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1. Introduction

1 Introduction

In this thesis, we want to investigate the role of a second phase in a polycrys-

talline aggregate deformed by simple shear with 3-D, high resolution numerical

simulations. This second phase is dispersed in a rock matrix with different me-

chanical properties. We studied how the viscosity contrast, the volume fraction

and the increasing applied shear strain affect the microstructure and, conse-

quently, the bulk effective shear viscosity of the aggregate.

We discuss the shape of the inclusions and its evolution with strain as a

simple shear deformation is applied to a cubical volume containing initially

spherical inclusions dispersed in a matrix. The resulting microstructure evolves

with strain and is a function of the viscosity contrast between the two phases

and the volume fraction. Different microstructures cause different effective

shear viscosities and therefore, the latter are a function of the same parameters

too. We performed numerical simulations with both linear and power-law

rheology.

1.1 Microstructures in polyphase aggregates

It is known that a polycrystalline rock undergoing a deformation does not

deform homogeneously, but minerals with different rheologies respond differ-

ently to strain application. As a consequence, structures such as foliation

and lineation can form even if the minerals were initially isodiametric. Mi-

crostructures in deformed rocks are a critical source of information on the

rock’s deformational history.

In the case of granitic rocks, for example, feldspars are relatively rigid phases,

while micas are much more deformable. Consequently, when a shear deforma-

tion is applied, the more rigid clasts elongate and develop a prolate shape,
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1. Introduction

Figure 1: An example of foliated rock.

while micas and other weak phases accommodate more strain and form folia-

tion planes (e.g. figure 1).

Much less is known about microstructures developing deeper in the Earth’s

interior. The geometry must depend on the rheology of each single phases in

that type of aggregates as well.

1.2 Previous studies on two-phase aggregates

1.2.1 Hard sphere suspensions

Einstein’s theoretical equation for the relative viscosity ηr of hard-sphere sus-

pensions (Einstein, 1906) was the first that described the relative viscosity of

hard-sphere suspensions as a function of the volume fraction of the spheres:

ηr = 1 +Bφ (1)

where φ is the volume fraction and B is referred to as the ‘Einstein coefficient’
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1. Introduction

or the ‘intrinsic viscosity’, (e.g. Mueller et al. (2010)) and depends on the

particle shape. For rigid spheres, it takes the value B = 2.5 (Barnes, 2000).

The equation, however, is only valid in the diluted regime, in the case of a

single hard sphere in a fluid.

To account for interactions effects, higher-order volume-fraction terms can

be added to Einstein’s equation:

ηr = η0(1 +Bφ+ cφ2 + ...) (2)

with c being a coefficient whose value has been calculated in many ways, de-

pending on how many spheres interact with each other, on the spatial distri-

bution function, etc.

Hsueh & Wei (2009) derived an equation for deformable spherical inclusions:

φ = φc

(
1−

(
η0

ηr

) 2
5φc
(
ηs − ηr
ηs − η0

) 1
φc

)
(3)

where φ is the volume fraction of rigid spheres, φc the densest possible

packing for monodisperse spherical particles, η0 and ηs the matrix and the

sphere viscosity respectively. We compared this analytical solution with our

initial value of the aggregate viscosity when the inclusions are still spherical in

section 3.4.

Krieger and Dougherty’s equation (4) is a semiempirical equation that gives

the effective shear viscosity as a function of the inclusion volume fraction

φ over the maximum inclusion volume in a concentrated regime (Krieger &

Dougherty, 1959):

ηr =

(
1− φ

φc

)−Bφc
(4)

This equation can also be seen as equation 3 when ηs → ∞, that is when
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1. Introduction

the spheres are undeformable (rigid).

Theoretically, the densest possible packing for monodisperse spherical par-

ticles is φc ≈ 0.74. However, the maximum packing in disordered suspensions

is typically lower: it is estimated to be between 0.64 (the value we used, by

Rintoul & Torquato (1996)) and 0.68 (if additional structure is imposed by

shear, Kitano et al. (1981)).

The equation is valid for a hard-sphere suspension, in which there are no

interparticle forces other than infinite repulsion at contact (Genovese, 2012).

The flow is dominated by hydrodynamic forces and the solid inclusion causes

a hydrodynamical disturbance in the flow. This results in an increase in the

viscosity due to an increase of the energy dissipation.

1.2.2 Experimental studies

Studying an aggregate that reproduces the lower mantle composition exper-

imentally under lower mantle conditions is a great challenge, because of the

difficulties in controlling the generation of stress and strain under high tem-

perature and pressure (Karato & Weidner, 2008).

The first experimental study on the lower mantle composition and conditions

was made by Girard et al. (2016), in which the authors studied the rheology

of a bridgmanite-ferropericlase aggregate. The samples were made of 70%

bridgmanite and 30% periclase.

As shown in figure 2, periclase is isolated in most cases, whereas bridgman-

ite appears to be interconnected. The MgO inclusions follow the finite strain

ellipsoid (FSE) orientation: they start at an angle of 45° and progressively

decrease their angle with the shear direction. This means that the periclase,

which is the weak phase, accommodates more strain even if it is less abun-

dant. The stronger phase, on the other hand, deforms much less and its FSE
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1. Introduction

Figure 2: The deformation of a bridgmanite (dark gray grains) and ferropericlase (light gray

grains) aggregate. Figure (B) shows the deformed sample after 100% of bulk strain

together with an oblate ellipse showing the corresponding bulk strain ellipsoid.

Arrows indicate the sense of shear. Figure (C) shows the same undeformed sample.

SEM back-scattering images from Girard et al. (2016)

consequently rotates to a steeper angle with the shear direction with respect

to the bulk strain ellipsoid. This shows that microstructures such as foliation

already form at low strain.

Initially, the aggregate rheology is dominated by bridgmanite, but when

periclase starts to interconnect, it forms foliation planes, along which strain

can localise very easily. This causes an important weakening in the aggregate’s

rheology.

1.2.3 Models

Some models to describe the viscosity of two-phase aggregates have been

proposed, including Handy (1994) and Takeda (1998). Handy (1994) de-

scribed two types of microstructure that a polycrystalline aggregate can de-

velop when subjected to simple shear. The study confirmed that the mi-

crostructure strongly depends on the rheologies of the phases that compose

the aggregate. Mylonitic rocks and rock-analogue materials develop two main

types of structure (Fig. 3): LBF (load-bearing framework) and IWL (intercon-
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1. Introduction

nected layer of a weak phase). The load-bearing framework includes a strong

phase containing isolated pockets of a weak phase, whereas the interconnected

layer of a weak phase separates clasts and boudins of a strong phase. Takeda

Figure 3: Handy’s model for two-phase viscous materials. The weak phase volume fraction

φw is reported in the horizontal axis, the viscosity contrast τc is represented in the

vertical axis. From Handy (1994).

(1998) proposed two models for the Newtonian rheology, a linear relationship

between the volume fraction and bulk viscosity of the aggregate when the rock

has an LBF structure and a non-linear one when the aggregate shows an IWL

structure. The first one is a linear combination of viscosities weighted by the

volume fraction of their phases:

µ∗ = φ1 + b(1− φ1) (5)
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1. Introduction

while the second solution is more complex:

µ∗ =
[a2 − 2a(a− 1)φ1 + (a− 1)2φ2

1]b

a2 + (b− a2)φ1

(6)

where a = ρ2/ρ1, b = µ2/µ1, ρ1 and ρ2 are the densities of the weak phase and

the more viscous phase respectively, µ1 and µ2 are their viscosities, φ1 is the

volume fraction of the weak phase.

Figure 4: Takeda’s equations predict two modes of behaviour. The first one is a linear

relationship between the normalised bulk rock viscosity µ∗ and the volume fraction

of the weak phase φ1. The second one is a non-linear relationship described by

equation 6. From Takeda (1998).

According to the second equation, except for small volume fractions of the

weak phase, the viscosity of a two-phase aggregate approximates the viscosity

of the weaker component, as it is apparent from figure 4.

1.3 Motivation

1.3.1 Shear viscosity in a two-phase aggregate

The aim of this thesis is to study the effective shear bulk viscosity of a two-

phase aggregate as a function of the viscosity contrast between matrix and
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1. Introduction

inclusions and of their volume fraction, and how the rheology and the mi-

crostructure evolve with increasing strain. The study focused on a two-phase

material because, as described in section 1.3.2, most of the Earth materials are

composed of two main phases or their behaviour can be approximated by a

two-phases model. It is therefore most important to study how such aggregates

respond to deformation. Their bulk viscosity cannot be computed by a simple

weighted average of the two component’s viscosity, because the microstructure

strongly affects it.

There are a few studies about the rheology of two-phase aggregates, but

none of them has shown the relationship that links bulk shear viscosity with

shear strain, viscosity contrast and volume fraction.

Such an equation will have important applications in the field of geodynamic

modelling. It will help predicting the variation of mantle viscosity with depth

and strain caused by the microstructure development.

1.3.2 Mantle microstructure and bulk viscosity

Large-scale phenomena such as mantle convection cause the mantle materials

to be deformed under plastic deformation, which leads to the development of

microstructures when the material is not homogeneous.

The upper mantle is mainly composed of olivine and pyroxene. Their pro-

portions depend on the mantle composition: olivine takes 60% of the volume

in the case of a pyrolitic mantle, ∼75% for a harzburgitic one and ∼100% if the

composition is dunitic. Since the second phase is almost entirely pyroxene, we

can approximate the upper mantle to a two-phase aggregate. Pyroxene is the

harder of the two minerals, therefore it is expected to develop poorly flattened

but elongated grains.

Lower in the mantle, the pyroxene is progressively absorbed by garnet, there-
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1. Introduction

fore the composition changes into olivine polymorphs, Wadsleyite or Ring-

woodite, and majoritic garnet in a 60:40 proportion in a pyrolitic mantle. Its

strength appears not to be the same everywhere in the transition zone: in

dry conditions, garnets are the strongest phase, but they become progressively

weaker than olivine with increasing water content (Jin et al., 2001; Karato

et al., 1995). In the first case, they are expected to assume elongated shapes

as a consequence of the constrictional strain or behave like rigid inclusions,

whereas in the second one, the garnets should undergo flattening.

At about 660 km depth, the post-spinel reaction occurs, which causes the

decomposition of ringwoodite into bridgmanite and ferropericlase. Majorite

progressively transforms to Ca- and Mg-perovskite and disappears at about

720-750 km (post-garnet reaction, Hirose (2002) and Stixrude & Lithgow-

Bertelloni (2012), Faccenda & Dal Zilio (2017) for a review).

The viscosity of the lower mantle is a crucial parameter in geodynamic mod-

els because, since the lower mantle forms 65% of the whole Earth’s mantle, it

deeply affects the whole Earth’s dynamics (Yamazaki & Karato, 2001).

The lower mantle is composed of (Mg,Fe)SiO3 Bridgmanite (∼70% by weight),

(Mg,Fe)O Ferropericlase (∼20%) and a small percentage of calcium perovskite

CaSiO3 (Ringwood, 1991). Ferropericlase is estimated to be three times weaker

than Bridgmanite (Yamazaki & Karato, 2001), therefore it accommodates

more strain and forms flattened crystals. Experiments on this type of ag-

gregate were conducted by Girard et al. (2016), as described in section 1.2.2.

1.3.3 Boundary localisation

It has been often observed in nature that the deformation is not homogeneously

distributed, but there is a localisation of strain at a boundary between two
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1. Introduction

rocks with different rheological properties (e.g. Pennacchioni & Mancktelow

(2007)). Such localisation occurs in the weak rock when it is heterogeneous at

the crystal scale, but is absent when the weaker rock is relatively homogeneous.

This effect can be found at various scales in geological processes that involve

simple shear deformation, so that localisation can be found, for example, (1)

at the margin of a (weak) granodiorite intruded by a stronger aplite dike (Fig.

5) or (2) between two geological units at a much bigger scale, which causes

the preservation of large low-strain domains because all the deformation is

accommodated at the margins. Understanding the causes of this phenomenon

might lead to an explanation of why low-strain domains are preserved (e.g. Bell

et al. (1986)), while deformation is completely accommodated by shear zones

situated at the unit margin, for example in the Tauern Window (Mancktelow

& Pennacchioni, 2005).

What causes this phenomenon has not been explained in literature so far.

Therefore, one of the goals of simulating the formation of microstructures is

also to understand what may lead to this process.

Figure 5: An example of localisation at a boundary between granodiorite and an aplite dyke.

The shear zone develops in the granodiorite, which is the weaker phase and has

grain-scale heterogeneity. From Pennacchioni & Mancktelow (2007)
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2. Numerical Methods

2 Numerical Methods

2.1 I3ELVIS

For the numerical simulation, we used I3ELVIS, a thermo-mechanical 3-D code

developed by Taras V. Gerya for modelling geological flows (Gerya & Yuen,

2007). The code solves the equations of conservation of mass, momentum

and energy, it uses a conservative finite difference scheme and a non-diffusive

marker-in-cell technique to simulate multiphase flow (Moresi et al., 2003).

Although it was originally designed for simulations of geodynamic processes

at the planetary scale, its set-up can be arranged for any initial geometry. This

adapted version of the code is only mechanical and does not take into account

temperature nor gravity.

The system has periodic boundary conditions: when a particle, because of

its motion, arrives at a box boundary, it re-enters the box from the opposite

side of the domain.

All the simulations have been performed with the Cineca computational

facilities.

Figures and visualisation processes were made with Paraview, an open-

source tool to visualise and analyse extremely large data sets (Ahrens et al.,

2005; Ayachit, 2015).

2.2 Viscosity equations

We performed simulations in both Newtonian and non-Newtonian regimes.

The shear viscosity for each phase is calculated as:

13



2. Numerical Methods

ηs = ηs0

(
ε̇
II

ε̇
II0

)( 1−n
n )

(7)

with ε̇
II0

= 1 and n = 1 for Newtonian and n = 3 for non-Newtonian rheology.

Thus, in the case of Newtonian regime it is possible to define a constant

shear viscosity contrast:

ηc =
ηs0 ,incl

ηs0 ,matr
(8)

where ηs0 ,incl and ηs0 ,matr are the intrinsic shear viscosity of the inclusions and

the matrix respectively.

The effective shear viscosity of the bulk aggregate is calculated as:

ηeff =
< σ

II
>

2 < ε̇
II
>

(9)

where < σ
II
> is the average second stress invariant and < ε̇

II
> is the

average second strain invariant. The effective viscosity is then normalised to

the reference matrix viscosity:

ηr =
ηeff

ηs0 ,matr

(10)

The bulk shear rate is defined as:

γ̇ = 2ε̇xz = 2
1

2

(
∂vx
∂z

+
∂vz
∂x

)
(11)

where ∂vx/∂z is the difference in adimensional velocity between the top plate (-

1) and the bottom plate (1) over the distance between the plates (0.9), whereas

∂vz/∂x = 0, because there is no imposed vertical velocity. Equation 11 can

then be rewritten as:

γ̇ =
−1− (+1)

0.9
= −2.2̄ (12)

The bulk shear strain can be calculated from the shear rate by multiplying it

with time:
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2. Numerical Methods

γ = γ̇ t (13)

2.3 Model setup

The setup includes 3 rock types: the inclusions, the rigid plates and the matrix.

Their rheological properties are reported in table 1. The values of intrinsic

shear viscosity can go from 1 to 50 (Newtonian regime) or from 1 to 10 (Non-

Newtonian regime).

Table 1: Physical properties

Newtonian Non-Newtonian rheology

Rock type ηs0 ηs0 ηmin ηmax

Inclusions 1-50 1-10 10−2 103

Rigid plates 104 104 104 104

Matrix 1-50 1-10 10−2 103

All quantities are dimensionless. In the non-Newtonian rheology, the con-

trast is in the pre-exponential factor ηs0 and the viscosity can assume values

from ηmin = 10−2 to ηmax = 103, depending on the strain rate.

In order to understand how microstructures evolve and how this affects the

effective bulk viscosities of the aggregates, we varied two parameters and the

rheological regime (Newtonian and power-law).

The first parameter that we studied was the contrast in intrinsic viscosity

ηs0 . It is defined as the shear viscosity of the inclusions over the shear viscosity

15



2. Numerical Methods

of the matrix, in the simulations with Newtonian rheology and as the ratio

between the pre-exponential factor in the simulations with non-Newtonian

rheology (equation 8).

We considered values from ηc = 0.02 (inclusions 50 times weaker than the

matrix) to ηc = 50 (inclusions 50 times stronger than the matrix). Values

of contrasts greater than 50 or smaller than 0.02 in the Newtonian regime

and greater than 10 or smaller than 0.1 in the non-Newtonian regime caused

problems with the convergence of the model.

The second parameter that we considered is the volume fraction of the in-

clusions in the model. The box has volume 1 and 10% of its volume is occupied

by the rigid plates. Of the remaining 0.9 volume, a fraction is taken by the

inclusions and the rest by the matrix. Such fractions are 10%, 15%, 20%, 25%

and 30%. Figure 6 compares the initial distributions of spheres that occupy

10% and 30% of the aggregate’s volume.

(a) 10% (b) 30%

Figure 6: Initial setups of the two end members for the volume fraction: 10% (left) and 30%

(right).
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2. Numerical Methods

2.3.1 Sphere distribution

The model for generating the initial position, size and shape of spheres in the

matrix box is called GRADGENE3D, a code developed by Manuele Faccenda.

The program randomly chooses a point in the available space and starts build-

ing a spherical volume around it. If the sphere radius reaches the imposed

length, the inclusion position is saved; conversely, if the sphere touches an-

other object before it reaches the set dimension, the inclusion is deleted and

the program tries to build a new one from a different point.

The sphere radius can be fixed (Fig. 7a, monodisperse suspension) or belong

to an interval (Fig. 7b, polydisperse suspension). In this case, the spheres radii

varied between 0.05 and 0.2.

When the desired inclusions-to-matrix volume ratio is reached, the program

saves the initial coordinates of all the spheres, which then have to be copied

into the input file for the I3ELVIS code. The remaining volume is assigned to

the matrix.

(a) Monodisperse (b) Polydisperse

Figure 7: Initial setups of the monodisperse and polydisperse suspensions with spherical

inclusions and rigid plates. Here, the volume fraction of the inclusions is 30%.
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2. Numerical Methods

2.4 Benchmark

In order to benchmark the code, we compared our numerical results of a single

rigid sphere with two analytical solutions: Einstein’s (Einstein, 1906) and

Krieger and Dougherty’s (Krieger & Dougherty, 1959) equations, described in

section 1.2.1.

The numerical experiments performed to benchmark the code consisted of a

single non-deformable sphere immersed in a matrix undergoing a simple shear

deformation. This was imposed, like in the actual numerical experiments, by

two sliding rigid plates at the top and bottom of the model. We performed

tests with different radii, from 0.1 to 0.3. Two numerical resolutions were used,

a lower one, with 101×101×101 nodes in each direction, and a higher one, with

245×245×245 nodes.

All the length and dimensions are normalised to the size of the box edge,

which is set to one. Tests were performed both in Newtonian and non-

Newtonian rheology.

To test the model, we computed the viscosity using two different equations,

the first one involves the shear heating:

ηr =
< hs >

(2 < ε̇
II
>)2

(14)

whereas the second one uses the second invariant of stress tensor:

ηr =
< σ

II
>

2 < ε̇II >
(15)

where ηr is the relative bulk shear viscosity, < · > are volume-averaged quan-

tities in the matrix-inclusion domain, < hs > the mean shear heating, < ε̇
II
>

the mean second invariant of the strain rate tensor and < σ
II
> the mean

second invariant of the stress tensor.
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2. Numerical Methods

Our results perfectly reproduced the values predicted by the Krieger and

Dougherty’s equation (eq. 4) if the viscosity was calculated using equation

15. The results were more accurate when they were performed with high

numerical resolution. The effective viscosity results from all tests with all the

different radii are shown in figure 8, together with the comparison with the

two analytical solutions (equations 1 and 4).

0 0.05 0.1 0.15

Volume fraction

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

r

Relative effective viscosity

Figure 8: Relative effective viscosity of a hard-sphere suspension as predicted by Enstein’s

and Krieger and Dougherty’s equations, dashed and solid lines respectively, and

as computed by our model, using two different equations and two resolutions.

Newtonian regime.

We report the dynamic variables fields from the third of our benchmark

experiments, in which the spherical inclusion had a radius of 0.2, in figure 11.

The model produced symmetrical geometries in the several computed variables,

which is what one can expect from such set-ups.

The velocity field is perturbed around the sphere by its presence. The matrix

flow is hindered by the rigid inclusion in the central part of the model, which
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2. Numerical Methods

causes the velocity to be higher at the top and bottom of the sphere, where

the flow is stronger.

Higher values in the vorticity field are found at the top and at the bottom

of the inclusion, whereas low values are located in the regions of low velocity.

A comparison between the velocity field in a Newtonian and in a non-

Newtonian regime is reported in figure 9. The model dimensions are too small

to tell if the separatrix is bow-tie-shaped or eye-shaped, in fact it is not possible

to see the stagnation points and the shape of the stramlines around them. Nev-

ertheless, there doesn’t seem to be much difference between the two regimes,

which is consistent with Pennacchioni et al. (2000).

(a) Newtonian (b) Non-Newtonian

Figure 9: Streamlines and velocity field in a matrix containing a rigid (non-deformable)

sphere. The sphere’s radius is 0.2. The viscosity contrast is ηc = 1000.
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2. Numerical Methods

Stress and second invariant of strain rate are both perfectly symmetrical,

with maxima and minima positioned around the sphere.

Strain is not symmetrical because it accumulates while the inclusion rotates,

entraining part of the matrix in its motion.

A vertical section displaying the pressure distribution shows four quadrants,

two positive and two negative. The two positive ones are in the σ1 direction.

The pressure perturbations generated by a rigid sphere are compared with

the ones predicted by the 2-D analytical solution by Schmid & Podladchikov

(2003) in figure 10. The presence of a rigid sphere embedded in a matrix 1000

times weaker leads to two zones of overpressure and two of underpressure,

symmetrically distributed in four quadrants. In our case, because the shear is

sinistral, the main component of stress is in the second and fourth quadrants,

in Schmid & Podladchikov (2003), it is in the first and third ones, being in a

dextral simple shear situation.

Figure 10: Pressure distribution in Schmid & Podladchikov (2003) and in our benchmark

experiment. The first distribution is caused by a dextral simple shear, the one in

our model by a sinistral simple shear.
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2. Numerical Methods

Figure 11: A single rigid sphere is immersed in a deformable matrix. A vertical plane po-

sitioned at half the length of the y axis shows velocity, pressure, strain, second

invariant of the strain rate, second invariant of stress and second invariant of

vorticity of the matrix. The rheology is Newtonian.
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2. Numerical Methods

2.5 Post processing

We wanted to track the evolution of the microstructure with some parameters

in order to evaluate it in a more precise way. It is interesting to see how some

of the variables change along the vertical direction when the strain increases.

Therefore, the post processing included some calculations about the inclusions

shape and position. It also allowed us to assign a mean value of strain rate

and vorticity to each inclusion in a vertical profile.

We used D-Rex, a program written in Fortran 90 that was developed for

simulating LPO evolution, initially for olivine aggregates, then expanded to

other minerals, by plastic deformation and dynamic recrystallisation (Kamin-

ski et al., 2004).

The program takes as input the velocity gradient tensor Dij = ∂vi/∂xj and

the initial position of the inclusions, as provided by GRADGENE3D (section

2.3.1). The finite strain ellipsoid (FSE), the strain rate and vorticity of the

inclusions are obtained by averaging these quantities from all the particles

belonging to a given inclusion.

The aspect ratio is defined as the ratio of the long axis over the short axis

of a particle: R = a1/a3.

With this output, for each inclusion it is possible to plot as a function of the

bulk shear strain:

• The ratio of FSE’s semi-axes on a Flinn diagram

• The aspect ratio

• The average strain rate

• The average vorticity
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2.6 Fitting

In order to find an equation for the bulk effective shear viscosity as a function

of shear strain, viscosity contrast and volume fraction, the data of the effective

viscosity had to be fitted with a least square regression to a curve. The problem

involves four dimensions, since there are three independent variables and one

dependent variable. However, it is possible to split the problem into two

phases. In the first fit, the effective shear viscosity is parametrised as a function

of strain and some coefficients that depend on volume fraction and viscosity

contrast. The coefficients are then modelled as a function of the two other

parameters as 2-D surfaces.

All the data processing after the numerical experiments was performed with

Matlab. Fitting has been made with the lsqcurvefit function, a solver for

non-linear data-fitting problems in least-square sense. Given two input dataset

(xdata, ydata) and a function, the solver calculates coefficients (c) that solve:

min
x
‖F (c, xdata)− ydata‖22 = min

x

∑
i

(F (c, xdatai)− ydatai)2.

It minimises the sum of the squares of the residuals of the points from the curve

described by the function F and its coefficients c. The algorithm proceeds

iteratively from an initial guess until the error is less the function tolerance,

the change in the coefficients or residuals is less than the tolerance or the

maximum number of iterations is reached (MATLAB Optimization Toolbox).

The goodness of fit is evaluated with the coefficient of determination (R2).

It is a statistical measure of how well the model predicts the real data and it is

calculated as the square of the Pearson’s correlation coefficient (ρY,Ŷ ) between

the data and the model, which is computed as:
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ρY,Ŷ =
cov(Y, Ŷ )

σY σŶ
. (16)

This expression can be rewritten so that

ρ(Y, Ŷ )2 =

∑
i(Ŷi − Ȳ )2∑
i(Yi − Ȳ )2

(17)

which can be proved to correspond to the definition of R2:

ρ(Y, Ŷ )2 =
SSreg
SStot

= R2 (18)

where Y and Ŷ are the observed and the predicted data respectively, σY , σŶ

are their standard deviations, SSreg is the total sum of squares and SStot the

explained sum of squares.
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3 Results

3.1 Newtonian Rheology

3.1.1 Fabric

The aggregate’s fabric evolved with increasing strain with geometries that

depend on the viscosity contrast and on whether the rheology was Newtonian

or not. Our simulations reached shear strain γ = 10.

We observe two completely different fabrics if the inclusions were less viscous

or more viscous than the matrix. The evolution of the fabric can be found at

the link in figure 12, where 12a has ηc = 0.1 and 12b ηc = 10, while the fabric

at γ = 10 is shown in figures 13 and 15 respectively.

Inclusions weaker than the matrix become oblate, flatten out and eventu-

ally merge. They form planes of interconnected weak material that spread

throughout the whole aggregate width (Fig. 13).

In general, inclusions stronger than the matrix develop an elongated shape

like a prolate ellipsoid. Some of them tend to aggregate too, but they never

form pervasive planes (Fig. 15). However, for small viscosity contrasts (e.g.

ηc = 2), even if they are stronger than the matrix, some flattening occurs in the

inclusions, leading to a microstructure that is between the two end members.

In this case, the inclusions slightly flatten out, but rarely merge (Fig. 14).

(a) https://goo.gl/GHpzXB (b) https://goo.gl/zpCSbg

Figure 12: Animations showing the evolution of fabrics for ηc = 0.1 (a) and ηc = 10 (b).
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3. Results

Figure 13: Inclusions shape in an aggregate after γ = 10. Inclusions viscosity is 10 times

lower than the matrix viscosity.

Figure 14: Inclusions shape in an aggregate after γ = 10. Inclusions viscosity is 2 times

higher than the matrix viscosity.
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Figure 15: Inclusions shape in an aggregate after γ = 10. Inclusions viscosity is 10 times

higher than the matrix viscosity.

We used three ways of tracing the evolution of the microstructure and the

shape and position of each inclusion that forms it: Aspect ratio, their height

above the lower plate and where they plot on the Flinn diagram.

A good indicator of how the microstructure evolves with strain is the as-

pect ratio of the inclusions. Calculated as the ratio of the longest axis over

the shortest, it is plotted as a function of the distance from the lower plate

in figure 16. Each point represents an inclusion and its coordinate in the y

axis shows its position along the vertical axis (z in the models). The inclu-

sions start from a spherical shape (aspect ratio = 1) and elongate with the

progressive application of strain. In the case of strong or weak inclusions, the

evolution of the aspect ratio is similar: inclusions are more elongated closer to

the boundaries in both cases, but they differ at the beginning and in absolute

values. In aggregates with weak particles, the inclusions are more elongated
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at the centre of the model when the deformation process starts and only after

some strain application this configuration changes and the inclusions are more

elongated at the boundaries. The values reached at γ = 10 are almost four

orders of magnitude greater than the initial ones. The difference between the

ellipticity of the inclusions at the margins and the ones at the center is almost

of two orders of magnitude.

When inclusions are stronger, the aspect ratio distribution does not change

its pattern. It starts with higher values at the boundaries and preserves this

concavity while the strain increases. The values are not as high as in the

previous case: the highest ones are around 12 and the central ones are approx-

imately half this value and not orders of magnitude lower as it happens in the

weak inclusions.

(a) ηc = 0.1 (b) ηc = 10

Figure 16: Aspect ratio evolution with increasing strain of weak and strong inclusions in

aggregates with viscosity contrasts ηc = 0.1 and ηc = 10. Inclusions are 30% of

the aggregate’s volume.

If we approximate the inclusions’ shape to an ellipsoid, it is possible to plot

it on a Flinn diagram and evaluate whether the inclusions evolve into prolate or

oblate ellipsoids. The shape of an initially spherical inclusion reflects its finite
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strain ellipsoid. The longest distance between two points of the inclusion is

taken as the longest axis (a1), and two perpendicular directions as a2 and

a3, with a3 being the shortest. They represent the principal strain axes and

were initially diameters of the sphere. The ratio between the longest and

intermediate axes, a1/a2, of each inclusion is plotted along the y axis, whereas

the ratio between the intermediate and shortest axes, a2/a3, is plotted along

the x axis. Therefore, the shape of each ellipsoid can be fully characterised by

these two ratios.

Points that plot on the diagonal have the intermediate axis that remains

constant during deformation and the white circle represents the shape of the

bulk ellipsoid. This would be the position of the points if the material was

homogeneous and the strain plane. Our aggregates, however, are characterised

by inclusions with a different viscosity with respect to the matrix. This results

in a non-homogeneous distribution of strain that causes a different deforma-

tional behaviour between matrix and inclusions. Therefore, most of the points

that represent the inclusions plot away from the diagonal line.

In the region below the diagonal line plot the inclusions that undergo flat-

tening strain. They have an oblate shape and the intermediate axis is longer

than the original sphere radius.

In the case of constrictional strain, the ellipsoids have a prolate shape and

plot above the plane strain line. These are the spheres that shorten their

intermediate axis.

After a deformation of γ = 10, aggregates whose inclusions are more viscous

than the matrix have their inclusion ellipsoids plotted above the diagonal line

(Fig. 17a). The inclusions are less deformed than the bulk aggregate: in fact,

the ellipsoids are closer to the axes origin than the white sphere representing

the bulk deformation.
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If the viscosity is lower in the inclusions, they accumulate more strain and

plot much farther from the origin and below the diagonal line. Therefore, we

can conclude that they are much more deformed and assume an oblate shape

(Fig. 17b).

(a) ηc = 10

(b) ηc = 0.1

Figure 17: Flinn diagram of aggregates with ηc = 10 and ηc = 0.1 respectively. Newtonian

rheology, volume fraction φ = 30 in both figures.
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The last way we used to trace the microstructure evolution is the height of

each inclusion as a function of the shear strain. Figure 18 shows the vertical

coordinate of the centre of each inclusion plotted against the shear strain (γ).

The result is a graph that describes the variation of each inclusion’s position

along the vertical axis with time.

For ηc << 1, inclusions that are closer to the plates tend to migrate away

from the boundaries. This is a well-known phenomenon in fluid dynamics:

particles in a flow tend to concentrate at the center of the flow and away from

the margins. Our inclusions, as initially passive elements, take this behaviour.

For ηc >> 1, however, they show the opposite behaviour and get closer

to the rigid plates, as they tend to move towards regions that are free from

inclusions, such as the zones close to the plates. The vertical coordinate of

each inclusion oscillates as they are pushed by the neighbouring inclusions

towards the plates. This effect is more visible at low strains, when the particles

are still nearly spherical. It is also more efficient when the volume fraction

is higher and particularly when the viscosity contrast is greater. As in the

case of weaker inclusions, the oscillations are greater at the incipient phase

of deformation, but they do not disappear as the strain increases, at least

not before it has reached γ = 10. Some symmetrical trends can be observed

when two inclusions are interacting with each other: while a curve decreases,

another one increases. The correspondence between trajectories is, however,

not perfect, as the interaction is not limited to two inclusions at a time, but

they are affected by the presence of other surrounding particles. These multiple

interactions make the curves more variable and complicated.
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Figure 18: Vertical positions of inclusions closest to the boundaries with the increase of γ.

On the left side, the viscosity contrast is 0.1, on the right side, ηc = 10. On the

y axis, their distance from the bottom of the model is reported.

In polydispersed suspensions, weak inclusions interconnect more easily. Sus-

pensions with the same volume fraction of the less viscous phase but with

inclusions that have different dimensions are more likely to develop foliation

planes. Since the inclusions accommodate much more strain when they are

interconnected, the difference in strain distribution between inclusions and

matrix is higher in polydispersed aggregates (Fig. 19a). This phenomenon is

34



3. Results

emphasised in the power-law regime (Fig. 19b), where this difference in inclu-

sions dimensions leads to the formation not only of interconnected planes, but

also of S-C structures.

In fact, the most efficient way to make the weak inclusions interconnect is

having a power-law viscosity. The fact that they accommodate more strain

causes them to lower their viscosity, which makes it easier and easier for them

to deform. The localisation mechanism is so efficient that they form S-C planes

that are as wide as the model width.

(a) Newtonian rheology (b) Non-Newtonian rheology

Figure 19: Comparison between monodispersed suspensions and polydispersed suspensions

in Newtonian and power-law regime. Red and orange lines are the strain evolution

of polydispersed suspensions, blue lines are monodispersed suspensions. Solid

lines are the strain evolution in the matrix, dashed lines strain evolution in the

inclusions.

35



3. Results

3.1.2 Dynamic Variables Fields

In this section, we report the distribution of strain, pressure, stress, strain rate,

vorticity and velocity along a vertical plane positioned at the middle of the

model, perpendicular to the y axis, and parallel to the deformation direction

(x axis) and the vertical one (z axis). In the reported simulations, the viscosity

contrast ηc is 10, when the inclusions are the more viscous phase, and ηc = 0.1,

when the matrix is. In all the following aggregates, inclusions occupy 30% of

their volume. All the figures have been made at γ = 10.

Strain.

(a) ηc = 0.1 (b) ηc = 10

Figure 20: Strain distribution for inclusions 10 times weaker (a) and 10 time stronger (b)

than the matrix.

Strain localises in the inclusions if they are weaker than the matrix, which

barely deforms. The more interconnected they get, the more strain localises in

them, forming foliation planes. This is particularly evident in the inclusions
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that have merged at ∼ 0.8 along the z axis (Fig. 20a).

In the second case, the inclusions accumulate much less strain, which is

concentrated mainly in the matrix around them instead (Fig. 20b). The

volume between two strong inclusions is the place where strain accumulation

is more favoured, followed by the portions of matrix closest to the plates.

Pressure.

(a) ηc = 0.1 (b) ηc = 10

Figure 21: Pressure distribution for inclusions 10 times weaker (a) and 10 time stronger (b)

than the matrix.

The pressure distribution in inclusions and matrix is consistent with the

distribution that Moulas et al. (2014) described in with their analytical solu-

tions. In our case, a sinistral simple shear deformation is applied along the x

direction by the plates. Therefore, σ1, the main component of stress, is at an

angle of 45°, which means that it is nearly perpendicular or at a high angle to

the inclusions.
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Higher or lower pressure develop in an inclusion according to its viscosity

(Fig. 22) and to the stress geometry. Under compressive conditions, with

σ1 perpendicular to the longest axis, a weak elliptic inclusion immersed in a

stronger viscous matrix has a higher pressure and stress inside the inclusion

than in the matrix. The opposite configuration develops if the inclusion is

stronger, causing it to have a negative pressure with respect to the matrix

(Moulas et al., 2014). The same pattern of pressure distribution is observed in

our models, which have the principal direction of stress nearly perpendicular

to the inclusion longest axes. However, the pressure distribution described in

figure 22 is true for an isolated and perfectly elliptical inclusion. In fact, the

pressure in our simulations is not at all as regular as in the analytical solution

of a single 2-D ellipse. Despite the complexity of our model, what Moulas et al.

(2014) predicted is generally valid in our aggregates.

Positive pressure is found inside the inclusions when they are weaker. The

places with the lowest pressure are the matrix regions closest to the inclusions

tips, forming zones of underpressure parallel to the direction of the inclusions

elongation. In the case of stronger inclusions, pressure is generally higher in the

matrix, especially at the boundary between matrix and an inclusion when this

is perpendicular to σ1 and there are no interactions with other particles. In case

such interactions occur, pressure localises between the inclusions: the closer

two inclusions are, the higher the pressure between them will be. Pressure is

negative inside the inclusions, but it is not homogeneous due to their irregular

shape and to the interactions between them.
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(a) Weaker inclusion (b) Stronger inclusion

Figure 22: Pressure field perturbation in a viscous medium due to an elliptical inclusion

predicted by analytical solutions. From Moulas et al. (2014).

Stress.

In figure 24a, the stress distribution is almost homogeneous because the

inclusions are not obstacles to the matrix flow any more. They don’t localise

stress except for very small regions. However, if the inclusions are stronger

(Fig. 24b), there is still some localisation where two inclusions are very close

to each other. They are places in which the matrix flow is more obstructed.

However, the stress field is not constant at all during the deformation pro-

cess. This is particularly evident in the case of high viscosity contrasts, as

observed from figure 23. Stress progressively assumes more extreme values

and concentrates much more in the matrix at higher viscosity contrast. This

phenomenon is known as stress concentration and causes a hinder in the flow

of the matrix, which is the load-bearing framework. As strain increases, the

difference in stress field amongst aggregates with different viscosity contrasts

becomes smaller.
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γ=1.1 γ=3.3 γ=6.7

ηc = 0.5

ηc =0 .1

ηc = 0.02

Figure 23: Stress evolution with strain for three different viscosity contrasts.

(a) ηc = 0.1 (b) ηc = 10

Figure 24: Stress distribution for inclusions 10 times weaker (a) and 10 time stronger (b)

than the matrix at γ = 10.
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Strain rate.

Strain rate distribution shows how inclusions are accommodating more and

more strain when the inclusions are less viscous (Fig. 25a). The effect is greater

once they have merged with each other, because it is along these planes that

deformation can localise more easily. A higher strain rate in such planes means

that deformation is still increasing. In the opposite configuration, inclusions

deform very little, especially in the last steps (Fig. 25b). Strain is still in-

creasing in the portions of matrix between two inclusions close to each other,

especially when their margins are parallel to the matrix flow.

(a) ηc = 0.1 (b) ηc = 10

Figure 25: Second invariant of strain rate distribution for inclusions 10 times weaker (a) and

10 time stronger (b) than the matrix.

Vorticity.

At γ = 10, the vorticity distribution (Fig. 26) resembles the strain rate one.

It is higher in the weaker phase, especially where the inclusions merge (ηc =

0.1) or where the matrix is confined by two neighbouring strong inclusions

(ηc = 10). The similarity is caused by the fact that their main components are
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the xz components, which are defined as:

ε̇xz =
1

2

(
∂vx
∂z

+
∂vz
∂x

)
and

ω̇xz =
1

2

(
∂vx
∂z
− ∂vz
∂x

)
and the vertical component of the velocity field vz is negligible compared to

the horizontal one (vx). Therefore, the two xy components ε̇xz and ω̇xz are

almost the same.

(a) ηc = 0.1 (b) ηc = 10

Figure 26: Second invariant of vorticity distribution for inclusions 10 times weaker (a) and

10 time stronger (b) than the matrix.

Although the two parameters reach very similar values, they do not start

with the same ones and they have different evolutions with the shear strain. In

fact, if we plot them on a 1-D diagram in which the inclusions have been sorted

by their vertical position, they show a different evolution, which is reported in

figure 27 for an aggregate with ηc = 0.1. At low strain, the vorticity is lower in
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Figure 27: Mean strain rate and vorticity second invariants of each inclusion along a vertical

profile. Profiles at four steps of deformation are shown. ηc = 0.1.

the centre of the model and the profile has two regions of higher values on both

sides of it. On the other hand, the strain rate profile is more homogeneous from

the beginning. They converge towards similar profiles already at relatively low

strain (γ ∼ 4, green markers) and stabilise at around γ ∼ 7 (yellow markers).

Velocity.

Figure 28 shows the velocity magnitude. The white curves are streamlines,

which trace the flow of material. When inclusions are the weak phase, the

difference in velocity between the zones that are closer to the plates and the

centre of the box is higher than in aggregates with strong inclusions. In both
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cases, at the matrix-plate boundaries the streamlines are perfectly parallel to

the plates, meaning that they are not being perturbed by the inclusions. How-

ever, closer to the central horizontal plane, they are affected by the presence of

the inclusions and bend. If ηc = 0.1, the flow is not influenced by the inclusions

until the very centre of the box, where streamlines describe ellipses (Fig. 28a).

But if ηc = 10, the inclusions hinder the matrix flow more, and the majority

of the volume is affected by their presence; the lines are much more perturbed

too. In the centre of the model, the lines are modified by the strong inclusions.

This is the place where the inclusions are less elongated and therefore the flow

is more irregular. The perturbation from the imposed velocity is shown in

figure 29 and it is obtained subtracting the bulk horizontal velocity from the

effective horizontal velocity component vx. The perturbation in the aggregate

with weak inclusions (Fig. 29a) is more homogeneous and generally positive,

which results in regular, horizontal flow lines in figure 28a. In aggregates with

stronger inclusions (Fig. 29b) the perturbation is much more irregular, with

positive and negative values distributed among the inclusions. This leads to

more irregular streamlines, especially in regions of positive perturbation such

as the centre of the cube (Fig. 28b).
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(a) ηc = 0.1 (b) ηc = 10

Figure 28: Velocity field and streamlines for inclusions 10 times weaker (a) and 10 time

stronger (b) than the matrix.

(a) ηc = 0.1 (b) ηc = 10

Figure 29: Velocity perturbation from the externally imposed velocity.
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3.2 Power-law rheology

3.2.1 Fabric

As shown in the previous section, the weak phase accumulates more and more

strain. Since the viscosity depends on the strain rate, the weak phase lowers

its viscosity, which increases the strain rate and so on. The evolution of the

fabric until γ = 10 can be found at the link in figure 30a. As reported in figure

31, the inclusions merge much more easily when they are the weaker phase,

forming foliation planes which can be parallel to the boundaries (rigid plates)

or ‘climb’ and connect to planes of a different level. These planes are where the

maximum deformation localises and are found in the middle horizontal plane,

symmetrical with respect to the boundaries.

The stronger phase undergoes the opposite process: as it is more viscous, it

deforms much less (see animation linked in figure 30b and figure 32 at γ = 10),

causing the strain rate to be very low. Consequently, the inclusion viscosity

increases and their strain rate decreases. This feedback mechanism causes

contrasts to be higher: variables like pressure, strain rate, stress reach more

extreme values. Therefore, after the same amount of shear stress (γ = 10) the

fabric that the aggregate develops shows a different structure with respect to

the Newtonian case.

(a) https://goo.gl/euHqom (b) https://goo.gl/EGf1pT

Figure 30: Animation of fabric evolution in a power-law aggregate. ηc = 0.1 (a) and 10 (b).
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Figure 31: S-C structure developed by an aggregate with power-law rheology (n = 3), vis-

cosity contrast ηc = 0.1 and volume fraction φ = 30. Shear strain γ = 10.

Figure 32: Aggregate with power-law rheology (n = 3), viscosity contrast ηc = 10 and

volume fraction φ = 30. Shear strain γ = 10.
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(a) ηc = 0.1 (b) ηc = 10

Figure 33: Aspect ratio of a non-Newtonian aggregate with a difference of a factor 10 between

matrix and inclusions pre-exponential factor. Inclusions elongate with increasing

shear strain (γ), whose increase is represented in four colours.

The difference in aspect ratio of weaker or stronger inclusions is emphasised

in power-law rheology aggregates. For ηc = 0.1 in the Newtonian simulation,

there is a clear trend as the inclusions elongate more homogeneously, evolving

with almost the same rate. The boundary effect is more evident and their

aspect ratio distribution along the vertical direction assumes a parabolic shape.

With a power-law rheology, though, the aspect ratios increase much faster

especially at low shear strain. The parabolic trend is less obvious (Fig. 33a).

When ηc > 1, the difference with respect to the linear viscosity is greater, with

only three inclusions that have an aspect ratio greater than 2 after γ = 7.8

and only one that reaches an aspect ratio > 3 (Fig. 33b). In the Newtonian

rheology, all the inclusions already had an aspect ratio > 2 after γ = 4.5.

In an aggregate with power-law rheology and weaker inclusions, the strain

localises in planes where inclusions merge. With randomly distributed spheres,

this plane should form at the centre of the cube, symmetric with respect to
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the sliding plates and the direction of shear (Fig. 34). However, if they start

interconnecting at a different level, the plane that forms and accumulates the

most strain might not be at the centre.

Figure 34: Strain distribution in an aggregate with weaker inclusions. ηc = 0.1, φ = 30%.
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3.3 Viscosity evolution

3.3.1 Linear Rheology

We observed two types of viscosity evolution with strain, one for viscosity

contrasts ηc 6 2 (mode 1) and one for ηc > 10 (mode 2). All of them are

included in figure 35, divided according to their mode of evolution.

(a) Mode 1 (b) Mode 2

Figure 35: Effective shear viscosity evolution with strain for 7 viscosity contrasts. Their

values are reported in the legends, the volume fraction of the inclusions is φ = 30

for all of them.
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Mode 1

For small values of strain, the viscosity first increases linearly with strain,

but then, after reaching a maximum, it decreases exponentially towards an

asymptotic value. The position of the maximum changes with different viscos-

ity contrasts ηc (see figure 35a) and volume fractions φ (Fig. 36) and so does

the asymptote, which corresponds to the steady-state viscosity value. In this

case, the effective shear viscosity decreases as strain is applied and as the in-

clusions flatten. A great decrease in viscosity happens when inclusions merge,

creating planes of weakness where the deformation can localise.

We include aggregates with stronger inclusions but low viscosity contrasts in

this mode because the aggregate’s effective viscosity trend resembles the ones

that weaker inclusions form. We do not observe dramatic decreases in bulk

viscosity when the merging is not very efficient (ηc = 0.5 or ηc = 2).

Figure 36: Mode 1 evolution with strain of bulk effective shear viscosity normalised to the

matrix viscosity. Inclusions are weaker than the matrix (ηc = 0.02) in all the

curves, volume fractions φ = 10%, 15%, 20%, 25%, 30%.
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Mode 2

Mode 2 includes viscosity trends that don’t reach a steady-state value be-

fore γ = 10 and is reported in figure 37. They keep oscillating as the strain

increases, though a decrease of the amplitude of such oscillations is observed

in some cases (e.g. ηc = 10).

Figure 37: Mode 2 evolution with strain of bulk effective shear viscosity normalised to the

matrix viscosity. Inclusions are stronger than the matrix (ηc = 20) in all the

curves, volume fractions φ = 10%, 15%, 20%, 25%, 30%. See figure 36 for the

legend.

As reporting the effective shear viscosity as a function of three parameters

would require four dimensions, all the effective viscosity evolutions are reported

in figure 38 as functions of ηc and γ on three planes representing three different

volume fractions. Values of ηr for ηc < 1 have been plotted as −1/ηr to

emphasise the difference in ηr.
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Figure 38: Effective shear viscosity of all simulations with ηc = 0.02, 0.1, 0.5, 2, 10, 20, 50 and

φ = 10%, 20%, 30%. Surfaces between actual values are interpolated. Vertical

and horizontal planes are at ηc = 1 and ηr = 0 for reference.

3.3.2 Power-law rheology

The effective shear viscosity evolution of an aggregate with a weak phase im-

mersed in a stronger matrix is reported in figure 39a. The effective viscosity of

a Newtonian aggregate is added for comparison. For ηc = 0.1, the trend is the

same as the one of a Newtonian aggregate, after an initial growth in the effec-

tive viscosity, it reaches a peak and decreases towards a plateau at higher shear

strain values. However, the difference in viscosity between the two rheologies

increases with increasing strain. While in the Newtonian case the effective vis-

cosity decreases by two thirds, the viscosity of the non-Newtonian one halves.
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The trend in the case of a non-Newtonian rheology, however, is much more

different from the one of a Newtonian rheology when inclusions are stronger

than the matrix. For ηc = 10 and a Newtonian regime, there are some os-

cillations in the bulk viscosity values, but overall it decreases as the system

stabilises. But with a power-law rheology, the inclusions are too strong to

find an stable configuration and keep blocking the flow, increasing the bulk

viscosity value more and more (Fig. 39a).

(a) ηc = 0.1 (b) ηc = 10

Figure 39: Comparison between bulk viscosities of an aggregate with Newtonian (solid line)

and power-law rheology (dashed line). The first one has a viscosity contrast

ηc = 10, in the second, 10 is the contrast in pre-exponential factor of inclusions

and matrix. The volume fraction of the second phase is 30 for both aggregates.
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3.4 Viscosity Parametrisation

We wanted to find an equation that predicts the effective shear viscosity of

the aggregate evolution with strain and as a function of viscosity contrast and

the volume fraction of the second phase. In order to obtain such an equation,

we plotted the viscosity curves for every combination of viscosity contrast and

volume fraction that we simulated and fit a curve to them. The fitting process

was done in Matlab with a function that uses least squares regression to

minimise the residuals of the points from the curve. Viscosity contrasts ηc less

than 10 show a behaviour similar to each other that can be described by a

general equation with only a few changing parameters.

In a Newtonian regime, their curves have a similar trend and the equation

that best predicts the data is:

ηr(γ, φ, ηc) = c
1
(γ + c

2
)e−

γ/c
3 + c

4
(19)

where the coefficients ci are a function of the viscosity contrast ηc and of the

volume fraction φ. In particular, c4 is the value of the relative effective viscosity

(η
f
) when the aggregate has reached a steady-state condition, ηr(γ →∞).

Equation 19 describes a curve that initially increases, reaches a maximum

and then exponentially decreases towards an asymptotic value. The first

growth in effective bulk viscosity is described by a linear dependence of ηr

on γ. The slope and the γ interval in which this behaviour is observed depend

on the viscosity contrast ηc and on the volume fraction φ. In particular, the

slope when γ = 0 is the first derivative of equation 19:

dηr
dγ

= c1e
−γ/c3

(
1− γ + c2

c3

)
(20)
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when γ = 0:

dηr
dγ

(γ = 0) = c1

(
1− c2

c3

)
. (21)

The first derivative is positive before the maximum, which is reached when

it becomes zero, more precisely at:

γm = c3 − c2 (22)

The curve then decreases towards the asymptote with a negative exponential

trend. The steepness, and therefore the speed with which the final value is

reached, depend on the third coefficient, c3 .

The steady-state ηr final value is c4 : when γ →∞, the exponential tends to

zero and the only coefficient left is c4 .

All of these coefficients are functions of ηc and φ, and once they have been set,

they contribute to build the equation for the bulk effective viscosity. Their role

in the equation is discussed in the following paragraphs. The volume fraction

of the inclusions is expressed as a fraction of 1.

First coefficient, c1

The role of c1 in the curve is not straightforward. It is however one of the

main components of the initial slope (equation 21). Its expression is:

c1 = 0.0668 | log ηc |7/5 (23)

The fitting has an R2 = 0.951.

c1 is a function of the natural logarithm of ηc, therefore c1 = 0 when ηc = 1,

meaning that the slope is zero if there is no viscosity contrast. In fact, if

the material is homogeneous, the graph for the viscosity is expected to be an

horizontal line at ηr = 1 (first derivative = 0). c1 becomes greater farther from
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the central value of 1 along the ηc axis in both directions. This is an effect

of applying the absolute value to the logarithm. The surface is not as sharp

as the magnitude of a logarithmic function would be, because the exponent

7/5 smooths the function around ηc = 1. For ηc → 0, which corresponds to

high viscosity contrasts when the inclusions are weaker, c1 increases. This

is consistent with the observations made in section 3.3: stronger viscosity

contrasts lead to marked initial increases in effective viscosity. The coefficient

c1 and the volume fraction φ don’t have a clear correlation, so we considered

the coefficient to be independent of φ. Its curve is reported in figure 40 with

a surface together with the values of c1 obtained from the fitting of equation

19. It describes the c1 values with R2 = 0.951.

Figure 40: Parametrisation of the first coefficient as a function of ηc and φ. The black points

are the coefficients c
1

for all the Newtonian simulations found with the fitting of

equation 19.
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Second coefficient, c2

The second coefficient has influence on the position of the peak value of the

effective viscosity along the γ axis and on the initial slope. As described by

equation 22, the maximum position on γ is a function of c2 and c3 . For small

values of c2 , the peak value moves towards higher values of γ and vice versa.

Its expression is:

c2 = 0.224 η2c − 0.0137 ηc + 0.872 (24)

which is a second degree polynomial in ηc. It is almost constant with φ, with

a few exceptions that cannot be taken into account when modelling c2 as a

function of the two parameters at a time. Equation 24 is plotted in figure 41,

the fitting has an R2 of 0.974.

Figure 41: c2 as a function of ηc and φ.

58



3. Results

Third coefficient, c3

c3 is the coefficient that divides γ at the exponent. The exponent is negative

and causes the viscosity to decrease. The value of c3 , for a fixed value of φ,

linearly increases with ηc (see figure 42), causing the exponential curve to

decrease more gently, as it is divided by a greater value. It also appears in the

equation for the position of the peak value along the γ axis (equation 22). It

results that the greater c3 is, the more the peak value moves towards higher

values of γ.

The expression for c3 is:

c3 = 0.6317 ηc − 0.1039φ+ 1.4415 (25)

This coefficient is linear in both ηc and φ. Except for an anomaly for ηc =

0.02 and φ = 0.1, the model reproduces the coefficient values well. R2 is 0.987,

the curve described by equation 25 and values of c3 are reported in figure 42.

Figure 42: Fitting of c
3

as a function of ηc and φ.
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Fourth coefficient, c4 or ηf

The fourth coefficient is probably the most important of all coefficients, as

it represents the final value of ηc, that is the effective bulk viscosity that the

aggregate reaches steady state conditions, η
f
. It is the value towards which

the viscosity curve tends when γ →∞.

η
f

= c4 = 0.8209 (log ηc)φ+ 1 (26)

where log ηc denotes the natural logarithm. When ηc < 1, c4 decreases with

φ, because log ηc < 0. This is a reasonable behaviour, since higher volume

fractions of a weak material decrease the aggregate bulk viscosity. Conversely,

when ηc > 1, log ηc > 0 and the bulk viscosity becomes greater with the in-

crease of the volume fraction of the stronger phase. When ηc = 1, which

means that there is no viscosity contrast, log ηc = 0 and ηf = 1. The curve is

displayed in figure 43, R2 = 0.982.

Figure 43: c
4

and steady-state value of ηr as a function of ηc and φ.
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When combining all these coefficients into the general equation of ηr evolving

with γ (equation 19), we observe that is easier to model higher viscosity con-

trasts (e.g. ηc=0.02 or 0.1) with respect to aggregates in which the difference

in viscosity is lower (Fig. 44). This is due to the clearer shape that curves

of higher contrast aggregates assume, when the trend is more pronounced:

sharp increase, peak value and exponential decrease. Lower contrasts produce

smoother curves, in which the coefficient roles are less clear and more difficult

to identify. Their curves vary little with γ, therefore errors that are small in

absolute value become much bigger when applied to curves that do not vary

much.

ηc = 0.02

ηc =0 .1

ηc =0.5

ф=0.1 ф=0.2 ф=0.3

Figure 44: Effective shear viscosities of aggregates with different viscosity contrasts and vol-

ume fractions. Solid lines are the results of the numerical simulations. Dashed

lines are the model calculated with equation 19 where the coefficients ci have

been computed with equations 23, 24, 25 and 26. The red point is the predicted

initial value of bulk effective viscosity calculated with equation 27.
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Smaller values of φ are easier to model, this might be because high values

involve more sphere interactions, which are less predictable.

Initial value, ηr0

We modelled the effective shear viscosity of the incipient stage. The data of

ηr are taken at γ = 0.02.

The equation that best fits the values is:

ηr0 =
(
1.1684 (ηc − 1)− 0.33109(ηc − 1)2

)
φ+ 1 (27)

which is the second-degree Taylor polynomial approximation at the point ηc =

1 and it is plotted together with the data of the initial value in figure 45. For

constant values of φ, the ηc-ηr0 relationship is almost linear, but it can be

better approximated by a Taylor polynomial.

Keeping ηc constant, the value of ηr0 decreases as φ increases when ηc < 1.

In fact, when ηc < 1, ηc − 1 < 0 and φ decreases. It means that the greater

volume of weaker inclusions there is, the smaller the bulk viscosity will be.

When ηc > 1, we observe the opposite situation: a greater volume (increase in

φ) causes an increase in the effective bulk viscosity. The equation and actual

values of ηr0 are plotted in figure 45, R2 = 0.995.

Initial values of viscosity were also compared with the analytical solution by

Hsueh & Wei (2009) for effective viscosity of suspensions of monosized hard

spheres (eq. 3). In this case, we considered only initial values before our

spheres start to deform, because Hsueh and Wei’s equation is only valid for

spherical inclusions. This comparison is reported in figure 46.
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Figure 45: Initial effective bulk viscosity values as functions of ηc and φ.

Figure 46: Values of relative effective viscosity ηr predicted by Hsueh & Wei (2009) with

an analytical solution for monodispersed suspensions of hard spheres (solid lines)

and results from our numerical simulations, initial values for γ = 0.0222.
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4 Discussion

4.1 Viscosity and fabric

Strong inclusions. The oscillatory trend of the bulk effective shear viscosity

for aggregates with strong inclusions is interpreted as a consequence of the

inclusion position. In fact, for ηc > 10 and in particular for ηc > 20, the

inclusions oscillate along the z (vertical) direction because of the interaction

with other particles (Fig. 18). When an inclusion that is moving horizontally

because of the imposed shearing finds another inclusion along its trajectory,

it is pushed in the vertical direction away from the central flow. The other

inclusion is consequently pushed in the opposite direction. Many of these

processes happen during the deformation and these multiple interactions are

reflected in the effective bulk viscosity (e.g. Fig. 37). The effect is intensified

by the confinement of the two rigid plates. Since the shear zone thickness

is limited by the presence of two non-deformable and unmovable plates, the

inclusions are not allowed to move away from each other, which forces more

interactions between them.

This effect is particularly evident at the beginning of the deformation pro-

cess. In fact, the inclusions are still spherical (i.e. they haven’t started elon-

gating yet), which causes them to be more likely to interact with each other

and so their trajectory depends much more on the geometrical distribution

of the particles. If two inclusions are close to each other, they are bound to

modify their trajectories because of the presence of the other one and their

vertical position is the consequence of the position of other particles. In this

phase, the tiling-up process plays a fundamental role in the microstructure and

consequently in the viscosity evolution.

Oscillations in the effective bulk viscosity are amplified by high viscosity
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contrasts. When the contrast is greater than 10, the inclusions are too strong

to develop an elongated shape that would allow the flow to be parallel to

the boundaries before γ = 10 (see ηc = 20 or ηc = 50 in figure 35). Their

effective bulk viscosities keep fluctuating and the general trend is positive, with

oscillations that depend on the interactions. We expect this trend to invert

when the inclusions will start to deform more efficiently and the structure will

allow a less disturbed flow, but this could require much higher strains.

Sudden increases of effective shear viscosity correspond to situations in which

the particles entangle themselves in cluster of strong particles blocking the flow.

Larger inclusions enhance the clustering process as they are more likely to tile

up. This configuration makes the viscosity unpredictable, since it strongly

depends on the initial distribution of inclusions and the greater the contrast

is, the more complicated the curve becomes. In the end-member case in which

the particles are rigid and non-deformable, they will keep interacting with each

other without finding a stable configuration.

For ηc = 10, the combination of tiling-up and inclusion elongation makes the

viscosity curve decrease with some fluctuations, meaning that the strength of

the inclusions causes them to interact and hinder the flux, but, especially at

greater strains, their elongation reduces the interactions and leads to a more

stable configuration.

This does not happen in the case of a power-law regime for the same ηc.

The particles are too strong to deform and they will preserve a nearly spherical

shape even if the applied shear strain is very high. The inclusions cannot reach

a stable configuration and the flow is continuously deviated by the presence

of these obstacles. The general trend is more similar to the ones with higher

contrasts in the Newtonian regime. The inclusions keep forming blocks for the

material flow and this behaviour is still observed when the contrast is 5 in the

66



4. Discussion

power-law viscosity.

In summary, the main factors that lead to greater oscillations in the viscosity

trend are a greater viscosity contrast, a higher volume fraction of the strong

inclusions, their greater size, the confinement of the shear zone and the (spheri-

cal) shape of the inclusions, which is a function of the shear strain. Oscillations

and increases in viscosity are emphasised in the case of non-Newtonian rheol-

ogy.

Weak inclusions. The initial increase in effective viscosity observed in

aggregates with weaker inclusions (Fig. 36) is interpreted to be caused by

the inclusion behaviour when they are still nearly undeformed. In fact, they

are passive elements in the matrix flow and, before they interconnect, act like

stronger inclusions do, tiling up and increasing the viscosity. The load-bearing

framework is the matrix, as it is the only phase that accommodates stress

at the beginning of the deformation. The inclusions push against each other

and hinder the flow, strengthening the aggregate. The higher the viscosity

contrast (i.e. the lower the viscosity of the weak phase), the stronger this

effect is. This is due to the fact that, at high viscosity contrasts, we observe

a stress concentration in the matrix: the stress partitioning between the two

phases is more extreme (see figure 23). Once the highest value of viscosity is

reached, the inclusions start accommodating strain and only at this point the

viscosity decreases. The value of strain at which the maximum is reached does

not seem to depend much on the volume fraction of the weak phase (Fig. 36),

but rather on the viscosity contrast (Fig. 35a).

Another important step in the effective bulk viscosity evolution is when the

percentage of strain accommodated by the inclusions becomes greater than

the fraction of strain accommodated by the matrix. For example, this is found

at γ ∼ 2.2 for ηc = 0.1 and φ = 30 (minute 0:08 of the animation at the
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link in figure 12a). It happens when, after some more application of strain,

the matrix, although difficult to deform, allows the inclusions to interconnect.

This efficient deformation stops the tiling-up and leads to the formation of

very elongated and flat interconnected inclusions that allow a nearly laminar

flow (Fig. 28a).

For very low viscosity contrasts, which are when the inclusions have a viscos-

ity that is twice or half the viscosity of the matrix, the stable configuration is

reached at very low strains (ηc = 0.5 and ηc = 2 in figure 35a). This is caused

by the fact that the aggregate deforms in an almost homogeneous way: the

difference in behaviour between the strong and the weak phase is very small.

The inclusions interact very little and only at the beginning of the strain appli-

cation, which causes the viscosity to increase like in the previously described

case, although the increment is much smaller. The aggregate soon reaches a

stable condition when they start to elongate in parallel to the flow direction

(Fig. 14). Due to the similar behaviour between inclusions and matrix, having

stronger or weaker inclusions does not make a big difference in the viscosity

evolution, as long as the contrast is low.

Our results are in accordance with Girard et al. (2016), who observed that

at large strain the rheology of the aggregate is controlled by the weaker phase.

Wang et al. (2013) observed instead strain hardening for strain less than

20% in their CaGeO3 perovskite (GePv) - MgO aggregate, which is consistent

with the experimental results by Girard et al. (2016) and with our numerical

experiments at these low strains.

The numerical study by Madi et al. (2005) on a bridgmanite and ferroperi-

clase mixture showed little strain partitioning, although they considered very

small strain (∼ 10−4). They don’t calculate the effective bulk viscosity.
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4.2 Viscosity Parametrisation

As reported in section 3.4, to describe the bulk effective shear viscosity evo-

lution, our simulations have been split into two sets. The first one includes

aggregates with inclusions less viscous than the matrix (ηc < 1) and inclu-

sions more viscous, but with low viscosity contrasts (ηc 6 2, mode 1 in figure

35a). This division considered the fact that inclusions 5 times stronger than

the matrix and more (mode 2, figure 35b) don’t reach a stable configuration

soon enough to be predicted by a (simple) equation. This is caused by the fact

that their strong viscosity contrasts do not let the inclusions deform enough

to allow a smooth flow. Therefore, the effective viscosity oscillations depend

on how much the inclusions interact with each other, which is determined by

their initial distribution much more than other parameters.

Mode 1 evolution has been fitted with equation 19 and the equations that

follow it for the coefficients ci. The evolution of ηr with γ has the same shape

described by equation 19, while ηc and φ influence the initial and final (steady-

state) values, the initial slope, the position and height of the peak value and

the slope of the exponential decrease.

The viscosity contrast, ηc, is the parameter that makes the curve change the

most. Every ci coefficient is a function of it and many of them depend on it in

a way that is stronger than linear (e.g. quadratic, equation 24). In particular,

ηc has a great influence on the initial positive slope, which is higher when the

viscosity contrast is larger, as discussed in section 4.1.

It also has an important role on the slope of the exponential decrease, which

is related to how fast the aggregate reaches a steady state. The greater the

viscosity contrast for weak inclusions (ηc << 1) is, the faster the exponential

decrease becomes. This implies that at high viscosity contrasts, the difference

between the initial and the final (steady-state) values is much greater (e.g.
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ηc = 0.02 in figure 35a).

The fact that ηc influences these two values is evident. There is a positive

correlation between the viscosity contrast and the effective shear viscosity at

γ = 0, approximated with a second-degree Taylor polynomial (equation 27),

whereas the relationship between ηc and the steady-state value is observed to

be logarithmic (equation 26).

Logarithmic relationships are common between ηc and other parameters or

coefficients, as the change in sign at ηc = 1 can describe a different behaviour

of contrasts that are < 1 and > 1.

The volume fraction has also an important role on the initial and steady-

state value, making the viscosity of the weaker phase less or more important

in the bulk one. On the other hand, its role seems less straightforward in other

parameters such as the peak value position on the γ axis or the steepness of

the exponential.

4.3 Aspect ratio and deformation distribution

When inclusions are weaker than the matrix and especially in a non-Newtonian

regime, the inclusion position is crucial to the resulting microstructure and,

consequently, to the effective viscosity. In fact, due to the initial random dis-

tribution, it is possible that two inclusions are relatively close to each other. If

they are in this particular configuration, they are much more likely to intercon-

nect. This leads to a very efficient strain localisation in the flat interconnected

inclusions. In our first numerical experiment with a random distribution of

spheres that have all the same dimension, we observed a peak in the strain

localisation, that was reflected in the aspect ratio distribution too (Fig. 33a),

in a non-symmetrical distribution with respect to the plates (e.g. in the ani-

mation linked in figure 30a). This asymmetry can only be explained with this
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geometrical factor. In fact, with a different initial distribution (i.e. polydis-

persed), the position of the localisation plane changes (Fig. 31).

The effect of boundary localisation is observed in every simulation and it is

very clear in all of them. For ηc < 1, the matrix is the load-bearing framework

at the beginning, forming more rigid layers close to the matrix, therefore the

more deformable portion is the central one, where the weak inclusions are

concentrated. In this configuration in which the boundaries are stronger, the

aspect ratio shows higher values at the centre of the model (Fig. 33a). This

situation persists until medium values of γ (γ ∼ 3.5 for ηc = 0.1 and φ = 30),

when the concavity of the aspect ratio profile along the vertical axis changes.

This means that boundary localisation only happens over a threshold value

of shear strain. Once the threshold has been passed, the mechanism is very

efficient, leading to differences in aspect ratio between boundaries and center

of two orders of magnitude.

In a power-low regime we were expecting this trend to be emphasised. How-

ever, the values of maximum aspect ratio have the same order of magnitude

and the boundary localisation is more efficient in the case of linear viscosity

than in non-Newtonian rheologies (Fig. 33a). This is interpreted to be the

effect of two opposite mechanisms of localisation: the first one, boundary lo-

calisation, concentrates the deformation at the boundaries and is more active

at low strains; the second one is the efficient localisation caused by the in-

terconnection of the inclusions that form planes of weakness in which aspect

ratio increases consequently. The first mechanism acts closer to the plates,

increasing the inclusion aspect ratio at the boundaries, the second one causes

the aspect ratio to be greater at the centre of the model, or, more generally,

along the plane of strain localisation. Therefore, the aspect ratio distribution

is not as clear as in the Newtonian aggregate, but appears more scattered due

to the combination of the two effects.
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In aggregates with strong inclusions, although the distribution of aspect

ratio along the vertical direction shows the same concave shape, the difference

in values is much smaller (Fig. 33b). The layer of matrix situated between

the plates and the volume of matrix and inclusions is now the weaker phase,

which causes the localisation to start immediately. In fact, the elongation at

the boundaries already starts at low strains.

In this case, having no localisation on central planes and the only places

of localisation being the boundary zones, the concavity is more evident in the

non-Newtonian regime, especially at intermediate strains. The central particles

are almost non-deformed while ellipticity of the inclusions at the boundaries

is two or three times greater. The over-all deformation is very low and the

elongation occurs only at the boundaries.

Boundary localisation is observed in nature: A rock containing a layer with

a different viscosity, like dykes or veins, sharply concentrate shearing at the

boundary if the layer is stronger than the host rock. Having homogeneous com-

position and structure, the strain is accommodate homogeneously throughout

the layer (Pennacchioni & Mancktelow, 2007).
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5 Conclusions

In this thesis, we have studied how the viscosity contrast and the volume

fraction of a second phase affect the microstructure of a two-phase aggregate

deformed by simple shear. The bulk effective shear viscosity is a consequence

of the microstructure, which means that it depends on the two aforementioned

parameters and evolves with strain. To study their influence on the fabric and

the bulk viscosity, we performed 3-D mechanical simulations on two-phases

crystalline aggregates, both in Newtonian and non-Newtonian regimes and up

to shear strain of 10.

Based on the parameters we considered, we can conclude that the mi-

crostructure and bulk effective shear viscosity are affected by:

• viscosity contrast (ηc): It is the most important amongst the studied

parameters, as the presence of a second phase with different viscosity

influences the bulk viscosity from the beginning and determines the dif-

ferent behaviour of the inclusions with respect to the matrix. It is the

parameter that determines whether the inclusions elongate and assume

the form of a prolate ellipsoid (ηc > 1) or flatten out as oblate ellipsoids

(ηc < 1). It controls the partitioning between the two phases of variables

such as pressure, strain, strain rate, vorticity, velocity.

• volume fraction (φ): It is a crucial parameter because it directly affects

the bulk viscosity, but it also determines how the inclusions are inter-

acting with one another. More inclusions result in more interaction: in

the case of strong inclusions, this causes more repulsive interactions and

unstable situations; whereas having more weak inclusions makes them

more likely to merge.

• viscosity regime: It directly affects the matrix and inclusions viscosity,

which remain constant in the case of Newtonian simulations, whereas
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they depend on the strain rate distribution in the non-Newtonian regime.

Therefore, it has a fundamental role in the microstructure and viscosity

evolution, as it emphasises the contrast in viscosity and makes strong

inclusions more viscous and weak inclusions less viscous.

• initial distribution of the inclusions: The microstructure also depends on

the initial distribution of the inclusions. In the case of weak particles,

it controls where the foliations planes are more likely to develop; in the

case of strong inclusions, it determines how the inclusions are interacting

with each other. Nevertheless, the effect on the bulk viscosity is minor.

• size and shape of the inclusions: in a polydispersed suspension, inclu-

sions manage to interconnect more easily than in a monodispersed one.

However, the effect is much less evident with respect to the previous

parameters and the difference in viscosity is almost negligible.

In addition to a qualitative description of the influence of the viscosity con-

trast and volume fraction, we derived an equation from the numerical simula-

tions for the bulk effective shear viscosity as a function of the two parameters

and the shear strain for linear rheologies. It consists of an initial linear growth

of the viscosity with the shear strain, followed by an exponential decrease to-

wards an asymptotic value (steady-state condition). The slope of the curve,

its initial and steady-state values are functions of ηc and φ.

5.1 Future Research

The current version of the code considers intercrystalline dynamics, solving

the the fundamental equations of the continuum mechanics. However, real

minerals can alter their structure as a consequence of strain application via

intracrystalline deformation.
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Therefore, more processes could be taken into account, like pressure-solution,

or intracrystalline processes like CPO evolution, dynamic recrystalisation. They

weren’t implemented in this version of the code, but they would help repro-

ducing more accurately what happens in natural rocks.

We only studied non-Newtonian rheologies with the power law exponent

n = 3, but in future studies, different exponents could be investigated.

As for the localisation at the boundaries, further numerical simulations with

different initial distribution of the inclusions could be made to ensure that the

effect is not due to a specific disposition of particles. For instance, some of

the inclusions could be positioned so that they are intercepted by the plates;

in this case, there would not be a layer that only consists of matrix at the

aggregate-plate boundary.

75





References

References

Ahrens, J., Geveci, B., & Law, C. (2005). ParaView: An End-User Tool for

Large Data Visualization. Elsevier.

Ayachit, U. (2015). The ParaView Guide: A Parallel Visualization Applica-

tion. Kitware.

Barnes, H. (2000). A handbook of elementary rheology . The University of

Wales Institute of Non-Newtonian Fluid Mechanics, University of Wales,

Aberystwyth.

Bell, T. H., Rubenbach, M. J., & Fleming, P. D. (1986). Porphyroblast nucle-

ation, growth and dissolution in regional metamorphic rocks as a function

of deformation partitioning during foliation development. Journal of Meta-

morphic Geology , 4 (1), 37–67.

Einstein, A. (1906). Eine neue bestimmung der molekldimensionen. Annalen

der Physik , 324 (2), 289–306.

Faccenda, M., & Dal Zilio, L. (2017). The role of solid-solid phase transitions

in mantle convection. Lithos , 268-271 , 198–224.

Genovese, D. B. (2012). Shear rheology of hard-sphere, dispersed, and aggre-

gated suspensions, and filler-matrix composites. Advances in Colloid and

Interface Science, 171-172 , 1–16.

Gerya, T. V., & Yuen, D. A. (2007). Robust characteristics method for mod-

elling multiphase visco-elasto-plastic thermo-mechanical problems. Physics

of the Earth and Planetary Interiors , 163 , 83–105.

Girard, J., Amulele, G., Farla, R., Mohiuddin, A., & Karato, S.-i. (2016).

77



References

Shear deformation of bridgmanite and magnesiowustite aggregates at lower

mantle conditions. Science, 351 (6269), 144–147.

Handy, M. R. (1994). Flow laws for rocks containing two non-linear viscous

phases: A phenomenological approach. Journal of Structural Geology , 16 (3),

287–301.

Hirose, K. (2002). Phase transitions in pyrolitic mantle around 670-km depth:

Implications for upwelling of plumes from the lower mantle. Journal of

Geophysical Research: Solid Earth, 107 (B4).

Hsueh, C. H., & Wei, W. C. (2009). Analyses of effective viscosity of suspen-

sions with deformable polydispersed spheres. Journal of Physics D: Applied

Physics , 42 (7).

Jin, Z.-M., Zhang, J., Green, H., II, & Jin, S. (2001). Eclogite rheology:

Implications for subducted lithosphere. Geology , 29 (8), 667.
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