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Abstract

The planes in crystalline solids can constrain the directions that charged
particles take as they pass through. Physicists can use this "channelling"
property of crystals to steer particle beams. In a bent crystal, for example,
channelled particles follow the bend and can change their direction. Experi-
ments are being carried out to study in detail this phenomenon. The UA9
collaboration is using high energy protons and heavy ions beams from the
SPS accelerator at CERN to verify the possibility of using bent crystals as
primary collimators in high energy hadron colliders like the LHC. Simu-
lations have been developed to model the coherent interaction with crystal
planes. The goal of the thesis is indeed to analyze the data and develop
an improved simulation routine to better describe the data’s subtleties, in
particular the transition between the volume capture and amorphous modes
of beam interaction with the crystal.
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Francesco Forcher I Introduction and goals

I. Introductionandgoals

D uring the second half of the 20th century, various landmark ex-
periments showed that the penetration distance of charged par-
ticles along specific directions in crystalline materials was much

longer than expected from amorphous scattering theory.
The theory developed postulates that the particles, depending on the

impact parameter, can interact with the ordered structure of the atoms
in crystals. For example, one of the most interesting phenomena for prac-
tical applications is the channeling process, in which a beam of positive
particles, which impact on the crystal with an angle almost parallel to
the crystal planes, can be trapped in the potential well, forcing them to
oscillate between such planes. If one then bends the crystal, the particles
will be guided and steered by the crystalline planes, resulting in large net
kicks, much larger than what can be achieved using magnetic fields.

Another phenomenon can happen when a particle beam interact with
a crystal: a particle can be reflected by crystal planes, causing an angular
deflection to the opposite direction of the atomic plane bending. This
process is called volume reflection, and sparked some interest because it has
a very high deflection efficiency, approaching 95% almost independently
of particle energy or crystal curvature. For comparison, channeling has a
single-pass efficiency of about 60%. Nevertheless, when in circular accel-
erators the beam passes multiple times through the crystal, scattering can
bring a particle in the channeling conditions after a few turns, realizing a
total efficiency af about 90%. This and the fact that volume reflection has
a higher number of unwanted nuclear interactions, makes channeling still
preferable in pratical accelerator applications.

The work of this thesis focuses on the modelization and simulation of
the “transition region”, that is, the angular range in which both volume
reflection and amorphous scattering coexist.

After briefly reviewing inSection II the salient points of crystal physics,
in Section III the experimental apparatus and instruments used for data
taking are illustrated. In Section IV the details of the data selection and
analysis are explored, and then in Section V the simulation results are
compared to the experiments. Finally, in Section VI the results for this
model are considered.
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Francesco Forcher II Crystal collimation physics

II. Crystal collimationphysics

B eam collimation is a branch of acceleratorphysics concernedwith
the handling anddisposal of particles lost from the beam, to protect
the magnets and equipment.

The interest about crystals for collimation applications derives from
their ability to precisely control some parameters of particle beams, by
variating the relative angle of the crystal with respect to the particle beam.
This is due to the fact that they have an ordered microscopic structure:
atoms in a crystal are arranged in a regular symmetrical structure. As
explained in this section, this leads to peculiar behaviours caused by this
anisotropy.

Although many different kinds of crystalline materials have been tested
for use in accelerators, currently the best candidates remain silicon crystals
(shown in Fig. 1), for which, thanks to their application in semiconductor
industry, advanced methods for reaching extreme levels of purity have
been developed. From this follows that crystalline defect theory can be
ignored and they can be considered perfect crystals, for the practical pur-
poses of collimation.

In Fig. 2 the system of reference of the crystal used hereafter is shown.

Figure 1: The diamond cubic structure
of monocrystalline silicon: it’s a face-
centered cubic lattice with two basis
atoms. Evidenced by the grey cut the
(110) plane.

x

z

y

l

Figure 2: The system of reference used.
The parallelepiped represent the crystal
and the dashed arrow show the direction
of the beam, going along the z direction.
The crystal has thickness l.
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Francesco Forcher II Crystal collimation physics

II.I Channeling

Figure 3: Plot of the crystalline planes potential U(x, z) of (110) silicon, along the X
and Z coordinates, for a positive charge (otherwise the sign should be flipped) particle
coming along the x direction.

The most important phenomenon for practical applications in beam
collimation is the so-called planar channeling: a particle entering almost
parallel to the crystalline planes could remain trapped in between them,
moving in a relatively empty space thanks to the interplanar atomic po-
tential which steers it away from nuclei, leaving only the weaker electron
cloud interactions to obstaculate its path. In a straight crystal, this results
in a much longer penetration depth of a particle beam for some specific
orientations of the crystal, those where most of the beam enters the crystal
“straight enough” relative to the planes.

If the particle enters with a small angle with respect to the planes, we
can replace the potential from the single atomswith a continuous potential.
This potential Upl from a single plane [1] is obtained from integrating the
Thomas-Fermi atomic charge distribution over the crystal planes.

Upl(x) ≈ Ndp
∫∫ ∞
−∞

ZiZe
2

r
Φ(

r

αTF
) dxdy (1)

where Zi and Z are the charge numbers of the incident particle and of the
material nuclei respectively, dp the interplanar spacing, e the elementary
charge,N is the number of atoms per volume, αTF = 0.8853 · 0.529Z−1/3Å
is the Thomas-Fermi screening distance, and Φ(r) the screening function.

Then, since contribution from the two nearest planes dominate [1], it
can be assumed that the particle is subject to the potential from the two

3
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Figure 4: The real potential between two
planes (orange line) compared with the har-
monic approximation fitted to it (dashed
line).

closest ones (defining U(0) = 0):

U(x) ≈ Upl

(
dp
2
− x
)

+ Upl (dp/2 + x)− 2Upl

(
dp
2

)
(2)

and, repeating this pattern for all the planes, the plot shown in Fig. 3 is
obtained. It is clear from Fig. 4 that it can be approximated quite precisely
by an harmonic potential [1]

Uh(x) = U0

(
2x

dp

)2

where U0(Si) ≈ 20 eV. (3)

Particlesmotion between crystalline planes can be treatedwith classical
mechanics because the potential well depth of silicon planes is of the order
of 20 eV, and it can be shown [1] that a particle in a channel oscillates as
if having a relativistic massMγ, so the total number Nl of energy levels
inside the harmonic potential (3) of depth U0 = 20 eV is

Nl =
dp

~
√

8

√
U0Mγ . (4)

Classical mechanics is applicable if Nl � 1. This number is of the order
of 4 · 1013 for 400 GeV/c proton beams used for the data in this thesis, so
the energy states can be regarded as continuous and consider a classical
approach.

To write the equations of motion of a particle trapped in a potential
channel U(x), it is convenient to consider the conservation of energy [1]:

E =
√
p2t c

2 + p2l +m2c4 + U(x) = const (5)

where pt is the transverse component ofmomentum and pl the longitudinal
one, as illustrated in Fig. 5.

Assuming that the angle θ is small (so that the particle enters almost
parallel to the planes) it follows that

θ ≈ tan(θ) = pt/pl � 1 =⇒ pt � pl (6)
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θ

Figure 5: Plot of a particle in a poten-
tial channel, viewed from above. The
crystalline planes are represented by
the bold lines and dots, while the light
gray lines are the potential level curves
Lc(U) = {x, z | U(x, z) = c}.
The massm particle has momentum ~p
decomposed into the longitudinal and
transverse components~pl and~pt,while
θ is the angle between~p and the planes.

so equation (5) can be approximated as

p2t c
2

2El
+ U(x) + El = const, where El =

√
p2l +m2c4. (7)

As it is shown in Figure 5, ~pl is conserved since there are not any forces
along the longitudinal direction, and so El is conserved as well. This
implies that the sum of the first two terms in equation (7), called the
transverse energy Et, is conserved too:

Et =
p2t c

2

2El
+ U(x) =

p2l c
2

2El
θ2 + U(x) = const (8)

using pl ≈ ptθ from equation (6). From there alsoEl ≈ E and pl ≈ p can be
inferred, and using the known relation pc2 = vE with v particle velocity,
(8) can be rewritten to obtain:

Et =
pv

2
θ2 + U(x) = const (9)

The reduced one-dimensional system can now be solved in x and the
position xp(z) of the particle is obtained, taking into account that θ(z) =
dxp(z)
dz and differentiating (9) with respect to z:

pv

2
θ (z)2 + U (xp(z)) = Et

pvθ′(z)θ(z) + U ′ (xp(z))x
′
p(z) = 0

θ(z)

(
pv
d2xp
dz2

+ U ′ (xp)

)
= 0

finally obtaining

pv
d2xp
dz2

+ U ′ (xp) = 0 . (10)
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This is the equation of motion of a channeled particle, and, substituting
U(xp) with the the harmonic potential (3) introduced earlier, which leads
to an harmonic oscillator equation

pv
d2xp
dz2

+
8U0

d2p
= 0 . (11)

This can be solved to get a sinusoidal motion

xp(z) =
dp
2

√
Et
U0

sin

(
2πz

λ
+ φ

)
(12)

θ(z) =

√
2Et
pv

cos

(
2πz

λ
+ φ

)
(13)

with φ being the entry phase and

λ = πdp

√
pv

2U0
. (14)

being the oscillation period.

To get in channeling, the condition Et < U0 needs to be fulfilled, using
equation (9) this can be rewritten as

Et =
pv

2
θ2 + U(x) ≤ U0 . (15)

When x = 0 (remembering that by definition U(0) = 0) θ can be solved
for to obtain the critical channeling angle (in a straight crystal)

θ0c =

√
2U0

pv
(16)

which is themaximumangle forwhich the particle can get trappedbetween
the crystal planes.

The importance of channeling has thus been shown, as the particles are
coherently steered by the planes in a relatively empty space, so avoiding
the “hard” nuclear strong interactions that produce undesired energy loss
and secondary products. Also, as shown in the next section, crystals can
be bended and (within certain limits) the particles will follow the crystal
bending, thus opening the possibility to guide a particle beam towards a
target, such as a massive absorber for example [4].

This theory implies as well that materials such as tungsten crystals
could have better theoretical characteristics for collimation, because they
have a∼15 times strongermaximum atomic electric field [1]. Unfortunately
at this moment their fabrication process leaves themwith too many defects
to be useful for collimation.

6
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II.II Bent crystals
Bending slightly a crystal by a bending angle θb introduces an additional
centrifugal force in the non-inertial reference frame [1], thus modifying
equation (11) into

pv
d2xp
dz2

+ U ′ (xp) +
pv

R
= 0 . (17)

where R is the curvature radius. Now an effective transverse energy can
be written:

Et =
pv

2
θ2 + Ueff(x) =

pv

2
θ2 + U(x) +

pv

R
x , (18)

with an effective potential Ueff, plotted in Fig. 6.
Qualitatively, the trajectory of the particle is similar to the unbent one,

a sinusoidal oscillation, but the equilibrium point is be shifted closer to
the planes by centrifugal forces.

As shown, it is also clear that the effective potential well is reduced
by curving the crystal, until it disappears completely at the critical radius
Rc(E), depending on particle energy, after which channeling is no longer
possible. To consider the non-zero width of the atomic planes (which is
about αTF), the critical radius Rc is found [4] as the as the radius at which
the centrifugal force is equal to the maximum electric force between the
planes:

Rc =
pv

U ′(xc)
≈ pvxmax

2Umax
. (19)

The reduction in depth of the potential well affects the particles critical
angle, which is reduced as [1]:

θc(Rc/R) = θ0c (1−Rc/R) . (20)

x

Ueff

Ubent
chan

dp

x0 + dp

Figure 6: Potential in the non-inertial refer-
ence frame in bent crystals. The new equilib-
rium point is at x = x0 (+dp for these two
particular planes). The grey area is the new
effective channeling potential well of depth
U bent
chan, when R > Rc. The particles oscillate

closer to the crystalline planes, increasing the
possibility of nuclear interactions.
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So in conclusion, a particle channeled for the whole crystal length will
be deflected by an angle of θb = l/R, where l is the length of the crystal.
The equation of motion solution can be written as [1]

x = −xc
Rc
R

+ xc

√
ET

Ubent
chan

sin

(
2πz

λ
+ φ

)
(21)

where x0 = −xc RcR is the new equilibrium point and λ and φ the same as
before.

II.III Volume reflection
In bent crystals another phenomenon [9] can take place when a particle
does not have the right angle for channeling: if the incoming angle is greater
(toward the bending direction) than the θc necessary for channeling but
still smaller than θb, the particle may be “reflected off” the crystalline
planes, as shown in Fig. 7.

As evident from the figure, from geometrical considerations alone the
particle would not find a suitable plane if θin > θb, explaining the second
condition. Nevertheless, as it will be explored in this thesis, it has been
demonstrated experimentally that in a range between

θb < θin < θb + 2θc (22)

coherent and incoherent interactions exist coexist together.
Volume reflection is interesting because it has a very high deflection

efficiency, approaching 95% (against the average of 60% for channeling) [4],
but suffers from a fivefold increase in nuclear interactions which generates
a lot of unwanted off-momentum particles, and the ∆θ that can be given
by volume reflection is much lower than the one potentially given by
channeling (of the order of θc rather than θb)

In fact, simulations and experiments [10][8] show that the average de-
flection angle ∆θ = θVR and its spread σθVR can be fitted as follows:

θVR = c1θc

(
1− c2

Rc
R

)
(23)

σθVR = c3θc
Rc
R

(24)

where c1 = −1.5, c2 = 1.666, and c3 = 1.7. It is worth noticing how from
these follows θVR ≈ 1.6θc when R� Rc.

8
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R

θb

θout

θin

∆θ

Figure 7: The geometric characteristics of volume
reflection. The crystal is bent by an angle θb, re-
sulting in a curvature radius of R. The particle
enters with an angle of θin until it impacts upon
a tangent plane by which is reflected off, exiting
the crystal with an angle of θout, giving a total
deflection of ∆θ.

II.IV Dechanneling and Volume Capture
Two other phenomenons, which are not addressed in the following work,
can characterize the trajectory of a particle in a crystal: dechanneling and
volume capture. Random collisions with electrons and atomic nuclei can
change the transverse momentum of a particle: in the dechanneling case
this leads a channeled particle to be kicked out of channeling and exit
with an intermediate deflection of 0 < θ < θb. Conversely, in the volume
capture case a particle in the angular range of volume reflection falls in
the potential well, and enters channeling mode.

III. Experimental apparatus
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Figure 8: Illustration (taken from [6]) showing the experimental apparatus setup. The
beam enters from the left.

T he experimental apparatus (described in [6]) is shown in Fig. 8. It
is installed in the H8 extraction line of the SPS accelerator, in the
North Area of CERN. It consist of five tracking stations (labeledXY

Plane in figure) which are made each by two planes of microstrip silicon

9
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detector stations, with an active area of 3.8 × 3.8 cm2. The particles first
pass through station 1 and 2 which measure the entry angle θin, then they
interact with a target station (typically a goniometer where the crystal
is installed). After, stations 3 and 5 measure the exit angle θout (station
4, rotated 45°, is used to resolve ambiguities in multi-track events), and
finally a plastic scintillator provides the trigger.

Vacuum chambers are placed between the stations 1 and 2 and between
4 and 5, so the main limiting factor to the telescope resolution is multiple
coulomb scattering in the detectors.

The spatial linear resolution, used to select protons impacting on the
crystals, has an average value of ∼7 µm [6]. The angular resolution of
the incoming arm of the telescope is important for selecting particles
impacting with a desired angle: since it cannot be disentagled from the
intrinsic beam divergence in measurements, it is estimated using Monte-
Carlo simulations of the apparatus, and the result is of about∼2.8 µrad [6].

The angular resolution on the deflection (∆θ = θout−θin) can be instead
estimated experimentally. This measurement is performed by removing
the crystal from the beam line. Thus particles follow a straight trajectory
and θin = θout is espected. This would be the case in an ideal apparatus
with infinite resolution, however, given the multiple coulomb scattering
in the tracking plane and uncertainties in the tracks reconstruction, a
gaussian distribution is obtained when performing an histogram of ∆θ.
The RMS of such gaussian gives the telescope resolution on the measured
deflection.

III.I Measurement methods
For our purposes, four measurement steps are carried out to characterize
each crystal [4]:

1. Alignment run: done without the crystal, to check proper function-
ing and performance of the telescope.

2. Linear scan: the crystal is moved linearly to correctly position it
on the beam line. The increased beam divergence due to multiple
coulomb scattering shows where the crystal is.

3. Fast angular scan: the crystal is rotated around to identify the angu-
lar ranges where coherent interactions take place.

4. Detailed angular scan: this angular scan is performed around the
interesting angular range determined in the step before, collecting a
consistent number of events (∼ 105 events / step)

10
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The most useful type of scan for the analyses made in this thesis is
the detailed angular scan: an example is shown in Fig. 9. From this figure
it is possible to see all the different processes that can take place in bent
crystals:

1. Amorphous: the particle does not interact coherentlywith the crystal
planes, so the average deflection ∆θx is 0 as in amorphous materials,
and the RMS is determined by multiple coulomb scattering.

2. Channeling: in the angular range defined by the critical angle θc,
particles can be channeled between crystal planes. If they are trapped
for the entire crystal length, they will acquire a deflection θb.

3. Dechanneling: some particles can escape from the channeled con-
dition through elastic interactions that modify their transverse mo-
mentum, leading to intermediate deflections between 0 and θb.

4. Volume reflection: in a range defined by the geometrical character-
istics of bending, volume reflection takes place, where the particles
are deflected by a small constant angle.

5. Volume capture: some particles in the volume reflection angular
range may have interactions that reduce their transverse momentum,
so that they can be captured in channeling mode.

rad]µ [xθImpact Angle 
50− 0 50 100 150 200
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d]

µ [ xθ∆

50−
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1 1
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2

4

Figure 9: Histogram resulting from an angular scan. It shows how many particles
entering with an angle of θx = θin are deflected by an angle of ∆θx. The numbers show
the various processes explained in the text.
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IV. Dataanalysis

C ollimation simulations at CERN are based on the single particle
tracking code named SixTrack [4], which performs a symplectic
six-dimensional tracking of protons through a magnetic lattice; a

special version for collimation studies also models the interaction of parti-
cles with matter. When a particle interacts with a crystal a specific routine
is called which uses a Monte Carlo approach based on distributions of pos-
sible interactions depending impact parameters, rather than integrating
numerically their trajectory in the crystalline potential. This is necessary
for the routine to be fast enough to be useful in practical applications, i.e.
simulate a decent (∼106–107 for ∼102–103 turns) number of particles in a
reasonable amount of time. The objective of this thesis is to improve the
treatment of the transition from VR->AM.

Discrepancies between the old simulations and the new data had
shown the need for an improved model of the transition between vol-
ume reflection and amorphous behaviour. Referring to the marked region
in Fig. 10 and in Fig. 11 (which show respectively the data and simulation
of a case-study crystal), it can be seen that there is a clear overlapping of
volume reflection and amorphous interactions in a certain angular range,
that is not modeled in the simulations.

A model for this transition should be able to simulate these processes
for a generic crystal. For this reason, it should depend on parameters of
crystals that incorporate scaling with energy and crystal parameters.

Figure 10: Experimental angular scan (crystal STF45). The red dashed circle shows the
region of interest.
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Figure 11: Simulation of an angular scan. It is evident that the “sharp transition” is
inadeguate.
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Themodel should, given particles with a specific θin as input, randomly
distribute them according to the parametrized probabilities. Accounting
for the telescope limited resolution caused by multiple coulomb scattering
in the trackerplanes, complicates this picture introducing gaussian smearing,
which scatters the particles according to a gaussian distribution convoluted
on top of the underlying true ones, “blurring” the histogram.

To construct the model the histogram region in question, evidenced
in Fig. 10 by the red circle, has been sliced vertically in areas of width
1 µrad, as shown in Fig. 12. This results in a one-dimensional distribution
for each θin, that shows the number of events per ∆θ. It appears evident
from Fig. 13 that the slices have two gaussian distribution, the left one is
made by the particles undergoing volume reflection, and as θin increase,
it shrinks as the right one, particles undergoing amorphous scattering,
increases.

To investigate the relations between θin and the particle distribution,
the experimental slices obtained as described before are fitted: the most
promising candidate fitting function is a simple sum of two gaussian
distributions:

P (∆θ) = C1e
(∆θ−µ1)2

2σ2
1 + C2e

(∆θ−µ2)2

2σ2
2 (25)

Normalizing the histogram, it is clear that the particle has to be in
one of the two gaussian distributions (i.e. probabilities must sum up to
one), so C2 = 1− C1 can be imposed. Moreover, as can be deducted from

13
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their theoretical values, both σ1, σ2 and moreso ∆σ = σ1 − σ2 are less
than the overall resolution of the experimental apparatus. So especially
for the slices near the edge of the region in which a peak dominate the
other, to produce a more meaningful result for the important parameters
(C and µ), σ1 = σ2 = σ is imposed: this overall sigma/resolution can
be easily derived from the dominant peak alone; the algorithm can thus
improve more the remaining parameters. The resulting function thus is:

P (∆θ) = Ce
(∆θ−µ1)2

2σ2 + (1− C)e
(∆θ−µ2)2

2σ2 (26)

The fitting has been performed with the scikit-learn [5] Python
machine learning framework, in particular the gaussian mixture package [2]
has been utilized. In this package, the two means are extimated using
k-means centroids, then a maximum-likelihood fit is performed on the
data. Example results for some slices are shown in Fig. 13. The resulting
weights C = PAM and 1− C = PVR for each slice are plotted in Fig. 14.

IV.I Error estimates with bootstrap
Since scikit-learn does not provide directly an error extimate of the
parameters, the bootstrapping [3] method has been used to calculate the
errors. Bootstrapping is a computationally-intensive resampling method
that can be applied in a wide variety of applications such as extimating the
approximate distribution and standard errors of a complicated estimator.
It can be shown that bootstrap is asymptotically consistent [3] under mild1

conditions on the underlying distribution of data.
In its simplest form, for a dataset of sizeN , the distribution or histogram

of the data is taken and synthtetic datasets (again of sizeN ) are repeatedly
generated following the histogram as probability density distribution,
using Montecarlo methods. This can be equivalently seen as drawing with
replacement from the original dataset, to create several “new” datasets
from the same data, but with the variability derived from the fact that,
with replacement, every data point can appear zero times, or more than
once. Then every synthtetic dataset is fitted under the same conditions as
the data, so now there is a population of fitted parameters, one for each
dataset. The standard error on this distribution can then be calculated:
it can be shown [3] that, if the number of bootstrap iteration (and thus
synthtetic datasets) is greater than niter ≈ 200, the error deriving from
Montecarlo is trascurable. Thus, the standard errors have been calculated
from niter = 500 iterations.

1For example, the existence of the distribution momenta to be estimated, such as mean
or standard deviation, in the underlying distribution.
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Figure 12: The slicing of the transition region into one-dimensional distributions. The
2-dimensional histogram region of Fig. 10 is subdivided into 1-dimensional slices as
indicated by the red lines. The red numbers refers to Fig. 13, where these slices are plotted
and fitted.

Figure 13: Some examples of normalized slices (crystal STF45) from Fig. 12 for increasing
θin. On the abscissa∆θ [µrad] is shown, on the ordinate the normalized number of particles
(proportion). The histogram is in blue. It is clear that there are two peaks, fitted by the
green gaussians, whose sum is the red plot. Around the red plot the orange fits of the
synthtetic datasets from bootstrap are plotted, used to calculate parameter errors.

1 2

3 4
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Figure 14:The two peak probabilities orweights with their error bars,notePAM = 1−PVR.
The three vertical lines represent θb (green) and θb + θc, θb + 2θc (blue).
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IV.II Theoretical model
The most important parameters to build a probability distribution to be
used in Montecarlo simulation are the weights (the probability P of being
in one or the other distribution) and the means, since for the sigmas the
theoretical ones can be used. After some trials, the simple model of eq. (27)
and (28) was chosen for the relative weightsC and 1−C (plotted in Fig. 15):

C = PAM(θin) =


0 if θin ≤ θb
−1
2θc
· θin + θb

2θc
+ 1 if θb < θin ≤ θb + 2θc

1 if θin > θb + 2θc

(27)

1− C = PVR(θin) = 1− PAM(θin) (28)

It was chosen as a simple transition function that satisfies the boundary
conditions observed in the data. When θin < θb, there is only volume
reflection so PAM = 0 and PVR = 1. On the other side, after the transition,
θin > θb+2θc,we have only amorphous interactions, soPAM = 1 andPVR =

0. In the range θb ≤ θin ≤ θb + 2θc there is a simple linear transition as θin
increases, going from 100% volume reflection at θb to 0% at θb + 2θc, while
the AM fraction increases corrispondently since PVR(θin) + PAM(θin) = 1.
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For the mean deflection, eq. (29) and (30) are used (plotted in Fig. 16):

∆θAM(θin) =

{
−σam
2θc
· θin + σam + σamθb

2θc
if θb < θin ≤ θb + 2θc

0 if θin ≤ θb
(29)

∆θVR(θin) =

{
θVR if θin ≤ θb
−σvr
2θc
· θin + θVR + σvrθb

2θc
if θb < θin ≤ θb + 2θc

(30)

where σAM and σVR are the average sigma of the peaks before gaussian
smearing. σVR can be calculated from eq. (24), while

σAM =
13.6 MeV

E
Zi

√
l

χ0

(
1 + 0.038 log

(
l

χ0

))
(31)

is the multiple scattering angular sigma in amorphous interactions, with
χ0 being the radiation length of the material, in silicon χ0(Si) = 9.37 cm.

This was derived from the observation in experimental data that the
average deflection tends to drift away from the asymptotic ones (which are
θVR from eq. (23), and 0 for AM) until they are about a sigma away. For VR,
the average deflection θVR increases till θVR + σVR, while for AM it starts
at σam and decreases to zero. So, similarly to the weights, a linear model
has been created, by solving a simple system imposing a linear function
m ∗ θin + q to pass through the respective limiting points for VR and AM
at θb and θb + 2θc.

In Fig. 17 a new simulation can be seen, to compare with Fig. 10. The
results are in pretty good agreement with data, as explored in depth in
the next section.

Figure 15: The theoretical model for the weights. Convolution with a gaussian to account
for gaussian smearing will show something close to the experimental data in Fig. 14.
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Figure 16: The theoretical model for the means.
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Figure 17: Simulated angular scan (crystal STF45) with the new routine. The noise
from telescope resolution has been added. This can be compared with experimental data in
Fig. 10.
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V. Benchmark simulationresults

T he simulation model needs to be benchmarked against experimen-
tal data. Simulations were carried out using SixTrack, even though
a single passage through the crystal was simulated to reproduce

tests on the H8 extraction line, described in Sec. III. This approach was
used to avoid any problem in the migration of code from a standalone rou-
tine to the one used for simulation in circular accelerators. This benchmark
validates the routine used for LHC collimation studies.

Instead of changing the crystal orientation, as in experimental angular
scans, a uniform impact distribution in angle was used as input. The
extention of this distribution is such that all the processes are covered. A
realistic distribution in the XY plane was used, according to what was
measured experimentally. This leads to easier and faster simulation results
analysis, being equivalent from the physics point of view.

V.I Crystals used
Three crystals have been chosen to validate themodel, because high quality
angular scans were available. They are labelled as STF45, STF99 and ST101.
They are crystals of the strip type: they have a primary curvature along the
(111) planes applied through their holder, which then induces anticlastic
forces resulting in a secondary curvature along the (110) planes.

Their parameters are reported in Tab. 1.

Table 1: Parameters of the crystal used

Nome l [mm] θb [µrad] R [m] θc [µrad]

STF45 2.000 144.2 13.868 9.5

STF99 1.994 122.0 16.340 9.7

ST101 1.988 162.5 12.234 9.5

V.II Benchmark
The benchmark simulations are made using the same parameters of crys-
tals for which an angular scan is available: it can be seen in Fig. 18, Fig. 19
and Fig. 20 the comparison between experimental and simulated angular
scan weights. To make a straight comparison of the simulation with the
data one need to account for the resolution of the telescope, caused by
multiple scattering of the particles in the tracker planes. This results in a
gaussian angular scattering of the particles which “blurs” the histogram
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regions. To account for this, a random gaussian kick was given to the
particles, increasing the sigma until the size of the channeling spot (№ 2
in Fig. 9) was the same for simulation and data. This is a valid approach
because the theoretical horizontal size of the channeling region, which is
2θc, is known and implemented in the simulations: it is thus possible to
decouple the scattering due to the experimental apparatus.

Another potential problem, only for crystal STF45, is that the goniome-
ter likely stopped for about 16 µrad as can be evinced from Fig. 10 by the
increased number of particles per slice after ∼ 110 µrad. To correct this,
the experimental slices have been shifted by 16 µrad. This would influence
only the model implementation of the absolute position, that is the start
of the transition at θb, but not the independent fact that the transition has
angular range width of 2θc. The absolute part is independently confirmed
by the other two crystals.

After working these details out, the model benchmark can be consid-
ered successful, as the plots below shows. In Fig. 21 and Fig. 22 a com-
parison of the other parameters can be seen as well, the peak means and
sigma.
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Figure 18: Comparison of the simulation of the crystal STF45 with the experimental
data: the weights or probability of a particle of being in either process as a function of
the impact angle θx. The red lines are the weight of the volume reflection process, while
the green ones are the weight of the amorphous process. The dashed lines are the fit of
experimental data while the dashdot the fit of the angular scan simulation. The vertical
lines are θb (red) and θb + θc, θb + 2θc (blue).
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Figure 19: Comparison of the simulation of the crystal STF99 with the experimental
data: the weights: the weights or probability of a particle of being in either process as a
function of the impact angle θx.
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Figure 20: Comparison of the simulation of the crystal ST101 with the experimental
data: the weights or probability of a particle of being in either process as a function of the
impact angle θx.
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Figure 21: Comparison of the simulation of the crystal ST101 with the experimental data:
the means. The position of the mean ∆θAM, ∆θVR of each peak is plotted for each slice of
impact angle θx. The vertical lines are θb (red) and θb + θc, θb + 2θc (blue), while the
horizontal lines are the theoretical asymptotic values of ∆θAM = 0 and ∆θVR = θVR.
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Figure 22: Comparison of the simulation of the crystal ST101 with the experimental data:
the sigma for the experimental data and for the simulation, as a function of the impact
angle θx.
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V.III Energy scaling
The energy scaling of the model has been proved using experimental data
from tests at the LHC with 6.5 TeV proton beams.

In Fig. 23 [7], beam loss as a function of the crystal angular orientation
with respect to the beam envelope are shown. Such losses are measured
using ionization chambers (BLM) that are placed near the beam pipe.
BLMs measure the fraction of hadronic showers in its solid angle that are
proportional to the nuclear interaction rate in upstream object.

In the two extreme shoulders the crystal behaves as an amorphous
scatterer (AM). Thus losses are flat as a function of its angle. When the
beginning of the crystalline planes is parallel to the beam envelope, par-
ticles are channeled (CH) between crystalline planes. In this condition
they are travelling in relatively empty space between planes, and nuclear
interaction rate is reduced. The plateau between CH andAM is the volume
reflection (VR). The plateau between CH and AM is the volume reflection
(VR). As it is known from theory, this VR range has a length of θb, but sim-
ulations with the old routine, shown in red in the plot, did not match the
data (blue). The new routine instead, shown in green, match the observed
losses much better.

This crystal is installed in the LHC and has parameters l = 4 mm and
θb = 50 µrad. The good agreement between simulations and data shows
indirectly that the scaling as a function of energy and crystal parameters
of the transition model implemented in the crystal routine is adeguate.

Figure 23: Beam loss as a function of the crystal angular orientation with respect to the
beam envelope (from [7], courtesy of R. Rossi).
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VI. Conclusions

I n this thesis a new analysis of the transition region between the vol-
ume reflection and the amorphous processes has been performed. A
new model is proposed based on this analysis, and simulations using

the new model have been performed and benchmarked. This effect was
not simulated before because the angular range of this transition is very
far from the usual range used for collimation purposes, when the crystal
is in channeling. Nevertheless, in preliminary studies at SPS and LHC it is
necessary to look at all the interactions, and this effect is interesting be-
cause the volume reflection angular range can be used as an independent
measurement of the crystal curvature.

To construct a model for the transition, the angular scan of a crystal in
the extracted beam from SPS (H8 line) has been analyzed. Based on this
analysis, a suitable model has been chosen. This model has been imple-
mented (by D. Mirarchi) in the SixTrack routine, then the simulations
have been performed and benchmarked with respect to angular scans of
different crystals with different parameters.

The new routine shows a qualitatively better agreement with experi-
mental data, although there may be room for improvements and refining
of the model when new data from the latest runs will become available for
analysis. Another confirmation comes from the simulation of loss maps in
LHC crystals made by R. Rossi, which shows how the model scales with
energy. Again, the model has improved the correspondence between loss
map simulations and data.

Future developments might include benchmarking with other beam
conditions such as different energies and particles, for example ions or
pions.
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