂Ω.

(2.3.1)

The exterior Dirichlet boundary value problem
Given g ∈ C1,α(∂Ω), find u ∈ C1,α(Ω−) ∩ C2(Ω−) such that

∆u = 0 in Ω−,
u = g on ∂Ω− = ∂Ω,
u harmonic at infinity.

(2.3.2)

The interior Neumannn boundary value problem
Given g ∈ C0,α(∂Ω), find u ∈ C1,α(Ω) ∩ C2(Ω) such that{

∆u = 0 in Ω,
∂u

∂νΩ
= g on ∂Ω.

(2.3.3)
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The exterior Neumannn boundary value problem
Given g ∈ C0,α(∂Ω), find u ∈ C1,α(Ω−) ∩ C2(Ω−) such that

∆u = 0 in Ω−,
∂u

∂νΩ
= g on ∂Ω− = ∂Ω,

u harmonic at infinity.

(2.3.4)

Then, we mention the following known third Green Identity, which enables us to
write a function on Ω in terms of an integral operator applied to ∆u in Ω and of
integral operator applied to u|∂Ω and ∂u

∂νΩ
on ∂Ω and which turns out to useful in the

solution of the above interior boundary value problems.
Then one can prove a corresponding Green Identity for harmonic functions de-

fined on the exterior domain Ω−. Both the third Green identities in Ω and Ω− show
that we can write a large class of functions u in Ω and in Ω−, in term of integrals of
the forms ∫

∂Ω
µ(y)Sn(x− y)dσy,

i.e., as single (or simple) layer potential of support ∂Ω and moment µ associated to
the fundamental solution Sn, and in the form∫

∂Ω
ω(y)

∂

∂νΩ(y)
Sn(x− y)dσy,

i.e., as double layer potential of support ∂Ω and moment ω associated to the funda-
mental solution Sn and in terms of integrals of the form∫

Ω
Sn(x− y)τ(y)dy

which are volume potentials of support Ω associated to the fundamental solution Sn
and density τ and which are useful in solving the above boundary value problems
and in understanding the regularity of solutions which as u above can be written as
sums of the above layer potentials.

2.4 Dirichlet Problem in Ω

Let α ∈ ]0, 1] and let Ω be bounded open subset of Rn of class C1,α. By the third
Green Identity, if u ∈ C1,α(Ω) ∩ C2(Ω) solves the Dirichlet problem , then

u(x) = w+
Ω[u](x)− v+Ω

[
∂u

∂νΩ

]
(x), ∀x ∈ Ω,

where

v+Ω

[
∂u

∂νΩ

]
(x) ≡

∫
∂Ω

Sn(x− y)
∂u

∂νΩ
(y)dσy, ∀x ∈ Ω.

Since the singlularity of the kernel Sn(x − y) is weak, one could exploit the Vitali
Convergence Theorem 1 and prove that v+Ω is continuous in Ω. Then by the continu-
ity of both the left and the right hand side of the equality in Ω, we obtain

u(x) = w+
Ω[u](x)− v+Ω

[
∂u

∂νΩ

]
(x), ∀x ∈ Ω.

1This is a generalization of the better-known dominated convergence theorem.
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Now such a formula contains the unknown ∂u
∂νΩ

in the right hand side. Thus, if
we hope to exploit such a formula to solve the Dirichlet problem, we need to find
∂u

∂νΩ
, which is not a part of data of the Dirichlet Problem. A way to get rid of ∂u

∂νΩ
is to introduce the Green function for Dirichlet Problem, but to obtain the Green
function, we need to solve the explicitly a Dirichlet Problem, which we can solve
only in a limited number of cases.

We now to try to find an integral equation for ∂u
∂νω

. We exploit the jump properties

of wΩ[u] and the continuity of v+Ω
[

∂u
∂νΩ

]
, and equality u = g on ∂Ω, and we obtain

g(x) =
1
2

g(x) +
∫

∂Ω

∂

∂νΩ(y)
Sn(x− y)g(y)dσy +

∫
∂Ω

∂u
∂νΩ

(y)Sn(x− y)σy,

for all x ∈ ∂Ω, which we can rewrite as∫
∂Ω

∂u
∂νΩ

(y)Sn(x− y)σy =
1
2

g(x) +
∫

∂Ω

∂

∂νΩ(y)
Sn(x− y)g(y)dσy

for all x ∈ ∂Ω. Then, we may wonder we can solve such an integral equation on the
unknown ∂u

∂νΩ
, which is a Fredholm equation of the first kind. This certainly a way

to treat problem, the so-called direct method. However first kind Fredholm integral
equations are somewhat complicated.

Instead, here we follow the method of Fredholm, which consists on searching for
solution in the form

u(x) = w+
Ω[ψ](x) + v+Ω[φ](x), ∀x ∈ Ω,

with ψ and φ unknown functions. Then by exploiting the jump properties of the
double layer potential, and the continuity of the single layer potential, we obtain

g(x) =
1
2

ψ(x) +
∫

∂Ω

∂

∂νΩ
Sn(x− y)ψ(y)dσy +

∫
∂Ω

φ(y)Sn(x− y)σy, ∀x ∈ ∂Ω.

Then we observe that if the second integral in the right hand side were to be absent,
then we would deal with a Fredholm equation of the second kind. Namely, with

g(x) = −1
2

ψ(x) +
∫

∂Ω

∂

∂νΩ
Sn(x− y)ψ(y)dσy, ∀x ∈ ∂Ω. (2.4.1)

The method of Fredholm proposes to analyze such equation first. Since we have
deliberately deleted the second integral in the right hand size, we can imagine that
there may be some data g for which the Dirichlet Problem is solvable, but for which
such modified equation is not solvable. However, the Fredholm theory allows to
characterize such data g.

We consider ase a case which the equation (2.4.1) can be solved for all data
g ∈ C1,α(∂Ω). Namely the case in which both Ω amd Ω− are connected. Now,
by Theorem of Schauder implies that the integral operator W from C1,α(∂Ω) to itself
defined by WΩ[ψ] ≡ wΩ[ψ]|∂Ω, ∀ψ ∈ C1,α(∂Ω) is compact. Since we have assumed
that Ω− is connected, one could prove that 1

2 I + WΩ is injective. Since WΩ is com-
pact and 1

2 I + WΩ is injective, the Fredholm Alternative Theorem implies that the
compact perturbation of the indentiy 1

2 I + WΩ is an isomorphism of C1,α onto itself.
Then for each datum g ∈ C1,α(∂Ω), the integral equation (2.4.1) has one and only
one solution ψ ∈ C1,α(∂Ω). Since ψ satisfies equation (2.4.1), then the function w+

Ω[ψ]
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satisfies the equatlity

w+
Ω[ψ]|∂Ω =

1
2

ψ + WΩ[ψ] = g on ∂Ω

and accordingly the function u ≡ w+
Ω[ψ] satisfies the boundary condition u = g on

∂Ω of the Dirichlet problem. On the other hand. the classical theorem of differen-
tiability fo integrals depending on a parameter implies that w+

Ω[ψ]|∂Ω ∈ C2(Ω) and
that ∆w+

Ω[ψ](x) = 0, ∀x ∈ Ω. Indeed, if y ∈ ∂Ω, then the function ∂
∂νΩ(y)Sn(x− y) of

variable x ∈ Ω is of class C∞ and is harmonic in Ω. Then w+
Ω[ψ] ∈ C1,α(Ω) ∩ C2(Ω).

One the other hand the Maximum Principle implies that the Dirichlet Problem has at
most a solution and thus w+

Ω[ψ] is the only solution of Dirichlet Problem in C1,α(Ω)∩
C2(Ω).
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Chapter 3

Boundary Integral Equations in
Schauder Spaces

3.1 Fredholm Alternative in Dual System

We introduce in Fredholm operators in dual systems, c.f. Wendland [Wen67; Wen70].
We do not include proofs, however, as these can be found in monographs such as
those of Kress’s book in [Kre14], as well as in the above mentioned papers of Wend-
land.

We tacitly assume that all linear spaces under consideration are complex linear
spaces; the case of real linear spaces can be treated analogously.

Definition 3.1. Let X, Y be linear spaces. A mapping

〈·, ·〉 : X×Y → C

is called a bilinear form if

〈α1ϕ1 + α2ϕ2, ψ〉 = α1 〈ϕ1, ψ〉+ α2 〈ϕ2, ψ〉 ,
〈ϕ, β1ψ1 + β2ψ2〉 = β1 〈ϕ, ψ1〉+ β2 〈ϕ, ψ2〉

for all ϕ1, ϕ2, ϕ ∈ X, ψ, ψ1, ψ2 ∈ Y, α1, α2, β1, β2 ∈ C. The bilinear form is called non-
degenerate if for every ϕ ∈ X with ϕ 6= 0 there exists ψ ∈ Y such that 〈ϕ, ψ〉 6= 0; and for
every ψ ∈ Y with ψ 6= 0 there exists ϕ ∈ X such that 〈ϕ, ψ〉 6= 0.

Definition 3.2. Two normed spaces X and Y equipped with a non-degenerate bilinear form
〈·, ·〉 : X×Y → C are called a dual system and denoted by 〈X, Y〉.

Definition 3.3. Let 〈X1, Y1〉 and 〈X2, Y2〉 be two dual systems. Then two operators A :
X1 → X2, B : Y2 → Y1 are called adjoint (with respect to these dual systems) if

〈Aϕ, ψ〉 = 〈ϕ, Bψ〉

for all ϕ ∈ X1, ψ ∈ Y2.

Theorem 3.1 (Fredholm Alternative in a dual system).
Let 〈X1, X2〉 be dual system. Let K1 be a linear compact operator form X1 onto inself.

Let K2 be a linear compact operator form X2 onto inself. Assume that K1 is adjoint operator
with K2. Then one of the following statements holds:

• The operator IX1 + K1 is an isomorphism from X1 to itself and the operator IX2 + K2
is an isomorphism from X2 to itself.
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• The null space ker(IX1 + K1) and ker(IX2 + K2) have the same nonzero finite dimen-
sion and

Im(IX1 + K1) = {ϕ ∈ X1 : 〈ϕ, ψ〉 = 0 for all ψ ∈ ker(IX2 + K2)},
Im(IX2 + K2) = {ψ ∈ X2 : 〈ϕ, ψ〉 = 0 for all ϕ ∈ ker(IX1 + K1)}.

Proof. See for example in [Kre14], Chapter 4, page 45.

3.2 Boundary Integral Operators

Let Ω be a bounded domain of Rn, n ≥ 2, of class C1,α, for some 0 < α < 1. We
consider the integral kernels

K(x, y) :=
∂

∂νΩ(y)
Sn(x− y); K∗(x, y) :=

∂

∂νΩ(x)
Sn(x− y)

for all x, y ∈ ∂Ω \ {x, y ∈ ∂Ω : x = y}.

For n ≥ 2, since Ω is of class C1,α a classical argument of [Fol95], page 128, implies
the existence of CΩ,α > 0 such that

|(x− y)νΩ(x)| ≤ CΩ,α|x− y|1+α, x, y ∈ ∂Ω, x 6= y.

Hence, ∣∣∣∣ |(x− y)|νΩ(x)∇Sn(x− y)
|x− y|n

∣∣∣∣ ≤ CΩ,α

|x− y|n−1−α
.

This inequality note that K∗ is weakly singular and compact (see for instance [Tri92]
p. 128).

We denote the operator WΩ from C1,α(∂Ω) onto itself and Wt
Ω are from C0,α(∂Ω)

onto itself are defined by setting

WΩ f (x) = −
∫

∂Ω
f (y)νΩ(y)∇Sn(x− y)dσy, ∀ f ∈ C1,α(∂Ω)

Wt
Ω f (x) =

∫
∂Ω

f (y)νΩ(x)∇Sn(x− y)dσy ∀ f ∈ C0,α(∂Ω).
(3.2.1)

for all x ∈ ∂Ω.
As WΩ and Wt

Ω are also an integral operator with weakly singular kernel and then
it is also compact in ∂Ω. Note that WΩ and Wt

Ω are adjoint with respect to the dual
system 〈·, ·〉 defined by

〈φ, ψ〉∂Ω =
∫

φψdσ, φ ∈ C0,α(∂Ω), ψ ∈ C1,α(∂Ω). (3.2.2)

Theorem 3.2. Let Ω be a bounded open subset of Rn of class C1,α. Let φ, ψ ∈ C0,α(∂Ω).
Then Wt

Ω is adjoint operator of WΩ with respect to bilinear form (3.2.2).



3.2. Boundary Integral Operators 17

Proof. By Fubini-Tonelli Theorem, we have

〈WΩ[φ], ψ〉∂Ω

=
∫

∂Ω
ψ(z)

(∫
∂Ω

∂

∂νΩ(y)
Sn(x− y)φ(y)dσy

)
dσz

=
∫

∂Ω
φ(z)

(∫
∂Ω

∂

∂νΩ(y)
Sn(x− y)ψ(y)dσy

)
dσz

=
〈
φ, Wt

Ω[ψ]
〉

∂Ω .

By the compactness of the imbeddings of C1,α(∂Ω) into C1,β(∂Ω) and of C0,α(∂Ω)
into C0,β(∂Ω) for all β ∈ ]0, α[ , we can deduce that W is compact from C1,α(∂Ω) into
itself and Wt

Ω is compact from C0,α(∂Ω) into itself.
We now set VΩ[φ] = v[φ]|∂Ω. Let φ ∈ C0,α(∂Ω), ψ ∈ C1,α(∂Ω). The well known

the jump formulae become

v+Ω[φ]|∂Ω = v−Ω[φ]|∂Ω,

νΩ∇v+Ω[φ] = −
1
2

φ + Wt
Ωφ,

νΩ∇v−Ω[φ] =
1
2

φ + Wt
Ωφ,

w+
Ω[ψ]|∂Ω =

1
2

ψ + WΩψ,

w−Ω[ψ]|∂Ω = −1
2

ψ + WΩψ,

νΩ∇w+
Ω[ψ]|∂Ω = νΩ∇w−Ω[ψ]|∂Ω,

(3.2.3)

on ∂Ω.

Lemma 3.1. Let Ω be a bounded open subset of Rn of class C1,α. Let φ, ψ ∈ C0,α(∂Ω).
Then VΩ is self-adjoint operator with respect to bilinear form defined in formula (3.2.2).

Proof. We have

〈VΩφ, ψ〉∂Ω =
∫

∂Ω
VΩφψdσ

=
∫

∂Ω

∫
∂Ω

Sn(x− y)φ(y)ψ(z)dσydσz

=
∫

∂Ω
φ(z)

(∫
∂Ω

Sn(x− y)φ(y)dσy

)
dσz

= 〈φ, VΩψ〉∂Ω .

Now, we study the linear map 1
2 I + WΩ : C1,α(∂Ω) → C1,α(∂Ω) and the lin-

ear map 1
2 I + Wt

Ω : C0,α(∂Ω) → C0,α(∂Ω). Similarly, we study the linear the map
− 1

2 I + WΩ : C1,α(∂Ω) → C1,α(∂Ω) and the linear map − 1
2 I + Wt

Ω : C0,α(∂Ω) →
C0,α(∂Ω).
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Lemma 3.2. Let Ω be a bounded open subset of Rn of class C1,α. Let f ∈ C0,α(∂Ω). Then∫
∂Ω

(
−1

2
I + Wt

Ω

)
f dσ =

∫
∂Ω

f dσ.

Proof. See in example in [CPM19], Chapter 6.

Theorem 3.3. Let Ω be a bounded open subset of Rn of class C1,α. Let φ, ψ ∈ C0,α(∂Ω). If
f ∈ ker

(
− 1

2 I + Wt
Ω

)
, then V f ∈ ker

(
− 1

2 I + WΩ
)
.

Proof. See in example in [CPM19], Chapter 6.

Then we prove that VΩ is an isomorphism from ker
( 1

2 I + Wt
Ω

)
to ker

( 1
2 I + WΩ

)
.

Theorem 3.4. Let Ω be a bounded open subset of Rn of class C1,α. Let φ, ψ ∈ C0,α(∂Ω).
The map ker

(
− 1

2 I + Wt
Ω

)
to ker

(
− 1

2 I + WΩ
)

taken f by V f is isomorphism.

Proof. See in example in [CPM19], Chapter 6.

Hence, if Ω be a bounded open subset of Rn of class C1,α, then the map 1
2 I + WΩ

takes from C1,α(∂Ω) to itself and the map 1
2 I + Wt

Ω takes from C0,α(∂Ω) to itself are
isomorphism. Similar, The map− 1

2 I +WΩ takes from C1,α(∂Ω) to itself and the map
− 1

2 I + Wt
Ω takes C0,α(∂Ω) to itself are isomorphism.

By Schauder regularity, VΩ is bounded from C0,α(∂Ω) to C1,α(∂Ω).
In general, for all dimensions n ≥ 2 we have the following

Theorem 3.5. Let Ω be a bounded open subset of Rn of class C1,α. The map from C0,α(∂Ω)0×
R to C1,α(∂Ω) which takes (φ, ρ) to VΩ[φ] + ρ is an isomorphism, where

C0,α(∂Ω)0 = { f ∈ C0,α(∂Ω) :
∫

∂Ω
f dσ = 0}.

Proof. See in example in [CPM19], Chapter 6.

For n ≥ 3 we can show that VΩ is an isomorphism.

Theorem 3.6. If n ≥ 3, then VΩ is an isomorphism from C0,α(∂Ω) to C1,α(∂Ω).

Proof. See in example in [CPM19], Chapter 6.

We show that harmonic functions in a bounded open set and in the exterior of a
bounded open set can be written as a sum of a single layer and of a constant function.
The proof can be deduced by Theorems 3.5 and 3.6 and by the uniqueness of the
solution of the interior and exterior Dirichlet problems.

Proposition 3.1. Let Ω be a bounded open subset of Rn of class C1,α.

1. The map that takes a pair (µ, c) to v+Ω[µ] + c is a linear bijection from C0,α(∂Ω)0×R

to the space of the functions of C1,α(Ω) that are harmonic in Ω.

2. If n ≥ 3, then the map that takes a µ to v−Ω[µ] is a linear bijection from C0,α(∂Ω)

to the space of the functions of C1,α
loc (Ω

−) that are harmonic in Ω− and harmonic at
infinity.
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3. If n = 2, the map that takes a pair (µ, c) to v−Ω[µ] + c is a linear bijective from
C0,α(∂Ω)0 ×R to the space of the functions of C1,α

loc (Ω
−) that are harmonic in Ω−

and harmonic at infinity.

The statements are an immediate consequence of the third Green Identities in Ω
and Ω− and of the jump formulas:

Theorem 3.7. Let Ω be a bounded open subset of Rn of class C1,α. If u ∈ C1,α(Ω) is
harmonic in Ω, then

wΩ[u|∂Ω]− vΩ[νΩ∇u|∂Ω] =


u(x) in Ω,
1
2

u(x) on ∂Ω,

0 in Ω−.

Theorem 3.8. Let Ω be a bounded open subset of Rn of class C1,α. If u ∈ C1,α
loc (Ω

−) is
harmonic in Ω− and harmonic at infinity, then

−wΩ[u|∂Ω] + vΩ[νΩ∇u|∂Ω] + lim
x→∞

u(x) =


u(x) in Ω−,
1
2

u(x) on ∂Ω,

0 in Ω.

We define the hypersingular operator T[ψ] = ∂
∂νΩ(x)WΩ[ψ].

Lemma 3.3. Let Ω be a bounded open subset of Rn of class C1,α. Let φ, ψ ∈ C0,α(∂Ω).
Then T is self-adjoint operator via bilinear the form (3.2.2).

Proof. Let w1, w2 be two double layer with density φ, ψ.
By Green Identities, and by Jump formulae, we have

〈Tφ, ψ〉 =
∫

∂Ω
Tφψdσ

=
∫

∂Ω

∂w1

∂νΩ(x)

(∫
∂Ω

∂

∂νΩ(y)
Sn(y− z)φ(z)dσz

)
dσx

=
1
2

∫
∂Ω

∂w1

∂νΩ(x)
(
w+

2 [φ] + w−2 [φ]
)
(z)dσx

=
1
2

∫
∂Ω

(
w+

1 [ψ] + w−1 [ψ]
)
(x)

∂w2

∂νΩ(x)
dσx

=
∫

∂Ω

∂w2

∂νΩ(x)

(∫
∂Ω

∂

∂νΩ(y)
Sn(y− z)ψ(z)dσz

)
dσx

= 〈φ, Tψ〉 .

Definition 3.4. Let Ω be a bounded open subset of Rn of class C1,α. We denote by C+
Ω the

operator from C1,α(∂Ω)× C0,α(∂Ω) to C1,α(∂Ω)× C0,α(∂Ω) defined by

C+
Ω [φ, ψ] ≡

(
− 1

2 I + WΩ VΩ
T − 1

2 I + Wt
Ω

)(
φ
ψ

)
∀(φ, ψ) ∈ C1,α(∂Ω)× C0,α(∂Ω).
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The operator C+
Ω is said to be the Calderón projection in Ω.

Similarly, we denote by C−Ω− the operator from C1,α∂Ω)×C0,α(∂Ω) to C1,α(∂Ω)×C0,α(∂Ω)

C−Ω [φ, ψ] ≡
( 1

2 I + WΩ VΩ
T 1

2 I + Wt
Ω

)(
φ
ψ

)
∀(φ, ψ) ∈ C0,α(∂Ω)× C1,α(∂Ω).

The operator C−Ω is said to be the Calderón projection in exterior domain Ω−.

Theorem 3.9. Let Ω be bounded open subset of C1,α. Let u be harmonic in Ω and u ∈
C1,α(∂Ω). The boundary value and the normal derivative satisfy(

u
∂u
∂v

)
=

( 1
2 I + WΩ VΩ

T − 1
2 I + Wt

Ω

)(
u
∂u
∂v

)
Moreover, the operator CΩ : C0,α(∂Ω)× C1,α(∂Ω) → C1,α(∂Ω)× C0,α(∂Ω) takes (φ, ψ)
to CΩ[φ, ψ] such that C−Ω − C+

Ω = I.

Proof. This follows from the third Green Identity using the jump relations.
We have

C−Ω [φ, ψ]− C+
Ω [φ, ψ]

=

( 1
2 I + WΩ VΩ

T 1
2 I + Wt

Ω

)(
φ
ψ

)
−
(
− 1

2 I + WΩ VΩ
T − 1

2 I + Wt
Ω

)(
φ
ψ

)
=

(
φ
ψ

)
for all (φ, ψ) ∈ C1,α(∂Ω)× C0,α(∂Ω).

3.3 Spectral Analysis of Neumann - Poincaré Operator

Let Ω be a bounded open subset of Rn of class C1,α. We set h = (h+, h−), where
h+ = h|Ω, h− = h|Ω− .
We denote the space of harmonic function

H = {h+ ∈ C1,α(Ω)|∆h+ = 0 in Ω}
× {h− ∈ C1,α

loc (Ω
−)|∆h− = 0 in Ω−, h− harmonic at infinity}

could be defined as

{h+ ∈W1,2(Ω)|∆h+ = 0 in Ω}
× {h− ∈W1,2(Ω−)|∆h− = 0 in Ω−, h− harmonic at infinity}

by Schauder Regularity. Indeed, if ∆h+ = 0, h+ ∈ W1,2(Ω) and Ω is of class C1,α,
then h+ ∈ C1,α(Ω). Similarly, if ∆h− = 0, h− ∈ W1,2(Ω−), h− harmonic at infinity
and Ω is of class C1,α, then h− ∈ C1,α

loc (Ω
−), ∆h = 0 in Ω−, h− harmonic at infinity.

We introducethe positive Hermitian form on H

〈h, g〉H =
∫

Ω
∇h+∇g+dx +

∫
Ω−
∇h−∇g−dx (3.3.1)

where h = (h+, h−) ∈ C1,α(Ω)× C1,α
loc (Ω

−), g = (g+, g−) ∈ C1,α(Ω)× C1,α
loc (Ω

−).
The corresponding finite energy semi-norm

‖h‖2
H =

∫
Ω
|∇h+|2dx +

∫
Ω−
|∇h−|2dx.
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The next aim is to identify a closed subspace of H.
Consider the linear and continuous trace operator

Tr : C0,α(Ω)→ C0,α(∂Ω).

The trace operator of ∂Ω is linear, surjective and it has a continuous right inverse,
see for instance Gilbarg and Trudinger [Tru01]. We will set h|∂Ω = Tr h.

By the Jump formula (3.2.3), the operator 1
2 I + WΩ, − 1

2 I + WΩ and and their
transpose operators− 1

2 I +Wt
Ω ,− 1

2 I +Wt
Ω to the boundary conditions of the interior

and exterior Dirichlet and Neumann problems. By Lemma 3.1, by Theorem 3.6, we
have proved that VΩ is self-adjoint, injective, WΩ and Wt

Ω are compact operators. By
the Fredholm Alternative Theorem with in the dual systems

〈
C0,α(∂Ω), C1,α(∂Ω)

〉
,

we deduce existence results for the boundary value problems.
If n = 2, the single layer potential with moment f is harmonic at infinity if and

only
∫

∂Ω f = 0, in which case the potential vanishes at infinity.
As a first application we note an important isometric identification, see [Lan72].

Lemma 3.4. Let Ω be a bounded open subset of Rn of class C1,α. Let f ∈ C0,α(∂Ω). Then
〈VΩ f , f 〉∂Ω = ‖vΩ[ f ]‖2

H.

Proof. Since f ∈ C0,α(∂Ω), by Schauder regularity Theorem 2.6 of single layer po-
tential, we have v+[ f ] ∈ C1,α(Ω) and v−[ f ] ∈ C1,α

loc (Ω
−). Since v+[ f ] is harmonic

in Ω, by the first Green’s formulae in interior domain Ω for v+[ f ] and first Green’s
formulae in exterior domain Ω− for v−[ f ] , we have

‖vΩ[ f ]‖2
H =

∫
Ω
|∇v+Ω[ f ]|2dx +

∫
Ω−
|∇v−Ω[ f ]|2dx

=
∫

∂Ω
v+[ f ]|∂Ω

∂

∂νΩ
v+[ f ]|∂Ω −

∫
∂Ω

v−[ f ]|∂Ω
∂

∂νΩ
v−[ f ]|∂Ω,

and by jump formula

νΩ∇v+Ω[ f ]|∂Ω =
1
2

f + Wt
Ω f ,

νΩ∇v−Ω[ f ]|∂Ω = −1
2

f + Wt
Ω f ,

v+Ω[ f ]|∂Ω = v−Ω[ f ]|∂Ω

on ∂Ω.
Then

‖vΩ[ f ]‖2
H =

∫
∂Ω

(
1
2

f + Wt
Ω f +

1
2

f −Wt
Ω f
)

VΩ[ f ] =
∫

∂Ω
f VΩ[ f ].

On the other hand, since f ∈ C0,α(∂Ω) and VΩ[ f ] ∈ C1,α(∂Ω), by the dual system
defined in (3.2.2), we have 〈 f , VΩ f 〉∂Ω =

∫
∂Ω f vΩ[ f ]. Moreover, by Lemma 3.1, we

conclude that 〈 f , VΩ f 〉∂Ω = 〈VΩ f , f 〉∂Ω = ‖vΩ[ f ]‖2
H

By Lemma 3.4 and Lemma 3.1, VΩ is non - negative and is self-adjoint opera-
tor via the bi-linear form defined in (3.2.2). Moreover, by VΩ f = 0 implies that
∇v+Ω[ f ] = 0 in Ω and ∇v−Ω[ f ] = 0 in Ω−, whence vΩ[ f ] is constant on in Ω and Ω−.
However, since v+Ω[ f ] is harmonic at infinity, so v+Ω[ f ] = 0 on Ω. Therefore, by Jump
formulae, f = νΩ∇v−Ω[ f ] − νΩ∇v+Ω[ f ] = 0. This prove that VΩ is strictly positive
operator .
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Proposition 3.2. Let Ω be a bounded open subset of Rn of class C1,α. Assume that n ≥ 3
and let h = (h+, h−) ∈ H. Then h+|∂Ω = h−|∂Ω if and only if there exists ρ ∈ C0,α(∂Ω)
such that h = VΩρ.

Proof. Assume that h+|∂Ω = h−|∂Ω = f . The third Green Identity implies that

1
2

f = WΩ[ f ]−VΩ[νΩ∇h+|∂Ω] on ∂Ω.

Similarly, the third Green Identity implies that

1
2

f = −WΩ[ f ] + VΩ[νΩ∇h−|∂Ω] + b,

where b = limx→∞ h−(x) ≡ 0. Now, taking the sum of two equations above and set
ρ = νΩ∇h−|∂Ω − νΩ∇h+|∂Ω, we verify that VΩ[ρ] = f .

Conversely, by the solvability for the Dirichlet problem and Jump Formulas, we
have v+Ω[ρ]|∂Ω = v−Ω[ρ]|∂Ω and h+|∂Ω = h−|∂Ω.

We define the space of single layer potentials by

S = {h ∈ H : h+|∂Ω = h−|∂Ω}.

The orthogonal complement in H will be denoted D = {g ∈ H| 〈h, g〉H = 0, ∀h ∈ H}
where 〈h, g〉 is defined in (3.3.1) and we will identify this with the space of double layer
potentials belonging to H.

Proposition 3.3. Let Ω be a bounded open subset of Rn of class C1,α. The normal derivaties
of the entries of a pair (h+, h−) ∈ H are ∂h+

∂νΩ
, ∂h−

∂νΩ
, belong in C0,α(∂Ω) and satisfy

∫
∂Ω

∂h+

∂νΩ
g+dσ =

∫
∂Ω

h+
∂g+

∂νΩ
dσ =

∫
Ω
∇h+∇g+dx,∫

∂Ω

∂h−

∂νΩ
g−dσ =

∫
∂Ω

h−
∂g−

∂νΩ
dσ = −

∫
Ω−
∇h−∇g−dx.

(3.3.2)

for every g = (g+, g−) ∈ H.

Proof. Since h+, g+ are harmonic functions in Ω, by the first Green’s formulae, we
have ∫

∂Ω

∂h+

∂νΩ
g+dσ =

∫
∂Ω

h+
∂g+

∂νΩ
dσ =

∫
Ω
∇h+∇g+dx.

Similarly, we have h−, g− ∈ C1,α(Ω) and h−, g− ∈ C1,α
loc (Ω

−). Since h−, g− are har-
monic functions in Ω, by first Green’s formulae in exterior domain Ω−, we have∫

∂Ω

∂h−

∂νΩ
g−dσ =

∫
∂Ω−

h−
∂g−

∂νΩ
dσ = −

∫
Ω
∇h−∇g−dx.

Corollary 3.1. Let Ω be a bounded open subset of Rn of class C1,α. Let h = (h+, h−) ∈ H,
the following statements are equivalent

1. h ∈ D

2.
∂h+

∂νΩ
=

∂h−

∂νΩ
∈ C0,α(∂Ω)
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3. There exists f in C1,α(∂Ω) such that h = wΩ[ f ], where h+ = w+
Ω[ f ], h− = w−Ω[ f ].

In this case, f = h+ − h−.

Proof. (1) implies (2)
Assume that h ∈ D, by Proposition above, we have∫

∂Ω

(
∂h+

∂νΩ
g+ − ∂h−

∂νΩ
g−
)

dσ = 0.

Any element f ∈ C1,α(∂Ω) can be realized as f = g+ = g− for a proper choice of g,

and hence
∂h+

∂νΩ
=

∂h−

∂νΩ
∈ C0,α(∂Ω).

(2) implies (1)

Assume that
∂h+

∂νΩ
=

∂h−

∂νΩ
∈ C0,α(∂Ω) Then the same identity implies (1).

(2) implies (3)

Assume that
∂h+

∂νΩ
=

∂h−

∂νΩ
∈ C0,α(∂Ω). Let f = h+ − h−. Thus

wΩ[ f ](x) =
∫

∂Ω

∂Sn(x− y)
∂νΩ(y)

f dσ < ∞

for all x ∈ ∂Ω and by Jump formulae,

w+
Ω[ f ]|∂Ω − w−Ω[ f ]|∂Ω =

1
2

f + WΩ f −
(
−1

2
f + WΩ f

)
= f ,

∂

∂νΩ
w+

Ω[ f ]|∂Ω =
∂

∂νΩ
w−Ω[ f ]|∂Ω.

Hence
h(x) = wΩ[ f ](x) =

∫
∂Ω

Sn(x− y) f (y)dy,

h harmonic at infinity,

for all x ∈ ∂Ω.
(3) implies (1)
We will only prove that, if h = W+

Ω f then∫
∂Ω−

νΩ∇hdσ = 0.

Indeed, since νΩ∇w+
Ω[ f ]|∂Ω = νΩ∇w−Ω[ f ]|∂Ω,∫
∂Ω

νΩ∇w+
Ω[ f ]dσ = −

∫
∂Ω−

νΩ∇w+
Ω− [ f |∂Ω]dσ.

The last integral can be seen to be equal to zero by a standard argument based on
the first Green Identity in Ω−.

The next result is so called Plemelj’s symmetrization princible, see [Kor99], [Kor13],
[Ple11].

Theorem 3.10. Let Ω be a bounded open subset of Rn of class C1,α. The operator VΩ, Wt
Ω

from C0,α(∂Ω) into itself satisfies WΩVΩ = VΩWt
Ω.
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Proof. Let f ∈ C1,α(∂Ω) , for x ∈ Ω, we have

w+
Ω[VΩ f ]|∂Ω(x) =

∫
∂Ω

∂

∂νΩ(y)
Sn(x− y)

(∫
∂Ω

Sn(y− z) f (z)dσz

)
=
∫

∂Ω
f (z)

(∫
∂Ω

∂

∂νΩ(y)
Sn(x− y)Sn(z− y)dσy

)
dσz

=
∫

∂Ω
f (z)

(∫
∂Ω

Sn(x− y)
∂

∂νΩ(y)
Sn(z− y)dσy

)
dσz

=
∫

∂Ω
Sn(x− y)

(
∂

∂νΩ(y)

∫
∂Ω

Sn(z− y) f (z)dσz

)
= v+Ω[

∂

∂νΩ
v+Ω f ]|∂Ω(x)

Passing from x to a point y in boundary, by the Jump formula, we obtain

−1
2

VΩ f (y) + WΩVΩ f (y) = −1
2

VΩ f (y) + VΩWt
Ω f (y).

Hence WΩVΩ(y) = VΩWt
Ω(y) for y ∈ ∂Ω.
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Chapter 4

Poincaré’s Variational Problem

4.1 Poincaré ’s Variational Problem

Definition 4.1. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be bounded open subset of Rn of
class C1,α. Let λ ∈ C. We say that λ is Dirichlet eigenvalue of −∆ in Ω if there exists
u ∈ C(Ω̄, C) ∩ C2(Ω, C) \ {0} such that{

∆u + λu = 0 in Ω,
u = 0 on ∂Ω.

We recall H be the space of pairs of harmonic functions (h+, h−) defined on Ω,
respectively Ω−, h−(∞) = 0, and have finite energy.

The space H possesses two natural direct sum decompositions

H = S⊕D

where S,D are space of single and double layer potentials. Note that the direct sum
may not orthogonal.

Let C+
Ω, C−Ω be corresponding Calderón projections in interior domain Ω and ex-

terior domain Ω− as Definition 3.4. We define inner, outer enegry functionals

J+[ f ] =
∫

Ω
|∇v+Ω[ f ]|2dx, J−[ f ] =

∫
Ω−
|∇v−Ω[ f ]|2dx

Poincaré proposes to analyze the characteristic value of the Reyleigh quotient as a

form
J−[ f ]− J+[ f ]
J−[ f ] + J+[ f ]

and predicts that they fill a discrete spectrum. Hence, we guss

in the morderm terms that some relative compactness is responsible for this phe-
nomenon.

Lemma 4.1. Let Ω be a bounded open subset of Rn of class C1,α. Let g ∈ C0,α(∂Ω). Then〈
(C−Ω − C+

Ω)vΩ[g], VΩ[g]
〉
H

‖vΩ[g]‖2
H

=
〈WΩVΩg, g〉2,∂Ω

〈VΩg, g〉22,∂Ω

.

Proof. Since g ∈ C0,α(∂Ω), then v+Ω[g] ∈ C1,α(Ω) and v−Ω[g] ∈ C1,α
loc (Ω

−) and vΩ[g] is
a harmonic function in Rn \ ∂Ω.
By the Jump formula, and by Green Formula, and by the opposite orientation of ∂Ω
with respect to the exterior domain, we have that∫

Ω−
|∇v−Ω[g]|

2dx = −
∫

∂Ω
VΩ[g]

∂

∂νΩ
v−Ω[g]dσ =

〈
VΩg,

1
2

g + Wt
Ωg
〉

∂Ω
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and ∫
Ω
|∇v+Ω[g]|

2dx =
∫

∂Ω
VΩ[g]

∂

∂νΩ
v+Ωdσ =

〈
VΩg,−1

2
g + Wt

Ωg
〉

∂Ω
.

Since
‖vΩ[ f ]‖2

H =
∫

Ω
|∇v+Ω[ f ]|2dx +

∫
Ω−
|∇v−Ω[ f ]|2dx

and VΩ is self adjoint by Lemma 3.1 and C−Ω − C+
Ω = I by Theorem 3.9, we obtain〈

(C−Ω − C+
Ω)vΩ[g], vΩ[g]

〉
H
= ‖vΩ[ f ]‖2

H = 〈VΩg, WΩg〉∂Ω = 〈WΩVΩg, g〉∂Ω

and
‖vΩ[g]‖2

H = 〈VΩg, g〉∂Ω .

Let us start with eigenfunction f ∈ C0,α(∂Ω) of operator Wt
Ω. Then

Wt
Ω f = λ f ⇒WΩVΩ f = VΩWt

Ω f = λVΩ f

and by jump formula

νΩ∇v+[ f ]|∂Ω =

(
−1

2
+ λ

)
f , νΩ∇v−[ f ]|∂Ω =

(
1
2
+ λ

)
f

on ∂Ω. Hence, by (3.3.2), we obtain

J+[ f ] =
∫

Ω
|∇v+Ω[ f ]|2dx =

(
−1

2
+ λ

)
〈VΩ f , f 〉∂Ω

and

J−[ f ] =
∫

Ω−
|∇v−Ω[ f ]|2dx =

(
−1

2
− λ

)
〈VΩ f , f 〉∂Ω .

Therefore
J+[ f ]− J−[ f ]
J+[ f ] + J−[ f ]

=

(
− 1

2 + λ + 1
2 + λ

)
〈VΩ f , f 〉∂Ω(

− 1
2 + λ− 1

2 − λ
)
〈VΩ f , f 〉∂Ω

= 2λ. (4.1.1)

Proposition 4.1. (Extension of Theorem in D. Khavinson, M.P. Putinar, H.S Shapiro [Sha07])
Let Ω ⊂ Rn be a bounded open subset of Rn of class of C1,α and let Ω− ≡ Rn \Ω. Let

vΩ[ρ] denote the single layer potential of a distribution ρ ∈ C0,α(∂Ω).
The energy quotients are defined by

λ+
k = max

ρ⊥{ρ+0 ,···ρ+k−1}

‖∇vΩ[ρ]‖2
L2(Ω−) − ‖∇vΩ[ρ]‖2

L2(Ω)

‖∇vΩ[ρ]‖2
2

∀k ∈ {1, . . . n}

The maximum is attained at a smooth distribution ρ+ ∈ C0,α(∂Ω).
Similarly,

λ−k = min
ρ⊥{ρ−0 ,···ρ−k−1}

‖∇vΩ[ρ]‖2
L2(Ω−) − ‖∇vΩ[ρ]‖2

L2(Ω)

‖∇vΩ[ρ]‖2
2

∀k ∈ {1, . . . n}

The minmimum is attained at a smooth distribution ρ− ∈ C0,α(∂Ω).
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Proof. Firsly, by Plemelj’s symmetrization principle, we have WΩVΩ = VΩWt
Ω.

Secondly, by the Jump formula and Lemma 4.1, we have

J+[ f ]− J−[ f ]
J−[ f ] + J+[ f ]

=
〈WΩVΩρ, ρ〉∂Ω

〈VΩρ, ρ〉2∂Ω

=

〈
(C−Ω − C+

Ω)vΩ[ρ], vΩ[ρ]
〉
H

‖vΩ[ρ]‖2
H

= λ.

Finally, let λ−1 ≤ λ−1 ≤ . . . ≤ 0 ≤ . . . ≤ λ+
2 ≤ λ+

1 be eigenvalue of WΩ re-
peated according to their multiplicity and ρ+k , ρ−k ∈ C0,α(∂Ω) be the corresponding
eigenvalues. By the Courant-Fischer minimax principle, we have

λ+
k = max

ρ⊥{ρ+0 ,···ρ+k−1}

〈WΩVΩρ, ρ〉∂Ω

〈VΩρ, ρ〉2∂Ω

= max
ρ⊥{ρ+0 ,···ρ+k−1}

‖∇vΩ[ρ]‖2
L2(Ω−) − ‖∇vΩ[ρ]‖2

L2(Ω)

‖∇vΩ[ρ]‖2
2

and

λ−k = min
ρ⊥{ρ−0 ,···ρ−k−1}

〈WΩVΩρ, ρ〉∂Ω

〈VΩρ, ρ〉2∂Ω

= min
ρ⊥{ρ−0 ,···ρ−k−1}

‖∇vΩ[ρ]‖2
L2(Ω−) − ‖∇vΩ[ρ]‖2

L2(Ω)

‖∇vΩ[ρ]‖2
2

.

Thanks for Schauder regularity Theorem B.1, the spectrum of operator W not only
in L2-theory but also in C1,α. Any the corresponding eigenfunctions must belong
C1,α

Corollary 4.1. Let Ω be bounded open subset of Rn of class C1,α. Assume that λ ∈ R,
u ∈W1,2(Ω) and ∆u + λu = 0 in Ω. Then u ∈ C1,α(Ω).

This eigenvalue variational problem is correlated to the eigenvalue problem of
the operator WΩ. Precisely, we have

Corollary 4.2. The spectrum of the operator WΩ, multiplicities included, coincides with the
set of values {λ±k }k∈N of the Poincarié variational problem, together with possively the point
zero. The extremal distributions for the Poincarié problem are exactly the eigenfunctions of
WΩ.

4.2 Poincaré Problem in the Ball

We denote that B3 = B3(0, 1) = {x ∈ R3 : |x| < 1}. Consider the Dirichlet problem{
∆u = 0 in B3,
u = g on ∂B3.

Thus, to solve Dirichlet’s problem, it is sufficient to solve the integral equation

−1
2

f + WΩ f = g on ∂B3

where f ∈ C1,α(∂Ω). Then u = W+
Ω [ f ] would be harmonic function in B3. Carl

Neumann [Neu87] remarked that the infinite sum, known today as Neumann series,
−g + Wg + W2g + · · · if convergent, provides the density f . The complete solution
of Dirichlet problem in the unit ball we can refer to [Fol95].

The complete solution of Poincaré’s variational problem for unit ball in R3 is ob-
tained in [Poi97; Poi99]. Now, we consider the extremal Poincaré variation problem
in the ball. It is enough to consider the case of dimension n = 3, the case of n > 3 is
similar. Instead, case n = 2 is somewhat different.
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For n ≥ 3, let Hk be the set of homogeneous polynomials of degree k satisfy
the Laplace equation. By Corollary C.2 with n = 3, we have dim Hk = 2k + 1.
For each F in Hk, we can write F(x) = rk f (y), where r = |x|, y = x

r is a point of
∂Ω and the function f on ∂Ω is so called the spherical harmonic of order k. Since
F(x)
|x|k+1 is harmonic in R3 \B, the pair u+ = rk f (y) and u− = r−k−1 f (y) fit together

continuously across ∂Ω to form the single layer potential of a moment g on ∂Ω. We
have

∂u+(y)
∂νΩ

= k f (y)

∂u−(y)
∂νΩ

= −(k + 1) f (y)

for y ∈ ∂Ω. Hence g = (2k + 1) f (y).
We have

J+[g] =
∫

∂Ω
(∂νu+)(y)g = k(2k + 1)

∫
∂Ω

f 2dσ

J−[g] =
∫

∂Ω
(∂νu−)(y)g = (k + 1)(2k + 1)

∫
∂Ω

f 2dσ

By (4.1.1), we have

J+[g]− J−[g]
J−[g] + J+[g]

= 2λ =
(2k + 1)(k + 1− k)

(2k + 1)2 =
1

2k + 1
.

This assocoated Neumann-Poincaré eigenvalue. To summarize
The set of eigenvalues of Neumann- Poincaré operator coincides with the set {1/2; 1/6; 1/10; . . .}

and the eigenspace corresponding to the eigenvalues
1

2(2k + 1)
has dimension 2k + 1 coin-

cides of all spherical harmonics of order k, k ∈N .
The Neumann -Poincaré integral operators is injective in this case; i.e. the spec-

tral point 0 of the Neumann - Poincarié operator is not an eigenvalue.

Theorem 4.1. If Ω is a disk in R2, then the double layer potential WΩ has rank one.

Proof. For f ∈ C1,α(∂Ω), we have

WΩ f (x) = −
∫

∂Ω
f (y)νΩ(y)∇Sn(x− y)dσy =

∫
∂Ω

〈x− y, ν(y)〉
|y− x|2 f (y)dσy.

If Ω is a disk, then there exists x0 ∈ R2, R > 0 such that

D(x0, R) = {x ∈ R2 : |x− x0| < R}).

Let x, y ∈ ∂Ω, ν(x) and let ν(y) denotes the unit outer normal to ∂Ω at x and y. By
change the polar coordinate

x = x0 + r cos θ y = x0 + r sin θ

where 0 < r < R, 0 < θ < 2π, we have

〈x− y, ν(y)〉
|y− x|2 =

1
2R

.
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Hence we have

WΩ f (x) =
1

2π

∫ 2π

0
f (eiθ)dθ.

Let f equal cos mθ, sin mθ, m ∈N, we have WΩ[1] = 1 and WΩ[cos mθ] = WΩ[sin θ] =
0. Thus λ = 1 is an eigenvalue of WΩ with corresponding eigenfunction 1, and λ = 0
is also an eigenvalue of WΩ with corresponding eigenfunctions

{cos mθ, sin mθ, m ∈N}.

From the completeness of the orthogonal set of eigenfunctions

{1, cos mθ, sin mθ, m ∈N}

in L2[0, 2π]. By Schauder Regularity Theorem B.1, these eigenfunctions are of class
C1,α. That is, λ = 1and λ = 0 are the only eigenvalues of WΩ for the case ∂Ω
is a circle. Furthermore, since cos mθ, sin mθ, m ∈ N are all eigenfunctions of WΩ
corresponding to λ = 0, it follows that dim N(WΩ) = ∞.

Conversely, it is well known in H.S. Shapiro book, c.f [Sha92], Chapter 7, disk is
the only domain for which the Neumann - Poincaré operator has finite rank.

4.3 Symmetric of Boundary Integral Operator on the Ball

Theorem 4.2. Let α ∈ ]0, 1[. Let Ω be bounded, open, connected subset of Rn of class

C1,α. Let ∂Ω be connected. Let K(x, y) =
〈x− y, ν(y)〉
|x− y|n , ∀x, y ∈ ∂Ω, x 6= y be Neumann -

Poincaré kernel. Then K is symmetric if and ony if Ω is a ball.

Proof. Let Ω be the ball B(x0, R) in Rn, n ≥ 3. Let x, y ∈ ∂Ω, let ν(x) and ν(y) denote
the unit outer normal to ∂Ω at x and y. We have

〈x− y, ν(y)〉 = (x− y)(y− x0)

R
=

(y− x)(x− x0)

R
= 〈y− x, ν(x)〉

for all x, y ∈ ∂Ω. Hence WΩ is selft - adjoint. For n = 2, since K(x, y) = 1
2r , then

WΩ f (x) = 0, x ∈ ∂Ω.
Now we study converse. Assume that for all x, y ∈ ∂Ω, ν(x) and ν(y) denotes

the unit outer normal to ∂Ω at x and y then we have

〈x− y, ν(y)〉 = 〈y− x, ν(x)〉 . (4.3.1)

Take x ∈ ∂Ω, set a point y of ∂Ω at minimal distance from x. The line joing y
to x is defined by L(y, x) = {x + tν(x) : t < 0}. Since there is a normal vector
at x, there exists a point z in (L(x) ∩ ∂Ω) \ {x} for which the line segment joining
x and z is contained in Ω. Since ν(x) is the outward normal vector at x, we have

ν(x) =
x− z
|x− z| . By (4.3.1), we have

〈x− z, ν(y)〉 =
〈

z− x,
x− z
|x− z|

〉
.
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Hence
|x− z| = 〈z− x, ν(y)〉 .

Since |ν(z)| = 1, we conclude that

ν(z) =
z− x
|z− x| = −ν(x)

We have

ν(y)x− ν(y)y− ν(x)y + ν(x)x = 0.
ν(y)z− ν(y)x− ν(x)z + ν(x)x = 0.

It follows thats
2ν(x)x− ν(x)(y + z)− ν(y)(y− z) = 0.

Since the last term is independent of y, we get

2ν(x)− ν(x)(y + z)− c = 0. (4.3.2)

On the other hand, we have

vΩ[1](x) =


1

(2− n)sn

∫
∂Ω

1
|y− x|n−2 dσ n ≥ 3 (4.3.3a)

1
2π

∫
∂Ω

log |x− y|dσ n = 2 (4.3.3b)

and satisfies the Jump formula,

νΩ∇v+Ω[1] = −
1
2
+ Wt

Ω[1]

and
νΩ∇v−Ω[1] =

1
2
+ Wt

Ω[1].

Moreover, Wt
Ω[1] =

1
2 , c.f. [Fol95] page 125. Hence VΩ1 is constant in the interior

of Ω, and its exterior boundary gradient is equal to the unit normal vector v(x). Let
u(x) = v−Ω[1](x), x ∈ Ω−. By (4.3.2), we have

2∇u(x)x−∇u(x)(y + z)− c = 0.

Hence, for each y, ∇u(x)(y + z) is harmonic at ∞ with the same boundary values.
The maximum principle, implies that this function is harmonic. From this we con-
clude that the function y + z is independent of y. Indeed, if y + z were dependent of
y, then u would have a directional derivative is constant and equal to zero, which is
impossible because u is decaying at ∞. Since |y− z| = c, it follows that Ω is a ball.
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Appendix A

Functional analysis

We also recall some classical theorems of Functional Analysis in Banach spaces, c.f.
Kress [Kre14], Folland [Fol99] and Spectral Theory in Functional Analysis, c.f. B.
Helffer [Hel13]; E.B. Davies [Dav95].

A.1 Fredholm Alternative

Let X be a normed space on the filed K, where K is R or C. We denote by X′ the
topological dual space L(X, K) of X, so that X′ consists of the linear continuous
operator from X to C.

Definition A.1. Let X, Y be a normed spaces. If L is a linear map from X to Y, then the
transpose Lt is the linear map from Y′ to X′ that takes a functional ψ ∈ Y′ to the functional
Lt[ψ] ∈ X′ defined by

(Lt[ψ])[φ] = ψ[L[φ]], ∀φ ∈ X.

Definition A.2 (Fredholm operator).
We say that a bounded linear operator L from a Banach space X to a Banach space Y is

Fredholm if and only if both the following conditions hold.

1. The null space ker L has finite dimension.

2. the cokernel Y/ Im L has finite dimension.

If L is a Fredhohm operator, then the index of L is the integer defined by

Index L ≡ dim ker L− dim(Y/ Im L).

Theorem A.1 (Compact perturbation of Fredholm operator).
Let X and Y are Banach spaces. If L is a Fredholm operator from X to Y and K is

a compact operator from X to Y, then L + k is a Fredholm operator from X to Y and
Index (L + K) = Index L.

Theorem A.2 (Fredholm Alternative).
Let X and Y are Banach spaces. Let L is a Fredholm operator of index 0 from X to Y and

K is a compact operator from X to Y Then one of the following statements holds:

• The operator L is an isomorphism from X to Y and the operator L+ is an isomorphism
from Y to X.

• The null space ker L and ker Lt have the same nonzero finite dimension and

Im L = {φ ∈ X : ψ[φ] = 0 for all ψ ∈ ker Lt}
Im Lt = {ψ ∈ X′ : ψ[φ] = 0 for all ϕ ∈ ker L}
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A.2 The spectral theory

For more detail and proof of spectral theory, we could refer Helffer’s book [Hel13].

Definition A.3. Let X be Banach spaces. Let A be a closed operator on X. The resolvent set
of A is given by

ρ(A) = {λ ∈ C|λI − A : Dom(A)→ X is bijectiove, }

and its sepctrum by
σ(A) = C \ ρ(A).

We further define the point spectrum of A by

σρ(A) = {λ ∈ C|∃v ∈ Dom(A) \ {0} with λv = Av} ⊆ σ(A),

where we call λ ∈ σρ(A) an eigenvalue of A and the corresponding v an eigenvector or
eigenfunction of A. For λ ∈ ρ(A) the operator

R(λ, A) ≡ (λI − A)−1 : X → X

and the set {R(λ, A)|λρ(A)} are called the resolvent.

Theorem A.3. Let A be a closed operator on X and let λ ∈ ρ(A). Then the following
assertions hold.

1. AR(λ, A) = λR(λ, A)− I, AR(λ, A)x = R(λ, A)Ax for all x ∈ Dom(A) and

1
µ− λ

(R(λ, A)− R(µ, A)) = R(λ, A)R(µ, A) = R(µ, A)R(λ, A)

if µ ∈ ρ(A) \ {λ}. The formula in display is called the resolvent equation.

2. The spectrum σ(A) is closed.

3. The function ρ(A) → B(X, [Dom(A)]); λ 7→ R(λ, A) is infinitely differentiable
with (

d
dλ

)n

R(λ, A) = (−1)nn!R(λ, A)n+1 for every nN.

4. ‖R(λ, A)‖ ≥ 1
d(λ,σ(A))

.

Theorem A.4 (Spectral theory for compact operators).
Let A ∈ K(E) where E is an infinite dimensional Banach space. Then

1. 0 ∈ σ(A).

2. σ(A) \ {0} = σρ(A) \ {0}.

3. We are in one and only one the following cases

• either σ(A) = {0},
• either σ(A) \ {0} is finite,

• or σ(A) \ {0} can be dscribed as a sequence of distincts points tending to 0.

4. Each λσρ \ {0} is isolated and dim N(A− λI) < +∞.
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As A = A∗, the spectrum is real. Indeed, if Im λ 6= 0, one immediately verifies
that

| Im λ|‖u‖2 ≤ | Im 〈(A− λ)u, u〉 | ≤ ‖(A− λ)u‖‖u‖.

This shows that the map (A−λ) is injective and with close range. But the orthogonal
of the range of (A− λ) is the kernel of (A− λ̄) which is reduced to 0. So (A− λ) is
bijective.

Theorem A.5 (Spectral theory for selfadjoint operators).
Let A be linear selfadjoint operator. Then the spectrum of A is contatined in [m, M] with

m =
inf 〈Tu, u〉
‖u‖2 and m =

sup 〈Tu, u〉
‖u‖2 . Moreover m and M belong to spectrum of A.

Corollary A.1. Let A be linear selfadjoint operator such that σ(A) = {0}. Then A = 0.

Proposition A.1. If A is positive and selfadjoint then ‖A‖ = M.

Theorem A.6 (Spectral theory for compact self adjoint operators).
Let H be a spearable Hilbert space and A is a compact self adjoint operator. Then H

admits an Hilbertian basis consisting of eigenfunctions of T.
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Appendix B

Results of Classical Potential
Theory on Layer Potentials

Theorem B.1. [Schauder regularity result for Fredholm integral equations]
Let α ∈ ]0, 1[. Let m ∈ N \ {0}. Let Ω be a bounded open subset of Rn of class Cm,α.

Then the following statements hold.

1. Let k ∈ {1, . . . , m}, let g ∈ Ck−1,α(∂Ω), µ ∈ L2(∂Ω) and

g(x) = −1
2

µ(x) +
∫

∂Ω

∂

∂ν(x)
Sn(x− y)µ(y)dσy for allmost all x ∈ ∂Ω,

then µ ∈ Ck−1,α(∂Ω).

2. Let k ∈ {0, . . . , m}, let g ∈ Ck,α(∂Ω), µ ∈ L2(∂Ω) and

g(x) = −1
2

µ(x) +
∫

∂Ω

∂

∂ν(y)
Sn(x− y)µ(y)dσy for allmost all x ∈ ∂Ω,

then µ ∈ Ck,α(∂Ω).

Proof. See [Tru01], Theorem 6.19.
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Appendix C

Remark of Spherical Harmonics

We summary the results of Spherical Harmonics in some monograph, as Folland
[Fol95]; R.P. Feynman, R.B. Leighton, M. Sands [San], N.N. Lebedev [Leb72] or J.
Gallier [Gal09].

Harmonic homogeneous polynomials and their restrictions to Sn, where

Sn = {(x1, . . . , xn+1) ∈ Rn+1|x2
1 + · · ·+ x2

n+1 = 1},

turn out to play a crucial role in understanding the structure of the eigenspaces of
the Laplacian on Sn.

Definition C.1. Let Pk(n + 1) denote the space of homogeneous polynomial of degree k
in n + 1 variables with real coeffcients and let Pk(S

n) denote the restrictions of homoge-
neous polynomials in Pk(n + 1) to Sn. Let Hk(n + 1) denote the space of (real) harmonic
polynomials, with

Hk(n + 1) = {P ∈ Pk(n + 1)|∆P = 0}.

LetHk(S
n) denote the space of (real) spherical harmonics be the set of restrictions of harmonic

polynomials inHk(n + 1) to Sn.

The restriction map, ρ : Hk(n + 1) → Hk(S
n), is a surjective linear map. In fact,

it is abijection. Indeed, if P ∈ Hk(n + 1), observe that

P(x) = ‖x‖kP
(

x
‖x‖

)
, with

x
‖x‖ ∈ Sn

for all x 6= 0. Consequently, if P(σ) = Q(σ) for all σ ∈ Sn, then

P(x) = ‖x‖kP
(

x
‖x‖

)
= ‖x‖kQ

(
x
‖x‖

)
= Q(x)

for all x 6= 0. which implies that P = Q. Therefore, we have a linear isomorphism
betweenHk(n + 1) andHk(S

n).
Note that every homogeneous polynomial P, of degree k in the variables x1, . . . , xn

can be written uniquely as
P = ∑

|α|=k
cαxα,

It is well known that Pk(n) is a (real) vector space of dimension

d =

(
n + k− 1

k

)
We can define an Hermitian inner product on Pk(S

n) is an inner product by viewing
a homogeneous polynomial as a differential operator as follows:
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For any P = ∑|α|=k cαxα. Let

∂(P) = cα
∂k

∂xαn
1 . . . ∂xαn

n
.

For any two polynomials P, Q ∈ Pk(n), let an inner product 〈P, Q〉 = ∂PQ. Another
useful property of our inner product is this:

〈P, QR〉 = 〈QP, R〉 = ∂(QR)P = ∂Q∂(RP)
= ∂R(P∂Q) = 〈R, P∂Q〉 = 〈∂QP, R〉

In particular
〈
(x2

1 + . . . + x2
n)P, Q

〉
= 〈P, ∆Q〉 .

Theorem C.1. The map ∆ : Pk(n) → Pk−2(n) is surjective for all n, k ≥ 2. Furthermore,
we have the following orthognal direct sum decompositions:

Pk(n) = Hk(n)⊕ ‖x‖2Hk−2(n)⊕ · · · ⊕ ‖x‖2jHk−2j(n)⊕ · · · ⊕ ‖x‖2[k/2]H[k/2](n).

Proof. If the map ∆ : Pk(n) → Pk−2(n) is not surjective, then some nonzero polyno-
mial Q ∈ Pk−2(n) is orthogonal to the image of ∆. In particular, Q must be orthogo-
nal to ∆P with P = ‖x‖2Q ∈ Pk(n). So

= 0 〈Q, ∆P〉 =
〈
‖x‖2Q, P

〉
= 〈P, P〉

which implies that P = ‖x‖2Q = 0, and thus Q = 0, a contradiction.
We claim that we have an orthogonal direct sum decomposition,

Pk(n) = Hk(n)⊕ ‖x‖2Pk−2(n).

When k = 0, 1, this case is trivial, Assume that k ≥ 2, since ker ∆ = Hk(n) and ∆ is
surjective, it is sufficient to prove that Hk(n) is orthogonal to ‖x‖Pk−2(n). Now, if
H ∈ Hk(n) and P = ‖x‖2Q ∈ ‖x‖2Pk−2(n), we have

〈
‖x‖2Q, H

〉
= 〈Q, ∆H〉 = 0,

so Hk(n) and ‖x‖2Pk−2(n) are orthognal. Using induction, we immediately to get
orthognal direct sum decomposition

Pk(n) = Hk(n)⊕ ‖x‖2Hk−2(n)⊕ · · · ⊕ ‖x‖2jHk−2j(n)⊕ · · · ⊕ ‖x‖2[k/2]H[k/2](n).

Since every polynomial in n + 1 variables is the sum of homogeneous polynomi-
als, we get

Corollary C.1. The restriction to Sn of every polynomial in n + 1 ≥ 2 variables is a sum of
trstriction to Sn of harmonic polynomials.

We can also derive a fomula for the dimension ofHk(n)

Corollary C.2. The dimension ak,n of the space of harmonoc polynomialsHk(n) is given by
the formula

ak,n =

(
n + k− 1

k

)
−
(

n + k− 3
k− 2

)
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if n, k ≥ 2, with a0,n = 1 and a1,n = n, and similarly for Hk(n). As Hk(n + 1) is
isomorphic toHk(S

n), we have

dimHk(S
n) = ak,n+1 =

(
n + k

k

)
−
(

n + k− 2
k− 2

)
Let L2(Sn) be the space of square-integrable functions of the sphere. We have an

inner prodcut on L2(Sn) given by

〈 f , g〉 =
∫

Sn
f gdσn

where f , g ∈ L2(Sn) With this inner produce, L2(Sn) is a complete normed vector
space, and is a Hilbert space.

Proposition C.1. The set of all finite linear combination of elements in

∞⋃
k=0

Hk(S
n)

is

1. dense in C(Sn) with respect to the L∞ norm;

2. dense in L2(Sn).

Proof. 1. As Sn is compact, by the Stone-Weierstrass approximation theorem, g is
cointinuous on Sn, then then it can be approximated uniformly by polynomials
Pj, restricted to Sn. It is linear combination of elements in

⋃∞
k=0Hk(S

n).

2. Given f ∈ L2(Sn), for every ε > 0, we can choose a continuous function g,
so that ‖ f − g‖2 < ε/2. We can find a linear combination h of elements in⋃∞

k=0Hk(S
n) so that ‖g− h‖∞ <

ε

2
√

vol(Sn)
, where mn−1(S

n) is a measure of

Sn. Thus, we get

‖ f − h‖2 ≤ ‖ f − g‖2 + ‖g− h‖2 < ε/2+
√

mn−1(Sn)‖g− h‖∞ < ε/2+ ε/2 = ε.

Proposition C.2. For every harmonic polynomial P ∈ Hk(n + 1), the restriction H ∈
Hk(S

n) of P to Sn is an eigenfunction of ∆Sn for the eigenvalue −k(n + k− 1).

Proof. We have P(rσ) = rk H(σ), r > 0, σ ∈ Sn, and for any f ∈ C∞(Rn+1), we have

∆ f =
1
rn

∂

∂r

(
rn ∂ f

∂r

)
+

1
r2 ∆Sn f .



40 Appendix C. Remark of Spherical Harmonics

Consequently,

∆P = ∆(rk H) =
1
rn

∂

∂r

(
rn ∂(rk H)

∂r

)
+

1
r2 ∆Sn(rk H)

=
1
rn

∂

∂r

(
krn+k−1H

)
+ rk−2∆Sn H

=
1
rn k(n + k− 1)rn+k−2H + rk−2∆Sn H

= rk−2(k(n + k− 1)H + ∆Sn H).

Thus ∆P = 0 iff ∆Sn H = −k(n + k− 1)H.

We conclude that the space Hk(S
n) is a subspace of the eigenspace Ek associated

with the eigenvalue −k(n + k− 1). We can deduce immediately is that Hk(S
n) and

Hl(S
n) are pairwise orthogonal whenever k 6= l.

Theorem C.2. The family of spaceHk(S
n) yields a Hilbert space direct sum decomposition

L2(Sn) =
∞⊕

k=0

Hk(S
n)

which means that the summands are closed, pairwise orthogonal, and that every f ∈ L2(Sn)
is the sum of converging series

f =
∞

∑
k=0

fk

in the L2 norm, where fk ∈ Hk(S
n). are uniquely determined functions. Furthermore, given

any orthonormal basis, (U1
k , · · · , Yak,n+1

k ) ofHk(S
n) we have

f =
ak,n+1

∑
k=0

ck,mkY
mk
k with ck,mk =

〈
f , Ymk

k

〉
.

The coeffcients ck,mk are generalized Fourier coeffcients

Theorem C.3. 1. The eigenspaces of the Laplacian on Sn are the space of spherical har-
monic Ek = Hk(S

n) and Ek correesponds to the eigenvalue −k(n + k− 1).

2. We have the Hilbert space direct sum decompositions

L2(Sn) =
∞⊕

k=0

Ek.

Proof. 1. We have already known that −k(n + k − 1) are eigenvalue of ∆Sn and
that Hk(S

n) ⊆ Ek. We will prove that ∆Sn has no other eigenvalue and eigen-
vectors.
Let λ be any eigenvalue of ∆Sn and let f ∈ L2(Sn) be any eigenfunction associ-
ated with λ so that ∆ f = λ f . We have a unique series expansion

f =
∞

∑
k=0

ak,n+1

∑
k=0

ck,mkY
mk
k with ck,mk =

〈
f , Ymk

k

〉



Appendix C. Remark of Spherical Harmonics 41

Now Fourier coeffcients are given by

dk,mk =
〈
∆ f , Ymk

k

〉
=
〈

f , ∆Ymk
k

〉
= −k(n+ k− 1)

〈
f , Ym+k

k

〉
= −k(n+ k− 1)ck,mk .

On the other hand, the Fourier coefficients of ∆ f are given by dk,mk = λck,mk .
By uniequness of the Fourier expasion, we have

λck,mk = −k(n + k− 1)ck,mk

for all k ≥ 0. Since f 6= 0 there some k such that ck,mk 6= 0 and we must have

λ = −k(n + k− 1)

for any such k. However, the function k 7→ −k(n+ k− 1) reaches its maximum
for k = − n−1

2 and as n ≥ 1 it is strictly decreasing for k ≥ 0, which implies
that k is unique and that cj,mk = 0 for all j 6= k. Therefore f ∈ Hk(S

n) and the
eigenvalue of ∆Sn are exactly the integres ∗k(n + k− 1), so Ek = Hk(S

n).
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