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Abstract

Recently, the Muon g-2 collaboration at Fermilab measured the muon anomalous magnetic moment,
confirming the deviation from the Standard Model prediction already found by the E821 experiment
at Brookhaven. In this thesis, we will provide a general classification of beyond Standard Model
extensions capable to explain such discrepancy while being compatible with all experimental bounds
arising from related observables. Furthermore, we will address the interesting question of whether
the observed Dark Matter relic density in the Universe can be naturally connected with the muon
g-2 discrepancy. This will bring us to identify specific classes of models providing a viable Dark
Matter candidate, a solution to the muon g-2, as well as additional specific signature to be tested
experimentally. This thesis work emphasises the intimate connection between Particle Physics and
Cosmology to unveil the laws of Nature and their experimental footprints.
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Introduction

The anomalous magnetic moment of the muon, aµ ≡ (g−2)µ
2 , plays a crucial role in the establishment of

the Standard Model (SM) of elementary particle physics, therefore motivating continuous and enduring
efforts from both theoretical and experimental sides. The very recent aµ measurement by the Muon
g-2 collaboration at Fermilab has confirmed the earlier result by the E821 experiment at Brookhaven.
The comparison of these results with the SM prediction of the Muon g-2 Theory Initiative leads to an
intriguing 5.0σ discrepancy.

This discrepancy can be accommodated in a number of theories beyond the SM (BSM). In this
thesis, we aim at classifying the general features of such BSM scenarios focusing on simplified bench-
mark models contributing to aµ at the 1-loop level. To further constrain the considered New Physics
(NP) models, we require that they must also contain a Dark Matter candidate, i.e. an electromagnet-
ically neutral and color singlet state that is stable on cosmological time scales while being capable of
reproducing the observed relic density abundance.

In fact, the final goal of this work is to investigate on the possibility of conceiving a coherent
theoretical framework where to accommodate both cosmological and laboratory measurements.

In Chapter 1, we introduce the SM, showing its triumphs as well as its limits, which underscore the
need for NP extensions. The muon g-2 anomaly is then discussed in some details in Chapter 2 where
we present an overview of the various SM contributions as well as a brief history of its measurements.
The chapter ends with general considerations about NP contributions to the muon g-2. Instead, in
Chapter 3, we discuss the Dark Matter paradigm, offering evidence for its existence as well as possible
production mechanisms. We end the chapter by discussing the direct, indirect, and collider searches
of Dark Matter. In Chapter 4, we build NP models assessing their contribution to the muon g-2 and
the Dark Matter relic abundance. Finally, we will provide a numerical analysis of our results.
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Chapter 1

Standard Model: virtues and
shortcomings

Recently, the FNAL Muon g − 2 experiment measured a deviation of 4.2σ for the muon anomalous
magnetic moment from the most recent Standard Model predictions, improving the previous result
obtained at BNL. This represents one of the most striking disagreements between theory and experi-
mental results; it is thus interpreted as evidence for the existence of new physics beyond the Standard
Model, leading theorists to formulate lots of different models capable of explaining it. Of particular
interest are those models that, among the possible new fields introduced, admit a dark matter candi-
date, thus giving an explanation for another flaw of the Standard Model. It is precisely on these that
we will focus in this work.

In this first chapter, we will discuss the Standard Model in general, as well as its strengths and
limitations, with a special emphasis on the anomalous magnetic moment of the muon and dark matter.

1.1 The Standard Model Lagrangian

The Standard Model of Particle Physics (SM) is a theory that describes the properties of fundamental
particles and how they interact among themselves [1]. It was built during the previous century through
the interplay between experimental discoveries and theoretical predictions, and it is currently one of
the most successful theories in physics. The SM is based on the formalism of Quantum Field Theory
(QFT) that is able to combine Classical Field Theory, Special Relativity and Quantum Mechanics,
treating particles as quanta of their underlying quantum fields (from here on, we will consider this
implied, so “particles”and “fields”will be used as synonymous). To construct the theory Lagrangian,
the field content and the internal symmetries, under which they transform, must be provided, and then
two principles are used: Lorentz invariance and Renormalizability. The first one implies that every
vector and spinor index must be contracted in order to preserve space-time symmetry, while the second
implies that all operators in the Lagrangian have a dimension equal to or less than four, ensuring the
ability to reabsorb all loop divergences in a finite number of counterterms. This technique is realized
by introducing scale dependent coupling constants and, at least in principle, allowing computation at
any order in perturbation theory.

The internal symmetry of the SM is given by the local Gauge group

GSM = SU(3)c × SU(2)L × U(1)Y (1.1)

where SU(3)c is the color group responsible for the strong force with coupling gs while SU(2)L ×
U(1)Y is responsible for the electroweak interaction, SU(2)L is related to the weak isospin, and U(1)Y
to the hypercharge. The couplings associated with these last two groups are g2 and gY respectively.
One of the main features of the SM is that it undergoes a Spontaneous Symmetry Breaking after
which the Gauge group is:

GBroken
SM = SU(3)c × U(1)EM (1.2)
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where U(1)EM is the electromagnetic Gauge group with coupling the electric charge e. As for field
content of the theory, it can be divided into three categories: gauge fields, matter fields, and the Higgs
multiplet. The gauge fields are

Gµ = Ga
µλ

a, Wµ =W i
µτ

i, Bµ (1.3)

where λa are the Gell-Mann matrices and τ i the Pauli matrices. The first one is associated with
eight gluon fields, mediators of the strong force, and since it is associated with a non-Abelian group,
its field strength is defined as Gµν = ∂µGν−∂νGµ+ igs[Gµ, Gν ]. The second one is associated with the
three SU(2)L fields, and the field strength is given byWµν = ∂µWν−∂νWµ+ig2[Wµ,Wν ]. The last one
is the hypercharge field, the only Abelian Gauge boson, its field strength reads Bµν = ∂µBν − ∂νBµ.
After electroweak symmetry breaking, the two fields W and B mix through the Weinberg angle θW ,
giving rise to the vector bosons of the weak and electromagnetic forces, which are:

- The W bosons W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ), mediators of the charged current weak interactions;

- The Z boson Zµ =W 3
µcos(θW )−Bµsin(θW ), mediator of the neutral current weak interaction;

- The photon Aµ =W 3
µsin(θW ) +Bµcos(θW ), mediator of the electromagnetic interaction.

The SM matter content is made of fermion fields that can be divided into left-handed SU(2)L
doublets

Qi
L(3, 2,+

1

6
) =

(

uiL
diL

)

, Li
L(1, 2,−

1

2
) =

(

νiL
eiL

)

(1.4)

and right-handed singlets

uiR(3, 1,+
2

3
), diR(3, 1,−

1

3
), eiR(1, 1,−1). (1.5)

The numbers in brackets are the quantum numbers under the SM group GSM and the index
i = 1, 2, 3 represents the flavor index. Indeed, fermions can be divided into three families called
flavors; as far as leptons (L, e) are concerned, each one of the three families contains an electrically
charged particle: electron (e) the first, muon (µ) the second, and tau (τ) the third, and for each of
them there is a neutral particle called neutrino, νe, νµ, and ντ respectively. Regarding the quark fields
(Q, u d), the upper components carry electric charge +2

3 and are called up (u), charm (c), and top
(t), while the lower components have charge −1

3 and are referred to us as down (d), strange (s), and
bottom (b). The only thing that distinguishes two fermions of the same kind belonging to different
families is their mass, which can assume very different values. Indeed, the fermions mass range spans
over lots of orders of magnitude, with the least massive being the electron with me = 0.511 MeV ,
while the heaviest is the top quark with mt = 170 GeV .

The Higgs multiplet is a scalar SU(2)L doublet

H(1, 2,+
1

2
) (1.6)

It couples both fermions and Gauge bosons and its potential breaks spontaneously GSM as

SU(3)c × SU(2)L × U(1)Y −→ SU(3)c × U(1)EM (1.7)

This Spontaneous Symmetry Breaking is called electroweak symmetry breaking, and it allows to
provide a mass to fermions and to the Z and W± gauge bosons in a gauge invariant way.

Once the field content and symmetry are understood, the most general renormalizable Lagrangian
is the following

LSM = Lk + LH + LY (1.8)

where the first piece contains the kinetic terms for both fermions and gauge bosons
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Lk = −1

4
Gµν, aGa

µν − 1/4Wµν, iW i
µν −

1

4
BµνBµν +

∑

f

ψ̄f iγ
µDµψf (1.9)

where Dµ = ∂µ− igs2 Ga
µλ

a− ig22 W i
µτ

i− igY YfBµ is the covariant derivative built through the gauge
fields with Yf the fermion hypercharge.

The second piece is the Higgs Lagrangian

LH = (DµH)†(DµH)− µ2H†H − λ(H†H)2 (1.10)

where µ2 and λ are real parameters, and µ2 < 0 in order to realize the electroweak spontaneous
symmetry breaking. It is responsible for Higgs-Gauge interactions, Higgs self-interactions and Gauge

boson masses when H assumes its vacuum expectation value H =

(

0
v√
2

)

, with v =
√

−µ2

λ .

The last term is the Yukawa Lagrangian, responsible for the fermions-Higgs interactions

LY = −Y ij
u Q̄LiuRjH̃ − Y ij

d Q̄LidRjH − Y ij
e LLierjH̃ + h.c. (1.11)

where Y matrices are called Yukawa matrices and H̃ = iτ2H is the conjugate Higgs field. It is
responsible for Higgs fermions interactions and, after the electroweak symmetry breaking, fermion
masses1. This last piece contains the whole flavor structure of the SM.

1.2 Standard Model success

With the discovery at the LHC of a particle that, in all its properties, appears just as the Higgs boson
of the SM, the main missing block for the experimental validation of the theory is now in place [2].
The Higgs discovery is the last milestone in the long history, almost 130 years, of the development
of a field theory of fundamental interactions. An additional LHC result of great importance is that
a large new territory has been explored and no new physics has been found. If one considers that
there has been a big step in going from the Tevatron at 2 TeV up to the LHC at 8 TeV (a factor
of 4) and that only another factor of 1.75 remains to go up to 14 TeV, the negative result of all
searches for new physics is particularly astonishing. In particular, while NP can still appear at any
moment, clearly it is now less unconceivable that no new physics will show up at the LHC. As is well
known, in addition to the negative searches for new particles, the constraints on new physics from
flavor phenomenology are extremely demanding: when adding higher-dimensional effective operators
to the SM, flavor constraints generically lead to very large suppression scales Λ in the denominators
of the corresponding coefficients. In fact, in the SM there are powerful protections against flavor-
changing neutral currents and CP violation effects, in particular through the smallness of quark
mixing angles. Powerful constraints also arise from the leptonic sector. In particular, we refer to the
recently improved MEG result on the µ→ eγ branching ratio, Br(µ→ eγ) ≤ 4.2× 10−13 at 90%C.L
and other similar processes such as τ → µγ or τ → eγ and to the bound on the electron dipole moment
|de| ≤ 8.7 × 10−29 ecm by the ACME Collaboration. In this respect, the SM is very special and, as
a consequence, if there is new physics, it must be highly non-generic in order to satisfy the present
constraints.

1.3 Standard Models limit

The SM is a very successful theory: its predictions, tested in the last three decades with increasingly
high precision, are in excellent agreement with experimental data for a wide range of phenomena,
but new-physics signals arise anyway, both from experimental measurements and from conceptual
arguments. Let us first of all point out that the SM does not include gravity, and nowadays there are
not fully consistent theories able to embed gravity within a QFT context compatible with the SM.
Therefore, an extension of the SM or a drastic modification of our way of conceiving fundamental

1Since the right-handed neutrino is not included in the SM, neutrinos are considered massless
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Figure 1.1: Hadronic cross section as a function of the center of mass energy. The solid line represent
the theoretical prediction, while the dots are the experimental measuraments. Also indcated are the
energy ranges of various e+e− accelerators.

Figure 1.2: Comparison of the SM expectations and the results of the Higgs boson coupling fit from
CMS at

√
s = 13 TeV .
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interactions is needed to unify the four fundamental forces. This fixes an upper bound with respect
to the validity of the SM at the Planck scale MP l = 1.2209 × 1019 GeV , where quantum gravity
effects become important [3]. However, nothing forbids that the SM fails before this energy scale,
for instance, for the appearance of new degrees of freedom, which at the energy of present colliders
cannot go on shell. In addition to the absence of gravity in the SM, it is also unable to explain several
phenomena from a cosmological standpoint. Here are a few examples:

• Dark matter evidence [4]: Galaxies in our universe are rotating with such speed that the
gravity generated by their observable matter could not possibly hold them together; they should
have torn themselves apart long ago. The same is true for galaxies in clusters; therefore, there is
something we cannot see at work. Extra gravity needed to hold galaxies together is called “dark
matter ”, since it is not visible. A well-established measurement of Dark Matter abundance
states that it constitutes around 26% of the energy budget of the universe. However, the only
particle in the SM that can act as DM is the neutrino, but due to its small mass, it can only
constitute hot dark matter and can account for a small amount of the entire energy density of
DM. Therefore, an extension of the SM is needed to take this matter into account. These new
particles must be stable, very weakly interacting, and non-relativistic. Several candidates have
been proposed, such as the axion [5], which, through the misalignment mechanism, can provide
the observed amount of cold DM. Other candidates are present in supersymmetric extensions of
the SM, such as gravitinos and neutralinos.

• Baryon asymmetry: In our universe, the number of baryons is much larger than the number
of antibaryons. It can be shown that to have such a big difference, a dynamical mechanism
called baryogenesis is necessary. But in order to have baryogenesis, three conditions must be
satisfied, called the Sakharov conditions. Sakharov conditions require baryon number violating
interactions; however, in the SM, due to an accidental symmetry, B violation is absent2. In
addition, CP violating interactions are also necessary, and they are present in the SM, at least
in the quark sector, but in such a small amount that it is not enough to explain the asymmetry
[6]. Finally, the third condition is for the interactions to happen out of thermal equilibrium.

• Inflation: It is a dynamical process which is supposed to happen right after the Big Bang and
that can solve some early universe problems, such as the flatness problem or the horizon problem
[7]. However, there is no SM field that can be identified with the inflaton field, the particle that
drives the inflation mechanism.

There are also other experimental evidence that suggests the existence of new physics particles.
Some of them are:

• Neutrino oscillations [8]: In the last decades, several experiments have shown that solar
and atmospheric neutrinos change their flavor along the path between their production and
their detection points. In the SM, these transitions are not allowed as neutrinos are massless,
therefore, the SM must be extended to include neutrino masses. Current investigations aim at
establishing the nature of neutrinos (Dirac or Majorana), their mass hierarchy and the amount
of CP violation in the neutrino sector.

• Lepton flavor universality violation [9]: The SM predicts the electroweak interactions to
have the same strength for all lepton generations. This property is called lepton flavor universal-
ity (LFU) and has been experimentally verified in meson decays, τ decays, and Z boson decays.
However, in the last years, some hints of LFU violation in neutral-current as well as charged-
current semi-leptonic decays have emerged. Although the current situation is not clear yet, there
is an ongoing experimental and theoretical effort to shed light on this important subject.

• The magnetic moment of the muon [10]: For an elementary particle with spin S⃗, mass m
and charge q, its magnetic moment µ⃗ is given (in natural units) by

2It turns out that through non-perturbative mechanisms, the Baryon symmetry is violated. This, along with the CP

violating interactions, makes sure that the SM satisfies the first two Sakharov condition
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µ⃗ = g
q

2m
S⃗ (1.12)

where g is the gyromagnetic factor. From his original formulation of relativistic quantum me-
chanics in 1928, Dirac predicted g = 2 for any spin-12 elementary particle. However, this quan-
tity receives contributions from radiative corrections. In particular, at one-loop accuracy, they
amount to:

aℓ =
gℓ − 2

2
=
αem

2π
, ℓ = e, µ, τ . (1.13)

Such deviation from the tree-level prediction g = 2 was fully confirmed experimentally and it
represented the first great triumph of the Quantum Electro-Dynamics (QED). However, the
current situation has changed: the astonishingly accurate SM prediction [11] of aµ seems to
deviate by more than 5σ from the experimental world average [12].

Besides the experimental problems of the SM listed above, there are also other theoretical problems
which require to be understood, as for instance the so-called naturalness problem. To better under-
stand this point, let us start with a classical example: the physical mass of the electron in classical
field theory. Electron mass, according to electromagnetism, can be written as the sum of the bare
mass and the total energy stored in the Electromagnetic field

mec
2 = me,bc

2 +
e2

4πϵ0a
(1.14)

with a ≈ 10−17 cm the classical radius of the electron and ϵ0 the vacuum dielectric constant.
Substituting the numbers, one finds that the Coulomb energy is about 10 GeV and therefore, to
obtain the electron mass, the bare mass must be set to a very peculiar value me,b = −9.9995 GeV .
A so strong fine-tuning may signal physics beyond the classical field theory of electromagnetism.
Indeed, at scale length of the classical electron radius, quantum effects are important and must be
systematically included by means of the QED.

The most prominent examples of naturalness problems within the SM are [13]:

• The Higgs hierarchy problem: It consists of the huge hierarchy between the Planck mass
MP l ∼ 1018 GeV and the Higgs mass parameter |mh| ∼ 100 GeV . This problem becomes
manifest in the one-loop correction to the dimension-2 Higgs mass parameter due to the top
loops, as follows,

∆m2
h = −Ncy

2
t

8π2
Λ2 + . . . (1.15)

with Λ being the UV cut-off for the loop momentum and is typically of order MP l. Simple solu-
tions to the hierarchy problem include, for instance, low-energy supersymmetry and composite
Higgs models which predict the existence of new particles not too far from the electroweak scale.

• The strong CP problem[14]: The QCD Lagrangian has an additional gauge-invariant term,
the so-called θ term:

Lθ =
g2s

32π2
θGµν,aG̃a

µν (1.16)

with G̃a
µν = 1

2ϵµνρσG
ρσ,a. It turns out that the θ-term is a total derivative,

g2s
32π2

Gµν,aG̃a
µν = ∂µK

µ (1.17)

with
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kµ =
g2s

32π2
ϵµνρσGa

ν [G
a
ρσ −

g

3
fabcGb

ρG
c
σ]. (1.18)

Therefore, the θ-term does not affect local QFT properties, but there is a vacuum gauge config-
uration with a non-trivial topological (winding) number, n ̸= 0, due to

g2s
32π2

∫

d4xGµν,aG̃a
µν =

∫

dSµKµ = n (1.19)

with n being integer. The non-perturbative effects are proportional to e−c/g2s so only the QCD
θ-term is important. In fact, the QCD θ-term contributes to the neutron electric dipole moment
(EDM) as

dn =
e

Λ2
QCD

mumd

mu +md
θ < 3.0× 10−26 ecm (1.20)

which sets the limit to |θ| < 10−10. This is the strong CP problem. Nothing forbids such a small
value, but it is more natural to explain it through a symmetry argument like in the Peccei-Quinn
solution, where a new U(1)PQ symmetry is added and the parameter θ is dynamically driven to
zero.

• The Standard Model flavor puzzle [15, 16]: It is about the hierarchical patterns of fermion
masses and the mixing patterns of quarks and leptons. In particular, neutrino masses are
much lighter than any of the quarks and leptons: mνj/ml,q ≲ 10−10. But also in the original
formulation of the SM, we find that the mass spectrum ranges from around 0.5 MeV for the
electron to 170 GeV for the top quark, and again this huge difference between the masses of
different fermions is not natural. The flavor problem originates from the dimension-4 Yukawa
couplings for quarks and leptons and partly from the dimension-5 operators for neutrino masses.

Therefore, even if the predictions of the SM in the last decades are astonishingly precise, the theory
clearly needs some ultraviolet completion that is able to explain the mentioned observations and the
internal consistency problems.
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Chapter 2

The muon g-2

The magnetic dipole moment is a classical property of physical system. In quantum mechanics the
concept of an intrinsic angular momentum, the spin S⃗, emerges. Then, for a particle with charge q
and mass m, the magnetic dipole moment can be defined as

µ⃗ ≡ g µB
q

2m
S⃗ (2.1)

where µB is the Bohr magneton and g the giroscopic ratio, also referred to as g-factor.

2.1 Standard Model prediction

The first theoretical prediction for the g-factor of point-like charged particles traces back to 1928, when
the relativistic formulation of quantum mechanics obtained by Dirac provided the g = 2. However,
this approach does not take into account radiative corrections, which modify the interaction between
the lepton and the photon, through exchange of virtual particles. The theoretical estimate for the
g-factor can be obtained at any order of perturbation theory exploiting corrections coming from the
entirety of the Standard Model. The deviation from the quantum mechanical prediction is defined as
anomalous magnetic moment as

aµ ≡
gµ − 2

2
(2.2)

This can be divided into the three different contribution that are deeply studied in the so called
White Paper [11]: electromagnetic, electroweak and hadronic

aµ = aQED
µ + aEW

µ + ahadµ (2.3)

The first correction comes from QED and was firstly computed in 1948 by Schwinger with the
result of

aµ =
α

2π
. (2.4)

In the following we will present a brief discussion about the other contribution arising from the
Standard Model.

2.1.1 Electromagnetic and weak contributions

The QED contribution arise from diagrams involving the three charged leptons (e, µ τ) interacting
with the photon. It is the dominant contribution, accounting for more than 99.99 % of the value of
the entire prediction. It has been computed in the framework of perturbation theory up to O(α5) with
more then ten thousand different Feynman diagrams generating both mass dependent and independent
contributions. The most recent prediction for aQED

µ is [17]:
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Figure 2.1: The only one loop contribution to the anomalous magnetic moment arising at one loop
level

Figure 2.2: An example of some one loop diagrams in the weak sector

aQED
µ = 116584718.931(104)× 10−11, (2.5)

where the uncertainty is due to the highest order contribution, the τ -lepton mass, the estimate of
the O(α6) contribution and the measure of the fine-structure constant α.

The Electroweak term, instead, embrace all the Standard Model contributions that are not con-
tained in the pure QED and hadronic one. The overall computation is much more complicated due to
the variety of virtual particles that can appear in the loop diagrams. Differences from the QED case
arise already at 1-loop, such as the presence of Goldstone boson particles like in 2.2. Overall, since the
gauge bosons and the higgs masses are much heavier that the muon, these contributions are strongly
suppressed. This is true in particular for those diagrams where the higgs couples to the muon, indeed
these are not only suppressed by the higgs boson propagator, there is also a reduction arising by the
presence of the muon-HIggs Yukawa coupling, and, for this reason, are usually neglected. The 1-loop
Electroweak contribution are expressed as:

aEW
µ =

GF√
2

m2
µ

8π2

(

5

3
+

1

3
(1− 4s2w)

2

)

(2.6)

where GF is the Fermi constant and the sw is the sine of the Weinberg angle. The mass suppression
can be seen in the factor GFm

2
µ ∼ m2

µ/M
2
W . Among the higher order contributions an important role

is played by the two-loop ones which arise from QED corrections or fermionic loop insertions in the
one-loop diagrams. Surprisingly, they are the same order of magnitude of the one-loop result: this is
due to the presence of log(mZ,W /mf ) terms associated to fermion triangular-loops, where mf is the
mass scale of the fermion in the loop, very small compared to the mass of the guage bosons. As a
result, the one-loop contribution is sensibly diminished by the two-loop term.

The most recent estimate for the weak contribution is [18, 19]:

aEW
µ = 153.6(1.0)× 10−11. (2.7)

2.1.2 Hadronic contribution

The hadronic contribution is given by pure QED diagrams with quarks running in the loops. The main
difficulties that is encountered with this kind of terms arise from the non-perturbative behavior of QCD
at low energies. The leading order contribution shows at orderO(α2) and comes from diagrams showing
an hadronic vacuum polarization insertion in the virtual photon in the loop 2.3. This contribution
can be obtained exploiting the dispersion relation alongside the optical theorem combined with data
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Figure 2.3: The hadronic leading order contribution to the anomalous magnetic moment

coming from the hadronic annihilation process e++e− −→ hadrons. The dispersive relation obtained
is:

ahadµ =
α

3π

∫ ∞

m2
π

ds

s
K(2)

µ (s)Rhad(s). (2.8)

with K
(2)
µ (s) is a kernel function, mπ the mass of the pion and Rhad(s) is the ratio of the inclusive

cross section for e+e− annihilation into hadrons, with electromagnetic radiative corrections subtracted
off, and the cross section for muon-pair production in the high energy limit:

Rhad(s) =
σ(0)(e+ + e− −→ γ∗ + hadrons)

σ(0)(e+ + e− −→ µ+ + µ−)
. (2.9)

The most recent value for the hadronic contribution is [11], where the experimental data are taken
from [20, 21, 22]:

ahadµ = 6931(40)× 10−11. (2.10)

The error on the measured value is mainly due to the experimental uncertainty on the hadronic
cross section. As a consequence the error on the ahadµ term dominates the total uncertainty on the
anomalous magnetic moment, an improvement in its measurement is necessary to correctly interpret
the experimental results. The hadronic higher order contribution are usually split in two terms: the
first one includes QED corrections to the hadronic vacuum polarization and can be computed through
the dispersive relation, the second one arise from hadronic light-by-light diagrams and cannot be
extracted from experimental data, but specific models must be exploited.

The value for the vacuum polarization term is [23]:

aHHO
µ (vp) = −8.70(0.06)× 10−10 (2.11)

while for the light-by-light term is [24]:

aHHO
µ (lbl) = 10.34(2.88)× 10−10 (2.12)

Summing up the three contribution the final theoretical value for the anomalous magnetic moment
of the muon can be obtained, giving the value:

aSMµ = 116591810(43)× 10−11 (2.13)

2.2 Experimental status

The first measurement of the anomalous magnetic moment of the muon was performed at Columbia
University in 1960. The result aµ = 0.00122(8) at a precision of about 7% showed no difference
with the electron. Shortly after, in 1961, the first precision determination was possible at the CERN
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cyclotron (1958-1962). Surprisingly, nothing special was observed within the 0.4% level of accuracy
of the experiment, that gave the result aCERN,I

µ = 1162(5) × 10−6[25]. This provided the first real
evidence that the muon was just a heavy electron.

Later on the idea of a muon storage ring was considered. A first one was successfully realised
at CERN (1962-1968) and allowed to measure aµ for both muons and anti-muons, giving the result

aCERN,II
µ [26], which is in excellent agreement with the QED theoretical prediction1.

Between 1969 and 1976 another experiment (with a second muon storage ring) was realised at
CERN which allowed to confirm the QED prediction with an increased accuracy, with the result
aCERN,III
µ = 1165924(8.5)×10−9[27]. Only 20 years later, a muon storage ring experiment at Brookeven

National Laboratory (BNL) was able to set new precision standards, allowing the experiment to be
sensitive to the weak SM contributions and leading to the discovery of a (3.7sigma) deviation from
the theoretical prediction. The collaboration yielded the following experimental value[28]:

aBNL
µ = 11659208.0(6.3)× 10−10. (2.14)

A recent development in the measurement of the anomalous magnetic moment of the muon was
achieved at Fermilab with the experiment Muon g-2. The first data taking started in 2018 and the
result of the first run was released in 2021 [29]. Other runs have been collected in the following years
and the most recent results were published in August 2023 [12].

The principle of the experiment is to measure the anomalous precession frequency of the muon
in a magnetic field. This frequency is the difference between the spin precession and the cyclotron
frequencies, and it’s proportional to the magnetic field magnitude through a constant that contains the
muon anomaly g−2

2 . In particular, if the gyromagnetic factor is 2, the anomalous precession frequency
should be zero.

The aim of the experiment is to measure how fast the muon spins around the momentum direction.
To do this, the parity violating µ+ decay is exploited: the high-energy positrons are emitted prefer-
entially in the muon’s spin direction, and a detector along a fixed direction will count the number
of positrons modulated by the spin precession frequency. As a result, the experimental measure just
requires counting the number of high-energy positrons.

The first result of the Muon g-2 collaboration came in 2021, finding an agreement with the BNL
result [29]

aFNAL,2021
µ = 116592040(54)× 10−11. (2.15)

More recently, the same collaboration presented the results from the second and third runs of the
experiment, increasing the overall precision of the measurement [12]:

aFNAL,2023
µ = 116592059(22)× 10−11. (2.16)

Combining the SM value in 2.13 with the experimental world average, it is found that

∆a2023µ = 24.9(4.8)× 10−10. (2.17)

where the uncertainties are combined in quadrature. Interestingly, 2.17 shows a 5.0σ discrepancy
which could be a hint of new physics effects[12].

2.3 New physics contributions

New interactions emerging at a scale Λ larger than the electroweak scale can be described at energies
E ≪ Λ by an effective Lagrangian containing non-renormalizable SU(3)c⊗SU(2)L⊗U(1)Y invariant
operators. Focusing on the leptonic g-2, the relevant effective Lagrangian contributing to them, up to
one-loop order.

1Actually, this experiment found a 1.7σ deviation from the QED theoretical prediction, which was subsequently

explained by including the so far missing 3-loop QED contribution.
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Figure 2.4: Feynman diagrams contributing to the leptonic g-2 up to one-loop order in the Standard
Model EFT.

L =
Cℓ
eB

Λ2

(

ℓ̄Lσ
µνeR

)

HBµν +
Cℓ
eW

Λ2

(

ℓ̄Lσ
µνeR

)

τ IHW I
µν

+
Cℓ
T

Λ2
(ℓ

a
LσµνeR)εab(Q

b
Lσ

µνuR) + h.c. (2.18)

where it is assumed that the NP scale Λ ≳ 1 TeV. The Feynman diagrams relevant for the leptonic
g-2 are displayed in figure 2.4. They lead to the following result

∆aℓ ≃
4mℓv

eΛ2

(

Cℓ
eγ −

3α

2π

c2W−s2W
sW cW

Cℓ
eZ log

Λ

mZ

)

−
∑

q=c,t

4mℓmq

π2
Cℓq
T

Λ2
log

Λ

mq
, (2.19)

where sW , cW are the sine and cosine of the weak mixing angle, Ceγ = cWCeB−sWCeW and CeZ =
−sWCeB − cWCeW . Additional loop contributions from the operators H†HW I

µνW
Iµν , H†HBµνB

µν ,

and H†τ IHW I
µνB

µν are suppressed by the lepton Yukawa couplings and can be neglected. Moreover,
in equation 2.19, we assumed for simplicity that CeB, CeW and CT are real. Since only the first two
operators of equation 2.18 generate electromagnetic dipoles at tree-level, we include their one-loop
renormalization effects to Cℓ

eγ

Cℓ
eγ(mℓ) ≃ Cℓ

eγ(Λ)

(

1− 3y2t
16π2

log
Λ

mt
− 4α

π
log

mt

mℓ

)

. (2.20)

In order to see where we stand, let us determine the NP scale probed by ∆aℓ. From equation 2.19
we find that

∆aµ
3×10−9

≈
(

250TeV

Λ

)2
(

Cµ
eγ−0.2Cµt

T −0.001C
µc
T −0.05C

µ
eZ

)

.

A few comments are in order:

• The ∆aµ discrepancy can be solved for a NP scale up to Λ ≈ 250 TeV. This requires a strongly
coupled NP sector where Cµ

eγ and/or Cµt
T ∼ g2NP /16π

2 ∼ 1 and a chiral enhancement v/mµ

compared with the weak SM contribution.

• If the underlying NP sector is weakly coupled, gNP ≲ 1, then Cµ
eγ and Cµt

T ≲ 1/16π2, implying
Λ ≲ 20 TeV to solve the ∆aµ anomaly.

• If the NP sector is weakly coupled, and further ∆aµ scales with lepton masses as the SM
weak contribution, then ∆aµ ∼ m2

µ/16π
2Λ2. Here, the experimental value of ∆aµ can be

accommodated only provided that Λ ≲ 1 TeV .
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Chapter 3

The Dark Matter problem

Increasing curiosity in the study of our cosmos has driven astronomers to research the sky with a
variety of experiments during the last century [30, 31, 32]. Galaxies and clusters of galaxies were of
great interest and were investigated by exploiting gravitational interactions and electromagnetic sig-
nals. Performing these kinds of studies, astronomers began to realize that there is a large discrepancy
between the amount of mass deduced by the analysis of gravitational interactions and the mass that
interacts with us through electromagnetic fields. The name “dark matter”was introduced to denote
the hypothesis that this discrepancy is due to a component of matter subject to the gravitational
interaction but not to the electromagnetic one, resulting in an opaque component of the mass budget
inside the structures of the universe. Decades of subsequent astronomical observations, and the recent
striking developments in observational cosmology, have nearly ruled out alternative proposals to ex-
plain this discrepancy. This explains why the idea that dark matter is made of a new type of particle,
subject to yet unknown interactions with ordinary matter, is widely shared today in the scientific
community.

3.1 Evidence for Dark Matter

Oort made the first observations of non-luminous matter in 1932. His measurements of the brightest
stars in the Milky Way suggested that part of the galaxy’s gravitational mass was missing if only
those stars were considered, leading him to claim that the disk of the galaxy was made up of two-
thirds “dark matter”, which included stars less luminous than the Sun and gas and dust in the
interstellar medium. Many years later, in 1959, Kinman detected some deviations in the velocities
of the Milky Way’s globular clusters from what was expected from a pure disk mass model and
proposed a linearly growing mass distribution beyond the disk. Also, the observations of the spiral
galaxy nearest to us, M31 (Andromeda), done by Babcock in 1939, suggested that the ratio between
gravitational and luminous mass was increasing in the outer regions of the galaxy. The studies were
deepened in the following years, in particular by Vera Rubin, who showed that, for a large sample of
spiral galaxies, the rotation curve of stars inside the galaxy did not fall off as predicted by Keplerian
gravity, but kept a flat profile for a large distance outside the main disk. Since the radial velocity, in
the approximation of a circular motion and spherical symmetry, is given by v =

√

GM(r)/r (where
G = 6.67×10−11 Nm2kg−2 is the gravitational constant andM(r) is the gravitational mass contained
inside a sphere of radius r centered in the barycenter of the galaxy) according to Newtonian gravity,
these results imply a dark matter mass density proportional to r−2 within a large region outside the
main disk of the galaxy. The large set of observations gathered from the early ’30s to the end of the
’80s provided plenty of evidence that, in the framework of general relativity, a large part of the mass
inside and surrounding galaxies is not interacting through electromagnetic or nuclear interactions.

The Cosmic Microwave Background (CMB) searches (Maxima, Boomerang in 2000 and WMAP
in 2003) provided another crucial hint for the existence of dark matter. A comprehensive observation
of the CMB on a small angular scale enabled the measurement of the spectrum of anisotropies in the
CMB’s temperature, which constrains numerous cosmological parameters, including the ratio between
the total matter’s energy density (given by the sum of dark and standard matter energy density) and
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the critical density, denoted by Ωm. Ωm affects the shape of the spectrum through many mechanisms,
but mainly influences the heights of the first peaks. Already the first measurements of Maxima and
Boomerang pointed to a value of Ωm around 30%, and the current best measurement of the CMB,
obtained by the Planck satellite, gives Ωm = 31.6% [33], and an energy density of dark matter equal to
26.7% of the total one. Another important probe for the distribution of dark matter is the observation
of strong gravitational lensing, i.e., the study of images of faraway galaxies bent or replicated because
of the passage of light near a very massive galaxy cluster. This kind of observations showed that the
most massive clusters are largely dominated by dark matter, with ratios of gravitational to luminous
matter of the order of some hundreds.

3.2 Dark Matter production

Once the existence of Dark Matter is assumed in order to explain the cosmological observations, it is
necessary to specify the mechanism through which these particles are produced and their consequent
abundance in the universe. There are two alternative mechanisms, named “freeze out”and “freeze in”,
which we shall explain briefly in the following.

Freeze out is the simplest mechanism that fixes the abundance of a species in an expanding Universe
[32]. If two particles, say A and X, can interact with each other through the reaction AA ⇄ XX,
then, when initially the Universe is very hot (at energies much greater than the masses of the two
particles), the two species annihilate into each other maintaining the chemical equilibrium. When the
temperature T of the Universe drops below the higher of the two masses, say mX , then the number
density nX of X, in the hypothesis that X remains in thermal equilibrium, must follow the non-
relativistic Boltzmann distribution, which includes a suppression factor e−mX/kT . Hence, the particles
X will annihilate into particles A so as to follow the Boltzmann distribution. As a result, nX should
drop to zero as the universe cools down, unless the reaction XX → AA becomes inefficient at a
certain point. Indeed, this will happen because of the expansion of the Universe, which dilutes the
concentration of non-relativistic particles proportionally to a−3, where a is the scale factor appearing
in the Friedman-Roberson-Walker metric. Then, when the annihilation rate nX⟨σv⟩ (where ⟨σv⟩ is
the thermally averaged cross section for the reaction XX → AA) will decrease below the Hubble rate
of expansion H ≡ ȧ/a, the annihilation of the X particles will substantially cease. The consequence
is that nX keeps the same value it had at the moment of the freeze out, when nX⟨σv⟩ ≈ H.

This mechanism can be specialized to the case of Dark Matter, denoting by X the corresponding
Dark Matter candidate, we can assume that it can interact with another species, like SM particles,
through some yet unknown interaction (or possibly only through gravitational ones), and that it is in
thermal equilibrium in the early Universe.

This discussion can be made quantitative through the numerical solution of the Boltzmann equa-
tions, a set of differential equations that describe the evolution of the number densities of interacting
species in an expanding universe. In the case we are discussing, the equation for nX reads

dnX
dt

= −3HnX − ⟨σv⟩(n2X − n2X,eq) (3.1)

where nX,eq is the equilibrium number density of X. The first term on the right-hand side of
equation 3.1 accounts for the dilution due to the expansion, the second term comes from theXX → AA
process, while the third one comes from the opposite reaction AA→ XX. This equation can be solved
numerically.

Let us focus on the freeze-out moment (denoted with a subscript f): the condition ⟨σv⟩ = H,
together with the Friedmann equation for a radiation-dominated Universe, H2 ∼ T 4

f /M
2
P l, brings to

nX,f ∼
T 2
f

MP l⟨σv⟩
. (3.2)

It is customary to define x ≡ m/T , and the yield YX ≡ nX/s, where s is the entropy density of
the Universe. The thermal relic density of X is then (the subscript 0 denotes present-day quantities)
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ΩX =
mXnX,0

ρc
=
mXT

3
0

ρc

nX,0

T 3
0

∼ mXT
3
0

ρc

nX,f

T 3
f

≈ xfT
3
0

ρcMP l

1

⟨σv⟩ , (3.3)

where the first approximation follows from YX,f = YX,0 and sf = s0 (isoentropic expansion of the
universe) with the approximation g∗,f ≈ g∗,0, and in the last step we used equation 3.2.

If we impose ΩX ∼ 0.3 in equation 3.3, assuming that X is weakly interacting with A and therefore
we can write, on dimensional grounds, ⟨σv⟩ ∼ g4weak/(16π

2m4
X), then mX turns out to be in the range

100 GeV − 1 TeV . Then, a weakly interacting particle with a weak scale mass naturally leads to
the correct relic abundance. This exciting coincidence was called the “WIMP miracle”, where WIMP
stands for Weakly Interacting Massive Particle, and motivated in the last decades a wide belief that
the most likely particle candidate for dark matter is a WIMP. An important point in this result is
that the thermal relic density is mainly dependent on the cross section σ, rather than on the mass
mX . Indeed, the Dark Matter mass appears in equation 3.3 only through xf , which is typically of the
order of 20 for a WIMP candidate and does not vary much for different choices of mX . Moreover, this
mechanism is independent of the early thermal history of the Universe and of the interactions at high
energy scales.

We conclude this discussion about the freeze-out mechanism by recalling the corresponding require-
ments for dark matter: the DM particle X should be stable on cosmological scales and in thermal
equilibrium in the early Universe (moreover, its mass should be lower than the reheating temperature),
it should annihilate to other particles, and the corresponding cross section must satisfy a lower bound,
so that X is not over-abundant. A peculiarity of the freeze-out mechanism is that a weakly interacting
particle X with a mass of the order of the weak scale implies the correct total relic abundance of dark
matter.

On the other hand, the production mechanism called freeze-in can be seen for various reasons
as the “opposite” with respect to the freeze-out mechanism, in particular for its constraints on the
properties of the dark matter candidate. We will sketch here only its basic features.

The following is the basic framework of this production method. The assumptions about the
initial conditions of the dark matter candidate X are that, unlike for freeze-out, the species X is
weakly interacting with the particle not in thermal equilibrium. Another assumption is that the initial
number density of X is negligible; a possible explanation for this is that the reactions that produce
X are inefficient after the reheating era. Although the interactions with the thermal bath are feeble,
X is still produced, with a yield that turns out to be inversely proportional to the temperature T ,
and therefore increasing in time. Then the number density of X keeps growing until the temperature
drops below mX , and the reactions that produce X become kinematically disfavoured. From that
moment on, the number density of X will substantially remain frozen because the interaction rate will
be lower than the Hubble rate.

The most relevant feature of this mechanism is that the number density of X is greater for higher
couplings of X to the thermal bath, contrary to the freeze-out case.

We will now estimate the yields expected for two possible renormalisable interaction terms to
show that they turn out to be decreasing with temperature (and hence increasing with time). The
yield, being an adimensional quantity (once we set k = 1), must be the ratio of the two dimensionful
quantities that are involved: the decay rate Γ (for a three field interaction, or n⟨σv⟩ for a two-to-two
particles scattering) and the Hubble rate H ∼ T 2/MP l.

For a Yukawa interaction Lint = λψ1ψ2X among three fields with masses m1 > m2, mX , the decay
rate in the rest frame of ψ1 must be ΓRF ∼ λ2m1. The corresponding rate in the comoving frame can
be obtained by dividing for the boost factor T/m1; then YX ∼ Γ/H ∼ λ2m2

1MP l/T
3. By evaluating

the yield for the temperature T ≈ m1 at which the production is dominant (with respect to later times
when T < m) we get

YX ∼ λ
MP l

m1

.
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Figure 3.1: Schematic Feynman diagrams involved in the three possible searches for dark matter.

In the case of the quadrilinear interaction Lint = λX2ψ2
1, the corresponding cross section will

be proportional to λ2/T 2 for dimensional reasons (for early times, the two species are relativistic,
T ≳ m1, mX), n ∼ T 3 and YX ∼ n⟨σv⟩H−1 ∼ λ2MP l/T which gives a final yield (for T ≈ m1) of the
same order as before, YX ∼ λ2MP l/m1.

Even if the details of the freeze-in mechanism and the calculation of the relic density change from
case to case, the relevant point that emerges from these estimates is that the yield predicted by this
mechanism has opposite features with respect to the one predicted by freeze-out. We can estimate
the latter from equation 3.2 by inserting ⟨σv⟩ ∼ λ2/M2

X and T ∼MX :

YFO ∼
1

α2

mX

MP l
(3.4)

.
We can see that the two mechanisms generally yield the correct relic abundance of dark matter

for different regimes of mass scales and interaction couplings.

3.3 Dark Matter Searches

Keeping in mind the previous discussion about the possible scenarios for dark matter production in
the early Universe, we can argue that, in addition to the gravitational interaction to which all particles
in Nature are subject (according to General Relativity), dark matter must couple to some of the other
components of the Universe via some kind of weak interaction. Furthermore, each of the mechanisms
outlined in the preceding section requires an interaction that, while possibly weak, must have been
efficient at some point in the Universe’s history. In particular, the freeze-out mechanism produces
consistent relic densities in the hypothesis of an interaction with the SM with a strength comparable
to the one of the SM SU(2)L interaction: this possibility leaves room for detection in the near future
with some of the methods described below.

Because of these reasons, it is reasonable to assume that there is a non-gravitational interaction
between the DM and the SM. The generic Feynman diagram involving two DM particles (that we will
denote by X) and two SM particles on the external lines implies three possible search channels.

From this image, it is clear that a positive result from any of these searches could be probed by
the other ones, depending on the regions of higher sensitivity specific to each experiment. Therefore,
it is likely that the best constraints we can get about any DM candidate will come from an interplay
of all three research channels.

3.3.1 Direct Searches

Direct searches try to detect the motion of Earth through the dark matter distribution of our galaxy
[34]. Indeed, the relative motions of the Earth with respect to the Sun (at a speed of 30 km/s) and
of the Sun with respect to the galaxy and therefore with respect to the dark matter distribution (at
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a speed of around 220 km/s) imply a relatively large flux of dark matter particles through the Earth.
This flux, also called “dark matter wind”, can be quantified as ΦDM ∼ 1011 m−2s−1/(mX/GeV ).

A possible experimental search consist in monitoring a large detector looking for energy signals
that stem from nuclei recoiling from a dark matter interaction. Since dark matter-nucleus interactions
are very unlikely, this kind of experiments must use high-density materials in order to maximize the
cross section and must be built underground so that the background of cosmic rays and other sources
is minimized. For this reason they are typically held in old mines or inside mountains. Eventually,
an important point that can allow us to distinguish the expected signal from the background is the
periodicity: indeed, the flux of DM through the Earth should show an annual modulation, as we will
discuss below.

In order to quantify the expected number of events, many inputs from different research fields
must be specified:

• Astrophysical input: we should have a precise estimate of the flux of DM particles, which
depends both on the local density distribution and on the velocity distribution of dark matter.
The only way to get a detailed prediction is to compare some ansatz for these functions, which
depend on some unspecified parameters, with the result of numerical simulations and with
phenomenological inputs from astrophysics and cosmology. For example, all the density profiles
for dark matter that have been proposed display the common behavior ρ ∝ r−2, i.e., a density
proportional to the inverse of the square of the radial distance from the center of the galaxy for
r of the order of the galactic visible disk dimension.

• Experimental and Particle Physics input: a careful choice of material for the detector
must be done. Indeed, depending on the nuclear mass and spin of the nucleus, the event rate is
different if the dark matter interacts or not with the nucleus spin; we will talk of spin-dependent
and spin-independent cross section respectively. Furthermore, in order to maximize the cross
section of the interaction, it is better to choose a material with a high density. Finally, the cost
of the experiment must also be taken into account. Just to mention some relevant examples for
the spin-independent searches, the chosen material in some current experiments are xenon (e.g.,
XENON100, LUX, ZEPLIN), germanium (CDMS, EDELWEISS, CoGeNT), calcium tungstate
(CRESST), and sodium iodide (DAMA).

We will now discuss shortly how these inputs enter in the definition of the differential scattering
rate for a target nuclei recoiling with energy ER

1.
Let us first observe that the scattering of dark matter with electrons can be safely neglected.

Indeed, the dark matter particle moves at non-relativistic speed, and when it interacts with the
nucleus, it does not have enough energy to resolve its constituent. For this reason, the nucleus can be
seen as a bound state, and its cross section is by far larger than the one with an electron.

The rate R of nuclear recoils due to dark matter scatterings (event rate) is usually calculated as
a differential rate with respect to the recoil energy ER ≡ q2/(2mT ), where mX is the dark matter
mass, mT the target nuclei mass, and q is the momentum transferred in the scattering. ER is the
amount of kinetic energy left by the incoming dark matter particle in the detector after the interaction.
Since Dark Matter has a non-relativistic speed of order ∼ 10−3, and the typical mass of a nucleus is
mT ∼ 100 GeV , the maximum momentum transfers is q ≲ 200MeV and the scattering is elastic.

The scattering rate per unit of time and volume, for a dark matter particle travelling through the
detector with velocity v⃗ is given by:

R =
dNT

dtdV
≡ nTnXvσXN (v) (3.5)

where nT and nX are the number density of target nuclei and dark matter, respectively. σXN

is the cross section of the interaction and can be obtained from a particle physics model that de-
scribes the interactions between dark matter and nucleons2. Since the dark matter particles are not

1We assume that the detector does not contain impurities and is composed of nuclei of the same species and isotope
2In general, the cross section can depend on the full velocity vector v⃗, but if the dark matter flux and the nuclei in

the detector are both unpolarized, as we assume, it will depend only on the dark matter speed.
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monochromatic in velocity, the density in equation 3.5 must be replaced by its differential

dn =
ρX
mX

fE(v⃗, t)d
3v (3.6)

where ρX is the local dark matter density and fE(v⃗, t) is the velocity distribution at Earth’s loca-
tion, normalized to one. The density ρX can be determined from the study of the vertical kinematics
of stars near the Sun. The value ρX = 0.3 GeV/cm3 is the historical reference used in direct detection
literature. The velocity distribution is deduced from the comparison of observations and numerical
simulations. The usual ansatz for the velocity distribution is the Maxwell distribution with two modifi-
cations. First, we must consider that an upper limit for v is given by the so-called escape velocity vesc,
above which a dark matter particle is not gravitationally bound to the Milky Way. A standard value
is vesc ≈ 650 km/s. Secondly, the WIMP speed distribution in the detector frame is obtained through
a time-dependent Galilean transformation v⃗ → v⃗ + v⃗E(t), where v⃗E(t) is the velocity of the Earth
in the galaxy rest frame, equal to the sum of the Sun’s peculiar motion v⃗⊙, with |v⃗⊙| ≈ 220 km/s,
and the revolution velocity v⃗orbE of the Earth around the Sun. This vectorial sum can be approxi-
mated to |v⃗Et| = |v⃗⊙| + V⊕cos(2πt), where t is measured in years (starting from the 1st June), and
V⊕ ≈ 30 km/s. From the time dependence of the velocity distribution arises the modulation of the
expected signals.

Taking this into consideration and dividing by the mass density of the detector (ρdet)), we get for
the differential scattering rate:

dR

dER
(ER, t) =

ρX
mX

ndet
ρdet

∫ vmax

vmin

fE(v⃗, t)v
dσXN

dER
(ER, v) (3.7)

where vmax is determined by vesc and v⃗E(t), and vmin is the minimum dark matter speed which can

cause a recoil of energy ER, which turns out to be vmin =
√

(mNER)/2µ2N , with µN = mXmN/(mX+

mN ) the reduced mass of X and the nucleus. This formula follows from this alternative expression
for ER, which can be derived from kinematical considerations:

ER =

(

1

2
mXv

2
in

)

4µN
mX +mN

(

1− cosθ∗
2

)

(3.8)

,
where θ∗ is the recoil angle in the center-of-mass frame. We notice that ER is maximum for a

value of mX equal to mN : if we recall that the detector is sensitive to the recoil energy ER, we
can understand why the limits on the cross sections coming from direct detection experiments are
stronger in the range mX ≈ 10 − 100 GeV , near to the mass of the nuclei of the target material
of the experiment. Moreover, from equation 3.7, we can understand the qualitative behavior of the
sensitivity of direct detection for high values of mX : the cross section in a first approximation will
be proportional to a parameter with mass dimension (the cut-off scale Λ, that will be introduced in
equation 3.9) raised to the power (−4), thus for dimensional reasons it will also be proportional to
the reduced mass µN , that for mX much greater than mN tends to the smaller of the two, i.e. mN .
Thus the cross section tends to a constant for mX > mN , but the number density of dark matter,
which is the first multiplicative factor in equation 3.7, can be written as ρX/mX , where ρX is basically
fixed by the observed energy density of dark matter. Therefore, this factor 1/mX mildly reduces the
sensitivity of direct detection for masses mX > mN .

At this point, in equation 3.7, the only quantity to be discussed is the cross section σXN for the
elastic scattering between X and the nucleus. This cross section can be derived from the microscopic
theory through three steps.

The first step requires to define a theory that describes the interactions between the dark matter
field and partons (either a quark or a gluon). This can be done in a specific model by using a complete
theory (also called ultraviolet or UV theory) or by using an effective field theory (EFT) approach. In

an effective Lagrangian, one considers all the possible effective non-renormalisable operators O(d)
i of

mass dimension d between two quarks (or gluons) and two X fields, each of them with an unknown

coefficient c
(d)
i called Wilson coefficient,
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LEFT =
∑

d≥5

∑

i

c
(d)
i

Λd−4
O(d)

i (3.9)

where Λ is the cutoff scale, which allows to quantify the goodness of the truncation up to a certain
dimension d. Indeed, depending on the energy scale E of the interaction and the value of Λ, one can
approximate equation 3.9 by truncating the first sum up to a dimension d such that (E/Λ)d ≪ 1. One
thinks about the Lagrangian 3.9 from the Wilsonian point of view, in which all the degrees of freedom
of a renormalisable UV theory, with energy higher than Λ, have been integrated out; therefore, in
the resulting Lagrangian, the operators of dimension d ≥ 5 listed in equation 3.9 appear. From this
perspective, we can be more precise about the condition (E/Λ)d ≪ 1: in fact, we can relate the
cut-off scale Λ to the masses and the couplings of heavy fields which have been integrated out in the
Wilsonian Lagrangian. A more detailed discussion of the EFTs describing the interactions between
Dark Matter and SM particles will be given at the beginning of the next chapter.

Once the dark matter-partons interactions are specified, we need to derive the interaction of the
dark matter particles with the nuclei. This can be achieved using the hadronic matrix elements,
i.e., the matrix elements for the operators containing quark or gluon fields, which introduce the form
factors. These are functions depending on the momentum exchanged in the interaction; they must be
determined experimentally and represent the greatest source of error in the total scattering rate. It is
then possible to match the relativistic operators onto a set of non-relativistic operators that describe
the interaction of dark matter with a single nucleon, obtaining the effective Lagrangian:

Leff =
∑

i,N

cNi (q2)ON
i (3.10)

where N = p, n refers to proton and neutron respectively and i runs over the 14 non-relativistic
operators ON

i .
Finally, to get the scattering rate dσXN/dER with the whole nucleus, a multipole expansion is

performed, and the nuclear response functions are defined. These and other nuclear parameters are
experimentally measured by nuclear physicists.

To conclude, we note that the ON
i operators can be divided into two categories: those that do not

depend on the nucleon spin and those that do. This distinction is important since operators depending
on the nucleon spin (for example, ON

4 = S⃗X · S⃗N ) will produce a so-called spin-dependent cross section
that is suppressed due to interference between the nucleon’s spins. On the other hand, operators that
do not depend on the nucleon spin (like ON

1 = IXIN ) generate a spin-independent cross section that
is coherently enhanced and hence proportional to A2 (A being the mass number of the nucleus). This
point is very important from the experimental point of view because, in order to probe spin-dependent
interactions, it is necessary to use a target with nuclei with a non-vanishing total spin. As a result,
only some studies are sufficiently sensitive to spin-dependent interactions, and the exclusion limits are
weaker in that case.

3.3.2 Indirect Searches

Indirect techniques are based on the search for radiation produced in dark matter annihilations.
Indeed, the reactions that produced dark matter in the early Universe are now inefficient, and their
impact on the dark matter relic density is negligible, but dark matter annihilation continues and may be
observable. The flux of the radiation produced by these annihilations is proportional to the annihilation
rate Γann, which in turn depends on the square of the dark matter density, Γann ∝ ρ2X . As a result, the
places where dark matter accumulates, also known as amplifiers, are the most attractive directions to
investigate in order to maximize the probability of finding the products of these interactions. Dense
regions of the galactic halo, as the galactic center, are therefore the target of many astrophysical
searches, but also the Sun or the Earth could act as amplifiers for dark matter annihilations since
dark matter could lose energy through the scattering with nucleons inside these objects. Astronomers
then aim to detect the possible products of these annihilations; these can be photons (both X-rays
and Gamma rays), neutrinos, electrons and positrons, or protons and antiprotons. The latters being
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charged can be deviated by electromagnetic fields encountered along the line of sight, meaning that
their spatial distribution is random and the source cannot be tracked down. As said before, dark
matter can accumulate towards the Earth’s or Sun’s center because of their gravitational field and the
loss of energy due to interaction with nuclei. The only products of annihilations happening in this
context that can be detected are high-energy neutrinos, which are more likely to leave a track in a
Cherenkov detector.

3.3.3 Collider Searches

If dark matter interacts weakly with standard model particles, there is the possibility for it to be
produced in collider experiments.

Because of this extremely weak interaction with matter, dark matter is not expected to leave track
inside the detector, and the experimental signature is characterized by a large amount of missing
transversal energy [35, 36]. Typically, the analysis for dark matter searches focuses on single jet
(from quark or gluon initial state radiation) plus missing transversal energy or a single photon (from
electromagnetic initial state radiation) plus missing transversal energy. The background for these kinds
of events stems from Z boson production and decays into two neutrinos with initial state radiation
(either a jet or a photon). This kind of background can be reduced in a e+e− collider, where the
total energy of the collision can be tuned far away from the Z resonance. The same tuning cannot
be done in a hadron collider like LHC since it is not possible to control the parton’s energy. We
must make an additional remark about this type of search. The observation of missing particles at
colliders simply reveals that some particles weakly interacting with the SM were produced, but it is
far from a compelling evidence that this can be the DM candidate. In the case of a positive detection
by the experimental collaborations, further studies (or even further collider experiments) are needed
to understand the mass and lifetime of that particle, and possibly the branching ratios for its decays.
Then, on the basis of these data, one should compute the thermal relic density and check that the
result is consistent with cosmological observations.
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Chapter 4

New Physics Models for the Dark
Matter and the muon g-2 anomaly

4.1 New Physics models Lagrangians

As already anticipated in the previous chapter, a possible explanation of the aµ anomaly can be
achieved by extending the Standard Model through the introduction of new fields coupling to muons.
The aim of this section is to build and classify a set of simplified models following the lines of [37].
Since the currently observed aµ anomaly is of the same size as the SM weak contribution, one would be
naturally tempted to invoke weakly coupled particles emerging at the electro-weak scale. Remarkably,
this possibility could be connected with the solution of the hierarchy problem and could provide, at
the same time, a WIMP dark matter candidate. Unfortunately, the lack for new particles at LEP and
LHC strongly disfavours this interpretation. As a result, two possibilities seem to emerge: either NP
is very light and feebly coupled to SM particles, or NP is very heavy and strongly coupled.

Here, we take the second direction. Heavy NP contributions to the muon g-2 arise from the
dimension-6 dipole operator µLσµνµRHF

µν where H = (v + h)/
√
2 contains both the Higgs boson

field h and its vacuum expectation value v = 246 GeV. After electroweak symmetry breaking, one
obtains the prediction ∆aµ ∼ (g2NP/16π

2) × (mµv yNP/Λ
2), where gNP is the typical coupling of the

NP sector to SM particles while yNP represents the NP Yukawa coupling of the new states to the Higgs
boson. Therefore, the NP chiral enhancement v/mµ ∼ 103 with respect to the SM weak contribution,
together with the assumption of a new strong dynamics with gNP, yNP ≳ 1, enable us to bring the
sensitivity of the muon g-2 to NP scales well above the TeV scale, in agreement with the LHC bounds.
Since such a required chiral enhancement implies NP couplings with both left-handed and right-handed
fermions, it is clear that the minimal particle content of a simplified NP model addressing the muon
g-2 anomaly has to entail at least two states (either boson or fermion states).

Moreover, the requirement of having a good dark matter candidate poses further restrictions.
In particular, a good DM candidate must be an electromagnetically neutral color singlet state and
must be stable on cosmological time scales. While the first requirement will affect the transformation
properties of the fields under the electroweak gauge group Gweak = SU(2)L × U(1)Y , the second one
can be realized by imposing a Z2 symmetry under which the new fields are odd while the Standard
Model fields are even. Therefore, to ensure the Z2 symmetry, the new sector must contain at least one
fermion and one scalar. As a result, a successful explanation of both the muon g-2 anomaly (through
a chiral enhancement) and the observed DM relic abundance selects models with at least three fields,
either two fermions and one scalar or viceversa.

We are now ready to present the two possible scenarios:

• FH Models: the Higgs couples to new fermions through the following Lagrangian

LNP
int,FH = yFHFLFR + λLL

2
LFRSR + λRµRFLS

∗
R + h.c. . (4.1)

Introducing the two fields F̄R and F̄L, that transform under the conjugate representation of the
electroweak gauge gruop, the mass term for these fields can be written as
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−Lmass = (MFL
FLF̄L +MFR

FRF̄R + h.c.) +M2
SR
S∗
RSR . (4.2)

• SH Models: the Higgs couples to new scalars through the following Lagrangian

LNP
int,SH = aHSLSR + λLL

2
LFRSL + λRµRF̄RSL + h.c. (4.3)

where the field F̄R transform under the conjugate representation of the electroweak gauge group.
Then, the mass term for these fields can be written as

−Lmass = (MFR
FRF̄R + h.c.) +M2

SR
S∗
RSR +M2

SL
S∗
LSL . (4.4)

The possible transformation properties of the fields introduced in equations 4.1 and 4.3 can be
obtained by requiring the operator in those Lagrangians to be gauge invariant and then selecting all
the possible combinations that allow a dark matter candidate, hence an electromagnetically neutral
state1. We have to note that the dark matter candidate can still interact under weak neutral interaction
if the hypercharge YF,S is not null, but these possibilities are strongly constrained by the experimental
bounds on dark matter direct detection. We will find all possible models containing fields transforming
up to a SU(2)L triplets and collect them in 4.1 and 4.2.

We will sketch the general procedure to get the possible field representation for the FH model;
the procedure for the SH case is completely analogous. Let’s first define the notation we will use:

FR ∼ (nFR
)YFR

, FL ∼ (nFL
)YFL

, SR ∼ (nSR
)YSR

. (4.5)

From the interaction term with the right-handed muon, it is straightforward to see that the product
FLS

∗
R must transform as a singlet, and, using the summation rule for angular momentum from quantum

mechanics, we have that FL and SR must transform in the same representation, i.e. nFL
= nSR

. From
the interaction term with the left-handed muon, we deduce that the product FRSR must transform as
a doublet. Using this, we can show that nFR

must satisfy the following constraint |nFR
− nSR

| ≤ 1.
Since nFR

and nSR
are positive integers, we have:

nFR
= nSR

± 1 (4.6)

.
Once the transformation properties under SU(2)L of the scalar SR are specified, nFR,L

are fixed.
Each of the interaction terms in the Lagrangian shown above must be a singlet under the U(1)Y group;
this provides us with a set of three equations for the hyercharges of the new fields:

1

2
+ YFR

+ YFL
= 0 , (4.7)

1

2
− YFR

− YSR
= 0 , (4.8)

1 + YFL
− YSL

= 0 . (4.9)

The three equations are not independent from each other; indeed, the third one can be obtained by
subtracting the second equation from the first one. This implies that we can express the hypercharges
of the fermion fields in terms of YSR

:

YFR
=

1

2
− YSR

, (4.10)

YFL
= YSR

− 1 . (4.11)

1The condition for the new particle to be color singlet was implicitly assumed.
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For the SH models, analogous arguments apply. We can then express the transformation properties
of SR,L as a function of those pertaining to FR as:

nSR
= nFR

± 1 , (4.12)

YSR
=

1

2
− YFR

, (4.13)

YSL
= YFR

− 1 . (4.14)

Finally, in all these possible FH and SH models, we need to focus on those that admit a dark
matter candidate. To find them, it is sufficient to require that at least one of the multiplets admits a
neutral component, imposing the condition Qi = T 3

L,i + Yi = 0 (with i = FR, FL, SR, SL) to be valid

for some value of the third component of the weak isospin T 3
L, where −ni−1

2 ≤ T 3
L ≤ ni−1

2 .

FH

SR 2∗1
2

2∗− 1
2

11 3∗1 1∗0 3∗0 3∗−1 2 3
2

2∗1
2

2∗− 1
2

FR 1∗0 11 2∗− 1
2

2∗− 1
2

2∗1
2

2∗1
2

2 3
2

3∗−1 3∗0 3∗1
FL 2∗− 1

2

2 3
2

1∗0 3∗0 1−1 3∗−1 3−2 2∗1
2

2∗− 1
2

2− 3
2

Table 4.1: FH models up to SU(2)L triplets. Fields with a ⋆ contain a dark matter candidate.

SH

FR 11 1∗0 2∗1
2

2∗1
2

2 3
2

2∗− 1
2

2∗− 1
2

3∗1 3∗0 3−1

SL 1∗0 1−1 2∗− 1
2

2∗− 1
2

2∗1
2

2− 3
2

2− 3
2

3∗0 3∗−1 3−2

SR 2∗− 1
2

2∗1
2

1∗0 3∗0 3∗−1 11 3∗1 2∗− 1
2

2∗1
2

2 3
2

Table 4.2: SH models up to SU(2)L triplets. Fields with a ⋆ contain a dark matter candidate.

4.1.1 Benchmark models

Direct detection tests place strong constraints on the parameter space of dark matter models. The
most critical restrictions in our framework arise from gauge interactions. It is well known that bounds
on dark matter-nucleus scattering due to the tree-level Z boson exchange exclude models with non-zero
hypercharged weak-scale Dirac fermions or scalar dark matter multiplets. In the light of the above
considerations, hereafter, we will focus on two simple models containing dark matter candidates with
Y = 0 and arising in the smallest representations of the electroweak gauge group.

FH1 model

The FH1 model is the simplest model where new physics couples to the Higgs and has a viable dark
matter candidate. The quantum numbers for the new sector content can be read from the first column
of table 4.1, FR ∼ 10 is a heavy Majorana fermion, FL ∼ 2− 1

2
is a vector-like fermion doublet (we also

need F̄L transforming in the conjugate representation of the gauge gruop), and finally SR ∼ 2 1
2
is a

vector-like scalar doublet. We will change the notation to a more suggestive one

FS ≡ FR FD ≡ FL F̄D ≡ F̄L S ≡ SR (4.15)

given these field content the new physics sector Lagrangian is,
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LFH1 =
1

2

(

F †
Siσ̄

µ∂µFS − FSFS + h.c.
)

(4.16)

+ F †
Diσ̄

µDµFD + F̄ †
Diσ̄

µD∗
µF̄D −MFD

FDF̄D (4.17)

+ (DµS)
∗(DµS)−M2

SS
∗S (4.18)

+ (λ1HHFDFS + λ2HH̃F̄DFS + λ1µFSS + λ2µ̄FDS
∗ + h.c.) (4.19)

Where the covariant derivative is given by Dµ = ∂µ− ig22 τ iW i
µ− igY YNPBµ and D∗

µ is the one for
fields transforming in the conjugate representation, σ̄µ = (I,−τ i) are two-by-two matrices and YNP is
the hypergarge of the new field. We have introduced four complex dimensionless couplings λ1,2 and
λ1H,2H that can be taken to be of O(∞).

This model has the following matter content:

- A charge complex scalar S+ and a neutral complex scalar S0 from the scalar doublet S;

- A Dirac fermion F− =

(

FD−
F̄ †
D+

)

obtained combining the charged components of FD and F̄D;

- Three Majorana fermions, FS =

(

FS

F †
S

)

, FD0 =

(

FD0

F †
D0

)

and F̄D0 =

(

F̄D0

F̄ †
D0

)

, the last two being

the neutral components of FD and F̄D respectively

We can thus rewrite the Lagrangian in terms of Dirac and Majorana fields. The Higgs-fermions
interactions will induce a mixing between the three Majorana fields after Electroweak Symmetry
Breaking. We can define the mixing matrix V that diagonalizes the Majorana mass matrix:

V T







MFS

λ1Hv√
2

λ2Hv√
2

λ1Hv√
2

0 MFD

λ2Hv√
2

MFD
0






V =





M1 0 0
0 M2 0
0 0 M3



 (4.20)

where the mass eigenvalue satisfy M1 ≤M2 ≤M3 and are related to mass eigenstate as:

F0i =

(

Fi

F †
i

)

, i = 1, 2, 3 (4.21)

In terms of these eigenstate, the Lagrangian is given by

LFH = Lkin + LNP + Lh + Lgauge + Lscalar (4.22)

with

Lkin = F̄−(i/∂ −MFD
)F− +

1

2

(

F̄0i(i/∂ −Mi)F0i

)

(4.23)

LNP = λ1V1j(S0F̄0jνµL − S+F̄0jµL) + λ2S
∗
0(µ̄PLF−) + λ2V2jS

∗
+(µ̄PLF0j) + h.c. (4.24)

Lh = − h√
2
(λ1HV2iV1j + λ2HV3iV1j)F̄0iPLF0j + h.c. (4.25)

Lgauge =
g2
cW

Zµ

[

1

4
(V ∗

2iV2j − V ∗
3iV3j)F̄0iγ

µPLF0j −
1

4
(V2iV

∗
2j − V3iV ∗

3j)F̄0iγ
µPRF0j

]

(4.26)

−
(

1

2
− s2W

)

F̄−γ
µF− + eAµF̄−γ

µF− (4.27)

+
g2√
2

[

W+
µ (V ∗

2iF̄0iγ
µPLF− + V3iF̄0iγ

µPRF−) + h.c.
]

(4.28)

We do not give the expression for Lscalar since it is not relevant for the following discussion. This
model presents different neutral particles, but only two are viable dark matter candidates: S0 and
F01. Since we require the dark matter to have YDM = 0, only F01 remains as a possible candidate.
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SH1 model

The SH1 model is the simplest model that introduces two new scalars, interacting with the Higgs,
and one fermion. The quantum numbers for the new particles can be read from the first column of
table 4.2. The two scalars are a real singlet SL ∼ 10 and a complex scalar doublet SR ∼ 2− 1

2
, and

finally a pair of vector-like Weyl fermions FR ∼ 11 and F̄R ∼ 1−1. As before, we changed the notation
to a more suggestive one,

F ≡ FR, F̄ ≡ F̄R, S ≡ SL, D ≡ SR (4.29)

From this field content we can build the following Lagrangian:

LSH =
1

2

(

∂µS∂
µS −M2

s S
2
)

(4.30)

+ (DµD)∗DµD −M2
DD

∗D (4.31)

+ F †iσ̄µDµF + F̄ †iσ̄µD∗
µF̄ −MfFF̄ + h.c. (4.32)

+ aHHSD + λ1DµF + λ2Sµ̄F̄ + h.c. (4.33)

Where the covariant derivative is given by Dµ = ∂µ − ig22 τ iW i
µ − igY YNPBµ and D∗

µ is the one
for fields transforming in the conjugate representation, σ̄µ = (I,−τ i) are two-by-two matrices and
YNP is the hypergarge of the new field. In this model, we have introduced two dimensionless complex
couplings, λ1,2 of O(1) and a dimensionfull coupling aH that can be taken to be of O(v).

From this Lagrangian we can deduce the following matter content:

- Two CP-even neutral scalar S and D0 from the singlet and one of the neutral component of the
complex scalar D respectively;

- A CP-odd neutral scalar A0 from the doublet D;

- A complex scalar S− again from th complex scalar D;

- A charged Dirac fermion F− =

(

F̄
F †

)

obtained combining the two Weyl fermions.

The Higgs-scalar interactions will induce a mixing between the two CP-even neutral scalar fields
after Electro-Weak Symmetry Breaking. We can define the mixing matrix U that diagonalizes the
scalar mass matrix:

UT

(

M2
S vaH

vaH M2
D

)

U =

(

M2
1 0
0 M2

2

)

(4.34)

.
where the mass eigenvalues satisfyM2

1 ≤M2
2 and are associated to the neutral scalars Sα, α = 1, 2.

Then the Lagrangian can be rewritten in terms of the mass eigenstate:

LSH1 = Lkin + LNP + Lh + Lgauge + Lfermion (4.35)

with
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Lkin = F̄−(i/∂ −Mf )F− +
1

2
(∂µSα∂µSα −M2

αS
2
α) +

1

2
(∂µA0∂µA0 −M2

DA
2
0) + ∂µS∗

−∂µS− −M2
DS

∗
−S−

(4.36)

LNP =
λ1√
2
(U2αSα + iA0)(F̄−PLµ)− λ1S−(F̄−PLν) + λ2U1αSα(µ̄PLF−) + h.c. (4.37)

Lh = −aH
2
hU1αU2βSαSβ (4.38)

Lgauge =
g2
cW

Zµ

[

(−1

2
+ s2W )(S∗

−i
←→
∂ µS−) +

1

2
U2α(A0

←→
∂ µSα)

]

+ ieAµ(S
∗
−
←→
∂ µS−) (4.39)

+
g22
8c2W

(iA0 + U2αSα)(−iA0 + U2βSβ)(2c
2
WW

+
µ W

µ
− + ZµZ

µ) (4.40)

+ S∗
−S−

[

1

2
g22W

+
µ W

µ
− +

(

eAµ +
g2
CW

(

−1

2
+ s2W

))2
]

(4.41)

+
g2
2
W+

µ

[

U2α(Sα
←→
∂ µS−) +A0

←→
∂ µS− + S−(U2αSα − iA0)

(

eAµ +
g − 2

cW
s2WZ

µ

)]

+ h.c. (4.42)

We do not give the explicit expression for Lfermion since it will not be of interest for this model
discussion.

The dark matter candidate in this model is represented by the lightest scalar S1.

4.2 The muon g-2

In order to compute the ∆aNP
µ we use an SU(3)c × U(1)em Lagrangian that captures the general

structure of the new physics-muon interactions,

Lkin = (Dµs)
∗Dµs−Mss

∗s+ f̄
(

i /D −Mf

)

f + µ̄
(

i /D −mµ

)

µ (4.43)

Lint = s∗µ̄
(

λR2 PL + λR2 PR

)

f + h.c (4.44)

where s and f are a scalar and a vector-like fermion representative of the new physics fields, with
electric charge Qs and Qf . Applying charge conservation to the interaction term in the Lagrangian
4.44, the relation between Qf = Qs− 1 is found. The covariant derivative is Dµ = ∂µ− ieQs,f . While

the couplings λL,R2 are functions of the coupling constants and mixing angles of the specific model
FH1 or SH1.

The Feynman rules for the two Lagrangians 4.43 and 4.44 are drawn in A.11 and A.10 respectively.
The anomalous magnetic moment of the muon, aµ, is one of the most important tests of the

Standard Model and provides a powerful probe of new physics. The discrepancy first discovered at
the BNL laboratory has triggered many speculations about new physics scenarios that give additional
contributions to aµ.

The most general of those can be described by the effective Lagrangian

L =
eml

8π2
Cll′ (l̄

′

Rσµν lL) + h.c.), l, l
′

= e, µ, τ (4.45)

where Cll′ is a Wilson coefficient with mass dimension (GeV )−2. This leads to the general expres-
sion for the new physics contribution to the anomalous magnetic moment, ∆al,

∆al =
1

2π2
m2

lℜ(Cll
′ ) (4.46)

and to a flavor violating transitions, with branching ratios that are in the ml ≫ ml
′ limit given by

BR(l→ l
′

γ)

BR(l→ l′νν ′)
=

3α

πG2
F

(|Cll
′ |2 + |Cl

′
l|2) (4.47)
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.
We will deal in particular with ∆µ and the branching ratios for the two decays τ → µγ and µ→ eγ

in the remaining of this section.
The contributions to the anomalous magnetic moment from the two models shown in the previous

section arise from the one-loop level µµγ vertex function and are described by the Feynman diagrams
in Figure 4.1. The general expression for the vertex can is written in terms of two forms factor Fµ

1

and Fµ
M as:

V µ = ū(p′)[Fµ
1 (q

2)γµ − i 1

2mµ
Fµ
2 (q

2)σµνqν ]u(p) (4.48)

From 4.48 the expression for aµ is obtained:

g = 2 + 2Fµ
2 (4.49)

+

Figure 4.1: The two 1-loop Feynman diagrams contributing to the (g − 2)µ induced by the new
physics described in the simplified Lagrangians in 4.43 and 4.43.

In the following, we will show the computation for the amplitudes related to the Feynman diagrams
above.

As can be seen from a naive dimensional analysis, the two diagrams are UV divergent; for this
reason, dimensional regularization will be used. We need to note that, since the models we have built
are renormalizable, any divergence appearing in the one-loop computations can either be absorbed by
counterterms or cancelled. An example of this is explicitly shown in the following section.

For the leftmost diagram in Figure 4.1, we can write the amplitude:

µ
p−−→ p′−−→ µ

γ ↓ q

f
p+k−−−→ f

p′+k−−−−→

s
k←−−

Figure 4.2: Momentum convention for the leftmost diagram in FIgure 4.1

M1 = −i6Qfeµ
3ϵ/2

∫

ddk

(2π)d
ū(p′)CRL

2 (/p′ + /k +Mf )γ
µ(/p+ /k +Mf )(C

RL
2 )∗u(p)

(

(p′ + k)2 −M2
f

)(

(p+ k)2 −M2
f

)

(k2 −M2
s )

(4.50)

Introducing the Feynman parameter, it can be rewritten as:

Mµ = Qfeµ
3ϵ/2

∫

dx1dx2dx32δ(x1 + x2 + x3 − 1)

∫

ddk

(2π)d
ū(p′)N µu(p)

D (4.51)
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Where, after the momentum shift k → k−x1p′−x2p is performed, the denominator can be written
as in the last step of 4.52.

Dµ =
(

x1
(

(p′ + k)2 −M2
f

)

+ x2
(

(p+ k)2 −M2
f

)

+ x3(k
2 −M2

s )
)3

= (k2 −D)3
(4.52)

with

D = (1− x3)M2
f + x3M

2
s − x1x3p′2 − x2x3p2 − x1x2q2 (4.53)

As regard the numerator, after the momentum shift and neglecting linear terms in the loop mo-
mentum k, we have:

N µ = CRL
2 (/k + (1− x1)/p′ − x2/p)γµ(/k − x1/p′ + (1− x2)/p)CRL∗

2

= CRL
2 [/kγµ/k + ((1− x1)/p′ − x2/p+Mf )γ

µ(−x1/p′ + (1− x2)/p+Mf )]
(4.54)

From this using the relations γµγνγµ = −(d − 2)γν and kµkν → 1
dk

2gµν (valid only inside the d-
dimensional momentum integral) combined with the equation of motion for the spinor, the numerator
becomes

ū(p′)N µu(p) = −d− 2

2
k2ū(p′)γµ(|λR2 |2PR + |λL2 |2PL)u(p)

+m2
µū(p

′)[(1− x1)(1− x2)− x1x2]γµ(|λR2 |2PL + |λL2 |2PR)u(p)

+ ū(p′)[x1(1− x1)p′2 + x2(1− x2)p2 − 2x1x2pṗ
′ +M2

f ]γ
µ(|λR2 |2PR + |λL2 |2PL)u(p)

+mµū(p
′)[−x1(x2 + 1− x1)qµ − x1x3(p+ p′)µ](|λR2 |2PR + |λL2 |2PL)u(p)

+mµū(p
′)[x2(x1 + 1− x2)qµ − x2x3(p+ p′)µ](|λR2 |2PL + |λR2 |2PR)u(p)

+ 2mµMfℜλR2 λL∗2 ū(p′)γµu(p)

+Mf ū(p
′)[(x2 − x1)qµ + (x3 − 1)(p+ p′)µ](λR2 λ

L∗
2 PL + λL2 λ

R∗
2 PR)u(p)

(4.55)

The terms contributing to the Fµ
M can be obtained applying the Gordon Identities (equation A.9)

and are summarized in 4.56.

ū(p′)Ñµu(p) =− {|λR2 |2mµx1x3ū(p
′)iσµνqνPRu(p) + |λR2 |2mµx2x3ū(p

′)iσµνqνPLu(p)

+ |λL2 |2mµx1x3ū(p
′)iσµνqνPLu(p) + |λL2 |2mµx2x3ū(p

′)iσµνqνPRu(p)

+ λR2 λ
L∗
2 Mf (1− x3)ū(p′)iσµνqνPLu(p) + λR2 λ

L∗
2 Mf (1− x3)ū(p′)iσµνqνPRu(p)}

(4.56)

Since the momentum integral is finite, it can be performed using A.7 with d = 4 and n = 3. Then,
evaluating 4.53 at q2 = 0 and exploiting the fact that Ms >> mµ, the two loop functions IfLL and

IfLR, respectively in A.11 and A.12, can be defined through the integral over the Feynman parameters.
These two functions depend on the ratio r =M2

f /M
2
s .

So the terms contributing to the Fµ
M (0) form factor are given by:

eQf

∫

dx1dx2dx32δ(x1 + x2 + x3 − 1)

∫

d4k

(2π)4
ū(p′)Ñµu(p)

D

= −i e

2mµ

[

−
Qf (|λR2 |2 + |λL2 |2)m2

µ

8π2M2
s

IfLL(r)−
Qfλ

L
2 λ

R∗
2 mµMf

8π2M2
s

IfLR(r)

]

ū(p′)iσµνqνPRu(p)

[

−
Qf (|λR2 |2 + |λL2 |2)m2

µ

8π2M2
s

IfLL(r)−
Qfλ

R
2 λ

L∗
2 mµMf

8π2M2
s

IfLR(r)

]

ū(p′)iσµνqνPLu(p)

(4.57)
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And finally the contribution to the ∆aµ coming from this first diagram can be written as:

∆aµ = −|λ
R
2 |2 + |λL2 |2

8π2
m2

µ

M2
s

QfI
f
LL(r)−

Re(λL2 λ
R∗
2 )

8π2
mµMf

M2
s

QfI
f
LR(r) (4.58)

µ
p−−→ p′−−→ µ

γ ↓ q

s
p+k←−−− s

p′+k←−−−−

f
k−−→

Figure 4.3: Momentum convention for the rightmost diagram in FIgure 4.1

Instead, for the rightmost diagram of 4.1 the amplitude is:

Mµ = −i6Qseµ
3ϵ/2

∫

ddk

(2π)d
ū(p′)CRL

2 (/k +Mf )C
RL∗
2 u(p)(2k − p′ − p)µ

(k2 −M2
f ) ((k − p)2 −M2

s ) ((k − p′)2 −M2
s )

(4.59)

Also in this case the Feynman parameter are introduced so that the denominator can be recast as
in the last step of 4.61, performing the momentum shift k → k + x2p+ x3p

′.

Mµ = eQsµ
3ϵ/2

∫

dx1dx2dx32δ(x1 + x2 + x3 − 1)

∫

ū(p′)N µu(p)

D (4.60)

D =
(

x1(k
2 −Mf ) + x2

(

(k − p)2 −M2
s

)

+ x3
(

(k − p′)2 −Mf

))3

= (k2 −D)3
(4.61)

with

D = x1M
2
f + (1− x1)M2

s + x2x1p
2 + x3x1p

′2 − x2x3q2 (4.62)

The numerator, after the momentum shift and neglecting the linear term in the loop momentum
k, looks like:

N µ = CRL
2 (/k +Mf )C

RL∗
2 (2k − p′ − p)µ

= CRL
2 [/kkµ + (x2/p+ x3/p

′)((2x2 − 1)p+ (2x3 − 1)p′)µ]CRL∗
2

(4.63)

This can be rewritten using the equation of motion for the spinor and the relation kµkν = 1
dk

2gµν

as:

ū(p′)N µu(p) =
2

d
k2ū(p′)γµ(|λR2 |2PR + |λL2 |2PL)u(p)

+mµū(p
′)[x3(x3 − x2)qµ − x1x3(p′ + p)µ](|λR2 |2PR + |λL2 |2PL)u(p)

+ +mµū(p
′)[x2(x3 − x2)qµ − x1x2(p′ + p)µ](|λR2 |2PL + |λL2 |2PR)u(p)

+ λR2 λ
L∗
2 Mf ū(p

′)[(x3 − x2)qµ − x3(p′ + p)µ]PLu(p)

+ λL2 λ
R∗
2 Mf ū(p

′)[(x3 − x2)qµ − x3(p′ + p)µ]PRu(p)

(4.64)

32



As for the previous diagram the relevant terms to compute the contribution to the muon’s anoma-
lous magnetic moment are obtained exploiting the Gordon identities A.9, the result is presented in
4.65.

ū(p′)Ñµu(p) =− {|λR2 |2mµx1x3ū(p
′)iσµνqνPRu(p) + |λR2 |2mµx1x2ū(p

′)iσµνqνPLu(p)

+ |λL2 |2mµx1x3ū(p
′)iσµνqνPLu(p) + |λL2 |2mµx1x2ū(p

′)iσµνqνPRu(p)

+ λR2 λ
L∗
2 x3ū(p

′)iσµνqνPLu(p) + λL2 λ
R∗
2 x3ū(p

′)iσµνqνPRu(p)}
(4.65)

The momentum integral can now be performed using A.7 with d = 4 and n = 3; then, evaluating
4.62 at q2 = 0 in the limit in which Ms >> mµ, the two loop function IsLL and IsRL can be defined as
in A.13 and A.14, depending on the ratio r =M2

f /M
2
s . e

eQs

∫

dx1dx2dx32δ(x1 + x2 + x3 − 1)

∫

d4

(2π)4
ū(p′)Ñu(p)

D

= −i e

2mµ

[

−
Qs(|λR2 |2 + |λL2 |2)m2

µ

8π2M2
s

IsLL(r)−
Qsλ

L
2 λ

R∗
2 mµMf

8π2M2
s

IsLR(r)

]

ū(p′)iσµνqνPRu(p)

[

−
Qs(|λR2 |2 + |λL2 |2)m2

µ

8π2M2
s

IsLL(r)−
Qsλ

R
2 λ

L∗
2 mµMf

8π2M2
s

IsLR(r)

]

ū(p′)iσµνqνPLu(p)

(4.66)

The contribution of this second diagram to the anomalous magnetic moment is then:

∆amu = −|λ
R
2 |2 + |λL2 |2

8π2
m2

µ

M2
s

QsI
s
LL(r)−

Re(λL2 λ
R∗
2 )

8π2
mµMf

M2
s

QsI
s
LR(r) (4.67)

Finally the total contribution to ∆aNP
µ is given adding the expression in 4.58 and 4.67.

∆atotµ =
m2

µ

8π2M2
s

(|λR2 |2 + |λL2 |2)[QfI
f
LL +QsI

s
LL]

+
mµMf

8π2M2
s

Re(λL2 λ
R∗
2 )[QfI

f
LR +QsI

s
LR]

(4.68)

We will now apply the above results to the FH1 and SH1 models, assuming real coupling constants.
For the FH1 model, the one-loop contribution to the ∆aµ comes from two different sets of diagrams.

The first one comes from the interaction term λ2[S
∗
0(µ̄PLF−) + h.c.], and the particles running in the

loops are a neutral complex scalar and a charged Dirac fermion; only the latter one can couple to the
photon. Since in this interaction new physics couples just to the left-handed muon, we will not have
the chirality flip term in 4.68. Then, for the effective coupling and the particle’s charges, we have

Qf = QF−
= −1 (4.69)

Qs = QS0 = 0 (4.70)

λR2 = λ2 (4.71)

λL2 = 0 (4.72)

The ratio appearing in the loop function is r = M2
FD
/M2

s . Given these, the contribution to the
anomalous magnetic moment can be written as:

∆aFH1,1
µ =

m2
µ

8π2M2
s

λ22I
f
LL

(

M2
FD

M2
s

)

(4.73)

Instead, the second contribution comes from the interaction term−λ1V1j(S+F̄0jµL)+λ2V2jS
∗
+(µ̄PLF0j)+

h.c.. In this case, the particles running in the loop are a charged complex scalar and one of the three
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Mayorana fermions. In this case, we have couplings to both the left- and right-handed muon compo-
nents. In this case, the effective coupling and the particle’s charges are

Qf = QF0i0 , (4.74)

Qs = QS+ = +1 , (4.75)

λR2 = λ2V2i , (4.76)

λL2 = −λ1V1i . (4.77)

Then ∆aµ is obtained by summing over the three Mayorana fermions running in the loop:

∆aFH1,2
µ =−

m2
µ

8π2M2
s

∑

i=1,2,3

(λ22|V2i|2 + λ21|V1i|2)IsLL
(

M2
i

M2
s

)

+
mµ

8π2M2
s

∑

i=1,2,3

Miℜ [λ1λ2V1iV2i] I
s
LR

(

M2
i

M2
s

)
(4.78)

The total contribution is given by the sum of ∆aFH1,1
µ and ∆aFH1,2

µ .
Also in the SH1 model, two different sets of Feynamn diagrams contribute to ∆aµ. The first one

arises from the interaction term λ1√
2
iA0(F̄−PLµ)+h.c. The running particles in the loop are a neutral

CP-odd scalar and a charged Dirac fermion. For this interaction, the effective coupling constant along
with the particle charges are

Qf = QA0 = 0 , (4.79)

Qs = QF−
= −1 , (4.80)

λR2 = 0 , (4.81)

λL2 =
λ1√
2
. (4.82)

Then the anomalous magnetic moment can be expressed as

∆aSH1,1
µ =

λ21m
2
µ

16π2M2
D

IfLL

(

M2
f

M2
D

)

(4.83)

The second contribution comes from the interaction term λ1√
2
U2αSα(F̄−PLµ)+λ2U1αSα(µ̄PLF−)+

h.c. The particles running in the loop are a complex Dirac fermion and one of the two neutral scalars.
We can write the effective couplings and the charges as

Qf = QF−
= −1 (4.84)

Qs = QSα = 0 (4.85)

λR2 =
λ1√
2
U2α (4.86)

λL2 = λ2U1α (4.87)

In this case, the mass ratio for the loop function is r =M2
f /M

2
Sα

. Then the ∆aµ can be written as

∆aSH1,2
µ =

m2
µ

16π2

∑

α=1,2

λ21|U2α|2 + 2λ22|U1α|2
MSα

IfLL

(

M2
f

M2
Sα

)

+
mµMf

8
√
2π2

∑

α=1,2

λ1λ2U2αU1α

MSα

IfLR

(

M2
f

M2
Sα

) (4.88)

The total contribution is obtained summing ∆aSH1,1
µ and ∆aSH1,2

µ .
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4.3 Flavour violating processes

The models analyzed in the previous section can be extended to the whole standard model’s lepton
sector; this can be achieved by substituting the Weyl muon fields µ and µ̄ in equations 4.1 and 4.3
with the generic Weyl lepton fermions li and l̄i. They are related to the Dirac field as for the muon
case,

Li
L =

(

li

0

)

, eiR =

(

0
l̄i

)

(4.89)

The coupling constants for the new physics-lepton interactions can be expressed as λi where the
index refers to the three lepton flavors. The same argument can be applied for the simplified model
of 4.43, and the couplings can be written as λR,L

i . In this scenario, Lepton Flavour Violating decays
are possible at loop level. These processes are described by the Feynman diagrams in the upper row
of 4.4, while the two diagrams in the bottom row are needed in order for the full amplitude to be
convergent.

τ/µ µ/e

γ

+
τ/µ µ/e

γ

τ/µ µ/e

γ

+
τ/µ µ/e

γ

Figure 4.4: Diagrams contributing to the lepton flavour violation decays. The two diagram in the
bottom row are needed in order for the full amplitude to be convergent.

For the sake of simplicity, we will perform the computation for the branching ratio for the decay
µ→ eγ in the assumption that the coupling constants are real and λRi = 0.

First of all we specify the cinematic of the decay. In the center of mass reference frame we have:

pµ = (mµ, 0, 0, 0) (4.90)

p′µ = (Ee, 0, 0, p) (4.91)

qµ = (Eγ , 0, 0, p) (4.92)

Where the three 4-momentum are respectively of them muon, the elecrton and the photon; they
satisfy the momentum conservation pµ = p′µ+qµ relation. Finally to compute the width of the process
the equation 4.93 is exploited.

Γ =

∫

dΩcm

4π

1

8π

2p

Ecm
(4.93)

The first two diagrams in 4.4 are similar to the one computed in the previous section, with the
only difference being that now λR2 is absent, the incoming and outgoing particles are a muon and an
electron, and the photon elicity vector must be included. Keeping this in mind, the amplitude for the
first diagram can be derived from 4.2, giving the result in 4.94. To deal with the divergences of the
amplitude, Dimensional Regularization was exploited with ϵ = d− 4.

35



M1 = eQsλ
L
1 λ

L
2 µ

3ϵ/2

∫

ddk

(2π)d
ūe(p

′)N µ
1 uµ(p)

D1
ϵλµ(q) (4.94)

The numerator and denominator in 4.94 are given respectively in 4.95 and 4.96.

D1 =
(

(k + p′)2 −M2
f

) (

(k + p)2 −M2
f

) (

k2 −M2
s

)

(4.95)

N µ
1 = PR(/k + /p

′ +Mf )γ
µ(/k + /p+Mf )PL (4.96)

To proceed in the computation the numerator and denominator are rewritten after the Feynman
parameters are introduced. Moreover the numerator is divided in two components, Nµ

1D represents
the divergent part of the amplitude while Nµ

1C the finite one.

N µ
1 = PR[/kγ/k]PL + PR((1− x3)/p′ − x2/p+Mf )γ

µ(−x3/p′ + (1− x2)/p+Mf )PL

= Nµ
1D +Nµ

1C

(4.97)

D1 =
[

x1
(

k2 −M2
s

)

+ x2
(

(k + p)2 −M2
f

)

+ x3
(

(k + p′)2 −M2
f

)]3

=
[

k2 −
(

x1M
2
s + (1− x1)M2

s − x2x1p2 − x3x1p′2 − x2x3q2
)]3

= [k2 +D]3

(4.98)

The computations for the two components of the amplitude are shown below. As in the previous
section, D1 can be simplified under the hypothesis that the new physics particles are much heavier
than the standard model lepton and evaluating it at low energies, q2 = 0. Using the properties of
the gamma matrices and the relations γνγµγν = −(d − 2)γµ, kµkν = 1

dk
2gµν , the numerator of the

divergent integral can be simplified. Then the momentum integral can be performed using equation
A.8 with n = 3. The result is expressed in 4.100 as a Laurent series in ϵ up to terms of order O(ϵ).

Nµ
1D = /kγµ/kPL =

2− d
d

k2γµPL (4.99)

M1D =
ieQfλ

L
1 λ

L
2

32π2

[

−2

ϵ
+ 1 + γ −

∫ 1

0
dx12(1− x1)log

(

4πµ2

D1

)]

ūe(p
′)γµPLuµ(p)ϵ

λ
µ(q) (4.100)

To deal with the convergent part, similar steps can be done using the equation of motion for the
two spinors. The momentum integral is computed using A.7 with n = 3. The result is shown in 4.101,
where IFLL(r), K

f
LL(r) and HLL(r) are loop functions defined in A.11, A.16 and A.17, respectively.

Note that also terms proportional to q · ϵ are considered even if they are null due to the properties of
the photon polarization.

M1C = − ieQfλ
L
1 λ

L
2

32π2
ϵλµ(q)

[

memµ

M2
s

Kf
LL(r)ūe(p

′)γµPRuµ(p)

+
m2

e +m2
µ

M2
s

IfLL(r)ūe(p
′)γµPLuµ(p)

+
me

M2
s

(

Hf
LL(r)q

µ − IfLL(r)(p+ p′)µ
)

ūe(p
′)PLuµ(p)

+
mµ

M2
s

(

−Hf
LL(r)q

µ − IfLL(r)(p+ p′)µ
)

ūe(p
′)PRuµ(p)

]

(4.101)

The computation for the second diagram proceeds as for the previous one. The amplitude 4.102
can be evaluated from 4.3; the numerator and denominator are in 4.103 and 4.104, respectively.
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M2 = eQsµ
3ϵ/2λL1 λ

L
2

∫

ddk

(2π)d
ūe(p

′)N µ
2 uµ(p)

D2
ϵλµ (4.102)

N µ
2 = PR(/k +Mf )PL(2k − p′ − p)µ (4.103)

D2 =
(

k2 −M2
f

) (

(k − p)2 −M2
s

) (

(k − p′)2 −M2
s

)

(4.104)

The calculation follows the same steps as for 4.94, treating separately the diverging part, given by
Nµ

2D, from the converging one, arising from Nµ
2C . Also in this case, the masses of the standard model

particles are neglected in D2, setting also q2 = 0.

N µ
2 = PR2k

µ/kPL + PR(x2/p+ x3/p
′ +Mf )

(

(2x2 − 1)p+ (2x3 − 1)p′
)µ
PL

= Nµ
2D +Nµ

2C

(4.105)

D2 =
[

x1
(

k2 −M2
f

)

+ x2
(

(k − p)2 −M2
s

)

+ x3
(

(k − p′)2 −M2
f

)]3

=
[

k2 −
(

x1M
2
f + (1− x1)M2

s − x1x2p2 − x1x3p′2 − x2x3q2
)]3

= [k2 −D2]
3

(4.106)

For the divergent component of the amplitude, the calculation leads to 4.107.

M2D =
ieQsλ

L
1 λ

L
2

32π2

[

2

ϵ
− γ +

∫ 1

0
dx12(1− x1)log

(

4πµ2

D2

)]

ūe(p
′)γµPLuµ(p)ϵ

λ
µ(q) (4.107)

As for the convergent component the result in 4.108 is obtained, where the loop functions Hs
LL

and IsLL are defined in A.15 and A.13 respectively.

M2C =
−ieQsλ

L
1 λ

L
2

32π2
ϵλµ(q)

[

me

M2
s

(

Hs
LL(r)q

µ + IsLL(r)(p+ p′)µ
)

ūe(p
′)PLuµ(p

′)

+
mµ

M2
s

(

−Hs
LL(r)q

µ + IsLL(r)(p+ p′)µ
)

ūe(p
′)PRuµ(p)

] (4.108)

The total amplitude is written asMtot =M1C +M2C and its modulus squared is given by 4.109,
where it is expressed in terms of the anomalous magnetic moment and in the limit in whichmµ >> me.

|Mtot|2 = π2α2

(

λL1
λL2

)2

(∆aµtot)
2
mµ (4.109)

Now the width for Γ(µ→ eγ) can be computed using the formula in 4.93.

Γ(µ→ eγ) =
π

8
α2

(

λL1
λL2

)2

(∆aµtot)
2
mµ (4.110)

To evaluate the decay width for τ → µγ the same calculation can be done leading to the same
result as in 4.110 with mµ replaced by mτ These results can be generalized to the scenario in which the

new physics particles couple both to the left- and right-handed leptons by the substitution
(

λL
1

λL
2

)2
→

(

λL
1

λL
2

)2
+
(

λR
1

λR
2

)2
.

The two divergent amplitudes 4.100 and 4.107 are canceled by the divergent diagrams in 4.5, where
Λ is given in 4.6 and the corresponding amplitude is given by

M3 = ūe(p
′)

{

Λ(p′)
i

/p′ −mµ
(−ieµϵ/2) + (−ieµϵ/2) i

/p−me
Λ(p)

}

uµ(p)ϵ
λ
µ(q) (4.111)
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Λ(p′)
µ

p−→ p′−−→ e

γ ↓ q

µ
p′−−→

+

Λ(p)
µ

p−→ p′−−→ e

γ ↓ q

p−→ e

Figure 4.5: Momentum convention for the two diagrams in the bottom row of 4.4. Here Λ represent
the vacuum polarization due to the new physics field.

s−−→ s−−→

k−s←−−−

k−−→

Figure 4.6: Definition of the vacuum polarization defined in 4.5 as Λ.

Λ(s) =

∫

ddk

(2π)d
(iλL1 µ

ϵ/2PR)(/k +Mf )(iλ
L
2 µ

ϵ/2PL)

(k2 −M2
f ) ((k − s)2 −M2

s )
(4.112)

The loop integral in Λ(s) is computed in 4.113, where the Feynman parameters are introduced,
then, in the second step, the momentum shift k → k + (1 − x1)p′ is performed and linear terms in
momentum are neglected.

∫

dx1dx2δ(x1 + x2 − 1)

∫

ddk

(2π)d
−λL1 λL2PRµ

ϵ(/k +Mf )PL

D3

= −λL1 λL2 µϵ
∫ 1

0
dx1

∫

ddk

(2π)d
PR ((1− x1)/s +Mf )PL

D3

(4.113)

D3 =
[

x1(k
2 −M2

f ) + (1− x1)
(

(k − s)2 −M2
s

)]2

=
[

k2 −
(

x1M
2
f + (1− x1)M2

s − x1(1− x1)p′2
)]2

=
[

k2 −D3

]2

(4.114)

The momentum integral can be calculated exploiting the Master Integral A.8 with n = 2 and the
result is then expanded as a Laurent series of ϵ up to O(ϵ).

Λ(s) = − iλ
L
1 λ

L
2 µ

ϵ

16π2

∫ 1

0
dx1(1− x1)

(

2

ϵ
− γ + log

(

4πµ2

D3

))

/sPL (4.115)

The expression 4.115 obtained for Λ(s) is substituted back into 4.111 and can be simplified into
4.116 using the anticommutation properties of the γ matrices, the equation of motion for the two
spinors, and the on-shell condition for the momenta.

Adding up the three divergent amplitudes in 4.100, 4.107, and 4.116 and recalling the relation
existing between the New Physics particle charges, it is clear that the total amplitude is finite. Note
that using the dimensional regularization to treat the divergences introduces a scale dependence in

the amplitude; this is cancelled by the implicit scale dependence of the coupling constants e and λ
L/R
2 .
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M3 = −
ieλL1 λ

L
2 µ

ϵ/2

32π2

[

2

ϵ
− γ + 2

∫ 1

0
dx1(1− x1)log

(

4πµ2

D3

)]

ūe(p
′)γµPLuµ(p)ϵ

λ
µ(q) (4.116)

Exploiting the experimental value for the ∆aµ and the most recent constrain for BR(µ→ eγ) and

BR(τ → µγ), a bound on the ratios λL,R1,3 /λ
L,R
2 is found [38, 39].

λL,R1

λL,R2

≤ 1.7× 10−5,
λL,R3

λL,R2

≤ 1.3× 10−2 (4.117)

The new physics states thus need to couple muons much more strongly than electrons and taus.
Although not common, such muon-philic structures are possible. In the remainder of this work, we
will assume this bound to be fulfilled, and we will not investigate possible mechanisms that can explain
this kind of characteristic.

4.4 Dark Matter relic density

The final objective of this work is to find new physics models able to explain both the moun’s g − 2
anomaly and the Dark Matter paradigm at the same time. Based on this assumption, the models in
4.1.1 were built so that they contain a possible Dark Matter candidate. In this Chapter, we will focus
on the properties of the Dark Matter particles, and in particular, we will compute the relic abundance.

The two models FH1 and SH1 predict two very different Dark Matter particles; indeed, in the
first model, the candidate is a Mayorana fermion, while in the second one, a neutral scalar. Although,
in both cases, we will assume that the Dark Matter particles are in thermal equilibrium with the
primordial bath and that they decouple from it after they become non-relativistic. The decoupling
process takes place through the freeze-out mechanism, as was said in Section 3.2 and will be treated
more carefully in the following discussion[40]. The abundance of Dark Matter in the universe nowadays
is quantified by the parameter:

ΩDMh
2 =

ρX,0

ρc
(4.118)

where ρX,0 represents the Dark Matter density, which for a non-relativistic particle can be expressed
in terms of the number density as ρX,0 = mXnX,0. The experimental value for this parameter can be
inferred from the CMB, which represents the most powerful cosmological data source, assuming a flat
Universe. The matter density can be measured from the CMB spectra, exploiting the scale-dependence
of the amplitude. The result obtained by the Planck experiment for Dark Matter is [33]:

ΩDMh
2 = 0.1200± 0.0012 (4.119)

at 68% confidence level, where h = 0.674± 0.005 is the Hubble parameter.
The relic desity can be written with good approximation as

ΩDMh
2 ≈ 9× 10−11 xf

√

g∗(Tf )

GeV −2

⟨σv⟩ (4.120)

Where g∗(Tf is the effective number of relativistic degrees of freedom evaluated at the freeze-out
temperature Tf . The ratio xf = mX/Tf is determined solving the transcendental equation

xf = log



3.8× 109
gX
√
xf

√

g∗(Tf )
mX

1GeV
⟨σv⟩
1pb



 (4.121)

valid for a Dark Matter particle with gX degrees of freedom
In order to compute the relic density, we need to evaluate the thermal average of the cross section

times the relative velocity σv. In particular, we will need the annihilation cross section of the Dark
Matter particles into SM fields. The most relevant annihilations are those into gauge bosons and
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muons. In general, σv is expanded in terms of v2, for our purposes, the dominant contribution stems
from the zero-order term of the expansion (that will be referred to as “s-wave”), which can be computed
simply by performing the substitution s→ 4m2

X .
The annihilation cross section for a Dark Matter SU(2)L n-dimensional multiplet with hypercharge

YX can be easily computed in the SU(2)L × U(1)Y symmetric limit, assuming that mX ≫ mW .
Moreover, if the mass splitting of the components of the multiplet is small, also coannihilation must
be considered; thus, an effective annihilation cross section is obtained (σv)eff = 1

n2

∑

mn σmnv, where
the indices m,n run over the different components of the multiplet. Since only the amplitude squared
depends on these indices, the sum over the multiplet component can be performed when computing
the unpolarized amplitude. The computation is done for two general scenarios in which the Dark
Matter candidate is a Dirac fermion or a complex scalar; these results can then be translated trivially
to the case of a Mayorana fermion

4.4.1 Scalar Dark Matter

As a first scenario, let’s consider the decay of complex scalar Dark Matter s into gauge bosons.
The Lagrangian for a generic complex scalar multiplet transforming under SU(2)L × U(1)Y in the
n-dimensional representation with hypergarge Ys is

LS = (Dµs)
†Dµs−M2

s s
†s (4.122)

Where Dµ = −ig2T iW i
µ − igYsBµ is the usual covariant derivative. From this Lagrangian, we can

infer three different annihilation channels: one given by the processes smsn → W iW j , another one is
instead given by smsm → BB, and finally the last one is smsn →W iB.

All the relevant Feynman rules are given explicitly in Appendix A.
The computation will be done in the center of the mass reference frame, where we will denote

with pµ1/2 the momentum of the incoming scalar particles and with kµ1,2 the ones for the boson. The
4-momentum will satisfy the relation

p21/2 =M2
s , k21/2 = 0 (4.123)

This same notation is used for the computations of each diagram in this section.
Moreover, the explicit computation for the amplitude square and then for the s-wave cross section

is done exploiting the Mathematica package Feyncalc [41, 42, 43].
The four different Feynman diagrams contributing to the first channel are given in Figure 4.7:

the first two of them are t-channel interactions, then there is a s-channel interaction involving the
three-linear gauge boson vertex, and finally a last term coming from the ssWW interaction term.

The corresponding amplitude is

MWW = g22

[

−i
(

(p1 − k1 − p2)ν(2p1 − k1)µ
(p1 − k1)2 −m2

s

∑

k

T i
nkT

j
km +

(p1 − k2 − p2)ν(2p1 − k2)µ
(p1 − k2)2 −m2

s

∑

k

T j
nkT

i
km

)

+

(

(p1 − p2)ρ)
(p1 + p2)2

V µνρ(−k1,−k2, p1 + p2)T
c
nmf

abc + igµν(2T iT j − if ijkT k)nm

)]

ϵ∗µ(k1)ϵ
∗
ν(k2)

=
[

−ig22Mµν
WW,1(T

iT j)nm + g22Mµν
WW,2f

ijkT k
nm

]

ϵ∗µ(k1)ϵ
∗
ν(k2)

(4.124)

Where V µνρ(q1, q2, q3) = gµν(q1 − q2)ρ + gνρ(q2 − q3)µ + gρµ(q3 − q1)ν is the tensor related to the
three-linear gauge boson interaction, and we have used the anticommutation relation for the generators
of the su(2) algebra

[

T i, T j
]

= i
∑

k f
ijkT k.

The modulus squared of the amplitude can be obtained as
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p2−−→

sk

k1−−→

p1−−→ k2−−→

sn

sm

W i

W j

p2−−→

sk

k2−−→

p1−−→ k1−−→

sn

sm

W j

W i

p2−−→

p1−−→ W i

k1−−→

k2−−→

sn

sm

W i

W j

p2−−→

p1−−→
k1−−→

k2−−→

sn

sm

W i

W j

Figure 4.7: Feynman diagrams contributing to the annihilation cross section of the Dark Matter into
W i.

|M̄WW |2 =
g22
n2

∑

mn

∑

ij

[

M2
WW,1(T

iT j)nm(T iT j)mn +M2
WW,2

∑

kl

f ijkf ijl(T k
nmT

l
mn)

+MWW,1MWW,2i
∑

k

f ijk
[

(T jT i)nmT
k
mn − (T iT j)mnT

k
nm

]

] (4.125)

Where we have taken the sum over the physical polarization of the gauge boson

M2
WW,1 =

∑

p.p.

Mµν
WW,1M

ρσ
WW,1ϵ

∗
µ(k1)ϵ

∗
ν(k2)ϵρ(k1)ϵσ(k2) (4.126)

M2
WW,2 =

∑

p.p.

Mµν
WW,2M

ρσ
WW,2ϵ

∗
µ(k1)ϵ

∗
ν(k2)ϵρ(k1)ϵσ(k2) (4.127)

MWW,1MWW,2 =
∑

p.p.

Mµν
WW,1M

ρσ
WW,2ϵ

∗
µ(k1)ϵ

∗
ν(k2)ϵρ(k1)ϵσ(k2) (4.128)

Evaluating the sum over the gauge indices the amplitude squared is obtained

|M̄WW |2 = g22(M2
WW,1

dim(R)C2(R)
2

n2
+ (M2

WW,1 +MWW,1MWW,2)
2dim(R)C2(R)

n2
) (4.129)

where dim(R) and C2(R) are the dimension and Casimir for the representation in which the scalar
transforms. The s-wave cross section can be derived as was specified at the beginning of this section:

σv(s†s→WW ) =
g42

16πM2
s n

2
C2(R)(2C2(R)− 1)dim(R) (4.130)

As for the second channel, there are three Feynman diagram, see FIgure 4.8: two are t-channel
processes and one comes from the ssBB interaction term in the Lagrangian:

The corresponding amplitude is:

M = −i(gY Ys)2
[

(2p1 − k1)µ(p1 − k1 − p2)ν
(p1 − k1)2 −M2

s

+
(2p1 − k2)ν(p1 − k2 − p2)µ

(p1 − k2)2 −M2
s

− 2gµν
]

ϵ∗µ(k1)ϵ
∗
ν(k2)

= −i(gY Ys)2Mµν
ZZδnmϵ

∗
µ(k1)ϵ

∗
ν(k2)

(4.131)
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Figure 4.8: Feynman diagrams contributing to the annihilation cross section of the Dark Matter into
B.

Its modulus squared can be computed as before leading to

|M̄BB|2 = (gY Ys)
4M2

BB

1

n2

∑

nm

δnmδnm (4.132)

where

M2
BB =

∑

p.p.

Mµν
BBM

ρσ
BBϵ

∗
µ(k1)ϵ

∗
ν(k2)ϵρ(k1)ϵσ(k2) (4.133)

and, performing the sum over the multiplet indices, we would get for the s-wave cross section:

σv(s†s→ BB) =
(gY Ys)

4

8πM2
s n

(4.134)

Finally we can find three diagrams that contribute to the third channel: two of them are again
t-channel processes and one arise from the ssBW interaction term. They are represented in FIgure
4.9

p2−−→

sk

k1−−→

p1−−→ k2−−→

sn

sm

W i

B

p2−−→

sk

k2−−→

p1−−→ k1−−→

sn

sm

B

W i

p2−−→

p1−−→
k1−−→

k2−−→

sn

sm

W i

B

Figure 4.9: Feynman diagrams contributing to the annihilation cross section of the Dark Matter into
W i and B.

The amplitude is given by

M = −ig2gY Ys
[

(p1 − k1 − p2)ν(2p1 − k1)µ
(p1 − k1)2 −M2

s

+
(p1 − k2 − p2)ν(2p1 − k2)µ

(p1 − k1)2 −M2
s

− 2gµν
]

T i
mnϵ

∗
µ(k1)ϵ

∗
ν(k2)

= −ig2gY YsMµν
WBT

i
mnϵ

∗
µ(k1)ϵ

∗
ν(k2)

(4.135)

We can then write the unpolarized amplitude, taking the sum over the physical polarization of the
bosons

|M̄WB|2 = (g2gY Ys)
2M2

WB

∑

mn

∑

i

T i
nmT

i
nm (4.136)

where as before
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M2
WB =

∑

p.p.

Mµν
WBM

ρσ
WBϵ

∗
µ(k1)ϵ

∗
ν(k2)ϵρ(k1)ϵσ(k2) (4.137)

Then evaluating the sum’s over the multiplet and gauge indices, we get

|M̄WB|2 = (g2gY Ys)
2M2

WB

dim(R)C2(R)

n2
(4.138)

giving for the s-wave cross section

σv(s†s→WB) =
g22g

2
Y Y

2
s

4πM2
s n

2
dim(R)C2(R) (4.139)

Summing up the three equation 4.130, 4.134 and 4.139, and keeping in mind that the multiplet is
in an n-dimensional representation so we can substitute dim(R) = n and C2(R) =

n2−1
4 , we get the

total annihilation cross section times velocity as:

(σv)C−scalar
eff =

g22(n
4 − 4n2 + 3) + 16g4Y Y

4
s + 8g22g

2
Y Y

2
s (n

2 − 1)

128πM2
s n

(4.140)

The same computations can be done for the case in which s is a real scalar, the two final cross
section will differ only for a factor of two

(σv)R−scalar
eff =

g22(n
4 − 4n2 + 3) + 16g4Y Y

4
s + 8g22g

2
Y Y

2
s (n

2 − 1)

64πM2
s n

(4.141)

The other important annihilation process that we need to discuss is the one into muon’s arising
from the interaction terms introduced in the new physics models. We will present the computations
under the assumption that the Dark Matter particle is a real scalar or a Mayorana fermion, as in the
FH1 model and in the SH1 model respectively.

In order to perform the computation, we can use the simplified Lagrangian defined in 4.44. In the
real scalar case, there are two different diagrams contributing to the annihilation, Figure 4.10.

p2−−→

k2−−→

k1−−→

p1−−→

s

s

µ

µ̄

p1−−→

k2−−→

k1−−→

p2−−→

s

s

µ

µ̄

Figure 4.10: Feynman diagrams contributing to the annihilation cross section of scalar Dark Matter
into muons due to the new physics couplings.

The corresponding amplitude is:

Mµµ = −iq̄1
[

CRL(/q1 − /p1 +Mf )CLR

(q1 − p1)2 −M2
f

+
CRL(/q1 − /p2 +Mf )CLR

(q1 − p2)2 −M2
f

]

(4.142)

where for sake of simplicity, we denoted CRL = λR2 PL + λL2PR and CLR = λR2 PR + λL2PL. Taking
the sum over the final state spin the amplitude modulus square in the limit of mNP ≫ mµ

|Mµµ|2 =
Tr
[

CRL(/q1 − /p1 +Mf )CLR/q2CRL(/q1 − /p1 +Mf )CLR/q1

]

(

q1 − p1)2 −M2
f

)2 +

[

CRL(/q1 − /p1 +Mf )CLR/q2CRL(/q1 − /p2 +Mf )CLR/q1

]

(

(q1 − p1)2 −M2
f

)(

(q1 − p2)2 −M2
f

) + (p1 ←→ p2)

(4.143)
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Then evaluating the traces the s-wave cross section can be obtained as

(σv)R−scalar
µµ =

1

πM2
f

(λL2 )
2(λR2 )

2

(1 + r2s)
2

(4.144)

A scalar Dark Matter candidate appear in the SH1 model, then comparing the Lagrangian 4.43

with the one for the model in 4.23 we have for the effective coupling λ
R/L
2 :

λR2 = λ2U11 (4.145)

λL2 =
λ1√
2
U21 (4.146)

then the cross section can be written as

(σv)R−scalar
µµ =

1

πM2
f

(λ1λ2U11U21)
2

2(1 + r2s)
2

(4.147)

where we introduce the parameter rs =Ms/Mf < 1.

4.4.2 Fermionic Dark Matter

For the scenario in which the Dark Matter is a Dirac fermion transforming in the n-dimensional
representation with hypergarge Ys, the Lagrangian can be written as

LF = f̄(i /D −Mf )f (4.148)

with Dµ the usual covariant derivative. The fermion annihilation into a gauge boson is described
by the same three channels as for the scalar Dark Matter case. The main difference is that for a
fermion, both Higgs and Standard Model fermion final states contribute to the s-wave cross section of
annihilations plus coannihilations.

The contribution to the f̄mfn →W iW j comes from three Feynman diagrams, as can be seen from
Figure 4.11: two of them refer to t-channel processes, and one of them is an s-channel process involving
the three-linear gauge boson vertex.

p1−−→

p2−−→

k1−−→

fk

k2−−→

f̄m

fn

W i

W j

p1−−→

p2−−→

k2−−→

fk

k1−−→

f̄m

fn

W j

W i p1−−→

p2−−→

W i

k1−−→

k2−−→

f̄m

fn

W i

W j

Figure 4.11: Feynman diagram contributing to the Dark Matter annihilation into W i.

The amplitude is given by

M = −ig22 v̄(p2)
[

γµ(/p1 − /k1 +Mf )γ
ν

(p1 − k1)2 −M2
f

(T jT i)nm +
γν(/p1 − /k2 +Mf )γ

µ

(p1 − k2)2 −M2
f

(T iT j)nm

+iγρV
µνρ(−k1, k2, p1 + p2)T

k
nmf

ijk
]

u(p1)ϵ
∗
µ(k1)ϵ

∗
ν(k2)

= −ig22

[

Mµν
WW,1(T

iT j)nm +Mµν
WW,2

∑

k

f ijkT k
nm

]

ϵ∗µ(k1)ϵ
∗
ν(k2)

(4.149)

To get the unpolirized modulus squared amplitude, we can procede excactly as for the scalar
multiplet, the only difference being that in the fermion case, in the definition ofMWW,i, i = 1, 2, 12,
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we need also to take the average over the initial spins and evaluate the corresponding Dirac traces.
Summing over the gguage group indices:

|M̄WW |2 = g22

[

M2
WW,1

dim(R)C2(R)

n2
+ (M2

WW,2 +M2
WW,12)

2dim(R)C2(R)

n2

]

(4.150)

Then the s-wave cross section is:

(σv)(f̄f →WW ) =
g42

32πM2
fn

2
C2(R)(2C2(R)− 1)dim(R) (4.151)

The Feynman diagrams contributing to the annihilation into B’s are depicted in FIgure 4.12 and
the corresponding amplitude is evaluated to be:
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Figure 4.12: Feynman diagram contributing to the Dark Matter annihilation into B.

MBB = −i(gY Yf )2
[

v̄(p2)

(

γν(/p1 − /k1 +Mf )γ
µ

(p1 − k1)2 −M2
f

+
γµ(/p1 − /k2 +Mf )γ

ν

(p1 − k2)2 −M2
f

)

u(p1)

]

δnmϵ
∗
µ(K1)ϵ

∗
ν(K2)

= −i(gY Yf )2Mµν
BBδnmϵ

∗
µ(K1)ϵ

∗
ν(K2)

(4.152)

The unpolarized amplitude squared and the corresponding s-wave cross section are

|M̄BB|2 = (gY Yf )
4M2

BB

1

n
(4.153)

(σv)(f̄f → BB) =
g4Y Y

4
f

16πM2
fn

2
dim(R) (4.154)

The third annihilation channel gets contribution from the two Feynman diagram in 4.13.
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Figure 4.13: Feynman diagram contributing to the Dark Matter annihilation into W i and B.

The amplitude is given by:

MWB = −ig2gY Yf
[

v̄(p2)

(

γν(/p1 − /k1 +Mf )γ
µ

(p1 − k1)2 −M2
f

+
γµ(/p1 − /k2 +Mf )γ

ν

(p1 − k2)2 −M2
f

)

u(p1)

]

T i
nmϵ

∗
µ(k1)ϵ

∗
ν(k2)

(4.155)
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From this expression, following the same steps as for the previous computation, we derive the
unpolarized amplitude and the cross section

|M̄WB|2 = (g2gY Yf )
2M2

WB

dim(R)C2(R)

n2
(4.156)

(σv)(f̄f →WB) =
g22g

2
Y Y

2
f

8πM2
fn

2
dim(R)C2(R) (4.157)

The Dark Matter annihilation into the Higgs doublets is mediated by the B or the W i for the
coannihilation, as in FIgure 4.14

p1−−→ k2−−→

p2−−→

W i/B

k1−−→
f̄m

fn

H

H†

Figure 4.14: Feynman diagram contributing to the Dark Matter annihilation into Higgs doublets.

The amplitude is

MHH = ig22 v̄(p2)
γµ(k1 − k2)µ
(p1 + p2)2

u(p1)
∑

i

T i
nmT̃

i
n̄m̄ + ig2Y YfYH v̄(p2)

γµ(k1 − k2)µ
(p1 + p2)2

u(p1)δnmδn̄m̄

= iMHH(g22
∑

i

T i
nmT̃

i
n̄m̄ + g2Y YfYHδnmδn̄m̄)

(4.158)

Where T̃ i are the su(2) generators in the fundamental representation. Then, taking the aver-
age over the initial spins and summing over all possible final states, we can write the unnpolarized
amplitude squared

|M̄HH |2 =M2
HH

1

n2

∑

nm

∑

n̄m̄

(g22
∑

i

T i
nmT̃

i
n̄m̄ + g2Y YfYHδnmδn̄m̄)2 (4.159)

keeping in mind that the generators are traceless, we can then derive the expression for the s-wave
cross section

(σv)(f̄f → HH) =
g42dim(R)C2(R) + g4Y Y

2
ΨY

2
Hdim(R)

128πm2
Ψn

2
(4.160)

For the annihilation into Standard Model fermion doublets we have the analogous Feynamn dia-
gram as for the annihilation into Higgs doublet, while the annihilation into fermion singlet can only
be mediated by the B boson. They are both represented in 4.15.

The amplitude is given by

MΨΨ = i[g22
v̄(p2)γ

µu(p1)ū(k1)γµv(p2)

(p1 + p2)2

∑

i

T i
nmT

i
n̄m̄ + ig2Y YfYΨ

v̄(p2)γ
µu(p1)ū(k1)γµv(p2)

(p1 + p2)2
δnmδn̄m̄

= iM2
ΨΨ(g

2
2

∑

i

T i
nmT̃

i
n̄m̄ + g2Y YfYΨδnmδn̄m̄)

(4.161)

we can notice that to compute the unpolarized amplitude we can follow exactly the steps for the
Higgs annihilation channel, keeping in mind that we have also to take the sum over the outgoing
spinors in the definition ofM2

ΨΨ. We can then recover the amplitude squered as
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p1−−→

k1−−→p2−−→

W i/B

k2−−→

f̄m

fn

Ψ

Ψ̄

Figure 4.15: Feynman diagram contributing to the Dark Matter annihilation into Standard Model
fermions.

|M̄ΨΨ|2 = NΨ
c M2

ff

1

n2
(g42dim(R)C2(R) + 2g4Y Y

2
s Y

2
f dim(R)) (4.162)

where NΨ
c is the color factor, and assume the values of 1 for leptons and 3 for quarks. From this

amplitude, describing the Dark Matter annihilation into doublets, we can recover the amplitude for
the annihilation into fermions by simply substituting g2 = 0 and dividing by 2 the g2Y Y

2 terms to
cancel the factor of 2 coming from the sum over the fermion doublets components. We finally get the
s-wave cross sections:

(σv)fD(f̄f → ΨΨ) =
NΨ

c g
4
2dim(R)C2(R) + g4Y Y

2
ΨY

2
f dim(R)

32πM2
fn

2
(4.163)

(σv)fS(f̄f → ΨΨ) =
NΨ

c g
4
Y Y

2
ΨY

2
f

16πM2
fn

2
dim(R) (4.164)

Taking the sum over all the Standard Model fermions and adding the result to the other channels,
we get the final expression for the annihilation of fermion Dark Matter

(σv)D−fermion
eff =

g42(2n
4 + 49n2 − 51) + 4g4Y Y

2
f (81 + 8Y 2

f ) + 16g22g
2
Y Y

2
f (n

2 − 1)

512πM2
fn

(4.165)

If instead of a Dirac fermion, f is a Mayorana fermion, the computation follows the same steps
leading to the same result up to a factor of two

(σv)M−fermion
eff =

g42(2n
4 + 49n2 − 51) + 4g4Y Y

2
f (81 + 8Y 2

f ) + 16g22g
2
Y Y

2
f (n

2 − 1)

256πM2
fn

(4.166)

If the Dark Matter is a Mayorana fermion the are additional contributions to take into account
which are represented by the Feynman diagrams of FIgure 4.16

p2−−→

k2−−→

k1−−→

p1−−→

f

f

µ

µ̄

p1−−→

k2−−→

k1−−→

p2−−→

f

f

µ

µ̄

Figure 4.16: Feynman diagrams contributing to the annihilation cross section of fermionic Dark
Matter into muons due to the new physics couplings.
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The amplitude is

Mµµ = −i
[

ū(q1)CRLu(p1)v̄(p2)CLRv(q2)

((q1 − p1)2 −M2
s )

2 +
ū(q1)CRLu(p2)v̄(p1)CLRv(q2)

((q1 − p2)2 −M2
s )

2

]

(4.167)

Taking the average over the initial spin and the sum over the final one, we get the unpolarized
amplitude squared in the mNP ≫ mµ limit as

|Mµµ|2 =
Tr
[

CRL(/p1 +Mf )CLR/q1

]

Tr
[

CLR/q2CRL(/p2 −Mf )
]

4 ((q1 − p1)2 −M2
s )

2 +

Tr
[

/q1CRL(/p2 +Mf )C
TCT

RL/q
T
2
CT
LRC

−1(/p2 −Mf )CLR

]

4 ((q1 − p1)2 −M2
s ) ((q1 − p2)2 −M2

s )
+ (p1 ←→ p2)

(4.168)

Where C is the charge conjugation operator, using its anticommutation properties with the chiral
projectors the second trace can be computed and then the s-wave cross section is derived

(σv)M−fermion
µµ =

1

8πM2
s

r2fλ
2
Lλ

2
R

(1 + r2f )
2

(4.169)

where we introduce the parameter rf =Mf/Ms < 1.
A fermion Dark Matter candidate appears in the FH1 model, then we can compare the couplings

in 4.44 with the one in 4.36 we get:

λR2 = λ2V21 (4.170)

λL2 = −λ1V11 (4.171)

then the cross section can be rewritten as:

(σv)M−fermion
µµ =

1

8πM2
s

r2f (λ1λ2V11V21)
2

(1 + r2f )
2

. (4.172)

4.5 Dark Matter direct detection

The problem of Dark Matter direct detection can be approached through an effective field theory
approach [34, 44, 45]. The first ingredient needed in order to compute the Dark Matter-nucleus
interaction amplitude is a parton model that describes the Dark Matter interaction with quarks.
Thus, we start with an effective Lagrangian describing the Dark Matter interactions with SM particles
through a sum of higher dimension operators,

LUV =
∑

a,d

Ĉ(d)
a Q(d)

a (4.173)

with Ĉ
(d)
a are dimensionfull Wilson coefficient and can be written in terms of their corresponding

dimensionless coefficient as Ĉ
(d)
a = C

(d)
a

Λd−4 , where Λ is the energy cut off at which the effective theory fails
and can be identified with the mass of the mediator between Dark Matter and the Standard Model
for couplings of order unity. The sum in the effective Lagrangian runs over the operator dimension
d = 5, 6, 7 and over the index a which denotes the operator number and, if it contains Standard Model
fermion bilinear, a flavor index2.

The kinds of operators appearing in the Lagrangian vary depending on the Dark Matter nature.
The full set of operators will be given in the following for each of the two cases.

2Among the dimension seven operator we will exclude those which are additionally suppressed by derivatives.
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Since the Dark Matter nucleus scattering pertaining to the direct detection experiments happens at
low energy, we take the non-relativistic limit of 4.173. This is achieved by computing the hadronization
of the operators, exploiting the definition of the form factors, and taking the non-relativistic expansion
of the Dark Matter currents. It is then possible to define a Lagrangian describing the interaction
between the Dark Matter and non-relativistic nucleons.

LNeff =
∑

l

cNl Ol (4.174)

The index l runs over the 14 different non relativistic operators

ON
1 = IXIN (4.175)

ON
2 = v2⊥IXIN (4.176)

ON
3 = IX s⃗N ·

(

v⃗⊥ ×
iq⃗

mN

)

(4.177)

ON
4 = s⃗X · s⃗N (4.178)

ON
5 = s⃗X ·

(

v⃗⊥ ×
iq⃗

mN

)

IN (4.179)

ON
6 =

(

s⃗X ·
q⃗

mN

)(

s⃗N ·
q⃗

mN

)

(4.180)

ON
7 = IX s⃗X · v⃗⊥ (4.181)

ON
8 = (s⃗X · v⃗⊥)IN (4.182)

ON
9 = s⃗X

(

iq⃗

mN
× s⃗N

)

(4.183)

ON
10 = −IX

(

s⃗N ·
iq⃗

mN

)

(4.184)

ON
11 = −

(

s⃗X ·
iq⃗

mN

)

IN (4.185)

ON
12 = s⃗X · (s⃗N × v⃗⊥) (4.186)

ON
13 = −(s⃗X · v⃗⊥)

(

s⃗N ·
iq⃗

mN

)

(4.187)

ON
14 = −

(

s⃗X ·
iq⃗

mN

)

(s⃗N · v⃗⊥) (4.188)

where s⃗X and s⃗N are the Dark Matter and nucleon spins, respectively, while v⃗⊥ is the Dark Matter
transversal velocity and q⃗ is the momentum transferred during the reaction. Of these 14 operators,
those depending on the nucleon spin will produce the so-called spin-dependent cross section, while
the others are responsible for the spin-independent one. As can be seen, most of these operators
depend on the Dark Matter velocity; hence, they produce a velocity-suppressed contribution to the
amplitude squared. Since the Dark Matter velocity can be estimated to be approximately v ≈ 10−3,
we will neglect such operators. There are only two operators that are not velocity suppressed and
thus responsible for the dominant contribution to the scattering cross section, the ON

1 and the ON
4 ,

responsible respectively for the spin-independent and the spin-dependent interactions.
The Dark Matter nucleus differential cross section can be written as

dσT
dER

=
1

32π

1

m2
XmT

1

v2
|M̄|2 (4.189)

It is important to note that we have implicitly assumed that both the Dark Matter and the target
nucleus are unpolarized; this implies that the scattering cross section can only depend on the modulus
square of the Dark Matter velocity, v2.
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In order to compare the theoretical prediction to the experimental result of the XENON1T exper-
iment, we need to compute the differential scattering rate for a target nuclei recoiling with an energy
ER. This is achieved by performing the integral of the scattering cross section weighted by the Dark
Matter velocity distribution over the velocity, leading to the expression:

dRT

dER
(ER, t) =

ρX
mX

1

mT

∫

v≥vmin(ER)
d3vfE(v, t)v

dσT
dER

(ER, v) (4.190)

The lower bound of the integral is given by the minimum velocity a Dark Matter particle must
have in order to produce a nucleus recoiling with energy ER.

In the following discussion, we will neglect any non-relativistic operator that gives rise to a velocity
suppressed amplitude. This means that the velocity integral appearing in 4.190 does not depend on
the particular interaction and will be parameterized by the function η0(vmin, t)

η0(vmin, t) =

∫

v≥vmin

d3v
fE(v, t)

v
(4.191)

The time dependence in the velocity integral comes from the velocity distribution fE(v, t) and is
due to the Earth motion. Indeed, the Dark Matter can be considered at rest in the galactic reference
frame; thus, the Earth’s motion around the Sun will produce a periodic variation of the Dark Matter
flux at Earth, which will then produce an annual modulation of the signal in the experimental setup.
This modulation effect will not be considered in our discussion; the main interest will be in the annual
average interaction rate.

Finally, the number of events can be evaluated by performing the integral over the recoil energy
ER or equivalently, over vmin; XENON1T results are compatible with the hypothesis that no dark
matter events were observed[46, 47].

4.5.1 FH1 model and Mayorana Dark Matter

For a Dark Matter Mayorana fermion, we define in the following the base of the relativistic operators
appearing in the Lagrangian 4.173. The relevant operators start at dimension-six

Q(6)
2,q = (f̄γµγ5f)(q̄γ

µq), Q(6)
4,q = (f̄γµγ5f)(q̄γ

µγ5q) (4.192)

while for dimension-seven we will consider a subset of operators, namely

Q(7)
1 =

αs

12π
(f̄f)Ga,µνGa

µν , Q(7)
2 =

αs

12π
(f̄ iγ5f)G

a,µνGa
µν , (4.193)

Q(7)
3 =

αs

8π
Ga,µνG̃a

µν , Q(7)
4 =

αs

8π
− (f̄ iγ5f)G

a,µνG̃a
µν , (4.194)

Q(7)
5,q = mq(f̄f)(q̄q), Q(7)

6,q = mq(f̄ iγ5f)(q̄q), (4.195)

Q(7)
7,q = mq(f̄f)(q̄iγ5q), Q(7)

8,q = mq(f̄ iγ5f)(q̄iγ5q) (4.196)

Where q = u, d, s are the light quarks fields. Of all these operators, we are interested in those
that, once hadronized, produce the non-relativistic operators ON

1 and ON
4 . The ON

1 arise from the

hadronization of Q(6)
1,q , Q

(7)
1 and Q(7)

5,q . The operator Q(6)
4,q in the non relativistic limit produces both

ON
4 and ON

6 that interfere between themselves, but since the latter one is q2/m2
N suppressed and we

are interested in the leading order contribution to the scattering rate, we will neglect its contribution
to the amplitude.

To get the explicit expression of the non-relativistic coefficients cN1 and cN4 we need to match the
FH1 model Lagrangian onto the relativistic Lagrangian 4.173. For our porpous, it will be sufficient

to perform tree-level matching with just one exception regarding the Q(7)
1 operator. At tree level, the

interaction between Dark Matter and quarks can be mediated either by the Z boson or by the Higgs
field. Below the Electroweak scale, these interactions can be described with an Effective Field Theory
approach integrating out the heavy mediators from the model Lagrangian 4.23. This is achieved by
exploiting the equation of motion technique applied to the Lagrangian relevant to our case.
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L =− λHhF̄01F01 −
g2
cW

Zµg
F
A F̄01γ

µγ5F01)

− g2
cW

∑

q=u,d,s

Zµq̄γ
µ(gqV + gqAγ5)q −

∑

q=u,d,s

mq

v
hq̄q

− 1

4
ZµνZµν −

1

2
M2

ZZ
µZµ +

1

2

(

∂µh∂µh−M2
hh

2
)

(4.197)

for simplicity, we have introduced the couplingsλH = λ1HV21V11+λ2HV31V11√
2

, gFA = 1
4(V21V21−V31V31),

while gqV and gqA are the coupling of standard model quark currents to the Z boson. By writing the
equation of motion for Z and h neglecting the kinetics terms, and substituting the results back into
the Lagrangian, we get the effective operators:

L = 4
√
2GF g

f
Af̄γ

µγ5f
∑

q=u,d,s

q̄γµ(g
q
V + gqAγ5)q +

∑

q=u,d,s

λHmq

vM2
h

f̄f q̄q (4.198)

which corresponds to the operators Q(6)
2,q , Q

(6)
4,q and Q(7)

5,q respectively.

Another important contribution comes from the dimension-seven operator Q(7)
1 that arise at one-

loop level from the diagrams in Figure 4.17.

k1−−→ k2−−→

p1−→p2−→
h

t t

t
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f

gb
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k1−−→ k2−−→

p1−→p2−→
h

t

t

t

ga

f

gb

f

Figure 4.17: The two Feynman diagram responsible for the Q(7)
1 operator.

The one-loop computation is a standard result in the Standard Model theory, using this result we
can derive the operator

L = − 1

2π

λJyt
vM2

h

αs

12π
(f̄f)Gµν,aGa

µν (4.199)

where we have exploited the fact that for the transferred momentum inside the h boson propagator
we have the relation q2 ≪M2

h .
From what we have found up to now and considering the definition of the hadronic form factors,

we can derive the expression for the Wilson coefficient of the non-relativistic theory

cN1 = 4mXmN





∑

q=u,d,s

mNf
(N)
Tq 2Ĉ

(7)
5,q −

2

27
mNf

(N)
TG 2Ĉ

(7)
1



 = 4mXmN c̃
N
1 (4.200)

cN4 = 4mXmN



−4
∑

q=u,d,s

∆N
q 2Ĉ

(6)
4,q



 = 4mXmN c̃
N
4 (4.201)

We added a factor of two for each Wilson coefficient that arise from the non relativistic limit of
the operators.

To get a rough estimate of the interaction cross section we will exploit the point like nucleus
hypothesis. In this hypothesis we can neglect nuclear response during the process, the amplitude can
then be written as
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MPLN =
∑

N=p,n

∑

i

(cN1 δss′δMM ′ + cN4 s⃗f · ⟨J,M |s⃗N |J,M ′⟩) (4.202)

We can then compute the amplitude modulus square remembering that, for unpolarized Dark
Matter the ON

1 −ON
4 interference term is null. The amplitude we get is

|MPLN |2 = 16m2
Xm

2
N (Zcp1 + (A− Z)cn1 )2 +

J + 1

4J
(Spcp4 + Sncn4 )2 (4.203)

Substituting this result into 4.189 we obtain the cross section

dσT
dER

=
mT

2π

1

v2

[

A2

(

Z

A
c̃p1 +

(A− Z)
A

c̃n1

)2

+
J + 1

4J
(Spc̃p4 + Snc̃n4 )2

]

(4.204)

As can be seen, the cross section is obtained as the sum of a spin-indipendent and a spin-dependent
term. The first of these terms arises from the operator ON

1 and is coherently enhanced by a factor of
A2 ∼ 104 and thus can be dominant with respect to the spin-dependent term. But in our particular
case, the situation is not so clear; indeed, the ON

4 operator arises from dimension-six relativistic
operators that are suppressed by a factor ofM−2

W while the operators inducing ON
1 are all of dimension

seven and are suppressed by a factor of 1/(vM2
h). As a consequence, the two cross sections are of

comparable size. Indeed, if we evaluate the two contributions for the case of the tungsten 183, we get
for the two contributions the values of ∼ 10−13Mev−2 and ∼ 10−12Mev−2 respectively for the spin
independent and the spin dependent terms.

4.5.2 SH1 model and real scalar Dark Matter

For a real scalar Dark Matter the set of relativistic operator is quite smaller, in particular also in this
case there are not dimension-five operators moreover neither dimension seven operators are relevant.
We will then consider the following set of dimension-six operators:

Q(6)
3,q = mq(s

2)(q̄q) Q(6)
4,q = mq(s

2)(q̄iγ5q) (4.205)

Q(6)
5 =

αs

12π
(s2)Gµν,aGa

µν Q(6)
6 =

αs

8π
(s2)Gµν,aG̃a

µν (4.206)

where q = u, d, s are the light quarks. Differently from the fermion case, not all the non-relativistic
operators contribute to the scattering process for a scalar Dark Matter particle; indeed, since the
scalar does not have spin, all those operators involving s⃗X are now absent. For this reason, we will
not have contributions from the ON

4 but only from the ON
1 , so of all the possible relativistic operators,

we need to consider only those that, after the hadronization, produce the latter one.
Following the same procedure as for the fermion case, we exploit the equation of motion techniques

to match the SH1 model onto the Lagrangian 4.173 at tree level to build an effective field theory. The
model operator that is relevant to our purpose

L =− AH

2
hS1S1 −

∑

q=u,d,s

mq

v
hq̄q (4.207)

+
1

2
(∂µh∂

µh−M2
hh

2) (4.208)

for simplicity we have defined AH = aHU11U21. Deriving the equation of motion for the h boson
and neglecting the kinetic terms we obtain the effective operators

L =
∑

q=u,d,s

AHmq

2vM2
h

s2q̄q (4.209)

=
∑

q=u,d,s

Ĉ
(6)
3q mqs

2q̄q (4.210)
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This effective operator correspond to the relativistic operator Q(6)
3,q . There is also another contri-

bution from the operator Q(6)
5 that arise at one loop level through the analogous diagram of FIgure

4.17.
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Figure 4.18: The two Feynman diagram responsible for the Q(6)
5 operator.

The corresponding operator is:

L = − 1

2π

AHyt
vM2

h

αs

12π
(s2)Gµν,aGa

µν (4.211)

= Ĉ
(6)
5

αs

12π
s2Gµν,aGa

µν (4.212)

Given this relativistic operators, we can derive the expression for the non-relativistic Wilson coef-
ficient cN1

cN1 = 2mN





∑

q=u,d,s

mNf
(N)
Tq (2Ĉ

(6)
3,q )−

2

27
mNf

(N)
TG (2Ĉ

(6)
5 )



 (4.213)

= 2mN c̃
N
1 (4.214)

The factors of two in front of the relativistic Wilson coefficient appear since the Dark Matter
candidate is a real scalar. Also in this case we compute the scattering amplitude in the point like
nucleus hypothesis

MPLN =
∑

N=p,n

∑

i

cN1 δss′δMM ′ (4.215)

computing the amplitude square and then the scattering cross section with 4.189 we get

dσT
dER

=
1

8π

mT

m2
X

1

v2
A2

(

Z

A
c̃p1 +

A− Z
A

c̃n1

)2

. (4.216)
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4.6 Numerical analysis

In this section we will show a numerical analysis of the formulas derived in previous section in order
better understand the viability of the models we have considered.

4.6.1 Benchmark model FH1

The Lagrangian and field content of the model were given in equation 4.23, and, as was previously
discussed, the Dark Matter candidate is a Mayorana fermion. In 4.19a, we show the results for an
illustrative choice of parameters. The couplings responsible for the interaction between the new physics
fields and the muon are taken to be of order one and such that the contribution to the ∆aµ is positive.
In particular, we have chosen −λ1 = λ2 = 1. As for the Yukawa-like couplings responsible for the
interaction of the new physics fermions with the Higgs doublets, they are chosen to be λ1H = −0.2
and λ2H = 0.3.

The blue region represents the portion of parameter space for which the ∆aNP
mu is able to reproduce

the experimental deviation found in 2.17. We can clearly see that a sufficiently large contribution to
the (g−2)µ is obtained in the multi-TeV range; this is a direct consequence of the v/mµ enhancement
stemming from the chirility flip in the 1-loop diagrams. The fact that the new physics particle
masses can be of the TeV order allows us to safely evade the colliders exclusion bound. The yellow
region represents the parameter space for which a Dark Matter abundance predicted by the model is
Ωh2 ≤ 0.12. This relic abundance was calculated considering the Dark Matter fermion decays into
gauge bosons and muons. The last one of which is mediated by the scalar doublet, for which a mass
of MS = 2.5 TeV was taken. Finally, the light green region is excluded by the XENON1T search for
Dark Matter. To evaluate this bound, both the spin-independent and spin-dependent interactions of
the Dark Matter candidate with the nucleus are considered. As was discussed in the previous section,
the cross sections were computed in the Point Like Nucleus hypothesis, so the corresponding exclusion
region should be taken as indicative; for this same reason, we have limited ourselves to computing the
scattering cross section only with the most abundant Xe isotope relevant for this scenario, which is
129Xe.

In conclusion, the FH1 model can account for the ∆aµ anomaly and the correct Dark Matter relic
density evading at the same time the constrains stemming from the direct detection searches.
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Figure 4.19: Diagrams for the two benchmark models

4.6.2 Benchmark model SH1

The Lagrangian and field content of the SH1 model are specified in 4.36, and the Dark Matter
candidate is the lightest of the real scalars. Also for this model, the new physics couplings have been
chosen in such a way that the ∆aNP

µ is positive. The values taken are −λ1 = λ2. The dimensional
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coupling responsible for the interaction of the new physics scalars with the Higgs doublet is taken to
be aH = v, where v is the Higgs vev. As for the fermion singlet mass, we have taken the value of
MF = 1.5 TeV .

In 4.19b, the blue region represents the portion of the parameter space for which the ∆aNP
µ

reproduces the most recent results for the (g − 2)µ deviation. As can be seen, sufficiently large
values are also obtained in the multi-TeV region, analogously to the FH1 model case; this is due to
the enhancement arising from the chirility flipping Feynman diagrams. The yellow region represents
the parameter values for which the Dark Matter candidate is able to reproduce a relic density of
Ωh2 ≤ 0.12, through the annihilation into both gauge bosons and muons, the latter one of which is
mediated by the scalar fermion. Finally, the green region is excluded by direct detection data taken
from the XENON1T experiment. As for the FH1 model, the Dark Matter nucleon cross section is
evaluated in the Point Like Nucleus limit. For this reason, the bound was computed considering just
the most abundant Xenon isotope, 129Xe, and then the exclusion bound should be considered as
indicative.

In conclusion, also the SH1 model can account for the ∆aµ anomaly and the correct Dark Matter
relic density while evading the stringent bounds given by the direct detection searches.
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Conclusions

Although the Standard Model provides a very remarkable explanation of a plethora of experimental
measurements in particle physics, it is a common belief that it cannot represent the ultimate theory
of Nature. In fact, there are a few unanswered fundamental questions, such as the nature and pro-
duction of Dark Matter, the baryon asymmetry of the universe, the origins of neutrino masses and
mixes, excetera. Moreover, there are also a few discrepancies between experimental measurements and
theoretical predictions of some observables. A prominent example is given by the muon g-2. This was
firstly observed by the experiment E821 at BNL and more recently confirmed by the experiment E898
at FNAL, which found a deviation of 5.0σ. In this thesis, we have studied some possible Standard
Model extensions capable of explaining the muon g-2 discrepancy and, at the same time, giving a Dark
Matter candidate. We found that this achievement can be obtained at the expenses of introducing at
least three new fields coupling both to the muon and to the Higgs boson. They can be divided into
two categories based on the nature of the Dark Matter candidate: those which predict a fermionic
candidate and those for which the candidate is a scalar particle. We have then specialized our com-
putation on two benchmark models, one for each of the two categories mentioned above, deriving
their predictions for the muon g-2. Then, we focused on the Dark Matter candidates, evaluating the
corresponding relic density and the relevant cross section for Direct Detection experiments.

Our numerical analysis shows that, assuming O(1) new physics couplings and new particles at the
TeV scale, the proposed benchmark models are capable of explaining both the muon g-2 discrepancy
and the correct Dark Matter relic density while respecting all available experimental data.

56



57



Appendix A

One-loop computations

A.1 Feynman rules

In this section we will provide the Feynman rule for the Standard Model in the unbroken gauge that
have been used in this thesis.

The Lagrangian for the gauge bosons kinetic term is given by:

Lgauge = −
1

4
Wµν,aW a

µν −
1

4
BµνBµν (A.1)

Where the SU(2)L field strength is given by W a
µν = ∂µW

a
ν − ∂νW a

µ + g2f
abcW b

µW
c
ν , while the field

strength of the U(1)Y field is Bµν = ∂µBν − ∂νBµ. These terms are responsible for the gauge boson
propagators, Figure A.1 and Figure A.2, and for the SU(2)L gauge boson trilinear interaction, Figure
A.3.

k−−→

Wµ;a W ν;b

= − igµνδ
ab

k2

Figure A.1: SU(2)L gauge boson propagator.

k−−→

Bµ Bν

= − igµν
k2

Figure A.2: U(1) gauge boson propagator.

The Higgs doublet Lagrangian in the unbroken phase is:

LH = DµH
†DµH + µ2H†H − λ

4
(H†H)2 (A.2)

with the covariant derivative given by Dµ = ∂µ− ig2T a
ijW

a
µ − igY2 Bµ, and the SU(2)L generator are

in the fundamental representation. Of all the possible interactions arising from the whole Lagrangian,

58



k1←−−−

k2−−−→ k3←−−−

Wµ;a

W ν;b

W ρ;c

= g2f
abc [gµν(k1 − k2)ρ + gνρ(k2 − k3)µ + gρµ(k3 − k1)ν ]

Figure A.3: Feynman rules for the SU(2)L guage boson self interactions.

we have used just the vertices H†HW and H†HB, for which the Feynman rules are given in Figure
A.4.

p−−→ p′−−→

Hj Hi

Wµ;a

= ig2(p+ p′)µT a
ji

p−−→ p′−−→

Hj Hi

Bµ

= i
gY
2
(p+ p′)µδji

Figure A.4: Upper row : Feynman rule for the H†HW vertex, the i, j indices runs over the component
of the Higgs doublet. Lower row : Feynman rule for the H†HB vertex.

The Lagrangian for a fermionic multiplet transforming in the n-dimensional representation of
SU(2)L with hypercharge Yf is:

Lf = f̄(i /D −Mf )f (A.3)

where the covariant derivative is Dµ = ∂µ − ig2T a
ijW

a
µ − igY YfBµ. The fermion propagator and

the Feynman rule for the f̄fW and f̄fB interaction are displayed in Figure A.5 and A.6 respectively.

p−−→

fj fi
=

iδij

/p−Mf

Figure A.5: Fermion propagator. The i, j indices runs over the different components of the multiplet.

The Lagrangian for a scalar multiplet transforming in the n-dimensional representation of SU(2)L
with hypercharge Ys is:

59



fj fi

Wµ;a

= ig2T
a
ijγ

µ

fj fi

Bµ

= igY Yfδijγ
µ

Figure A.6: Upper row : Feynman rule for the f̄fW vertex, the i, j indices runs over the different
components of the multiplet.. Lower row : Feynman rule for the f̄fB vertex.

Lf = Dµs
†Dµs−M2

s s
†s (A.4)

where the covariant derivative is Dµ = ∂µ − ig2T a
ijW

a
µ − igY YsBµ. The scalar propagator is given

in Figure A.7, the Feynamn rules for the three fields interactions are depicted in Figure A.8 while the
Feynamn rules for the four fields vertices are given in Figure A.9.

p−−→

sj si
=

iδij
p2 −M2

s

Figure A.7: Scalar propagator. The i, j indices runs over the different components of the multiplet.

The New Physics contribution and their interaction with the muon can be summarize by the
SU(3)c × U(1)em symmetric Lagrangian:

Lkin = (Dµs)
∗Dµs−Mss

∗s+ f̄
(

i /D −Mf

)

f + µ̄
(

i /D −mµ

)

µ (A.5)

Lint = s∗µ̄
(

λR2 PL + λR2 PR

)

f + h.c (A.6)

Where the covariant derivative is Dµ = ∂µ − ieQ, Q being the charge of the particle.
From this Lagrangian we can derive the following Feynman rules for the vertices involving the new

physics particles are in Figure A.10. While the Feynamn rules for the new physics fields interaction
with the photon are given in Figure A.11.

A.2 Loop functions

Here we summarize the Master integrals used in the loop computation along with the definition of the
loop functions

∫

ddk

(2π)4
1

(k2 −D)n
=

(−1)ni
(4π)d/2

Γ(n− d/2)
Γ(n)

(

1

D

)n−d/2

(A.7)
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p−−→ p′−−→

sj si

Wµ;a

= ig2(p+ p′)µT a
ij

p−−→ p′−−→

sj si

Bµ

= igY Ys(p+ p′)µδij

Figure A.8: Upper row : Feynman rule for the s†sW vertex, the i, j indices runs over the different
components of the multiplet.. Lower row : Feynman rule for the s†sB vertex.

∫

ddk

(2π)d
k2

(k2 −D)n
=

(−1)n−1i

(4π)d/2
d

2

Γ(n− 1− d
2)

Γ(n)

(

1

D

)n−1− d
2

(A.8)

2mf ū(p
′)γµu(p) = p̄′

[

(p′ + p)µ − 2iσµν(p′ − p)ν
]

u(p) (A.9)

ū(p′)
[

(p′ + p)µ − 2iσµν(p′ − p)ν
]

γ5u(p) = 0 (A.10)

IfLL(r) =

∫ 1

0
dx3

(1− x3)2x3
2 (x3 + r(1− x3))

(A.11)

IfLR(r) =

∫ 1

0
dx3

(1− x3)2
x3 + r(1− x3)

(A.12)

IsLL =

∫ 1

0
dx1

x1(1− x1)2
2(1− x1 + rx1)

(A.13)

IsLR =

∫ 1

0
dx1

x1(1− x1)
1− x1 + rx1

(A.14)

Hs
LL =

∫

dx1dx2dx32δ(x1 + x2 + x3 − 1)
x3(x2 − x3)
1− x1 + rx1

(A.15)

Kf
LL(r) =

∫ 1

0
dx1

1

2

x1(1− x1)
x1 + (1− x1)r

(A.16)

Hf
LL(r) =

∫ 1

0
dx1

∫ 1−x1

0
dx2

x2(2x2 − 2 + x1)

x1 + (1− x1)r
(A.17)
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s†j

si

W ν;b

Wµ;a

= ig22{T a, T b}jigµν

s†j

si

Bν

Bµ

= i2g2Y Y
2
s δjig

µν

s†j

si

Bν

Wµ;a

= i2g2gY YsT
a
jig

µν

Figure A.9: Upper row : Feynman rule for the s†sWW vertex. Middle row : Feynman rule for the
s†sBB vertex.Upper row : Feynman rule for the s†sWB vertex.

f

s∗

µ
= i(λL2PR + λR2 PL) = iCRL

2

µ

f

s∗

= i(λR∗
2 PR + λL∗2 PL) = iCRL∗

2

Figure A.10: Feynman rules for the new physics vertices introduced in the Lagrangian 4.44.
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s
p−−−→ p′−−−→ s

γ

= −ieQs(p+ p′)µ

f f

γ

= −ieQfγ
µ

Figure A.11: Upper row : Feynman rule for the scalar-photon interaction. Lower row : Feynman rule
for the fermion-photon interaction.
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