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Abstract

In this thesis we study the problem of finding a good representation of
a database of transactions. Previous works propose an approach that relies
on a lossless compression of the database. This thesis focuses instead on a
lossy compression of the database and studies a clustering approach. Given
a set of transactions, the clustering model we will present tries to find the
best representative itemsets by considering them as clusters. What defines the
clustering model is an objective function that minimizes the number of clusters
and tries to obtain the best clustering by assigning to each representative itemset
some subtransactions taken from the input database. In this document we will
present our algorithm and its results on synthetic datasets.
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1
Introduction

In this chapter we will briefly introduce the context in which we will operate
and we will present the general idea of the thesis and its organization.

1.1 Context

The elements that characterize the context of our work are essentially the
following:

• a set of items ℐ,

• a set 𝑑𝑏 of transactions 𝑡 where each transaction is a set of elements taken
from ℐ.

The most famous interpretation of the elements we just described is that:

• ℐ represents the set of items for sale in a certain store,

• 𝑡 represents the set of items a client bought at the store,

• 𝑑𝑏 represents a set containing the different transactions on a specific day.

Our input is therefore the database 𝑑𝑏 of transactions from which we want
to extract some informations.
However, the database size may be very large and so those informations are not
easy to extrapolate in terms of time, or easy to find at all.

1



1.2. GENERAL IDEA

1.2 General idea

Many different methods have been proposed to find different kind of patterns
in large databases. However, we approach the problem from a different point of
view.
In our case, the informations we want to extract are just composed by a set of
itemsets 𝒟 where an itemset is simply a set of items taken from ℐ that may or
may not be a subset of a transaction 𝑡 of the database 𝑑𝑏.
The goal of this thesis is to find a set𝒟 that is a good representation of the input
database 𝑑𝑏 keeping the size of𝒟 low.
To achieve this goal we mainly related to two very different works that helped
us developing our procedure.

1.2.1 Itemsets that compress

The first work is “Item Sets that Compress” [1] and it faces the main problem
of our work, that is, the explosion of the number of results. What they want to
achieve, in fact, is to extract from the database the frequent itemsets, that are
itemsets that occur in the database with high frequency.
In order to do so, they have to consider a very big number of itemsets and there-
fore they proposed a different approach that involves a lossless compression of
the database.

1.2.2 Subtrajectory Clustering

The second work is “Subtrajectory Clustering: Models and Algorithms” [2]
that, even if it regards a different context, proposes a clustering method that can
be well adapted to our problem.
The goal of this work is to find a set of trajectories that well represent a set
containing some input trajectories. As it can be noted, our goal is very similar
to what we just described and so we tried to adapt their clustering model to our
problem.

In this thesis, we will firstly describe in detail the works we just presented,
then we will present our method and finally we will comment the results we
obtained on synthetic datasets.
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2
Related Works

In this chapter, we present two works that are related with our goal in terms
of procedure adopted and context.
The first section will concern the work “Item Sets that Compress” [1], whose main
problem is somewhat similar to ours and so it describes a possible approach we
could follow.
In the second section, instead, the work “Subtrajectory Clustering: Models and
Algorithms” [2] is presented. This paper presents a clustering model to solve
the subtrajectory clustering problem that we will adopt to achieve our goal.

2.1 "Item Sets That Compress"

“Item Sets that Compress” describes a procedure to code an entire database
of transactions without any loss of informations in order to improve the frequent
itemset mining.

2.1.1 Introduction

Frequent Item Set Mining

Frequent item set mining is one of the best known and most popular data
mining methods and can be described as follows.
There are two main sets:

• a set of items ℐ

3



2.1. "ITEM SETS THAT COMPRESS"

• a database db of transactions over ℐ

A transaction 𝑡 is a set of items that belongs to the set 𝒫(ℐ) of all the possible
permutations of ℐ and also to the database 𝑑𝑏.
We have that a certain item set 𝐼 ⊂ ℐ occurs in a transaction 𝑡 if and only if 𝐼 ⊆ 𝑡.
The last term to define is the support of 𝐼 in 𝑑𝑏, that is the number of transactions
of the database in which 𝐼 occurs and is denoted by 𝑠𝑢𝑝𝑝𝑑𝑏(𝐼).
At this point, we can state that the problem of frequent item set mining is to
determine all item sets 𝐼 such that the support of 𝐼 is greater than a given
threshold 𝑚𝑖𝑛-𝑠𝑢𝑝, i.e. 𝑠𝑢𝑝𝑝𝑑𝑏(𝐼) ≥ 𝑚𝑖𝑛-𝑠𝑢𝑝.

MDL Principle

The major obstacle of this problem consists in the explosion of the number
of results. In fact, the threshold 𝑚𝑖𝑛-𝑠𝑢𝑝 plays an important role: if its value is
high, the resulting sets are well-known, while if its value is low, the number of
frequent item sets is too large.
In order to face this latter problem, the paper "Item Sets That Compress" proposes
a completely different approach based on the Minimum Description Length
Principle (MDL). In this case, the interest of an item set no longer depends on a
certain threshold. What really matters is if an item set yields to a good lossless
compression of the whole database.
To determine if a set yields to a good compression, the paper uses the MDL
principle that balances the size of the compressed database and the size of the
code table needed to code it. Its definition is the following:

Definition 1 Given a set of modelsℋ , the best model𝐻 ∈ ℋ is the one that minimizes
the quantity

𝐿(𝐻) + 𝐿(𝐷 |𝐻) (2.1)

where 𝐿(𝐻) represents the length of the description of 𝐻 and 𝐿(𝐷 |𝐻) is the length of the
description of the data 𝐷 when it is encoded with the model 𝐻.

The set of models ℋ , in this case, is represented by sets of item sets that can
describe the database and coding tables that can code them.

4
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2.1.2 Minimal Coding Set Problem

In this section we will present the problem that has to be solved.
First of all we will define the properties of the item sets coding, then the models
of the problem are determined and at the end the actual definition of the problem
is presented.

Item Sets Coding

First of all let us define the cover of a transaction as the set of item sets 𝐶

such that 𝑡 =
∪

𝑐𝑖∈𝐶(𝑡) 𝑐𝑖 .
In order to code properly the database, the coding set of item sets must respect
two simple conditions: it should be able to describe every transaction of the
database and the item sets that cover a certain transaction should be mutually
disjoint.
Below is the formal definition of the two conditions, in which 𝐶 is a set of item
sets and 𝐶(𝑡) ⊆ 𝐶 is the set of item sets that cover a certain transaction 𝑡.

1. 𝑡 =
∪

𝑐𝑖∈𝐶(𝑡) 𝑐𝑖

2. ∀𝑐𝑖 , 𝑐 𝑗 ∈ 𝐶(𝑡) : 𝑐𝑖 ≠ 𝑐 𝑗 → 𝑐𝑖 ∩ 𝑐 𝑗 = ∅

At this point, to know which item set has to be used to cover a given trans-
action 𝑡 ∈ 𝑑𝑏, we need a way to assign a subset 𝐶(𝑡) ⊆ 𝐶 to a transaction.
This is done by a coding scheme 𝐶𝑆 which is defined by a pair (𝐶, 𝑆) where 𝐶

is an item set cover of the entire database 𝑑𝑏 and 𝑆 is a function 𝑆 : 𝑑𝑏 → 𝒫(𝐶)
such that 𝑆(𝑡) covers 𝑡.
In order to use this coding scheme to actually encode the database, we have to
assign a code to each element 𝑐𝑖 of the item set cover 𝐶.
Since we are interested only in the size of the compressed database, what we
need is to know only the length of the coding and not also the actual code. To
do this we can exploit a nice correspondence between the codes length and the
probability distribution 𝑃 induced by a coding scheme (𝐶, 𝑆).
Definition 2 Let P be a probability distribution on C induced by a coding scheme
(𝐶, 𝑆), there exists a (unique) code on 𝐶 such that the length of the code for an element
𝑐 ∈ 𝐶, is given by

𝐿(𝑐) = −𝑙𝑜𝑔(𝑃(𝑐))

5



2.1. "ITEM SETS THAT COMPRESS"

where

𝑃(𝑐) = 𝑓 𝑟𝑒𝑞(𝑐)∑
𝑑∈𝐶 𝑓 𝑟𝑒𝑞(𝑑) and 𝑓 𝑟𝑒𝑞(𝑐) = |{𝑡 ∈ 𝑑𝑏 |𝑐 ∈ 𝑆(𝑡)}|

A nice property is that this code gives the smallest expected code size for
data sets drawn according to P.
Now that we know the code length 𝐿(𝑐) for each item set 𝑐 in the item set cover
𝐶 we can define also the code length 𝐿(𝑡) for each transaction 𝑡 ∈ 𝑑𝑏, that is

𝐿(𝑡) = ∑
𝑐∈𝑆(𝑡) 𝐿(𝑐)

Finally, we have that for a given coding scheme (𝐶, 𝑆), the size of the coded
database is given by

𝐿(𝐶,𝑆)(𝑑𝑏) = −∑𝑐∈𝐶 𝑓 𝑟𝑒𝑞(𝑐) log(𝑃(𝑐))

Code Table

In the previous section, we defined how to compute the second term of the
expression [2.1]. Now we need to understand how to compute the first one and
to do it we have to define what actually is a coding table.
A coding/decoding table is a kind of physical representation of the coding
scheme because it defines the item set cover and the assignment of each item set
to a list of transactions.
Formally, a coding table is a table with three columns: Item Set, Code and Tuple
List where this last column is composed by the list of the transactions in which
the item set is used for encoding.
The code table should respect the following conditions:

• The columns Item Set and Tuple List form a coding scheme.

• The length of the code in the second column should correspond with the
frequency of the itemset in the coding scheme.

The coding table is therefore represented as in Table 2.1.

6
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Item Set Code Tuple List

𝑐1 𝑐𝑜𝑑𝑒1 (𝑡 ∈ 𝑑𝑏 |𝑐1 ∈ 𝑆(𝑡))
𝑐2 𝑐𝑜𝑑𝑒2 (𝑡 ∈ 𝑑𝑏 |𝑐2 ∈ 𝑆(𝑡))
... ... (...)
𝑐𝑖 𝑐𝑜𝑑𝑒𝑖 (𝑡 ∈ 𝑑𝑏 |𝑐𝑖 ∈ 𝑆(𝑡))
... ... (...)

Table 2.1: coding/decoding table

The problem with this table is that the Tuple List is not the most efficient way
to represent the mapping from item sets to tuples.
To overcome this issue, we simplify our problem and we proceed as follows.
First of all, the main changes are essentially two:

• we take a fixed algorithm to code the database.

• we assume an order on a code table that now has only two columns, one
for the item sets and one for the codes.

To understand the coding procedure we also need the notion of a coding set:
an ordered set of item sets that contains all the singleton item sets 𝐼 for 𝐼 ∈ ℐ.
The order of this set is called coding order.
The fixed algorithm, called Cover (see Algorithm 1) is very straightforward. If
we want to obtain the cover (and consequently the code) of a certain transaction
𝑡 ∈ 𝑑𝑏 we look into the table following the coding order and we take the first
item set 𝑐𝑖 such that 𝑐𝑖 ⊆ 𝑡. At this point the procedure continues recursively on
𝑡 \ 𝑐𝑖 until the remainder is empty.
We can formalise the situation with the following theorem which states that we
can extended our simplified model to a coding/decoding table.

Let 𝐶 be a coding set and 𝑑𝑏 a database, then

1. 𝐶 and Cover induce a unique code table.

2. This code table can be extended to a coding/decoding table.

7
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At this point we know what our models really are: the code tables (Table 2.2)
induced by coding sets. In fact, we can code and decode all the transactions of
the database using simply the code table and the algorithm Cover.

Item Set Code

𝑐1 𝑐𝑜𝑑𝑒1

𝑐2 𝑐𝑜𝑑𝑒2

... ...

𝑐𝑖 𝑐𝑜𝑑𝑒𝑖
... ...

Table 2.2: code table

Our goal however is to compute the first term 𝐿(𝐻) of the expression [2.1],
that is, the length of the description of our model. To do that we simply have to
add the length of the descriptions of the two columns of the code table. This is
easy for the second column given that we already know the length of the code
of a certain item set (− log𝑃(𝑐)). For the first column instead what we do is use
another encoding.
Although it may seem strange to use an additional code, this is needed to know
the exact size of the code table and it has a different meaning respect to the code
on the second column. The code on the second column in fact is the code used
to describe the database while the code on the first one describes the item set
itself.
This new encoding, termed standard encoding, can only be done in terms of the
singleton item sets and its definition is the following.

Definition 3 The standard encoding of an item set 𝑐𝑖 for a given database 𝑑𝑏 over ℐ is
the encoding induced by the coding set {𝐼}𝐼∈ℐ .

Note that the table that would perform the mapping from the standard en-
coding to the names of the individual items is not considered in the following
analysis since it is the same for all the code table and so it does not have any
effect on the choice of the best model.

Now that we know the length of the elements contained in the code table,
we can define what its actual size is.

8
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Definition 4 The size of the coding table 𝐶𝑇𝐶 induced by a coding set 𝐶 for a database
𝑑𝑏 is given by

𝐿(𝐶𝑇𝐶) = ∑
𝑐∈𝐶: 𝑓 𝑟𝑒𝑞(𝑐)≠0

(𝐿𝑠𝑡(𝑐) + 𝐿𝐶(𝑐))

where 𝐿𝑠𝑡(𝑐) is the length of the standard encoding of 𝑐 and 𝐿𝐶(𝑐) is the length of the
encoding induced by the coding set 𝐶.

Algorithm 1 Cover(C, t)
Require: a coding set 𝐶 and a transaction 𝑡
Ensure: the item set cover for transaction 𝑡

𝑆← smallest element 𝑐 of 𝐶 in coding order such that 𝑐 ⊆ 𝑡
if 𝑡 \ 𝑆 = ∅ then

𝑅𝑒𝑠 ← 𝑆
else

𝑅𝑒𝑠 ← 𝑆 ∪ 𝐶𝑜𝑣𝑒𝑟(𝐶, 𝑡 \ 𝑆)
end if
return 𝑅𝑒𝑠

Problem Definition

In the previous sections we defined how to compute the terms of the ex-
pression [2.1] that defines which is the model that would yield to the best
compression.
Using the previous results can in fact define the total size of the encoded version
of the database 𝑑𝑏

𝐿𝐶(𝑑𝑏) = 𝐿(𝐶,𝑆𝐶)(𝑑𝑏) + 𝐿(𝐶𝑇𝐶)
and consequently we can give the formal definition of the Minimal Coding Set
Problem: for a database 𝑑𝑏 over a set of items ℐ, find a coding set 𝐶 for which
𝐿𝐶(𝑑𝑏) is minimal.
There is also a simplification of this problem, called Minimal Coding Subset
Problem: for a database 𝑑𝑏 over a set of items ℐ and 𝐽 a proto coding set (a set
that must contain the singleton item sets), find a coding set 𝐶(𝐽) ⊆ 𝐽, for which
𝐿𝐶(𝐽)(𝑑𝑏) is minimal.
In this case the goal is to find a subset of 𝐽 for which the size of the encoded
version of the database is minimal, where 𝐽 is a set of item sets that is given to
us and must contain all the singleton item sets.

9
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2.1.3 Solutions

At the end of this section four heuristic algorithms for the Minimal Coding
Subset Problem will be presented. These algorithms are based on the same
greedy strategy and use two strategies for improvement: Pruning and Denoise.

The greedy strategy

The greedy strategy employed by the algorithms is very straightforward:

• At first we start with the code consisting of only the singleton item sets.

• Then we add one by one the other item sets keeping only the ones that
produce a better compression.

The initial encoding of the singleton is simply the standard encoding that we
already defined. The actual order of the coding set that induces this encoding
does not matter since each possible order of the coding set would produce a
code of the same length. This is because the singleton item sets are obviously
disjoint.
At this point two important points need to be defined:

• the order in which the item sets are place in the code table.

• the order in which we pick the item set to be checked for becoming part of
the code table.

The answer to the first point is that we sort first by size and then by support
so that the first elements in the code table are the smaller item sets and in case
of two item sets of same size the one with the highest support in the database
comes first. This order, defined standard order, is just a heuristic but it is justified
from the properties of the item sets and the way the Cover algorithm works.

Definition 5 Let 𝐶 ∈ 𝒫(ℐ) be an ordered set of item sets. 𝐶 is in standard order for
𝑑𝑏 if and only if for any two 𝐽1, 𝐽2 ∈ 𝐶

• 𝑠𝑖𝑧𝑒(𝐽1) ≤ 𝑠𝑖𝑧𝑒(𝐽2) → 𝐽2 ≤𝐶 𝐽1

• 𝑠𝑖𝑧𝑒(𝐽1) = 𝑠𝑖𝑧𝑒(𝐽2) ∧ 𝑠𝑢𝑝𝑝𝑑𝑏(𝐽1) ≤ 𝑠𝑢𝑝𝑝𝑑𝑏(𝐽2) → 𝐽2 ≤𝐶 𝐽1

10
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The answer to the second point, called cover order, is more greedy: we pick
the item set with the highest cover in the database.
Algorithm Naive-Compression (see Algorithm 2) describes the greedy strategy
with the order choices that we just discussed.

Algorithm 2 Naive-Compression(ℐ , 𝐽 , 𝑑𝑏)
Require: the set of items ℐ, the code set 𝐽 and the database 𝑑𝑏
Ensure: the best code set the algorithm has seen

𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← Standard(ℐ , 𝑑𝑏)
𝐽 ← 𝐽 \ ℐ
𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠 ← Cover-Order(𝐽 , 𝑑𝑏)
while 𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠 ≠ ∅ do

𝑐𝑎𝑛𝑑←maximal element of 𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠
𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠 ← 𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠 \ 𝑐𝑎𝑛𝑑
𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← 𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ⊕ 𝑐𝑎𝑛𝑑
if 𝐿𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡(𝑑𝑏) < 𝐿𝐶𝑜𝑑𝑒𝑆𝑒𝑡(𝑑𝑏) then

𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← 𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡
end if

end while
return 𝐶𝑜𝑑𝑒𝑆𝑒𝑡

In the pseudocode:

• Standard(ℐ , 𝑑𝑏) returns the code set in the standard order.

• Cover-Order(𝐽 , 𝑑𝑏) returns the version of 𝐽 in the cover order.

• ⊕ means that 𝑐𝑎𝑛𝑑 is added in the right position following the standard
order.

Pruning

The first improvement that we present is the Pruning of the code set.
This strategy tries to alleviate some problems caused by the heuristic choice of
following the cover order to check if an item set should be part of the code set.
In fact, it could happen that Naive-Compression does not even consider a code
set that would lead to a better compression and for this reason we prune the
code set in the following way.
Suppose that we just added a new item set to a code set because it has led to a

11
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better compression. Now we remove one by one from this code set the elements
whose cover has become smaller with the addition of the last item set and check
if the resulting compression is better.
At this point we have to define again in which order we remove the elements:
in line with the previous reasonments we take first the ones with the smallest
cover.
In Prune-on-the-fly (see Algorithm 3) the pruning strategy is represented.

Algorithm 3 Prune-on-the-fly(𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡, 𝐶𝑜𝑑𝑒𝑆𝑒𝑡, 𝑑𝑏)
Require: the code set with the new item set 𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡, the previous code set

without the last added item set 𝐶𝑜𝑑𝑒𝑆𝑒𝑡 and the database 𝑑𝑏
Ensure: the best code set the algorithm has seen

𝑃𝑟𝑢𝑛𝑒𝑆𝑒𝑡 ← {𝐽 ∈ 𝐶𝑜𝑑𝑒𝑆𝑒𝑡 | 𝑐𝑜𝑣𝑒𝑟𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡(𝐽) < 𝑐𝑜𝑣𝑒𝑟𝐶𝑜𝑑𝑒𝑆𝑒𝑡(𝐽)}
𝑃𝑟𝑢𝑛𝑒𝑆𝑒𝑡 ← Standard(𝑃𝑟𝑢𝑛𝑒𝑆𝑒𝑡, 𝑑𝑏)
while 𝑃𝑟𝑢𝑛𝑒𝑆𝑒𝑡 ≠ ∅ do

𝑐𝑎𝑛𝑑← element of 𝑃𝑟𝑢𝑛𝑒𝑆𝑒𝑡 with minimal cover
𝑃𝑟𝑢𝑛𝑒𝑆𝑒𝑡 ← 𝑃𝑟𝑢𝑛𝑒𝑆𝑒𝑡 \ 𝑐𝑎𝑛𝑑
𝑃𝑜𝑠𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← 𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ⊖ 𝑐𝑎𝑛𝑑
if 𝐿𝑃𝑜𝑠𝐶𝑜𝑑𝑒𝑆𝑒𝑡(𝑑𝑏) < 𝐿𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡(𝑑𝑏) then

𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← 𝑃𝑜𝑠𝐶𝑜𝑑𝑒𝑆𝑒𝑡
end if

end while
return 𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡

Denoise

The second improvement tries to get to a better solution using another ap-
proach. This strategy is based on the following observation: if a transaction
needs an "exotic" itemset in its cover, it is very well possible that this transaction
is just noise.
The idea of the procedure is therefore remove such unusual transactions from
the database in order to make the regularity pattern more visible since also the
very infrequent item sets will be removed from the code set.
The first question to address is how we decide if a transaction is noise or not. In
order to do that we rely on the standard encoding that we already used.
The principle is that it could happen that the code for some transactions becomes
longer than its standard code (i.e. the code produced by the standard encoding)
so it would be better to code these transactions using the standard encoding.
The noise is therefore defined as those transactions whose code is longer than

12
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their standard code, i.e. 𝐿𝑆(𝑡) < 𝐿𝐶𝑆(𝑡), and they are removed by three simple
algorithms:

• Noise [4] that determines the unusual transactions in the database

• Denoise [5] that removes such transactions from the database

• Sanitize [6] that removes the item sets with a zero cover in the denoised
database

Algorithm 4 Noise(ℐ , 𝐶𝑜𝑑𝑒𝑆𝑒𝑡, 𝑑𝑏)
𝑁𝑜𝑖𝑠𝑒 ← ∅
for 𝑡 ∈ 𝑑𝑏 do

if 𝐿𝑆(𝑡) < 𝐿𝐶𝑆(𝑡) then
𝑁𝑜𝑖𝑠𝑒 ← 𝑁𝑜𝑖𝑠𝑒 ∪ {𝑡}

end if
end for
return 𝑁𝑜𝑖𝑠𝑒

Algorithm 5 Denoise(ℐ , 𝐶𝑜𝑑𝑒𝑆𝑒𝑡, 𝑑𝑏)
𝑁𝑜𝑖𝑠𝑒 ← Noise(ℐ , 𝐶𝑜𝑑𝑒𝑆𝑒𝑡, 𝑑𝑏)
𝑑𝑏 ← 𝑑𝑏 \ 𝑁𝑜𝑖𝑠𝑒

return 𝑑𝑏

Algorithm 6 Sanitize(ℐ , 𝐶𝑜𝑑𝑒𝑆𝑒𝑡, 𝑑𝑏)
𝑑𝑏 ← Denoise(ℐ , 𝐶𝑜𝑑𝑒𝑆𝑒𝑡, 𝑑𝑏)
for 𝐽 ∈ 𝐶𝑜𝑑𝑒𝑆𝑒𝑡 do

if 𝑐𝑜𝑣𝑒𝑟𝑑𝑏(𝐽) = ∅ then
𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← 𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ⊖ 𝐽

end if
end for
return 𝐶𝑜𝑑𝑒𝑆𝑒𝑡

Once the algorithms are defined we can compute the size of the new com-
pressed database: it is the sum of the size of the sanitized code set, the size of
the denoised database and the size of the Noise set.

13



2.1. "ITEM SETS THAT COMPRESS"

Therefore, let 𝐶𝑆 be a coding set for a database of transactions 𝑑𝑏 over a set of
items ℐ, we have that

𝐿𝑁𝐶𝑆(𝑑𝑏) = 𝐿𝐶𝑆(Denoise) + 𝐿𝐶𝑆(Sanitize) + 𝐿𝐶𝑆(Noise)

In the case of the last term, the size is simply:

𝐿𝐶𝑆(𝑁𝑜𝑖𝑠𝑒) = ∑
𝑡∈𝑁𝑜𝑖𝑠𝑒

𝐿𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑡)

Note that the definition of the generalized length 𝐿𝑁𝐶𝑆 is an extension of
the previous length definition. In fact, if there are not unusual transactions we
have that Noise(ℐ , 𝐶𝑆, 𝑑𝑏) = ∅ and thus 𝐿𝑁𝐶𝑆(𝑑𝑏) = 𝐿𝐶𝑆(𝑑𝑏) since the three
components that form 𝐿𝑁𝐶𝑆 are:

• Denoise(ℐ , 𝐶𝑆, 𝑑𝑏) = 𝑑𝑏

• Sanitize(ℐ , 𝐶𝑆, 𝑑𝑏) = 𝐶𝑆

• 𝐿𝐶𝑆(Noise(ℐ , 𝐶𝑆, 𝑑𝑏)) = 0

Algorithms

Given the two improvement strategies just defined in the previous sections,
we can extend the algorithm Naive-Compression creating three other algo-
rithms:

• Compress-and-Prune [7]: Naive-Compression + Prune-on-the-fly

• Compress-and-Sanitize [8]: Naive-Compression + Sanitize

• All-out-Compression [9]: Naive-Compression + Prune-on-the-fly + San-
itize

Note that it is not guaranteed that these algorithms will perform better than
the simple Naive-Compression.

14
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Algorithm 7 Compress-and-Prune(ℐ , 𝐽 , 𝑑𝑏)
Require: the set of items ℐ, the code set 𝐽 and the database 𝑑𝑏

Ensure: the final code set
𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← Standard(ℐ , 𝑑𝑏)
𝐽 ← 𝐽 \ ℐ
𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠 ← Cover-Order(𝐽 , 𝑑𝑏)
while 𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠 ≠ ∅ do

𝑐𝑎𝑛𝑑←maximal element of 𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠

𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠 ← 𝐶𝑎𝑛𝐼𝑡𝑒𝑚𝑠 \ {𝑐𝑎𝑛𝑑}
𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← 𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ⊕ {𝑐𝑎𝑛𝑑}
if 𝐿𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡(𝑑𝑏) < 𝐿𝐶𝑜𝑑𝑒𝑆𝑒𝑡(𝑑𝑏) then

𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← Prune-on-the-fly(𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡, 𝐶𝑜𝑑𝑒𝑆𝑒𝑡, 𝑑𝑏)
𝐶𝑜𝑑𝑒𝑆𝑒𝑡 ← 𝐶𝑎𝑛𝐶𝑜𝑑𝑒𝑆𝑒𝑡

end if
end while
return 𝐶𝑜𝑑𝑒𝑆𝑒𝑡

Algorithm 8 Compress-and-Sanitize(ℐ , 𝐽 , 𝑑𝑏)
Require: the set of items ℐ, the code set 𝐽 and the database 𝑑𝑏

Ensure: the final code set
𝑅𝑒𝑠𝑢𝑙𝑡 ← Naive-Compression(ℐ , 𝐽 , 𝑑𝑏)
𝑅𝑒𝑠𝑢𝑙𝑡 ← Sanitize(ℐ , 𝑅𝑒𝑠𝑢𝑙𝑡, 𝑑𝑏)
return 𝑅𝑒𝑠𝑢𝑙𝑡

Algorithm 9 All-out-Compression(ℐ , 𝐽 , 𝑑𝑏)
Require: the set of items ℐ, the code set 𝐽 and the database 𝑑𝑏

Ensure: the final code set
𝑅𝑒𝑠𝑢𝑙𝑡 ← Compress-and-Prune(ℐ , 𝐽 , 𝑑𝑏)
𝑅𝑒𝑠𝑢𝑙𝑡 ← Sanitize(ℐ , 𝑅𝑒𝑠𝑢𝑙𝑡, 𝑑𝑏)
return 𝑅𝑒𝑠𝑢𝑙𝑡
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2.2 "Subtrajectory Clustering: Models and Algo-
rithms"

“Subtrajectory Clustering: Models and Algorithms” proposes a clustering
model and a specific algorithm to solve the subtrajectory clustering model. In
the following sections we will present in detail the procedure adopted by this
work.

2.2.1 Introduction

The purpose of the paper "Subtrajectory Clustering: Models and Algorithms"
is to extract shared structures that encode much of the information contained
in a large trajectory dataset, in which each trajectory is simply represented as a
sequence of points.
The subtrajectory clustering problem therefore consists in partition the subtra-
jectories of the input trajectories into a small number of clusters. Each of these
clusters is represented as a pathlet, i.e., a sequence of points that is not neces-
sarily a subsequence of an input trajectory, and each pathlet has to be a good
representation of the subtrajectories in the cluster.
The clustering model presented in the document aims at capturing the shared
portions between the input trajectories by considering each trajectory as a con-
catenation of a small set of pathlets with possible gaps between one pathlet and
another.
The utility of extracting the pathlets does not only consists in compressing the
starting dataset. The pathlets provide semantic information that could be useful
for trajectory analysis applications and they also reduce uncertainty in individ-
ual trajectories since they can reduce noise and fill missing points.

2.2.2 General Model

In order to properly define the clustering model that we are going to use,
first we need to define some necessary terms:

• a trajectory 𝑇 is a polygonal curve defined by a finite sequence of points in
R2;
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• 𝒯 = 𝑇1, ..., 𝑇𝑛 is the trajectories dataset, i.e., a set of 𝑛 trajectories;

• P = 𝑃1, ..., 𝑃𝑏 is a set of 𝑏 candidate pathlets;

• X =
∪𝑛

𝑖=1 𝑇𝑖 is the set of all trajectory points with 𝑚 = |X|. Note that, for
simplicity, we assume that the points in each trajectory are distinct;

• 𝑇[𝑝, 𝑞] is the subtrajectory of T that goes from the point 𝑝 to the point 𝑞.

In the Introduction Section 2.2.1 we briefly described what the problem is.
To proceed we also need to know what actually is the solution we are looking
for, that is, a subtrajectory clustering.

Definition 6 A subtrajectory clustering is a pathlet dictionary, that is, a (multi)
subset 𝒫 ⊆ P, along with an assingment of a subset 𝒯 (𝑃) of subtrajectories to each
𝑃 ∈ 𝒫 such that there is at most one subtrajectory 𝑆 ∈ 𝒯 (𝑃) of each trajectory 𝑇 ∈ 𝒯 .
When a subtrajectory 𝑆 belongs to 𝒯 (𝑃) we say that 𝑆 is assigned to or covered by P.

However, we are not looking for a general subtrajectory clustering, we want to
find a really good one. In the clustering model, this translates in finding the
subtrajectory clustering that minimizes an objective function consisting of three
terms:

• a first term proportional to the number of pathlets |𝒫|.
• a second term that represents the fraction of points of each trajectory that

are not covered by any pathlet, measuring in this way the size of the gaps
left uncovered.

• a third term that represents how well the pathlets resemble the assigned
subtrajectories.

The objective function is formalised in the following equation

𝜇(𝒯 ,𝒫 , 𝑑) = 𝑐1 |𝒫| + 𝑐2
∑
𝑇∈𝒯

𝜏(𝑇) + 𝑐3
∑
𝑃∈𝒫

∑
𝑆∈𝒯 (𝑃)

𝑑(𝑆, 𝑃) (2.2)

in which 𝑐1, 𝑐2 and 𝑐3 are user-defined parameters that regulate the trade-off
between some properties of the final clustering. The last term 𝑑, instead, is a
distance function that we will describe in detail later on that in some cases can
be equal to∞ so as not to allow certain assignments.
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At this point, we can define the two main problems that we will face in the
following sections: Pathlet-Cover and Subtrajectory Clustering.

Definition 7 Given a tuple (𝒯 , P, 𝑑), the pathlet-cover problem consists in com-
puting 𝒫∗ ⊆ P and permissible assignment of subtrajectories to pathlets, to minimize
the objective function 𝜇(𝒯 ,𝒫 , 𝑑). We let 𝜋(𝒯 , P, 𝑑) = 𝜇(𝒯 ,𝒫∗, 𝑑).

Definition 8 The subtrajectory-clustering problem is to solve the pathlet-cover
problem but without having a set of candidate pathlets, that is, P is the infinite set of all
point sequences.

Both problems are difficult to solve and, in fact, by a simple reduction from
the standard Facility-Location problem in Euclidean space, we have that Pathlet-
Cover problem is NP-Complete while Subtrajectory Clustering problem is NP-
Hard.

2.2.3 Pathlet-Cover

In this section we will describe an approximation algorithm for the pathlet-
cover problem that relies on the reduction to the standard Set-Cover problem.
The first thing to define is the actual reduction from one problem to the other.
To do that, we define a set system, that is, a pair (𝑋,𝒮), where 𝑋 = 𝑒1, ..., 𝑒ℓ is
the ground set of elements and 𝒮 is a family of subsets of 𝑋.
The optimization version of the Set-Cover problem, given a set system and a
weight function 𝑤 : 𝒮 → R+ find a subset 𝒞 ⊆ 𝒮 such that the sum of all the
weights of the sets in 𝒞 is minimum and 𝑋 is covered by 𝒞, i.e.,

∪
𝐶∈𝒞 𝐶 = 𝑋.

At this point we need to define what 𝑋 and 𝒮 actually are:

1. 𝑋 is the set of all points present in 𝒯 .

2. 𝒮 is a family of subsets that contains two kinds of subsets

• for every 𝑃 ∈ P and for any set of input subtrajectories ℛ drawn
from distinct trajectories in 𝒯 such that 𝑑(𝑆, 𝑃) ≠ ∞ for all 𝑆 ∈ ℛ,
family 𝒮 contains a set 𝑆(𝑃,ℛ) = {𝑝 ∈ 𝑆 |𝑆 ∈ ℛ} with 𝑤(𝑆(𝑃,ℛ)) =
𝑐1 + 𝑐3

∑
𝑆∈ℛ 𝑑(𝑆, 𝑃).

• let 𝑇(𝑝) ∈ 𝒯 be the trajectory containing the point 𝑝. Then for every
𝑝 ∈ 𝑋, family 𝒮 contains a singleton set {𝑝} with 𝑤({𝑝}) = 𝑐2/|𝑇(𝑝) |.
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These two types of subsets have an important meaning.
The first type represents the trajectory points that are covered by the pathlets
and, in the greedy algorithm that we are going to describe, choosing a set 𝑆(𝑃,ℛ)
will result in covering the trajectory points present in the subtrajectories ℛ as-
signed to the pathlet 𝑃.
The second type, instead, represents the trajectory points that will remain un-
covered and choosing a set {𝑝} will mean marking a trajectory point 𝑝 as per-
manently uncovered.

Now that we have defined what the set system consists of, we can describe
how the greedy algorithm looks like.
Until every element is covered, the algorithm simply picks the set that maximizes
a certain quantity called coverage-cost ratio, that is, the fraction between the
newly covered elements and the weight of the set.
In order to understand more in depth its functioning, let us suppose that the
algorithm is at an intermediate iteration in which 𝒞 is the family of sets chosen
so far. To formalise the definition of the coverage-cost ratio we need two new
terms:

• �̂� ⊆ 𝑋 is the set of points still not processed by 𝒞, that is, the set of points
that do not belong to any set 𝑆(𝑃,ℛ) or singleton chosen in 𝒞.

• �̂� = 𝑆 ∩ �̂� is the set of unprocessed points in a substrajectory 𝑆.

At this point, we can define the coverage-cost ratio 𝜌 of the two kinds of sets
in 𝒮:

• for a family of subtrajectories ℛ and a pathlet 𝑃 we have that

𝜌(𝑃,ℛ) =
∑

𝑆∈ℛ |�̂� |
𝑐1 +∑𝑆∈ℛ 𝑐3𝑑(𝑆, 𝑃) (2.3)

with

𝒯𝑃 = argmax
ℛ:𝑆(𝑃,ℛ)∈𝒮

𝜌(𝑃,ℛ) 𝑃∗ = argmax
𝑃∈P

𝜌(𝑃,𝒯𝑃)

• while for each unprocessed point 𝑝 ∈ �̂� we have

𝜌(𝑝) = |𝑇
(𝑝) |
𝑐2

(2.4)

19



2.2. "SUBTRAJECTORY CLUSTERING: MODELS AND ALGORITHMS"

with

𝑝∗ = argmax
𝑝∈�̂�

𝜌(𝑝) .

In the next iteration, the algorithm will pick the set with the higher coverage-
cost ratio between 𝑆(𝑃∗,𝒯𝑃∗) and {𝑝∗} and add it to the set 𝒞. Then the set �̂� of
unprocessed points, the values 𝜌(𝑃,ℛ) and the sets 𝒯𝑃 will be updated.
This algorithm has an approximation ratio of 𝑂(log𝑚) when run on the set
system (𝑋,𝒮) and the main challenge in implementing it consists in the compu-
tation of 𝒯𝑃 for each pathlet 𝑃 given that 𝒮 contains an exponential number of
sets 𝑆(𝑃,ℛ).
For this reason, we now describe an efficent procedure to compute 𝒯𝑃 that re-
quires two new terms in order to be introduced:

• 𝑆𝑃(𝑇) is the set of subtrajectories 𝑆 of 𝑇 where 𝑑(𝑆, 𝑃) ≠ ∞;

• for a set 𝑆(𝑃,ℛ), 𝑥𝑆,𝑇 ∈ {0, 1} ∀ 𝑆 ∈ 𝑆𝑃(𝑇), 𝑇 ∈ 𝒯 is a set of variables that
indicate if 𝑆 ∈ ℛ.

With this terms, we can rewrite the previous coverage-cost ratio equation 2.3
and the problem of computing 𝒯𝑃 for a fixed pathlet 𝑃 is equivalent to solving
the following optimization problem:

max
∑

𝑇∈𝒯
∑

𝑆∈𝑆(𝑇) |�̂� |𝑥𝑆,𝑇
𝑐1 + 𝑐3

∑
𝑇∈𝒯

∑
𝑆∈𝑆(𝑇) 𝑑(𝑆, 𝑃)𝑥𝑆,𝑇 (2.5)

s.t. ∑
𝑆∈𝑆(𝑇) 𝑥𝑆,𝑇 ≤ 1 ∀ 𝑇 ∈ 𝒯

𝑥𝑆,𝑇 ∈ {0, 1} ∀ 𝑆 ∈ 𝑆(𝑇), 𝑇 ∈ 𝒯
If there exist feasible values of the variables 𝑥 that satisfy the equation∑

𝑇∈𝒯

∑
𝑆∈𝑆(𝑇)

(|�̂� | − 𝑐3𝛾𝑑(𝑆, 𝑃))𝑥𝑆,𝑇 ≥ 𝑐1𝛾 (2.6)

we have that the maximum objective value is ≥ 𝛾.
At this point, for a fixed value of 𝛾, the goal is to maximize the left hand side and
therefore for each 𝑇 we should pick the subtrajectory 𝑆 ∈ 𝑆(𝑇) that maximizes
the quantity |�̂� | − 𝑐3𝛾𝑑(𝑆, 𝑃) (provided that is > 0). To do that, we define the
function ℱ𝑃,𝑇 : R≥0→ R≥0 for each pathlet 𝑃 and trajectory 𝑇 as
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ℱ𝑃,𝑇(𝛾) = max{0, max
𝑆∈𝑆𝑃(𝑇)

𝑓𝑆,𝑃(𝛾)}

where 𝑓𝑆,𝑃 is a function defined as

𝑓𝑆,𝑃(𝛾) = |�̂� | − 𝑐3𝛾𝑑(𝑆, 𝑃)

Finally, we define

𝜁𝑃(𝛾) = ∑
𝑇∈𝒯 ℱ𝑃,𝑇(𝛾)

that is a monotonically non-increasing, piecewise-linear and convex function
with at most

∑
𝑇∈𝒯 |𝑆𝑃(𝑇)| + 𝑚 pieces.

The optimal point 𝛾∗ is therefore the intersection point between 𝜁𝑃 and the
line passing through the origin with slope 𝑐1. With this result we then have
𝒯𝑃 = {𝑇 ∈ 𝒯 |ℱ𝑃,𝑇(𝛾∗) > 0}.

2.2.4 Subtrajectory Clustering

In this section the approximation algorithm for the subtrajectory clustering
problem will be described. The algorithm consists in an adaptation to the
procedure used for the pathlet-cover problem.
During the explanation, we will assume the trajectories to be 𝜅-packed, that is,
the length of the intersections of a trajectory with any disk of radius 𝑟 is at most
𝜅𝑟.
The algorithm relies on two main ideas: the first one represents the adaptation
to pathlet-cover problem while the second one is a further improvement of the
algorithm performances.

• First of all we construct a small set S of candidate pathlets exploiting the
fact that the discrete Fréchet distance is a metric. In this way we obtain an
optimal pathlet cover of 𝒯 with respect to S that has a cost close to the cost
of an optimal subtrajectory clustering of 𝒯 .

• Then, exploiting again the properties of the Fréchet distance but also the
fact that the trajectories are 𝜅-packed, we compute an approximation of
the Frechét distance.
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Candidate Pathlets

The goal of this paragraph is to find a way to obtain a candidate set of pathlets
in order to be able to use the procedure presented for solving the pathlet-cover
problem. There are mainly two ways that lead to the following results:

• A candidate set S of 𝑂(𝑚2) pathlets such that 𝜋(𝒯 , S, 𝑓 𝑟) ≤ 2𝜋(𝒯 , P, 𝑓 𝑟).
• A candidate setCof𝑂(𝑚)pathlets such that𝜋(𝒯 ,C, 𝑓 𝑟) = 𝑂(log𝑚)𝜋(𝒯 , P, 𝑓 𝑟).

In the definitions just presented, the term 𝑓 𝑟 refers to the discrete Fréchet
distance of which we now present the definition.
Given two point sequences 𝐴 and 𝐵, a correspondence is a subset 𝐶 ⊆ 𝐴 × 𝐵

such that for all 𝑎 ∈ 𝐴 (𝑏′ ∈ 𝐵), there exists 𝑏 ∈ 𝐵 (𝑎′ ∈ 𝐴) such that (𝑎, 𝑏) ∈ 𝐶

((𝑎′, 𝑏′) ∈ 𝐶).
A correspondence between two point sequences 𝑇1 = ⟨𝑝1, 𝑝2, ..., 𝑝𝑘⟩ and 𝑇2 =

⟨𝑞1, 𝑞2, ..., 𝑞𝑙⟩ is monotone if for (𝑝𝑖 , 𝑞 𝑗), (𝑝𝑖′ , 𝑞 𝑗′) ∈ 𝐶 with 𝑖 ≤ 𝑖′ we have 𝑗 ≤ 𝑗′.
The discrete Fréchet distance between 𝑇1 and 𝑇2 is defined as

𝑓 𝑟(𝑇1, 𝑇2) = 𝑚𝑖𝑛
𝐶∈Ξ

𝑚𝑎𝑥
(𝑝,𝑞)∈𝐶

| |𝑝 − 𝑞 | |

whereΞ is the set of all monotone correspondences between 𝑙𝑎𝑛𝑔𝑙𝑒𝑝1, 𝑝2, ..., 𝑝𝑘⟩
and ⟨𝑞1, 𝑞2, ..., 𝑞𝑙⟩.

At this point, we can explain how to obtain the results presented above.
First of all, suppose that 𝒫 ∈ P is an optimal pathlet dictionary of 𝒯 . For all
𝑃 ∈ 𝒫, we have that the cost of assigning the subtrajectories in 𝒯 (𝑃) to 𝑃 is
computed as

𝑑(𝑃,𝒯 (𝑃)) = 𝑐3
∑

𝑆∈𝒯 (𝑃)
𝑓 𝑟(𝑆, 𝑃)

Thanks to the triangle inequality property of the Fréchet distance, we can replace
the pathlet 𝑃 with a subtrajectory of 𝒯 (𝑃) while only doubling the cost. This is
formalised in the following lemma.

Lemma 1 There exists a subtrajectory𝑆′ ∈ 𝒯 (𝑃) such that 𝑑(𝑆′,𝒯 (𝑃)) ≤ 2𝑑(𝑃,𝒯 (𝑃)).
Therefore, the procedure that allows us to obtain the first of the two results
reported above, consists in replacing all dictionary pathlets with input subtra-
jectories in any solution of the pathlet-cover instance (𝒯 , P, 𝑓 𝑟). This change

22



CHAPTER 2. RELATED WORKS

will increase the total cost by a factor of at most 2.

However, to further restrict the candidate set, we need to use another proce-
dure that requires the notion of canonical pathlets. Consider a trajectory 𝑇 ∈ 𝒯
and assume for simplicity that |𝑇 | is a power of 2. Consider also a balanced
binary tree over the interval [1, |𝑇 |].
We have that each node of the tree correponds to a certain interval [𝑖, 𝑗]. More-
over, its left and right children correspond respectively to the first half of the
interval and to the second half, i.e., [𝑖 , ⌊(𝑖 + 𝑗 + 1)/2⌋] and [⌊(𝑖 + 𝑗 + 1)/2⌋ + 1, 𝑗].
From looking at the tree, we have that each node, i.e., each interval, induces a
subtrajectory 𝑇(𝑖, 𝑗) of 𝑇.
The subtrajectories associated to the nodes of the binary tree are termed as
canonical pathlets and are denoted by C(𝑇).
At this point we can implement the same procedure as before and replacing a
pathlet 𝑃 by a set of 𝑂(log𝑚) canonical pathlets while increasing the cost by at
most a factor of 𝑂(log𝑚).
If we perform this substitution for every pathlet in the dictionary we obtain the
following result, that is the one reported in the second point above.

Definition 9 Let P be the set of all point sequences in R2 and let C be the set of all
canonical pathlets of 𝒯 . We have that

𝜋(𝒯 ,C, 𝑓 𝑟) = 𝑂(log𝑚) · 𝜋(𝒯 , P, 𝑓 𝑟)

Approximate distances

In this paragraph we introduce an algorithm to compute a distance function
𝑑, that just approximates the actual Fréchet distance, in order to improve the
overall performances.
In fact, instead of computing the distance function directly, we compute an ap-
proximation 𝑑 between a subset of pairs of canonical pathlets and subtrajectories
(for the other pairs the distance is set to∞ to mark them as not permissible) with
the goal of doing that without decreasing the cluster quality by much.
This algorithm helps the one used to solve the pathlet-cover problem because it
reduces the number of permissible assignments and of course the computation
of the distance is much faster.
To present the actual procedure we need to introduce first the notion of r-
simplification.
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For any 𝑟 > 0, an r-simplification of a trajectory𝑇 is a trajectory𝑆 consisting
of a subsequence of points from 𝑇 such that 𝑓 𝑟(𝑇, 𝑆) ≤ 𝑟.

To compute the r-simplification of a trajectory there is a very simple algorithm:

• We include the first point of 𝑇

• We iterate in order along all the points of 𝑇 and we include each point that
is at distance ≥ 𝑟 from the previously included point.

• We include the last point of 𝑇, regardless of its distance from the last
included point.

The trajectory obtained from this linear algorithm is denoted by
−→
𝑇𝑟 . In the

same way we can define
←−
𝑇𝑟 , that is, the trajectory obtained from the procedure

above by starting from the last point of the trajectory and proceeding in reverse.
Now, by including each point that is present in either

−→
𝑇𝑟 or

←−
𝑇𝑟 following the

original order of 𝑇, we obtain the r-simplification of 𝑇. The following results
derive from the construction:

• Let 𝑝′ and 𝑞′ appear in 𝑇𝑟 in order. We have 𝑓 𝑟(𝑇[𝑝′, 𝑞′], 𝑇𝑟[𝑝′, 𝑞′]) ≤ 𝑟.

• Let 𝑝 and 𝑞 appear in𝑇 in order. There exist 𝑝′ and 𝑞′ ∈ 𝑇𝑟 such that𝑇[𝑝, 𝑞]
is a subsequence of 𝑇[𝑝′, 𝑞′] and 𝑓 𝑟(𝑇[𝑝, 𝑞], 𝑇𝑟[𝑝′, 𝑞′]) ≤ 𝑟.

At this point, we can construct a distance function 𝑑 that gives a 4-approximation
for some pathlet-subtrajectory pairs.
Let 𝑟 be the maximum pairwise distance between trajectory points and be 𝑟 the
minimum. For each 𝑇 ∈ 𝒯 and 𝑟 ∈ ⟨𝑟, 𝑟/2, ..., 𝑟⟩, we want to quickly decide
which subtrajectories of 𝑇𝑟 are within distance 𝑂(𝑟) of each pathlet 𝑃.
In order to be able to do that, the set of points contained in the r-simplification
𝑇𝑟 are preprocessed into an approximate spherical range query data structure
of size 𝑂(|𝑇𝑟 |) in 𝑂(|𝑇𝑟 |) time. This data structure is constructed so as to answer
queries of the following form: let ℬ(𝑝, 𝑟) = {𝑥 ∈ R2 | | |𝑥 − 𝑝 | | ≤ 𝑟} denote a
ball of radius 𝑟 around 𝑝; given a point 𝑝, the data structure returns a subset
of ℬ(𝑝, 2𝑟) ∩ 𝑇𝑟 that includes all points in ℬ(𝑝, 𝑟) ∩ 𝑇𝑟 but no points outside
ℬ(𝑝, 2𝑟) ∩ 𝑇𝑟 .
Each query requires constant time with an additional time proportional to the
number of points returned by the data structure.

24



CHAPTER 2. RELATED WORKS

At this point, for each pathlet 𝑃 in the candidate set C, let 𝑝 and 𝑞 be respec-
tively the start and end points of 𝑃 and also define 𝒬1

𝑇𝑃𝑟 = ℬ(𝑝, 3𝑟) ∩ 𝑇𝑟 and
𝒬2

𝑇𝑃𝑟 = ℬ(𝑞, 3𝑟) ∩ 𝑇𝑟 .
Now, compute 𝒬1

𝑇𝑃𝑟 and 𝒬2
𝑇𝑃𝑟 using the previous data structure and then, for

every pair (𝑝′, 𝑞′) such that 𝑝′ ∈ 𝒬1
𝑇𝑃𝑟 and 𝑞′ ∈ 𝒬2

𝑇𝑃𝑟 , invoke a decision procedure
that checks if 𝑓 𝑟(𝑇𝑟[𝑝′, 𝑞′], 𝑃) ≤ 3𝑟 and if it is, we set 𝑑(𝑇[𝑝′, 𝑞′], 𝑃) = 4𝑟.
We do this procedure for all the triples (𝑇, 𝑟, 𝑃) and we set the values of 𝑑 that
are not defined by the algorithm above as not permissible, i.e., equal to∞.
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3
Representative Itemsets

In this chapter we will first present the formal definition of our problem, that
is, to find a set of itemsets that well represent an initial database of transactions.
Then, we will explain how the problem can be solved by applying a procedure
inspired by a work regarding the clustering of subtrajectories.

3.1 Introduction

The goal of the problem that we are going to describe is similar but not equal
to the one of the paper “Item Sets that Compress” [1] presented in the previous
chapter.
In fact, while in “Item Sets that Compress” the result contains, among the other
things, a set of itemsets that compress without losses the whole database, in this
case the result consists of a set of itemsets that represents the database but with
losses in the informations.
Therefore, what we want to achieve is a set of itemsets that does not compress
every transaction but gives a good representation of what the database contains.
To do that, we will apply a clustering method inspired by “Subtrajectory Clus-
tering: Models and Algorithms” [2].
In the following section, we will present the general clustering model based on
the following terms:

• a set of items ℐ;

• a database 𝑑𝑏 over ℐ, that is, a set of transactions {𝑡1, 𝑡2, ..., 𝑡𝑛};
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• a transaction 𝑡, that is, is a set of items taken from ℐ;

• an itemset 𝐼 ⊂ ℐ, that is, a set of items that could occur in a transaction
𝑡 ∈ 𝑑𝑏 if and only if 𝐼 ⊆ 𝑡,

• a set D containing all the possible itemsets drawn from ℐ
• a set𝒟 ⊂ D of representative itemsets𝒟 ⊂ D
• a set 𝒯 containing all the possible subsets of the transactions in 𝑑𝑏

• a subset 𝒯 (𝐷) ⊂ 𝒯 that contains the subsets of the transactions associated
to the representative itemset 𝐷 ∈ 𝒟. When an itemset 𝑇 belongs to 𝒯 (𝐷)
we have that 𝑇 is covered by 𝐷.

3.2 Clustering Model

As most problem does, ours has an input and an output respectively repre-
sented by:

• the database of transactions 𝑑𝑏

• the set of representative itemsets 𝒟 along with an assignment 𝒯 (𝐷) for
each itemset 𝐷 ∈ 𝒟 such that there is at most one itemset 𝑇 ∈ 𝒯 (𝐷) of
each transaction 𝑡 ∈ 𝑑𝑏.

We now present an objective function similar to the one presented previously
(see Equation 2.2) but with some changes due to the different context. In order
to obtain a good clustering, the model aims at minimizing the objective function
that is, again, composed by three terms:

• the first term is proportional to the number of representative itemsets in
order to regulate the cardinality of the set𝒟 and therefore not get a number
of clusters that is too high or too low.

• the second term represents the fraction of items of each transaction that
are not covered by any representative itemset so as to decide how much
we can neglect of each transaction.
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• the third term represents how much the representative itemsets are close
to the subsets of the transactions that are assigned to them.

Therefore, the objective function is expressed as:

𝜇(𝑑𝑏,𝒟 , 𝑑) = 𝑐1 |𝒟| + 𝑐2
∑
𝑡∈𝑑𝑏

𝜏(𝑡) + 𝑐3
∑
𝐷∈𝒟

∑
𝑇∈𝒯 (𝐷)

𝑑(𝑇, 𝐷) (3.1)

where 𝑐1, 𝑐2 and 𝑐3 are user-defined parameters that regulate the trade-off
between the three terms just described, 𝑑 is a distance function that we will
discuss later on and 𝜏(𝑡) is the fraction of the transaction’s 𝑡 items that is not
covered by any representative itemset.

3.3 Algorithm

At this point we can describe an algorithm that is strictly connected to the
procedure associated with the Pathlet-Cover. In fact, as we previously did, we
need to outline a reduction to the standard Set-Cover problem.
The main element of this reduction is, again, a set system (𝑋,𝒮)which, however,
this time is composed by

1. the set of all items present in the database 𝑑𝑏 together with the index of
the transaction to which they belong, that is, 𝑋 = {(𝑖 , 𝑘)|𝑖 ∈ 𝑡𝑘}

2. and a family of subsets of 𝑋, termed 𝒮, that contains two different kinds
of sets

• for every representative itemset𝐷 ∈ 𝒟 and for any subsetℛ ⊂ 𝒯 such
that 𝑑(𝑇, 𝐷) ≠ ∞ for all 𝑇 ∈ ℛ, family 𝒮 contains a set 𝑆(𝐷,ℛ) = {𝑖 ∈
𝑇 |𝑇 ∈ ℛ} with associated weight 𝑤(𝑆(𝐷,ℛ)) = 𝑐1 + 𝑐3

∑
𝑇∈ℛ 𝑑(𝑇, 𝐷).

• for each transaction 𝑡 and for each element 𝑖 in 𝑡, family 𝒮 contains
a tuple (𝑖, 𝑘) where 𝑘 ∈ [1, 𝑛] is the index of the transaction 𝑡. The
weight of a tuple is𝑤((𝑖, 𝑘)) = 𝑐2/|𝑡𝑘 |where |𝑡𝑘 | represents the number
of items contained in the transaction that has index 𝑘.

In the definition just presented, we included also the definition of a weight
for each set. This is because we are interested in the optimization version of
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the Set-Cover problem that consists in: given a set system and a weight function
𝑤 : 𝒮 → R+ find a subset 𝒞 ⊆ ℐ such that the sum of all the weights of the sets
in 𝒞 is minimum and 𝑋 is covered by 𝒞, i.e.,

∪
𝐶∈𝒞 𝐶 = 𝑋.

As it was for the pathlet-cover algorithm, the two kinds of sets in 𝒮 have a an
important and practical meaning.
In fact, while the 𝑆(ℛ) sets represent the subsets of the transactions that are
covered by a certain representative itemset, the tuples represent the items that
will remain uncovered. Therefore, by choosing a set of the first type, the al-
gorithm is actually deciding that the subsets that belong to ℛ are covered by a
representative itemset in𝒟. Instead, by choosing a tuple (𝑖, 𝑘), the algorithm is
marking that item 𝑖 in that specific transaction 𝑡𝑘 as permanently uncovered.

Now that we know what the set system represents, we can explain why it is
the main element of the reduction to the Set-Cover problem. This is formalised
by the following lemma and the consequent proof which derives from the one
presented in the Subtrajectory Clustering paper [2].

Lemma 2 There exists a bĳection between set covers of (𝑋,𝒮) and solutions to the
representative-cover problem for (𝑑𝑏,𝒟 , 𝑑) so that cost and weight remain equal across
the bĳection.

Proof 1 Let us consider a solution to the representative-cover problem, consisting of the
set 𝒟 and the assingments 𝒯 (𝐷) ∀𝐷 ∈ 𝒟. We are going to create a solution 𝒞 to the
Set-Cover instance (𝑋,𝒮).
For each uncovered item in each transaction, we add the singleton set {𝑖} to 𝒞 and for
each 𝐷 ∈ 𝒟, we add the set 𝑆(𝐷,𝒯 (𝐷)) to 𝒞. It can be easily verified that the total
weight of 𝒞 is equal to the cost of 𝐷.
In the same way, let us consider an optimal solution 𝒞 to the Set-Cover instance. For
each set in 𝒞 of the form 𝑆(𝐷,ℛ), we add the representative itemset 𝐷 to𝒟 and assign
all the itemsets in ℛ to 𝐷. Every item 𝑖 such that {𝑖} ∈ 𝒞 is left uncovered. Again, the
cost of𝒟 is the same as the total weight of 𝒞. □

At this point, we can describe how the greedy algorithm really works in
detail (see Algorithm 10 for the pseudocode). The idea is the same as the one
presented in Section 2.2.3: the algorithm iteratively picks the set that maximizes
the coverage-cost ratio (formally defined later on) until every item is either
marked as covered or uncovered.
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Suppose that the algorithm is running and so it is in an intermediate iteration
in which 𝒞 ⊆ 𝒮 is the family of sets chosen so far.
We define �̂� ⊆ 𝑋 as the set of items still not processed (neither marked as
covered nor as uncovered, and so not present in any 𝑆(𝐷,ℛ) ∈ 𝒞 or tuple) by
𝒞 and �̂� = 𝑇 ∩ �̂� as the set of unprocessed items that belong to a subset 𝑇 of a
transaction.
With these new terms we can provide the formal definition of the coverage-cost
ratio, denoted by 𝜌, for both kinds of sets contained in 𝒮:

• for a family of subtrajectories ℛ and a representative itemset 𝐷 we have
that

𝜌(𝐷,ℛ) =
∑

𝑇∈ℛ |�̂� |
𝑐1 +∑𝑇∈ℛ 𝑐3𝑑(𝑇, 𝐷) (3.2)

with

𝒯𝐷 = argmax
ℛ:𝑆(𝐷,ℛ)∈𝒮

𝜌(𝐷,ℛ) 𝐷∗ = argmax
𝐷∈D

𝜌(𝐷,𝒯𝐷)

• while for each unprocessed item 𝑖 ∈ �̂� that belongs to a certain transaction
𝑡𝑘 we have

𝜌(𝑖, 𝑘) = |𝑡𝑘 |
𝑐2

(3.3)

with

𝑖𝑘 = argmax
𝑖∈�̂�

𝜌(𝑖, 𝑘) 𝑘∗ = argmax
𝑘∈[1,𝑛]

𝜌(𝑖𝑘 , 𝑘)

In the next iteration, the set with the higher coverage-cost ratio between
𝑆(𝐷∗,𝒯𝐷∗) and (𝑖𝑘∗ , 𝑘∗) will be added to the set 𝒞 and finally, to conclude the
iteration, the set �̂� of unprocessed points, the values 𝜌(𝐷,ℛ) and the sets 𝒯𝐷
will be updated.
This algorithm, like the one in Section 2.2.3, has an approximation ratio of
𝑂(log𝑚)when run on the set system (𝑋,𝒮). The main challenge in implement-
ing it consists again in the computation of 𝒯𝐷 for each representative itemset 𝐷
since the number of sets 𝑆(𝐷,ℛ) ∈ 𝒮 is exponential.
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Algorithm 10 Greedy-Algorithm(𝑑𝑏)
Require: a database 𝑑𝑏 of transactions
Ensure: a set containing the representative itemsets

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← compute_candidates(𝑑𝑏)
𝑠𝑢𝑏𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← compute_subtransactions(𝑑𝑏)
𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑡𝑢𝑝𝑙𝑒𝑠 ← uncovered_initialization(𝑑𝑏)
while 𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑡𝑢𝑝𝑙𝑒𝑠.size() > 0 do

for 𝑐𝑎𝑛𝑑 in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do
if is_ratio_changed(𝑐𝑎𝑛𝑑) then

𝑠𝑒𝑡_𝑇𝐷 ← compute_𝑇𝐷(𝑐𝑎𝑛𝑑, 𝑠𝑢𝑏𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠)
𝑐𝑎𝑛𝑑.𝑟𝑎𝑡𝑖𝑜 ← compute_coveragecost(𝑐𝑎𝑛𝑑, 𝑠𝑒𝑡_𝑇𝐷)
𝑐𝑎𝑛𝑑.𝑠𝑒𝑡_𝑇𝐷 ← 𝑠𝑒𝑡_𝑇𝐷

end if
if 𝑐𝑎𝑛𝑑.𝑟𝑎𝑡𝑖𝑜 > 𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑.𝑟𝑎𝑡𝑖𝑜 then

𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑← 𝑐𝑎𝑛𝑑
end if

end for
if 𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑.𝑟𝑎𝑡𝑖𝑜 > 𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑡𝑢𝑝𝑙𝑒𝑠.top().𝑟𝑎𝑡𝑖𝑜 then

cover_items(𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑)
𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠.add(𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑)

else
𝑐𝑜𝑣𝑒𝑟_𝑖𝑡𝑒𝑚(𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑡𝑢𝑝𝑙𝑒𝑠.top())
𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑡𝑢𝑝𝑙𝑒𝑠.pop()

end if
end while
return 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠
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3.4 Computation of 𝒯𝐷
In order to compute 𝒯𝐷 we now describe the adaptation of the procedure

previously presented for the computation of 𝒯𝑃 .
This requires two new terms:

• 𝑇(𝑡) is the set of subsets 𝑇 of the transaction 𝑡;

• for a set 𝑆(𝐷,ℛ), 𝑥𝑇, 𝑡 ∈ {0, 1} ∀𝑇 ∈ 𝑇(𝑡), 𝑡 ∈ 𝑑𝑏 is a set of variables that
indicate if 𝑇 ∈ ℛ.

Using the new terms, the coverage-cost ratio equation 3.2 can be rewritten
and the problem of computing𝒯𝐷 for a certain representative itemset 𝐷 becomes
an optimization problem defined as follows:

max
∑

𝑡∈𝑑𝑏
∑

𝑇∈𝑇(𝑡) |�̂� | 𝑥𝑇,𝑡
𝑐1 + 𝑐3

∑
𝑡∈𝑑𝑏

∑
𝑇∈𝑇(𝑡) 𝑑(𝑇, 𝐷) 𝑥𝑇,𝑡 (3.4)

s.t. ∑
𝑇∈𝑇(𝑡) 𝑥𝑇,𝑡 ≤ 1 ∀ 𝑡 ∈ 𝑑𝑏

𝑥𝑇,𝑡 ∈ {0, 1} ∀ 𝑇 ∈ 𝑇(𝑡), 𝑡 ∈ 𝑑𝑏
If there exist feasible values of the variables 𝑥 that satisfy the equation∑

𝑡∈𝑑𝑏

∑
𝑇∈𝑇(𝑡)

(|�̂� | − 𝑐3𝛾𝑑(𝑇, 𝐷))𝑥𝑇,𝑡 ≥ 𝑐1𝛾 (3.5)

we have that the maximum objective value is ≥ 𝛾.
From now on, the procedure is the same as the previous one but with the right
adaptations: for a fixed value of 𝛾, the goal is to maximize the left hand side of
3.5 and therefore for each transaction 𝑡 we should pick the subset 𝑇 ∈ 𝑇(𝑡) that
maximizes the quantity |�̂� | − 𝑐3𝛾𝑑(𝑇, 𝐷) (provided that is > 0).
In order to do that, we define a functionℱ𝐷,𝑡 : R≥0→ R≥0 for each representative
itemset 𝐷 and transaction 𝑡

ℱ𝐷,𝑡(𝛾) = max{0, max
𝑇∈𝑇(𝑡)

𝑓𝑇,𝐷(𝛾)}

where 𝑓𝑇,𝐷 in this case is a function defined as

𝑓𝑇,𝐷(𝛾) = |�̂� | − 𝑐3𝛾𝑑(𝑇, 𝐷).
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Finally, we define another function

𝜁𝐷(𝛾) = ∑
𝑡∈𝑑𝑏 ℱ𝐷,𝑡(𝛾)

that is monotonically non-increasing, piecewise-linear and convex with at most∑
𝑡∈𝑑𝑏 |𝑇(𝑡)| + 𝑚 pieces.

With these elements, we have that the optimal point 𝛾∗ is at the intersection
point between the function 𝜁𝐷 and the line that has slope equal to 𝑐1 and passes
through the origin. This result leads directly to what was our goal since we have
that

𝒯𝐷 = {𝑡 ∈ 𝑑𝑏 | ℱ𝐷,𝑡(𝛾∗) > 0}.

3.5 Distances Definition

In the presentation of the clustering model and the greedy algorithm, we
used a generic function 𝑑 to evaluate the distance between two itemsets.
This function can be represented by various distances, among which we have:

• Jaccard distance: it is the complement of the Jaccard similarity.
The Jaccard similarity between two itemsets 𝐼1 and 𝐼2 is computed as
follows

𝐽(𝐼1, 𝐼2) = |𝐼1 ∩ 𝐼2 |
|𝐼1 ∪ 𝐼2 |

and so the Jaccard distance between the same two sets is

1 − 𝐽(𝐼1, 𝐼2)

• Sørensen–Dice distance: it is the complement of the Sørensen–Dice coef-
ficient.
The Sørensen–Dice coefficient between two itemsets 𝐼1 and 𝐼2 is computed
as

𝑆(𝐼1, 𝐼2) = 2|𝐼1 ∩ 𝐼2 |
|𝐼1 | + |𝐼2 |

therefore the Sørensen–Dice distance between the same sets is equal to

1 − 𝑆(𝐼1, 𝐼2)

The main difference between these two functions is that the Jaccard distance
is a metric. The Sørensen–Dice distance in fact, does not satisfy the triangle
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inequality and this represents its main drawback.
Of course, these are only two very well known examples but other types of
distances that measure how different two sets are can also be used.

3.6 Candidate Representative Itemsets

In the presentation of the problem, we defined the setD as the set containing
all the possible itemsets drawn from ℐ.
However, if the set ℐ is very large, the set D will contain too many candidates
and the algorithm, since it is forced to try them all, may take a long time to
execute. In order to avoid this problem, a sort of preprocessing could be applied
to obtain a set of candidates that is not too large.
In this section, we are going to present an idea whose aim is to create a set of can-
didates that will contain fewer elements thanDwhile remaining heterogeneous
enough to obtain a good final result.

3.6.1 Candidates Generation

The procedure consists of two phases:

• Frequent itemsets mining

• Union of sets with high overlap coefficient

In the first phase, by using for example the Apriori Algorithm introduced in
“Fast Algorithms for Mining Association Rules in Large Databases” [3] we want
to obtain a set containing the most frequent itemsets in the database.
Apriori is a simple iterative procedure in which at each iteration two main steps
are executed: join and prune. The result obtained by this algorithm is a set
containing all the itemsets 𝐼 such that the support of 𝐼 is greater than a certain
threshold 𝑚𝑖𝑛-𝑠𝑢𝑝, that is, 𝑠𝑢𝑝𝑝𝑑𝑏(𝐼) ≥ 𝑚𝑖𝑛-𝑠𝑢𝑝.

In the second phase, we want to somehow add some diversification to the
set just obtained by Apriori. One possible way to do so consists in adding to the
set also the union of the itemsets that have a high overlap coefficient.
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The overlap coefficient, also termed as Szymkiewicz-Simpson coefficient, be-
tween two itemsets 𝐼1 and 𝐼2 is defined below.

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐼1, 𝐼2) = |𝐼1 ∩ 𝐼2 |
min (|𝐼1 |, |𝐼2 |)

The final set of candidates will therefore contain the most frequent itemsets
obtained by the first phase and the itemsets resulting from the second phase.

In this procedure, a crucial point is represented by the choice of the right
value of the 𝑚𝑖𝑛-𝑠𝑢𝑝 threshold and the overlap coefficient.
Starting from 𝑚𝑖𝑛-𝑠𝑢𝑝 we can consider two different cases:

• If the threshold value is set too high, we have that the number of fre-
quent itemsets may not be large enough to obtain a heterogeneous set of
candidates;

• If instead the threshold is set too low, we have that the number of frequent
itemsets may be so large as to not represent an improvement compared to
the set D.

For the overlap coefficient we can distinguish two other similar cases:

• If the coefficient is set too high, we may not obtain enough new itemsets
from the second phase;

• If instead the coefficient is set too low, we may have to merge too many
itemsets.
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4
Implementation Details

In this chapter we will present how our code is organized and the data struc-
tures we used. All the code can be found at this https://github.com/giacomo6699/Representative-
Itemsets-Clustering.git.

4.1 Code Structure

The programming language we adopted is c++ and the structure of the code
is simple. The code is composed of four main files: main.cpp, apriori.cpp,
itemset_utilities.cpp and utilities.cpp with the related header files.
Each file contains the code that concerns a different kind of tasks:

• main.cpp contains the functions regarding the main procedure, that is the
Greedy-Algorithm (see Algorithm 10). This file contains functions like
the one to compute the set 𝒯𝐷 or the one to compute the starting set of
candidates.

• apriori.cpp contains all the functions regarding the Apriori procedure to
compute the frequent itemsets of the database 𝑑𝑏.

• itemset_utilities.cpp contains utilities functions that are more related to
operations on sets and the definition of some behaviours of custom objects.

• utilities.cpp contains more general functions that mainly manage the pars-
ing of the input and the creation of a synthetic database.
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4.2 Data Structures

This section will regard two different types of data structures: Priority Queue
and Map. We will present their performances and how they are used in the code.

4.2.1 Priority Queue

A priority queue is a data structure in which the elements must respect two
conditions:

• the first element of the queue is always the greatest (smallest).

• the elements are in non-increasing (non-decreasing) order.

The methods of this data structure we used are:

• push() that adds an element to the queue

• top() that returns the greatest element

• pop() that removes the greatest element from the queue

and their time complexities are represented in the following table:

Methods Complexity

push() 𝑂(log 𝑁)
top() 𝑂(1)
pop() 𝑂(log 𝑁)

Table 4.1: priority queue methods

In the code, we used the priority queue for 𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑡𝑢𝑝𝑙𝑒𝑠 in order to
collect the items of the database that are not covered yet. In this way, the element
returned by top() is always the one with the highest coverage-cost ratio.

4.2.2 Map

A Map is a data structure that contains key-value pairs whose keys must all
be distinct.
The methods we mainly used are:
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• insert(key, value) that adds a new pair to the map

• operator[] that given a key returns the related value

• erase(key) that given a key removes the related pair from the map

and their time complexities are represented in the following table:

Methods Complexity

insert(key, value) 𝑂(log 𝑁)
operator[] 𝑂(log 𝑁)
erase(key) 𝑂(log 𝑁)
Table 4.2: map methods

In the code we mainly used the map for:

• 𝑠𝑢𝑏𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 in which the key is a certain subtransaction and the
associated value is itself a pair. This pair contains the number of tuples that
the subtransactions covers (that is, �̂�) and the indexes of the transactions
in which the subtransaction is present.

• 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑇𝐷 in which the key is the id of a representative candidate and
the value is itself a pair. This pair contains the set 𝒯𝐷 associated to the
candidate and its coverage-cost ratio.

• 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 in which the key is a representative candidate and the
associated value is itself a pair. This pair contains the id of the candidate
and the indexes of the transactions in which at least one subtransaction
∈ 𝒯𝐷 is contained.

4.3 Synthetic Data

In this last section we will explain how the synthetic data for the tests have
been generated.
The steps for the generation of the database are essentially two:
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• clusters generation: for every number between 0 and the max transaction
length we add that number to the cluster with probability 0.5 and all the
clusters must be at a certain distance between each other.

• database generation: for every transaction that we have to generate we
casually pick a cluster and at this point we add noise to it. To add noise
we iter through the numbers between 0 and max transaction length and
we check if they are in the transaction. If they are in the transaction we
remove them with a probability 𝑝 while if they are not present we add
them with probability 𝑝.
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5
Results

In this chapter the results obtained by our algorithm are presented and
commented. The graphs we will show are the results of different test on different
measures.
The tests were executed on one thread of a linux server with the following
characteristics:

• 1 TB of RAM

• Processor Model Name: Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz

• Threads per Core: 1

• Cores per Socket: 18

• Sockets: 4

5.1 Introduction

The clustering of representative itemsets has a lot of parameters and variables
to take into account. The results obtained and the time spent to find them
strongly depend on different aspects of the starting database.
The list of the parameters regarding the functioning of our procedure are:
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• c1 that is the parameter that regulates the number of the representatives
the algorithm finds. The higher it is, the fewer representatives there will
be.

• c2 that is the parameter that regulates the number of uncovered tuples in
the database. The higher it is, the fewer uncovered tuples there will be.

• c3 that is the parameter that regulates the distance between the represen-
tatives and the related subtransactions. The higher it is, the closer they
have to be.

• min_supp that is the minimum support used to find the frequent itemsets
(see Section 2.1.1).

• overlap_threshold that is the minimum value of the overlap coefficient for
which we add the union to the candidates set (see Section 3.6.1).

while the parameters that concern the database complexity are:

• the number of transactions

• the number of clusters

• the maximum length of a transaction

• the noise percentage

For all our results we set the min_supp to 0.004 and overlap_threshold to 1.
To make these choices we performed numerous tests with 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 0.002,
𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 0.004 and 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 0.0075 and we understood that the best
choice was 0.004 and 1 because we noticed that for our case the apriori method
produced a good set of candidates and there was no need to improve it by adding
the union of the candidates with high overlap coefficient.
For c1, c2 and c3 we tried mainly two different configurations:

• we first started with 𝑐1 = 3, 𝑐2 = 2 and 𝑐3 = 2 in order to give more
importance to having a small number of final representatives,

• we then switched to 𝑐1 = 1, 𝑐2 = 1 and 𝑐3 = 1 because the results of the
previous tests were not satisfactory and the representatives were too few
therefore we wanted a more equilibrated configuration.
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As performances measures we chose 4 different values:

• Precision: is the ratio between the true positives 𝑇𝑃 and the sum between
true positives and false positives 𝑇𝑃 + 𝐹𝑃, that is, 𝑇𝑃

𝑇𝑃+𝐹𝑃 ;

• Recall: is the ratio between the true positives 𝑇𝑃 and the sum between
true positives and false negatives 𝑇𝑃 + 𝐹𝑁 , that is, 𝑇𝑃

𝑇𝑃+𝐹𝑁 ;

• Objective Function Ratio: is the ratio between the objective function
value obtained by the representatives computed by the algorithm and the
objective function value obtained by the real starting clusters;

• Time: is the execution time of the algorithm

Finally, given that for each possible combination of parameters we executed the
experiment three times of the algorithm, we presented in the graphs the mean
and the standard deviation of the three results.

5.2 3-2-2 Configuration

In this section, the results regarding the 𝑐1 = 3, 𝑐2 = 2 and 𝑐3 = 2 configura-
tion are presented.
This configuration gives more importance to minimizing the number of clusters
rather than minimizing distances or uncovered items. In the following sections
we will comment the results we obtained with a database of 100, 500 and 1000
transactions and a maximum transaction length of 10 and 15.
On the y-axis we will have the values associated with the performance measure
while on the x-axis we will have the number of clusters that are 5, 10, 15 and 20.

5.2.1 Precision

In this section, the graphs presented show different values of mean and
standard deviation of precision for each value of noise and number of starting
clusters.

100 Transactions

In Figure 5.1 and 5.2 are presented the results obtained with 100 transactions
and a maximum transaction length respectively of 10 and 15.
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As expected the precision decreases as the noise and the number of clusters
get higher. This is because the complexity of the database increases and the
algorithm does not manage to find the exact starting clusters but instead returns
clusters that are just similar to them.
Comparing the two graphs, we can also notice that, when the maximum trans-
action length is 15, for a high number of clusters the algorithm performs worse
while for a small number of clusters the algorithm seems to perform slightly
better.
The first consideration is probably caused by the fact that with a high number of
clusters and a maximum transaction length of 15 the complexity of the database
is too high compared to the number of transactions which is rather small.
The second one instead could be explained by the fact that with a greater maxi-
mum transaction length and a lower number of clusters, the algorithm had the
opportunity to create more distant clusters which are therefore more recognis-
able.

500 and 1000 Transactions

For the graphs with a greater number of transactions, the considerations
made above are still valid because we can notice the same general behaviour of
the previous graphs.
For these graphs, however, we see that the precision is a bit higher when there is
not noise and this is caused by the fact that now the size of the database is bigger.

In general, we can see that the algorithm does not reach good results in terms
of precision.
Even if these graphs may make it appear that the algorithm does not work at all,
we have to understand that the precision does not capture all the informations
of the results and this is the reason why we chose to show different measures.
Moreover, the precision, just like the recall, base their value on the exact cor-
respondence of the starting clusters and the final representatives. For our case
this could be a problem because the objects are sets of numbers and two sets are
equal if and only if they contain the exact same elements. Therefore a cluster
and a representative are different even if they share all their numbers but one
and so the representative will be not counted in the precision formula.
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Figure 5.1: Precision plot of 100 transactions of max length 10
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Figure 5.2: Precision plot of 100 transactions of max length 15
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Figure 5.3: Precision plot of 500 transactions of max length 10
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Figure 5.4: Precision plot of 500 transactions of max length 15
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Figure 5.5: Precision plot of 1000 transactions of max length 10
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Figure 5.6: Precision plot of 1000 transactions of max length 15
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5.2.2 Recall

In this section, the graphs presented show different values of mean and
standard deviation of recall for each value of noise and number of starting
clusters.

100, 500 and 1000 Transactions

The figures in the following page present the recall results for different
database sizes and maximum transaction length.
As we saw in the previous section, also in this case the recall decreases as the
noise and the number of clusters get higher.
The considerations made for precision can be valid also for the recall, because
as we can see, the graphs concerning these two measures are pretty similar in
terms of general behaviour.
One aspect that can be underlined is that the algorithm seems to reach good
values of recall when the number of clusters is small. This is caused by the
fact that the algorithm most of the times manages to find the starting clusters
if they are not a lot even with different values of noise. As we can see, in fact,
the results obtained on the graphs on the right are pretty good if we consider
just the values corresponding to 5 clusters while they are not good at all as the
number of clusters increases.
This is more visible on the graphs on the right mainly because of what we said
on the previous section: with a higher maximum transaction length, the starting
clusters are further apart and the algorithm performs better.
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Figure 5.7: Recall plot of 100 transactions of max length 10
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Figure 5.8: Recall plot of 100 transactions of max length 15
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Figure 5.9: Recall plot of 500 transactions of max length 10
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Figure 5.10: Recall plot of 500 transactions of max length 15
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Figure 5.11: Recall plot of 1000 transactions of max length 10
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Figure 5.12: Recall plot of 1000 transactions of max length 15

47



5.2. 3-2-2 CONFIGURATION

5.2.3 Objective Function Ratio

In this section, the graphs presented show different values of mean and
standard deviation of the objective function ratio for each value of noise and
number of starting clusters.
This value is computed as the ratio between the objective function value obtained
by the representatives found by the algorithm and the objective function value
obtained by the starting clusters therefore we have that, in terms of this measure,
the closer the ratio is to 1 the better the result.

100 Transactions

In Figure 5.13 and 5.14 are presented the results obtained with 100 transac-
tions and a maximum transaction length respectively of 10 and 15.
As we can see, the results obtained are good since most of the times the ratio is
close to 1 even for different number of clusters or value of noise. In particular,
in the case of the graph 5.14 the values obtained are almost all very good, while
we can notice that in the graph 5.13 we have worse value when the noise and
the number of clusters get higher.

500 Transactions

The results are in Figures 5.15 and 5.16. We have that the values get worse
than before even if they are still pretty close to 1 most of the times. Moreover, as
happened before the results obtained when the maximum transaction length is
higher are better.

1000 Transactions

The results are in Figures 5.17 and 5.18. We have a behaviour that is quite
different between the two graphs. The graph on the left, in fact, is significantly
worse than the one on the right. This could be explained by the fact that a
maximum transaction length of 10 is too small for creating a noisy database
with 1000 transactions that still could lead to a good clustering.
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Figure 5.13: Ratio plot of 100 transactions of max length 10
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Figure 5.14: Ratio plot of 100 transactions of max length 15
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Figure 5.15: Ratio plot of 500 transactions of max length 10
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Figure 5.16: Ratio plot of 500 transactions of max length 15
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Figure 5.17: Ratio plot of 1000 transactions of max length 10
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Figure 5.18: Ratio plot of 1000 transactions of max length 15
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5.2.4 Time

In this section, the graphs presented show different values of mean and
standard deviation of the computing time for each value of noise and number
of starting clusters.

100, 500 and 1000 Transactions

Looking at the following graphs one of the first things that stands out is that
the y-axis of the graphs on the right have values that are way higher that the
ones on the left graphs. This is because the maximum transaction length has
a significant influence on the number of subtransactions that can be generated
and therefore the algorithm has to work on a bigger search space.
Another thing that may look strange is that the values seem to decrease as the
number of clusters gets higher. This, however, can be explained by the fact that
if the algorithm has a lower number of starting clusters, it will generate clusters
that are more distant from each other and also more heterogeneous. This will
lead to a greater number of possible subtransactions and therefore to a greater
computing time.
One last thing to underline is that as the number of transactions gets higher, the
computing time most of the times increases too as expected.
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Figure 5.19: Time (s) plot of 100 transactions of max length 10
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Figure 5.20: Time (s) plot of 100 transactions of max length 15
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Figure 5.21: Time (s) plot of 500 transactions of max length 10
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Figure 5.22: Time (s) plot of 500 transactions of max length 15
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Figure 5.23: Time (s) plot of 1000 transactions of max length 10

5 10 15 20
Clusters number

0

1000

2000

3000

4000

5000

6000

7000

8000

 T
im

e

11.7 16.18 25.46
213.55

2210.22

434.98
178.31

367.19

2927.51

981.7

416.26
154.25

4105.21

898.43
401.85

287.98

 Time Plot of
Database with 1000 transactions and Max_length 15

Noise 0.0 Noise 0.03 Noise 0.06 Noise 0.1

Figure 5.24: Time (s) plot of 1000 transactions of max length 15
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5.3 2-2-2 Configuration

In this section, we will present the results regarding the 𝑐1 = 2, 𝑐2 = 2 and
𝑐3 = 2 configuration.
Once we saw the results of the previous configuration we were not really sat-
isfied because most of the times we obtained a number of representatives that
was too small. For this reason we decided to test a more balanced configuration
to see how the results would have been.
In the following sections we will comment the results we obtained with a
database of 100, 500 and 1000 transactions and a maximum transaction length
of 10 and 15.
On the y-axis we will have the values associated with the performance measure
while on the x-axis we will have the number of clusters that are 5, 10, 15 and 20.

5.3.1 Precision

In this section, the graphs presented show different values of mean and
standard deviation of the precision for each value of noise and number of starting
clusters.

100, 500 and 1000 Transactions

As we can see the 2-2-2 configuration has better precision results than the
3-2-2 configuration. In fact, the values are all generally higher regardless of the
database parameters.
As it was for the previous configuration, the precision still strongly depends
both on the number of clusters and the noise values because it gets worse as
they get higher.
Moreover, the results obtained by this configuration do not differ much between
the graphs but we can underline that the best results are probably obtained on
a small database of just 100 transactions.
Finally, we can notice that when the maximum transaction length is equal to 15
the algorithm has pretty good performances especially when there is not any
noise.
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Figure 5.25: Precision plot of 100 transactions of max length 10

5 10 15 20
Clusters number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 P
re

cis
io

n

1 1 0.91

0.32
0.46 0.5

0.21

0.12
0.28

0.42

0
0.09

0.09 0.13

0.03
0

 Precision Plot of
Database with 100 transactions and Max_length 15

Noise 0.0 Noise 0.03 Noise 0.06 Noise 0.1

Figure 5.26: Precision plot of 100 transactions of max length 15
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Figure 5.27: Precision plot of 500 transactions of max length 10
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Figure 5.28: Precision plot of 500 transactions of max length 15
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Figure 5.29: Precision plot of 1000 transactions of max length 10
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Figure 5.30: Precision plot of 1000 transactions of max length 15

53



5.3. 2-2-2 CONFIGURATION

5.3.2 Recall

In this section, the graphs presented show different values of mean and
standard deviation of the recall for each value of noise and number of starting
clusters.

100, 500 and 1000 Transactions

As it was for precision, we can see that the 2-2-2 configuration has better recall
results than the 3-2-2 configuration. In fact, the values are again all generally
higher regardless of the database parameters. The values still descrease as the
number of clusters and the noise values get higher.
Moreover, one aspect that stands out is that the algorithm reaches really good
performances when the number of clusters is low. In fact, especially when
the maximum transaction length is 15, the algorithm obtains very good values
even with high values of noise. This can be explained by the fact that the 2-
2-2 configuration tends to find more clusters than the previous one and so the
number of false negatives will be smaller.
Finally, we can notice that, as it was for precision, when the maximum transaction
length is equal to 15 the algorithm has generally better performances especially
when there is not any noise.
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Figure 5.31: Recall plot of 100 transactions of max length 10

5 10 15 20
Clusters number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 R
ec

al
l

1 1 0.91

0.28

0.93

0.7

0.22

0.08

0.73 0.7

0
0.05

0.33

0.17

0.02
0

 Recall Plot of
Database with 100 transactions and Max_length 15

Noise 0.0 Noise 0.03 Noise 0.06 Noise 0.1

Figure 5.32: Recall plot of 100 transactions of max length 15
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Figure 5.33: Recall plot of 500 transactions of max length 10
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Figure 5.34: Recall plot of 500 transactions of max length 15
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Figure 5.35: Recall plot of 1000 transactions of max length 10
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Figure 5.36: Recall plot of 1000 transactions of max length 15
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5.3. 2-2-2 CONFIGURATION

5.3.3 Objective Function Ratio

In this section, the graphs presented show different values of mean and
standard deviation of the objective function ratio for each value of noise and
number of starting clusters.

100 Transactions

In Figure 5.37 and 5.38 are presented the results obtained with 100 transac-
tions and a maximum transaction length respectively of 10 and 15.
The results in these graphs are all quite close to 1 and so the performances of
this configuration do not differ much from the ones of the 3-2-2 configuration
(that were already very good).

500 and 1000 Transactions

In these graphs instead we have that the values are a bit worse than the ones
obtained by the previous configuration. Even if in general they are still pretty
close to 1, this time there are more situations in which the value is greater than
1.3/1.4 especially when the maximum transaction lenght is 10. In fact, both
on the database with 500 and 1000 transactions, we can see that the algorithm
perfoms better when the maximum transaction length is 15.
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Figure 5.37: Ratio plot of 100 transactions of max length 10
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Figure 5.38: Ratio plot of 100 transactions of max length 15
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Figure 5.39: Ratio plot of 500 transactions of max length 10

5 10 15 20
Clusters number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 F
ou

nd
Va

lu
e/

Tr
ue

Va
lu

e

1 1 1.03 1.06

0.51

1.26
1.06

0.73

1.19

1.22

1.09

1.11
1.21

1.46

0.85

1.51

 FoundValue/TrueValue Plot of
Database with 500 transactions and Max_length 15

Noise 0.0 Noise 0.03 Noise 0.06 Noise 0.1

Figure 5.40: Ratio plot of 500 transactions of max length 15

5 10 15 20
Clusters number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 F
ou

nd
Va

lu
e/

Tr
ue

Va
lu

e

1
1.06 1.01

1.13

1.54
1.56

1.44
1.82.03

2.11

1.05

1.5

2.3

1.9 1.56

0.93

 FoundValue/TrueValue Plot of
Database with 1000 transactions and Max_length 10

Noise 0.0 Noise 0.03 Noise 0.06 Noise 0.1

Figure 5.41: Ratio plot of 1000 transactions of max length 10

5 10 15 20
Clusters number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 F
ou

nd
Va

lu
e/

Tr
ue

Va
lu

e

1 1 1.01

1.19
0.88

1.9

1.09

10.68

1.57
1.47

0.89

1.08

1.52

1.39
1.32

 FoundValue/TrueValue Plot of
Database with 1000 transactions and Max_length 15

Noise 0.0 Noise 0.03 Noise 0.06 Noise 0.1

Figure 5.42: Ratio plot of 1000 transactions of max length 15
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5.3.4 Time

In this section, the graphs presented show different values of mean and
standard deviation of the computing time for each value of noise and number
of starting clusters.

100, 500 and 1000 Transactions

In these graphs we can notice the same exact behaviours that we commented
in the previous configuration. In fact, the distribution of the bars of these graphs
is almost the same of the time graphs obtained by the 3-2-2 configuration.
The only thing that changes is which values are on the y-axis because the 2-2-2
configuration is significantly slower than the other one. This can be explained
by the fact that generally the 2-2-2 configuration finds more representatives and
so it does more iterations of the algorithm.
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Figure 5.43: Time (s) plot of 100 transactions of max length 10
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Figure 5.44: Time (s) plot of 100 transactions of max length 15

5 10 15 20
Clusters number

0

100

200

300

400

 T
im

e

3.47 5.03 3.26 4.28

76.4

49.59

77.51

36.05

131.04

54.41 52.83
31.71

183.27

87.91
75.07

19.41

 Time Plot of
Database with 500 transactions and Max_length 10

Noise 0.0 Noise 0.03 Noise 0.06 Noise 0.1

Figure 5.45: Time (s) plot of 500 transactions of max length 10

5 10 15 20
Clusters number

0

2000

4000

6000

8000

10000

12000

14000

 T
im

e

8.44 6.68 5.04 13.58

2579.99

1077.8
489.2 389.33

6828.39

3020.25

919.84
1718.61

9637.28

4239.28

723.62

3913.61

 Time Plot of
Database with 500 transactions and Max_length 15

Noise 0.0 Noise 0.03 Noise 0.06 Noise 0.1

Figure 5.46: Time (s) plot of 500 transactions of max length 15
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Figure 5.47: Time (s) plot of 1000 transactions of max length 10
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Figure 5.48: Time (s) plot of 1000 transactions of max length 15
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5.4 Final Considerations

In general, both the configurations do not have good perfomances on preci-
sion and recall. However, we already discussed about why this does not totally
affects the quality of the results.
Precision and recall, in fact, even if they are good performance measures, do not
capture all the aspects of the results obtained. This being said, we cannot ignore
their values on the different situations.
Regarding the differences between the two configurations, we have that they
both have pros and cons:

• the 2-2-2 configuration has significantly better results on precision and
recall,

• the 3-2-2 configuration is way faster,

• the 3-2-2 configuration obtained better results on the objective function
ratio, even if the difference is not outstanding.

Given these informations, we cannot say with certainty which configuration
is the best one because it could really depends on the input database and on
what we want to achieve.
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6
Conclusion

In order to draw some conclusions, it is necessary to remember what was the
goal of our work: retrieve the main informations from the input database so as
to work with more manageable data.
The approach we chose to use is a clustering model whose original version works
very well with a database of trajectories. Our clustering approach adapted that
model to our context in order to find the informations we needed in the different
clusters we computed.
The results obtained with this approach were not completely satisfactory. As
we have already seen in the Results chapter (see Chapter 5), in fact, the results
on precision and recall of our tests were not as good as we desired.
This however does not necessary mean that what we obtained is not useful.
Precision and recall, in fact, do not capture all the aspects of a result and so,
for this reason, we presented also the graphs about the ratio of the objective
function values that are more promising.
Moreover, we conducted numerous tests on different databases using always the
same algorithm parameters. This obviously lowers the performances because
parameters such as min_supp and overlap_threshold as well as c1, c2 and c3 may
require a tuning for each input database in order to obtain the best result.
This being said, we still believe that a clustering approach may be a good solution
to the representative itemsets mining problem especially if its parameters are
tuned on purpose.
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