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Abstract

In this work we study the highly-inclined S0 galaxy NGC1366 in the Fornax cluster, which
is known to host a stellar component that is kinematically decoupled from the main body of
the galaxy. According to a parametric spectroscopic decomposition of the spectrum obtained
along the galaxy major axis, the counter-rotating stellar component is younger, has nearly the
same metallicity, and has a lower ↵-element overabundance than the co-rotating component.
We build a two-integrals exploratory dynamical models of NGC1366 using an original code
dedicated to the solution of the Jeans equations for axisymmetric multicomponent systems,
and allowing for an easy treatment of counter-rotation. The models include only a Sérsic bulge
and a Freeman disk and use constant Satoh parameters. We consider a non-rotating galaxy
model, a non-rotating bulge model, as well as the case of maximally, mildly, and moderately
counter-rotating models. Our results show that each counter-rotating model only partially
reproduces the observed kinematics. We expect to improve the modelling by adding a DM halo
and considering a space-dependent Satoh parameter. NGC1366 can serve as a case study to be
applied to other counter-rotating galaxies for understanding their structure and constraining
their formation mechanisms.
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Chapter 1

Introduction

In this chapter we introduce and explain the phenomenon of counter-rotation. In Section 1.1
we explore the di↵erent types of counter-rotation. In Section 1.2 we focus on the tools used to
detect counter-rotation. In Section 1.3 we examine the environment and morphological features
of counter-rotating galaxies. In Section 1.4 we present the statistical data on counter-rotating
galaxies. In Section 1.5 we examine the di↵erent scenarios that could explain their formation.
Finally, in Section 1.6 we discuss the di↵erent stellar populations found in counter-rotating
components.

1.1 The counter-rotation phenomenon

Counter-rotating galaxies are characterized by the presence of two components that are observed
to rotate in opposite directions one with respect to the other. These galaxies were initially
predicted theoretically, but their astrophysical significance was not recognized until the kinematics
of the ionized gas and stellar components of the SB0 galaxy NGC4564 was measured. The gas
was found to have velocity similar in magnitude but opposite in direction to that of the stars
(Galletta 1987). The detection of counter-rotation in elliptical galaxies dates back to the same
period, with the observation of NGC5898 by Bertola & Bettoni (1988). However, the word
“counter-rotation”, which remains in use today, was first introduced by Franx & Illingworth
(1988), who detected a massive and rapidly counter-rotating stellar core in the radio elliptical
galaxy IC 1459. Since then, what was once considered a rare phenomenon has been found to
be quite common across dozens of galaxies along all the Hubble sequence, from ellipticals to
irregulars.

Previous reviews about counter-rotation were written by Rubin (1994b), Galletta (1996),
and Bertola & Corsini (1999). A more recent overview of the topic is o↵ered by Corsini (2014).

Counter-rotation in galaxies can be classified based on the nature of the rotational motion of
their components. In particular, we talk about:

• intrinsic counter-rotation if two kinematically decoupled components rotate in opposite
directions, with their rotation axes aligned. This means that their angular momentum
vectors are antiparallel;

• apparent counter-rotation if the two kinematically decoupled components rotate around
skewed, non-aligned axes and the line of sight (LOS) lies in between them. This means
that the projections of their angular momentum vectors onto the sky plane are antiparallel.

Observationally, the intrinsic or apparent nature of counter-rotation may be addressed in not
edge-on galaxies by analyzing their full velocity field as mapped with multi-slit or integral-field
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spectroscopy.
We can identify various types of counter-rotation, depending on the specific components

involved:

1. gas-versus-gas counter-rotation: this occurs when two gaseous disks rotate in opposite
directions. A notable example is the S0 galaxy NGC7332, where two ionized-gas disks
counter-rotate. The gas is distributed asymmetrically and displays non-circular motions,
indicating that it has not reached equilibrium; these observations strongly support the
occurrence of an accretion process in this galaxy (Fisher et al. 1994);

2. gas-versus-stars counter-rotation (or gaseous counter-rotation): this occurs when the
gaseous disk counter-rotates with respect to the stellar body of the galaxy. An example is
the SB0/SBa galaxy NGC4546, where the ionized, molecular, and atomic gas rotate at a
similar speed, but with opposite direction with respect to the stars (Galletta 1987; Bettoni
et al. 1991; Sage & Galletta 1994);

3. stars-versus-stars counter-rotation (or stellar counter-rotation): this occurs when two
stellar components counter-rotate. Usually, the more massive component is considered
as the reference (prograde) one. There can be many types of stellar counter-rotating
components: two stellar disks (e.g. NGC4550; Rubin et al. 1992; Johnston et al. 2013
among others, and NGC1366; Morelli et al. 2008, 2017), the bulge (e.g. NGC524; Katkov
et al. 2011a), a secondary bar (e.g NGC2950; Corsini et al. 2003; Katkov et al. 2011b), or
even a portion of a bar (e.g. Bettoni 1989; Bettoni & Galletta 1997).

Furthermore, counter-rotation in disk galaxies can be observed in:

• the inner regions of the galaxy. An example is the Sa galaxy NGC3593, which consists of
a small bulge, a primary stellar disk containing about 80% of the stars, and a secondary
less massive counter-rotating stellar disk, which is the result of an external gas acquisition
(Bertola et al. 1996). This secondary disk is younger and dominates the kinematics within
the inner 500 pc and corotates with the disk of ionized and molecular gas (Corsini et al.
1998; Pizzella et al. 1999; Coccato et al. 2013).

• the outer regions of the galaxy. For instance, the Sab galaxy NGC4826 (M64) contains
two counter-rotating nested, almost coplanar disks of ionized, molecular and neutral gas
extending out ⇠1 and ⇠11 kpc, respectively. The inner disk contains stars and gas that
orbit in a single direction, whereas in the narrow transition region and beyond, stars
continue to orbit prograde, but the gas velocities reverse from prograde to retrograde
(Braun et al. 1992; Braun et al. 1994; Walterbos et al. 1994; Rubin 1994a).

• overall the galaxy. For example, the Sa galaxy NGC3626 was the first spiral galaxy where
the gaseous component was observed to counter-rotate at all radii with respect to the stars
(Ciri et al. 1995; Garćıa-Burillo et al. 1998; Haynes et al. 2000; Sil’chenko et al. 2010).

1.2 Detection of counter-rotation

Detecting gas-versus-stars counter-rotation is relatively straightforward from an observational
standpoint, since the spectral lines of interest are di↵erent for the two components. In particular,
while for the ionized gas we refer to emission lines such as [N II] (��6583 Å), H↵ (��6563
Å) and [S II] (��6716, 6731 Å), for the stellar components we study absorption lines as H�
(��4861 Å) and the Mg triplet (��5164, 5173, 5184 Å) (Pizzella et al. 2004). Counter-rotation
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may be addressed by looking at the opposite orientation of the ionized gas emission lines and
stellar absorption lines in 2D optical spectra (see for example Figure 1 in Galletta 1987), or in
position-velocity diagrams (see for example Figure 1 in Bureau & Chung 2006). These standard
techniques allow us to measure di↵erences in the rotational velocities of few km s�1 in the
gaseous and stellar kinematics.

On the other hand, the detection of a stars-versus-stars counter-rotation is much more
di�cult, because the diagnosis is based on the same absorption lines. X-shaped appearance of
the absorption lines arises from the prograde and retrograde stellar disks (Figure 1.1a). However,
this feature is only observed when the two components are photometrically similar to each
other. Another possible signature for the presence of such a pattern can be a bimodal line-of-
sight velocity distribution (LOSVD), with each peak representing one of the counter-rotating
components (Figure 1.1b). However, its detection depends on many variables, including the
galaxy properties and instrumentation setup of the spectroscopic observations. Counter-rotating
stellar disks are most easily detected in the outer regions of galaxies, where the e↵ects of seeing,
bulge, and bar contamination are minimal. In these areas, the velocity separation between the
counter-rotating components is maximal. Usually, the LOSVD is parametrized with the Gauss-
Hermite series (Gerhard 1993; van der Marel & Franx 1993). Anyway, the LOSVD is poorly
reproduced by this expansion when the galaxy hosts a secondary kinematic component (Fabricius
et al. 2012; Katkov et al. 2013), as in the case of strong counter-rotation. However, the use of
Gauss-Hermite parametric solutions provides a practical approach to detecting large counter-
rotating stellar disks. This method can also help identify faint counter-rotating components,
thereby improving the statistics of stellar counter-rotation. In addition, noise and aliasing
features in the LOSVD can mimic what could be interpreted as a counter-rotating component
(Rubino et al. 2021). Therefore, the recovery and decomposition of parametric LOSVDs must
be performed with caution. Another significant indicator of the presence of a counter-rotating
component is the presence of two o↵-center, symmetric peaks in the stellar velocity dispersion,
commonly known as the “2� feature” (Krajnović et al. 2011). The combination of the 2� feature
and zero velocity rotation along the galaxy major axis is a strong indicator of counter-rotation.
These kinematic features typically occur within the radial range where the two counter-rotating
components have the same luminosity and their LOSVDs are unresolved (see Figure 2.4 and its
discussion). When the 2� peak is di�cult to detect due to the low signal-to-noise (S/N) ratio
of the data, the large-scale pattern in the map of the third Gauss-Hermite coe�cient h3 can
be used as a diagnostic for strong and weak counter-rotation (Rubino et al. 2021; Figure 1.1c).
However, this analysis focused solely on pure disk structures, suggesting that the large-scale
feature observed in the h3 map could be misleading if other structural components are present.
In certain notable cases of counter-rotating disk galaxies, the central and outer regions of a
galaxy rotate in opposite directions, creating an S-shaped rotation curve along the major axis
(Bertola et al. 1996; Gasymov & Katkov 2022). However, we usually consider the 2� feature to
be the most important kinematic diagnostic for counter-rotating galaxies, since it also appears
for galaxy models with a regular rotation and no evidence for velocity decay or reversal (Rubino
et al. 2021). Figure 1.1 illustrates some of these observational characteristics that are used to
identify the presence of a counter-rotating component.

Spectroscopic decomposition alone is not su�cient to fully disentangle a counter-rotating
galaxy. Complete kinematic decoupling requires both spectroscopic and photometric decom-
position. From the surface-brightness radial profile of the galaxy we can assess the weight
of each counter-rotating component in the spectra. By using di↵erent stellar templates (e.g.
Thomas et al. 2003; Maraston 2005), characterized by di↵erent values of age, metallicity and
enhancement of ↵ elements, weighted by the surface brightness of the components, we can
reproduce the observed spectrum and recover both the kinematic and stellar properties of the
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(a) X-shaped absorption lines. (b) Bimodal LOSVD. (c) h3 large-scale pattern.

Figure 1.1: These figures report some examples of the observational evidences that indicate
the presence of counter-rotating components. Panel (a): Part of a 200-inch Palomar spectrum
obtained along the major axis of NGC4550. The spatial scale and wavelenght dispersion are
0.82 arcsec pixel�1 and 0.56 Å pixel�1, respectively; the integration time is 2000 s. It shows the
[O III] emission and several blueward absorption lines. Here, we can clearly see the X-shaped
appearance of the absorption lines due to the superposition of the prograde and retrograde
stellar disks. Image taken from Rubin et al. (1992). Panel (b): LOSVD along the major axis
of NGC4550 at various distances from the center. The thin line indicates the best Gaussian
fit, while the thick line represents the double Gaussian fit. The LOSVDs are o↵set by arbitrary
amounts. Inside 5 arcsec the LOSVD is indistinguishable from a simple Gaussian. At larger
radii we can see a rapid transition to a bimodal distribution, with almost no overlap of the
two components in the velocity space. Each of the two parts of the LOSVD represents one of
the counter-rotating, co-spatial disks. Image taken from Rix et al. (1992). Panel (c): Stellar
kinematics map of h3 of the LOSVD of a simulated counter-rotating galaxy (see Section 3.3 of
Rubino et al. 2021 for details). Here, S/N = 20 pixel�1. The solid contours correspond to |h3|
= 0.05. The h3 pattern clearly indicates the presence of a counter-rotating stellar disk. Image
taken from Rubino et al. (2021).

two components. However, this approach was feasible for only a few galaxies. In fact, it not
only requires high-resolution spectroscopy, but also needs the two components to have distinct
spatial scales. Without this distinction, it becomes di�cult, if not impossible, to separate their
contributions at a given radius. This is the reason why we want to complete the kinematic
decomposition with a dynamical model.

1.3 Environment and morphology of counter-rotating galaxies

Bettoni et al. (2001) presented a statistical study of the environment of 49 galaxies hosting
a gas or stellar counter-rotating disk, using a control sample of 43 galaxies without counter-
rotation. They took into account the presence of possible nearby companions (up to an apparent
magnitude of 22 mag arcsec�2), size and concentration. They found that there was no significant
di↵erence between the counter-rotating and control samples. In fact, the morphology of most
galaxies hosting counter-rotating components appears undisturbed, with no evidence of recent
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interaction with small satellites or companions of comparable size. However, this is a matter
of debate. Indeed, there is evidence that all types of kinematically misaligned galaxies in the
sample presented by Jin et al. (2016) tend to live in low density areas, suggesting that a dense
environment would suppress the external process of gas acquisition and formation of such galaxies.
Furthermore, as observed by Beom et al. (2022) in a study of 523 edge-on galaxies from the
final Mapping Nearby Galaxies at APO (MaNGA) Integral Field Units (IFU) sample (Bundy
et al. 2015), gaseous counter-rotators are often found in small and loose groups. These galaxies
exhibit low gas and dust content, weak emission lines, and low star formation rates suggesting
that the formation of counter-rotators might be an e↵ective way to quench star formation in
galaxies. These results lead to the conclusion that the formation mechanism of these objects
does not seem to be related to the current galaxy density of their environment. Therefore, the
retrograde gas infall must be continuous and non-traumatic, major mergers must have occurred
very early in their lives, and minor mergers could have occurred more recently without leaving
any trace. However, the remnants of merger events, such as collisional debris and tidal tails,
are generally faint and transient structures. Observing such a structure can be quite di�cult
because it requires deep optical imaging. These structures have a surface brightness of 25 B-mag
arcsec�2 when they are young, and below 27 B-mag arcsec�2 as they age. They disappear
after a time varying from a few hundred Myr to a few Gyr. Numerical simulations can help
to constrain the epoch and the mechanism of the second event (Corsini et al. 2002; Duc et al.
2011). Counter-rotation in low-mass galaxies is associated with gas loss events that are either
internally driven (e.g., due to feedback), externally driven (e.g., due to gas stripping from the
environment), or a combination of both. As a result, galaxies that exhibit counter-rotation today
may contain evidence of a past violent feedback episode or a complex environmental history
(Starkenburg et al. 2019).

Moving now to morphology, to date no counter-rotating components have been detected in
late-type spiral galaxies. Three of the few spirals with counter-rotating gaseous and/or stellar
disks (NGC3593, NGC3626, and NGC4138) are all early-type spirals (S0/a–Sa) with smooth
arms. In these galaxies, the spiral pattern is either entirely shaped or heavily influenced by dust
lanes. The suppression of arms in counter-rotating spirals was identified in high-resolution N-body
simulations run by D’Onghia et al. (2013). These simulations show that mass concentrations
(density inhomogeneities) with properties (mass and lifetime) similar to those of giant molecular
clouds can induce the development of spiral arms through a process known as swing amplification.
Moreover, a survey carried by Corsini et al. (2003), which selected a sample of early S0/a and
Sa spirals with a spiral pattern traced by dust lanes, revealed the presence of kinematically
decoupled gas components, but no new case of counter-rotation.

Previous 2D N-body simulations of disk galaxies with a significant fraction of counter-rotating
stars predicted the formation of a stationary and persisting one-arm leading spiral wave (with
respect to the corotating stars) due to the two-stream disk instability (Lovelace et al. 1997;
Comins et al. 1997). However, identifying this one-armed spiral pattern in counter-rotating spirals
has proved challenging because the spirals studied so far have intermediate-to-high inclinations,
making detection di�cult. Additionally, kinematic data for low-inclination, one-armed systems
are currently lacking.

1.4 Statistics of counter-rotation

Using existing data on ionized-gas and stellar kinematics measured along (at least) the major
axis of S0 galaxies, Pizzella et al. (2004) identified a kinematically-decoupled gaseous component
in 17 out of 53 galaxies. This corresponds to 32+19

�8
% (at 95% confidence level). This is consistent

with previous statistics by Bertola et al. (1992) (20%), Kuijken et al. (1996) (24±8%) and
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Kannappan & Fabricant (2001) (24%+8

�6
). These findings support the idea that acquisition events

in S0 galaxies are not a characteristic of a few peculiar objects, but are, instead, a widespread
phenomenon which a↵ects a very large fraction of S0 galaxies with gas, as it does for ellipticals
(Bertola et al. 1992). This scenario is also supported by the results of Davis et al. (2011), who
used integral-field spectroscopy and radio observations. They found that the gas is kinematically
misaligned with the stars in 36% (40/111) of rapidly rotating early-type galaxies. Furthermore,
the ionized, molecular and atomic gas phases were always kinematically aligned with each other
in galaxies where gas was detected, even when misaligned with the stars. This suggests a common
origin for these gas phases, highlighting the importance of external acquisition events.

On the other hand, the situation is quite di↵erent for spiral galaxies. Pizzella et al. (2004)
found that <12% and <8% (at 95% confidence level) of a sample of 50 S0/a-Scd galaxies host
a counter-rotating gaseous and stellar disk, respectively. Similar statistics are observed by
Kannappan & Fabricant (2001), who found that no more than 8% of Sa-Sbc spirals in a sample
of 38 are bulk counter-rotators.

More recently, a statistical analysis of the frequency of counter-rotating stellar disks has
been performed by Bevacqua et al. (2022). They presented the integral-field kinematics and
stellar population properties of 64 galaxies with counter-rotating stellar disks selected from
about 4000 galaxies in the MaNGA survey, based on evidence of counter-rotation or 2� peaks
in the kinematic maps. The frequency of counter-rotating stellar disks was found to be <5%
for ellipticals, <3% for lenticulars, and <1% for spirals (at 95% confidence level). There is a
decrease from early to late morphological types of the Hubble sequence.

Some other studies, as the one carried out by Jin et al. (2016), pointed out the relation
between the fraction of kinematically misaligned galaxies and the physical parameters, such
as stellar mass M?, star formation rate (SFR), and specific star formation rate (sSFR). This
fraction peaks at a stellar mass of around log (M?/M�) ⇡ 10.5 and decreases as SFR and sSFR
increase.

1.5 Formation scenarios

Simulations and observations show that there are di↵erent formation channels that can explain
the presence of a counter-rotating gaseous or stellar component inside the galaxy:

1. Acquisition of external gas with di↵erent angular momentum. Gas accretion from the
external environment can be either episodic or prolonged. Once accreted, the material
enters a retrograde orbit within the galaxy without drastically disturbing the stability
of the existing disk (Thakar & Ryden 1996). As shown by Lovelace & Chou (1996), a
counter-rotating disk will only be observed if the mass of the newly added gas exceeds
that of the old, pre-existing disk. Therefore, the formation of counter-rotating gaseous
disks is favored in gas-poor systems, like S0 galaxies, whereas their formation is hindered
in gas-rich systems, like spirals (Bevacqua et al. 2022). This also explains why the mass of
counter-rotating gas in most S0 galaxies is small compared to that of the stellar counter-
rotating components (Kuijken et al. 1996). In addition, the accretion of counter-rotating
gas from an existing co-rotating disk may be a transient stage in the formation of counter-
rotating galaxies. In this framework, a counter-rotating stellar disk is the end result of
star formation in a counter-rotating gas disk. Bao et al. (2022) presented a scheme of
four formation scenarios for counter-rotating stellar disks in nearby galaxies with regularly
rotating ionized-gas disks. The scheme is reported in Figure 1.2. The key factors in the
formation of counter-rotating stellar disks are the abundance of pre-existing gas in the
progenitor and the e�ciency of angular momentum consumption. This scheme gives rise
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Figure 1.2: Scheme of the formation scenarios of counter-rotating stellar disks in nearby galaxies
with regularly rotating ionized gas disks. Image taken from Bao et al. (2022).

to four scenarios: Type 1a, 1b, 2a, and 2b. In Type 1a, collisions between preexisting and
external gas e↵ectively consume angular momentum, leading to gas inflow and triggering
star formation in the central region. Additionally, Type 1a has a slightly younger stellar
population in the central region compared to Type 1b. In Type 2a, part of the angular
momentum of the external gas survives the gas-gas collisions, allowing newly formed stars
to spread across the entire disk and outshine the older stars. Conversely, in the Type 1b
and 2b scenarios, the preexisting gas is less abundant than the accreted gas. As a result,
star formation in Type 1b occurs in the outskirts, producing a younger outer disk that
corotates with the gas. In Type 2b, the newly formed stars also spread across the whole
disk, but star formation is less active than in Type 2a.

Angular momentum loss is not only an important property in itself, but also the primary
driver for subsequent processes. In fact, in the internal-origin scenarios, if pre-existing
corotating gas is present, the formation of a counter-rotating gaseous disk can lead to
angular momentum loss in the gas through hydrodynamic friction, resulting in a centrally
concentrated gas distribution (Beom et al. 2022). Gas infall removes pre-existing gas, which
then mixes with the infalling material. This mixture forms a counter-rotating gaseous
disk, where about 90% of counter-rotating stars are formed in situ. In the early stages
of infall, the gas can appear in extended structures, sometimes resembling nearly polar
ring-like components in certain galaxies (Corsini et al. 2002; Khoperskov et al. 2021).
This concentration can trigger central star formation and, in the presence of a nuclear
black hole, can potentially fuel an active galactic nucleus (AGN). Therefore, gaseous
counter-rotating galaxies may be also interesting as a possible evolutionary stage in the
transition to quiescent galaxies (Khoperskov et al. 2021; Beom et al. 2022).

Another mechanism that can lead to the acquisition of small amounts of external gas is the
merging of the galaxy with a gas-rich dwarf companion. To produce counter-rotation of
stars or gas within a merger remnant, the primary galaxy must have a retrograde spin. The
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spin of the companion mainly influences the radial extent of the accreted gas. Additionally,
having a significant amount of gas in the primary galaxy can prevent counter-rotating
gas from forming, though counter-rotating stars can still emerge (Bassett et al. 2017).
However, the minor merging mechanism seems to produce non-massive counter-rotating
disks (Thakar & Ryden 1996). This is the case of NGC4138, studied by Thakar et al.
(1997) and Thakar & Ryden (1998).

2. Merging of two galaxies. Puerari & Pfenniger (2001) studied the case of major mergers
between progenitors of comparable mass. They found that, while in general this scenario
can be ruled out because it tends to produce ellipticals (see also Hernquist & Barnes 1991),
for a narrow range of initial conditions major mergers can still be viable alternatives for the
formation of counter-rotating systems. The scenario succeeds in producing a remarkably
axisymmetric disk hosting strongly counter-rotating stellar components of similar size and
mass. Moreover, if the merging of the two progenitors is coplanar, then the net result is a
greater heating of the prograde stellar disk than of the retrograde one. Furthermore, the
gas ends up aligned with the total angular momentum, which is dominated by the orbital
angular momentum, and thus with the prograde stellar disk, as observed in NGC4550
(Crocker et al. 2009). More recently, Zeng et al. (2021) has shown that major mergers with
a spiral in-falling orbit mostly lead to disk galaxies.

3. Hierarchical clustering. Cosmological simulations performed by Algorry et al. (2014)
revealed another viable external formation process. The simulated disk galaxy features
two overlapping stellar components with opposite spins: an inner, counterrotating bar-like
structure composed mostly of older stars, and an extended, rotationally supported disk of
younger stars. These opposite-spin components are formed from material accreted from
two distinct filamentary structures. Therefore, the counterrotating stellar disk components
may arise naturally in hierarchically clustering scenarios even in the absence of merging,
and most stars in the galaxy are formed in situ.

4. Dissolution of an internal pre-existing component. While the previous two scenarios involve
the acquisition of an external component (external-origin scenario), this one justifies the
presence of a counter-rotating stellar component by the dissolution of an internal component
(internal-origin scenario), as a bar or stellar halo. It was first proposed by Evans & Collett
(1994) in the study of NGC4550 and is based on the migration of stars from box orbits to
tube orbits, escaping the potential well and crossing the orbit separatrix. In non-rotating
disks, looking at box orbits, the number of orbits with clockwise azimuthal motion is equal
to the number of orbits with counter-clockwise azimuthal motion. Thus, half of the stars in
box orbits are scattered on clockwise orbits, while half are scattered on counter-clockwise
orbits. This is a natural mechanism for forming two identical counter-rotating stellar disks,
characterized by the same age and same scale length.

Some other internal-origin scenarios include stars trapped at the Binney resonance
(Tremaine & Yu 2000) and the increase in the number of retrograde stars due to the
exchange of angular momentum with the bar (Pfenniger & Friedli 1991).

5. Counter-rotation in barred galaxies. Analyzing 14 barred galaxies, Bettoni & Galletta
(1997) found that these galaxies host quasi-circular orbits, with deviations from circular
velocities lower than 20%. Therefore, counter-rotation observed in these types of galaxies
can be the net result of internal dynamical processes (Wozniak & Pfenniger 1997). This
counter-rotating material could lead to the formation of a secondary bar that rotates in
the opposite direction to the main bar (Sellwood & Merritt 1994). Observationally, the
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formation of secondary bars might be better understood by examining the occurrence of
counter-rotating secondary bars. The widely accepted theory is a mechanism, applicable
to AGNs and nuclear starburst galaxies, which brings in gas from large to small scales
by successive dynamical instabilities (Shlosman et al. 1989). However, a retrograde bar is
unlikely to form within a prograde disk. Numerical simulations suggest that two counter-
rotating nested bars, formed within overlapping counter-rotating stellar disks, are stable
and long-lived (Friedli 1996). This raises the possibility that secondary bars could originate
from inner stellar disks, similar to those found in the nuclei of several disk galaxies (Pizzella
et al. 2003; Ledo et al. 2010; Corsini et al. 2016). So far, counter-rotating nuclear disks
have been detected only in elliptical galaxies (e.g. Morelli et al. 2004).

1.6 Stellar population of counter-rotating components

The age, metallicity, and enhancement of ↵ elements that characterize the counter-rotating
stellar disk depend strongly on the formation mechanism. In fact, gas acquisition and subsequent
star formation would necessarily lead to a younger counter-rotating stellar population, which can
also be characterized by di↵erent values of metallicity and ↵-enhancement. The same is true for
the major merger scenario, although in this case the age of the counter-rotating galactic disk is
not forced to be younger than the pre-existing component, but depends on the properties of the
progenitor, as it does for metallicity and ↵-enhancement. On the other hand, the internal-origin
scenario necessarily implies that both the co-rotating and counter-rotating stellar disks have the
same age, metallicity, and ↵-enhancement. Therefore, the age di↵erence between the prograde
and retrograde stellar populations can be used to discriminate between competing scenarios for
the origin of the counter-rotation.

To disentangle the stellar populations, it is necessary to perform a spectroscopic decomposition
that isolates the contributions of the counter-rotating stellar components within the observed
galaxy spectrum. This analysis was applied to some counter-rotating stellar disk galaxies, as
NGC3593 (Coccato et al. 2013), NGC4550 (Johnston et al. 2013; Coccato et al. 2013), NGC5719
(Coccato et al. 2011), NGC1366 (Morelli et al. 2017), and SDSS J074834.64+444117.8 (Bao
et al. 2024). These findings rule out an internal origin of the secondary stellar component, and
favor a scenario in which gas accreted from the surrounding environment on retrograde orbits,
leading to rapid in-situ star formation that progressed from the outer regions inwards. This
is consistent with the statistics discussed in Section 1.4. For a counter-rotating stellar disk to
form from gas accretion, any existing gas in the progenitor galaxy must first be cleared away.
As a result, gas-poor galaxies, like ellipticals, are more likely to host counter-rotating disks
compared to gas-rich galaxies, like spirals. This also explains why no late-type spirals have been
observed with counter-rotating stellar disks, as they typically contain more gas than early spirals
(Bevacqua et al. 2022).

The Sab spiral galaxy NGC 5719, studied by Coccato et al. (2011), is a particularly intriguing
case. This galaxy is currently interacting with its Sbc companion, NGC5713. By simultaneously
measuring the kinematics and properties of the two stellar components, they were able to observe
not only the capture of gas in retrograde orbits, but also the subsequent formation of new stars,
thereby providing evidence of young counter-rotating stars (see Figure 2 in Corsini 2014 for an
explanation and visual representation of the process). NGC5719 is the first known interacting
disk galaxy where counter-rotation has been detected.
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1.7 Aim and summary of the thesis

This thesis is focused on the highly-inclined S0 galaxy NGC1366 in the Fornax cluster, which
is known to host a stellar component that is kinematically decoupled from the main body of
the galaxy (Morelli et al. 2008). According to a parametric spectroscopic decomposition of
the spectrum obtained along the galaxy major axis, the counter-rotating stellar component is
younger, has nearly the same metallicity, and has a lower overabundance than the co-rotating
component (Morelli et al. 2017). The aim of this thesis is building two-integrals exploratory
dynamical models of NGC1366 using an original numerical code dedicated to the solution of the
Jeans equations (JEs) in axisymmetric multicomponent systems. The application to NGC1366
represents a pilot project to fine tune dynamical modelling to dissect counter-rotating disk
galaxies, derive the stellar population properties of their kinematically-decoupled components,
and finally constrain their formation mechanism.

The thesis is organised as follows:

• In Chapter 1 we introduce and explain the phenomenon of counter-rotation. In Section 1.1
we explore the di↵erent types of counter-rotation. In Section 1.2 we focus on the tools used
to detect counter-rotation. In Section 1.3 we examine the environment and morphological
features of counter-rotating galaxies. In Section 1.4 we present the statistical data on
counter-rotating galaxies. In Section 1.5 we examine the di↵erent scenarios that could
explain their formation. In Section 1.6 we discuss the di↵erent stellar populations found in
counter-rotating components.

• In Chapter 2 we focus on the galaxy NGC1366, for which we already have a kinematic
decomposition. In Section 2.1 we provide the general information about the galaxy. In
Section 2.2 we detail the photometric and spectroscopic observations along with the data
reduction process. In Section 2.3 we present the photometric decomposition of NGC1366
and derive its photometric parameters. In Section 2.4 we explore the kinematic properties
of NGC 1366. In Section 2.5 we discuss the kinematic parameters and line strength indices,
calculate the mass-to-light ratio for each component, and determine the luminosities and
masses of the individual components as well as of the entire galaxy.

• In Chapter 3 we present the theoretical background for the construction of the dynamical
model of NGC1366. In Section 3.1 we discuss how to recover the luminosity volume density
profile from the surface brightness profile for both the bulge and disk. In Section 3.2 we
introduce the first and second JEs, for which we adopt the solution for the axisymmetric
mass distribution. In Section 3.3 we present the solution for the forces in the JEs, using
the Chandrasekhar formula. In Section 3.4 we provide a solution of the first and second
JEs, also presenting the Satoh decomposition method. In Section 3.5 we combine the
values of the fields obtained from the JEs, weighting them both by mass and luminosity,
and examining how to retrieve physical units.

• In Chapter 4 we present and describe the numerical code used to model NGC1366 and its
results. In Section 4.1 we present the software used in our code and our initial assumptions.
In Section 4.2 we reproduce the luminosity surface density of the galaxy. In Section 4.3 we
solve the first JE, obtaining �z. In Section 4.4 we solve the second JE, obtaining

p
��

and
q
v2f. Then, we obtain vf and �f for five pairs of the Satoh parameters. In Section

4.5 we compare models and integral-field spectroscopic observations. In Section 4.6 we
compare models and long-slit spectroscopic observations.
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• In Chapter 5 we summarize the results of our work, and discuss its possible future
developments. In Section 5.1 we summarize the conclusions drawn from the comparison
between observations and models, along with suggestions for possible improvements. In
Section 5.2 we outline prospective directions for extending this work.
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Chapter 2

Observational data and properties of
NGC1366

In this chapter we focus on the galaxy NGC1366, for which we already have a kinematic
decomposition. In Section 2.1 we provide the general information about the galaxy. In Section
2.2 we detail the photometric and spectroscopic observations along with the data reduction
process. In Section 2.3 we present the photometric decomposition of NGC1366 and derive
its photometric parameters. In Section 2.4 we explore the kinematic properties of NGC 1366.
Finally, in Section 2.5 we discuss the kinematic parameters and line strength indices, calculate
the mass-to-light ratio for each component, and determine the luminosities and masses of the
individual components as well as of the entire galaxy.

2.1 General properties

NGC1366 is a bright and spindle galaxy located in the Fornax cluster. The equatorial coordinates
(J2000) of NGC1366 are (RA, �) =(3h 33m 53.3s, �31� 110 3600) (de Vaucouleurs et al. 1991,
hereafter RC3). The position angle of the major axis is PA = 2° (RC3). The redshift-independent
distance of the galaxy is D = (17.64±1.62) Mpc1. It is classified as S00 by RC3 and as S01(7)/E7
by Sandage & Bedke (1994) because it has a highly inclined thin disk. Although NGC1366
belongs to the LGG 96 group (Garcia 1993), it has no nearby bright companion and shows an
undisturbed morphology. Its apparent total magnitude is BT = 11.97 mag (RC3). The apparent
isophotal diameters measured at a surface brightness level of µB = 25 mag arcsec�2 are 2.1⇥ 0.9
arcmin, corresponding to 10.8 ⇥ 4.6 kpc. Its total B magnitude corrected for extinction and
inclination is MBT ,0 = �18.48 mag, obtained rescaling BT,0 from RC3 to the adopted distance.
The surface brightness distribution is well fitted by a Sérsic bulge and an exponential disk with
a bulge-to-total luminosity ratio B/T = 0.2 (Morelli et al. 2008). These authors detected a
kinematically decoupled stellar component that is younger than the host bulge. Furthermore,
Morelli et al. (2017) succeeded in separating the two counter-rotating components and properly
measuring the properties of their stellar populations. The analysis of the kinematics of the
stars and ionized gas and of the stellar populations is consistent with the formation of the
counter-rotating component from external gas that is still accreting onto the galaxy. An image
of NGC1366 is shown in Figure 2.1.

The choice of this galaxy NGC1366 is also related to its simplicity since it is edge on: the
flattening parameters of bulge and disk obtained from observations correspond to the intrinsic

1
From Nasa Extragalactic Database (NED).
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Figure 2.1: Image of NGC1366. This photographic image was obtained with the du Pont
telescope using the 103aO filter. It has a field of view (FOV) of 5.2⇥ 3.8 arcmin2 and is oriented
with north to the right and east to the top. Image taken from Sandage & Bedke (1994).

parameters. This simplifies our calculation because we do not have to take into account for
viewing angle corrections, so we will not have any geometrical di�culty in our work.

2.2 Observations and data reduction

This section provides the details of the photometric and spectroscopic observations, as well as
the data reduction process, performed by Morelli et al. (2008, 2017).

2.2.1 Broad-band imaging

The photometric observations of NGC1366 took place at the European Southern Observatory
(ESO) in La Silla (Chile). They were carried out by Morelli et al. (2008) on 2002 December 11.

NGC1366 was imaged at the ESO 3.6-m Telescope with the ESO Faint Object Spectrograph
and Camera 2 (EFOSC2). The detector was the No. 40 Loral/Lesser CCD with 2048⇥ 2048
pixel of 15⇥ 15 µm2. A 2⇥ 2 pixel binning was adopted giving an e↵ective scale of 0.314 arcsec
pixel�1 with a FOV of 5.3⇥ 8.6 arcmin2. The gain was set to 1.3 e� ADU�1 and readout noise
to 9 e�.

The No. 642 Bessel R-band filter was used for the observations. It is centered at 6431 Å
and has a full width at half-maximum (FWHM) of 1654 Å. Two 60-s images were taken with
an o↵set of few pixels, which were used to clean cosmic rays and bad pixels. To perform the
flux calibration, several fields of standard stars at di↵erent airmasses were observed each night.
For each field di↵erent exposures ranging from 5 to 15 s were taken, so to have good S/N and
well-sampled point spread function (PSF) for all the standard stars. The typical value of the
seeing FWHM during the galaxy exposures was 1.0 arcsec as measured by fitting a 2D Gaussian

13



Figure 2.2: Map of the observed (left panel), modelled (central panel) and residual
(observed�modelled) surface brightness distribution (right panel) of NGC1366. The image was
rotated to have the galaxy major axis parallel to rows. The surface brightness range is indicated
at the right-hand side of the panel. Image taken from Morelli et al. (2008).

to the field stars.
The reduction of the photometric observations was described in Morelli et al. (2008). The

reduction procedure of the images was carried on using standard iraf2 tasks. A bias frame,
consisting of 10 exposures for each night, was subtracted. The sky background level was removed
by fitting a Legendre polynomial to the source-free regions in the images. No trace of scattered
light was detected in the images, and the adopted polinomial degree was either 0 or 1. Cosmic
rays and bad pixels were removed by combining the di↵erent exposures using field stars as a
reference and applying a sigma clipping rejection algorithm. Remaining cosmic rays and bad
pixels were corrected by manually editing the final combined image.

The photometric calibration constant includes only the correction for atmospheric extinction,
which is taken from the di↵erential aerosol extinction for ESO (Burki et al. 1995). No correction
was applied for galactic extinction, and no color term was considered.

After masking foreground stars and residuals bad columns, isophote-fitting with ellipses was
carried out using the iraf task ellipse. At first, the ellipses centers were allowed to vary. No
variation of the ellipses centers was found. The final ellipse fits were done at fixed ellipse centers.
Figure 2.2 shows the observed, modelled and residual (observed�modelled) surface brightness
distribution maps derived for NGC1366 by Morelli et al. (2008).

2.2.2 Long-slit and integral-field spectroscopy

The spectroscopic observations of NGC1366 took place with the 3.6-m ESO telescope and
EFOSC2 spectrograph. They were carried out by Morelli et al. (2008) on 2002 December 11.

The grism No. 9 with 600 grooves mm�1 was used in combination with the 1.0 arcsec ⇥ 5.0
arcmin slit. The detector was the No. 40 Loral/Lesser CCD with 2048⇥ 2048 pixel of 15⇥ 15
µm2. A 2 ⇥ 2 pixel binning was adopted. The wavelength range between 4700 and 6770 Å
was covered with a reciprocal dispersion of 1.98 Å pixel�1 after pixel binning. In this way, an
adequate oversampling of the instrumental broadening function was guaranteed. By measuring
the width of the emission lines of a comparison spectrum after the wavelength calibration,
the instrumental dispersion could be calculated, and was found to be 5.10 Å (FWHM). This
corresponds to �inst ⇠ 110 km s�1 at 5735 Å. The spatial scale was 0.314 arcsec pixel�1 after
pixel binning.

2
Image Reduction and Analysis Facility (IRAF) is distributed by the National Optical Astronomy Observatory

(NOAO), which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under

cooperative agreement with the National Science Foundation.
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Two 45-min spectra were obtained. At the beginning of each exposure, the slit was positioned
on the galaxy nucleus using the guiding camera. Then, according to the position angle, it
was aligned along the galaxy major axis. During the three observing runs several giant stars
were selected from Worthey et al. (1994). Their spectra were used as templates to measure
stellar kinematics and line-strength indices. In addition, some spectrophotometric standard
stars were measured prior to the line index measurements in order to flux-calibrate the galaxy
and line-strength standard stars. During the galaxy exposures, the value of the seeing FWHM
ranged between 0.5 and 1.3 arcsec as measured by fitting a 2D Gaussian to the guide star.

The reduction of the spectroscopic observations was described in Morelli et al. (2008).
All spectra were bias subtracted, flat-field corrected, cleaned of cosmic rays, and wavelength
calibrated using standard iraf routines. In order to check the CCD status, the bias level was
determined from the bias frames obtained during the observing nights. Flat-field correction
was carried out using both quartz lamp and twilight sky spectra to correct for pixel-to-pixel
sensitivity variations and large-scale illumination patterns caused by slit vignetting. The sky
spectra were normalized and divided into all the observed spectra. Cosmic rays were identified
by comparing the counts in each pixel with the local mean and standard deviation as obtained
from Poisson statistics taking into account detector gain and readout noise. They were then
corrected by interpolation. The residual cosmic rays were corrected by manually editing the
spectra. The wavelength solution obtained from the corresponding arc lamp spectrum was used
to rebin each spectrum. To check if the wavelength rebinning was done properly, di↵erence
between the measured and predicted wavelengths were computed for the brightest night-sky
emission lines in the observed spectral range (Osterbrock et al. 1996). The resulting accuracy in
the wavelength calibration came out to be better than 5 km s�1. All spectra were corrected for
CCD misalignments. The spectra obtained in the same run were co-added using the centre of the
stellar continuum as reference. In this way it was possible to improve the S/N of the resulting
2D spectrum. In such a spectrum, the contribution of the sky was determined by interpolating a
straight line along the outermost 20 arcsec at the two edges of the slit, where the galaxy light
was negligible. After that, the sky contribution was subtracted. A sky subtraction better than
1% was achieved. For each kinematic template star and flux standard star, a 1D spectrum was
obtained. The spectra of the kinematical templates were deredshifted to laboratory wavelengths.

The integral-field spectroscopic observations of NGC1366 were carried out with the MUSE
(Multi Unit Spectroscopic Explorer) instrument of the ESO. They were carried out by Morelli et
al. (in prep.) between 2019 August 9 and August 30.

MUSE was configured in wide field mode to guarantee a FOV of 1⇥ 1 arcmin2, with a spatial
sampling of 0.2 arcsec pixel�1. The MUSE spectroscopic range covers 4800 to 9300 Å with a
spectral sampling of 1.25 Å pixel�1 and an average nominal spectral resolution with a FWHM
= 2.51 Å (Bacon et al. 2010). A central pointing on the galaxy centre was performed, followed
by two o↵-set pointings along the major axis at a distance of 20 arcsec eastward and westward
from the nucleus of the galaxy. Each of these four pointings had a duration of ⇠35 min. Each
pointing was oriented along the disk PA. The observing nights were clear. The FWHM seeing
was mostly < 1.4 arcsec.

The reduction of the integral-field spectroscopic observations was done as in Cuomo et al.
(2019). The data reduction was performed using the MUSE pipeline (version 2.8.4, Weilbacher
et al. 2020) under the exoreflex environment (Freudling et al. 2013). The steps included
bias and overscan subtraction, lamp flatfielding to correct the pixel-to-pixel response variation
of the detectors and illumination edge e↵ects between the detectors, wavelength calibration,
determination of the line spread function, sky flatfielding to correct the large-scale illumination
variation of the detector, sky subtraction, flux calibration with correction for atmospheric
transmission and di↵erential refraction. Twilight flatfield exposures were combined following
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the same observing pattern of the on-target and on-sky exposure. In this way a master twilight
datacube was produced to determine the e↵ective spectral resolution and its variation across
the FOV. An instrumental FWHM = 2.80 Å (�instr = 69 km s�1) was found, with a negligible
variation over the FOV and in the wavelength range between 4800 and 5600 Å. With this
analysis, it was possible to measure the stellar kinematics. The sky contribution was estimated
by fitting the sky continuum and emission lines on the on-sky exposures. The resulting sky
model spectrum was then subtracted from each spaxel of the on-target and on-sky exposures. A
combined datacube on the galaxy was produced aligning the sky-subtracted on-target exposures
using the common bright sources in the FOV as reference. The residual sky contamination of
the resulting sky-subtracted datacube was further cleaned using the Zurich Atmospheric Purge
(zap) algorithm (Soto et al. 2016).

2.3 Photometric properties

The photometric decomposition of NGC1366 was carried out by Morelli et al. (2008). This
study aimed at investigating the stellar population of bulges in 14 S0 and spiral galaxies across
various clusters and groups. They conducted a 2D photometric decomposition of the R-band
surface-brightness distribution of the sample galaxies.

The surface brightness distribution of each galaxy was modeled as the sum of two components:
a bulge, described by a Sérsic law, and a disk, represented by a type I Freeman law. To model
the bulge isophotes, ellipses centered at (x0, y0) were used, with a fixed position angle PAb and
a constant axial ratio qb. Similarly, the disk isophotes were represented by ellipses centered at
(x0, y0), with a constant position angle PAd and a fixed axial ratio qd. In Morelli et al. (2008)
Cartesian coordinates (x, y, z) were used, so that the origin corresponded to the position of the
galaxy surface brightness peak, the x-axis was parallel to the direction of right ascension and
pointing west, the y-axis was parallel to the direction of declination and pointing north, and the
z-axis was along the line of sight and pointing towards the observer. In this way, the plane of
the sky was confined to the (x, y) plane and the radii r for the two profiles were written as:

rb =
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[�(x� x0) cos PAb + (y � y0) sin PAb]
2

q
2

b

,

(2.1)

rd =

s

[�(x� x0) sin PAd + (y � y0) cos PAd]
2 +

[�(x� x0) cos PAd + (y � y0) sin PAd]
2

q
2

d

.

(2.2)

Nevertheless, in the following we will consider Cartesian coordinates rotated by an angle PAi with
respect to the previous choice, where i = {b, d} depending on the component we are considering,
so that the axis lies along the major and minor axes of the galaxy, and translated by (x0, y0), so
that the origin is placed at (0, 0).

The functional form used in Morelli et al. (2008) to describe the bulge profile is:

Ib(lb) = Ie10
�bn

h
(lb)

1
n�1

i

, where lb =
rb

re
=

q
R2 + z2

q2b

re
. (2.3)

re is the e↵ective radius, Ie is the surface brightness measured at re, qb is the flattening and bn

is a constant obtained from the condition L(re) =
Ltot
2

. The subscript b stands for “bulge”. A
relatively simple expression can be found for bn from Caon et al. (1993):

bn = 0.868n� 0.142 . (2.4)
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In our code we use a di↵erent (analogous) expression for the Sérsic bulge, which has e as the
base of the exponent instead of 10 (Sérsic 1963):

Ib(lb) = I0e
�bn(lb)

1
n

, where lb =
rb

re
=

q
R2 + z2

q2b

re
. (2.5)

In this case, I0 is the central surface brightness. The expression for bn can be obtained by
standard asymptotic analysis (Ciotti & Bertin 1999):

bn = 2n� 1

3
+

4

405n
+ ... . (2.6)

It is important to note that, while Equation (2.5) is expressed in terms of I0 (central surface
brightness), Equation (2.3) is written in terms of Ie (e↵ective surface brightness). However,
the transition from one formula to the other is straightforward. By dividing Equation (2.5) by
the same equation evaluated at re, and then dividing the results, we can obtain the desired
relationship:

Ib(lb)

Ie
=

I0e
�bn(lb)

1
n

I0e
�bn

= e
�bn

h
(lb)

1
n�1

i

(2.7)

=) Ib(lb) = Iee
�bn

h
(lb)

1
n�1

i

. (2.8)

The two expressions for bn given by Equation (2.4) and Equation (2.6) are coherent with each
other. In fact, we can easily get that bn,Ciotti = loge10 bn,Caon, where the factor loge 10 is the
one that results from changing the base of the exponential from base 10 to base e. Having
established the analogy between these equations, from now on we will use Equation (2.5) to
describe the surface brightness distribution of the bulge.

On the other hand, the equation used to describe the disk is that of a first-type exponential
disk with no break at any radius (Freeman 1970):

Id(ld) = I0e
�ld , where ld =

rd

h
=

q
R2 + z2

q2d

h
. (2.9)

I0 is the central surface brightness, h is the scale length and qd is the flattening. The subscript
d stands for “disk”. We have used ld and lb to distinguish between the two profiles. Equation
(2.9) is very similar to Equation (2.5) with n = 1, but without the presence of the constant bn.
In fact, bn is “contained” within h. Nevertheless, we can go back to the Sérsic profile and write

Id(ld) = I0e
�b1 ld , where ld =

rd

he
=

q
R2 + z2

q2d

he
, (2.10)

where b1 is obtained from Equation (2.6) with n = 1, and he = h b1. This last expression for the
disk is the one we use in our code.

To derive the photometric parameters of the bulge (Ie, re, n, PAb and qb) and disk (I0, h,
PAd and qd) and the position of the center of NGC1366 (x0, y0), Morelli et al. (2008) fitted
iteratively Im(x, y) = Ib(x, y) + Id(x, y) to the pixels of the galaxy image using a non-linear
least-squares minimization based on the Levenberg–Marquardt method by Moré et al. (1980).
The photometric decomposition technique adopted was the one developed in gasp2d (GAlaxy
Surface Photometry 2 Dimensional Decomposition) by Méndez-Abreu et al. (2008). The actual

17



computation has been done using the mpfit algorithm implemented under the idl3 environment.
Each image pixel was weighted according to the variance of its total observed photon counts
due to the contribution of both the galaxy and sky. Furthermore, it was determined assuming
photon noise limitation and accounting for detector readout noise. Seeing e↵ects were accounted
for by convolving the model image with a circular Gaussian PSF with the FWHM measured
from the stars in the galaxy image. The convolution was performed as a product in Fourier
domain before the least-squares minimization. The values obtained by performing a standard
photometric decomposition with a parametric technique similar to that adopted by Kormendy
(1977) were adopted as initial trial for least-square minimization.

The fitting of the ellipse-averaged surface brightness profile of NGC1366 was done in two
steps: first the light contributions of the bulge and the disk were considered separately, and then
simultaneously. Initially, an exponential law was fitted to the surface brightness profile of the
galaxy at large radii. In fact, in this region the galaxy is dominated by the light contribution of
the disk. In this way, I0 and h were derived. After that, the exponential profile was extrapolated
to small radii, and was subtracted from the galaxy surface brightness profile. In this way, a first
estimate of the light distribution of the bulge was estimated. A Sérsic profile was then fitted
by assuming that the bulge shape parameter n varies from 0.5 to 6 in increments of 0.5, and
deriving the corresponding values of Ie and re. Finally, for each set of Ie, re, n, I0 and h, both
bulge and disk were fitted simultaneously to the galaxy surface brightness profile. Those giving
the best fit were assumed as the trial values for the 2D fit, where all the parameters were allowed
to vary.

The trial values of PAb and qb were obtained by interpolating at re the ellipse-averaged
position angle and ellipticity profiles, respectively. The coordinates of the image pixel where
the maximum galaxy surface brightness was measured were assumed as the trial values of the
coordinates (x0, y0) of the galaxy center. The result of the photometric decomposition of the
surface brightness distribution of NGC1366 is shown in Figure 2.3. The errors associated to each
photometric parameter were obtained through a series of Monte Carlo simulations, as described
in Morelli et al. (2008).

The values of the structural parameters of the bulge obtained by Morelli et al. (2008) are
listed in Table 2.1.

Table 2.1: Bulge photometric parameters of
NGC1366.

Parameter Value
µe (18.00± 0.04) mag arcsec�2

re (2.59± 0.07) arcsec
n (1.50± 0.03)
qb (0.80± 0.01)
PAb (5.38± 2.40)�

Note: values taken from Table 2 of Morelli et al.

(2008).

The values of the structural parameters of the disk obtained by Morelli et al. (2008) are
listed in Table 2.2.

We now have to perform unit conversions to transform measurements from observed (magni-
tude and arcsecond) to astrophysical (solar luminosity and kiloparsec) units.

3
Interactive Data Language (IDL) Environment System Variables is a proprietary programming language

distributed by NV5 Geospatial, which was originally developed by Research Systems Inc. (RSI).
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Figure 2.3: Ellipse-averaged radial profile of the surface brightness of NGC1366. Upper panel:
the total observed light profile (black filled circles [l]) is well reproduced by the sum (green
solid line [ ]) of an exponential disk with no break at any radius (red dotted line [· ·]) and a
Sérsic bulge (blue dashed line (- -)). Lower panel: di↵erence between the ellipse-averaged radial
surface-brightness profiles extracted from the observed and modeled images. Image taken from
Morelli et al. (2008).

Considering that from Morelli et al. (2008) the structural parameters of the galaxy were
derived from R-band images, the equation that allows us to convert the surface brightnesses µ
(mag arcsec�2) of Tables 2.1 and 2.2 to I (L� pc�2) of Equations (2.5) and (2.10) is:

µ = �2.5 log I + µR,�

=) I = 10�0.4(µ�µR,�) L� pc�2 = 10�0.4(µ�26.03) L� pc�2 =

= 10�0.4(µ�26.03) · 10�4 L� kpc�2
, (2.11)

where µR,� is the surface brightness of the Sun in the R band, which can be obtained from:

µR,� = MR,� + 5 log(206265)� 5 = 4.46 + 5 log(206265)� 5 = 26.03 mag arcsec�2
, (2.12)

where MR,� = 4.46 mag4 As far as the length conversion concerns, we need to find the scale of
the system. From the adopted distance we have:

s =
17.6 · 106 pc

206265 arcsec
= 85.33 pc arcsec�1 = 8.53 10�2 kpc arcsec�1

. (2.13)

4
From https://mips.as.arizona.edu/~cnaw/sun_2006.html; the procedure follows Fukugita et al. (1995),

using filter curves from a variety of sources, many of which are referenced therein.
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Table 2.2: Disk photometric parameters of
NGC1366.

Parameter Value
µ0 (19.07± 0.03) mag arcsec�2

h (12.81± 0.32) arcsec
qd (0.41± 0.01)
PAd (2.08± 2.32)�

Note: values taken from Table 2 of Morelli et al.

(2008).

To convert a length from arcseconds to kiloparsecs, we only need to multiply the arcsecond
measurement by the system scale factor:

L(kpc) = l(arcsec) · s(kpc arcsec�1) . (2.14)

The results are collected in Table 2.3.

Table 2.3: Conversion of the structural parameters of NGC1366 from magnitudes and
arcseconds to solar luminosity units and kiloparsecs.

Measured value (in “observational units”) Adopted value (in “astrophysical units”)
Bulge

µe = (18.00± 0.04) mag arcsec�2
Ie = 1.632 · 109 L� kpc�2

re = (2.59± 0.07) arcsec re = 2.21 · 10�1 kpc
n = (1.50± 0.03) n = 1.50
qb = (0.80± 0.01) qb = 0.80

PAb = (5.38± 2.40)� PAb = (5.38± 2.40)�

Disk
µ0 = (19.07± 0.03) mag arcsec�2

I0 = 6.093 · 108 L� kpc�2

h = (12.81± 0.32) arcsec h = 1.096 kpc
qd = (0.41± 0.01) qd = 0.41

PAd = (2.08± 2.32)� PAd = (2.08± 2.32)�

2.4 Kinematic properties

Stellar and gas kinematics of NGC1366 was measured along both the major (PA = 2�) and minor
(PA = 92�) axes of NGC1366 by Morelli et al. (2017). It was derived with a single-component
and a two-component analysis, as done in Pizzella et al. (2014).

Spectra were firstly measured without separating the two counter-rotating components.
Penalized PiXel Fitting (ppxf, Cappellari & Emsellem 2004) and Gas AND Absorption Line
Fitting (gandalf, Sarzi et al. 2006) idl codes were used, with the elodie library of stellar
spectra from Prugniel & Soubiran (2001). Furthermore, a Gaussian LOSVD was adopted to
obtain the velocity curve and velocity dispersion radial profile along the observed axes. Measured
velocities were subtracted of systemic velocity. No correction was applied for slit orientation and
galaxy inclination, while the measured velocity dispersion was corrected for the instrumental
velocity dispersion.

Figure 2.4 reports the peculiar stellar kinematics measured along the major axis of NGC1366.
The velocity curve is symmetric around the center for the innermost |r|  11 arcsec. In addition
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Figure 2.4: Velocity and velocity dispersion profiles along the major axis of NGC1366 from
long-slit spectroscopy. Upper panel: LOS velocity dispersion profile. Red filled diamonds [u],
blue filled squares [n] and black filled circles [l] represent the counter-rotating, corotating,
and total stellar components, respectively, while green open triangles [4] represent the gaseous
component. Error bars smaller than symbols are not shown. Lower panel: LOS velocity profile.
The symbols and their meaning are the same as those in the upper panel. The blue [- -] and red
[- -] dashed lines are a tentative indication of the velocity rotation curves for the counter-rotating
and corotating component, respectively. Image taken from Morelli et al. (2017).

to the first peak located at |r| ' 2 arcsec reaching |v| ' 50 km s�1, a second double peak
appears at |r| ' 11 arcsec. For 6 . |r| . 11 arcsec, |v| ' 0 km s�1. Moreover, at |r| & 11 arcsec,
both a shift in v and a decrease in � are measured on both sides of the galaxy. This is due to
the fact that the absorption lines of the two stellar populations are so clearly separated that
the ppxf-gandalf procedure could only fit one of the components. The v measured at large
negative and positive radii refer to the counter-rotating and corotating components, respectively.
Focusing now on �, as we can see from the top panel of Figure 2.4, there is a central, symmetric
maximum � ' 150 km s�1. Then � decreases to ' 150 km s�1 going outward, and increases
again to � ' 140 km s�1 at |r| ' 9 arcsec. Then, for |r| & 15 arcsec, � settles down to ' 100
km s�1. Putting everything together, at |r| ' 10 arcsec a zero LOS velocity is paired with two
o↵-center and symmetric peaks in � of the stellar component measured along the galaxy major
axis. As discussed in detail in Section 1.2, such a feature is indicative of two counter-rotating
components.

On the other hand, Figure 2.5 shows the stellar kinematics measured along the minor axis
of NGC1366. No kinematic signature of stellar decoupling was found along this axis. The
velocity curve is characterized by |v| ' 0 km s�1 at all radii. This implies that the kinematic
and photometric minor axes coincide. Instead, the � profile appeared radially symmetric, with a
central peak which reaches � ' 150 km s�1 and decreases radially in a monotonic way, setting
to ' 60 km s�1 at |r| ' 14 arcsec.

Comparing the stellar and ionized-gas velocity curves, it appears that the gas is not associated
with one of the two counter-rotating components. The gas actually rotates in the same direction
as the stellar component and with a similar velocity amplitude at both small (|r| . 1 arcsec)
and large radii (|r| & 11 arcsec).

Another indication of the counter-rotating nature of NGC1366 is shown in Figure 2.6, which

21



Figure 2.5: Velocity and velocity dispersion profiles along the minor axis of NGC1366 from
long-slit spectroscopy. Upper panel: LOS velocity dispersion profile. Black filled circles [l]
represent the total stellar component, while violet filled triangles [N] and cyan open triangles
[4] represent the two ionized-gas components. Error bars smaller than symbols are not shown.
Lower panel: LOS velocity profile. The symbols and their meaning are the same as those in the
upper panel. Image taken from Morelli et al. (2017).

displays the LOS velocity, LOS velocity dispersion, h3 and h4 maps derived from integral-field
spectroscopy. In the velocity field a distinct, inner stellar component is rotating in the opposite
direction with respect to the main body of the galaxy. The velocity dispersion field reveals the
characteristic 2� feature associated with counter-rotating galaxies. Moreover, the large-scale
pattern in the h3 map is another indication of the presence of an inner, counter-rotating stellar
component.

2.5 Stellar population properties

Line strength of the Lick indices were obtained by Morelli et al. (2008). Mg, Fe and H�
line-strength indices (as defined in Faber et al. 1985 and Worthey et al. 1994) were measured
from the flux-calibrated spectra following Mehlert et al. (2000). Spectra were rebinned in the
dispersion direction as well as in the radial direction. The average iron index and magnesium-
iron index were defined as hFei = (Fe5270 + Fe5335)/2 (Gorgas et al. 1990) and [MgFe]0 =p
Mgb(0.72⇥ Fe5270 + 0.28⇥ Fe5335) (Thomas et al. 2003), respectively. In order to degrade

spectra to the fixed spectral resolution of the Lick system (⇡9 Å), they were convolved with
a Gaussian with a proper �. Since the seeing was the dominant e↵ect during observations, no
focus correction was applied. The errors on the indices were derived from photon statistics and
CCD readout noise and calibrated using Monte Carlo simulations. The measurements were
calibrated to the Lick system using the stars from Worthey et al. (1994) listed in Section 2.2.2.
To address the problem of contamination of the H� index by the H� emission line, the gandalf
code was adopted to fit the galaxy spectra with synthetic population models, as done by Sarzi
et al. (2006). The models were built with di↵erent templates from the stellar libraries by Bruzual
& Charlot (2003) and Tremonti et al. (2004). The Salpeter initial mass function (Salpeter 1955)
was adopted. Ages ranged between 1 Myr and 10 Gyr, and metallicities ranged between 1 and
2.5 (Z/H)�. The spectral resolution of the stellar templates (FWHM ⇠ 3 Å) was degraded to
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Figure 2.6: LOS velocity, LOS velocity dispersion, h3 and h4 maps of NGC1366 from integral-
field spectroscopy. The FOV is 1⇥ 1 arcmin2 with north pointing up and east pointing left. Left
panels (from top to bottom): LOS velocity and velocity dispersion maps. The colormaps give
the velocity ranges. Right panels (from top to bottom): h3 and h4 maps. The colormaps give
the intensity ranges. Image taken from Morelli et al. (in prep.).

match that of the spectra of NGC1366. The observed spectra were fitted using emission lines in
addition to the stellar templates. The equivalent width of H� emission line was ranging from
⇠1 to ⇠2 Å depending on the radius. The emission line was subtracted from the observed
spectrum and the H� line-strength index was measured from the resulting H� absorption line.
The measured values of H�, [MgFe]0, hFei, Mgb and Mg2 for NGC1366 are plotted in Figure 2.7.
Their values are listed in Table B1 in Morelli et al. (2008).

Let us focus now on the mass-to-light ratios of the bulge (M/L)b and disk (M/L)d. The
bulge dominates the total luminosity for |r| < 5 arcsec (Figure 2.3), and the contribution of
the disk is negligible for |r| < 2 arcsec. In this region, the Lick indices show minimal variation,
allowing us to use the values for the bulge of NGC1366 listed in Table 3 of Morelli et al. (2017).
These values were calculated for r < 0.3 re = 0.3 ⇥ 2.59 = 0.8 arcsec. From these values, the
properties of the stellar populations (age, metallicity, ↵-element overabundance) were calculated
using the models of Thomas et al. (2003), yielding an age of 5.1 Gyr, [Z/H] = 0.39 dex, and
[↵/Fe] = 0.11 dex. Using these values, they adopted the models of Maraston (2005) for an age
of 5.1 Gyr (actually 5.0 Gyr) and [Z/H] = 0.39 dex (actually 0.35 dex) in the R-band (actually
Johnson-Cousins). This gave a value for the mass-to-light ratio of (M/L)b = 3.48M�/L�.

Analyzing the disk is a bit more complex because it consists of two components with di↵erent
mass-to-light ratios. To address this, we can use the diagnostics from Morelli et al. (2017).
They discovered that the corotating and counter-rotating components contribute (45 ± 15)%
and (55 ± 15)% of the stellar luminosity at all the measured radii. Then, the luminosity
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Figure 2.7: Line-strength indices of NGC1366 measured along the major axis of the galaxy.
From top to bottom: radial profiles of H�, [MgFe]0, hFei, Mgb and Mg2. As we can see, the curve
is folded around the nucleus. Blue asterisks [⇤] and red dots [l] refer to the eastern and western
side of the galaxy, respectively. The top panel shows the radial profile of the line-of-sight velocity
(v) after the subtraction of the systemic velocity, while the bottom panel shows the velocity
dispersion (�). The vertical dashed line indicates the radius at which the surface brightness
contributions of bulge and disk are the same. Image taken from Morelli et al. (2008).

fraction of each component was converted into mass fraction using the measured ages and
metallicities and adopting the models by Maraston (2005). In this way, stellar mass-to-light
ratios of M/L = 3.02M�/L� and M/L = 1.63M�/L� for the corotating and counter-rotating
components were obtained, respectively. From these quantities, the stellar mass fractions of the
corotating and counter-rotating components were found to be 60% and 40%, respectively. In
Table 2.4 we report these results for summary objects.
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Table 2.4: Other useful disk parameters of NGC1366.
The luminosity and mass-to-light ratios of each counter-
rotating component are reported.

Parameter Value
M/L (corotating component) 3.02 M�/L�

M/L (counter-rotating component) 1.63 M�/L�
L/Ltot (corotating component) (0.45± 15)

L/Ltot (counter-rotating component) (0.55± 15)
M/Mtot (corotating component) 60%

M/Mtot (counter-rotating component) 40%

Note: values taken from Morelli et al. (2008) and Morelli et al.

(2017).

In our work, we treat the disk as a single entity, and we introduce the counter-rotation within
the disk through the Satoh parameter (see Section 3.4.3). This means that, despite the presence
of two counter-rotating disks characterized by two M/L ratios, for simplicity we consider a single
M/L ratio for the entire disk. This allows us to simplify our problem without losing the physical
behavior of the galaxy as a whole. Returning to the calculation of the mass-to-light ratio of
the disk, we can use the total luminosity of the disk, given by Equation (A.4) (see Appendix
A); then, from L/Ltot,d and M/Ltot,d for the two components, we can reconstruct the mass of
each element. Then, by calculating the total mass, we can divide the disk luminosity by the
disk mass, thus obtaining a mass-to-light ratio for the (fictitious, but representative) disk, which
turns out to be M/L = 2.26M�/L�.

Finally, we can calculate the luminosities and masses of the individual components as well as
the total luminosity of the galaxy.

By referring to Equation (A.5) and substituting the values provided in Table 2.3, we get:

Lb = 9.16 · 108 L� , Ld = 1.88 · 109 L� , Ltot = 2.80 · 109 L� , (2.15)

from which we get Lb/Ltot = 0.32.
Using the luminosities and the mass-to-light ratios, we get the mass of the individual

components as well as the total stellar mass of the galaxy. Remembering that (M/L)b =
3.48 M�/L� and (M/L)d = 2.26 M�/L�, we get:

Mb = 3.19 ·109 M� , Md = 4.25 ·109 M� , Mtot = 7.44 ·109 M� . (2.16)

Now that we have presented and described the problem and all the data at our disposal, we
proceed building the theoretical ground on which we construct our dynamical model.

25



Chapter 3

Dynamical model of NGC1366

In this chapter we present the theoretical background for the construction of the dynamical
model of NGC1366. In Section 3.1 we discuss how to recover the luminosity volume density
profile from the surface brightness profile for both the bulge and disk. In Section 3.2 we introduce
the first and second Jeans equations (JEs), for which we adopt the solution for the axisymmetric
mass distribution. In Section 3.3 we present the solution for the forces in the JEs, using the
Chandrasekhar formula. In Section 3.4 we provide a solution of the first and second JEs, also
presenting the Satoh decomposition method. In Section 3.5 we combine the values of the fields
obtained from the JEs, weighting them both by mass and luminosity, and examining how to
retrieve physical units.

3.1 Luminosity volume density

In the previous chapter we described the surface brightness distribution of the bulge and disk
components of NGC1366. Now we convert the luminosity surface density into mass volume
density of each component; in particular, we find an expression for the mass volume density ⇢
for a spheroidal mass distribution.

We use cylindrical coordinates (R,f, z), so that the origin corresponds to the center of the
galaxy, the z coordinate lies along the symmetry axis of the system, the R coordinate lies in
the equatorial plane of the galaxy, and f is the angle formed between the intersection of the
equatorial and sky planes (pointing eastward) and the projection of the vector radius onto the

equatorial plane. Let us define l = (
q
R2 + z2/q

2
i )/re as in Equations (2.5) and (2.10), where

i = {b,d} depending on whether we consider the bulge or disk. Furthermore, let us assume that
the system is seen edge on. Then, we recover the deprojected luminosity volume density j from
the luminosity surface density I by the Abel integration (see Appendix B):

j(l) = � 1

⇡

Z 1

l

@I

@l0
dl

0
p
l02 � l2

. (3.1)

Since we have two di↵erent expressions for the surface brightness I of the bulge (Equation 2.5)
and disk (Equation 2.10), this can be done independently for the two components. To convert
the luminosity volume density j into the mass volume density ⇢ we assume that ⌫ / j / ⇢, with
⌫ representing the stellar number density. The proportionality constant between j and ⌫ depends
on the specific stellar population of the galaxy. We apply the mass-follows-light assumption,
where the M/L for a given component is assumed to be constant throughout that component.
This assumption is considered reliable, as we are assuming that each component consists of a
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single stellar population. The expression for the mass volume density then becomes:

⇢(l) = j(l)
M

L
= �M

L

1

⇡

Z 1

l

@I

@l0
dl

0
p
l02 � l2

. (3.2)

This is true for each luminous component. Relying on the independence of the bulge and disk
treatments, we will first consider the two components separately.

3.1.1 Bulge

The surface brightness profile of the Sérsic bulge in terms of I0 is given by Equation (2.5). If we
assume that the system is seen edge on, as in the case of NGC1366, the isophotal flattening q

coincides with the flattening of the luminosity surface density distribution, and we do not need
to consider geometric corrections. From Equation (2.5) we can compute the total luminosity
of the bulge by integrating Ib over the solid angle (see Appendix A). To proceed with the
calculation, we normalize the expression for the luminosity surface density to Ltot/r

2
e . This

simplification makes the process easier, and physical units will be restored when needed. Since
Ie = I(re) = I0e

�bn , we normalize and get:

Inorm,b =
r
2
e

Ltot

I
Eqs. (A.5) and (2.5)

=
b
2n
n

2⇡qn�(2n)ebnr2eIe
r
2

e Iee
bne

�bnl1/n =
b
2n
n

2⇡qn�(2n)
e
�bnl1/n ,

(3.3)
and therefore:

@Inorm,b

@l
= � b

2n+1
n

2⇡qn2�(2n)
l
1�n
n e

�bnl1/n , (3.4)

which translates into:

jnum,norm,b

Eq. (3.1)
= � 1

⇡

Z 1

l

@Inorm,b

@l0
dl

0
p
l02 � l2

=
b
2n+1
n

2⇡2qn2�(2n)

Z 1

l
l
1�n
n e

�bnl1/n dl
0

p
l02 � l2

.

(3.5)
This integration has to be numerically computed and this means that it can be computationally
quite expensive. To deal with this issue, we use an analytical approximation. It was proposed
by Mellier & Mathez (1987) for the de Vaucoulers profile and generalized by Prugniel & Simien
(1997) for a Sérsic profile and finally refined by Lima Neto et al. (1999) as it follows:

japp,norm,b(l,�, q, n) =
b
(3��) n
n

4⇡qn�[(3� �) n]
l
��exp

h
�bn l

1
n

i
. (3.6)

This formula is able to analytically reproduce the deprojected Sérsic profile with generic index n

for the luminosity volume density of a spheroidal distribution. Equation (3.6) can be obtained
by taking the asymptotic limit of the Abel integration of the Sérsic profile (Ciotti 1991). Of
course, we get back the spherical case by substituting q = 1. The � index is obtained numerically,
assuming that the total luminosity (or equivalently mass) is conserved. We express � as a
function of n using the formula by Lima Neto et al. (1999):

�(n) = 1� 0.6097

n
+

0.05463

n2
. (3.7)

Multiplying jnum,norm,b and japp,norm,b by (M/L)b, we recover the mass volume densities
⇢num,norm,b and ⇢app,norm,b, respectively. We can compare ⇢num,norm,b and ⇢app,norm,b in Fig-
ure 3.1. The two lines are nearly superimposed for l & 0.1 re, whereas inwards their di↵erence
increases. This is a consequence of the asymptotic limit nature of Equation (3.6). Anyway, since
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Figure 3.1: Comparison between ⇢num,norm,b and ⇢app,norm,b. Panel (a): agreement between
⇢num,norm,b obtained from Equation (3.5) (blue solid line [ ]) and ⇢app,norm,b from Equation
(3.6) (red dashed line [- -]). Along the x axis, the length is defined as in Equation (2.5), and it
stands for the number of e↵ective radii. Panel (b): percentage error of the di↵erence between
⇢app,norm,b and ⇢num,norm,b.

0.1 re corresponds to some tens of pc, we can forget about this di↵erence because it is of no
importance for us. The percentage error between ⇢num,norm,b and ⇢app,norm,b is of the order of a
few at large radii, and it decreases toward the inner regions for l . 0.1 re. Therefore, we use
japp,norm,b and ⇢app,norm,b in the subsequent calculations because they are more e�cient and
yield accurate results.

3.1.2 Disk

The surface brightness profile of the exponential disk in terms of I0 is given by Equation (2.10).
The total luminosity can be computed from Equation (A.4). As done for the bulge, we normalize
the expression for the luminosity surface density to Ltot/h

2. So we can normalize obtaining:

Inorm,d =
h
2

Ltot

I
Eqs. (A.4) and (2.10)

=
b
2
1

2⇡qh2I0
h
2
I0e

�b1l =
b
2
1

2⇡q
e
�b1l , (3.8)

and therefore:
@Inorm,d

@l
= � b

3
1

2⇡q
e
�b1l , (3.9)

which translates into:

jnum,norm,d

Eq. (3.1)
= � 1

⇡

Z 1

l

@I

@l0
1p

l02 � l2
dl

0 =
b
3
1

2⇡q

1

⇡

Z 1

l
e
�b1l0 dl

0
p
l02 � l2

. (3.10)

Now, in order to solve the Abel integral and find the expression for ⇢d we can follow three
ways: we can compute it numerically from Equation (3.10); we can use the analytic approximate
expression of Equation (3.6) with n = 1; or we can notice that the Abel integral of an exponential
can be written in terms of a modified Bessel function of the second type. We will use the modified
Bessel function approach. From Equation (3.10), doing the change of variables l0 = l cosh (u)
and dl

0 = l senh (u) du, we get l0 = l =) u = 0 and l
0 = 1 =) u = 1, so it is:

jnum,norm,d =
b
3
1

2⇡2q

Z 1

0

e
�b1l cosh (u) l senh (u) du

l

p
cosh (u)2 � 1

=

=
b
3
1

2⇡2q

Z 1

0

e
�b1lcosh (u)

du =
b
3
1

2⇡2q
K0(b1l) ; (3.11)

in fact,
R1
0

e
�lcosh (u)

du = K0(l), where K0(l) is a modified Bessel function of the second type.
The mass volume density ⇢num,norm,d is obtained multiplying Equation (3.11) by (M/L)d.
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3.2 Jeans equations for an axisymmetric system

We now introduce the Jeans equations (JEs). For a complete overview on the topic see the
books by Binney & Tremaine (1987, 2008) and Ciotti (2021) among the others. We will refer
more closely to the last one for our discussion.

JEs are the set of equations derived taking the velocity moments of the Collisionless Boltzmann
Equation (CBE). In principle JEs are represented by an infinite set of equations. However, we
usually use only the zeroth and first order equations, which correspond to the first and second JE,
respectively. Let us start writing the CBE for a stellar system. If we indicate with f the smooth
phase-space distribution function (DF), then we can write the di↵erential equation responsible
for the evolution of the DF in the collisionless regime. In particular, we get (see Appendix C):

Df

Dt
=
@f

@t
+ h~v,r~xfi � hr~x�tot,r~vfi = 0 . (3.12)

where r~x and r~v are the gradient operators over space and velocity, respectively, h~a,~bi represents
the inner product of the two vectors ~a and ~b, and �tot = �+ �ext is the total potential, with:

�(~x, t) = �G

Z

R3

⇢(~y, t)

kx� ykd
3
~y , (3.13)

�ext(~x, t) = �G

Z

R3

⇢ext(~y, t)

kx� yk d
3
~y . (3.14)

As an example, ⇢ could be the stellar mass volume density of a component of the galaxy, and
⇢ext can be the mass volume density of some other component such as a dark matter (DM) halo,
or a gaseous component, or a central black hole. Equation (3.12) is very important for stellar
dynamics, but it is not the one we are looking for. In fact, we need an equation, which explicitly
depends on the observables of the system (e.g., velocity, velocity dispersion, number density of
stars) in order to directly insert these quantities inside our equations and solve them. While the
CBE is defined over the 6D phase space, the JE are defined over the 3D configuration space,
and this allows us to create a more intuitive model based on observable quantities. First of all,
we define some quantities that will be useful for our purposes. We consider a stellar system
characterized by a phase-space DF which depends on position, velocity, and time, which we
define as f(~x,~v, t). Then, we introduce a microscopic function F = F (~x,~v, t). Clearly, F can be
whatsoever physical quantity expressed by some mathematical expression (e.g., position, velocity,
kinetic energy). Let ⌫( ~x, t) be the number density of our stellar system at position ~x and at a
time t. It is ⌫( ~x, t) =

R
R3 f(~x,~v, t)d3~v. As said before, for the mass-follows-light assumption we

adopt ⇢ = (M/L) j = ↵ ⌫, where ↵ is a constant which depends on the stellar population. Then,
we associate to F a macroscopic function F :

F (~x, t) :=
1

⌫(~x, t)

Z

R3
F (~x,~v, t)f(~x,~v, t)d3~v . (3.15)

For what concerns the JEs, F is chosen so that we get the velocity moments:

vi(~x, t) :=
1

⌫(~x, t)

Z

R3
vifd

3
~v , (3.16)

vivj(~x, t) :=
1

⌫(~x, t)

Z

R3
vivjfd

3
~v , (3.17)

�
2

ij(~x, t) = �
2

ji(~x, t) :=
1

⌫( ~x, t)

Z

R3
(vi � vi)(vj � vj)fd

3
~v = vivj � vi vj . (3.18)
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We can demonstrate (see Appendix E) that the general di↵erential equations to which F obeys
is:

@ ⌫F

@t
+
@ ⌫Fvi

@xi
= �⌫ @�tot

@xi

@ F

@vi
+ ⌫ vi

@ F

@xi
+ ⌫

@ F

@t
. (3.19)

We then obtain the first and second JEs by putting firstly F = 1 and then F = vj (Appendix
E); therefore:

F = 1 =) First JE
@ ⌫

@t
+
@ ⌫ vi

@xi
=

D ⌫

Dt
+ ⌫

@vi

xi
= 0 , (3.20)

F = vj =) Second JE
@ ⌫ vj

@t
+
@ ⌫ vjvi

@xi
= �⌫ @ vj

@t
(i = 1, 2, 3) . (3.21)

Often the second JE is found in a di↵erent form. If we subtract Equation (3.20) multiplied by
vj from Equation (3.21) we find (Appendix E):

Second JE
Dvi

Dt
=
@ vi

@t
+ vj

@ vi

@xj
= �@ �tot

@xi
� 1

⌫

@ ⌫�
2

ij

@xj
(i = 1, 2, 3) . (3.22)

We now solve the previous equation in the case of an axisymmetric system. Let us introduce
two integrals of motion that will be useful for our purposes. To do so, we can define a new
gravitational potential, called relative potential :

 = ��+ �0 , where �0 = const , (3.23)

and a new energy, called relative energy :

E = �E + �0 = �1

2
kvk2 � �+ �0 = �1

2
kvk2 +  . (3.24)

Let ~J be the specific angular momentum of each star, which can be decomposed into its three
components: Jx, Jy and Jz. We now consider an axysimmetric stellar system and cylindrical
coordinates (R,f, z). We study the case of a DF depending on the two classical integrals of
motion related to the assumed symmetry. In fact, from the Jeans theorem, a DF is a steady
state solution of the CBE if and only if is a function of integrals of motions (see Appendix D for
the demonstration). We write I1 := E and I2 := Jz, so that our DF is in the form f = f(E , Jz).
This implies that the vertical velocity dispersion is equal to the vertical velocity dispersion,
�
2

R = �
2
z (isotropy), and so the velocity dispersion ellipsoid is rotationally symmetric in the plane

(R, z) (meridional plane). Furthermore, we express the steady state JEs in cylindrical form (see
Appendix F), so that: (

@
@z (⇢�

2
z) = �⇢@�tot

@z
@
@R(⇢�

2
z)� ⇢

��
R = �⇢@�tot

@R ,
(3.25)

where �� is the di↵erence between the mean square azimuthal velocity and square vertical
velocity dispersion, �� := v2f��2z = vf

2+�2f��2z . If we assign ⇢ and �tot, we obtain the general
solution of this system by integrating the first equation in z at fixed R:

⇢�
2

z =

Z zt(R)

z
⇢
@�tot

@z0
dz

0 (3.26)
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Moreover, substituting Equation (3.26) inside the second of Equation (3.25) and integrating by
parts, we get:

⇢
��

R
= ⇢

@�tot

@R
+

@
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(⇢�2z) =

= ⇢
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� @⇢

@z0
@�tot
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�
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. (3.27)

3.3 Solution of the Jeans equations: forces and the Chan-
drasekhar formula

To solve the JEs, it is necessary to obtain an expression for the radial and vertical derivatives of
the potential @�tot

@R and @�tot
@z , respectively, which are also called forces. In general, for a disk

galaxy there are three gravitational potentials (and consequently six forces) that we need to
calculate:

• the force given by the gravitational potential of the bulge;

• the force given by the gravitational potential of the disk ;

• the force given by the gravitational potential of the DM halo.

The first two potentials are homogeneous spheroidal potentials. This implies that we can avoid
to go through the tedious calculation of elliptical integrals. In these cases, we directly apply the
Chandrasekhar formula without the need for computing numerical derivatives. This approach
allows us to work with integrals, which are more precise. On the other hand, the DM halo
cannot always be reproduced by an homogeneous ellipsoid: it depends on the functional form
with which we express the DM halo mass volume density. If this is not possible, in order to solve
the JEs we have to compute numerical derivatives. Anyway, in our numerical code we would
have no di�culty at all to add and implement another component to our system, as for example
a super massive black hole residing in the center of the galaxy.

3.3.1 Bulge and disk

The Chadrasekhar formula gives us the gravitational field produced at ~x by a stellar mass density
distribution described by an homogeneous ellipsoid. Following Ciotti (2021), we consider an
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ellipsoid with semimajor axes a1, a2 and a3, and we can define, adopting ellipsoidal coordinates:

�(⌧) := (a21 + ⌧)(a22 + ⌧)(a23 + ⌧) , (3.28)

m
2

⌧ (~x, ⌧) :=
3X

i=1

x
2

i

a
2
i + ⌧

. (3.29)

From Equation (2.72) in Ciotti (2021) we get:

gi(~x) = � @�

@xj
= �2⇡Ga1a2a3xi

Z 1

0

⇢(m⌧ )

(a2i + ⌧)
p

�(⌧)
d⌧ . (3.30)

In our case, since we work in cylindrical coordinates (R,f, z), we have a1 = a2 = aR = 1 and
a3 = az = q. Therefore, after normalizing (G = 1), we obtain:

@�

@R
(R, z, q, n) = 2⇡qR

Z 1

0

⇢(m⌧ , q, n)

(1 + ⌧)2
p
q2 + ⌧
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8
<

:

2⇡qbR
R1
0
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p

q2b+⌧
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2⇡qdR
R1
0

⇢(m⌧ ,d,qd,nd)

(1+⌧)2
p

q2d+⌧
d⌧ for the disk

,

(3.31)
and analogously:
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Z 1
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⇢(m⌧ ,d,qd,nd)

(1+⌧)(q2d+⌧)
3
2
d⌧ for the disk

.

(3.32)
These formulas will be used in the solution of the JEs for both the bulge and disk.

3.3.2 Dark matter halo

The expressions for the forces in the case of the DM halo component depend on how the halo
mass distribution is expressed. We list below some choices that can be made:

• Spherical DM halo. In this case we use the Chandrasekhar formulas described in Section
3.3.1. An example is the Navarro–Frenk–White profile (Navarro et al. 1996):

�NFW(r) = �4⇡G⇢0R3
s

r
ln

✓
1 +

r

Rs

◆
, (3.33)

where ⇢0 is the characteristic density, Rs is the scale radius, and r the radial distance from
the center of the halo.

• Ellipsoidal DM halo. The procedure is analogous to that described in Section 3.3.1.

• Binney logarithmic DM halo. This has the form (Binney 1981):

�B(R, z) =
1

2
v
2

0 ln

✓
r
2

c +R
2 +

z
2

q2

◆
, (3.34)

where v0 is the asymptotic circular velocity, rc is the core radius, q is the flattening of
the halo and R and z are the canonical cylindrical coordinates. The advantage of this
potential is that it is pretty easy to be treated, because its derivatives can be carried out
analytically.
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• Other more complex DM potentials. If the potentials are more complex, we have to compute
their numerical derivatives. This makes the numerical code much more computationally
expensive.

Mazzei et al. (2019) exploited smooth particle hydrodynamic simulations to explore galaxy
evolution in low density environments for 11 early-type galaxies, including NGC1366. Starting
from a large grid of simulations of galaxy encounters and mergers, they were able to single out
the simulations matching the global properties of the targets. The initial parameters of each
simulation were tuned as described in Mazzei et al. (2014b,a, 2018). The initial total mass for
the NGC1366 simulation was set at 110 · 1010 M�, with a mass ratio of 10 : 1 between the DM
+ gas halo and the rest of the system. Additionally, the gas fraction of the halo was set to be
fgas = 0.1.

3.4 Solution of the Jeans equations: fields

Once we see how to treat the partial derivatives of the potential in the various cases and after
obtaining the expressions for the forces in the case of an homogeneous ellipsoid, we continue
with the solution of the JEs.

3.4.1 Solution of the first Jeans equation

In order to solve the first JE in the case of a homogeneous ellipsoidal system (i.e. bulge, disk,
ellipsoidal or spherical DM halo), we use the solution of the first JE for an axysimmetric system
in cylindrical coordinates, as given in Equation (3.26). If we consider zt(R) ! 1 since we want
to examine the whole space, and express the term @�tot

@z0 with the Chandrasekhar formula in
Equation (3.32), we get:

⇢�
2

z(R, z, q, n) = 2⇡q

Z 1

0

Z 1

z
z
0
⇢(m, q, n)

⇢(m⌧ , q, n)

(1 + ⌧)(q2 + ⌧)
3
2

d⌧dz
0

, (3.35)

from which, inverting, we obtain the vertical component of the velocity variance:
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2

z(R, z, q, n) =
1

⇢(m, q, n)
2⇡q

Z 1

0

Z 1

z
z
0
⇢(m, q, n)

⇢(m⌧ , q, n)

(1 + ⌧)(q2 + ⌧)
3
2

d⌧dz
0

. (3.36)

3.4.2 Solution of the second Jeans equation

We now analyze the solution of the second JE in the case of a homogeneous ellipsoidal system
(bulge, disk, ellipsoidal or spherical halo) for an axisymmetric system in cylindrical coordinates,
given in Equation (3.27):

⇢
��

R
= ⇢

@�tot

@R
+

@

@R
(⇢�2z) =

=
((((((((((((((
⇢(zt(R), R)

@�tot(zt(R), R)

@R| {z }
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+

Z zt(R)

z


@⇢

@R

@�tot

@z0
� @⇢

@z0
@�tot

@R

�
dz

0
.

For a system with a mass volume density vanishing or truncated at the boundary (namely a
“well behaved system”), the first term in the right hand side of the last line in the previous
expression can be taken to be null. This leaves only the commutator. Since the commutator and
radial derivative expressions are analogous, we can either use one or other. For the derivatives
of the potential, we use the two Chandrasekhar formulas given in Equations (3.31) and (3.32).
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3.4.3 Satoh decomposition

The second JE gives us an expression for �� = v2f � �
2
z = vf

2 + �
2
f � �

2
z . This variable contains

the information about both square mean azimuthal velocity and azimuthal velocity dispersion.
Therefore, we need a method to break the degeneracy between ordered and random motions
along the azimuthal direction. To do so we use the Satoh decomposition. In fact, when �� � 0
everywhere, we can relate the mean azimuthal velocity vf with �� using the empirical law by
Satoh (1980):

vf = k

p
�� |k|  1 , (3.37)

where k is a free parameter. From the definition of �2f = v2f � vf
2 and �� = v2f � �

2
z we obtain

the expression of the azimuthal velocity dispersion:

�
2

f = v2f � vf
2 = �� + �

2

z � k
2�� = (1� k

2)�� + �
2

z = (1� k
2)v2f + k

2
�
2

z . (3.38)

If k2 = 1 we have an isotropic rotator (�f = �z = �R), with flattening totally supported by
rotation; instead, if k = 0, there is no net rotation (vf = 0), and the flattening is totally
supported by azimuthal velocity anisotropy. The Satoh parameter k can also vary with R

and z. In this case we talk about generalized Satoh decomposition k(R, z) (Ciotti & Pellegrini
1996). The Satoh parameter k can be used to introduce counter-rotation within the galaxy.
Counter-rotation can be treated even without summoning the generalized expression of the Satoh
decomposition. In fact, in the case of k = const in a multi-component system, counter-rotation
can be introduced by assigning to each component a specific value of k. If we do that properly,
we obtain a counter-streaming star motion. Anyway, the phenomenon of counter-rotation can be
an intrinsic property of one component. For example, a disk can corotate until a certain radius,
and then after that radius there could be an inversion of the stellar motion. This transition
can be either smooth or rapid, or even more complicated. This case has to be treated with the
generalized Satoh decomposition, making k to vary with the distance from the galactic center.
This was performed for example in Negri et al. (2014), using the Jeans AxiSymmetric Models of
galaxies IN Equilibrium code (jasmine, Posacki et al. 2013), and in Caravita et al. (2021), using
the Jeans AxiSymmetric Models of galaxies IN Equilibrium 2 code (jasmine2, Caravita et al.
2021).

Moreover, the radial and vertical velocity dispersions �R and �z, which are equal by assump-
tion, are independent from k. This implies that the only way to change those values is to modify
the DM halo surrounding the galaxy.

In our code we analyze the following cases:

1. • non-rotating bulge (kb = 0);

• non-rotating disk (kd = 0).

in this case no component is rotating. We will refer to this as the non-rotating galaxy
model.

2. • non-rotating bulge (kb = 0);

• isotropic rotating disk (kd = 1).

in this case we do not have counter-rotation. We will refer to this as the non-rotating bulge
model.

3. • isotropic-counter-rotator bulge (kb = �1);

• isotropic rotating disk (kd = 1).

in this case we do have counter-rotation, but we are not considering the generalized Satoh
decomposition. We will refer to this as the maximally counter-rotating model.
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4. • kb = �1/2;

• kd = 1/2.

in this case we do have counter-rotation too, but we are not considering the generalized
Satoh decomposition. We will refer to this as the mildly counter-rotating model.

5. • kb = �3/4;

• kd = 3/4.

in this case we do have counter-rotation too, but we are not considering the generalized
Satoh decomposition. We will refer to this as the moderately counter-rotating model.

3.5 Dynamical and observed fields

In the previous sections we explored how to solve the JEs by determining the fields that
characterize each component of the galaxy. We now aim to combine these fields in an appropriate
way. We cannot simply average the fields of the two components, since each component is
characterized by a di↵erent luminosity (or mass) volume density, which means that their
contributions should be weighted accordingly. Therefore, we need to weight the fields (�z, v2f,
vf) of each component by its actual contribution. Two types of weights can be identified:

• mass weight. This weight corresponds to the dynamical field, which is involved in the
dynamics of the system. In this case, we multiply each field by the mass volume density ⇢
of each component.

• luminosity weight. This weight corresponds to the field that we observe directly. In this
case, we multiply each field by the luminosity volume density j = ⇢

M/L of each component.

In full generality, we consider models composed of N di↵erent stellar density distributions
⇢?,i(R, z) of mass M?,i (Caravita et al. 2021). Then, indicating with

P
i the sums over the N

stellar components, the total stellar density ⇢? and the total stellar mass M? of the system are
given respectively by:

⇢? =
X

i

⇢?,i , M? =
X

i

M?,i . (3.39)

3.5.1 Mass-weighted (dynamical) fields

With the help of the previously introduced concepts, we define the dynamical fields as (Caravita
et al. 2021):
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Things work di↵erently for �2f. Specifically, we cannot simply compute the weighted average

of �2f,i because, as seen from Equation (3.38), �2f is derived from a combination of v2f and vf
2.

Therefore, we have (�2f,i = v2f,i
� vf

2
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3.5.2 Luminosity-weighted (observed) fields

Analogously, we define the observed fields as:
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and:
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3.5.3 Conversion to astrophysical units

In order to go back to astrophysical units we have to multiply the results by the proper
combination of the scale values contained in Table 2.3. In particular we have:

density =) ⇢phys = ⇢
Ltot

r3e

M�

kpc3
,

velocity dispersion =) �
2

z, phys = �
2

z
GLtot

re
(km/s)2 ,

=) �
2

f, phys = �
2

f
GLtot

re
(km/s)2 ,

=) �
2

phys = �
2
GLtot

re
(km/s)2 ,

mean square velocity =) v2f, phys
= v2f

GLtot

re
(km/s)2 ,

velocity =) vf, phys = vf

r
GLtot

re
km/s , (3.44)

where the gravitational constant is expressed in astrophysical units as G = 4.301 10�3 km2 pc
M�1

� s�2.
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Chapter 4

Analysis and results for NGC1366

In this chapter we present and describe the numerical code used to model NGC1366 and its
results. In Section 4.1 we present the software used in our code and our initial assumptions. In
Section 4.2 we reproduce the luminosity surface density of the galaxy. In Section 4.3 we solve the

first JE, obtaining �z. In Section 4.4 we solve the second JE, obtaining
p
�� and

q
v2f. Then,

we obtain vf and �f for five pairs of the Satoh parameters. In Section 4.5 we compare models
and integral-field spectroscopic observations. In Section 4.6 we compare models and long-slit
spectroscopic observations.

4.1 Numerical code and initial assumption

In this thesis we use Wolfram Mathematica1 for the implementation of the numerical calculations.
We choose this program among the others because of its versatile environment. Complex
mathematical models can be e�ciently implemented, allowing for both analytical and numerical
approaches. Additionally, Mathematica produces high-quality plots, which are essential for
presenting our results.

Regarding the numerical code, we consider NGC1366 as a multicomponent system composed
of a bulge, described by Equation (2.5), and a disk, described by Equation (2.10). In principle,
incorporating a DM halo poses no issues. However, we opt not to include it in this analysis,
as we want to begin with a more simplified model. Therefore, in the following the total mass
volume density of the galaxy is given by:

⇢tot := ⇢b + ⇢d . (4.1)

4.2 Luminosity surface density

Before solving the JEs, we reproduce the luminosity surface density of the galaxy to double check
if the photometric decomposition and conversion procedure from observational to astrophysiclal
units have been performed correctly. To do this, we find the luminosity volume density of each
component, sum them, project the sum along the LOS, go back to the observational units, and
finally compare the result with the observations. The luminosity volume density of the bulge is
given by Equation (3.6) multiplied by the M/L of the bulge, while the luminosity volume density

1Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing

that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series

analysis, NLP, optimization, plotting functions and various types of data, implementation of algorithms, creation

of user interfaces, and interfacing with programs written in other programming languages.
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of the disk is given by Equation (3.11) multiplied by the M/L of the disk. To check if this has
been done properly, we compare the values of the mass obtained from the luminosity from the
2D integration of the surface-brightness radial profile with the 3D integration of the luminosity
volume density of each component. This value has to be multiplied by the corresponding value
of M/L for bulge and disk to reproduce the e↵ective mass of the component. Therefore, we get:

Mi(from 2D integration) =

Z
4⇡

0

Ii d⌦ (M/L)i =
2⇡qini

b
2ni
ni

�(2ni)Ie,ir
2

e,i (M/L)i ,

Mi(from 3D integration) =

Z 1

0

Z 1

0

4⇡R ⇢i dR dz (M/L)i , (4.2)

where i = {b, d} depending on whether we consider the bulge or disk, respectively. The results
are consistent.

Figure 4.1 shows the luminosity volume density distribution of the bulge jb, disk jd, and
galaxy jtot. The units are in kpc and L� kpc�3 for lengths and luminosity volume densities,
respectively. All the three distributions have their maximum at the origin and decrease outwards.
We choose to plot only the first quadrant because of the axisymmetric nature of our model. The
luminosity volume density of the galaxy shows a peculiar disky shape (Figure 4.1c). In fact, the
disk is responsible for the elongated shape along the R-axis, while the bulge is associated to the
round shape along the z-axis.

Then, we project the luminosity volume density onto the sky plane. We indicate with ~n
the LOS directed from the observer to the galaxy, and with l the integration path along the
LOS. Then, the projection of the luminosity volume density along the LOS of each component
i = {b,d} is given by (Caravita et al. 2021):

Ii =

Z 1

�1
ji dl . (4.3)

Let us consider a Cartesian coordinates system as described in Section 2.3. In the case of an edge-
on projection, the LOS is aligned with the x-axis so that ~n = �~ex =) dl = dx. Furthermore,
the projection plane coincides with the (y, z) plane, and (cos f, sin f) = (x/R, y/R), where
R =

p
x2 + y2. Therefore, changing variables from x to R, we have dl = dx = d(

p
R2 � y2) =

Rp
R2�y2

dR. Using the symmetry of the system with respect to the origin, we get:

Ii = 2

Z 1

0

ji
Rp

R2 � y2
dR . (4.4)

Figure 4.2 shows the luminosity surface density distribution onto the sky plane for the bulge Ib,
disk Id, and galaxy Itot. The units are in kpc and L� kpc�2 for lengths and luminosity surface
densities, respectively. The trends of the distributions are similar to those reported in Figure
4.1, with a maximum in the origin and decreasing outwards.

Finally, we move from astrophysical to observational units to compare our results with
observations. We use Equation (2.14) to convert lengths from kpc to arcsec, and Equation
(2.11) to convert luminosity surface densities into surface brightnesses from L� kpc�2 to mag
arcsec�2. Furthermore, in order to compare model and observations in a more e�cient way, we
use a contour plot so that each region corresponds to a range of surface brightness (Figure 4.3a).
Moreover, we extract the surface brightness profile along the major axis of the galaxy (Figure
4.3b).

We compare the photometric and kinematic data of NGC1366 presented in Section 2.2 with
the model predictions. We did not convolve the model for the PSF before comparing it to
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Figure 4.1: Luminosity volume density distribution of the bulge (qb = 0.80, Panel (a)), disk
(qb = 0.41, Panel (b)), and galaxy (Panel (c)) for NGC1366. Black solid lines [ ] mark the
curves of luminosity volume isodensity. They are spaced by 2 · 103 L� kpc�3 from 0 to 2 · 104 L�
kpc�3 for the bulge, and by 1 · 106 L� kpc�3 from 0 to 1 · 107 L� kpc�3 for the disk and galaxy.

observations. We start with the surface brightness distribution of the galaxy. Comparing our
modelled brightness distributions (Figure 4.3a) with the observed ones (left and middle panels
of Figure 2.2), we see they are consistent with each other. The mag arcsec�2 range is almost the
same between the two figures, going from a minimum of ' 15 mag arcsec�2 to a maximum of
' 32 mag arcsec�2. Moreover, the shape of the isophotes is very similar becoming more and
more elongated as we move outwards. As far as the surface-brightness radial profile along the
major axis of the galaxy concerns and comparing the model (Figure 4.3b) with observations
(Figure 2.3), we see that the curves are consistent with each other. The red dotted line has
the zero point at ' 17 mag arcsec�2 in both the modelled and observed profiles. In contrast,
the blue dotted line has the zero point at a slightly lower value in the model (' 14.75 mag
arcsec�2) compared to observations (' 15.25 mag arcsec�2), which translates in a higher overall
luminosity in the inner regions for the modelled profile. This is due to the fact that while the
deprojected luminosity volume density of the disk is exactly reproduced by a Bessel function, as
demonstrated in Equation (3.11), the deprojected luminosity volume density of the disk was
described with the approximated formula in Equation (3.6), which is systematically higher than
the numerical value of small radii.
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Figure 4.2: Luminosity surface density distribution of the bulge (qb = 0.80, Panel (a)), disk
(qb = 0.41, Panel (b)), and galaxy (Panel (c)) for NGC1366. Black solid lines [ ] mark the
curves of luminosity surface isodensity. They are spaced by 4 · 103 L� kpc�2 from 0 to 4 · 104 L�
kpc�2 for the bulge, and by 5 · 106 L� kpc�2 from 0 to 5 · 107 L� kpc�2 for the disk and galaxy.

4.3 Solution of the first Jeans equation: calculation of �z

Now we move to the solution of the first JE. The square vertical velocity dispersion �2z of each
component is expressed by Equation (3.36). Thus, �2z,b and �2z,d can be combined to obtain the

total �2z of the galaxy. As shown in Section 3.5, we weight the velocity dispersion map both
by luminosity to have �2z ,lw

and mass to have �2z,mw expressed by Equations (3.42) and (3.40),
respectively.

Figure 4.4 shows the result of our model giving the maps of �z,b and �z,d in the total
potential, �z ,lw and �z,mw in astrophysical units, �z ,lw in observational units, and the di↵erence
�
2

z ,lw
� �

2
z,mw. In all the aforementioned maps there is a minimum at the origin. This central

depression is a common feature of the R
1/m-law models, as demonstrated by Ciotti (1991): the

central value of the velocity dispersion vanishes for any m > 1 and, as a consequence, near the
center the velocity dispersion can only increase outwards. In addition, a so-called �-drop due to
the presence of young stars in a thin and kinematically cool disc can be observed (Portaluri et al.
2017). The maximum of �z is located in a sector which is almost circular for the bulge (Figure
4.4a) and it is elongated toward the z-axis for the disk (Figures 4.4b) and for the weighted fields
(Figure 4.4c and 4.4d). The vertical elongation of �z,d is consistent with what has been shown
in other disk models (De Deo et al. 2024). The intensity of the maximum ranges from ' 90
km s�1 for �z,b to ' 150 km s�1 for �z,d and it is located in a range between ' 0.1 kpc and
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Figure 4.3: Model surface brightness distribution (Panel (a)) and radial profile (Panel (b)) along
the major axis of the galaxy. The blue dashed line [- -], red dotted line [· ·], and green solid line
[ ] correspond to contribution of the bulge, disk, and their sum, respectively.

' 0.15 kpc from the center. Then, the value of �z decreases monotonically in the outskirts
for all cases, consistently with Ciotti (1991). Figure 4.4e shows �z ,lw in arcsec instead of kpc.
Furthermore, Figure 4.4f shows that the percentage di↵erence between �z ,lw and �z,mw is quite
small, reaching a maximum of ' 3.5% at a distance of 0.7 kpc from the center along the z-axis.
This can be explained by the fact that, when performing the mass-weighting of the field, the
density of each component is divided by its M/L. Since (M/L)d > 1 and (M/L)b > 1, the
bulge and disk contributions to the mass-weighted mean is smaller than the contributions to
the luminosity-weighted mean, so that �z ,lw > �z,mw everywhere. Moreover, the figure shows a
larger di↵erence on the z-axis than on the R-axis. This is justified by the shape of the �z,d map,
which clearly shows a more elongated figure in the vertical direction.

4.4 Solution of the second Jeans equation

Let us discuss the solution of the second JE. From Equation (3.27) ��, the di↵erence between
the mean square azimuthal velocity and the vertical velocity dispersion, is obtained for both the
bulge and disk. ��,b and ��,d are then weighted by luminosity and mass, as shown in Section
3.5. In this way �� ,lw and ��,mw are obtained by Equations (3.42) and (3.40), respectively.

The results are shown in Section 4.4.1. Then, the mean square azimuthal velocity v2f of each

component is obtained from �� = v2f � �
2
z . v

2
f,b

and v2f,d
are then combined to obtain v2f ,lw

and

v2f,mw
by Equations (3.42) and (3.40), respectively. The results are shown in Section 4.4.2. Last

but not least, we focus on the mean azimuthal velocity vf and azimuthal velocity dispersion
�f. As discussed in Section 3.4.2, in order to obtain vf and �f we need a method to break the
degeneracy between ordered and random motions. This method was discussed in Section 3.4.3.
This procedure is performed for each component of the galaxy. Once the bulge and disk Satoh
parameters are fixed, we proceed further. In our numerical code we analyze each of the pairs of
Satoh parameters listed in Section 3.4.3. For each component, vf is obtained from Equation
(3.37) and �f from Equation (3.38). Finally, the fields of each component are combined to obtain
the total field of the system, as shown in Section 3.5. Fields can be weighted both by luminosity
and by mass. The expression of vf ,lw

is given by Equation (3.42), while vf,mw
is given by

Equation (3.40). The results for each pair of the Satoh parameters are shown in Section 4.4.3.
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Figure 4.4: �z map of NGC1366 from the first JE. Panel (a): �z map of the bulge in the total
potential. Panel (b): �z map of the disk in the total potential. Panel (c): map of �z of the
galaxy weighted by luminosity. Panel (d): map of �z of the galaxy weighted by mass. Panel (e):
map of �z of the galaxy weighted by luminosity, where lengths are expressed in arcsec. Panel
(f): map of the percentage di↵erence between the luminosity-weighted and mass-weighted �z.
Black solid lines [ ] in Panels (a)-(b)-(d) and in Panels (c)-(e) mark the curve of mass and
luminosity volume isodensity, respectively. They are spaced by 1.18 · 106 L� (or M�) kpc�3

from 0 to 1.18 · 107 L� (or M�) kpc�3.

On the other hand, �2f,lw and �2f,mw are represented by Equations (3.43) and (3.41), respectively.
The results for each pair of the Satoh parameters are presented in Section 4.4.4.
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4.4.1 Calculation of
p
��

Figure 4.5 shows the results of our model for the square root of the di↵erence between the
mean square azimuthal velocity and the vertical velocity dispersion

p
��, giving the maps ofp

��,b and
p
��,d in the total potential,

p
�� ,lw and

p
��,mw in astrophysical units,

p
�� ,lw

in observational units, and the di↵erence
p
�� ,lw�

p
��,mw. In all studied situations,

p
�� = 0

km s�1 along the z-axis and the maximum lies along the R-axis. Concerning the bulge, the
peak is located along the R-axis at ' 0.3 kpc and reaches ' 60 km s�1. Its distribution has
a roundish shape (Figure 4.5a). On the other hand, the peak for the disk is placed at ' 0.6
kpc, reaches ' 100 km s�1, and is more smeared and elongated towards the R-axis (Figure
4.5b). Going to the luminosity and mass weights (Figure 4.5c and 4.5d, respectively), the overall
shape is reminiscent of the previous ones, but with a more elongated maximum toward the
R-axis, and a general increase of the values of

p
�� at large R and small z. Figure 4.5e showsp

�� ,lw in arcsec instead of kpc. Finally, Figure 4.5f shows the percentage di↵erence between

the luminosity- and the mass-weighted field. Once again
p
�� ,lw >

p
��,mw everywhere. The

position of the peak at ' 0.6 kpc is justified by the shape of the disk maximum, as discussed for
Figure 4.4f. The percentage di↵erence is very small, ranging from 0 to ' 5.5%.

4.4.2 Calculation of
q

v2f

Figure 4.6 shows the results of our model for the square root of the mean square azimuthal

velocity
q

v2f, giving the maps of
q

v2f,b
and

q
v2f,d

in the total potential,
q
v2f ,lw

and
q
v2f,mw

in astrophysical units,
q
v2f ,lw

in observational units, and the di↵erence
q

v2f ,lw
�
q
v2f,mw

. Both

the bulge (Figure 4.6a) and disk (Figure 4.6b) show an o↵-centered peak near the origin, and

spread mostly along the R-axis. The maximum value of
q
v2f for the bulge (' 110 km s�1)

is smaller than that of the disk (' 160 km s�1). They are located both at ' 0.2 kpc. The
horizontal elongation is greater than the vertical elongation in both cases, but especially for the
disk component. The combination of the fields of the components gives rise to two maxima
for both the luminosity- (Figure 4.6c) and mass-weighted (Figure 4.6d) fields. These peaks are
not well-separated, and they blend with each other. However, they are located at a distance of

' 0.2 kpc and ' 1 kpc from the center along the R-axis. Figure 4.6e shows
q
v2f ,lw

in arcsec

instead of kpc. Finally, Figure 4.6f shows the percentage di↵erence between the luminosity-

and mass-weighted field.
q
v2f ,lw

>

q
v2f,mw

everywhere. Once again the position of the peak

at ' 0.6 kpc is justified by the shape of the disk maximum, as discussed for Figure 4.4f. The
percentage di↵erence is very small, ranging from 0 to ' 4%.

4.4.3 Calculation of vf

In the following we consider our five di↵erent models characterized by five di↵erent pairs of
Satoh parameters, as defined in Section 3.4.3: the non-rotating galaxy model (kb = 0, kd = 0),
non-rotating bulge model (kb = 0, kd = 1), maximally counter-rotating model (kb = �1, kd = 1),
mildly counter-rotating model (kb = �1/2, kd = 1/2), and moderately counter-rotating model
(kb = �3/4, kd = 3/4).

Figure 4.7 shows the results for the non-rotating galaxy model. For both the luminosity-
(Figure 4.7a) and mass-weighted (Figure 4.7b) fields, it is vf = 0 km s�1 everywhere, as it is
expected since we did not impose any rotation to our system. The same is true for both the
bulge and disk, separately.
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Figure 4.5:
p
�� map of NGC1366 from the second JE. Panel (a):

p
�� map of the bulge in

the total potential. Panel (b):
p
�� map of the disk in the total potential. Panel (c): map ofp

�� of the galaxy weighted by luminosity. Panel (d): map of
p
�� of the galaxy weighted by

mass. Panel (e): map of
p
�� of the galaxy weighted by luminosity, where lengths are expressed

in arcsec. Panel (f): map of the percentage di↵erence between the luminosity-weighted and
mass-weighted

p
��. Black solid lines [ ] in Panels (a)-(b)-(d) and in Panels (c)-(e) mark the

curve of mass and luminosity volume isodensity, respectively. They are spaced by 1.18 · 106 L�
(or M�) kpc�3 from 0 to 1.18 · 107 L� (or M�) kpc�3.

Figure 4.8 shows the results for the non-rotating bulge model. Since the bulge does not
rotate (kb = 0), it is vf,b = 0 km s�1 everywhere (Figure 4.8a). On the other hand, the map
of vf,d (Figure 4.8b) is exactly the same as that of ��,d shown in Figure 4.5b. In fact, from
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Figure 4.6: As in Figure 4.5 but for
q
v2f.

Equation (3.37) it is vf,d = ��,d since kd = 1. Therefore, the disk shows no rotation along the
z-axis and a maximum rotation at R ' 0.6 kpc along the R-axis, where it reaches a value of
' 100 km s�1. The combination of the field components shows a sort of vertical region of radius
0.3 kpc and parallel to the z-axis, where there is no or little rotation. The value of vf increases
for large R and small z, with a maximum of ' 80 km s�1 at R ' 1.5 kpc. The luminosity-
(Figure 4.8c) and mass-weighted vf (Figure 4.8d) show a very similar behaviour. Figure 4.8e
shows vf ,lw

in arcsec instead of kpc for a better comparison with observations.
Figures 4.9, 4.10, and 4.11 show the results for the maximally counter-rotating, mildly counter-

rotating, and moderately counter-rotating models, respectively. For all the single components
case, the shapes resemble the �� simulations (Figure 4.5a and 4.5b), but the values are rescaled
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Figure 4.7: vf map of NGC1366 from the second JE for the non-rotating galaxy model (kb = 0,
kd = 0). Panel (a): map of vf of the galaxy weighted by luminosity. Panel (b): map of vf of the
galaxy weighted by mass. Black solid lines [ ] mark the curve of luminosity (or mass) volume
isodensity. They are spaced by 1.18 · 106 L� (or M�) kpc�3 from 0 to 1.18 · 107 L� (or M�)
kpc�3.

and signs are changed based on the value of k. For k = 1 the values range is exactly the same,
as shown when dealing with the non-rotating bulge model; for k = 1/2 the values are halved;
for k = 3/4 the values are three-quartered; if there is the minus sign, all values are inverted.
Nevertheless, a di↵erence arises when we combine these di↵erent maps, because in this case the
two components are counter-rotating. We get the presence of a negative and a positive peak
located along the R-axis at ' 0.2 kpc and at ' 1.5 kpc, respectively, for both the luminosity-
and mass-weighted fields of the maximally counter-rotating (Figures 4.9c and 4.9d), mildly
counter-rotating (Figures 4.10c and 4.10d), and moderately counter-rotating (Figures 4.11c and
4.11d) models. In all these cases, there is no rotation along the z-axis. The maximum velocity
excursion is �50 km s�1 . vf ,lw

' vf,mw
. 75 km s�1 for the maximally counter-rotating

model. The range is then halved for the mildly counter-rotating case, and three-quartered for
the moderately counter-rotating case. Finally, Figures 4.9e, 4.10e and 4.11e show vf ,lw

in arcsec
instead of kpc for the maximally, mildly, and moderately counter-rotating models, respectively.
These plots can help to make comparison between the observed and modeled values.

4.4.4 Calculation of �f

Figure 4.12 shows the result for �f in the non-rotating galaxy model. The plots for �f,lw (Figure

4.12a) and �f,mw (Figure 4.12b) are exactly the same as those for
q
v2f ,lw

(Figure 4.6c) and
q
v2f,mw

(Figure 4.6d), respectively. In fact, if we refer to Equation (3.38), k = 0 =) �f = v2f.

Therefore, all the considerations made when discussing Figure 4.6 are true also for this case,
as the presence of the two peaks lying along the R-axis at R ' 0.2 kpc and R ' 1 kpc which
blend one another. Furthermore, the image shows a central �-drop, which is a common feature
of the � profiles (Ciotti 1991; Portaluri et al. 2017). Figure 4.12 reports just the luminosity- and
the mass-weighted fields, since for �f,b, �f,d, and �f,lw in observational units we can refer to
Figure 4.6a, 4.6b, and 4.6e, respectively. We can apply the same considerations made earlier

when discussing about
q
v2f.

Figure 4.13 shows the result for �f in the non-rotating bulge model. �f,b and �f,d are shown
in Figures 4.8a and 4.8b, respectively. �f,b = 0 km s�1 in the center; then, it increases outwards,
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Figure 4.8: vf map of NGC1366 from the second JE for the non-rotating bulge model (kb = 0,
kd = 1). Panel (a): vf map of the bulge in the total potential. Panel (b): vf map of the disk in
the total potential. Panel (c): map of vf of the galaxy weighted by luminosity. Panel (d): map
of vf of the galaxy weighted by mass. Panel (e): map of vf of the galaxy weighted by luminosity,
where lengths are expressed in arcsec. Black solid lines [ ] in Panels (a)-(b)-(d) and in Panels
(c)-(e) mark the curve of mass and luminosity volume isodensity, respectively. They are spaced
by 1.18 · 106 L� (or M�) kpc�3 from 0 to 1.18 · 107 L� (or M�) kpc�3.

reaching a peak at . 0.4 kpc and it decreases monotonically in the outskirts. The peak is not
symmetric with respect to the origin, but is more extended toward the R-axis. The maximum

value is �f,b ' 110 km s�1. Since kb = 0, this plot is similar to the one for
q
v2f,b

shown in
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Figure 4.9: As in figure 4.8 but for the maximally counter-rotating model (kb = �1, kd = 1).

Figure 4.6a. The disk has a similar behaviour with a central �-drop, a maximum in a sector
at ' 0.2 kpc from the center, and a dip in the outskirts. In this case the maximum is more
elongated in the z direction and reaches �f,d ' 160 km s�1. Moreover, the points located at
high R and z are characterized by smaller value of �f,d with respect to the bulge model. Figure
4.8b, which shows �f,d with kd = 1, is the same as Figure 4.4b, which shows �z,d. In fact,
k = 1 =) �f = �z from Equation (3.38). The luminosity- and mass- weighted fields are
shown in Figures 4.13c and 4.13d, respectively. A central � depression is present in both cases.
Moreover, a maximum region of irregular shape is concentrated along the R-axis at ' 0.3 kpc.
It goes up to a value of �f,lw ' �f,mw ' 110 km s�1. Large R and z are characterized by low
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Figure 4.10: As in Figure 4.8 but for the mildly counter-rotating model (kb = �1/2, kd = 1/2).

values of �f,lw and �f,mw. While the combination of vf,b and vf,d is a fairly straightforward
weighted average and we can intuitively figure out the final result, this is not so intuitive in the
case of �f, as the fields combine in a less linear way (Equations 3.43 and 3.41). Figure 4.13e
shows �f,lw for the non-rotating bulge model in arcsec instead of kpc for better comparison with
observations.

Figure 4.14 shows the result for �f for the maximally counter-rotating model. This is the first
case of �f where counter-rotation is present. Since kb/d = |1|, it is �f,b = �z,b and �f,d = �z,d,
which are shown in Figures 4.4a and 4.4b, respectively. Therefore, the considerations made in
Section 4.3 can be extended to this case. Things change when �f,b and �f,d are combined. �f,lw
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Figure 4.11: As in Figure 4.8 but for the moderately counter-rotating model (kb = �3/4,
kd = 3/4).

and �f,mw are shown in Figures 4.14c and 4.14d, respectively. Two maxima are present, both
surrounding the R-axis. They are located at R ' 0.2 kpc and R ' 0.5 kpc. Their boundaries
are not well defined, and the two mix in some places. The maximum vertical elongation of the
peak is z ' 0.5 kpc. �f,lw and �f,mw show a similar behaviour, but are characterized by slightly
di↵erent values of �f, which ranges from 0 to ' 105 km s�1 for the bulge and from 0 to ' 100
km s�1 for the disk. Figure 4.14e shows �f,lw for the maximally counter-rotating model in arcsec
instead of kpc for better comparison with observations.

Figure 4.15 shows the result for �f for the mildly counter-rotating model. This is the first case
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Figure 4.12: �f map of NGC1366 from the second JE for the non-rotating galaxy model (kb = 0,
kd = 0). Panel (a): map of �f of the galaxy weighted by luminosity. Panel (b): map of �f of the
galaxy weighted by mass. Black solid lines [ ] mark the curve of luminosity (or mass) volume
isodensity. They are spaced by 1.18 · 106 L� (or M�) kpc�3 from 0 to 1.18 · 107 L� (or M�)
kpc�3.

in which �f is a non-trivial combination of v2f and �z. Figures 4.15a and 4.15b show �f,b and �f,d,
respectively. Both maps show the characteristic central �-drop. Then, a maximum is displayed
in an almost circular sector at ' 0.2 kpc from the center. The width of the bulge maximum
is slightly wider than disk maximum. Furthermore, �f,b . 105 km s�1 while �f,b . 160 km
s�1. �f,lw (Figure 4.15c) and �f,mw (Figure 4.15d) are lower in a region which surrounds the
R-axis, and which extends widely toward the R direction. Two peaks are present and are
located at R ' 0.2 kpc and R ' 0.6 kpc. It is �f,lw ' �f,lw . 105 km s�1. The outskirts are
characterized by larger values of �f,lw and �f,mw with respect to the maximally counter-rotating
model. Moreover, the region of the maxima is more extended and the boundaries of the peaks
are less pronounced with respect to the maximally counter-rotating model. Figure 4.15e shows
�f,lw for the mildly counter-rotating model in arcsec instead of kpc for better comparison with
observations.

Figure 4.16 shows the result for �f in the moderately counter-rotating model. �f,b and
�f,d are shown in Figures 4.11a and 4.11b, respectively, and �f,lw and �f,mw are shown in
Figures 4.11c and 4.11d, respectively. This model is in between the maximally and mildly
counter-rotating models: the boundaries of the maxima are more blended with respect to the
maximally counter-rotating model, but less pronounced than the mildly counter-rotating model.
Moreover, both the �f peak values and �f values far away from the origin are in between the two
previously analyzed models. Finally, Figure 4.16e shows �f,lw for the moderately counter-rotating
model in arcsec instead of kpc for better comparison with observations.

4.5 Comparison between models and integral-field spectroscopic
observations

We now proceed with a comparison between the observed and modeled fields. While the observed
profiles show v and � along the LOS, our models compute vf and �f, meaning the azimuthal
components of the fields. For the velocity, this does not represent a limitation. In fact, since
the galaxy is seen edge on and since we assume that vR = vz = 0 km s�1, we right away get
that vf = vLOS. For the velocity dispersion, the case is di↵erent. In this case, �R = �z is not
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Figure 4.13: �f map of NGC1366 from the second JE for the non-rotating bulge model (kb = 0,
kd = 1). Panel (a): �f map of the bulge in the total potential. Panel (b): �f map of the disk
in the total potential. Panel (c): map of �f of the galaxy weighted by luminosity. Panel (d):
map of �f of the galaxy weighted by mass. Panel (e): map of �f of the galaxy weighted by
luminosity, where lengths are expressed in arcsec. Black solid lines [ ] in Panels (a)-(b)-(d) and
in Panels (c)-(e) mark the curve of mass and luminosity volume isodensity, respectively. They
are spaced by 1.18 · 106 L� (or M�) kpc�3 from 0 to 1.18 · 107 L� (or M�) kpc�3.

necessarily zero, and this implies that in general �f 6= �LOS. The comparison is yet useful to
have an idea of the general behaviour of the galaxy.

Let us start with vLOS. integral-field spectroscopic observations are shown in the upper left
panel of Figure 2.6. We compare them with the maps of the non-rotating bulge model (Figure
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Figure 4.14: As in Figure 4.13 but for the maximally counter-rotating model (kb = �1, kd = 1).

4.8e), maximally counter-rotating model (Figure 4.9e), mildly counter-rotating model (Figure
4.10e), and moderately counter-rotating model (Figure 4.11e). The non-rotating bulge model is
immediately ruled out, because it does not reproduce the inner peak of the vLOS. On the other
hand, all the counter-rotating cases correctly reproduce the counter-rotation of the system at a
certain radius, and the two positive/negative velocity peaks. However, all the counter-rotating
models have critical issues. Specifically, the velocity values fail to match the observed data for
all these cases. In fact, the maximum modeled range is that of the maximally counter-rotating
model, for which �50 km s�1 . vf ,lw

. 75 km s�1. Moreover, the reduction of k leads to a
reduction of the velocity range proportional to k itself. On the other hand, the observed velocity
range is �75 km s�1 . vLOS . 100 km s�1.
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Figure 4.15: As in Figure 4.13 but for the mildly counter-rotating model (kb = �1/2, kd = 1/2).

Let us move to �LOS. integral-field spectroscopic observations are shown in the lower left
panel of Figure 2.6. We compare them with the maps of the non-rotating bulge model (Figure
4.13e), maximally counter-rotating model (Figure 4.14e), mildly counter-rotating model (Figure
4.15e), and moderately counter-rotating model (Figure 4.16e). The non-rotating bulge model is
immediately ruled out, because it does not reproduce the double peak feature of the observed
�LOS. On the other hand, all the counter-rotating cases correctly reproduce the presence of
the two peaks located at di↵erent radii. However, all the counter-rotating models show some
problems. For example, the values of �f are not consistent with those observed in any of these
cases. Furthermore, varying the Satoh parameters does not significantly change the �f values.
Moreover, for the maximally counter-rotating model, the position of the two peaks in the model
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Figure 4.16: As in Figure 4.13 but for the moderately counter-rotating model (kb = �3/4,
kd = 3/4).

is too close with respect to the observations. Adopting the mildly counter-rotating model both
moves the �f peak outward and expands it. However, the maximally counter-rotating model
predicts the decrease of �f in the outskirts that we observe in the integral-field spectroscopic
images, while in the mildly counter-rotating case the �f remains high even far from the center.
Lastly, while the model exhibits a negative peak at the origin, this feature is absent in the
observational data.

All this leads us to believe that:

• the larger values of both �LOS and vLOS are due to the fact that we should account for a
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DM halo, which is not yet included in our model;

• the discrepancy in the central �LOS values between observations and models could be
partially due to the fact that we have not yet projected the fields along the LOS;

• the mismatch between the position of the peaks in the observations and models suggests
that we likely need to consider a generalized Satoh parameter, which depends on both R

and z.

4.6 Comparison between models and long-slit spectroscopic
observations

Since long-slit spectroscopic observations are available, we extract the radial profiles of modelled
vf and �f along the major axis of the galaxy. Here, we restrict to counter-rotating models only.
In the following, we consider the maximally, mildly, and moderately counter-rotating models.

Figure 4.17 shows the vf radial profiles extracted along the major axis (z = 0) of the
galaxy. Each of the three columns is characterized by di↵erent values of the Satoh parameter.
In particular, from left to right we encounter the maximally, mildly, and moderately counter-
rotating model, respectively. The four rows show, from top to bottom, the vf radial profile of
the bulge and disk in the total potential, the luminosity- and the mass-weighted radial profiles.
Furthermore, the observational values taken from the bottom panel of Figure 2.4 are shown for
better comparison. We analyze the left-hand side of the observed rotation curve, symmetrizing
the point vector relative to the origin since our model is symmetric about the z-axis.

On the other hand, Figure 4.18 shows the �f radial profiles extracted along the major
axis of the galaxy. Each of the three columns is characterized by di↵erent values of the Satoh
parameter. In particular, from left to right we consider the maximally, mildly, and moderately
counter-rotating model, respectively. The four rows show, from top to bottom, the �f radial
profile of the bulge and disk in the total potential, the luminosity- and mass-weighted radial
profiles. Furthermore, the observational values taken from the top panel of Figure 2.4 are shown
for better comparison. We analyze the left-hand side of the observed velocity dispersion curve,
symmetrizing the point vector relative to the origin since our model is symmetric about the
z-axis.

Since we are observing the equatorial plane of an edge-on system, �f is not the only component
of � that we see, unlike v. In fact, �R and �f are mixed when we observe the equatorial plane.
Therefore, the resulting � will be a combination of the two. Therefore, we can introduce the
square root of the sum of �2f and �

2

R. This can be done for both the luminosity- and mass-
weighted fields. This combination is not really a projection or sum formula, but it can give an
idea of how the fields combine. This new quantity can then be compared to the observed values,
again remembering that for a proper comparison we should project the fields along the LOS.

Figure 4.19 shows the
q
�2f + �

2

R radial profiles extracted along the major axis of the galaxy.

Each of the three rows is characterized by di↵erent values of the Satoh parameter. In particular,
from top to bottom we consider the maximally, mildly, and moderately counter-rotating model,
respectively. The two columns show, from left to right, the luminosity- and mass-weightedq
�2f + �

2

R radial profiles. Furthermore, the observational values taken from the top panel of

Figure 2.4 are shown for better comparison. We analyze the left-hand side of the observed
velocity dispersion curve, symmetrizing the point vector relative to the origin since our model is
symmetric about the z-axis. The peaks in the � profile show a sharp increase. This combination,
with all its limitations, provides a better fit to the observed values.
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Figure 4.17: vf radial profiles along the major axis of NGC1366 for the bulge (first row), disk
(second row), galaxy weighted by luminosity (third row), and galaxy weighted by mass (fourth
row) for the maximally (kb = �1, kd = 1, first column), mildly (kb = �1/2, kd = 1/2, second
column), and moderately (kb = �3/4, kd = 3/4, third column) counter-rotating model. Black
filled circles [l] and blue solid curves [ ] correspond to data from Morelli et al. (2008) and
models, respectively.

As stated in Section 4.5, while the observed profiles show v and � along the LOS, our models
predict vf and �f, meaning the azimuthal components of the fields. This does not represent
a limitation since vR = vz = 0 km s�1 in the velocity case; nevertheless, �f 6= �LOS since in

general �R = �z 6= 0 km s�1. This is why we introduce
q
�2f + �

2

R. Although it does not really

correspond to how the two fields actually combine, its comparison with observational data is
still useful to get a general idea of the strengths and weaknesses of our models.
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Figure 4.18: As in Figure 4.17 but for �f.

The radial profile of vf clearly displays the presence of two peaks, which are the hallmark
of counter-rotation as discussed in Section 1.2 and they are visible in the bottom panel of
Figure 2.4. However, the two peaks in the models are not positioned at the observed distance.
Moreover, the vLOS radial profile is quite di↵erent from the modelled one. It decreases at
small radii, and shows a minimum. Then it does not immediately become positive as in the
model, but it makes a small negative oscillation at R ' 0.7 kpc, and outwards it steeply rises
to reach positive values. The model does not show this central oscillation at all. Thus, the
disk initially seems to corotate with the galaxy. Outwards, it undergoes a transition or settling
phase into counter-rotation between 0.5 and 1 kpc, after which the counter-rotating component
starts to dominate. Furthermore, considering Figures 4.17c, 4.17g, and 4.17k, the moderately
counter-rotating model better reproduces the negative peak at R ' 0.2 kpc, but fails to fit the
points at large R. On the other hand, the maximally counter-rotating model reproduces the
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Figure 4.19:
q
�2f + �

2

R radial profiles along the major axis of NGC1366 for the galaxy weighted

by luminosity (first column), and galaxy weighted by mass (second column) for the maximally
(kb = �1, kd = 1, first row), mildly (kb = �1/2, kd = 1/2, second row), and moderately
(kb = �3/4, kd = 3/4, third row) counter-rotating model. Black filled circles [l] and blue solid
curves [ ] correspond to data from Morelli et al. (2008) and models, respectively.

vLOS increase at large R quite well, but fails to fit the observed data at small radii. This suggests
that we should use a generalized Satoh parameter to reproduce this peculiar behaviour.

The interpretation of
q
�2f + �

2

R is even more complicated than the previous one. Nevertheless,

some interesting insights are deduced from the comparison of models and observations. In all
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three models, the two peaks are present coherently with what shown by observations in the top
panel of Figure 2.4, and their intensity is quite approximated by the model, especially for the
first peak. However, the position of these maxima in the models does not coincide with the
observed one. The decrease of |k| spreads and moves the second peak outwards, but its intensity
decreases despite what happens in the observed case. Therefore, the relative intensity of the
two peaks is better reproduced by the moderately counter-rotating model, whereas the data at
large R are better fitted by the mildly counter-rotating model. In fact, despite the absence of a
DM halo, our model is able to reproduce quite well the observed value at large R. However, the
region examined in the radial profiles is narrower than the area covered by the maps. Specifically,
the radial profiles only account for the inner regions (. 3 kpc), whereas the maps extend up to

' 4.5 kpc. Furthermore, the central depression of
q
�2f + �

2

R can be justified by the fact that

we should project � onto the sky plane in order to make a consistent comparison between the
models and observations.

All this leads us to believe that:

• since both the v and � values are reproduced at large R, as far as the inner regions of the
galaxy (up to . 3 kpc) concern, the DM halo is irrelevant;

• the combination
q
�2f + �

2

R is only a rough estimate of how �f and �R combine. To provide

a consistent comparison we should project the fields along the LOS;

• the fact that we are not able to reproduce the peaks and troughs of the observed � is
due to the fact that we are considering constant Satoh parameters. Therefore, to better
improve our model we should consider a generalized Satoh parameter, which should depend
on both R and z.
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Chapter 5

Discussion and conclusions

In this chapter we summarize the results of our work, and discuss its possible future developments.
In Section 5.1 we summarize the conclusions drawn from the comparison between observations
and models, along with suggestions for possible improvements. In Section 5.2 we outline
prospective directions for extending this work.

5.1 Discussion of the results

In this thesis we provide a tentative dynamical model to describe the stellar counter-rotation
within the edge-on S0 galaxy NGC1366. After presenting the photometric and kinematic data of
NGC1366, we source within the galactic dynamics and stellar hydrodynamics to build our model.
We introduce the CBE and JEs, write them in cylindrical coordinates, and finally solve them for
isotropic axisymmetric systems. We assume the galaxy to be made by a bulge and a disk with
a spheroidal mass distribution and having surface brightness distribution parametrized with a
Sérsic and a Type I Freeman law, respectively. To disentangle random and ordered motions
we use the Satoh decomposition. The Satoh parameters are assumed to be constant. We then
solve the JEs for the NGC1366 structural parameters. We calculate the distribution maps of
the vertical velocity dispersion �z, di↵erence between the mean square azimuthal velocity and
vertical velocity dispersion ��, and mean square azimuthal velocity v2f. We consider five di↵erent
models, characterized by five di↵erent values of the Satoh parameters: the non-rotating galaxy
model (kb = 0, kd = 0), non-rotating bulge model (kb = 0, kd = 1), maximally counter-rotating
model (kb = �1, kd = 1), mildly counter-rotating model (kb = �1/2, kd = 1/2), and moderately
counter-rotating model (kb = �3/4, kd = 3/4). We obtain the distribution maps of the mean
azimuthal velocity vf and azimuthal velocity dispersion �f of each model. We extract the radial
profiles of vf and �f along the major axis of each model. We introduce a combination of �f and
�R to simulate how the di↵erent velocity dispersion components combine. Finally, we compare
observations with the results of our models.

The conclusions drawn from the comparison between observations and models can be
summarized as follows:

1. while vf = vLOS for construction, comparing �LOS with �f requires projecting the model

kinematics field along the LOS. Despite this, analyzing �f and
q
�2f + �

2

R can still provide

valuable insights into the overall strengths and limitations of our modelling method;

2. no model is able to fully fit the galaxy kinematics. In fact, di↵erent regions of the galaxy
are fitted by di↵erent models characterized by di↵erent Satoh parameters. This is most
obvious when looking at the field radial profiles of vf and �f;
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3. while the radial profiles of vLOS and �LOS are well fitted at large radii, the distribution
maps of vf and �f show that the models struggle to reproduce the observed vLOS and
�LOS at these distances. Since the spatial extent of the maps is larger than that of the
radial profiles, this suggests that the DM halo has little influence in the inner regions of
the galaxy (R . 3 kpc) and becomes more significant in the outskirts.

Therefore, the following steps can be taken for further refinement of our model:

1. projection of � along the LOS. In the edge-on configuration, we have for each component i:

�
2

LOS,i = �
2

P,i + V
2

P,i| {z }
V 2
rms,i

�v
2

LOS,i = V
2

rms,i � v
2

LOS,i , (5.1)

from Caravita et al. (2021), where Vrms,i = �
2

P,i + VP,i and:

⌃?,i = 2

Z 1

y

⇢?,iRp
R2 � y2

dR , (5.2)
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y
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2)�2i + y

2
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2

f,i

R
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2

P,i = 2y2
Z 1

y

⇢?,i vf,i
2

R

p
R2 � y2

dR , (5.4)

following Cappellari (2008), with:

⌃? =
X

i

⌃?,i , vLOS =

P
i⌃?,i vLOS,i

⌃?
, V

2

rms =

P
i⌃?,i V

2

rms,i

⌃?
. (5.5)

This approach significantly increases the computational cost of the code, but it allows for
a more robust comparison between the model and observations;

2. adopting a generalized Satoh parameter. As shown by Ciotti & Pellegrini (1996), the
original Satoh decomposition (Satoh 1980) can be generalized to assume k(R, z). We can
start by defining an upper limit k2max(R, z), corresponding to maximally rotating models
with no net velocity dispersion in the azimuthal direction. This is obtained from Equation
(3.37) by imposing �f = 0 everywhere:

k
2

max(R, z) =
�� + �z

��

��=v2f��2
z

=
v2f

��
. (5.6)

In this case, the density flattening is fully supported by the azimuthal velocity vf. Thus,
the following relation must hold:

k
2(R, z)  k

2

max(R, z) . (5.7)

Furthermore, for a given multicomponent system it is also possible to assume a Satoh
decomposition for some components and a generalized decomposition for the others. This
is likely to be the case for NGC1366: the bulge can be modeled with a constant Satoh
parameter, whereas the Satoh parameter for the disk would vary with distance from the
galactic center. This setup allows the disk to corotate with the bulge up to a certain radius,
beyond which the counter-rotation begins to dominate;
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3. addition of a DM halo. A DM halo can be added without much di�culty. Both the total
potential and total density should then be modified as follows:

�tot = �b + �d + �halo , ⇢tot = ⇢b + ⇢d + ⇢halo . (5.8)

The functional form of the DM halo can be chosen among the ones presented in Section
3.3.2. Furthermore, the DM halo parameters can be taken from Mazzei et al. (2019).

5.2 Future perspectives

In our exploratory work we present a simplified dynamical model of NGC1366. In fact, we do not
consider the stellar population properties of the galaxy. To take this into account, the numerical
code Jeans AxiSymmetric Models of galaxies IN Equilibrium 2 (jasmine2, Caravita et al. 2021)
can be used. This code is dedicated to the solution of the Jeans equations in axisymmetric
multicomponent systems. Each stellar component is implicitly described by a two- or three-
integral distribution function, and stellar components can have di↵erent structural (density
profile, flattening, mass, scale length), dynamical (rotation, velocity dispersion anisotropy) and
population (age, metallicity, initial mass function, mass-to-light ratio) properties. In addition,
this code can include the presence of multiple stellar components, a central black hole, and a DM
halo. Since this code is very computationally expensive and time consuming, the two-integral
dynamical model of NGC1366 that we built can be used to calibrate jasmine2.

Moreover, the case of NGC1366 represents a pilot project to fine tune jasmine2 modeling
in order to dissect counter-rotating disk galaxies, derive the stellar population properties of their
kinematically-decoupled components, and finally constrain their formation mechanism. The
application of both kinematic decomposition and dynamical modeling can be very important for
future applications in this direction. Once the dynamical model for NGC1366 has been refined,
a similar procedure can be carried out for other galaxies whose kinematic decoupling is known.
From the fine-tuning of the model through the known counter-rotating galaxies we can build a
powerful method able to predict and study the structure of a vaste number of cases.

Using the kinematic diagnostics by Rubino et al. (2021) we can identify the counter-rotating
disk galaxies in the ATLAS3D (Cappellari et al. 2011), CALIFA (Sánchez et al. 2012), MANGA
(Bundy et al. 2015), and MUSE-based (e.g. Sarzi et al. 2018; Gadotti et al. 2019) surveys.
Then, JASMINE2 models of the selected galaxies can be built to constrain the structural,
dynamical, and population parameters, and derive the formation epoch and timescale of the two
counter-rotating components. Finally, the frequency of strong and weak stellar counter-rotation
in S0 and spiral galaxies can be addressed, looking for relations with the properties of the host
galaxies, and identifying the most common formation mechanism.
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Appendix A

Luminosity of bulge and disk

We derive the total luminosity for the Sérsic and Freeman profiles, which are important in several
parts of our code, especially when converting to astrophysical units.

Let us restrict ourselves to the case of circularized isophotes, taking into account the apparent
flattening q. Being d⌦ the infinitesimal solid angle and ⌦f = r

2
e lf✓f and ⌦g = r

2
e lg✓g two

arbitrary solid angles, we define the integrated luminosity L as:

L =

Z
⌦g

⌦f

I d⌦
d⌦=r2e l dl d✓

= r
2

e

Z lg

lf

Z ✓g

✓f

I l dl d✓ . (A.1)

If we extend this integral to the whole space we get the total luminosity Ltot.

Starting with the bulge, substituting Equation (2.5) Ib(l) = I0e
�bn l

1
n , with l = (

q
R2 + z2

q2b
)/re,

inside Equation (A.1), and extending the integral to the whole space, we get the total luminosity
of the bulge:
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where in (a) we used the change of variables:

s = bnl
1
n =) s

n

bnn
= l =) n

bnn
s
n�1

ds = dl . (A.3)

� is the Euler Gamma function �(z) =
R1
0

t
z�1

e
�t

dt.
For the disk the procedure is analogous. Substituting Equation (2.9) Id(l) = I0e

�l, with

l = (
q

R2 + z2

q2d
)/h, inside Equation (A.1), and extending the integral to the whole space, we get

the total luminosity of the disk:
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Note that Equation (A.4) can be obtained from Equation (A.2) by substituting h = he
b1

and

n = 1, being aware that �(2) = 1 and I0 = Iee
bn . Therefore, we will refer just to Equation (A.2),

which we rewrite:

L =
2⇡qbn

b2nn
�(2n)Ier

2

e . (A.5)
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Appendix B

Abel integration for an edge-on
spheroidal system

We derive the Abel integration for an edge-on spheroidal system.
Let us consider a spheroidal system of luminosity surface density I and luminosity volume

density j seen edge on. Let us refer to Figure B.1 and define a Cartesian coordinate system
with the origin in the center of the system, x being parallel to the LOS and pointing toward
the observer, z being the symmetry axis of the system and pointing upward, and y being
perpendicular to x and z so that (x, y, z) forms a right-handed system. Let q be the intrinsic

flattening of the system. Let us consider a point P located at a distance l =
q

R2 + z2

q2 from

the center of the system, where we defined R
2 = x

2 + y
2. Then, P appears to be projected in a

point P 0 onto the sky plane, which is located at a distance l
0 =

q
R02 + z2

q2 from the center of

the system. Let us call s the distance PP 0, and ds the infinitesimal displacement along the LOS.
Then, I and j are related by the infinitesimal equation:

dI = jds , (B.1)

which, once integrated, writes:

I =

Z 1

�1
jds

(a)

= 2

Z 1

0

jds , (B.2)

where in (a) we used the fact that the system is symmetric with respect to the sky plane. Then,
since z does not vary being the system seen edge on, we have:
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with s = 0 =) R = R
0, and s = 1 =) R = 1. Then, doing the change of coordinates from

s to R inside Equation (B.2), we get:

I = 2

Z 1
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j

Rp
R2 �R02

dR . (B.4)

This equation can be inverted with an Abel integration to go from I to j. In particular, we have:

j = � 1

⇡

Z 1

R

dI

dR0
dR

0
p
R02 �R2

. (B.5)
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Figure B.1: Scheme of the Abel integration of an edge-on spheroidal system. Left panel: section
of the y = 0 plane. The black dashed line [- -] represents the LOS. Right panel: section of the
equatorial z = 0 plane. The black dotted line [· ·] represents the projection of the LOS onto the
equatorial plane.

We now want to go back to spheroidal coordinates l and l
0. To the first term in Equation

(B.5) we can apply the chain rule:
dI

dR
=

dI

dl

dl

dR
. (B.6)

Moreover, substituting back l and l
0 with Equation (B.3), we finally obtain:

j = � 1

⇡

Z 1

l

@I

@l0
dl

0
p
l02 � l2

. (B.7)
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Appendix C

Collisionless Boltzmann equation

We derive the collisionless Boltzmann equation (CBE). For a complete overview on the topic see
the books by Binney & Tremaine (1987, 2008) and Ciotti (2021) among the others. We refer
more closely to Binney & Tremaine (2008) for our discussion.

Let us consider a collisionless system. Then, we can define the distribution function (DF) f
such that f(~x,~v, t)d3~xd3~v is the probability of finding a randomly chosen star at time t with
position in between ~x and ~x+ d~x and velocity in between ~v and ~v + d~v. This probability is the
same for all stars in the system, since we assume that all stars are identical. Therefore, f is
normalized such that: Z

R6
f(~x,~v, t)d3~xd3~v = 1 , (C.1)

where the integral is over the all phase space.
Let ~w = (~x,~v) an arbitrary system of canonical coordinates. Any given star moves through

phase space, so the probability of finding it at any given phase-space location evolves with time.
As f evolves, probability must be conserved. We can use an analogy between the probability
conservation and the mass conservation for a fluid, which is given by:

@⇢

@t
+

@

@~x
(⇢~̇x) = 0 , (C.2)

where ⇢ and ~̇x are the density and velocity of the fluid, respectively. Analogously, the equation
for the conservation of probability in phase space is:

@f

@t
+

@

@ ~w
(f ~̇w) = 0 . (C.3)

We can now use Hamilton’s equations (e.g., Goldstein et al. 2002 among the others):

~̇q =
@H

@~p
, (C.4)

~̇p = �@H
@~q

, (C.5)

where H is the Hamiltonian of the system:

H(~p, ~q, t) := ~p ~̇q � L(~q, ~̇q, t) , (C.6)

and L is the Lagrangian of the system, defined as the di↵erence between the kinetic and potential
energy. Therefore, remembering that ~̇w = (~̇q, ~̇p), we can rewrite the second term in Equation
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(C.3) as:

@

@ ~w
(f ~̇w) =

@

@~q
(f ~̇q) +

@

@~p
(f ~̇p)

Eqs.(C.4) and (C.5)
=

=
@

@~q

✓
f
@H

@~p

◆
� @

@~p

✓
f
@H

@~q

◆
=

=
@f

@~q

@H

@~p
+
�
�

��
f
@
2
H

@~q@~p
� @f

@~p

@H

@~q
�
�
�

��
f
@
2
H

@~p@~q

Eqs.(C.4) and (C.5)
=

= ~̇q
@f

@~q
+ ~̇p

@f

@~p
. (C.7)

Substituting Equation (C.7) inside Equation (C.3) we get the CBE:

@f

@t
+ ~̇q

@f

@~q
+ ~̇p

@f

@~p
= 0 . (C.8)

In terms of inertial Cartesian coordinates, H can be expressed in terms of the velocity v and the
gravitational potential �tot as H = 1

2
v
2 + �tot(~x, t). Therefore, using Equation (C.8), the CBE

becomes:

Df

Dt
=
@f

@t
+ ~v

@f

@~x
� @�tot

@~x

@f

@~v
=
@f

@t
+ h~v,r~xfi � hr~x�tot,r~vfi = 0 , (C.9)

where D
Dt =

@
@t +~v

@
@~x is the material derivative, r~x and r~v are the gradient operators over space

and velocity, respectively, and h~a,~bi represents the inner product of the two vectors ~a and ~b.

69



Appendix D

Jeans theorem

We derive the Jeans Theorem. For a complete overview on the topic see the books by Binney &
Tremaine (1987, 2008) and Ciotti (2021) among the others. We refer more closely to Binney &
Tremaine (1987) for our discussion.

Let us star with the definition of integral of motion. An integral of motion I is any function
of the phase-space coordinates ~x and ~v alone that is constant along any stellar orbit for any time
t:

I [~x(t1),~v(t1)] = I [~x(t2),~v(t2)] = const 8 t1, t2 =) dI [~x(t),~v(t)]

dt
= 0 . (D.1)

For example in a static spherical potential the angular momentum ~J and energy E are integrals
of motion.

Let now f be a steady state solution of the CBE (Equation 3.12). Then from Equation (C.9):

0 =
◆
◆◆@f
@t|{z}

steady state

+~v
@f

@~x
� @f

@~v

@�tot

@~x
=
@f

@~x

d~x

dt
+
@f

@~v

d~v

dt
=

d

dt
f(~v, ~x) = 0 , (D.2)

which means that f is an integral of motion.
On the other hand, let f be a function of n integrals of motion. Let i be an index in between

1 and n. Then:
d

dt
f(I1, ..., In) =

@f

@Ii ◆
◆◆dIi

dt|{z}
=0

= 0 , (D.3)

where we used the definition of integral of motion. Therefore, f satisties the steady state CBE.
Therefore, putting together the results of Equations (D.2) and (D.3), we can state the Jeans

Theorem: any steady state solution of the CBE depends on the phase-space coordinates only
through integrals of motion in the given potential, and any function of the integrals yelds a
steady-state solution of the CBE.
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Appendix E

Jeans equations

We derive the Jeans equations (JEs). For a complete overview on the topic see the books by
Binney & Tremaine (1987, 2008) and Ciotti (2021) among the others. We refer more closely to
Ciotti (2021) for our discussion.

Being defined in the 6D phase-space, the CBE is not so useful to describe stellar system. In
fact, we want an equation which depends on the observables of the system. Let us multiply
the CBE, expressed by Equation (C.9), by a microscopic function F = F (~x,~v, t). Then, let us
integrate the product on velocities. Using vector components notation, we get:

Z

R3

Df

Dt
Fd

3
~v =

Z

R3

@f

@t
Fd

3
~v

| {z }
(A)

+

Z

R3
vi
@f

@xi
Fd

3
~v

| {z }
(B)

�
Z

R3

@�tot

@vi

@f

@vi
Fd

3
~v

| {z }
(C)

= 0 . (E.1)

Let us study independently each term. We have:

(A) =

Z

R3

@f

@t
Fd

3
~v

by parts
=

Z

R3

✓
@(fF )

@t
� f

@F

@t

◆
d
3
~v =

@(⌫F )

@t
� ⌫

@F

@t
, (E.2)

since time derivation and integration over ~v can be interchanged, being ~v independent on t.
Moreover:

(B) =

Z

R3
vi
@f

@xi
Fd

3
~v =

Z

R3

✓
@

@xi
(vifF )� vif

@F

@xi
�
⇢

⇢
⇢⇢

fF
@vi

@xi

◆
d
3
~v =

=
@

@xi
(⌫Fvi)� ⌫vi

@F

@xi
, (E.3)

since spacial derivation and integration over ~v can be interchanged, being ~v independent on ~x.
Finally:

(C) =

Z

R3

@�tot

@xi

@f

@vi
Fd

3
~v

by parts
=

@�tot

@xi

Z

R3

✓

⇢
⇢
⇢⇢@(fF )

@vi
� f

@F

@vi

◆
d
3
~v =

= �⌫ @�tot

@xi

@F

@vi
, (E.4)

since �tot is independent of ~v and we assume fF ! 0 for k~vk ! 1, which implies that the
integration over the whole velocity space of the partial derivative with respect to vi of that term
evaluates to zero. Therefore, adding all together we get:

@(⌫F )

@t
� ⌫

@F

@t
+

@

@xi
(⌫Fvi)� ⌫vi

@F

@xi
+ ⌫

@�tot

@xi

@F

@vi
= 0 . (E.5)
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The first JE in Cartesian coordinates is obtained by choosing F = 1. In this case we get:

@⌫

@t
+

@

@xi
(⌫vi) = 0 . (E.6)

The second JE in Cartesian coordinates is obtained by choosing F = vj . In this case we get:

@(⌫vj)

@t
+

@

@xi
(⌫vjvi) + ⌫

@�tot

@xj
= 0 , (E.7)

since ~v is independent of both t and ~x, and since @vj
@vi

= �ij .
The second JE can be rephrased as follows. If we subtract Equation (E.6) multiplied by vj

from Equation (E.7), we find:

@(⌫vj)

@t
+

@

@xi
(⌫vjvi) + ⌫

@�tot

@xj
� vj

@⌫

@t
� vj

@

@xi
(⌫vi) = 0

=) ⌫
@vj

@t
+
�
�
�

vj
@⌫

@t
+

@

@xi
(⌫vjvi) + ⌫

@�tot

@xj
�
�

�
�

vj
@⌫

@t
� @

@xi
(⌫vj vi) + ⌫vi

@vj

@xi
= 0 . (E.8)

Using Equation (3.18) �ij = vivj � vi vj , dividing everything by ⌫, and redefining the indices, we
get:

Dvi

Dt
=
@ vi

@t
+ vj

@ vi

@xj
= �@ �tot

@xi
� 1

⌫

@

@xj
(⌫�2ij) , (E.9)

where D
Dt is the material derivative.
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Appendix F

Jeans equations in cylindrical
coordinates

We write the JEs in cylindrical coordinates. For a complete overview on the topic see the books
by Binney & Tremaine (1987, 2008) and Ciotti (2021) among the others. We refer more closely
to Binney & Tremaine (2008) for our discussion.

Let us rewrite Equation (C.9) in terms of the Hamiltonian H of the system for an arbitrary
system of caninocal coordinates ~w = (~q, ~p):

0 =
@f

@t
+
@f

@~q

@H

@~p
� @f

@~p

@H

@~q
. (F.1)

The Lagrangian L of the system in cylindrical coordinates (R,f, z) takes the form:

L =
1

2
[Ṙ2 + (Rḟ)2 + ż

2]� �tot(R,f, z) . (F.2)

The momenta in cylindrical coordinates are pR = Ṙ, pf = R
2ḟ, and pz = ż. Therefore, from

Equation (C.6) the Hamiltonian of the system takes the form:

H = ~p ~̇q � L(~q, ~̇q, t) = 1

2
(Ṙ2 +R

2ḟ2 + ż
2) + �tot(R,f, z) =

=
1

2
(p2R +

p
2
f

R2
+ p

2

z) + �tot(R,f, z) , (F.3)

so that:

@H

@~q
=

✓
@�tot

@R
� pf

R3
,
@�tot

@f
,
@�tot

@z

◆
, (F.4)

@H

@~p
=
⇣
pR,

pf

R2
, pz

⌘
. (F.5)

Therefore, Equation (F.1) becomes:

@f

@t
+ pR

@f

@R
+

pf

R2

@f

@f
+ pz

@f

@z
� @�tot

@R

@f

@pR
+

p
2
f

R3

@f

@pR
� @�tot

@f
@f

@pf
� @�tot

@z

@f

@pz
= 0 . (F.6)

Let us now assume that the system is in steady state and axisymmetric. This implies that
@
@t and @

@f = 0, and that �tot = �tot(R, z). Therefore, we get:

pR
@f

@R
+ pz

@f

@z
� @�tot

@R

@f

@pR
+

p
2
f

R3

@f

@pR
� @�tot

@z

@f

@pz
= 0 . (F.7)
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Let us now multiply Equation (F.7) by pR and integrate it over the momenta dpRdpfdpz knowing
that pR = vR, pf = Rvf, and pz = vz, and remembering that:

Z

R3
fdvRdvfdvz = ⌫ , (F.8)

in analogy with the Cartesian case. Then we get:

0 =

Z

R3
pR

@f

@R
pRdpRdpfdpz +

Z

R3
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(C)

+
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@f

@vz
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| {z }
(E)

.

(F.9)

Let us analyze each term separately, noting that each component of both ~x and ~v is independent.
We have:

(A)
by parts

=

Z

R3

@

@R
(fRv

2

R)dvRdvfdvz �
Z

R3
v
2

Rf
@R

@R|{z}
=1
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(⌫v2R)� ⌫v
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R , (F.10)

and:

(B)
by parts

= R

Z
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and:
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by parts
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@�tot

@R
⌫ , (F.12)

since we assume (fvR) ! 0 for k~vk ! 1, which implies that the integration over the whole
velocity space of the partial derivative with respect to vR of that term evaluates to zero, and:

(D)
by parts

=

Z

R3

@

@vR
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Z

R3
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�������
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(⌫v2fvR)� ⌫v2f , (F.13)

74



since we assume (fv2fvR) ! 0 for k~vk ! 1, which implies that the integration over the whole
velocity space of the partial derivative with respect to vR of that term evaluates to zero, and:

(E)
by parts

= R
@�tot

@z

Z

R3

@

@vz
(fvR)dvRdvfdvz �

((((((((((((((
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@
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(⌫vR) , (F.14)

since we assume (fvR) ! 0 for k~vk ! 1, which implies that the integration over the whole
velocity space of the partial derivative with respect to vz of that term evaluates to zero. Putting
all back in Equation (F.9) and dividing everything by R, we get:

@
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2
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⌫

!
= 0 . (F.15)

Analogously, when we multiply Equation (F.7) by pz or pf rather than pR, we obtain:

1

R

@

@R
(R⌫vRvz) +

@

@z
(⌫v2z) + ⌫

@�tot

@z
= 0 , (F.16)

and:
1

R2

@

@R
(R2

⌫vRvf) +
@

@z
(⌫vzvf) = 0 , (F.17)

respectively.
We can now simplify further our system with some other assumption:

• the principal axes of the velocity dispersion ellipsoid (�2R,�
2
f,�

2
z) are aligned with the

coordinate axes (R,f, z). In this case:

�
2

Rz = vRvz � vR vz = 0 =) vRvz = vR vz ; (F.18)

• �
2

R = �
2
z , which implies that:

�
2

R = v
2

R � vR
2 = v2z � vz

2 = �z ; (F.19)

• the only non-zero velocity component is the tangential one, meaning that:

vR = vz = 0. (F.20)

With these assumptions, Equations (F.16) and (F.15) become respectively:

Eq. (F.16) ! @
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, (F.21)

Eq. (F.15) ! @
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��

R
= �⌫ @�tot
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, (F.22)

where we defined �� = v2f � �2z .
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