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Abstract

Multi-nucleotide mutations (MNMs) describe instances in which a single mutation event

simultaneously alters more than one nucleotide site. Typically, these sites are close to

each other. Studies estimate that about one in every 50-350 mutations is a MNM.

Although these occur much less frequently, they offer the advantage that substantially

more genotypes can be reached through one mutation event. Our study seeks to under-

stand when and to which extent MNM mutations affect adaptive evolution. To pursue

this research question, we employ Wright-Fisher simulations and use random and real

fitness landscapes. Building on this, we derive analytical results that illustrate how

relevant MNM are as a function of the mutation supply.



Summary

Multi-nucleotide mutations are not taken into account in adaptive evolution since they

are considered to occur at a negligible rate. Despite this assumption, sequence compar-

isons and mutational events in laboratories have suggested that multi nucleotide events

occur in nature with a higher rate than expected. In this thesis we are going to study

the influence of multi nucleotide mutations on adaptive evolution. In particular we will

focus on adjacent double nucleotide mutations.

In the first chapter we present the main theoretical and biological concepts. In section

1.1 we introduce the concept of fitness landscape. We quantitatively describe how popu-

lations evolve on the landscape and how the trajectories depend on the mutation supply

which is the number of mutations per time step. In section 1.2 we introduce multi nu-

cleotide mutations and adjacent double nucleotide mutations. We discuss about their

rate and we briefly describe the two main advantages they have over single nucleotide

mutation: a larger variability and the possibility of crossing fitness valleys. The project

will focus on the first feature. We end the first chapter with section 1.3 where we de-

scribe the setup of the project i.e. the way we study the relevance of double mutations.

In the second chapter we introduce the simple model ; a simplified model that enables us

to gain a qualitative understanding of the dynamics and relevant details. We describe

how to simulate it in section 1.2 and the analytical description in section 1.3. Then we

show the results of this model assuming the same DFE for singles and doubles. We end

the chapter by discussing how the number of beneficial mutants and the DFEs influence

the dynamic.

In the third chapter we describe the Wright Fisher model. In section 3.1 we define the

model and we discuss about the values of the variables of the system. At the end of the

section we show some results. In section 3.2 we present two analytic approximation of

the Wright Fisher model and we test their accuracy. We end the chapter with section

3.3 where we introduce the mean fitness jump and we study the influence of doubles

on the total fitness. In the last chapter we simulate the Wright Fisher model on an

empirical landscape. The landscape is of the TEM-1 gene. We show results and we

discuss about the relevance of doubles.
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Chapter 1

Intro

1.1 Fitness landscape

Determining the relationship between genotype and fitness is a fundamental question

in evolutionary biology [1, 2, 3, 4]. Genotype is the the genetic constitution of an

individual organism. Fitness is the reproductive success and reflects how well an or-

ganism is adapted to its environment. It is represented with a real positive number.

The genotype-fitness map is a map from the discrete space of genotypes to the fitness.

The shape of the genotype-fitness map has significant implications for how evolution

proceeds. In order to study this implications Sewall Wright [5] introduced the concept

of the fitness landscape (also known as the adaptive landscape). In this view, popu-

lations evolve by fitness increasing steps until they reach a fitness local peak. In fig

1.1 (left) there is a visualization of a fitness landscape where the genotypes are in the

x− y plane and the fitness on the z axis [6]. In this three-dimensional setting, we may

picture the process of evolution as a form of hill climbing. Despite this, the space occu-

pied by genotypes is both high-dimensional and discrete, and the representation of this

space in three dimensions can be misleading. The use of graphs to represent genotypes

is one approach that may be used to circumvent this problem. In fig 1.1 (right) we

show a graph representation of a fitness landscape of 4 alleles. In this type of directed

network, each node represents a genotype, and each edge connects two genotypes that

are different from each other by a single mutation. Additionally, the edges lead in the

direction of genotypes that have a higher fitness. Even this method of visually repre-

senting the genotype-fitness map has limitations and there are other methods which

are more complex and more powerful [7].
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Figure 1.1: Fitness landscape visualization [6]. On the left a three dimensional visual-
ization, on the x− y plane the space of genotypes and on the z plane the fitness. The
white dots represents two possible path starting from the same initial genotype. The
evolution can be seen as uphill climbing. On the right a visualization on a graph. Nodes
represent the 24 = 16 genotypes; 0 and 1 indicate wild-type and mutant amino acids.
Edges connect genotypes that differ by a single mutation and point towards genotypes
with higher resistance. Bold black edge indicate the greedy walk from wild-type (0000)
to the global maximum (1010).

1.1.1 Generating landscape

There are a variety of models that may be used to build a fitness landscape. In this

project, we are going to make use of the House of Cards (HoC) model [8], which is

characterized by the fact that all of the fitness values are picked at random from a

distribution. This distribution is usually called distribution of fitness effect (DFE).

More sophisticated models take also into account epistasis which is the interaction

between two or more genes that has influence on the fitness of a genotype [9, 10, 11,

12, 13].

1.1.2 Weak mutation regime and clonal interference regime

Now we are going to describe how the population evolves on the fitness landscape and

how the trajectory of evolution can depend on some parameters of the system. We

define N as the population size. We define µi,j as the mutation rate from the genotype

i to the genotype j. Ui =
∑

i µi,j is the rate of mutation of the genotype i. If we

consider an homogeneous population, i.e. all the individuals have the same genotype i,

we can define the mutation supply as N ·Ui which is the expected number of mutations

per generation.
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Based on the value of the mutation supply we can define two different regimes:

• N · Ui ≪ 1 weak mutation regime [14, 15]. In this regime the population evolves

through a random walk restricted on fitness-increasing steps. The probability of

a path is proportional to the rate of the mutation times a monotonic function of

the fitness of the mutant.

• N · Ui ∼ 1 clonal interference regime [16, 17]. In this regime we observe multiple

mutants together adding competition to the dynamic. Competition favors mu-

tants with a higher fitness. The probability of each path is again proportional

to the rate of the mutation but more strongly dependent on the fitness of the

mutant. If the mutation supply is such that we observe all the possible beneficial

mutants the population evolves through a greedy walk. The evolution becomes

deterministic and at each step evolution chooses the fittest mutant.

In figure 1.2 we show the evolution for three different values of the mutation supply

assuming all the rates equal.
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Figure 1.2: Evolution in different regimes. Each node is a genotype. On the right the
legend with fitness ranking. The node on the bottom is deleterious. The thickness of
the edge represent the probability of the path. The evolution can only increase fitness
and so the bottom node is never reached. We are considering an homogeneous mutation
rate. In the left panel we consider the week mutation regime. The path is a random
walk biased to fitter genotypes. In the middle panel we are in the clonal interference
regime. It is the same as before but now the bias is stronger. Right panel the mutation
supply is such the dynamic becomes deterministic to the fittest genotype.
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1.2 Multi nucleotide mutations

Multi-nucleotide mutations are not taken into account in adaptive evolution since they

are considered to occur at a negligible rate. For instance, if we think of double nucleotide

mutations, the rate of those mutations should be equal the square of the rate of single

nucleotide mutations. In e-coli the single nucleotide mutation rate per base is µ = 10−10

[18, 19, 20]. Consequently, the probability of two mutations occurring by accident in the

same generation is extremely low. Despite this assumption, sequence comparisons and

mutational events in laboratories have suggested that multi nucleotide events occur in

nature. In this paper [21], for example, the authors studied 283 parent-offspring trios.

They estimated that the 3% of the mutations are part of a multi-nucleotide mutation.

This MNM are more likely to happened in small cluster closer to each other. Other

studies [22, 23, 24, 25] estimated this frequency and the results are always on the order

of 1%. The cause of this kind of mutation is usually addressed to DNA polymerise zeta

(Pol ζ) [26]. In this project we will focus on a subclass of multi nucleotide mutations

which is the adjacent double nucleotide mutations. This kind of mutations involve two

neighboring nucleotides. A few (old) papers [27, 28] estimated the rate of adjacent

double mutations. We can also estimate the rate of those mutation from the results of

multi nucleotide mutation studies. Based on all this results we are confident to consider

adjacent double nucleotide mutations on the order of 0.1%− 1% of the total number of

mutations.

Lets now discuss about the potential implications of adjacent double nucleotide (double)

mutations on adaptive evolution. There are two main advantage of double mutations:

larger variability of mutants, valley crossing.

1.2.1 Larger variability

If we consider a gene of length L, the number of possible single nucleotide substitutions

is L·3 and the number of possible adjacent double nucleotide substitutions is (L−1)·3·3.
Therefore substantially more genotypes can be reached via adjacent double nucleotide

substitutions.

Consider now a gene that encodes for an amino acid. The mutations that cause a

change in an aminoacid’s sequence are the ones that can have an impact on the fitness

of a gene. Synonymous mutations are mutations in a nucleotide sequence that do not

alter the encoded amino acid. For example a mutation from the codon ATT to the

codon ATC does not change the fitness of the genotype since both codons encode the

same aminoacid. This kind of mutation do not alter the fitness of a gene. Single
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nucleotide mutation changes only a base of a codon. Because of that the average

number of accessible amino-acids per codon through single nucleotide mutations is 6.

Double adjacent nucleotide mutations change two neighboring nucleotides that can

be inside a codon or across to neighboring codons. This can lead to a single amino-

acid substitution but also to a double amino-acid substitution. The average number

of accessible amino-acids per codon through double nucleotide mutations is 16. This

number includes double amino-acid substitutions. As said in the previous part the rate

of double mutations is 10−3 to 10−2 times the rate of single mutations. As a result,

a genotype that can be reached by both types of mutations is more likely to arise

as a result of a single nucleotide mutation. For this reason we will not consider this

mutants as double mutants. Thus the average number of accessible amino-acids per

codon through double nucleotide mutations becomes 16− 6 = 10. To clarify this part

we have made a schematic representation (fig 1.3) of the accessible amino-acids through

single and double mutations for a given codon.

AAC | N CAC | H

GAC | D

CCC | P CAT | H
ATC | I

TTC | F

CCT | P

GTC | V

TAC | Y

CTC | L

CGC | R

CAA | Q

CAG | Q

AGC | S

TGC | C

GGC | G

ACC | T

TCC | S

GCC | A

CGT | R

CTT | L

CCA | P

CGA | R

CTA | L

CCG | P

CGG | R

CTG | L

SN DN

3 x 3 = 9 CODON SUB

2 x 9 = 18 CODON SUB

7 
AA

 S
U

B
11(8) AA SU

B 

Figure 1.3: Acessible aminoacid. We compute all the 9 possible single nucleotide mu-
tations and all the 18possible double nucleotide mutations of a codon. The number of
accessible aminoacids is 7 for single and 11 for double. If we consider the number of
aminoacids uniquely accessible via double the number becomes 8.

Let’s now focus on a one-step dynamic. Consider a scenario in which we have a

monomorphic population evolving in a House of Cards landscape (all fitness values

are random). We want to investigate the next step of evolution. Because of what we

said before, the average number of unique non-synonymous double mutants is 5/3 the

number of unique non-synonymous single mutants. In a HoC landscape, the fact that

there are more possible double mutants than there are single mutants implies that it is

more likely that the fittest mutant is a double. This is one of the most crucial aspects of

this project. For example, consider the evolution of a population on a fitness landscape

under clonal interference. Before we have qualitatively shown that the probability of
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fixation of a mutant is proportional to his rate times a term that is a monotonic function

of the fitness. The higher is the mutation supply the larger is the value of the second

term. As a consequence evolution drives the population to the fittest genotype. Double

mutants have a lower rate but, since the number of doubles is larger than the number

of singles, the fittest genotype is more likely to be a double. This trade-off between

mutation rate and fitness in doubles is what we are going to study in the next chapters.

What we expect is that in the week mutation regime the probability of fixation of the

doubles will be on the order of µD/µS while in the clonal interference the doubles will

become more and more relevant.

1.2.2 Valley crossing

We briefly comment the effect double mutations on valley crossing. This is not going

to be a detailed examination; however, we want to give this argument that supports

our hypothesis in a qualitative manner. With double mutations evolution can follow

path that are inaccessible considering only single nucleotide (single) mutations [29].

Consider the case in which the population is in a local peak of single mutation, i.e. all

single mutations decrease the fitness. In this scenario there could be double mutations

that increase fitness and so the population can evolve to a new peak. In general we

can say that double mutations reshape the fitness landscape connecting more genotypes

and allowing the population to evolve to higher peaks. In fig 1.4 an example of what

we just described. We can also quantify this effect by computing the average number

000
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100

FITN
ESS

011

101

110

111

Figure 1.4: Valley crossing. Each node is a genotype. On the right the legend with
fitness ranking. Genotype 001 is a local peak since all the single nucleotide mutations
(black edges) lead to a lower fitness. If all the population is 001 it can not evolve via
single mutations. Double nucleotide mutations (blue edge) allow genotype 001 to evolve
to the fittest genotype 111.
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of beneficial double mutations on a local peak. We generate a HoC landscape and we

evolve the population through single nucleotide mutations until a local peak and then

we compute the number of beneficial double in the peak. If nD/nS = 5/3 the number

of double beneficial in the peak is around 1. Because of this, double mutations can

become highly relevant when a population is stuck on a local peak because they are

the only choice that is accessible. In figure 1.5 we show the distribution of the number

of beneficial doubles in a local peak. This distribution is computed by simulating

a population evolving on a random landscape. At each step the population evolves

to a random beneficial single mutant until the peak is reached (all the mutants are

deleterious). Once the population is on a local peak we compute the number of beneficial

doubles fitter that the peak. As we can see, half of the time the population can escape

from the local peak via adjacent double nucleotide mutations.

0 1 2 3 4 5
# double beneficial mutants on a local peak

Pr
ob

ab
ilit

y Mean 1

0.5

0.24

0.13
0.06 0.03 0.01

nD/nS = 5/3

Figure 1.5: Distribution of number of double beneficial mutants on a fitness peak. We
compute the distribution by simulating a population evolving on a random landscape.
Once the population reaches a local peak we compute the number of beneficial double
mutants.

1.3 Setup

We can now discuss about the setting of our study. We limit our analysis to a one-step

dynamic, which means that we are only interested in tracing the evolutionary path
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from wild-type (initial genotype of the population) to the next genotype. We impose

this constraint for two reasons: the first is to simplify the dynamic, which will allow us

to acquire better analytical conclusions; the second is to facilitate the use of empirical

fitness data.

We assume a monomorphic initial population. For each genotype reachable through

single and double nucleotide mutations we calculate its the probability of fixation. Our

goal is to establish how significant double-nucleotide mutations are to the evolutionary

process. In order to accomplish this, we define the following quantities:

• Pi = probability that the mutant i fixates first.

• FDN =
∑

DN Pi = probability that a double mutant fixates first. This is the

probability that evolution goes through double mutations.

• f = fraction of double mutation. The number of double mutations over the total

number of mutations.

The goal of this project is quantify FDN and its dependence on the mutation supply.

As said before we expect that double mutations, and thus FDN , become relevant in the

clonal interference regime where evolution is strongly biased to the fittest genotypes.

We will first present a simple model to introduce the main features of this problem.

Later we will present the Wright Fisher model which is a common population genetic

model broadly used to study evolution. Lastly, we will present an empirical fitness

landscape.
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Chapter 2

Simple model

Before employing a population genetic model, we take a step back and consider this

problem using a simplified model. This simple model enables us to gain a qualitative

understanding of the dynamics and relevant details. It is mathematical much more

tractable and shows what could potentially be expected in the population genetic model.

The main limitations of the simple model are the following:

• Genetic drift is neglected. We discuss this limitation at the end of this chapter.

• There is no explicit dependence on the population size N which is related to the

absence of genetic drift.

• Each generation is considered independently from previous ones.

2.1 Definition

In the following the core idea of the simple model is described. We assume an initially

homogeneous population and observe all the mutations arising in a given time interval

t. Of those mutants, the fittest one wins. This can be simulated with the steps listed

below:

1. We draw a single fitness landscape [ωS
1 , ..., ω

S
nS
] ∼ fS(ω) and a double fitness

landscape [ωD
1 , ..., ω

D
nD

] ∼ fD(ω) from two distributions fS(ω), fD(ω).

2. For a given time interval t the following is repeated for several runs:

(a) A random number of single mutations mS ∼ Poisson(λS = t · N · nS · µS)

and double mutations mD ∼ Poisson(λD = t ·N · nD · µD) is drawn.

14



(b) We sample with replacement mS mutations from the list [ωS
1 , ..., ω

S
nS
] and

mD mutations from [ωD
1 , ..., ω

D
nD

].

(c) The fittest mutation wins.

3. We compute FDN = #DN wins
#runs

.

Figure 2.1 also shows a schematic representation of this process.

35810 12467911

FittestLeast fit
111

fS(ω)

Rank ordered

111
Low t

111
Intermediate t

111
High t

Fitness

Fr
eq

ue
nc

y 

Double winsSingle winsSingle wins       

fD(ω)

Figure 2.1: Simple model schematic. We draw single fitness landscape from distribution
fS(ω) and double fitness landscape from fD(ω). We rank the fitness values from the
highest to the lowest. Depending on the time interval t, the population N and the
mutation rates µS, µD we draw with repetition singles and doubles. The fittest wins.
We repeat this for multiple runs and we compute compute FDN = #DN wins

#runs
.

2.2 Analytical description

The model can also be expressed analytically. For this, we rank [ωS
1 , ..., ω

S
nS
] and

[ωD
1 , ..., ω

D
nD

] from fittest to least fit and define:

P S
i (Nt) = (1− e−t·NµS) · e−t·NµS ·(i−1), (2.1)

PD
i (Nt) = (1− e−t·NµD) · e−t·NµD·(i−1). (2.2)
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These define the probability of observing at least once the i’th fittest mutant but zero

times all fitter mutants of the same class (SN/DN). Using P S
i (Nt) and PD

i (Nt) we

define the vectors p⃗S(Nt) and p⃗D(Nt):

p⃗S(Nt) = [P S
1 , P

S
2 , ..., P

S
nS
] (2.3)

p⃗D(Nt) = [PD
1 , PD

2 , ..., PD
nD

] (2.4)

Then FDN can be computed by summing the probability of winning for all double

mutants. The probability that double mutant j wins is the probability PD
j that j is

the fittest drawn double times the sum of the probabilities that the fittest single is i

but considering only i : ωS
i < ωD

j :

PD
j (wins) = PD

j ·
∑

ωS
i <ωD

j

P S
i (2.5)

FDN(Nt) =
∑
j

PD
j (wins) (2.6)

Additionally, we can represent this by using matrix notation:

H→ Hi,j =

1 if ωS
i < ωD

j ,

0 if ωS
i > ωD

j .
(2.7)

Consequently, FDN may be computed as:

FDN = p⃗TS ·H · p⃗D + (1− e−t·NnDµD) · e−t·NnSµS , (2.8)

where the last term is the probability of observing at least one DN mutant but zero SN

mutants. In figure 2.2 we compare the simulation with the analytic prediction; the two

lines overlap perfectly. Notice that p⃗S and p⃗D are independent of the fitness landscape.

In fact, information about the fitness landscape is contained in the matrix H.

2.3 General results

We start with a simple case, assuming that singles and doubles have the same DFE

fS(ω) = fD(ω). For 1000 different random landscape we compute FDN(Nt) and their

average ⟨FDN(Nt)⟩, see fig 2.3. There are three interesting points that we can observe

in the panels:
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Figure 2.2: Comparison between simple model simulation and analytic prediction. As
we can see the analytic prediction matches perfectly with the simulation.

a) The average behavior of FDN (black line) is monotonically increasing.

b) The lines converges into different classes of convergence.

c) Some of the lines show a non-monotonic behavior.

Point a)

This is the most relevant aspect of our study. In grey we can see different landscapes

and in black the average over 1000 random landscapes. Starting from the left, for small

values of Nt (small mutation supply) all lines overlap. This is because in this regime we

observe at most one mutation and so it is unlikely to have competition between doubles

and singles. For this reason FDN does not depend on the details of the landscape. This

regime ends when Nt is such that at least one single mutant is always observed:

1 = nS(1− e−NtµS) (2.9)

Nt = µ−1S · log(
nS

nS − 1
). (2.10)

As a result from that point on competition is relevant for the dynamic, and so is the

specific landscape.

For large values of Nt all the lines collapse into main convergence lines (see point b for

details) and, more important, the average ⟨FDN⟩ increases monotonically. This regime
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Figure 2.3: Probability of fixation of a double mutant (FDN). Panel a: FDN for several
random landscape and their mean (solid black line). Panel b: FDN for several random
landscape with a wider y range, all the lines converge to different clusters for large
values of t. Panel c: example of non-monotonicity.

begins when the singles start to saturate, meaning that we almost always observe all

single mutants. Because of that the competition is only between the fittest single and

the fittest double. If the fittest double is larger than the fittest single FDN goes to

1, if the opposite it goes to 0. To compute the value of the average ⟨FDN⟩ for large

values of Nt we introduce the concept of order statistics [30]. Let X1, X2, ..., Xn be iid

random variables with a distribution f . We can relabel these Xs such that their labels

correspond to their ranking from lowest 1 to highest n: X1 < X2 < ... < Xn. We define

f(k)(x) as the distribution of the kth order statistic of a sample of n elements drawn

from the distribution f :

f(k)(x) =
n!

(k − 1)! (n− k)!
f(x)F (x)k−1 (1− F (x))n−k (2.11)
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So for example f(1)(x) is the distribution of the lowest element of a sample of size n and

f(n)(x) = nf(x)F (x)n−1 is the distribution of the highest element of a sample of size n.

For large value of t the competition is between the fittest single and the fittest double.

We can predict the behavior of the average ⟨FDN⟩ by studying the distribution of the

fittest single fS
(nS)

(ω) and of the fittest double fD
(nD)(ω):

lim
t→∞
⟨FDN⟩ = P (D > S) =

∫ ∞
0

∫ ∞
y

fS
(nS)

(y) · fD
(nD)(x) dy dx (2.12)

with S ∼ fS
(nS)

(ω), D ∼ fD
(nD)(ω). (2.13)

The easiest case is fS = fD (the two DFEs are equal), if we compute eq 2.12 we obtain:

lim
t→∞
⟨FDN⟩ = P (D > S) =

nD

nD + nS

. (2.14)

Since nD > nS ⇒ ⟨FDN⟩ > 0.5 and so it is more likely that the fittest double is fitter

than the fittest single. If fS ̸= fD the problem may get more tricky, especially if the

two distributions belong to different classes. However, it is always possible to find a

numerical solution of equation 2.12.

So far we have given an analytic description of the behavior of FDN and ⟨FDN⟩ for small

and large values of t. Having a rigorous description of the range in between is non trivial.

The random landscapes have different behaviors while the average ⟨FDN⟩ is flat in the

first part and that increases. We can explain the flatness of ⟨FDN⟩ with a qualitative

argument. In this regime singles are not saturated yet and so the competition is between

average numbers of unique doubles uD doubles and average numbers of unique singles

uS:

uS = nS(1− e−NtµS); uD = nD(1− e−NtµD). (2.15)

If we assume that equation 2.14 holds also for real values of nD, nS we can compute

⟨FDN⟩ as:

⟨FDN⟩ =
uD

uD + uS

=
nD(1− e−NtµD)

nD(1− e−NtµD) + nS(1− e−NtµS)
. (2.16)

In this regime Nt is still small and we can expand the previous equation at the first

order:

⟨FDN⟩ ≃
nD ·Nt · µD

nD ·Nt · µD + nS ·Nt · µS

=
nDµD

nDµD + nSµS

. (2.17)

So both uS and uD grow linearly with Nt and so their ratio is constant. As soon as uS

starts growing sublinearly the slope of ⟨FDN⟩ becomes positive.

Since this model is an oversimplification we can not derive quantitative results from this
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analysis but still it suggests that the frequency of fixation of double adjacent nucleotide

mutations can be non-negligible for large value of Nt.

Point b)

In this point we want to explain why all lines collapse to different convergence lines. The

behavior of FDN does not depend on the absolute values of [ωS
1 , ..., ω

S
nS
] and [ωD

1 , ..., ω
D
nD

]

but only on the total rank. If we have nS and nD the number of possible ranks is:

#fitness landscapes =
(nS + nD)!

nS! · nD!
=

(
nD + nS

nS

)
. (2.18)

If fS(ω) = fD(ω) each landscape is equiprobable. Since we only care about the rank

we can collect fitness values in clusters as shown in figure 2.4. The rate of each cluster

FittestLeast fit

Rank ordered

14 3

P̃1P̃2P̃3P̃4 + + + = FDN

2

Figure 2.4: Clustering. Since in the simple model only the ranking matter, we rank the
genotypes from the fittest to the least fit. Then we collect the neighbor genotypes of
the same class (single/double) in clusters. We consider a cluster as a single genotype
with rate proportional to the cluster size. If P̃i is the probability of the ith cluster to
win, we can write FDN as the sum of all the P̃i.

is proportional to his size. If P̃i(Nt) is the probability of the cluster i to win, we can

write FDN as the sum of P̃i(Nt) for each i. For large values of Nt we almost always

draw the fittest single. For this reason P̃1(Nt) becomes the most relevant term in FDN

since the cluster 1 is the only one that can win against the fittest single. This explains

why we observe the convergence of all the lines in different fixed asymptotic behaviors.

Consequently, if there is no double fitter than the fittest single the lines go to zero. In

detail we can have nD+1 possible asymptotic behaviors which corresponds the possible

sizes of the cluster 1. The asymptotic behaviors follow this equation:

F c
DN = P c

1 = 1− e−c·t·Nµd , c ∈ {0, 1, ..., nD}, (2.19)

where c is the size of the fittest cluster. For c = 0 it is just 0. We can also compute the

probability of each cluster as follow. As said before the total number of landscapes is
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# =
(
nD+nS

nS

)
. The number of landscapes belonging to cluster c is:

#c =

(
nD + nS − c− 1

nS − 1

)
P (c) =

(
nD + nS − c− 1

nS − 1

)
/

(
nD + nS

nS

)
.

In figure 2.5 we plotted all the possible landscape for nS = 4, nD = 6. We can clearly

see all the lines converging to the respective cluster for large Nt.

108 109 1010 1011

N t

0.00

0.02

0.04

0.06

0.08

0.10

F D
N

Figure 2.5: Probability of fixation of a double mutant (FDN) for each possible landscape.
We can see how each line converges to the probability the the fittest cluster wins (dashed
black lines). Computed with nS = 4, nD = 6, µD/µS = 10−2.

Point c)

Sometimes FDN displays a non-monotonic behavior. As described in the previous points

the behavior of FDN can be explained quantitatively for large and small value of Nt. In

the middle regime we observe many different behaviors; sometimes FDN is monotonic

and sometimes it is not. In this regime, the behavior of FDN is very sensitive to the

underlying landscape and thus it is hard to further categorize landscapes.
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2.3.1 Dependence on nS, nD

The ratio between nS and nD depends on the class of mutations we are studying. In

the case of double adjacent nucleotide mutations it is around 1.5 (see next chapter for

details). However, the value of nS is not fixed and relevant for the resulting dynamics.

In figure 2.6 we show FDN for three different values of nS ∈ {20, 60, 180}. On the y

axis there is the expected number of drawn single and double mutants. As we can see

the three behaviors are slightly different. In particular the flat part is wider for larger

values of the nS. In point a) of the former subsection, we explained that the flat part

begins when we start observing always a single mutant and it ends when the singles

saturate. If nS is smaller, the flat part gets shorter because we saturate immediately

the singles. On the contrary, if nS is larger also the time needed to saturate singles is

larger and so the flat part is wider.

# SN mutations: 
 # DN mutations: 

0.1
1.5e-3

1
1.5e-2

10
1.5e-1

100
1.5

1000
15

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F D
N

nS = 20, nD = 30
nS = 60, nD = 90
nS = 180, nD = 270

Figure 2.6: Probability of fixation of a double mutant (FDN) for different values of nS

and nD. Each FDN is the mean over 1000 landscapes. The y-axis shows the expected
number of single and double mutations.

2.3.2 Different DFE

Changing the DFE effects the probability of each landscape to be drawn. In our case we

draw the single and double landscapes from two exponential distributions with mean

λS and λD. In fig 2.7 we show the average ⟨FDN⟩ for different value of λD which is the

mean of the exponential distribution from which the doubles landscapes are drawn. As

we did in the point a) of the first section of this chapter we are going to describe the
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# SN mutations: 
 # DN mutations: 
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Figure 2.7: Probability of fixation of a double mutant (FDN) for different distributions.
Each FDN is the mean over 1000 landscapes. We are using two exponential distributions
as DFE. Each line is obtained by changing λD.

small, middle and large Nt regimes.

For small value of Nt the value of FDN (and of its average) does not depend on the

landscape. Therefore all the lines overlap. For large value of Nt the value of ⟨FDN⟩ =
P (D > S) increases with λD. This is what we expected since increasing λD means

increasing the mean and the variance of the double DFE. We can compute the value of

⟨FDN⟩ with equation 2.12.

For intermediate values of the mutation supply, we see distinct behaviors in what we

previously referred to as the flat part. If λD > λS there is a positive slope; on the

contrary if λD < λS there is a negative slope. This may be quantitatively explained in

the same manner as in part a). In this case, we will employ uniform distributions as

DFEs since they allow us to solve the problem analytically. If fD(ω) = fS(ω) = U[0,1]

and if we observe uS unique single mutants and uD unique double mutants. The two

largest order statistics distributions are:

f(uS)(x) = uS · xuS−1, f(uD)(x) = uD · xuD−1. (2.20)
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As described before ⟨FDN⟩ can be computed as:

⟨FDN⟩ =
∫ ∞
0

∫ ∞
y

f(uS)(y) · f(uD)(x) dy dx =
uD

uD + uS

(2.21)

≃ nD ·Nt · µD

nD ·Nt · µD + nS ·Nt · µS

=
nDµD

nDµD + nSµS

= f. (2.22)

Now lets use the same uniform distribution for the singles fS(ω) = U[0,1] and a uniform

distribution for double with a slightly different domain fD(ω) = U[0,1+ϵ] with |ϵ| ≪ 1.

The two largest order statistics distributions are:

f(uS)(x) = uS · xuS−1, f(uD)(x) = uD ·
1

1 + ϵ
·
(

x

1 + ϵ

)uD−1

(2.23)

We compute ⟨FDN⟩ as before:

⟨FDN⟩ = ... =
uD

uD + uS

+
uD · uS

uD + uS

· ϵ (2.24)

≃ nDµD

nDµD + nSµS

+
nDµD · nSµS ·Nt

nDµD + nSµS

· ϵ = f(1 + ϵ · nSµS ·Nt). (2.25)

In this case ⟨FDN⟩ depends on Nt because we have a quadratic term on Nt that does

not cancel out. Because of that if ϵ > 0, which means larger mean and larger variance,

⟨FDN⟩ increases linearly with Nt. On the opposite if ϵ < 0, which means smaller mean

and smaller variance, ⟨FDN⟩ decreases linearly with Nt. As we increase Nt, uS starts

growing sublinearly and so ⟨FDN⟩ starts increasing independently on ϵ.

2.4 Genetic drift

One of the most important features that is missing in the simple model is the genetic

drift (see next chapter for details). When we have a new mutant there is a non-zero

probability of loosing it due to the stochasticity of the dynamic, this probability depends

on the fitness of the mutant. We can easily add it to the simulation by introducing a

probability 1−π(ω) = e−2(ω−1) of throwing away each mutant before picking the fittest

one. ω is the fitness.

The following method can be used if we want to include it to the analytical analysis.

We define gSi (t) = 1 − e−t·NµS ·π(ωS
i ) as the probability of observing at least once the

single mutant i in a given time interval t. We do the same for doubles. We are reducing

the rate of mutation by a factor π(ω) which is the probability surviving generic drift.

Now we can define as the vectors:
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p⃗S : (p⃗S)i = gSi ·
i−1∏
j=1

(1− gSj ) (2.26)

p⃗D : (p⃗S)i = gDi ·
i−1∏
j=1

(1− gDj ) (2.27)

FDN = p⃗TS ·H · p⃗D +

(
1−

nD∏
j=1

e−t·NµD·π(ωD
j )

)
·

nS∏
j=1

e−t·NµS ·π(ωS
j ) (2.28)

where the last term is the probability of observing at least one DN mutant but zero

DN mutants. Note that with this setting FDN does not depend anymore only on the

rank but also and the fitness values of the mutants.
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Chapter 3

Wright Fisher model

3.1 Description

In order to simulate the evolution of a population on the fitness landscape we use the so

called Wright fisher model [31]. This model is commonly utilized in population genetics

since it captures several biological scenarios and is computationally more efficient than

alternative methods.

The Wright Fisher (WF) model describes a population with discrete, non-overlapping

generations and fixed populationN . In each generation the entire population is replaced

by the offspring from the previous generation. The offspring are generated considering

mutation, selection and genetic drift. We assume the population to be asexual and

haploid, which means that recombination does not occur. We define pi(t) as the pop-

ulation of the genotype i at step t. The wild-type is i = 1. Since the population is

fixed
∑

i pi(t) = N . Each individual has a probability per generation (rate) of mutating

its genotype. We can define a mutation matrix M such that each element mi,j repre-

sents the mutation rate from genotype i to genotype j. The frequency (population) of

genotype i after mutation is:

pmi (t+ 1) =
∑
j

mj,i · pj(t). (3.1)

The fitness landscape associates a fitness to each genotype, ωi is the fitness of the

genotype i. Selection is the process whereby individuals with a fitter genotype tend to

produce more offspring. The frequency of genotype i after mutation and selection is:

pm,s
i (t+ 1) =

ωi

ω̄
· pmi (t+ 1), (3.2)
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where ω̄ =
∑

i ωi · pmi (t + 1) is the mean fitness after mutation. Genetic drift is the

randomness of the system. In each generation the offspring population is drawn from the

parents population after mutation and selection making the dynamics nondeterministic.

Finally, we can compute the effect of genetic drift and compute the population at step

t+ 1:

[p1(t+ 1), p2(t+ 1), ...] ∼ Multinomial(N, [pm,s
1 (t+ 1), pm,s

2 (t+ 1), ...]). (3.3)

Genetic drift is very relevant in the early stage of a mutant because the population is

small and fluctuations can drive it to extinction even if it is a beneficial mutant. Com-

putationally, selection and mutation can be implemented with matrix multiplication

followed by a normalization. Drift can be implemented by drawing from a multinomial

random number generator. In figure 3.1 an oversimplified scheme of the Wright–Fisher

model.

Mutation MutationSel + Gt Sel + Gt

t = 0 t = 1 t = 2

WILD TYPE BENEFICIAL DELETERIOUS

Figure 3.1: WFM schematic. We consider an oversimplified dynamic in which there
are only 3 different genotypes: grey is the wild type, green is beneficial mutant, red
is deleterious mutant. In each time step mutation acts first and then selection and
genetic drift together. Mutation acts only on the wild type that can randomly change
into beneficial or deleterious. Selection and genetic drift are performed by a biased
sampling of the population after mutation. The weights of the sampling is the fitnesses
of the genotypes. The deleterious mutations are unlikely to survive while beneficial
mutant are likely to survive and spread. The dynamic is stochastic therefore a beneficial
can go extinct like the lower right one.
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The specific model we implement have two restrictions:

• The initial population is homogeneous, meaning that all the individuals have the

wild type genotype: p1(t = 0) = N .

• We consider a one step dynamic. This has two main implications. We stop the

simulation once a mutant reaches fixation. We allow only mutations from the wild

type to mutant genotypes. This restriction make the dynamic easier to analyze

and in the last chapter will allow us to use an empirical landscape.

In the panel 1 we show the pseudo-code of the model.

Algorithm 1 Pseudo code of the implementation of the Wright Fisher model.

Require: N ▷ population size
Require: ω⃗ ▷ fitness landscape
Require: M ▷ mutation matrix

n⃗← [N, 0, 0, ..., 0] ▷ initial population
while 1 do

n⃗←M · n⃗ ▷ mutation
s⃗← [n0ω0, n1ω1, ..., niωi] ▷ selection vector
p⃗← N (s⃗) ▷ normalization
n⃗← multinomial(N, p⃗) ▷ genetic drift
if max(n⃗) ≥ N − 1 and argmax(n⃗) ̸= 0 then
break
end if

end while
return argmax(n⃗)

Before going to the results section we define the mutation matrix M. Each term mij

of the mutation matrix M represents the mutation rate from the genotype i to the

genotype j. If we define µS as the mutation rate from the wild type to a single mutant

and µD as the mutation rate from the wild type to a double mutant we can write the

matrix as:

Mi←j =



0 ; if j ̸= 0 and i ̸= j

1 ; if j ̸= 0 and i = j

µS ; if j = 0 and j → i SN

µD ; if j = 0 and j → i DN

1− (nSµS + nDµD) ; if j = i = 0

(3.4)
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note that the mutant genotypes can not mutate. If we define the total mutation rate

U = nS · µS + nD · µD and the fraction of double de novo mutations f = nD · µD/U we

can rewrite the mutation matrix as follow:

Mi←j =



0 ; if j ̸= 0 and i ̸= j

1 ; if j ̸= 0 and i = j

U
nS
(1− f) ; if j = 0 and j → i SN

U
nD

f ; if j = 0 and j → i DN

1− U ; if j = i = 0

(3.5)

this second version is useful for two reasons: in the analytic part we can write the

equations in a more compact way; in the simulation we can change the ratio µ1/µ2 by

changing f without changing the total mutation rate U and vice versa.

In the figure 3.2 we show an example of a single Wright Fisher model simulation. On the

left we can appreciate the effect of genetic drift. The first two mutants are beneficial,

however they both go to extinction. On the left we can observe the competition between

two genotypes. The darkest is the fittest, because of that it has a selective advantage

on the other genotype.
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Figure 3.2: Wright Fisher model simulations. On the left we can see that the first
two beneficial mutant do not survive genetic drift but the third does. On the left the
competition between two genotypes.
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3.1.1 Results

Now that we have defined the population genetic model we can simulate adaptive

evolution. Before showing the results we briefly discuss about the values of the variables

(µs, ns, ...) that we are going to use in the model. We want them to be biologically

realistic. We consider the genotype at amino-acid level. We decided to consider only

beneficial mutant because are the only relevant mutants to the dynamic. Below the list

of all variables of the systems and their values:

• ns and nd: the first is the number of beneficial genotypes that can be reached

with a single nucleotide mutation, the second is the number of beneficial geno-

type that can be reached with a adjacent double nucleotide mutation. They were

computed in the following way. If we consider a gene of length L (number of nu-

cleotides), there are L/3 codons. For each codon, the average number of accessible

amino-acid with a SN mutation is 6 and is 16 with an adjacent double nucleotide

mutation. Some of the amino-acids that are accessible through a single mutation

are also accessible through a double mutation and so most of the time they will be

reached with a single mutation. For this reason we will consider 16−6 = 10 as the

number of accessible amino-acid with a double mutation. We assume that only the

1% of non synonymous mutations are beneficial so ns =
L
3
· 6 · 0.01 = 2L/100 and

nd = L/30. In our simulation we use L between 600 and 6000 which correspond

to nS between 12 and 120 and nD between 20 and 200.

• µs: the single point mutation rate is around µp
S = 10−10. We need the codon

mutation rate therefore we multiply the single point mutation rate by 3. Since we

are interested in the beneficial mutation rate we multiply the value by the average

probability of having a non-synonymous mutation with a SN mutation which is

0.75. So the single beneficial mutation rate becomes: µs = 3 · µp
S · PS(non syn) =

3 · 10−10 · 0.75 ≃ 2.25 · 10−10.

• µd: the ratio between the single and the double point mutation rate α = µp
D/µ

p
S

is between 10−2 and 10−3. For the same reasons described in the previous point:

µd = 3 · µp
D · PD(non syn) = 3 · α · 10−10 · 0.99; where 0.99 is the probability of

having a non-synonymous substitution with double nucleotide mutation.

• Beneficial mutation supply and N : we chose the beneficial mutation supply to be

between 10−3 and 10. The beneficial mutation supply is defined as U · N . U is

the total mutation rate: U = nS · µS + nD · µD. In the simulation we increment

the beneficial mutation supply incrementing only the population size N .
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• Random fitness landscape: as we did for the simple model we draw the SN fitness

landscape [ωS
1 , ..., ω

S
nS
] ∼ fS(ω) and a DN fitness landscape [ωD

1 , ..., ω
D
nD

] ∼ fD(ω)

from two distributions fS(ω), fD(ω).

Now that we have defined all the variables we can move to the simulation. For a given

fitness landscape and a given value of the mutation supply we run the WFM simulation

several times and we compute the probability of a double to fixate first FDN . In figure

3.3 we show FDN for different landscapes (grey) and their average (black) ⟨FDN⟩. We

computed ⟨FDN⟩ for two values of α. In this case we are drawing the fitness values for

singles and doubles from the same exponential distribution with mean λ = 0.001.
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Figure 3.3: Probability of fixation of a double mutant (FDN) for two different values
of α = µD/µS. In grey different random landscapes. In black the mean over 100
landscapes. The mean is monotonically increasing. For this two figures we used nS =
12, nD = 20.

The two curves have the same shape and the value of FDN ranges between 0.2% and

5.5% for α = 10−3 and between 1% and 12% for α = 5 · 10−3. As mentioned during the

introduction the value of α depends on the species we are considering and it is a very

important value for determining the relevance of double double nucleotide mutations.

In general we can say that if FDN is of the order of 1 − 10% double can be non-

negligible and can effect the trajectory of adaptive evolution. This result is sensible to

the parameters we chose. In the next table we summarize the value of ⟨FDN⟩ for the
two values of α:
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Parameters Mutation supply

α nS nD 10−2 10−1 10−0 101

1 · 10−3 12 20 0.2% 0.3% 0.9% 5.5%

5 · 10−3 12 20 1% 1% 3% 12%

3.2 Analytical approximations

3.2.1 Weak mutation regime

We first want to analytically compute the probabilities of fixation in the weak mutation

regime⇒ N ·U ≪ 1. We use a result from this papers [32, 33]. Consider a homogeneous

population with fitness ωwt = 1, if a mutation occurs, the mutant can be beneficial

ωi > 1 or deleterious ωi < 1. If it is deleterious it goes extinct after a few steps due to

natural selection, if it is beneficial it can earthier go extinct or survive genetic drift. As

explained before genetic drift is very important in the first few generations of a mutant

because its population is small and the stochasticity can drive it to extinction (see left

panel fig 3.2 left). Surviving genetic drift means to reach a population size such that

the fluctuations of the dynamics become negligible. We define the selection coefficient

si = (ωi − ωwt)/ωwt = ωi − 1. The probability of surviving genetic drift is:

πi =

1− e−2si s > 0

0 s ≤ 0
(3.6)

the probability of surviving genetic drift is the probability of not going extinct due to

genetic drift. In the weak mutation regime it is unlikely to have two or more mutants

competing in the same time (fig 3.2) and so if a mutant survives genetic drift it reaches

fixation: Pi(fix|de novo) = πi. Finally we can compute the probability that i fixates

first multiplying the last term by the mutation rate of the mutant and normalizing:

Pi =
µi · πi

µS

∑
SN πi + µD

∑
DN πi

(3.7)

FDN =
µD

∑
DN πi

µS

∑
SN πi + µD

∑
DN πi

=
f · ⟨πi⟩DN

f · ⟨πi⟩DN + (1− f) · ⟨πi⟩SN
. (3.8)

Notice that if we draw the single and double landscapes from the same distribution we

expect ⟨πi⟩SN = ⟨πi⟩DN leading to FDN = f . Remember that πi is 0 for deleterious
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mutations. If we consider si ≪ 1 then πi = 2si. Thus we can rewrite equation 3.8 as:

FDN =
f · ρD · ⟨si⟩DN

f · ρD · ⟨si⟩DN + (1− f) · ρS · ⟨si⟩SN
, (3.9)

where ρS, ρD are the fraction of beneficial singles and double. In this way the value of

FDN in the weak mutation regime depends on the means of the beneficial distributions

of fitness effect.

3.2.2 Clonal interference regime

We aim to incorporate the clonal interference regime into our analytical model [17]. In

this regime, there is a non-negligible probability that two mutants will be in competition

with each other (fig 3.2). We take into account the amount of interfering mutants in

our model to add competition. Consider a mutant with selection coefficient si the time

(number of generations) until fixation is on average:

τi =
N · logN
log(1 + si)

. (3.10)

During this time interfering mutants can occur. The expected number of mutants with

genotype j with sj > si that arise during τi and survive genetic drift is:

λi,j = πj · µj · τi. (3.11)

The overall number of interfering mutations is thus:

Λi =
∑

{j|sj>si}

λi,j (3.12)

The probability that the mutant i reaches fixation is the probability that it survives

genetic drift times the probability that no better mutants arise. If we assume that

number of interfering mutants is Poisson distributed with mean Λi we can write:

Pi(fix|de novo) = Pi(surv. gen. drift) · Pi(no better mutants arise) (3.13)

= πi · e−Λi (3.14)

As we did with for the WM regime, we can now define Pi as the probability that the

mutant i fixes first.

Pi =
µi · πi · e−Λi∑
k µk · πk · e−Λk

; (3.15)
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and:

FDN =
∑
DN

Pi =
f · ⟨πi · e−Λi⟩DN

f · ⟨πi · e−Λi⟩DN + (1− f) · ⟨πi · e−Λi⟩SN
. (3.16)

If µj ·N ≪ 1⇒ λi ∝ µiN → 0, the equations reduce to the one previously found for the

WM regime. As we increase the mutation supply we increase the number of interfering

mutations Λi(si) and the term e−Λi(si) decreases. If we treat it in this fashion, equation

3.8 is the same as equation 3.16 with discount factor that depends on the selection

coefficient of the mutant. In the figure 3.4 we can see how the discount factor e−Λi(si)

behaves for different regimes of the mutation supply.

s
0

1

e
(N

,U
)

Low NU Inter. NU High NU

Figure 3.4: e−Λi(si) for different regimes of the mutation supply. For small values of the
mutation supply the number of interfering mutation is almost zero. Therefore e−Λi(si) =
1 independently on the selection coefficient. For intermediate values competition is on
and so the number of interfering mutation larger for smaller values of the selection
coefficient. For large values of the mutation supply all the mutants are always observed
and so the discount factor is 0 for all the mutants and 1 for the fittest mutant.

This model is an extension of the weak mutation regime one and does not work for

high values of the mutation supply. The biggest approximation is that the selection

coefficient si is computed with respect to the wild type ωwt = 1. If a mutation occurs

on top of another the value of si is not accurate anymore. This has consequences on

the the probability of surviving genetic drift π(si) and the average time until fixation τi

which will be both inaccurate. As a result, the number of steps needed for a genotype

to reach fixation will increase, leading to an larger number of interfering mutants that

will favor genotypes with higher fitness. The model fails for large value of the mutation

supply because too many mutations arise on average at each step. The accuracy of

the model is also related to N since increasing N will make τi increase. Because of

that more mutations then expected will occur before fixation making the model less
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accurate.

3.2.3 Results

We want to test how accurate our models are. First of all, with a given fitness landscape,

we run the Wright Fisher model for several times and we compute Pi for each genotype.

We compute Pi also using the weak mutation approximation and the clonal interference

approximation. We do it for three values of the mutation supply to highlight the

difference of the two models and their accuracy. In figure 3.5 the comparison between

the model predictions and the simulation predictions in three different regimes.

As we expected in the weak mutation regime (first panel) both models are accurate.

In the clonal interference regime (central panel) we add competition to the dynamic

and the WM model fails to predict the values overestimating the probabilities for small

value of the selection coefficient and vice versa. For high values of the mutation supply

both models fail. Again we want to stress the fact that the accuracy does not depends

only on the mutation supply but also on N and si.

In figure 3.6 we plot the probability that a double fixates first FDN as a function of the

beneficial mutation supply N · U computed with simulation and with the two models.
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Figure 3.5: Comparison between models and simulation. Each dot is a genotype. On
the x axis the probability of fixating first Pi computed with the Wright Fisher Model.
On the y axis computed with the WM model (blue) and CI model (green). In each
panel the values were computed using different values of the mutation supply. For the
simulation we used nS = 120, nD = 180, λS = λD = 0.1.
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Figure 3.6: Probability that a double fixates first FDN as a function of the mutation
supply. In black computed with the WF model, in blue with the WM model and in cyan
with the CI mode. For the simulation we used nS = 20, nD = 30, λS = λD = 0.001.

As before both models are accurate in the weak mutation regime and the CI model, in

this case, is accurate until N · U = 0.1.

3.3 Mean fitness jump

As last analysis we want to compute the mean fitness jump increment. The goal is

to quantify the fitness advantage of allowing adjacent double nucleotide mutation. We
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define mean fitness jump as:

∆W =
∑
i

Pi · ωi. (3.17)

In order to quantify the advantage of having doubles we compute the mean fitness

jump considering only single nucleotide mutations ∆WS and considering both single

and double mutations ∆WSD. At this point we can compute the relative mean fitness

increment as:

∆ =
∆WSD −∆WS

∆WS

. (3.18)

In figure 3.7 on the top panel is reported the average ⟨∆⟩ (over 100 landscapes) as

a function of the mutation supply for two values of α. In the weak mutation regime

N · U ≪ 1 and ⟨FDN⟩ ≃ 0.2% − 1% therefore the contribution of doubles is small.

Furthermore, all the beneficial doubles have a non zero probability of fixation. Because

of this two reasons and of the fact that fS(ω) = fD(ω), the average of the relative

mean fitness jump is almost zero ⟨∆⟩ ≃ 0%. The advantage of allowing adjacent

double nucleotide mutations with NU = 10 is ≃ 8% for α = 5 · 10−3 and ≃ 4.5% for

α = 10−3. This values are comparable with the the values of ⟨FDN⟩ and depending the

the mutation supply and on α the doubles can can also influence the overall fitness of

the population.

The next step is to investigate how the relative mean fitness jump changes for different

values of nS, nD. In order to compare dynamics with different values of nS, nD we

decided to compute ⟨FDN⟩ and ⟨∆⟩ as a function of the population N instead of the

mutation supply N · U . We have to do it in this way since increasing nS, nD increase

the total mutation rate U . In figure 3.7 on the bottom we plotted ⟨FDN⟩ and ⟨∆⟩ as
a function of the population N , for different values of the beneficial mutants. We can

summarize the results for large population N = 1012 in the following table:

nS, nD ⟨FDN⟩ ⟨∆⟩
12, 20 12% 14%

120, 200 8% 4%

We can see that increasing the number of beneficial slightly decreases ⟨FDN⟩ and sub-

stantially decreases ⟨∆⟩. This is due to the finiteness of two random landscapes. Since

nS < nD and fS(ω) = fD(ω) = Exponential, the fittest double is on average fitter than

the fittest single. For large value of N the competition is between the fittest single ω̃S
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and the fittest double ω̃D. We can rewrite FDN and ∆ as:

FDN ≃ P (ω̃D) (3.19)

∆ ≃ FDN ·
ω̃D − ω̃S

ω̃S

(3.20)

For small number of beneficial mutants it is more likely that the singles’s fitness values

are not drawn from the tail of the distribution but some doubles’s fitness values are.

This leads (on average) to a large relative difference ω̃D−ω̃S

ω̃S
between the fittest double

and the fittest single. Instead for larger values of beneficial also some singles’s fitness

values are drawn from the tail. This leads (on average) to a smaller relative difference

between the fittest double and the fittest single. Because of that the value of ⟨FDN⟩ is
smaller for larger values of nS, nD. This effect is even stronger for ⟨∆⟩ because both

terms ⟨FDN⟩ and ω̃D−ω̃S

ω̃S
are smaller.

This explain what we observe in the figure. We can conclude by stating that the number

of beneficial mutants is a relevant parameter of the dynamic. Note that what we have

described is true for exponential distribution but not for heavy tail distributions.
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Figure 3.7: Mean fitness jump increment. The mean fitness jump increment is defined
as ∆ = ∆WSD−∆WS

∆WS
. We compute the average ⟨∆⟩ over 100 landscapes. On the top

panel we compute ⟨∆⟩ as a function of the mutation supply for different values of α.
Increasing the value of α increases the value of ⟨∆⟩ .On the two bottom panel we show
⟨∆⟩ (left) and ⟨FDN⟩ (right) as a function of N for different values of nS, nD. As we
can see increasing the values of nS, nD decreases the value of ⟨∆⟩ and ⟨FDN⟩.



Chapter 4

Empirical landscape

As last analysis we want to simulate adaptive evolution on a empirical fitness land-

scape. In order to build this landscape we use the results of two papers [34, 35]. The

subject of both of this studies is the TEM-1 β-lactamase gene that is a useful model for

investigating evolution and the fitness effects of mutations. TEM-1 is a gene that con-

fers high resistance to penicillin antibiotics such as ampicillin (Amp). Thus, if we put

E. coli cells carrying TEM-1 in an environment with Amp, alleles conferring a higher

ability to degrade the antibiotic will be advantaged . Consequently, Amp resistance

is a key determinant of the fitness of an organism in the presence of Amp, although

assessing TEM-1 fitness by measuring Amp resistance does not account for fitness vari-

ations unrelated to antibiotic resistance. The quantities used to estimate the fitness

of a given allele is the minimum inhibitory concentration MIC. MIC is defined as the

lowest concentration of a chemical, usually a drug, which prevents visible growth of

bacteria. In this case the drug is the Amp.

These are the main results of the two studies:

• In the first paper they measured the fitness of point mutations and codon sub-

stitution. They were able to measure 98.2% (2536/2583) of all single nucleotide

mutations and 83.9% (15167/18081) of all codon substitutions in the TEM-1 gene.

• In the second paper they measured the fitness of adjacent double amino-acid

substitution. They were able to measure the 12.0% (12374/102855) of all possible

adjacent double amino-acid substitutions.

Both paper are from the same lab and they took care of calibrating the results (fitness

values) of the second paper on the results of the fist one. For this reason we can combine

them together to obtain an empirical fitness landscape which involves single nucleotide

mutations and adjacent double nucleotide mutations.

41



4.1 Dataset analysis

This is how the first dataset looks like:

Pos WT codon WT AA Mut Codon Mut AA Fitness

0 ATG M GCA A 0.002

0 ATG M TGC C 0.009

... ... ... ... ... ...

287 TGG W TAT Y 0.388

where:

• Pos is the position of the codon involved in the mutation.

• WT codon is the wild type codon.

• WT AA is the wild type amino-acid.

• Mut Codon is the mutant codon.

• Mut AA is the mutant amino-acid.

• Fitness is the fitness value of the mutant, ω = 1 is the wild type fitness.

From this dataset we can also obtain the genotype of the wild type which is composed

of 288 codons. If we look into the dataset we notice that mutations with different codon

substitution but with the same amino-acid substitution have almost the same fitness

value. Because of that we can reduce the dataset by looking at the fitness values at

amino-acid level. The new fitness values are computed as the mean of all the mutations

with same amino-acid mutant in the same position. Doing this we increase the number

of fitness values from 85% (codon substitutions) to 98% (amino-acid substitutions).

This is how the new dataset looks like:

Pos WT AA Mut AA Fitness

1 M A 0.002

1 M C 0.009

... ... ... ...

288 W Y 0.388

This the second dataset:
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Pos WT AA 1 WT AA 2 Mut AA 1 Mut AA 2 Fitness

1 M S R C 0.003

... ... ... ... ... ...

287 H W L A 0.008

It is very similar to the first one but with two amino-acid substitutions for each row.

Pos is the position of the first aminoacid.

We now describe how we create the empirical landscape. Starting from the single nu-

cleotide mutations. We compute all the possible SN substitutions 288 · 3 · 3 = 2592.

For each substitution we compute the mutant amino acid (Mut AA in the table). If

the mutation is synonymous (WT AA = Mut AA) we assign fitness 1 to the mutant.

If the mutation is non-synonymous we check in the fist dataset if there is the fitness

value of the mutant. If the value is not the dataset we assign fitness 0 to the mutant.

If the new codon is a stopping codon we assign fitness 0 to the mutant.

For DN mutations there are a total of (288 · 3− 1) · 9 = 7767 possible adjacent double

nucleotide substitutions. As we did for the single, we compute all the possible substitu-

tions. For each substitution we check whether it is synonymous. If yes we assign fitness

1 to the mutant. If not we check if it is a single or double amino-acid substitution.

In the first case we check in the fist dataset if there is the fitness value of the mutant.

In the second case we check in the second dataset if there is the fitness value of the

mutant. In figure 4.1 a schematic of this process.

4.2 Results

We summarize the results in the following table:

Total Data ⟨ω⟩ Beneficial ⟨ωB⟩
SN 2592 2562 (99%) 0.67 473 (18%) 1.15

DN 7767 6960 (90%) 0.47 1421 (18%) 1.17

There are a total of 288 · 3 · 3 = 2592 possible single substitutions. We have the fitness

of 2562 of them which correspond to the 99%. The 24% of the single mutants are

synonymous. This is due to the fact that the mutation on the third nucleotide of a

codon are often synonymous. The mean fitness of the single mutants ⟨ω⟩ = 0.67. The

mean fitness of the single mutants without considering the missing values is 0.70. If

we consider only beneficial mutants it becomes ⟨ωB⟩ = 1.15. Beneficial mutant are the

18% of the total mutations.
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Figure 4.1: Schematic of the of empirical landscape building process. We calculate all
the possible single and double nucleotides substitution. If a substitution leads to a
synonymous substitution we assign fitness equal to 1 to the mutant. If a substitution
leads to a single aminoacid substitution we check in the first dataset the fitness value
of the mutant. If a substitution leads to a double aminoacid substitution we check in
the second dataset the fitness value of the mutant. If in the first and in the second
dataset there is not the fitness of the mutant we assign fitness equal to 0. At the end
of this process we have the list of all the possible single mutants and double mutants
and their fitness values.

The number of possible adjacent double nucleotide mutation is (288 · 3− 1) · 9 = 7767.

We have the fitness values of 6968 of them which correspond to the 90%. Most of the

missing values are double mutations across two codons that lead to double amino-acid

mutations. In details there are 691 double amino-acid mutations and we have data of

only 107 of them. The mean fitness of the double mutants 0.47. The mean fitness

of the double mutants without considering the missing values is 0.55. If we consider

only beneficial mutants it becomes 1.17. Beneficial mutant are the 18% of the total

mutations. It is interesting to observe that even if the mean fitness of the doubles is

smaller than the mean fitness of the singles, if we restrict this analysis to the beneficial

the result is the opposite. This is relevant for the Wright fisher dynamic where only

the beneficial mutants matter.

We visualize the single landscape and the double landscape in figure 4.2.
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Figure 4.2: Empirical fitness landscapes. On the left we visualize the whole fitness
landscapes. On the right we visualize only the beneficial fitness landscape. In red the
mean of the distribution and in orange the median. On both figures there is a double
mutant that is outside the range; we plotted it only in the beneficial distribution and
it is the black dot in the top right corner.

4.2.1 Simulation on empirical landscape

We can now run the Wright Fisher model simulation on the empirical landscape. The

parameters used in the simulation are the following:

µD

µS

= α = {10−3, 5 · 10−3}, µS = 10−10, µD = α · 10−10, nS = 2592, nD = 7767.

We compute FDN as a function of the mutation supply for both values of α. In the

figure 4.3 there are both plots side by side.

We can see that the two curves (black) have the same shapes, the only difference is their

absolute value which is different by a factor of 5. As we look closely to the comparison

of the two landscapes 4.2 we notice that the fittest mutant is a single with fitness value

3.14 and the second fittest is a single with fitness value 1.18. There are also three

double mutants with fitness 1.18 belonging to the same amino-acid substitution of the

best single. For large value of the mutation supply the fittest double is the only one

contributing to FDN as described in the simple model part.

For α = 10−3 the probability of fixation of a double mutant FDN is 0.32% in the week

mutation regime. Note that the fraction of double de novo mutations f = µD·nD

µD·nD+µS ·nS
≃
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Figure 4.3: Probability of fixation of a double mutant (FDN) for two different values
of α = µD/µS. In blue the weak mutation model and in cyan the clonal interference
model. The shapes are identical and the absolute values is just multiplied by 5.

0.29% which is slightly smaller than FDN . This is due to genetic drift, indeed the average

fitness of beneficial is larger in doubles than singles and the fraction of beneficial mutant

is the same. In the clonal interference regime the value of FDN is between the 1% and

2%.

For α = 10−3 the probability of fixation of a double mutant FDN is 1.59% in the week

mutation regime. The fraction of double de novo mutations f ≃ 1.48%. In the clonal

interference regime the value of FDN is between the 5% and 10%.

As in the previous chapter, the relevance of adjacent nucleotide mutations is strictly

related to the value of α and to the regime (value of the mutation supply).

As last analysis we compared the mean fitness jump computed considering only

single and considering single and doubles. We plot the results for two different values

of α in figure 4.4. As said before the fittest single’s fitness is 1.80 while the fittest

double’s fitness is 3.14. This is the reason why the mean fitness jump percentage

increment (y axis) grows substantially as the mutation supply increases.
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Chapter 5

Conclusion

The main goal of this project is to study the effect of multi nucleotide mutations on

adaptive evolution. Multi nucleotide mutations have a rate that is 10−3 − 10−2 times

the rate of single nucleotide mutations. Although MNMs occur much less frequently,

they offer the advantage that substantially more genotypes can be reached through one

mutation event. The project focuses on a subclass of multi nucleotide mutations which

is adjacent double nucleotide mutations (doubles). This kind of mutations involves

two neighboring nucleotides. The number of beneficial doubles is 5/3 the number of

beneficial singles. Because of that, if we assume a random landscape with the same

DFE for singles and doubles, it is more likely that the fittest genotype is a double. The

probability of fixation of a genotype depends on its rate of mutation and its fitness; as

the mutation supply increases the fitness becomes more and more important. The trade

off between mutation rate and fitness is the crucial point of this study. One important

quantity that allow us to estimate the relevance of doubles is the probability that a

double fixates first FDN . Estimating FDN means estimating how frequently evolution

acts via adjacent double nucleotide mutations.

Before employing a population genetic model we introduce the simple model. The

latter enables us to gain a qualitative understanding of the dynamics and relevant

details. Thanks to it we can study the behavior of FDN and its average ⟨FDN⟩ at
different mutation supply regimes (assuming fS(ω) = fD(ω)). For small value of the

mutation supply the value of FDN does not depend on the landscape but only on

nS, nD and their rates µS, µD. For large values of the mutation supply competition is

only between the fittest single and the fittest doubles. Since nD > nS it is more likely

that the fittest double is larger than the fittest single. For this reason ⟨FDN⟩ increases
monotonically with the mutation supply. For intermediate values of the mutation supply

⟨FDN⟩ is constant. In this regime FDN has a behavior that depends on the details of
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the landscape and can be also non monotonic.

After that we introduce and implement the Wright Fisher model. We study the value

FDN and of its landscapes average ⟨FDN⟩ as a function of the mutation supply N · U .

The results for a random landscape with the same DFE for singles and doubles are

summarized in the following table:

Parameters Mutation supply

α nS nD 10−2 10−1 10−0 101

1 · 10−3 12 20 0.2% 0.3% 0.9% 5.5%

5 · 10−3 12 20 1% 1% 3% 12%

This results suggest that the frequency of fixation of double adjacent nucleotide mu-

tations can be non-negligible for large value of Nt. Afterwards, we analyze the effect

of doubles on the mean fitness jump. We compute the relative difference between the

mean fitness jump computed considering only singles and considering doubles and sin-

gles. The results for a random landscape with the same DFE for singles and doubles

are summarized in the following table (NU = 10, nS = 12, nD = 20):

α ⟨∆⟩
1 · 10−3 4.5%

5 · 10−3 8%

Also in this case the results suggest that for large values of the mutation supply NU the

doubles can be non-negligible. To conclude this part we study the how of the number

of beneficial mutants effects the relative mean fitness jump increment ⟨∆⟩. The results
show that, for exponential DFEs, ⟨∆⟩ decreases as the number of beneficial mutants

increases. A possible extension of this part should be to investigate how ⟨FDN⟩ and
⟨∆⟩ changes if we use a heavy tail distribution as DFE.

Finally, we study evolution on an empirical fitness landscape. The landscape is of the

TEM-1 gene. We compare the single’s fitness landscape and the double’s fitness land-

scape. The double mutants are on average less fit than the single mutants. However,

if we restrict the analysis on the beneficial mutants the result is the opposite. If we

compare the single’s beneficial fitness landscape and the double’s beneficial fitness land-

scape, the latter has a fatter tail and the fittest genotype is a double. By simulating

the Wright Fisher model on the empirical landscape we obtain the following results:

α NU = 10−3 NU = 10−3

1 · 10−3 0.3% 2.5%

5 · 10−3 1.5% 12%
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NU = 103

α ⟨∆⟩
1 · 10−3 3%

5 · 10−3 15%

Even empirical landscape results suggest that double adjacent nucleotide mutations can

be non-negligible for large value of Nt. Could be interesting to study other empirical

landscapes to see how general are this results.

Eventually one possible way to take after this project could be to study the influence

of adjacent nucleotide mutations on evolution on a whole random landscapes, without

the one step restriction. Another way of extend this work could be to quantify the

effect of valley crossing via double mutations.

50





Bibliography

[1] Günter P. Wagner and Jianzhi Zhang. “The pleiotropic structure of the geno-

type–phenotype map: The Evolvability of complex organisms”. In: Nature Re-

views Genetics 12.3 (2011), pp. 204–213. doi: 10.1038/nrg2949.

[2] Patrick C. Phillips. “Epistasis — the essential role of gene interactions in the

structure and evolution of Genetic Systems”. In: Nature Reviews Genetics 9.11

(2008), pp. 855–867. doi: 10.1038/nrg2452.

[3] Ben Lehner. “Genotype to phenotype: Lessons from model organisms for human

genetics”. In: Nature Reviews Genetics 14.3 (2013), pp. 168–178. doi: 10.1038/

nrg3404.

[4] Carl T. Bergstrom and Lee Alan Dugatkin. Evolution. Norton amp; Co., 2012.

[5] Sewall Wright et al. “The roles of mutation, inbreeding, crossbreeding, and selec-

tion in evolution”. In: (1932).

[6] J. Arjan de Visser and Joachim Krug. “Empirical fitness landscapes and the

predictability of evolution”. In: Nature Reviews Genetics 15.7 (2014). doi: 10.

1038/nrg3744.

[7] David M. McCandlish. “Visualizing Fitness Landscapes”. In: Evolution 65.6 (2011),

pp. 1544–1558. doi: 10.1111/j.1558-5646.2011.01236.x.

[8] J. F. Kingman. “On the properties of bilinear models for the balance between

genetic mutation and selection”. In: Mathematical Proceedings of the Cambridge

Philosophical Society 81.3 (1977), pp. 443–453. doi: 10.1017/s0305004100053512.

[9] Uri Obolski, Yoav Ram, and Lilach Hadany. “Key issues review: Evolution on

rugged adaptive landscapes”. In: (2017). doi: 10.1101/112177.

[10] Stuart Kauffman and Simon Levin. “Towards a general theory of adaptive walks

on rugged landscapes”. In: Journal of Theoretical Biology 128.1 (1987), pp. 11–45.

doi: 10.1016/s0022-5193(87)80029-2.

52

https://doi.org/10.1038/nrg2949
https://doi.org/10.1038/nrg2452
https://doi.org/10.1038/nrg3404
https://doi.org/10.1038/nrg3404
https://doi.org/10.1038/nrg3744
https://doi.org/10.1038/nrg3744
https://doi.org/10.1111/j.1558-5646.2011.01236.x
https://doi.org/10.1017/s0305004100053512
https://doi.org/10.1101/112177
https://doi.org/10.1016/s0022-5193(87)80029-2


[11] Stuart A. Kauffman and Edward D. Weinberger. “The NK model of rugged fitness

landscapes and its application to maturation of the immune response”. In: Journal

of Theoretical Biology 141.2 (1989), pp. 211–245. doi: 10.1016/s0022-5193(89)

80019-0.

[12] Johannes Neidhart, Ivan G Szendro, and Joachim Krug. “Adaptation in tun-

ably rugged fitness landscapes: The rough mount fuji model”. In: Genetics 198.2

(2014), pp. 699–721. doi: 10.1534/genetics.114.167668.

[13] Takuyo Aita et al. “Analysis of a local fitness landscape with a model of the

Rough Mt. fuji-type landscape: Application to prolyl endopeptidase and Ther-

molysin”. In: Biopolymers 54.1 (2000), pp. 64–79. doi: 10.1002/(sici)1097-

0282(200007)54:1&lt;64::aid-bip70&gt;3.0.co;2-r.

[14] John H. Gillespie. “Some properties of finite populations experiencing strong se-

lection and weak mutation”. In: The American Naturalist 121.5 (1983), pp. 691–

708. doi: 10.1086/284095.

[15] H. Allen Orr. “The genetic theory of adaptation: A brief history”. In: Nature

Reviews Genetics 6.2 (2005), pp. 119–127. doi: 10.1038/nrg1523.

[16] Scott William Roy. “Probing evolutionary repeatability: Neutral and double changes

and the predictability of evolutionary adaptation”. In: PLoS ONE 4.2 (2009). doi:

10.1371/journal.pone.0004500.

[17] Philip J. Gerrish and Richard E. Lenski. “The fate of competing beneficial muta-

tions in an asexual population”. In: Mutation and Evolution (1998), pp. 127–144.

doi: 10.1007/978-94-011-5210-5_12.

[18] John W Drake. “Contrasting mutation rates from specific-locus and long-term

mutation-accumulation procedures”. In:G3 Genes—Genomes—Genetics 2.4 (2012),

pp. 483–485. doi: 10.1534/g3.111.001842.

[19] Martin Marinus. “Faculty opinions recommendation of rates and mechanisms of

bacterial mutagenesis from maximum-depth sequencing.” In: Faculty Opinions –

Post-Publication Peer Review of the Biomedical Literature (2016). doi: 10.3410/

f.726446730.793521043.
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