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Introduction

In the present work the main focus is solving the Text Classification (TC)
problem using Deep Learning (DL) methods. The experiments will deal
with the classification of Italian texts using different techiques to compute
words embedding representations, including one coming from a Generalized
Language Model (GLM).

Text Classification is one of the most studied problem in the Natural
Language Processing (NLP) field. It deals with labeling texts with categories
that can come from a set of multiple alternatives. Once some data pre-
processing techniques are applied to the texts, deep learning models can be
used to perform this task. Some data preparation operations are essential
for NLP tasks in order to make the model work in a desirable way. Language
data are discrete symbols and they need to be converted to numeric vectors
in some useful way.

Deep Learning is part of a broader family of machine learning methods
based on neural networks. Many deep learning models have been developed in
the past to solve NLP tasks. In particular, Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) can be used to solve the
Text Classification task, since they capture local structures and long range
dependencies in sequences of data respectively. Furthermore, various models
based on neural networks have been developed to generate word embedding
representations from large corpus of texts.

This work focuses on the word embedding technique, which consists in
mapping words to feature vectors of fixed dimensions. The standard pro-
cedure in NLP tasks is to rely on pre-trained algorithms to produce word
vectors. These are the vectors that are fed to the model which is trained
to solve the NLP task. Two different word embedding algorithms will be
explained: Word2Vec and ELMo. The alternative to the standard approach
is to tune automatically the word vectors during the neural network train-
ing for the NLP task. In this work, the two approaches are presented and
compared in details.

The experiments that will be presented have been carried out on a real-
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world dataset. Different deep learning models have been applied to solve a
text classification task on an Italian dataset. The Word2Vec and the ELMo
algorithms are both used to compute pre-trained word representations, and
this allowed to compare their performances on the considered task. The
alternative of automatically tuning the word vectors has also been applied.
Both Recurrent Neural Networks and Convolutional Neural Networks are
considered as approaches to capture significant text features.

The structure of this work is presented as follows. Chapter 1 will focuse
on the text classification problem and on some basic operations to process
and transform the texts in order to let deep learning methods extract useful
information from them. Chapter 2 will give an overview on the deep learn-
ing approach to supervised text classification and presents the main neural
network models that can be applied to this specific task. Chapter 3 will
deal with the word embedding problem and the detailed explanation of the
Word2Vec and the ELMo algorithms. Chapter 4 will focus on how the pre-
sented models and algorithms have been applied in real-word scenario. The
results of the trained models will be compared both in terms of efficiency
and classification metrics.



Chapter 1

The Text Classification problem

Text Classification (TC a.k.a. text categorization) is the activity of labeling
natural language texts with thematic categories from a predefined set. TC
is a widely studied problem in the database, data mining and information
retrieval communities and nowadays it is being applied in many contexts.

Text classification is one of the main tasks of Natural Language Processing
(NLP) , the subfield of computer science concerned with using computational
techniques to learn, understand and produce human language content. NLP
is often called computational linguistics, and this fact implies that it not an
independent scientific field, but rather an interdisciplinary field (Jurafsky
and Martin, 2009). Over the past 20 years, the developments in the field are
enabled not only by the increase in computing power and the development
of highly successful algorithms but also by the availability of large amount of
linguistic data and a much richer understanding of the structure of human
language and its deployment in social contexts (Hirschberg and Manning,
2015). Section 1.1 will examine in details the characteristics and the chal-
lenges of processing natural language data.

Depending on the applications, the TC task may fall under the binary
classification task or under the multi-label classification one. In particular,
on the latter case, where categories are not mutually exclusive (like in the
case of topic classification) it is not easy to choose which categories are the
most appropriate for the text, even for a human expert. Nowadays TC is used
for various applications, like document organization, text filtering, opinion
mining and many others. Section 1.2 will go deeper into the problem of text
classification and then present these three applications in detail.

Text pre-processing is the first step in every Natural Language Processing
system pipeline and it has potential impact in its final performance. The aim
of pre-processing is to transform text data to sequences of relevant tokens.
The main steps of text pre-processing are: tokenization, lowercasing, and
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8 CHAPTER 1. THE TEXT CLASSIFICATION PROBLEM

stop words removal. Section 1.3 will present these pre-processing techniques
and analyze their importance in a TC task.

After pre-processing, in order to use text data as inputs for a classifier,
significant features have to be extracted from the tokens for each entry of the
dataset. For text classification, the basic units are words or group of words
(bi-grams or tri-grams). The most basic set of features for text classification
is the bag of words in the document. It can be useful to weight each word
with proportion to its informativeness, for example using TF-IDF weighting.
This strategy does not take into account word meaning, but only the word
statistics in the dataset. Embedding based methods can be used to derive
abstract word features, and these features can be combined together to form
the feature set of each document. Section 1.4 will go deeper in the analysis
of these two feature representation for text classification. Further analysis
on word embedding methods will be presented in Chapter 3.

Since this work focuses on deep learning for text classification, after the
feature extraction phase the vector space representation for each document
will be fed into a neural network model that will learn an intermediate rep-
resentation of the document and then learn how to classify it correctly. Feed
Forward neural networks, Convolutional neural networks and Recurrent neu-
ral networks can be used to solve the task, and they can be also combined
together. Neural Networks can also serve as feature extractor at a word
level, using an embedding layer or fine-tuning some pre-trained word embed-
ding representations. A general introduction to these models will be given
in Section 1.5 and then they will be deepened in Chapter 2 and 3.

The reference literature for this chapter is Sebastiani (2002) for the text
classification definitions and applications, Kadhim (2018) for the text pre-
processing techniques, and Goldberg (2017) for the remaining parts. This
book will be also used as reference in following chapters, when talking about
basic NLP concepts and basic deep learning architectures.

1.1 Natural Language Processing challenges

What distinguishes language processing applications from other data pro-
cessing systems is their use of knowledge of language. Consider for example
the Unix wc program, used to count the total number of bytes, words, and
lines in a text file. When used to count bytes and lines, wc is an ordinary data
processing application. However, when it is used to count the words in a file
it requires knowledge about what it means to be a word, and thus becomes
a language processing system. Of course, wc is an extremely simple system
with an extremely limited and impoverished knowledge of language. So-
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phisticated conversational agents, or machine translation systems, or robust
question-answering systems require a much broader and deeper knowledge of
language. Jurafsky and Martin (2009) claim that often language processing
models and algorithms are designed to solve ambiguity in the input text.
An example can be the sentence ”Sarah gave a bath to her dog wearing a pink
t-shirt” in which it is not immediate that it’s Sarah that wears the t-shirt
and not her dog.

According to Goldberg (2017), natural language exhibits an additional
set of properties that make it even more challenging for computational ap-
proaches, including machine learning: it is discrete, compositional, and sparse.
Language is discrete in the sense that its basic elements, characters and words
are discrete symbols, whose meaning is external to them and left to be inter-
preted. There is no inherent relation between words such as ”hamburger” or
”pizza” that can be inferred from the symbols themselves, or from the indi-
vidual letters they are made of. Instead in many signal analysis applications
this can be possible: using a simple mathematical operation it’s possible
for example to move from a colorful image to a gray scale one. Language
is compositional: letters form words, words form sentences, sentences form
documents. The meaning of a sentence can be larger than the meaning of
the words that comprise it, so in order to interpret a document we need
to work beyond letter and word levels. These two properties lead to data
sparseness. The way in which words (discrete symbols) can be combined to
form meanings is practically infinite. There is no clear way of generalizing
from one sentence to another, or defining the similarity between sentences
that does not depend on their meaning, which is unobserved to us. This is
very challenging when we come to learn from examples: even with a huge
example set we are very likely to observe events that never occurred in the
example set, and that are very different than all the examples that did occur
in it.

1.2 Text Classification: definition and appli-

cation

After dealing with NLP challenges, we will focus on the text classification
problem. The reference literature for this Section is Sebastiani (2002), when-
ever not specified otherwise.
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A definition of text classification

Text classification is the task of assigning a Boolean value to each pair
(dj, ci) ∈ D × C, where D is a domain of documents and C = {c1, ..., c|C|}
is a set of predefined categories. A value of T assigned to (dj, ci) indicates a
decision to file dj under ci, while a value of F indicates a decision not to file
dj under ci. More formally, the task is to approximate the unknown target
function φ : D × C → {T, F} (that describes how documents ought to be
classified) by means of a function φ̂ : D × C → {T, F} called the classifier
(aka rule, or hypothesis, or model) such that φ̂ and φ “coincide as much as
possible”.

Two reasonable assumptions can be made when performing text classi-
fications. Categories are just symbolic labels, and no additional knowledge
about their meaning is available. No exogenous knowledge, that is data pro-
vided for classification purposes by an external source, is available; hence the
task must be accomplished only on the basis of endogenous knowledge, in-
formation extracted from the documents. Metadata such as the publication
date, the document type, the publication source, etc., is not assumed to be
available.

Relying only on endogenous knowledge means classifying a document
based solely on its semantics, and given that the semantics of a document
is a subjective notion, it follows that the membership of a document in a
category cannot be decided in a deterministic way. This is exemplified by
the phenomenon of inter-indexer inconsistency (Cleverdon, 1984): when two
human experts decide whether to classify document dj under category ci,
they may disagree, and this in fact happens with relatively high frequency.
A news article on Clinton attending Dizzy Gillespie’s funeral could be filed
under Politics, or under Jazz, or under both, or even under neither, depending
on the subjective judgment of the expert.

Single-label versus Multi-label text classification

Some constraints may be enforced on the TC task, depending on the appli-
cation. For instance we might need that, for a given integer k, exactly k (or
≤ k, or ≥ k) elements of C must be assigned to each dj ∈ D. The case in
which exactly one category must be assigned to each dj ∈ D is often called
the single-label (a.k.a. non-overlapping categories) case, while the case in
which any number of categories from 0 to |C| may be assigned to the same
dj ∈ D is dubbed the multi-label (aka overlapping categories) case.

From a theoretical point of view, the binary case is more general than
the multi-label, since an algorithm for binary classification can also be used
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for multi-label classification: one needs only transform the problem of multi-
label classification under {c1, ..., c|C|} into |C| independent problems of binary
classification under ci, c̄i, for i = 1, ..., |C|. However, this requires that cate-
gories are stochastically independent of each other, that is, for any c′, c′′, the
value of φ̂(dj, c′) does not depend on the value of φ̂(dj, c′′) and vice versa;
this is usually assumed to be the case.

In the multi-label classification problem, given dj ∈ D a system might
simply rank the categories in C = {c1, ..., c|C|} according to their estimated
appropriateness to dj, without taking any “hard” decision on any of them.
Such a ranked list would be of great help to a human expert in charge of
taking the final categorization decision, since it could thus restrict the choice
to the category (or categories) at the top of the list, rather than having to
examine the entire set.

Most binary classification problems are special case of multi-label prob-
lem. For example we may want to build a model which detects which doc-
uments talk aboul Sports : in the collection there may be documents which
talk about Economy, Politics or other topics and some categories may overlap
with the Sports. Binary classification problems are important and challeng-
ing, since they feature unevenly populated categories (e.g., few documents
are about Jazz ) and unevenly characterized categories (e.g., what is about
Jazz can be characterized much better than what it is not). In this work,
whenever it is not specified, models and algorithms for text classification can
be used both for binary and also for multi-label classification problems.

Applications of text classification

Document organization

Many issues pertaining document organization and filing, be it for purposes
of personal organization or structuring of a corporate document base may
be addressed by TC techniques. Indexing with a controlled vocabulary is an
instance of document organization. It consists in assigning to each document
one or more key words or key phrases describing its content, where these key
words or phrases belong to a finite set called controlled dictionary. Usually
this assignment is done by trained human indexers, thus it is a costly activity.

If the entries in the controlled vocabulary are viewed as categories, text in-
dexing is an instance of TC, in particular an instance of multi-label TC since
every document can have multiple overlapping key words or phrases. Other
possible applications of TC for document organization are the organization
of patents into categories for making their search easier, the automatic filing
of newspaper articles under the appropriate sections (e.g., Politics, Home
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News, Lifestyles, etc.) or grouping conference papers into sessions.

Text filtering

Text filtering is the activity of classifying a stream of incoming documents
dispatched in an asynchronous way by an information producer to an in-
formation consumer. A typical case is a newsfeed, where the producer is
a news agency and the consumer is a newspaper. In this case the filtering
system should block the delivery of the documents the consumer is likely not
interested in (e.g., the news not concerning sports, in the case of a sport
newspaper).

Filtering can be seen as a case of binary classification, that is the classi-
fication of incoming documents into two disjoint categories, the relevant and
the irrelevant ones. Additionally, a filtering system may also further classify
documents deemed relevant to the consumer into thematic categories; in the
example above, all articles about sports should be further classified accord-
ing to which sport they deal with. A filtering system can be installed at the
producer end, in which case it must route the documents to the interested
consumers only, or at the consumer end, in which case it must block the
delivery of documents deemed uninteresting to the consumer.

Opinion mining

As stated by Aggarwal and Zhai (2012), opinion mining, or sentiment anal-
ysis, is the computational study of people’s opinions, appraisals, attitudes
and emotions toward entities, individuals, issues, events, topics and their at-
tributes. Businesses always want to find public or consumer opinions about
their products and services. Potential customers also want to know the opin-
ions of existing users before they use a service or purchase a product. With
the growth of social media on the Web, individuals and organizations are
increasingly using public opinions for their decision making. However, find-
ing and processing useful information is not easy for the human reader due
to the huge volume of texts present in the sites that is not easy to be deci-
phered. Moreover, human analysis of text information is subject to biases,
e.g., people often pay greater attention to opinions that are consistent to
their preferences.

Automated opinion mining can overcome subjective biases and mental
limitations with an objective sentiment analysis system. Opinion mining
systems can be seen as a case of multi-class classification, in which categories
are non overlapping, since opinions (Useful, Not useful, Very Good, Very
Bad) are mutually exclusive.
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1.3 Text pre-processing techniques

As claimed by Kadhim (2018), text pre-processing is a vital stage in text
classification particularly and in text mining generally. The major objective
of text pre-processing is to obtain the key features or the key terms from
text datasets and to improve the relevancy between words and documents
and between words and categories. It has been proven that the time spent
on pre-processing can take from 50% up to 80% of the entire classification
process (Srividhya and Anitha, 2010), which clearly proves the importance
of pre-processing in text classification processes. An effective preprocessor
represents the document efficiently in term of both space (for storing the
document) and time.

Tokenization

The first step of text pre-processing is tokenization, that is the process of
separating strings into basic processing textual units and grouping isolated
tokens to create higher level tokens. This operation is the most delicate one
and it can be made up of several phases. First, raw texts are converted to
a list of symbols including words, numbers and punctuation signs. Secondly,
depending on the task, numbers can be removed, kept, converted or grouped
together with other numbers or symbols if they have a particular meaning
(dates for example). Finally punctuation signs and empty sequences are
removed. After these operations each document is segmented into a list of
tokens which can be further processed if necessary.

Lowercasing

This is the simplest pre-processing technique which consists of lowercasing
each single token of the input text. It has the desiderable property of re-
ducing sparsity and vocabulary size, but it may negatively impact system’s
performance by increasing ambiguity. For instance, the Apple company and
the apple fruit would be considered as identical tokens.

Stop words removal

A stop word list is a list of commonly repeated words which emerge in ev-
ery text document. After tokenization, and if necessary lowercasing, every
word belonging to the stop word list is removed. Common words such as
conjunctions and pronouns need to be removed because their presence have
very little or no value on the classification process. In order to find the stop
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words, one might use a precomputed list of most common terms of the ref-
erence language or compute most frequent words in the dataset and add the
first k of such words (k = 50, 80, ..) to the list.

Multiword grouping

This last pre-processing technique consists of grouping consecutive tokens
together into a single token if it can lead to more meaningful tokens. One
example is the expression United States which is clearly considered as a unit
when reading a piece of text that contains the two words close to one another.
The meaning of these multiword expressions are often hardly traceable from
their individual words, so treating multiwords as single units may lead to
better training of a given model. But this is one of the most time expensive
procedure when programming a text preprocessor, because one needs to read
(most of) the documents to spot these word groups. Neural network models,
as we will see in Chapter 2, can spot groups of words that have particular
meanings when they are close to one another.

1.4 Feature design for text classification

The process of feature extraction (also called feature engineering) is one of
the most crucial and, at the same time, delicate in any machine learning
task. In TC a feature vector needs to be derived from each text document
in order to reflect various linguist properties of the text. While deep neural
networks alleviate a lot of the need in feature engineering, a good set of core
features still needs to be defined. This is especially true for language data,
which come in the form of sequences of discrete symbols. These sequences
need to be converted somehow to numerical vectors, in a non-obvious way.

Bag of words

When we consider a sentence, a paragraph or a document, the observable
features are the counts and the order of the words within the text. A very
common feature extraction procedure for sentences and documents is the
bag-of-words approach (BOW). In this approach the histogram of the words
within the text is computed, i.e., each word count is considered as a feature.
As a result, word order is not taken into account when computing docu-
ment level feature representations. When using the bag-of-words approach,
it is common to use TF-IDF weighting (Manning et al., 2008). Consider a
document d which is part of a larger corpus D. Rather than representing
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each word w in d by its normalized count in the document #d(w)∑
w′∈d #d(w′)

(the

Term Frequency), TF-IDF weighting represents it instead by the quantity
#d(w)∑

w′∈d #d(w′)
× log |D|

|d∈D:w∈d| . The second term of the quantity is the Inverse

Document Frequency: the inverse of the number of distinct documents in the
corpus in which this word occurs. This highlights words that are distinctive
of the current text.

Distributional features

In the bag of words approach words are discrete and unrelated symbols: the
words pizza, burger and chair are all equally similar (and equally dis-similar)
as far as the algorithm is concerned. Instead, the distributional hypothesis of
language states that the meaning of a word can be inferred from the contexts
in which it is used. By observing co-occurrence patterns of words across a
large body of text, one can discover that the contexts in which burger occurs
are similar to those in which pizza occurs and very different from those in
which chair occurs. Embedding-based algorithms make use of this property
and learn generalizations of words based on the context in which they occur.
They represent each word as a vector such that similar words (words having
a similar distribution) have similar vectors. These algorithms uncover many
facets of similarity between words and can be used to derive good word
features: word vectors can be used as representation of the word. Since in
this work word embedding vectors are used as features for text classification,
they will be discussed in depth in Chapter 3.

From textual features to inputs

When representing a document as feature vector x in a way which is amenable
for use by a statistical text classifier, two options are available, the bag-of
words representation and the dense semantic embedding vectors. There are
some trade-offs and also some relations between the two approaches.

In the bag-of-words approach, documents are usually represented as sparse
vectors where the non-zero elements are the ones corresponding to the columns
indicating the words in the document. Then, some weighting (i.e. TF-IDF)
or some dimensionality reduction technique can be used to transform these
document representations.

In the word embedding approach, each word is embedded into a d dimen-
sional space, and represented as a vector in that space. The dimension d is
much smaller than the number of words in the vocabulary. The word embed-
ding representations can be pre-trained or they can be treated as parameters
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of the network, and trained like the other parameters of the classification net-
work. After getting the word vectors, they must be combined in some way
(by summation, concatenation or some other operations) to get the document
vector x.

The main benefit of the semantic representations is their generalization
power: if some words provide similar clues, it is worthwhile to provide a
representation that is able to capture these similarities. For example, the
word dog may be observed many times during training, and the word cat
few times. If each word has its own dimension, occurrences of dog will not
tell anything about the occurrences of cat. However, in the semantic vectors
representation the learned vector for dog may be similar to the learned vector
for cat, allowing the model to share statistical strength between the two
events.

This work will focus on the use of word embedding vectors as inputs
for text classification. Neural network models will be used to obtain word
vectors. In Chapter 3 the difference between pre-trained word embedding
vectors and automatically learned embedding vectors will be discussed and
then two of the most popular word embedding algorithms (Word2Vec and
ELMo) will be presented.

1.5 Deep Learning models

As anticipated in the previous sections, this work will focus on Deep Learning
models for text classification. Deep Learning is a re-branded name for neu-
ral networks, a family of learning techniques which can be characterized as
learning of parametrized differentiable mathematical functions. The name
deep learning stems from the fact that many layers of these differentiable
functions are often chained together.

While all of machine learning can be characterized as learning to make
predictions based on past observations, deep learning approaches work by
learning not only to predict but also to correctly represent the data, such
that they are suitable for predictions. We have seen in Section 1.4 what
embedding vectors are and what they are used for in the text classification
procedure. A major component in neural networks for language processing is
the use of the embedding layer, a mapping of discrete symbols to continuous
vectors in a relatively low dimensional space. The representation of words
as vectors can be the objective of the neural network training (in case of
Language Modeling) or it can be learned by the network during the training
process of NLP applications (for example in the case of Text Classification).
In the latter case, going up the hierarchy, the network also learns how to



1.5. DEEP LEARNING MODELS 17

combine word vectors in a way that is useful for prediction.
There are three major kinds of neural network architectures that can be

combined in various ways: feed-forward networks, convolutional networks
and recurrent networks. Feed-forward networks, in particular Multi-Layer
Perceptrons (MLPs), allow to work with fixed sized inputs, or with variable
length inputs in which we can disregard the order of the elements. Convo-
lutional Neural Networks (CNNs) are specialized architectures that excel at
extracting local patterns in the data: they are capable of extracting mean-
ingful local patterns that are sensitive to word order, regardless of where they
appear in the input. These models work very well for identifying indicative
phrases or idioms up to a fixed length in long sentences or documents. Re-
current Neural Networks (RNNs) are specialized models for sequential data.
In particular, gated architectures, like Long Short Term Memory Networks,
are a family of effective neural network models when working with sequences.
These are network components that take as input a sequence of items, and
produce a fixed size vector that summarizes that sequence. Convolutional
and Recurrent networks are rarely used as standalone components, and their
power is in being trainable components that can be fed into other network
components, and trained to work in tandem with them. For example, the
output of a recurrent network can be fed into a feed-forward network that
will try to predict some value. In this case, the recurrent network is used as
an input-transformer that is trained to produce informative representations
for the feed-forward network that will operate on top of it.

In Chapter 2 the three main neural network architectures (MLPs, CNNs
and RNNs) will be explained as well as their possible application for text
classification. In Chapter 3 the problem of word embedding vectors gen-
eration will be discussed and in particular it will introduce the concept of
language modeling, a task that can be used to compute pre-trained word
representations.
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Chapter 2

Deep Learning models for NLP

Neural Networks, the main focus of this work, belong to the class of super-
vised machine learning algorithms. The main definitions and mathematical
concepts of supervised classification will be presented in Section 2.1. In or-
der to construct a proper designed classifier, a dataset1 should first be split
into 3 different sets which are called training set, validation set and test set.
Then, an optimization algorithm using the training set observations will find
the proper values of the classifier parameters that minimize a loss function.
Finally, using proper classification metrics, the classifier should be evaluated
using the validation and the test sets.

After presenting these concepts, Section 2.2 will present the Feed Forward
Neural Network models, which are the most simple yet very powerful neural
network architectures. The introduction of nonlinear activation functions and
multiple layers of learned representation is crucial for the good performance
of these models for most tasks.

Convolutional Neural Networks (CNNs) are popular models for computer
vision applications and in recent years they have been applied to NLP tasks
with good success. CNN networks, like RNN ones (as we will see later) are
not used as standalone components but as components of larger networks
that serve as feature extractors. Using the convolution and the pooling op-
erations, convolutional layers look at groups of words (ngrams) in a text and
learn which word groups can be informative for the task, regardless of their
position in the text. Two different types of Convolutional Neural Network
architectures will be discussed in Section 2.3.

Recurrent Neural Networks (RNNs) are popular neural network models
when working with sequences. They extract features from arbitrarily sized
sequential inputs. RNNs are defined recursively and they can extract features

1In this work we assume that a proper dataset in given to the algorithm designer; we
do not deal with data collection methods.
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by looking the sequence forward, backward or in both directions. Long-Short
Term Memory (LSTM) networks use the gate operation which make them
very effective for solving machine learning problems. RNNs are presented in
depth in Section 2.4.

The reference book for figures, terminology and mathematical notation
in this Chapter is Goldberg (2017), whenever not specified otherwise.

2.1 Supervised classification

The essence of supervised machine learning is the creation of mechanisms
that can look at examples and produce generalization. More concretely,
it means that the ultimate scope is to design an algorithm whose input is
a set of labeled examples (e.g. a set of documents) and its output is a
function that can automatically label a given instance (e.g. assign it the
proper classes). When we choose the machine learning algorithm (Random
Forest, Support Vector Machines or Neural Networks) we restrict ourselves
to search over specific families of functions, rather than all possible functions.
Such families of functions are called hypothesis classes while the form of the
solution is called inductive bias.

The most common and simple hypothesis class is that of high-dimensional
linear functions, i.e., functions of the form:

f(x) = x · W + b (2.1)

x ∈ Rdin , W ∈ Rdin×dout , b ∈ Rdout .

The vector x is the input to the function, while the matrix W and the
vector b are the parameters. The goal of the learner to perform an optimiza-
tion search over the space of functions is reduced to a search over the space
of parameters. It is common to refer to parameters of the function as Θ and
to include them in the function definition: f(x ; Θ) = x · W + b.

In this Chapter the deep learning models presented will be applied to solve
a classification task. As we said in Chapter 1, a text classification problem
can be seen as a binary classification or as a multi-class classification problem.
In the latter case texts can have a single label or multiple labels (multi-label
classification). We are going to restrict to the binary case, since it is the most
simple one. If necessary, we are going to explain the different methodology
when dealing with multi-class or multi-label classification.
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Train, validation and test split

Before introducing the math behind supervised classification, we want to
focus on how to use the dataset available in order to produce a function f(x)
which is able to map inputs to outputs correctly and also to generalize well to
unseen data. A possible solution is to split the training set into two subsets,
say in a 80%/20% split, train a model on the larger subset (the training set)
and test its performances on the smaller set (the test set). Some care must
be taken when performing the split, to ensure that the two sets maintain the
original dataset distribution (especially in terms of the labels). This split
works well if we want to train a single model and assess its quality. However,
if we want to train several models, compare their quality and select the best
one, the two-way split approach is insufficient. When using a single test
set we cannot be sure if the chosen setting of the final classifier are good in
general, or just good for the test set examples. For this reason the standard
methodology in machine learning is to use a three-way split of the data into
training, validation and test set. All the experiments, tweaks, error analysis
and model selection should be based on the validation set. Then, a single run
of the final model over the test set will give a good estimate on its expected
quality on unseen examples.

The Classification problem

In binary classification problems we have a single output for each instance in
the dataset. When using a linear classifier, we can use a restricted version
of Equation 2.1 in which the weight matrix is the one-dimensional vector w,
dout = 1 and the bias vector is a scalar b:

f(x) = x · w + b (2.2)

x ∈ Rdin , w ∈ Rdin , b ∈ R.
The output f(x) is in the range [−∞,+∞]. In order to use it for the

binary classification we need to map it to the range [0, 1]. The most used
map is the sigmoid function, which is defined as:

σ(x) =
1

1 + e−x
. (2.3)

Figure 2.2 shows a plot of the sigmoid function. It is monotonically
increasing and maps values to the range [0, 1], with 0 being mapped to 1

2
.

When using a suitable loss function, the value of σ(x) can be interpreted as
an estimate of the probability that the document with the feature vector x
belongs to the considered class.
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Figure 2.1: The sigmoid function σ(x)

When we have multiple classes, in the case of multi-label classification we
can train a model that solves multiple binary classification problems at once.
This means that we have an output f(x) ∈ Rdout which is a vector of the
same dimension as the number of labels. We can apply to the output f(x)
the element-wise sigmoid function in order to estimate the probabilities that
a document belongs to each of the classes. Instead, when we have a multi-
class classification problem we want the sum of the estimated probabilities
to be exactly 1, since instances can only have one correct label. In this case
we compute the element-wise softmax function which is a slightly modified
version of the sigmoid function that fits this criteria:

softmax(xi) =
exi∑
j e

xj
. (2.4)

The details on how the training procedure is carried out in machine learn-
ing applications will be explained in the Appendix Section A.1.

Classification metrics

After training the model and predicting the conditional probabilities of the
validation set instances, to measure the model performances we need to con-
vert prediction values p̂i from the interval (0, 1) to the set {0, 1}, i.e. assign
the document to the class i or not, for each i. In case of multi-class classifica-
tion problems the conversion method is pretty straightforward; we assign to
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the document the class that has the greatest value of predicted probability:

ŷ = argmax
i

p̂i. (2.5)

For the binary classification and the multi-label classification problems
the most used choice is using a threshold strategy, with a threshold value
typically set to 0.5 . The prediction is set to 1 for each document in which
the predicted probability for the i-th class is above the threshold, otherwise
it is set to 0:

ŷi =

{
0, p̂i < 0.5

1, p̂i ≥ 0.5.
(2.6)

However this solution may not be very effective, in particular when we
have a very unbalanced distribution between positive and negative true labels
for a specific category. This is particularly valid for multi-label classification
problems with lots of classes. A different approach will be discussed in Chap-
ter 4.

For binary classification problems, the discrimination evaluation of the
best (optimal) solution during the model training can be defined based on
the confusion matrix shown in Table 2.1. The rows of the table represent the
predicted class, while the columns represent the actual class. From this con-
fusion matrix, tp and tn denote the number of positive and negative instances
that are correctly classified. Meanwhile, fp and fn denote the number of
misclassified negative instances and the number of misclassified positive in-
stances respectively. From Table 2.1 several commonly used metrics can be
generated.

Table 2.1: Confusion Matrix for Binary Classification
Actual Positive Class Actual Negative Class

Predicted Positive Class True Positive (tp) False Positive (fp)
Predicted Negative Class False Negative (fn) True Negative (tn)

The most popular classification metrics are Accuracy, Precision, Recall
and F1− Score (F1). The definitions of these metrics are reported below:

Accuracy =
tp+ tn

tp+ fp+ fn+ tn
(2.7)

Precision =
tp

tp+ fp
(2.8)
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Recall =
tp

tp+ fn
(2.9)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(2.10)

For multi-class and multi-label problems, the metrics presented above can
be extended by taking the average of the metric values over the classes.

Despite the fact that accuracy is the most used metric in classification
problems, it is not the most appropriate one. The reason is that when we
have a very unbalanced dataset and we are not able to charaterize very well
all the classes, the value of accuracy does not tell this information. Instead
this job is done by precision and recall focus on the positive observations
and thus they are able to tell us if the model is able to character well the
positive class.

2.2 Feed Forward architecture

Neural networks were inspired by the brain’s computational mechanism,
which consists of computational units called neurons. In the metaphor be-
tween the brain and artificial neural networks, a neuron is a computational
unit that has scalar inputs, some output and an associate weight. Figure 2.2
shows an example of a neuron.

Neurons are connected to each other, forming a network: the output of a
neuron may feed into the inputs of one or more neurons. If the weights are set
correctly, a neural network with enough neurons and a nonlinear activation
function can approximate a very wide range of mathematical functions.

A typical feed-forward neural network is shown in Figure 2.3. Each circle
is a neuron, with incoming arrows being the neuron’s inputs and outgoing
arrows being the neuron’s outputs. Neurons are arranged in layers reflecting
the flow of information. The bottom layer has no incoming arrow and it
is called the input of the network. The top-most layer has no outgoing
arrows and it is the output of the network. The other layers are considered
”hidden”. Inside the middle layers circle the sigmoid shape represents the
nonlinear activation function. In a network with different types of layers, the
one in which each neuron is connected to all of the neurons in the next layers
is called a fully connected layer.

From a mathematical point of view, a feed-forward network is simply a
stack of linear models separated by nonlinear functions. The simplest neural
network is called Perceptron. It is simply a linear model:
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Figure 2.2: A single neuron with four inputs

Figure 2.3: A Feed-forward neural network with two hidden layers

NNPerceptron(x) = xW + b (2.11)
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x ∈ Rdin W ∈ Rdin×dout b ∈ Rdout .

In order to go beyond linear functions, we introduce a nonlinear hidden
layer resulting in the Multi Layer Perceptron with one hidden layer(MLP1):

NNMLP1(x) = g(xW1 + b1)W2 + b2 (2.12)

x ∈ Rdin W1 ∈ Rdin×d1 b1 ∈ Rd1 W2 ∈ Rd1×d2 b2 ∈ Rd2

Here W1 and b1 are a matrix and a bias term for the first linear transfor-
mation of the input, g is an element-wise applied nonlinear function and W2

and b2 are the matrix and the bias term for a second linear transformation.
The vector resulting from each linear transformation is referred to as a

layer. The outer-most linear transformation results in the output layer and
the other linear transformations result in the hidden layers. The matrices
and the bias terms that define the linear transformations are the parameters
Θ of the network. The nonlinearity of the network is given by the functions
g and this is crucial to represent complex functions.

We refer to the Appendix Section A.2 for some details on the parameter
optimization procedure in deep neural networks and on some techniques that
can be used to prevent overfitting.

2.3 Convolutional Neural Networks

Sometimes we are interested in making predictions based on ordered sets
of items. This section introduces the Convolutional Neural Network (CNN)
architecture, which is tailored for this problem. A convolutional neural net-
work is designed to identify indicative local predictors in a large structure,
and to combine them to produce a fixed size vector representation of the
structure, capturing the local aspects that are most informative for the pre-
diction task at hand. The convolutional architecture also allows to share
predictive behaviors between ngrams that share similar components. The
CNN is essentially a feature-extracting architecture. It is meant to be in-
tegrated into a larger network and to work in tandem with other network
components in order to produce an end result.

Basic convolutional architecture

The main idea behind the convolutional architecture for language tasks is to
apply a nonlinear function over each instantiation of a k-word slicing window
over the sentence. This function (also called filter) transforms a window
of k word vectors into a scalar value. Several such filters can be applied,
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Figure 2.4: Illustration of a CNN architecture with three filter region sizes: 2,
3 and 4, each of which has 2 filters. The final vector is fed to a fully-connected
output layer of size 2.

resulting in a l -dimensional vector that captures important properties of
the words in the window. Then, a pooling operation is used to combine
the vectors resulting from the windows into a single l-dimensional vector.
The intention is to focus on the most important features in the sentence,
regarding on their location, while the pooling operation zooms in on the
important indicators. The resulting vector is fed into a network that is
used for predictions. During the training process the parameters of the filter
function are optimized using gradient-based methods to highlight the aspects
of the data that are important for the task the network is trained for. When
the sliding window of size k is run over a sequence, the filter function learns
to identify informative k-grams. More details on the convolution and pooling
layers are given in the Appendix Section A.3.

Multiple filter size architecture

For most computer vision tasks, multiple layers of Convolution and Pooling
can be used, in order to capture different kinds of features in the different
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layers. In NLP applications, the features we are interest in are the meanings
of the k-grams in the sentences, independently of their position. This in-
formation can be captured using a single convolutional layer, by setting the
proper value of k. One can set k to be very little and use multiple layers.
In the case of k = 2 the first layer learns features about bigrams, the second
about trigrams and so on and so forth. This kind of architecture requires
good knowledge by the neural network designer, and it may capture useless
information since trigrams or four grams could be useless for the task at
hand.

Zhang and Wallace (2015) proposed a CNN architecture which is more
efficient than the standard one and it allows to specify the multiple filter
sizes. In the same layer m filters of size k are computed. If r different filter
sizes are specified, m filters are computed for each value of k. Then, the
max pooling operation is applied r times to get r vectors of size l. Together,
the outputs generated from each filter map can be concatenated into a fixed
length, top-level feature vector that can be fed to a MLP for further layers of
learned representations. Figure 2.4 shows an example of such architecture.

2.4 Recurrent Neural Networks

When dealing with language data, it is very common to work with sequences,
such as words (sequences of letters) and sentences (sequences of words). CNN
representations are useful as they offer some sensitivity to word order, but
their order sensitivity is restricted to mostly local patterns, and disregard
the order of patterns that are far apart in the sequences.

Recurrent Neural Networks allow representing arbitrarily sized sequential
inputs in fixed-size vectors, while paying attention to the structured prop-
erties of the inputs. RNNs, particularly the ones with gated architectures
such as the LSTMs, are very powerful at capturing statistical regularities in
sequential inputs.

RNN abstraction

Call xi:j the sequence of vectors xi, ...,xj. The RNN is a function that takes
as input an arbitrary length ordered sequence of n din-dimensional vectors
x1, ...,xn and returns as output a single dout-dimensional vector yn:

yn = RNN(x1:n) (2.13)

This implicitly defines an output vector yi for each prefix x1:i of the
sequence x1:n. The output vector is fed to other neural network layers for
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Figure 2.5: Graphical representation of a RNN(recursive)

further predictions. A RNN is defined recursively, by means of a function R
taking as input a state vector si−1 and an input vector xi and returning a
new state vector si. The state vector si is then mapped to an output vector
yi using a deterministic function O(·). The base of the recursion is an initial
state vector s0 which we can assume to be the the zero vector. The RNN
definition becomes:

yn = RNN(x1:n; s0)

yi = O(si)

si = R(si−1,xi)

(2.14)

The functions R and O are the same across the sequence positions, but
the RNN keeps track of the states of computation through the state vector si.
Graphically the RNN has been traditionally presented as in Figure 2.5. The
representation follows the recursive definition and it is correct for arbitrarily
long sequences. However, for a finite sized input sequence (all input sequences
we deal with are finite) one can unroll the recursion, resulting in the structure
shown in Figure 2.6.

It is easy to see that an unrolled RNN is just a very deep neural network
in which the same parameters are shared across many parts of the compu-
tation, with an additional input added at various layers. In literature the
backpropagation applied to a recursive network like RNN is referred to as
backpropagation through time (BPTT) (Werbos, 1990). The RNN is a fea-
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Figure 2.6: Graphical representation of a RNN(unrolled)

ture detector much like the CNN. It encodes properties of the input sequence
that are useful for predictions.

RNN models

Bidirectional RNN

An useful elaboration of an RNN is a bidirectional-RNN, commonly referred
as biRNN (Schuster and Paliwal, 1997). When using a word embedding
representation for a document set, a RNN allows to compute a function
of the i-th word based on the words x1:i up to including it. However the
following words xi+1:n may be also useful to prediction.

Consider an input sequence xi:n. The biRNN works by maintaining two
separate states sfi and sbi for each input position i. The forward state sfi
is based on x1:i, while the backward state sbi is based on xn:i. The forward
and backward states are generated by two different RNNs. The first RNN
(Rf , Of ) reads the input sequence x1:n as it is, while the second RNN (Rb, Ob)
reads the input sequence in reverse. The state representation si is then
composed of both states. The output of the function biRNN corresponding
to the i-th word is the concatenation of two RNNs, one reading the sequence
from the beginning and the other one reading it from the end:

biRNN(xi:n, i) = yi = [RNN f (x1:i);RNN
b(xn:i)]. (2.15)

The bidirectional RNN is useful as a general-purpose trainable feature-
extracting component that can be used whenever a window around a given
word is required.
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Multi-layer RNN

RNNs can be stacked in layers, forming a grid (El Hihi and Bengio, 1995).
While it is not theoretically clear what is the additional power gained by the
deeper architecture, it was observed empirically that deep RNNs work better
than shallower ones on some tasks.

Concrete RNN architectures

In Equation 2.14 the functions R and O are left generic. Every RNN archi-
tecture has its specific definition of R and O.

Simple RNN

The simplest RNN model that is sensitive to the ordering of the elements in
the sequence is known as an Elman Network or Simple-RNN (Elman, 1990).
It takes the form:

si = RSRNN(xi, si−1) = g(si−1W
s + xiW

x + b)

yi = OSRNN(si) = si.
(2.16)

The state si−1 and the input xi are linearly transformed, the results are
added together with a bias term and then passed through a nonlinear ac-
tivation function g. The output at position i is the same as the hidden
state in that position. The notation in Equation 2.16 can be simplified by
concatenating the vectors si−1 and xi using only one matrix W.

The SRNN is hard to train effectively because of the vanishing gradient
problem (Pascanu et al., 2013). Gradients in later steps diminish quickly in
the back-propagation process, and do not reach earlier input signals, making
it hard for the S-RNN to capture long range dependencies. Gating-based
architectures such as LSTM (Hochreiter and Schmidhuber, 1997) and GRU
(Cho et al., 2014) are designed to solve this deficiency.

LSTM

The building block of LSTM and GRU architectures are gate vectors. These
vectors g are parameters of the RNN which are passed to a sigmoid activation
function and thus they can have only elements in the interval (0, 1). After
that, an element-wise multiplication between σ(g) and a memory vector x is
performed. This allows the RNN to select which information in the vector x
to keep, by setting a value in the vector σ(g) near 1, and which information to
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disregard, by setting a value in the vector σ(g) near 0. This gating mechanism
allows to solve the vanishing problem.

The Long-Short-Term Memory (LSTM) architecture is the first to intro-
duce gating mechanism. Mathematically, the LSTM architecture is defined
as:

sj = RLSTM(sj−1;hj) = [cj;hj]

cj = f� cj−1 + i� z

hj = o� tanh(cj)

yj = OLSTM(sj) = hj

(2.17)

The state at time j is composed of two vectors, cj and hj, where cj
is the memory component and hj is the hidden state component. There
are three gates, called the input, forget and output gates, computed by
linear combinations of the current input and the previous state. An update
candidate z is also computed as a linear combinations of the current input.
The memory cj is updated combining the forget gate, which controls how
much of the previous memory to keep, and the input gate, which controls how
much of the proposed update to keep. The value of hj is determined based
on the content of the memory cj, passed through a tanh nonlinearity and
controlled by the output gate. The gating mechanisms allow for gradients
related to the memory part cj to stay high across very long time ranges.

LSTMs are currently the most successful type of RNN architecture, and
they are responsible for many state-of-the-art sequence modeling results.
Their main competitor is the GRU. In the NLP applications we will see,
LSTM will be used as RNN models, but in practice they are two valid alter-
natives.



Chapter 3

Word embedding strategies

A main component of the neural network approach in Natural Language
Processing is the use of word embedding vectors. Embedding means rep-
resenting each word as a vector in a low dimensional space. These vector
representations are used to perform various NLP tasks (text classification for
example).

The word embedding representations can be included in the neural net-
work parameters of a given task and tuned by the network itself. The alter-
native is using pre-trained word vectors to map each word in the training set
to its corresponding representation. After introducing the word embedding
problem, in Section 3.1 we will discuss and compare these two approaches.

Word representations can be learned as a byproduct of the language mod-
eling task. Different models have been developed in recent years to solve this
task. We will focus on neural language models, i.e. models using nonlinear
neural networks. In Section 3.2 we will go deeply into the language modeling
problem and then we will focus on one of the most famous approach, the
Word2Vec algorithm.

The most recent trend in language modeling is the development of con-
textual word embedding algorithms, which are commonly called Generalized
Language Models. ELMo is one of the first generalized language model to
be developed. Convolutional and LSTM layers are combined in the ELMo
architecture in such way that the learned embedding vectors exploit both
sub-word and sentence-level information. In Section 3.3 we will go deeply on
the architecture of ELMo and then analyze some of its characteristics, like
the treatment of out-of-vocabulary tokens, its use for supervised NLP tasks
and the information that is captured by its layer representations.

The reference book for this Chapter is Goldberg (2017), whenever not
specified otherwise.
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3.1 The word embedding problem

The goal of the word embedding problem is to produce a mathematical func-
tion that is capable of mapping in a meaningful and useful way symbolic
categorical features (such as words) to a d-dimensional feature vector for
some d. The number of dimensions allocated for each word is not a fixed
parameter. When training word vectors usually the data scientist experi-
ments a few different sizes and chooses the one that ensures a good trade-off
between speed and task performance. The set of symbols for which we can
associate an embedding vector is called vocabulary. This vocabulary is usu-
ally based on the training set, or, if we use pre-trained embedding vectors,
on the training corpus of the pre-trained model. The vocabulary usually in-
cludes a special symbol representing out-of-vocabulary (OOV) words in order
to assign them a special vector.

As we briefly mentioned in Section 1.4 we want to produce word vectors
that have some desirable properties. The most important property is their
generalization power: if a sentence has never been seen by the task model
during training, its meaning should be inferred by the combination of its
word embedding vectors. As we will see later, pre-trained embedding vectors
should have properties that make them suitable for the use in several tasks.

Embedding layers

When enough supervised training data are available, one can just treat the
embedding feature vectors the same as the other parameters: initialize the
vectors to random values and let the network training procedure tune them
into ”good” vectors. The mapping from a symbolic feature value (the i-th
word) to a d-dimensional vector is performed by an embedding layer (also
called lookup layer). The parameters in an embedding layer are simply the
entries of the matrix E ∈ R|vocab|×d, where each row corresponds to a different
word in the vocabulary. The lookup operation is simply indexing: the vector
vi corresponding to the i-th entry in the vocabulary is mapped to the i-th
row of the matrix E.

Pre-trained embedding vectors

The common case is that we need to perform a supervised task without large
enough amounts of annotated data. In such case, we resort to unsupervised
auxiliary tasks, which can be trained on huge amounts of text.

The key idea behind the unsupervised approaches is that one would like
the embedding vectors of similar words to have similar vectors. The current
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approaches derive from the distributional hypothesis (Harris, 1954), stating
that words are similar if they appear in similar contexts. The different meth-
ods all create supervised training instances in which the goal is to either
predict the word from its context or predict the context from the word.

An important benefit of training word embedding vectors on large amounts
of unannotated data is that it provides semantic representations for words
that do not appear in the supervised training set. Ideally, the representations
for these words will be similar to those of related words that do appear in
the training set, allowing the model to generalize better on unseen events.
Thus it is desired that the similarity between word vectors learned by the
unsupervised algorithm captures the same aspect of similarity that are useful
for the supervised task.

In the neural network approach, where the community has a tradition of
thinking in terms of distributed representations (Hinton et al., 1986), each
entity is represented as a vector and the meaning of the entity and its relations
with other entities are captured by the similarities between vectors. In the
context of language processing it means that words and sentences are mapped
to a shared low dimensional space. The word vectors are built so that each
dimension is not interpretable, and specific dimensions do not necessarily
correspond to specific concepts. The meaning of the word will be captured
by its relation to other words and the values in their vector.

In the following sections of this chapter we will see two examples of pre-
trained word embedding algorithms: the Word2Vec family of algorithms
(Mikolov et al., 2013b,a) and the ELMo (Peters et al., 2018) one. As we
will see pre-trained word embedding algorithms create word vectors as a
byproduct of the language model task training.

Word embedding fine-tuning

When using pre-trained word embedding vectors, we have to choose if we
want to exploit the fine-tuning operation for the word vectors. This consists
in initializing the embedding matrix E with the pre-trained vectors, and
then change it with the rest of the network. While this works well, it has the
potential undesirable effecto of changing the representations for words that
appear in the training data, but not for other words that used to be close
to them in the original pre-trained matrix E. An alternative is to leave the
pre-trained vectors E fixed. This keeps the generalization, but prevents the
model from adapting the representations for the given task.
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3.2 Language Modeling

Language modeling (LM) is the use of various statistical and probabilistic
techniques to determine the probability of a given sequence of words occur-
ring in a sentence. Besides assigning a probability to each sequence of words,
the language model also assigns a probability for the likelihood of a given
word (or sequence of words) to belong in a given context.

Even without achieving human-level performance, language modeling is a
crucial component in real-word applications such as machine-translation and
automatic speech recognition, where the system produces several translation
or transcription hypotheses, which are then scored by a language model.

Formally, the task of language modeling is to assign a probability to any
sequence of words w1, ..., wn. Using the chain-rule of probability, it can be
written as:

P (w1, ..., wn) = P (w1)P (w2|w1)P (w3|w2, w1)...P (wn|w1, ...wn−1). (3.1)

for the unsupervised word embedding computation task.This is a sequence
of word-prediction tasks where each word is predicted conditioning on the
preceding words. A language model based on neural networks was popular-
ized by Bengio et al. (2003). More details on this model can be found at the
Appendix Section B.1. A neural language model can be trained in order to
obtain semantic word representations as a byproduct of training. Basing on
this property different algorithms have been built for the unsupervised word
embedding computation task.

Word2Vec

Several algorithms have been developed in recent years for the unsupervised
word embedding computation task inspired by language modeling. In par-
ticular the algorithm of Collobert and Weston (Collobert and Weston, 2008)
and the Word2Vec family of algorithms (Mikolov et al., 2013b,a) are designed
to perform the same side effects of language modeling, using a more efficient
and more flexible framework. The GloVe algorithm by Pennington et al.
(2014) follows a similar objective.

The Word2Vec family of algorithms differ from a neural language model
in the network training objective. The design of the neural language model
architecture is driven by the language modeling task, which poses two im-
portant requirements: the need to produce a probability distribution over
words, and the need to condition on contexts that can be combined to pro-
duce sentence-level probability estimates. If we only care about the resulting
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representations, both constraints can be released, as was done in the model
by Collobert and Weston. These changes are also exploited in the Word2Vec
family of algorithms. The first change introduced was changing the context
of a word from the preceding kgram to a word window surrounding it. This
implies computing P (w3|w1, w2, w4, w5) instead of P (w5|w1, w2, w3, w4). Sec-
ondly, instead of having as output a probability distribution of words given
some context, the model just attempts to assign a score to each word, such
that the correct word scores above incorrect ones.

The widely popular Word2Vec algorithm was developed by Tomáš Mikolov
and colleagues over a series of papers (Mikolov et al., 2013b,a). It starts with
a neural language model and modifies it to produce faster results.

Let w be a target word and c1, ..ck an ordered list of context items. The
word embedding vectors are computed as outputs of a fully connected neural
network with one hidden layer. After that, the model computes a score
s(w; c1, ..ck) of a word-context pair. The training objective is to maximize
the likelihood of the correct word-context pairs. The two context definitions
(CBOW and Skip-Gram) lead to different definitions of the word-context
scoring function. The network can be optimized using two optimization
objectives (Negative-Sampling and Hierarchical Softmax). More details on
the two context definitions and on the two optimization objectives can be
found in the Appendix Section B.2.

The Word2Vec algorithms are very effective in practice and are highly
scalable, allowing to train word representations with very large vocabularies
over bilions of words of text in matter of hours, with very modest memory
requirements.

3.3 ELMo

Contextual word representations

The quality of word representations is generally gauged by their ability to en-
code syntactical information and handle polysemic behavior (or word senses).
Recent approaches in this area encode such information into its embedding
by leveraging the context. These methods, often called Generalized Language
Models (GLMs), provide deeper networks that calculate word representations
as a function of its context.

Consider the two sentences: ”The bank will not accept cash on Sunday”
and ”The river overflowed the bank”. The word senses of bank are different
in these two sentences because the two contexts are different. Hence, one
might want two different vectors representing the word bank in the two sen-
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tences. The new class of algorithms diverges from the concept of global word
representations and proposes contextual word embedding representations.

Embedding from Language Model (ELMo), developed by Peters et al.
(2018) is one such method that provides deep contextual embedding vectors.
It provides an unsupervised pre-trained model to compute word representa-
tions as a function of the entire input sentence. These representations can
be fine-tuned for a given supervised NLP task. Other models with differ-
ent architectures have been developed with the same objective, such as the
OpenAI-GPT (Radford, 2018) and BERT (Devlin et al., 2019) which adapt
and utilize the Transformer model (Vaswani et al., 2017).

ELMo is a deep neural network model that computes multiple layer of
representations for each word. We will now see how it computes a context-
independent representation for each word.

Character level convolution

The first layer of the ELMo model is the output of a character-level con-
volutional neural network (CharCNN). In Section 2.3 we saw the CNN ar-
chitecture and we saw that using temporal convolution in NLP tasks we can
learn to capture the local aspects that are most informative for the prediction
task at hand. The CharCNN model used in ELMo to compute the context-
independent representations is the same presented by Kim et al. (2016).

Let C be the vocabulary of characters, d the dimension of the character
embedding vectors and suppose that the token tk is made up of a sequence of
characters c1, ..., cl, where l is the length of the token tk. Then the character
level representation of k is given by the matrix Ck ∈ Rd×C , where the j-
th column corresponds to the character embedding for cj. Using the same
logic as the architecture proposed by Zhang and Wallace (2015), already
described in Section 2.3, the convolution and the pooling operation is used
to compute multiple feature maps, one for each width of the convolutional
kernel. An example of a CharCNN can be seen in Figure 3.1. The output of
the CharCNN is fed to a highway network, recently proposed by Srivastava
et al. (2015). Similar to the memory cells in LSTM networks, highway layers
are fully connected layers modified in order to carry some dimensions of the
input directly to the output.

Deriving representations of words from the representation of their char-
acters is motivated by the unknown word problem, which is the problem of
assigning an embedding to out-of-vocabulary (OOV) words. Working on the
level of characters alleviates this problem to a large extent, as the vocabulary
of possible characters is much smaller than the vocabulary of possible words.
As pointed by Kim et al. (2016), the word representations learned after the
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Figure 3.1: The convolution neural network for extracting character-level
representations of words

CharCNN and the highway layer seem to enable the encoding of semantic
features that are not discernable from orthography alone. The learned rep-
resentations of OOV words are similar to words with similar meaning and
the model is also able to correct misspelled words.

Bidirectional language model

The mechanism of ELMo is based on the representations obtained from a
bidirectional Language Model. A bidirectional Language Model (biLM) con-
sists of two language models: a forward LM and a backward LM. Both LM
take as input a context independent representation xLM

k and passes it through
L layers of a LSTM network. Each of these representations, being hidden
representations of recurrent neural networks, is context-dependent.

In the j-th layer, the forward LM outputs at each position k a representa-

tion
−→
h

LM

k,j , which is a representation of the token tk given the k− 1 previous
tokens. Similarly, at the same position the backward LM outputs a represen-

tation
←−
h

LM

k,j that represents the token tk given the following N − k tokens.
The output of the last biLSTM layer is used to predict the token tk, with
a Softmax activation function computed on both directions. The forward
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Figure 3.2: The biLSTM base model of ELMo.

and backward LMs share the CharCNN embedding parameters, Θe, and the
Softmax parameters, Θs. The training objective is to maximize jointly the
log-likelihood of the forward and the backward directions:

L =
N∑
k=1

log p(tk|t1, ..., tk−1; Θe,
−→
Θ LSTM,Θs)+

log p(tk|tk+1, ..., tN ; Θe,
←−
Θ LSTM,Θs).

(3.2)

The biLM architecture is basically a bidirectional LSTM, where the for-
ward and the backward representations are treated as two separate language
models and trained jointly. In Figure 3.2 we can see a graphical representa-
tion of the biLSTM architecture. For each token tk the ELMo biLM computes
a set of 2L+ 1 representations Rk:

Rk = {xLM
k ,
−→
h

LM

k,j ,
←−
h

LM

k,j |j = 1, ..., L}
= {hLM

k,j |j = 0, .., L},
(3.3)

where hLM
k,0 is the context independent representation and hLM

k,j = [
−→
h

LM

k,j ;
←−
h

LM

k,j ]

for each biLSTM layer. As we will see later, each hLM
k,j representation cap-

tures different information and, depending on the task, we can find to be
more useful either the low-level or the high-level representations.
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Use ELMo representations in NLP tasks

ELMo is a task specific combination of the intermediate layer representations
in the biLM. For inclusion in a supervised task model, ELMo collapses all
layers in Rk into a single vector ELMotask

k , which is a task specific weighting
of the biLM layers:

ELMotask
k = γtask

L∑
j=0

staskj hLM
k,j . (3.4)

If we want to use a pre-trained biLM in a supervised architecture built to
solve a target NLP task, we need to proceed in two steps. First, we simply run
the biLM and record all of the layer representations for each word. Then, we
let the supervised model learn the linear combination of these representations
which optimizes the performances on the given task. Alternatively, as the
authors did, the ELMo vector can be add to an existing NLP model1.

The model architecture published by Peters et al. (2018) uses L = 2
biLSTM layers. As a result, the biLM provides three layers of representations
for each input token, including those outside the training set due to the purely
character input.

The ELMo authors showed that adding the biLM linear combination to a
state-of-the-art supervised model improves the performances for six different
NLP tasks. This means that the biLM’s contextual representations must
encode information generally useful for NLP tasks that is not captured in
other types of word vectors. Moreover, different layers in the biLM represent
different types of information: for some task the performance values were
higher when including only the first biLM layer, while for some other task
the best ones were obtained including only the top biLM layer. Therefore,
as the authors suggest, we should use all biLM layers to get the highest
performance in supervised tasks.

The presented approach for contextualized word embedding representa-
tions, as well as other approaches (i.e. BERT, OpenAI-GPT), promise high
quality representations for words. The pre-trained deep language models
also provide an advantage for supervised tasks in the form of transfer learn-
ing. Whether this will become a standard approach in the NLP community
remains to be seen in the future.

1The procedure of including the biLM to a supervised model depends both on the task
and on the model. In this work we do not deal with how this inclusion is done.
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Chapter 4

Experiments

After describing the theory behind text classification and the neural network
approach applied to the text classification and language modeling problems,
in this Chapter a real-world application of the above-mentioned methods will
be presented. The Python programming language has been used to carry out
the whole project.

In Section 4.1 the dataset description will be presented, along with the
task we want to solve. In Section 4.2 the pre-processing procedure, namely
the sequence of algorithms needed to prepare and transform the data (also
named pre-processing pipeline) will be presented. Afterwards the training
protocol will be described, as explained in Chapter 2, along with the models
implemented to solve the task.

In Section 4.3 we will see the results of the data processing and training
procedures and the performances of the models on the validation set. In
Section 4.4 these results will be discussed in detail.

4.1 Dataset properties

Dataset description

The dataset used in this work is a subset of the CCNL italian contracts. The
texts can be found online at the link https://www.cnel.it/Archivio-Contratti/

Contrattazione-Nazionale/Analisi-Avanzate. In this database, contracts
are indexed basing on different variables:

• the category of workers they deal with (farmers, mechanics, public
administrators, ecc...);

• their current state, i.e. if they are currently valid or if they are expired;
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https://www.cnel.it/Archivio-Contratti/Contrattazione-Nazionale/Analisi-Avanzate
https://www.cnel.it/Archivio-Contratti/Contrattazione-Nazionale/Analisi-Avanzate
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• various dates: date of stipulation, dates of effectiveness, deadline date;

• type of deal (renewal deal, definitive text, ecc..);

• topic or topics they deal with (health protection, working hours, ecc...).

The variable we are interested is the topics which the contracts deal with.
Texts are divided in paragraphs, each of which deals with a different topic.
Topics are:

• AL, which stands for Ambiente Lavoro e tutela salute;

• CC, which stands for Contrattazione Collettiva;

• CR, which stands for Cessazione del Rapporto;

• CS, which stands for Costituzione del rapporto;

• GE, which stands for Gestione delle Eccedenze;

• LL, which stands for Luogo del Lavoro;

• MQ, which stands for Mansioni e Qualifiche;

• ND, which stands for Norme Disciplinari ;

• OD, which stands for Organizzazione del lavoro;

• OR, which stands for Orario;

• RS, which stands for Rapporti e diritti Sindacali ;

• SR, which stands for Sospensione del Rapporto;

• TE, which stands for Trattamento Economico;

• AA, which stands for Altre materie.

Task definition

At the end we will have a dataset of examples (xi,yi) being xi the prepro-
cessed text and yi a 14-dimensional vector such that each element yij is equal
to 1 if the i-th document belongs to the class j and 0 otherwise. The goal
is to train a classifier that estimates as well as possible for any text xi the
conditional probability that the text belongs to each of the 14 classes. The
same paragraph can have multiple labels, as we will see later, so the task at
hand is multi-label classification.
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4.2 Machine Learning pipeline

Pre-processing

As described in Section 1.3, different text pre-processing operations can
be performed. For this specific problem, the most suitable pre-processing
pipeline consists in the following steps:

• tokenization;

• lowercasing;

• stop words removal.

In the tokenization phase, strings of text are split into tokens. In this
phase, the pre-processing system, based on regular expressions, recognizes
different types of symbols: words, numbers, punctuation signs or special
symbols. Words are kept as they are while punctuation signs and special
symbols are removed, as they are useless. Numbers and sequence of numbers
are transformed into special placeholder tokens: every date is turned to the
token xxxdatexxx, every abbreviations of legislative decrees is turned to the
token xxxdlxxx and every other number is turned into the token xxxnumxxx.
The motivation behind this choice is to keep numbers, because they have a
meaning within the text. However the meaning of the text would not change
if the number changes.

The lowercasing phase follows the tokenization one. As stated previously,
it reduces sparsity but it can increase ambiguity. However, the training cor-
pus of a pre-trained model that needs a vocabulary (Word2vec in this case)
includes only lowercased tokens. This ambiguity can be solved in General-
ized Language Models like ELMo which offer the possibility of computing
contextual word embedding vectors.

Lastly, stop words are removed from the texts. The italian stop word
list used in this work has been featured by Bird et al. (2009) and can be
downloaded using the Python commands that can be found at the following
link: https://www.nltk.org/book/ch02.html.

Train, validation and test protocol

To split the dataset into the training, validation and test sets we need to take
into account the unbalanced label distribution and the possibility that the
texts can have multiple labels. Given the task at hand and the considerations
above, the implemented protocol can be described as follows:

https://www.nltk.org/book/ch02.html
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1. For each class 80% of its observations have been put in the training set
and the remaining 20% in the test set;

2. After assigning the observations to the training and the test sets, the
texts which are present both in the training and in the test set have
been removed from the test;

3. Then, the same splitting procedure is repeated in order to split the
training set in two separate sets: the final training set and the validation
set.

The second point in the procedure is necessary because observations may
have multiple labels and the same observation might be included in the train-
ing set when considering one of his labels and in the test set when consider-
ing another one. The fact that the training and the test (or the validation)
sets share some observations should be avoided because it would introduce
some bias and thus the model performances would be influenced by this bias.
However, removing the observations with multiple labels from the test (or
validation) set implies that the test (and the validation) sets have less ob-
servations with multiple labels with respect to the training set. The purpose
has been to train classification models which learn (as well as possible) to
classify observations that could have multiple labels.

Classification models

The text classifier has been implemented according to different model archi-
tectures. The general structure in which every model falls into is:

M(xi) = oi

E(xi) = Ei

F (Ei) = fi
MLP1(fi) = oi

p̂i = sigmoid(oi)

(4.1)

Every model M takes as input a sequence of tokens x belonging to the
i-th text and gives as outputs a vector o. First, tokens are embedded using
the embedding function E resulting in an embedding matrix E that contains
an embedding vector for each word in the text. Embedding vectors pass
through a feature extraction layer F which outputs a vector f. The last part
of the model M is a MLP layer which projects the vector f into the output
vector o which has the same shape as the label vector y. After that, each
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element of the output vector is transformed into the range (0, 1) using the
sigmoid function. Depending on the embedding and on the feature extraction
strategy, different models can be defined.

Embedding strategy

As for the embedding strategy, different approaches have been explored. As a
first approach, the automatic word embedding procedure described in Chap-
ter 3 has been implemented. The network learns appropriate word represen-
tations starting from randomly initialized embedding vectors. The advantage
of this approach consists in specializing the embedding vectors exclusively for
a specific task (text classification). This should avoid the creation of more
general purpose Word Embedding Models. On the other hand, automatic
embedding vectors might not be suitable for inference on text with wider
vocabularies.

The second approach consists in using a pre-trained Word2V ec repre-
sentation for each word. In this case, the embedding layer simply maps
every word that is present in the model vocabulary to its embedding rep-
resentation, and these representations remain fixed during the whole train-
ing process. The advantange of this approach consists in relying on a well-
established representation of the Italian language based on the Wikipedia cor-
pus. Moreover, Word2Vec provides word vectors which are task-independent,
re-usable and simpler than other Word Embedding approaches. This may
save training time and makes the hyperparameters optimization strategy eas-
ier. The model used for word embedding was provided by the Wikipedia2Vec
Python package and it is available at https://wikipedia2vec.github.io/
wikipedia2vec/. Such model provides both word and entity embedding
representations. Only word embedding vectors have been used in this work.

The third approach is the application of the ELMo embedding vectors.
As noted in Section 3.3, ELMo is a Generalized Language Model that pro-
vides pre-trained contextual representations in which the layer weighs are
task dependent, making them suitable for using the transfer learning tech-
nique. This approach leads in theory to more quality word embedding
representations comparing to the other considered alternatives. The pre-
trained Elmo model used is the one implemented by Schuster et al. (2019)
for the Italian language. Model weights and parameters, along with the in-
struction to use ELMo pre-trained representation can be found at https://
github.com/TalSchuster/CrossLingualContextualEmb. Both Word2Vec
and ELMo language models are trained using the Wikipedia Italian corpus.

https://wikipedia2vec.github.io/wikipedia2vec/
https://wikipedia2vec.github.io/wikipedia2vec/
https://github.com/TalSchuster/CrossLingualContextualEmb
https://github.com/TalSchuster/CrossLingualContextualEmb
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Feature extraction

For the feature extraction layer, the goal of this work is to compare the
performances of Convolutional Neural Networks and Recurrent Neural Net-
works. In particular, for the CNN the multiple filter size architecture has
been used in order to learn meaningful local patterns that give appropriate
feature representations for the paragraphs.

On the other hand, the Long-Short-Term Memory RNN has been used.
As we saw in Chapter 2, it is an appropriate model for representing sequences
and using this feature extractor layer may lead to better results in this specific
task.

The models

The combinations of an embedding layer and a feature extractor resulted in 5
different models. The names and the characteristics of the models are listed
below:

• The first model uses a trainable embedding layer with a CNN feature
extractor. This model is called TrainableCNN ;

• The second model uses a trainable embedding layer with a LSTM fea-
ture extractor. This model is called TrainableLSTM ;

• The third model uses the Word2Vec representations with a CNN feature
extractor. This model is called Word2V ecCNN ;

• The fourth model uses the Word2Vec representations with a LSTM
feature extractor. This model is called Word2V ecLSTM

• The fifth model uses the pre-trained ELMo representations with a
LSTM feature extractor. ELMo weights are fine-tuned during train-
ing. This model is called ELMoLSTM .

The hyperparameters of the five models are reported in the Tables 4.1 -
4.5.

Note that 4 out of 5 models (TrainableCNN, TrainableLSTM, Word2VecCNN
and Word2VecLSTM) have the same output dimensions for each layer cor-
responding to the same purpose. This means that the Embedding output
dimension is equal for the 4 models, as well as the feature extractor out-
put dimension. The embedding output dimension of the TrainableCNN and
TrainableLSTM models has been set to 300, corresponding to the dimension
of the Word2Vec embedding vectors. For the feature extraction layer, since
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Table 4.1: TrainableCNN model hyperparameters

TrainableCNN
Embedding output dimension 300

Embedding dropout 0
Convolution filter sizes (2,3,4,5)

Number of filters 256
Projection dimension 512

Feature extraction layer dropout 0
Output dimension 14

Table 4.2: TrainableLSTM model hyperparameters

TrainableLSTM
Embedding output dimension 300

Embedding dropout 0
Bidirectional RNN True
Feature dimension 256

Projection dimension None
Feature extraction layer dropout 0

Output dimension 14

the multiple filter CNN has a bigger output than the LSTM recurrent neural
network, a MLP1 layer has been implemented after the CNN feature ex-
tractor in order to project the CNN output to a feature dimension of 512,
the same output size of the Bidirectional LSTM layer. This adds more pa-
rameters to the CNN feature extractor; however for the CNN layer the total
number of parameters remains much lower than the LSTM layer.

Table 4.3: Word2VecCNN model hyperparameters

Word2VecCNN
Embedding output dimension 300

Embedding dropout 0
Convolution filter sizes (2,3,4,5)

Number of filters 256
Projection dimension 512

Feature extraction layer dropout 0
Output dimension 14

There are some differences between the ELMoLSTM and the other im-
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Table 4.4: Word2VecLSTM model hyperparameters

Word2VecLSTM
Embedding output dimension 300

Embedding dropout 0
Bidirectional RNN True
Feature dimension 256

Projection dimension None
Feature extraction layer dropout 0

Output dimension 14

plemented models. The embedding part of the ELMoLSTM network, as dis-
cussed in Chapter 3, is made up of several layers which output an embedding
vector with dimension of 1024. Since the ELMo embedding network is very
deep, dropout has been used for generalization purposes in the fine-tuning
procedure, as suggested by the ELMo authors1. Then, the feature extraction
strategy is the bidirectional LSTM used in the TrainableLSTM and in the
Word2Vec models, with the same hyperparameters. It will be interesting to
see if using the ELMo algorithm to produce word representations will lead
this model to better performances in the considered task.

Table 4.5: ELMoLSTM model hyperparameters

ELMoLSTM
Embedding output dimension 1024

Embedding dropout 0.5
Bidirectional RNN True
Feature dimension 256

Projection dimension None
Feature extraction layer dropout 0

Output dimension 14

The models are implemented using the AllenNLP framework. It is a
research Python library, built on PyTorch, for developing state-of-the-art
deep learning models on a wide variety of linguistic tasks. Further details
can be found at https://allennlp.org/.

1As we can see at https://docs.allennlp.org/v1.0.0rc3/tutorials/how˙to/elmo/

https://allennlp.org/
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Model training

All the five models are trained using the same settings. The most important
decisions when training a neural network are:

• the choice of the loss function;

• the choice of the optimization algorithm;

• the use of early stopping.

As for the loss function the binary cross entropy loss has been used. In
the multi-label classification case, the binary cross entropy loss value in each
observation is the average of the values computed for each class. When
computing the average cross entropy value for each observation, the label
values can be multiplied by some weights. Actually the label distribution
can be unbalanced, so class weights are used to overcome this issue.

As for the optimization algorithm, the Adam optimizer has been used,
since it is the most popular and the most effective optimizer when training
deep neural networks. The batch size value has been set to 32.

The use of early stopping in neural network training is crucial since usu-
ally as the number of epochs increases, the loss function value in the training
set decreases but in the validation set it reaches a minimum and then it
slightly decreases. So the maximum number of epochs has been set to 20
with a patience value of 4. This means that the best model in terms of
validation loss is saved in memory and if the validation loss value does not
decrease after 4 epochs, the training procedure is stopped.

The training of the models have been performed on a Virtual Machine
Instance on Azure Cloud, powered by the NVIDIA Tesla K80 card. The
choice of a GPU reduces significantly the training of deep learning models.
In this setting it became necessary when the ELMoLSTM training on a CPU
was initiated and its estimated training time was much long.

Prediction strategy

At the end of each model training the vector of predicted probabilities ŷi

has been computed by calculating the output values of the model for every
observation in the dataset. To evaluate the model with the appropriate
metrics, we need to turn the predicted probabilities, that can take values in
the interval (0, 1), to predicted labels.

Considering the multi-label classification problem as multiple (one for
every label) binary classification problems, for each label j we consider as
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positive examples the texts which belong to that class and negative examples
the ones that don’t belong to that class. So we can use the strategy described
in Equation 2.6 which consists in assigning the i-th observation to the positive
class if the estimated probability value is bigger that a fixed threshold value
tj = 0.5, which is equal for every label. However this may not be the best
solution in a multi-label classification task, since we may have an unbalanced
label distribution.

An optimal threshold tj for every label j has been calculated. The strat-
egy used consists in taking the thresholds tj that minimize the weighted error
rate in the training set:

t̂ = argmin
t

1∑
j wj

14∑
j=1

wj
1

N

N∑
i=1

(yij − ŷij)2, (4.2)

where w is a vector of weights that serves to overcome the class imbalance
and N is the number of observations (xi,yi) in the dataset. The prediction
ŷij of the j-th label for the i-th observation is defined as:

ŷij =

{
0, p̂ij < tj

1, p̂ij ≥ tj.
(4.3)

To perform the minimization defined in Equation 4.2 has been used the
truncated Newton algorithm, which is a constrained optimization algorithm
that exploits gradient information (Nash, 1984).

Classification metrics

The metrics used to evaluate and compare the performances of the models
are Accuracy, Precision, Recall and F1-Score.

When evaluating binary classification models, the accuracy metric is de-
fined as the ratio between the number of observation classified correctly and
the total number of observations, as in Equation 2.7. When we deal with
multi-label classifiers, it may happen that the model predicts correctly only
one label for some observations that should be associated with two correct
labels, or it may predict an extra label for some other observations. If we
apply the same definition of accuracy, we consider as observations classified
correctly the observations in which all their labels are predicted correctly and
no extra label is predicted. We can call HardAccuracy the metric defined
as the ratio between the number of correctly classified observations and the
number of total observations:
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HardAccuracy =
|{i : ŷij = yij, ∀j}|

N
(4.4)

Precision and Recall are computed for each label. As in Equation 2.8,
Precision is defined as the ratio between the number of true predicted positive
observations and the number of predicted positive observations. On the other
hand, as in Equation 2.9, Recall is defined as the ratio between the number of
true predicted positive observations and the number of positive observations
in the dataset. The F1-Score can also be computed for each label taking
the harmonic mean between Precision and Recall. For each of these three
metrics we can also calculate the weighted average of the metric values for
each label.

4.3 Results

Dataset analysis

After text pre-processing, some descriptive analysis have been performed on
the dataset: the analysis of the distribution of the number of words and the
analysis of the distribution of labels. These two analysis suggest some crucial
decisions to make in the machine learning pipeline.

Figure 4.1 shows the distribution of the number of words in the dataset.
As we can see from the figure, the majority of paragraphs have less than 200
words, while few of them have more than a few hundred of words. As a matter
of fact, only 25% of the texts have more than 200 words. This could mean
that some contracts are split wrongly, resulting in texts matching contracts
instead of paragraphs. Therefore some texts cannot be considered moving
forward. The maximum number of words has been set to a threshold t = 300
for each preprocessed text. Each text that, after pre-processing, has more
than 300 words is excluded from the dataset. Moreover, after performing
some preliminary tests, if the threshold t was set to a bigger value than 300,
or not set at all, it resulted in models that require an unfeasible RAM space,
even if the batch size was set to a pretty low value.

Figure 4.2 shows the distribution of labels in the dataset. As we can
see the distribution is highly unbalanced: the classes TE and CS are highly
represented, while the classes OD and GE have very few examples. Therefore
some adjustments need to be made in the training procedure, like applying
some weights in the loss function, to overcome this unbalance. Figure 4.3
shows the distribution of labels after the train, validation, test split. As we
can see, the proportion of labels in the dataset is roughly the same as the
one in the three sets.
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Figure 4.1: Distribution of the number of words for each text in the dataset

Figure 4.2: Distribution of the labels in the dataset
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Figure 4.3: Distribution of the labels in the dataset after the
train,validation,test split

Table 4.6: Distribution of the number of labels for each text in the dataset

Training
set

Validation
set

Test
set

Whole
dataset

One label 46416 11611 14489 72516
Two labels 12409 1262 619 14290
Three or

more labels
1186 43 6 1235

Total
examples

60011 12916 15114 88041

It is interesting also to look at the distribution of the number of labels
per paragraph. Table 4.6 shows that the majority of examples have only
one label, as in the case of multi-class classification. Moreover this table
shows that in the validation and in the test sets the number of observations
with multiple labels is significantly smaller than in the training set. This
may happen because in the training, validation, test split we always remove
from the validation and test sets multi-label observations that are already
present in the training set. However, this choice is reasonable since multi-
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label observations are very few and putting the majority of these in the
training set could lead to a more robust multi-label classifier.

Weighting Scheme

As already mentioned, the observations that belong to less represented classes
are weighted more than the observations that belong to the most represented
ones. The most natural choice for the weights is the inverse of the ratio
between the number of observations of the given label and the number of
observations of the most represented label. For each class some a-posteriori
grid scan around such values has been performed, evaluating how the metrics
values changed in the validation set. The best values have been reported in
Table 4.7.

Table 4.7: Optimal weight values in the loss function for every label

Inverse ratios Weights
AA 2.31 2.00
AL 10.68 10.0
CC 1.30 1.20
CR 2.14 2.00
CS 1.00 1.00
GE 36.33 25.00
LL 4.60 2.00
MQ 2.47 2.00
ND 8.80 8.00
OD 18.40 12.00
OR 1.64 1.00
RS 1.24 1.20
SR 2.24 1.00
TE 1.00 1.00

Training and prediction results

The five models have been trained applying the weights above to the cross
entropy loss function. As already mentioned, Early Stopping has been ap-
plied, setting the maximum number of epochs to 20 and the patience to 4.
Figures 4.4 to 4.8 report the trend of the loss function during the training
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Figure 4.4: Trend of the loss function during the training of the Trainable
CNN model

of the five models. In each Figure, the trend of the loss function calculated
in the training set is compared with that of the loss function calculated in
the validation set. The vertical red line corresponds to the epoch in which
the validation loss reaches a minimum. The model trained at the end of this
epoch is considered to be the best one and it is the one that will be evaluated
using the classification metrics. We can see that all five models converge to
a validation loss value around 0.1 and that in all models but ELMoLSTM
the training loss value is lower than the validation loss value even before the
cutoff epoch.

The training time for each model is reported in Table 4.8, along with the
cutoff epoch and the total number of epochs. As we can see for the single
layer Embedding models the training time is of the order of tens of minutes.
The models using the LSTM feature extractor took more than the ones using
the CNN feature extractor. On the other hand, the ELMoLSTM model took
nearly 11 and a half hours.

Table 4.9 reports the optimal probability threshold values for each label
computed after the error rate minimization over all the possible threshold
values. After computing these thresholds, the model assigns every observa-
tion i to the class j if the a-posteriori probability p̂ij is above the threshold tj.
Looking at the values on the table we can clearly see that for the same class
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Figure 4.5: Trend of the loss function during the training of the Trainable
LSTM model

Figure 4.6: Trend of the loss function during the training of the
Word2VecCNN model
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Figure 4.7: Trend of the loss function during the training of the
Word2VecLSTM model

Figure 4.8: Trend of the loss function during the training of the ELMoLSTM
model
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Table 4.8: Training time and number of epochs for each model

Cutoff epoch Total Epochs Training time
Word2VecCNN 5 9 7 minutes
TrainableCNN 4 8 13 minutes
TrainableLSTM 9 13 31 minutes
Word2VecLSTM 15 19 42 minutes

ELMoLSTM 7 11 11 hours 25 minutes

some models have very different optimal thresholds. If we take, for example,
the class SR we note that two models have a threshold value for this class
very low (< 0.3) with respect to the others (roughly 0.74 taking the mean of
the three values). Higher threshold values lead to bigger precision, as most
of the predicted observations will be predicted correctly. But having higher
threshold values leads to lower recall, as we will have very few observations
which are predicted to be positive. On the contrary, low threshold values
lead to more observations that are predicted to be positive and this leads to
lower precision and higher recall.

Table 4.9: Threshold values for each topic category

Trainable
CNN

Trainable
LSTM

Word2Vec
CNN

Word2Vec
LSTM

ELMo
LSTM

AA 0.168 0.493 0.620 0.414 0.597
AL 0.459 0.409 0.410 0.412 0.383
CC 0.374 0.470 0.576 0.508 0.478
CR 0.379 0.611 0.418 0.357 0.726
CS 0.378 0.416 0.217 0.535 0.526
GE 0.585 0.471 0.337 0.511 0.712
LL 0.619 0.234 0.687 0.339 0.335
MQ 0.637 0.544 0.626 0.362 0.449
ND 0.291 0.289 0.390 0.506 0.480
OD 0.624 0.763 0.096 0.814 0.548
OR 0.595 0.467 0.517 0.434 0.455
RS 0.554 0.471 0.220 0.472 0.607
SR 0.755 0.238 0.787 0.294 0.669
TE 0.450 0.426 0.399 0.485 0.555
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Classification models comparison

Table 4.10 reports the validation precision values for each topic category.
The model with the highest average precision on the validation set is the
ELMoLSTM, but the difference with the other models is not large. In the
majority of classes the ELMoLSTM model shows a better precision. However,
for the CR and RS class the TrainableLSTM model has way better precision
than the other models. In general, all the models have good performances
on each class excluding the class OD and the class GE, which are the less
represented ones.

Table 4.10: Validation set precision for each topic category

Trainable
CNN

Trainable
LSTM

Word2Vec
CNN

Word2Vec
LSTM

ELMo
LSTM

AA 0.865 0.860 0.827 0.878 0.866
AL 0.828 0.803 0.848 0.799 0.855
CC 0.853 0.868 0.834 0.872 0.903
CR 0.899 0.916 0.864 0.907 0.895
CS 0.832 0.842 0.860 0.809 0.831
GE 0.556 0.553 0.577 0.559 0.652
LL 0.909 0.904 0.891 0.896 0.879
MQ 0.807 0.817 0.805 0.840 0.836
ND 0.871 0.874 0.864 0.878 0.879
OD 0.584 0.600 0.632 0.554 0.784
OR 0.919 0.915 0.919 0.918 0.914
RS 0.798 0.853 0.815 0.821 0.788
SR 0.898 0.900 0.916 0.923 0.936
TE 0.884 0.890 0.903 0.910 0.904

Weighted
average

0.861 0.872 0.864 0.871 0.873

Table 4.11 reports the validation recall values for each topic category.
We can see that the best model in terms of validation set recall is the Train-
ableCNN, but the difference with the other models is not very large. Looking
at the recall values for each label no model stands out with respect to the
others. In general we can see that all models have a good recall score, except
for the class OD and the class GE.

Table 4.12 reports the validation F1 values for each topic category. Since
the F1-score is the harmonic mean between Precision and Recall, it is a more
meaningful metric for model evaluation and model comparisons. The best
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Table 4.11: Validation set recall for each topic category

Trainable
CNN

Trainable
LSTM

Word2Vec
CNN

Word2Vec
LSTM

ELMo
LSTM

AA 0.838 0.871 0.873 0.829 0.827
AL 0.862 0.856 0.838 0.856 0.844
CC 0.865 0.882 0.893 0.873 0.863
CR 0.886 0.903 0.911 0.899 0.894
CS 0.888 0.868 0.858 0.864 0.841
GE 0.606 0.636 0.455 0.576 0.455
LL 0.897 0.895 0.889 0.876 0.903
MQ 0.873 0.846 0.851 0.834 0.816
ND 0.934 0.934 0.934 0.946 0.927
OD 0.577 0.462 0.615 0.462 0.513
OR 0.937 0.948 0.936 0.937 0.930
RS 0.888 0.855 0.870 0.859 0.883
SR 0.916 0.921 0.917 0.906 0.898
TE 0.933 0.930 0.918 0.919 0.914

Weighted
average

0.895 0.892 0.891 0.883 0.877

model in terms of validation set F1 is the TrainableLSTM, but this table
clearly shows that the five models are not significantly different in terms of
performance values.

Table 4.13 reports the Hard Accuracy values for the validation set. We
can clearly see that all the five models can predict correctly the label in
observations that have only one label, and they struggle with observations
that have more than one. As for the accuracy metric we cannot see significant
differences between the models.

Although, in general, the TrainableLSTM model performances look higher
than the other classifiers ones, the difference between this model and other
competitors is not huge. In Table 4.14 the average metrics computed in the
test set for all models has been reported. As we can see, the TrainableLSTM
model confirms the best performances in this scenario.

4.4 Discussion

For all NLP applications, including text classification, the procedure is twofold.
First, the goal is to get a good text representation for each observation. The
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Table 4.12: Validation set f1 for each topic category

Trainable
CNN

Trainable
LSTM

Word2Vec
CNN

Word2Vec
LSTM

ELMo
LSTM

AA 0.851 0.866 0.849 0.853 0.846
AL 0.845 0.829 0.843 0.827 0.849
CC 0.859 0.875 0.863 0.873 0.882
CR 0.893 0.910 0.887 0.903 0.895
CS 0.859 0.855 0.859 0.836 0.836
GE 0.580 0.592 0.508 0.567 0.536
LL 0.903 0.899 0.890 0.886 0.891
MQ 0.839 0.831 0.828 0.837 0.826
ND 0.901 0.903 0.898 0.911 0.902
OD 0.581 0.522 0.623 0.503 0.620
OR 0.928 0.931 0.927 0.928 0.922
RS 0.841 0.854 0.842 0.839 0.833
SR 0.907 0.910 0.917 0.915 0.917
TE 0.907 0.909 0.910 0.914 0.909

Weighted
average

0.877 0.882 0.877 0.876 0.875

Table 4.13: Hard accuracy in the validation set

Trainable
CNN

Trainable
LSTM

Word2Vec
CNN

Word2Vec
LSTM

ELMo
LSTM

One label 0.845 0.864 0.849 0.858 0.861
Two labels 0.451 0.377 0.432 0.350 0.340
Three or

more labels
0.093 0.070 0.070 0.070 0.023

Weighted
average

0.804 0.814 0.806 0.806 0.807

following step it to build a machine learning model to solves as best as pos-
sible the task at hand. We saw in Chapter 3 that Language Models can be
trained to generate semantic word representations, which can be then used
as inputs of a supervised machine learning models. The ELMo Language
Model has undoubtedly some strong points with respect to some competi-
tors. It offers the possibility of learning contextual word embedding vectors
that depend on the whole sentence, with a bidirectional approach. Moreover,
the word representations in the first biLM layer are computed by character
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Table 4.14: Test set aggregate metrics

Trainable
CNN

Trainable
LSTM

Word2Vec
CNN

Word2Vec
LSTM

ELMo
LSTM

Hard
Accuracy

0.823 0.839 0.831 0.839 0.837

Precision 0.852 0.865 0.861 0.870 0.867
Recall 0.920 0.923 0.918 0.912 0.908

F1-score 0.884 0.893 0.888 0.890 0.887

convolution. This allows not to depend on a vocabulary and to generate
meaningful representations of words that are not included in the training
set. Finally, the word representations are task dependent, which makes this
model suitable for using transfer-learning techniques. Theoretically, for a
text classification task the best solution consists in a neural network that is
trained to explore both the fine-tuning of the ELMo model and to transform
the ELMo outputs to a vector that represents each text, using for example
a LSTM layer followed by a MLP one.

Looking at the results from the experiments, we saw that using LSTM
layers for extracting document-level features leads to better performances
than using CNN layers. The ELMoLSTM model results, on average, can
be comparable to the ones of the TrainableLSTM model, which seems to be
the best model in our example. In practice the difference in performances
with simpler solutions, like models using Trainable embedding layers or pre-
trained Word2Vec representations, is not very large, especially in a typical
business scenario, where costs and implementation time should be evaluated
before carrying out an algorithmic solution.

In the dataset lots of examples turned out to be semantically similar
and this might turn the task to be suitable even for simpler models. The
ELMoLSTM model adds a remarkable complexity, leading to higher train-
ing duration of each epoch. However, we can see that that ELMoLSTM
model took less epochs to reach convergence, comparing to the ones of the
TrainableLSTM and the Word2VecLSTM models. This may suggest that
in more challenging conditions, like having less observations, or more lex-
ical variety or solving a more challenging task (i.e. question answering or
language translation) the model using the ELMo representations would have
performed better with respect to models using simpler word representations.

From a business point of view, one of the most important aspects of a
classification model is the training time. Training the ELMoLSTM model
took way more than the other models, nearly 12 hours with a GPU support.
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This means that if we need to perform multiple training to tweak some hy-
perparameters, it might take days to get the final model. As expected, the
ELMoLSTM model is the most resource-consuming among the investigated
ones and this strongly affects the timing performance. Indeed the ELMoL-
STM model got the highest training duration. However similar duration can
be observed when using the transfer-learning technique on the ELMo word
embedding representations for all kinds of datasets. On the other hand, the
Word2Vec Language Model doesn’t build semantic representations for words
that are not included in the vocabulary. When working with a dataset that
includes very domain specific words, before using the Word2Vec representa-
tions for our task, we might need to re-perform the Language Model training
including our dataset and some samples from the Wikipedia corpus, and this
operation is very costly.

Another remarkable aspect consists in the fact that the labels were set
by humans based on their subjective judgment whose implicit criteria may
impact the dataset quality. Human influence is crucial in determining the
dataset quality, especially if the label setting operation is done by an hetero-
geneous sample of human evaluators. The introduction of some noise in the
dataset is unavoidable in non-exclusive multi-label classification tasks, and
this may have an impact on the classifier performance. Therefore, in this
pre-processing setting, significantly higher performances than these might be
hardly reached.

In the end, in a business scenario different criteria can be applied when
choosing the most suitable model for the task at hand. Often in this eval-
uation different factors have to be taken into account. Costs, resource con-
sumption, implementation time and training time affect the final algorith-
mic choice. For this text classification task, the classifier using the ELMo
Language Model (combined with an LSTM feature extractor) leads to per-
formances similar to the other classifiers, which are simpler but still reliable
solutions. Its significant computational time represents a weakness when con-
sidered together with its performances in this task scenario. But, as stated
before, its use could be more suitable for more complex tasks and it may lead
to a significant increase in performances with respect to simpler models. The
choice of the most suitable algorithm in real-word applications is always the
result of many trade-offs.
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Chapter 5

Conclusions

The goal of this work was twofold. On one hand, it served to present some
existing literature regarding the Natural Language Processing field and how
Deep Learning models can be useful to solve the word embedding and the text
classification tasks. On the other hand, it showed how the presented models
can be applied to the real-world application of classifying an Italian dataset
with the additional constraint that each observation could be assigned to
multiple labels.

The theoretical concepts presentation started in Chapter 1 from some
basic and well known concepts in the literature about Text Classification, text
pre-processing methods and feature design for text classification problems.
Then, in Chapter 2 the focal point was to introduce the topic of supervised
text classification and the main deep learning models that can be used to
solve this task. We saw that Convolutional Neural Networks, in particular the
multiple filter size variant, and Recurrent Neural Networks, in particular the
LSTM Networks, have been used in the past on similar NLP tasks for their
ability to extract useful information on sequences of data. Finally, Chapter
3 focuses on some strategies for the problem of word embedding. First, the
difference between the automatic embedding tuning and the pre-training of
word representations has been described. Then, two popular word embedding
algorithms have been presented. Word2Vec is a class of algorithms based on
Language Modeling that can be used to compute semantic representations
for words in a fixed vocabulary. ELMo, on the other hand, belongs to a
class of algorithms called Generalized Language Models which objective is to
compute contextual word representations.

Chapter 4 goes to the heart of a text classification application, explaining
in deep the various phases that lead to the choice of the best solution for
a given task. In particular, the analyzed documents were a set of Italian
contracts that could be classified into a set of overlapping categories. All the
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necessaries operations of pre-processing and data analysis were taken into
consideration and in particular some considerations needed to be made about
the number of words distribution, the class imbalance and the procedure to
split data in the training, validation and test sets. Five different deep learning
models have been trained to solve the task, and then their performances have
been compared using some classification metrics and measuring the time
required to perform the training. Looking at the results, the model using
the ELMo word representations performs similarly to the competitors, while
taking significantly more time to be trained. The trainable embedding layer
seems the best embedding strategy for the considered problem. The last
consideration regards the LSTM network which can be preferable over the
CNN for the feature extraction operation.

Overall this work showed the power of the Deep Learning approach ap-
plied to the Text Classification task. Some popular models in the literature
have been successfully applied in a challenging real-world scenario. The de-
tailed analysis of the trained models has been performed, in order to decide
if each model could be suitable for solving similar problems in a business
scenario.
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Appendix for chapter 2

A.1 Supervised classification

Loss functions

When training a machine learning model, we are trying to make the predic-
tions of the model ŷ = f(x) as accurate as possible w.r.t. the true labels y.
For this scope, we introduce the notion of loss function, quantifying the loss
suffered when predicting ŷ while the true label is y. Formally, a loss function
L(ŷ,y) assigns a numerical score (a scalar) to a predicted output ŷ given the
true expected output y. The estimated parameters Θ of the learned function
are the ones which minimize the loss L over the training examples:

Θ̂ = argmin
Θ

1

n

n∑
i=1

L(f(xi; Θ),yi) (A.1)

Sometimes, to avoid overfitting the training data, we add to the loss a
regularization term R(Θ) that takes as input the parameters and returns a
scalar that reflects their ”complexity”, which we want to keep low. By adding
R to the objective, the optimization problem needs to balance between low
loss and low complexity:

Θ̂ = argmin
Θ

1

n

n∑
i=1

L(f(xi; Θ),yi) + λR(Θ) (A.2)

Different combinations of loss functions and regularization criteria result
in different learning algorithms, with different inductive biases.

The most common loss function when dealing with classification problems
with conditional probability outputs is the Cross Entropy. In the binary case
when the classifier’s output is transformed using the sigmoid function defined
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in Equation 2.3 it is interpreted as the conditional probability ŷ = σ(f(x) =
P (y = 1|x). Thus, the classifier is trained to maximize the conditional
probability for each training example (xi, yi). The binary cross entropy loss
is defined as:

Llogistic(ŷi, yi) = −yilog(ŷi)− (1− yi)log(1− ŷi) (A.3)

When solving a multi-label classification problem, since it can be viewed
as solving multiple binary classification problems, the binary cross entropy
loss can be computed for every label and then the final value of the loss
function is the average of this values. The same reasoning can be used when
solving a multi-class classification problem, but in this case the outputs of
the classifier are transformed using the softmax function defined in Equation
2.4.

Gradient-based optimization

In order to train the classifier, we need to solve the optimization problem
in Equation A.2. The common solution is to use a gradient based method.
The most simple one is the Stochastic Gradient Descent algorithm (SGD), by
Bottou (1998). A variant of the SGD algorithm is the Adam algorithm. For
a complete motivation of the algorithm explanation we refer to the original
article (Kingma and Ba, 2014). The Adam algorithm, or one of its variants,
is the most used nowadays when training deep learning models.

SGD and all its variants (including Adam) work by repeatedly sampling
a batch of training examples and updating the parameter estimation using
the information given by the gradient computed on the sample. The training
process is divided in epochs, where an epoch refers to one cycle through the
full training dataset. Usually, training a neural network takes more than a
few epochs.

A.2 Feed Forward Architecture

Optimization in neural networks

Backpropagation

When performing optimization over the set of possible neural networks pa-
rameters, the loss function is not convex. Still, gradient-based methods can
be applied and they work very well in practice. For complex networks the gra-
dient computation can be laborious and error prone. Fortunately, gradients



A.2. FEED FORWARD ARCHITECTURE 71

can be efficiently and automatically computed using the backpropagation al-
gorithm (Rumelhart et al., 1986). The backpropagation algorithm is a fancy
name for methodically computing the derivatives of a complex expression
using the chain-rule, while caching intermediate results. Once the gradient
computation is taken care of, the network is trained using SGD or another
gradient-based optimization algorithm, like Adam.

Dropout

Multi-layer networks can be large and have many parameters, making them
especially prone to overfitting. A regularization term can be added to the
loss function like we saw in Equation A.2. Another effective technique for
preventing neural networks from overfitting the training data is dropout. It
is designed to prevent the network from learning to rely on specific weights.
It works by dropping (setting to 0) some of the neurons in each training
example during an iteration of the gradient-based optimization. The dropout
technique is very effective in deep neural networks to avoid overfitting and it
is vastly used also in NLP applications.

Early stopping

A major challenge in training neural networks is how long to train them.
When training a large network, there will be a point during training when
the model will stop generalizing and start learning the statistical noise in the
dataset. The challenge is to train the network long enough such that it is
capable of learning the mapping from inputs to outputs avoiding overfitting.

A possible approach is to train the model for a large number of epochs,
evaluating its performance on a validation set and saving the model after
each epoch. If the performance of the model on the validation set starts to
degrade, then the training procedure is stopped and only the best model is
kept. This strategy is known as early stopping.

When using early stopping, first we need to decide the performance metric
to monitor during training. It is common to use the loss on validation set as
the metric to monitor, but we may also use a specific metric, for example the
accuracy metric in the case of a classification model. Secondly, we need to
decide when to stop training. It can be stopped as soon as the performance
metric computed on the validation set gets worse. However some delay or
patience in stopping is always a good idea. The validation error can still go
further down after it has begun to increase (Prechelt, 1996).

Early stopping is probably the most commonly used form of regulariza-
tion in deep learning. Its popularity is due both to its effectiveness and its
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simplicity (Goodfellow et al., 2016).

A.3 Convolutional Neural Networks

Basic convolutional architecture

Convolutional layers

The convolution operation in NLP is the 1D-convolution, since the inputs are
1 dimensional (sequences). Call wi the embedding vector of the i-th word.
A 1D convolution of width k works by moving a slicing window of size k over
the sentence, and applying the same filter to each window in the sequence.
A filter is a dot-product between the window and a weight vector u, which
is often followed by a nonlinear activation function g. Define the operator
xi = ⊕(wi:i+k−1) to be the concatenation of the vectors wi, ...,wi+k−1. We
then apply the filter to each window vector, having as output the scalar value
pi = g(xi ·u). It is customary to use l different filters which can be arranged
into the matrix U, and a bias vector b is often added. The 1D convolution
function can be expressed as:

pi = g((xi ·U + b). (A.4)

Each vector pi is a collection of l values that represents the i-th window.
Ideally, each dimension captures a different kind of indicative information.
For a sequence of length n with a window of size k there are n−k+1 positions
in which to start the sequence, and we get n − k + 1 vectors. Alternately,
we can pad the sentence with k − 1 padding symbols to each side, resulting
in n + k + 1 vectors. Figure A.1 shows an example of a convolutional layer
without sequence padding.

Pooling layers

Applying the convolution operation over the text representations results in
m vectors of dimension l. These vectors are then combined (pooled) into a
single vector c of dimension l representing the entire sequence.

The most common pooling operation is max pooling, taking the maximum
value across each dimension. Calling c[j] the j-th element of the vector c,
max pooling is defined as:

c[j] = max
1<i≤m

pi[j]. (A.5)
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Figure A.1: A convolution with a window of size k = 2 and output l = 3

The effect of max pooling is to get the most salient information across
various window positions. Ideally, each dimension will specialize in a partic-
ular sort of predictors, and the max operation will pick the most important
predictor of each type.

A common alternative to max pooling in average pooling, taking the av-
erage value of each index instead of the max:

c[j] =
1

m

m∑
i=1

pi[j]. (A.6)

For most tasks max-pooling is used, but there is no guarantee that it is
the best pooling operation in practice. One can experiment average pooling
or other variations and compare the results.
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Appendix B

Appendix for chapter 3

B.1 Language Modeling

Neural language models

Nonlinear neural network models allow conditioning on increasingly large
context sizes and they support generalization across different contexts. The
presented model was popularized by Bengio et al. (2003). The input to
the neural network is the k-gram of words w1, ..., wk, and the output is a
probability distribution over the next word. The k context words w1, ..., wk

are treated as a word window: each word w is associated with an embedding
vector v(w) ∈ Rd, and the input vector x is a concatenation of the k word
vectors:

x = [v(w1); ...; v(wk)]. (B.1)

The input x is then fed to a MLP with one or more hidden layers, like
in Equation 2.12. Then, the softmax activation function is applied to the
output of the network. The model vocabulary V includes the set of possible
words, along with special symbols for unknown words. The k words are used
as features, and the word that follows is used as the target label for the
classification task. The model can be trained using the cross-entropy loss.
This works well, but it requires the use of a costly softmax operation which
can be prohibitive for large vocabularies. Language Models can be trained
on raw text : for training a k-order language model we just need to extract
(k+ 1)-grams from the text, and treat the (k+ 1)th word as the supervision
signal. The model architecture is shown in Figure B.1.

The parameters of the model are associated with individual words and
words in different positions share parameters, making them share statisti-
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Figure B.1: A neural language model with one projection layer and one
hidden layer

cal strength. The hidden layers are in charge of finding informative word
combinations and can, in theory, learn informative sub-parts of the kgrams
and do it in a context-dependent way. Another appealing property of the
model is the ability to generalize across contexts. By observing that words
like white, blue, red, black, etc. appear in similar contexts, the model will
bee able to assign a reasonable score to the event blue car even though it
never observed this combination in training, because it observed red car and
black car. The combination of these properties makes it very easy to increase
the size of conditioning contexts without suffering much from data sparsity
and computational efficiency.

Each of the vocabulary words is associated with one d-dimensional row
vector, a row of the embedding matrix E, and a column vector in the matrix
W of the last MLP layer. During the final score computation, each column in
W is multiplied by the context representation, and this produces the score of
the corresponding vocabulary item. Intuitively, this should cause words that
are likely to appear in similar contexts to have similar vectors. Following
the distributional hypothesis, words with similar meanings will have similar
vectors. A similar argument can be made about the rows of the matrix E,
which are the word embedding vectors. Hence, language modeling can be
treated as an unsupervised approach for computing word embedding vectors
as a byproduct of the training procedure.
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Figure B.2: The CBOW architecture predicts the current word based on
the context, and the Skip-gram predicts surrounding words given the current
word.

B.2 Word2Vec

CBOW vs Skip-Gram

For a multi-word context c1, ..ck, the CBOW variant of Word2Vec defines the
score vector to be the sum of the context components, and the context-word
score to be the dot product between the word and the context vectors:

c =
k∑

i=1

ci

s(w; c1, ..ck) = w · c
(B.2)

Note that the CBOW variant loses the order information between the
contexts elements. In the Skip-gram variant, the k elements of the context ci
are assumed to be independent, and they are treated as k different contexts:
(w, c1), ..., (w, ck). The scoring function is defined as in CBOW, but now
each context is a single embedding vector. Hence, the likelihood of the word-
context pairs is the product of the k likelihoods:
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s(w; ci) = w · ci

P (w; c1, ..ck) =
k∏

i=1

P (w; ci)
(B.3)

As we can guess from the two definitions, CBOW computes the condi-
tional probability of a target word given the context words surrounding it.
On the other hand, the skip-gram does the exact opposite, by predicting the
probability of context words given the central target word. The two different
architectures are shown in Figure B.2.

According to the authors, the CBOW variant is much faster while the
Skip-Gram one does a better job for infrequent words.

Optimization

A Word2Vec model can be trained with hierarchical softmax and/or negative
sampling. To approximate the conditional log-likelihood a model seeks to
maximize, the hierarchical softmax method uses a Huffman tree (Huffman,
1952) to reduce calculation. The negative sampling method, on the other
hand, approaches the maximization problem by minimizing the log-likelihood
of sampled negative instances. According to the authors, hierarchical softmax
works better for infrequent words while negative sampling works better for
frequent words and better with low dimensional vectors.
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