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Abstract

Tandem repeat proteins (TRPs) are a widespread class of non globular proteins involved in
many biological processes characterized by the repetition of structural and sequence elements.
Mutations of the native structure of TRPs can lead to severe diseases such as the Huntigton
disease or the spinal and bulbar muscular atrophy. In order to provide significance to the vari-
ants associated to those disease conditions it is crucial to provide a functional characterization
of the responsible proteins, this is made possible by a thorough analysis of their sequences and
structures.
Nowadays, a large amount of structural data is available in the Protein Data Bank (PDB)

repository. The PDB provides structurally determined protein three-dimensional structures
and it is freely available. However, despite the amount of available structural data, the majority
of proteins are only known at the sequence level. Therefore, it is extremely important to iden-
tify sequence properties that can be used to transfer structural and functional knowledge start-
ing from sequence analysis. The identification of repetitive elements, the units, inside TPRs is
one of the fundamental tasks to understand the function of this class of proteins.
Despite the high structural similarity of repetitive elements inside a single TRP, the corre-

sponding amino acids sequences are highly degenerated. Few conserved key residues are re-
sponsible for the correct folding of specific structural motifs, while the remaining positions are
substituted by residues with similar physical-chemical properties and are less subjected to the
pressure of the natural selection occurring during evolution and therefore more degenerated.
On the other hand, the structure of these repeated elements in TPRs are more conserved

throughout evolution because their structural conformation is intrinsically associated to their
function, which in turn is the real subject of the natural selectionpressure. Therefore, the struc-
ture is more informative and more useful to reliably identify repeated patterns. The identifica-
tion and the detection of structural repeated elements inside TRPs is often performed visually
by expert biologists. However, the process is very time consuming and repetitive. Moreover,
the high variability of protein structures and the complexity of their internal symmetry make
the identification of the repeated elements very challenging. Also, the repeated elements often
have a variable length and contain insertions and deletions.
In the last decade, a number of automaticmethods to analyze the internal symmetry ofTRPs

have been developed. One of the most accurate is RepeatsDB-Lite a predictor able to identify
repetitive units and assign a class based on the topology of the region starting from the protein
structure as input. Nevertheless, the average time required to run the algorithm is about ten
minutes, that makes the analysis of the entire PDB repository unpractical. The execution time
is even more problematic when applied to predicted structures, such as those provided by Al-
phaFold which are three order of magnitude larger than the number of structures available in
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the PDB, totalling more than 200 million predicted structures.
In this thesis project I have developed a new algorithm that outperforms RepeatsDB-lite in

terms of accuracy and is one order of magnitude faster. The algorithm performs an heuristic
search against a library of repeated structural elements to identify the most likely repetition
pattern, then a filtering step to optimize the position of the repetitive modules and assign the
class. In the thesis I also provided an analysis of the structural library used by the algorithm
in the first step and a strategy to reduce the redundancy of the examples without losing their
structural representativeness.
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1
Introduction

This chapter main aim is to give a brief biological introduction and to explain the motivations
of this work. First i will give a short introduction about proteins, the main building blocks
of life. After that i will explain why the process of folding is so essential to make most of the
protein functional and i will show some examples of structural motifs that are common in
many polypeptides. Then i will shift the focus on non-globular proteins. in particular tandem
repeats proteins and their classification in RepeatsDB. Finally i will explain how we can com-
pare structures and i will show some metrics that are usually used in the literature to establish
quantitatively the degree of similarity between two structures.

1.1 Aminoacids

Before going through a brief biological description of proteins, it’s worth to define what is an
aminoacid, themain componentof aprotein sequence.Innaturemore thanhundred aminoacids
exist but only 20 of them appear in the genetic code: each of them has some physical/chemical
properties that are responsible fordetermining thefinal structure of theprotein. Each aminoacid
consist of an α-carbon to which other components are attached as depicted in figure 1.1:

• A hydrogen atom

• A basic amino group

• An acid carboxyl group (-COOH)
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• A R group which is variable for each aminoacid providing peculiar physical/chemical
properties.

Aminoacids are linked together during protein synthesis occuring in ribosomes and they are
usually divided in two broad categories:

• Hydrophobic aminoacids have a very low propensity to get in contact with water

• Polar or charged aminoacids that are usually more hydrophilic.

Figure 1.1: Aminoacids general structure

Those properties define some common behaviours taken in protein folding: aspartate, argi-
nine and glutamate which are strongly hydrophobic and charged aminoacids have a very high
probability of having their surfaces exposed to the solvent, thus they will be found in coiled re-
gions and in loops where they will give more flexibility to the protein chain. Other aminoacids,
instead, such as proline are hydrophobic, thus they have a higher probability of being buried
in the protein core even if loop regions of α-helices are often enriched in proline aminoacids.

1.2 Proteins

Proteins are essential biomolecules composed ofmonomers called aminoacids linked by strong
peptide bonds. They are involved in almost all the biochemical reactions carried out by our
organism and they are called polypeptides when they are made of less than 100 aminoacids,
oligopeptides when they are very small and composed of just 20-30 aminoacids and proteins
when they are instead made of more than 100 aminaocids. Often proteins are organized in
long proteins chains having a unique aminoacid sequence also called primary structure. The
primary structure is usually represented as a sequence of characters in which each character
encodes a different aminoacid determining the final folded structure of the molecule. They
can assume three fundamental types of function:
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• Structural: they mantain the structure of cells and organs. An example is collagen rep-
resenting 25% to 35% of our body whole proteome

• Catalytic: they are involved inmany biological processes speeding up chemical reactions

• Transport: given the hydrophobicity of the phospholipid bilayer they can interact with
substances outside the cell membrane helping them to pass and get inside.

Usually proteins are synthesized by our organism in organelles located inside the cell and
called ribosomes. TheDNAbiomolecule ismade of a sequence ofmolecules called nucleotides:
cytosine (C), guanine (G), adenine (A) and thymine (T). Each subsequenceofDNAinvolved in
encoding for a protein is known as gene. Genes are first transcribed into pre-messenger RNA
inside the nucleus of the cell by a specific protein called RNA polymerase and some specific
transcription factors. Before going through translation, the pre-mRNA is still processed inside
the nucleus undergoing to different post-translational modifications (splicing, 5’ cap and poly-
A addition) which are essential to obtain a stable and mature RNA. At this point, the mRNA
migrates in the ribosomes where the actual translation of RNA takes places. The mRNA is
read in triplet called codons encoding for a specific aminoacid: each codon is then matched
with an anticodon located on a trasfer RNAmolecule carrying a specific aminoacid which will
become a new building block for the newly translated polypeptide.

Figure 1.2: The central dogma of molecular biology
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1.3 Principles of protein folding

The linear aminoacid unfunctional sequence produced by the ribosome is called primary struc-
ture because it determines the native conformation the peptide will take. The specif aminoacid
sequences (not the aminoacid composition itself) encodes for the final three-dimensional struc-
ture of the protein and thewhole pathway necessary to achieve that state. As a consequence the
folding pathway of two identical protein sequences will be very similar even if sometimes some
environmental factors can modify the process. Folding is a spontaneous process taking place
in all proteins either during the biosynthesis of the protein by ribosomes of after the synthe-
sis of the polypetide is completed, driven by hydrophobic interactions where intramolecular
forces like Van Der Walls forces and hydrogen bonds are fundamental actors. Other factors
can influence the process such as ph, salt concentration and even other proteins called chaper-
ones involved in checking that conformational folding occurs correctly. The most important
driving force in the whole pathway is called the hydrophobic effect. Hydrophobic effect makes
hydrophobic chains collapsing in the core of the protein: solvent molecules tend to aggregate
around the hydrophobic region increasing the order in the system. The solvent molecules are
fixed in these cages causing the collapse of hydrophobic chains. The collapse contributes break-
ingwater shells freeingwatermolecules. Themultitude of hydrophobic chains interactingwith
the core of the protein increases by a lot the stability of the system during folding because of
the high amount of London dispersion forces accumulated.

1.3.1 Secondary structure

Formation of the secondary structure is the first step towards the final native conformation
of the protein. Most of the possible arrangements of adjacent residues fall into four main
classes determined by the ϕ(phi) and ψ(psi) angles formed between the peptide bonds and the
α-carbon, obtained by rotating two adjoining plains connecting to the carbon itself. As a con-
sequence the local secondary structure elements taken by adjacent residues is determined by
the set of possible ϕ(phi) andψ(psi) angles. In this regard ramachandran plots are great graphs
to show the propensity of adjacent residues to form a specific secondary structure based on
dihedral angles.

• α-helices are right-hand helix conformations in which every backbone N-H group do-
nates a hydrogen bond to the backboneC=Ogroup located three or four residues earlier
in the protein sequence. The hydrogen bonds linking distant residues in the protein se-
quence provide a special stability to those type of structures.
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Figure 1.3: folding process can be represented as a funnel: a number of intermediate pathways and states
is present and directed toward the native state. The folding process is spontaneous and tries tominimize
the free energy of the system and the entropy

• β-sheets consist of beta-strands connected by at least two backbone hydrogen bonds
forming generally a pleated or twisted sheet. The assembly of β-sheets can be parallel or
antiparallel depending on the orientations of the beta-strands.

Other secondary structure elements are present in nature and they can be easily predicted by
some software. However, it’s important to recall the molecular shape and size of aminoacids is
a fundamental constraint in the type of dihedral angles they can form: thus specific aminoacids
have preferences for some secondary structure conformations confirmed also by advanced sta-
tistical analysis techniques.

1.3.2 Tertiary structure

During the formation of the tertiary structure secondary structure elements can bond together
forming more stabilizing and energy favourable three-dimensional arrangements. Secondary
structure elements are made of hydrophilic and hydrophobic portions. For this reason fold-
ing usually proceeds in a way that hydrophilic residues can face the solvent surrounding the
protein while hydrophobic residues are called ”buried residues” hence they become part of the
protein core. β-sheets are involved in the burial of non polar residues, while α-helices have a

5



higher flexibility and they may contribute in the exposure of hydrophilic residues and in the
internalization of hydrophobic residues.

1.3.3 Quaternary structure

Tertiary structure is often not the final conformation polypeptide can take. During the forma-
tion of the tertiary structure polypeptide chain folds indipendently from each other. In many
cases proteins are made of more than one chain that can bond together to determine the final
and functional protein complex. More precisely, not only chains but also different functional
subunits (domains) can fold independently and then assemble to give origin to amacromolecu-
lar complex during the formation of the quaternary structure. This complex process improves
significantly the existent biological variability: when the two subunits are identical they can
form a complex called homodimer. On the other hand when the two subunits are different
they can form an eterodimer. Furthermore when more identical units link together they can
form a polymer.

1.4 Experimentaldeterminationofproteinstructures

The formation of the tertiary structure is essential to make a clear distinction between two
groups of proteins:

• Globular proteins have a rounded and compact structure where hydrophilic residues are
exposed to the solvent and hydrophobic ones are located in the core. They havemultiple
functions in metabolic pathways

• Non-globular also called intrinsically disordered or fibrous proteins have an elongated
shape and they are often not fully folded. They can be divided in further subcategories
based on their morphology which will be explained more precisely in 1.6

Determining the function and the interactions a protein can assume is essential: therefore
different procedures coming from biophysics were exploited. X-ray cristallography is a high-
throughput technique based on the crystallization of protein structures. The crystal is illumi-
nated using a X-ray monochromatic beam that produces a diffraction pattern in many differ-
ent directions. A goniometer is used to position the crystal in many different directions. The
multiple images obtained by varying the orientation of the crystal are then processed using
fourier transformations to achieve a three-dimensional model. This method is very convenient
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for globular proteins, but it fails when it’s more difficult to retrieve a crystal structure as in
the case of intrinsically disordered proteins. Moreover, another problem is the time required
to get the crystal that can take also months. In this regard another method very used is the
nuclear magnetic resonance (NMR) spettroscopy based on the observation of local magnetic
fields around atom nuclei. The sample is placed in a magnetic field and the NMR signal is pro-
duced by the excitation of nuclei sample with radio waves. The intramolecular magnetic field
around an atom in a molecule changes the resonance frequency giving access to the details of
the electronic structure. Structure retrieved from experimental procedures are then stored in
the Protein Data Bank database (PDB)* where they are freely available for download. A total
of 192888 structures is available in the Protein Data Bank database at the moment of writing.

1.5 Non globular proteins

Theworld of proteins can be divided in two big families: globular structures and non-globular
or fibrous structures. Globular structures have a spherical and compact shape and they are
usually water soluble. Non globular proteins, on the other hand, have a elongated shape and
they usually lack a fixed and stable three-dimensional structure. They played an important
role in disproving the idea that a protein has to maintain a fixed three-dimensional structure
to be considered functional. Indeed the first protein structures were solved in 1930-1950 by
X-ray crystallography suggesting that a fixed three-dimensional structure might be necessary
for a functional protein. During the subsequent decades many large protein regions could not
be assigned to an X-ray datasets indicating that they can occupy multiple positions in the elec-
tronic maps. The lack of fixed, unique positions relative to the crystal lattice suggested the
presence of disordered domains and regions. Today, in 2022 a growing evidence has revealed
the involvement of non-globular proteins in many biological processes and diseases. In par-
ticular it was estimated that 40 % of the human proteome lacks a functional annotation and
many of those proteins contain repetitive or disordered regions [1]. At the moment, for as far
as we know we can represent the world protein as depicted in 1.4. By first looking at the left
part of the picture two types of full non-globular structures are shown. Intrinsically disor-
dered proteins are the most known and they usually lack a three-dimensional structure when
they are not interacting with other partners ( DNA, RNA or other proteins). Aggregates
are instead the consequence of a biological phenomenon called aggregation occurring inside
or outside the cell in which partially structured agglomerates are responsible for diseases such

*PDB database: https://www.rcsb.org/
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Figure 1.4: Classification of proteins according to Andrey V. Kajava and Silvio C.E. Tosatto. Image taken
from Andrey V.Kajava, Silvio C.E. Tosatto, Editorial for special issues: “Proteins with tandem repeats:
sequences, structures and functions “, Journal of Structural Biology (2018)

as amyloidoses, Alzheimer’s or Parkinson’s. The formation of these aggregates has different
causes: aging, for example, can weaken cell proteins able to degradate and remove agglomer-
ate from the cell or mutations caused by environmental or genetic factors can interfere with
the process of transcription or translation of RNA resulting in a partially different protein se-
quence that can completely change the process of protein folding leading to a partially or totally
unfunctional molecule. Transmembrane proteins, instead, are in the half between a globular
and a non-globular structure: the central part of the protein is stable and embedded in the cell
phospholipid membrane while the N-terminus or the C-terminus are more flexible and they
are often located in the outer part or in the cytosolic side of the cell undergoing frequent con-
formational changes due to their importance in passive and active transport. Last but not least
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for importance are Tandem repeat proteins which will be the focus for the next chapter.

1.6 Tandem repeats proteins

Tandem repeats proteins (TRPs) are proteins having one or more adjacent copies of the same
structural motif that can expose a domain. They cannot be considered fully globular proteins
since most of them have not a compact and rounded shape, but at the same time they are not
even fully disordered given the presence of regular repetitive motifs that make the structure
very stable. Even if tandem repeats proteins maintain a high structural similarity, they can be
highly degenerate at the level of the sequence with only a few aminoacids conserved. As stated
by Andrey V. Kalaja [2] they are ubiquitous in genomes and they occur in 14 % of all proteins.
Moreover, they make 1/3 of the human genome. They are very adaptive but characterized by
a strong genetic instability, thus the deletion or the insertion of a new unit can rarely lead to
a complete misfolding of the protein. Indeed the strong genetic instability is caused by two
main mechanisms underlying in our genome: one is replication slippage occuring in DNA
replication where some complementary bases are misplaced during DNA replication and the
other is DNA recombination which takes place duringmeiosis and it’s responsible for random
exchanges of genetic materials . They can extremely different shapes: some of them are closed
and made of long units (more than 40 residues), some others are elongated and made of just
15-20 residues.

Figure 1.5: On the left PDB 6r5x is shown and it’s a typical closed repeat structure called propeller. On
the right PDB 6w78 is an elongated structure called solenoid
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1.6.1 Defining tandem repeat proteins

Tandem repeats proteins are defined by three elements:

• Region is the part of the protein that contain the repeated elements. A protein can be
made of multiple regions

• Unit is the smallest structural block that keeps repeating inside a region

• Insertions are positions that escape the definition of the units for the considered region.
They are usually located inside a unit or between units

Inorder todistinguish consecutiveunits, two colours are used (red andblue). Yellow, instead,
is used to highlight insertions. Figure 1.6 and 1.7 show two examples.

Figure 1.6: Example of an annotated region of a PDB: units are coloured in red and blue
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Figure 1.7: Example of annotated region containing one insertion

1.6.2 Why deepen our knowledge on repeats ?

One of the question that can arise at this point is the reasonwhy tandem repeats should be stud-
ied in details and why scientist are interested in building a formal and precise classification for
them. Themotivation is pretty straightforward and it can be easily found in aAndreyV.Kajava
paper [2]: Beside the fact that they are very frequent in serious neurodegenerative diseases ( e.g.
Parkinson’s,Huntigton) themainmotivation is becausemany of them are part of fundamental
protein interaction networks and cell transport systems. Even though the majority of repeats
is found in eukaryotes, many viruses and bacteria have tandem repeat regions in their proteins
sequences characterized by a high genetic instability that under specific conditions can be ama-
jor threat for our health. Furthermore tandem repeats proteins are very studied to develop also
new vaccines able to detect very specific epitopes located on target antigens of pathogens.

1.6.3 RepeatsDB

Even if the amount of available structures is not even comparable to the number of available
protein sequences (UniProt)†, new structures are inserted in the PDB database every day. Be-
side that, right now there are very advanced bioinformatics algorithms like AlphaFold that are
able to predict with a high accuracy the secondary/tertiary structure of most of the newly dis-

†UniProt database: https://www.uniprot.org/

11



covered sequences. From those two points it’s becomes clear we need a systematic way to store
and classify the high amount of structures that every day are discovered, but the PDB database
is not sufficient. In fact proteins are structurally and functionally very different and having a
unique classification for both globular and non-globular proteins is definitely not ideal. Even
if we try to build a standard unique classification for non-globular protein we would probably
not succeed: intrinsically disordered and tandem repeats proteins are structurally very different
and need to be annotated in specific and appropriate ways. For our discussionwe aremainly in-
terested in RepeatsDB‡[3] a database of manually and automatically annotated tandem repeat
proteins where each entry is a PDB chain. Even if only a representative part of the database is
manually annotated by expert biologists and the rest of the entries is automatically curated us-
ing the sequence and structural predictor RepeatsDB-Lite ( see 1.8.1), themajority of UniProt
has at least one corresponding structure manually annotated as highlighted in pie chart 1.8.
The process of annotation usually expects three different steps that are not necessarily executed
in the presented order:

• Definition of the start and the end of the repetitive region

• Definition of the units boundaries inside the region and eventually annotation of the
insertions between or within units

• Classification of the region based on four different levels whichwill be further explained
(class, topology, fold and clan).

‡RepeatsDB:https://repeatsdb.bio.unipd.it/
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Figure 1.8: The pie chart shows the number of UniProt for which at least one PDB is manually annotated in
RepeatsDB (June 2022). Only the 29 % of the total number UniProts (1513) has no structures reviewed.

It’s trivial to point out that manual curation is a crucial and a challenging task to carry on.
Structures are very different and sometimes single units or entire regions could undergo dif-
ferent evolutionary processes making difficult to detect precisely insertions and units. For this
reason discussion is vital and it ismandatory to define a standard protocol that can be consulted
by all curators. The classificationused by the database is based on thework ofAndreyKajava[2]
and it is built on five levels described here from the outer to the inner level:

• Class is the outer level. It depend on the repeat length and the generic interaction be-
tween repetitive elements inside the region. Often very easy to define. RepeatsDBclasses
are shown in figure 1.9

• Topology is determined by the type of secondary structure taken by the units in the
repetitive region.
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• Fold level of classification dictated by the overall arrangement of secondary units (twists
and curves)

• Clan A subfold that groups up proteins having common sequence motifs that are part
of the repeat but not a common ancestor. Many of the structures in RepeatsDB have
not a clan definition.

• Family Group of proteins having a common ancestor and a high degree of sequence
similarity

Figure 1.9: The classification of repeats based on repeat length. Structures having shortest repeats are
crystalline aggregates underrepresented in RepeatsDB (Class I). Class II are fibrous repeats having a
slightly longed repeat length. Class III are elongated repeats. Class IV are closed repeats the most
present in RepeatsDB. Class V are beads‐on‐a‐string the ones having the longest unit length. The image
was taken from ”Tandem repeats in proteins: From sequence to structure”, Journal of Structural Biology,
Andrey V. Kajava (2012)
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1.7 Comparing structures

One of the main goals of structural bioinformatics is to infer knowledge about new structures
fromhomologousproteins. Twomain approaches arewell known in the literature: one is based
on alignments and theother on superposition. Structural alignments require no a-priori knowl-
edge and can be used to compare structures having a variable length. Given two sequences and
structures as input a structural alignment algorithm can compute the optimal alignment be-
tween the two structures Superposition, on the other hand, does not need the sequence but
requires a set of aligned coordinates of the atoms to find the best rotations and traslations that
can minimize the difference between the two structures.

1.7.1 Structural alignments

Structural alignments approaches do not require any previous knowledge. They are useful
when no sequence homology can be detected just by sequences using multiple sequence align-
ments due to low sequence similarity (structures tend to be more conserved). Structural align-
ments tools give as output the set of aligned coordinates from which a bunch of metrics to
evaluate the quality of the alignment can be derived (RMSD, TMscore and GDT). The main
issue with this type of approaches is time complexity: finding the best alignment is a NP-hard
problem because to align N residues from a structure to M segments a total ofNM combina-
tions has to be produced. As a consequence most of the methods known in the literature are
just heuristics able to approximate the optimal solution. From the literature one of the most
knownmethods is DALI[4] a commonmethod that uses distance-matrices to evaluate the con-
tact patterns between successive fragments of the input protein. Combinatorial extension[5],
similarly to DALI, break the input structure into fragments which are used to generate a dis-
tancematrix fromwhich theoptimal alignment is derived. SSAP[6]use dynamicprogramming
to compute the distance between interatomic vectors and instead of considering α-carbons it
takes in consideration β-carbon. However the most known and used tool nowdays is TM-
align[7]: TM-align generates residue to residue optimal alignments throughmultiple iteration
of dynamic programming using a TM-score matrix. The main difference with other methods
is that it does not evaluate the quality of the alignment based on RMSD but it uses a metric
called TMscore which will be further explained in section 1.7.4. The software can be used
from the web interface available at https://zhanggroup.org/TM-align/.
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1.7.2 Superposition

Superposition is way simpler than structural alignment and it is based on geometrical transfor-
mations, but does require previous knowledge on our data. The two sets of data that need to be
comparedhave tobeof the same size and equivalent, thus it usually used towhen comparingdif-
ferent conformations of the same protein. The basic andmost known algorithm is the Kabsch
algorithm inwhich a simple least squaresmethod for convex optimizationfind thebest rotation
and traslation matrices that minimize a target function (the root mean square deviation) be-
tween the two sets of atoms (see https://en.wikipedia.org/wiki/Kabsch_algorithm).

1.7.3 Root mean square deviation

The root mean square deviation is the average distance between the atoms in equivalent posi-
tions after applying superposition. Tomake the computation less heavy it is a commonpractice
to consider onlyα-carbons. Twomain problems are the fact that is very sensitive to local devia-
tions in the structure even when the overall shape and topology of the two structures is nearly
identical and the fact that it’s a non-normalized quantity. Usually an RMSD lower than 2 de-
fine two structures that share a strong similarity, but in general it strictly depends on the type
of structures we are considering.

RMSD =

√∑
(rai − rbi)2

n
(1.1)

where

• rai and rbi are the coordinates of the i equivalent atoms in structures a and b

• n is the number of paired atoms in the structure.

1.7.4 Template modelling score

The template-modelling score, as the RMSD is a measure of similarity between two protein
structures. It is a more accurate for evaluating the global similarity between two protein and it
is bounded between 0 and 1 where 1 indicates a perfect match between two protein structures.

16

https://en.wikipedia.org/wiki/Kabsch_algorithm


Scores below 0.20 correspond to unrelated structures, while scores greater than 0.5 are a good
sign of some shared generical similarities. The formula for the TM-score is:

TM − score =
1

Ltarget

Lcommon∑
i

1

1 + di
d0(Ltarget

)

d0(Ltarget) = 1.24 3
√
Ltarget− 15− 1.8

(1.2)

where:

• Ltarget is the length of the aminoacid sequence of the targer protein.

• Lcommon is the number of residues that appear both in the template and the target struc-
ture

• d0Ltarget is a distance used to normalize quantities

The di in the denominator is crucial because it gives more weight to large distance errors
while it weights smaller short distance errors making it ideal for detecting global similarities.

1.8 Meaningful approaches from the literature

Making a fast and efficient predictors for unit prediction and region annotation of tandem re-
peats proteins is not piece of cake: many efforts and very different approaches were explored
in the past years. First attempts were made around 1999 using sequence based methods since
the number of structures availablewas not thatmeaningful to develop a structure-based predic-
tor. Heger andHolm[8], in 2000, developedRADARamethod based on finding sub-optimal
alignments in the self alignmentmatrix using the smith-waterman algorithm for pairwise align-
ments. Another algorithm, developed in in 2007 was T-REKS[9] using a clustering approach
based on K-means. REPETITA [10], instead, was able to make predictions on solenoidal
structures applying discrete-fourier transforms from biochemical features (polarity, secondary
structure, codon diversity, molecular volume etc..). From the first years of the XXI century
different structure based methods were implemented: indeed it has been proved that tandem
repeats proteins tend to share structural motifs but not always a strong similarity, hence meth-
ods based on the detection of repeated elements from the primary sequence can fail even in
simple cases. Structure based methods are able to detect repetitive elements using the three-
dimensional coordinates of residues atoms (mainly α-carbons) retrieved from experimental

17



methods. The only problem is related to the range of applicability of those methods since
the number of available structures is extremely lower compared to the number of sequences
for different reasons. As a consequence many methods focus only on some specific kind of
structural motifs. RAPHAEL[11] was one of themost successful algorithms for the detection
of solenoids in protein structures: the input protein is subjected to traslations and rotations
and for each of the three three-dimensional coordinates of the α-carbon a projection is per-
formed. Another method called TAPO[12] uses periodicity of atomic structures, distance ma-
trices, contact maps and vectors of secondary structure elements to predict unit displacement
in the repetitive region. Oneof themost successful approacheswasReUPred[13], an algorithm
for the detection of solenoidal repeats based on structural alignments between the input struc-
ture and a library unit whichwas called for the first time SRUL. In the next years the algorithm
was updated in order to be able to annotate proteins belonging to all classes of RepeatsDB and
the new release of ReUPred has been called [14]RepeatsDB-Lite. RepeatsDB-Lite is the algo-
rithm currently used byRepeatsDB to predict units and annotate repetitive regions which will
be further explained in the next section.

1.8.1 RepeatsDB-Lite

RepeatsDB-Lite is the automatic predictor used to identify units and annotate tandem repeats
regions of the tandemrepeats proteins that are contained inRepeatsDB.The algorithm is based
on a divide and conquer approach and uses both structural and sequence related information.
The required inputs for the algorithm are the Structural Repeats Unit Library and a FASTA
sequence or a PDB structure. If a sequence is provided the algorithm searches in the PDB
database for the corrisponding structure, otherwise the most similar one. The first step of the
algorithm structurally aligns each unit of the SRULwith the input structure using the external
softwareTM-align. Thebestmatchingunit is theonewithhigherTM-score and lowestRMSD
and it is called themaster unit. Fromnow on the algorithmuses a recursive approach and splits
the input structure in two fragments (PREandPOST) corresponding to theNandC terminals
flanking fragments of the first predicted unit. The cycle is repeated on those two segments until
the length of the two fragments is less than 85 % of the length of the first predicted unit. Once
the alignment and identification of units has finished the units are collected together in regions
and gaps longer than 4 residues are labelled as insertions. Each predicted region inherits the
class and topology annotation given to the master unit. The last step of the algorithm identify
insertions inside units: it uses MUSTANG, a software for structural alignments, to produce a
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multiple sequence alignment and determine the columnswhere there aremore than 85%of the
gaps. RepeatsDB-Lite is certainly a well performing algorithmwith a complex but well studied

Figure 1.10: schematic representation of the RepeatsDB‐Lite algorithm

structure that mimics the evolutionary process of folding proteins. However the algorithm has
some issues:

• On average it requires from 10 to 15 minutes to run. Clearly, the algorithm is too slow
if we want to use it for the increasing number of structures available each day.
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• It relies on external software like MUSTANG or TM-align. MUSTANG often crashes
and alignments themselves can slow down the process.

• Sequence information are not fundamental. It is possible to build a good predictor even
by just using structural features. Probably we sacrifice some precision in recognizing
insertions but in general it is something very difficult to estimate: how can we establish
the difference between a small gaps and an insertions or if a long insertion is just a unit
which was not predicted?

• RepeatsDB-Lite is not always able to detect repetitive elements on long input stuctures.
Often Alphafold predictions need to be cut off to be processed.

Summarizing the overall purpose is to design a faster algorithm able to process also long
structures in a feasible amount of time. The new algorithm, which will be further explained
in chapter 4, is a structural predictor that detect units by superimposing unit fragments in the
SRUL with fragments of the input structure.

1.9 Thesis outline

The thesis is organized as follows. In Chapter 2 I have explained how I have generated the data
for the Structural Repeat Unit Library (SRUL) including information about the data source,
formats and filtering procedures. Chapter 3 is focused on the analysis of the SRUL and on
how hierarchical clustering can be used to reduce its redundancy without losing information.
Chapter 4 provides a complete description of the new algorithm that I have called RepeatsDB-
Lite version 2. Also, I have provided a comparison with the state of the art and an analysis of
the effect of the SRUL clustering on the accuracy and speed of the new algorithm. Conclusion
remarks are reported in chapter 5.
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2
The structural repeat unit library (SRUL)

Themain aim of this chapter is to explain how the data coming fromRepeatsDB were used to
build the so called StructuralRepeatUnitLibrary (SRUL). In thefirst sections iwillmake some
exploratory data analysis and i will show some statistics about the data i used fromRepeatsDB.
Then i will explain how i filtered the data exploiting sequence information and how i generated
the SRUL.

2.1 What is the SRUL ?

The Structural Repeat Unit Library is a library that, in theory, should represent the main and
most generic unit conformations that is possible to find in nature. Right now, it is almost
impossible to build a perfect SRUL for three main reasons:

• The number of UniProts entries that are currently available in RepeatsDB (1511) is still
not representative

• Regions that have been annotated aremainly propeller, alpha solenoids andTIM-barrels.
Other classes, for example beads-on-a-string have an extremely lower number of repre-
sentatives in respect to closed and elongated repeats

• How we can decide what is the ideal number of units we should store in the SRUL for
each class ? This is another crucial question that has no answer. Probably only empirical
approaches would be helpful in this regard.
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Taking into account what have been said above, it is clear that building an optimal SRUL is
a high effort and long time process that can be gradually achieved having an increased amount
of data, in particular for classes that are right now less represented. On that note our main goal
is just to build a good and updatable library with the data available even if it will be biased, with
very high probability, towards specific kind of units.

2.2 RepeatsDB data

From2021 on, after a common standard formanual biocuration has been defined, RepeatsDB
is going through a continuous process of update and new structures are annotated every day.
The data i will consider for this project are all the repeated regions that were new annotations
or recently reviewed untilMay 2022. In total i had 17352 units coming from 2119 PDB chains
and belonging to 2285 regions. The number of Uniprots considered was 917 which is not far
lower than the total amount ofUniProts that are currently conserved inRepeatsDB (1511). As
depicted in graph 2.1 the distribution of units between classes is not balanced: Closed repeats
and Elongated repeats have a quite similar amount of units but compared to Beads-on-a-string
and Fibrous repeats the difference is huge. Fibrous repeats are just 3, while Beads-on-a-string
are extremely underrepresented. Crystalline aggregates were not even taken into account since
they are not even available in RepeatsDB. If we compare these data with what there is right
now inRepeatsDBwe can verify that proportions aremore or lessmaintained: a total of 43415
Elongated repeats and 55042 Closed repeats are available against 393 units for Fibrous repeats
and 2091 for Beads-on-a-string. In percentage 47.9 % of the units belonging to the units in
the dataset are elongated repeats against the 43.01 % of RepeatsDB, 49.9 % are closed repeats
against the 54.5 % of RepeatsDB and 2 % are beads-on-a-string against the 2 % of RepeatsDB.
A reliable difference can be seen only in Fibrous repeats even if they make up only 0.4 % of the
total number of units in RepeatsDB. Taking a look at the distribution of the topologies (bar
plot 2.2), instead, we can retrieve other interesting information. All classes, except for Beads-
on-a-string, are biased towards specific topologies probably due to the large abundancy of these
motifs in nature. Concerning Elongated repeats we can notice Alpha-solenoids constitute a
vast majority: these structures are made of repeating alpha-helix subunits of 30-45 aminoacids
that canbe foundvery frequently in genomes even if frequencies are variable: they aremore rare
in prokaryotes and very frequent in eukaryotes. They have different function butmost of them
are present in protein interaction networks of regulatory proteins and in nuclear pores proteins
complexes. Concerning closed repeats, instead, we can notice how TIM-barrel and propellers
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Figure 2.1: Barplot highlighting the distribution of units between the 4 classes

are both very present. TIM-barrels are weaved structures made of eight alpha-helices and eight
beta-strands alternating on the protein chain. they are very ubiquitous in enzymes since 10 %
of enzymes takes this fold. Moreover five of seven enzyme commission classes include TIM-
barrel proteins. On the other hand, propellers, also called beta-propellers are all beta protein
structures characterized by 4 to 8 highly symmetrical blade-shaped beta sheets arranged around
a central axis. They arewidely spread innature because they are often involved in ligandbinding
and enzymatic activity.
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Figure 2.2: Barplot showing the distribution of units among the topologies in the dataset. Alpha‐solenoids
are a vast majority for elongated repeats, while Propellers and TIM‐barrel are a very abundant in closed
repeats.

2.3 Data structure

Biocurators annotate structures using some online available tools. The Biocomputing UP lab
uses a software they developed and called the REFRACT annotation tool https://tool.
repeatsdb.org/load/. This software allows biocurators to define regions and units bound-
aries and to assign to each region a specific annotations based on the classification described
in table 1.6.3. Annotations can then be downloaded as json files which are the starting point
for the definition of the dataset. Indeed after reading the json files using the Pandas Python
Library i obtained a dataframe having a structure similar to the one in 2.1 where only most
important columns are highlighted: each row corresponds to a single unit. where:

• start and end refer to the unit boundaries following the residue id numbering defined in
the PDB files

• repeatsdb_id corresponds to the specific structure (PDB) and the chain in which that
units was found. The first 4 letters represent the structure, while the fifth letter is the
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start end repeatsdb_id class topology fold clan UniProt_id

442 478 4zgcA Closed
repeat Propeller Five and six

blade propeller
Kelch
domain Q8IDQ72

479 478 4zgcA Closed
repeat Propeller Five and six

blade propeller
Kelch
domain Q8IDQ72

Table 2.1: Dataset structure

chain

• Class, topology, fold and clan are the annotation assigned to the specific region in which
that unit was found

• UniProt_id is the id used in UniProt to identify the protein.

Even if it is not present in the table, a specific unique identifier has been associated to each
unit too.

2.4 Data filtering

The SRUL cannot be made of the same amount of data in my dataset (17315 units). Indeed
we want our dataset to be as small as possible but at the same time we want to maintain the
largest possible amount of variability in order to be able to build a library of generic represen-
tatives. Based on the fact that similar sequences have similar structure [15], I reduced the struc-
tural redundancy by looking at the sequence similarity, therefore removingPDB structures that
have the same sequence. PDB structures are generally fragments of the full protein. In order
to remove redundant structures I have downloaded from https://www.uniprot.org/ the
UniRef90 ids associated to all UniProt protein inmy dataset. TheUniRef90 provide clustered
sets of sequences from the UniProt Knowledgebase identified by a commond Id to all proteins
sharing at least 90 % of sequence similarity and a 80 % overlap with the cluster representative,
the so called seed. At this point i grouped the available units by their UniRef90 associated
to the PDB chain to which they refer. As a consequence units of PDBs associated to nearly
identical protein sequences were in the same groups. Then i went through each group and I
selected one representative for each clan and each unit length. By using this procedure i was
able to drastically reduce the dimension of my dataset: from 17315 to 6372 units as shown in
table 2.2 the number of PDBs involved almost halved, since most of them are redundant be-
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units pdb chains UniProts
before filtering 17352 2119 917
after filtering 6372 1212 914

Table 2.2: Statistics about the dataset before and after filtering

cause they are associated to the same sequence. On the other hand, only three UniProts were
discarded, since they were falling on the same UniRef90 cluster, thus we were able to maintain
all UniProts with at least one PDB associated. In figure 2.3 is shown the distribution of units
topologies after filtering we can notice that all of them are still present. The most frequent
topologies got a more drastic decrease while the least present got a more restrained cut except
for beta-trefoil and alpha/beta trefoil. Alpha-solenoids, propellers and TIM-barrels are still
prevalent but they were extremely reduced in respect to other topologies. Before generating

Figure 2.3: Unit distribution across structural topologies after filtering.

the SRUL we are also interested to notice how the topologies differ in the length of the units
of their region. In this regard it could be interesting to plot what is the average unit length in
each topology and howmuch can vary as shown in figure 2.4 and 2.5.Closed repeat on average
have a higher average unit length in respect to alpha-solenoid but lower than beads-on-a-string.
The average unit length is generally between 40 and 50 for closed repeat, except for TIM-barrel
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and beta-barrel/beta-hairpins having an average unit length under 40. The standard deviation
looks much higher for propeller and beta-barrel/ beta hairpins while alpha-beta barrels looks
more homogeneous. Elongated repeats are more variable: Box repeats are completely outliers
for elongated repeats and they have the highest average unit length, followed by solenoid but
with a difference of more than 20. Beta-hairpins, alpha/beta solenoid and beta-solenoid, on
the other hand, are closed to each other between 20 and 25. The standard deviation is stable
between 7 and 8 across all topologies except for alpha-solenoid where it reaches a value close
to 20. This could be also due to the high prevalence of alpha-solenoid in contrast to the other
topologies. Looking at beads-on-a-string we can notice how there are not topologies having
an average unit length lower than 55. Beta-sandwich and alpha/beta sandwich beads seem the
regions having the longest units. The standard deviation ranges between 20 and 40with a peak
of 36 for beta-beads and it is extremely higher than the one found in other classes certainly due
to fact that beads-on-a-string have the longest units.
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Figure 2.4: Barplot showing the average unit length for each topology
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Figure 2.5: Barplot showing the standard deviation for units lengths for each topology
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2.5 Data storage

The generation of the SRUL exploits the information contained in the filtered dataset orga-
nized as shown in table 2.1 where the start and end for each stored unit and the PDB chain in
RepeatsDB are specified. The latter was used to download from the PDB Protein Data Bank
all the structures associated to all units. The former, instead, was necessary when by iterating
on the dataset i selected from the PDB files the three-dimensional coordinates of the α-carbon
associated to each unit that i saved in a csv files along with the annotations contained in the
original dataset. For each unit an incremental unit identifier was also assigned. The final SRUL
structure is shown in figure 2.3.

residue unit id atom X Y Z class topology fold clan PDB
PHE 0 CA -17.175 -14.43 -2.68 .. .. .. .. 4zgcA
PRO 0 CA -16.705 -16.44 0.552 .. .. .. .. 4zgcA
LEU 0 CA -13.299 -17.122 2.071 .. .. .. .. 4zgcA

Table 2.3: SRUL library structure
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3
SRUL clustering

The aim of this chapter is to explain why clustering was performed and how an optimal num-
ber of clusters was empirically chosen. First i will calculate three different matrices for pairwise
all-versus-all comparison between units and i will produce some advanced scatter and density
plots to highlight differences and similarities among classes and topologies. The second part of
the chapter is focussed in the pre-processing steps required before applying clustering: normal-
ization and dimensionality reduction. Normalization is required to perform dimensionality
reduction which has been chosen to deal with the high dimensionality of the dataset. After
that the hierarchical clustering approach is explained and the empirical procedure used to se-
lect the optimal number of clusters is presented.

3.1 Unit distance

After generating the SRUL, another important step consists in doing a more in depth analysis
between topologies and classes where we want to highlight similarities and difference between
units by taking advantage of the three-dimensional coordinates of the α-carbon we have re-
trieved from PDB files for each unit of the SRUL. In order to gather these kind of information
amatrix representing the structural similarity between units pairs can be useful. It is calculated
by performing a pairwise all-versus-all comparison between unit. In this case i decided to build
three matrices: one for RMSD comparison, on for TM-score and another for absolute unit
length differences.
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3.2 Superposition and slidingwindows

The main problem when comparing units is that we should rely on alignments. Structural
alignments algorithms, first, compute the alignments between two structures of variable length
to identify similar regions and after that a superposition is made. If we want to use a quicker
and more immediate approach we can use sliding windows. Sliding windows is an approach
used inmany algorithms when dealing with objects or data structures of different lengths. The
technique works as it sounds: a window of a certain length is created over some data coming
from a data structure. At each iteration this window will move by n positions defined by the
users and capture different portions of the object. In our situation it is very useful because
we are dealing with protein structures of different length where no superposition is possible.
With the sliding window approach we can select the smaller structure which will become our
window (having a window size W equal to the selected structure length) and superimpose our
window with the first W residues on the target structure. At the next iteration we will super-
impose our windowwith the residues on the target structure obtained bymoving our window
of n steps. For example, if n=1 we will move our window of just of one step and we will com-
pare it with residues going from the second residue to residue W+1. An example of sliding
windows is shown in 3.1 where two small sequences are compared. In our case we are dealing
with structures, so instead of making calculations between aminoacids letter we will consider
the three-dimensional coordinates related to theα- carbons of each residue. Furthermore since
this approachwill be applied to all structures of the dataset there will be occasions in which the
length of the window is higher than the length of the structure on which we want to slide on.
In this cases a unique superposition will be made just between the minimum length common
set of residues between the two structures starting from the first, without making any further
sliding window.
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Figure 3.1: Sliding window between two sequences. The first sequence having a length of 4 slides over
the second sequence of one step at each iteration. The red rectangle highlights the two subsequences
on which the superposition is performed

3.3 Distance matrices

As highlighted in 3.1 threematrices for units comparison are generated. Theminimumdimen-
sion of those matrices is 6372x6372 since we want to compare each unit with each other unit.
However wewill need at least another column to identify what unit is taken in consideration in
each row. Moreover, just for convenience another column containing the PDB chain to which
the unit refers is added. In the end the three matrices will have the following structure ( in the
figure matrix of RMSD is shown as an example ): Summarizing: three different 6372x6374
matrices will be generated using an approach based on sliding windows in order to be able
to superimpose structures having different length. It is important to notice that an approach
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pdb chain unit id unit 0 unit 1 unit 2 …… unit 6371
6kivR 0 1.8 2.3 3.3 …… 12.2
6kivR 1 3.2 4.8 3.3 …… 12.2

...
...

...
...

... ……
...

5hhgE 6371 15.1 9.6 8.6 …… 4.6

Table 3.1:Matrix of comparison of Root mean square deviation

based on sliding windows can produce an amount of fragments very variable depending on the
difference in length between the two units. Anyway only the results related to fragment for
which the TM-score is maximized and the RMSDminimized will be stored in the matrices.
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3.4 Unit relationships

The units analysis has been carried out using the three matrices presented in the previous sec-
tions. Being able to determine the composition of your dataset, the difference in distribution
among units belonging to different classes or topologies is essential to underline similarities
and differences. Furthermore, the algorithm that will be presented in the next chapter is based
on clustering of units contained in the SRUL. From this analysis we will be eventually able
to understand if units of the same class could be grouped in different clusters but at the same
time together with units of other classes. The first 4 plots represent the density distribution for
minimum,medianRMSD andmaximum,medianTM-score using the kernel density estimate
to highlight the probability distribution of the variable under consideration in a smooth and
continuous way. Those plots can provide more information than histograms because they do
not depend on the number of bins chosen.

Figure 3.2: density plot for minimum RMSD
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Figure 3.3: density plot for median RMSD
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Figure 3.4: density plot for maximum TM‐score

Figure 3.2 represents the minimum distribution for the three classes. The minimum has
been computed using the RMSDmatrix and by retrieving the minimum value from each col-
umn. The graphs shows three multimodal distribution on for each class: The maximum den-
sity is in 0 for elongated repeats and closed repeats even if elongated repeats peak higher in
density. Other two near peaks can be found between 1 and 2 even if the distribution of closed
repeats is slightly shifted towards the right. Anyway we can say that elongated and closed re-
peats have a similar distribution and very shifted to left which is the sign that they share many
similarities with other classes. On the other hand beads-on-a-string have a completely diver-
gent behaviour: the peak in 0 is very small and most of the units have a minimum RMSD
between 2 and 5 symptom of a lower degree of similarity with units belonging to other classes
compared to closed and elongated repeats. The reason of this behaviour is dictated probably
by the average length of units which is often double than the average length of elongated and
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Figure 3.5: density plot for median TM‐score

closed repeats. The plot in 3.3, shows, instead the distribution of median RMSD calculated
by computed the median RMSD over each column of the matrix. Again, this plot appears to
confirm what shown in 3.2: elongated repeats is the class having most peaks shifted to the left,
thus they share more similarities with units belonging to other classes, closed repeats behave in
a similar way and beads on a string, instead, are the most shifted towards the right. However,
overall differences are less visible and marked. 3.4 and 3.5 represent the same plots but consid-
ering TM-score instead of RMSD.We expect those plots to be smoother than the previous one
because TM-score is less sensitive to small deviations. Neverthless, the density plot for maxi-
mum TM-score 3.4 still captures differences very well. The behaviour is, as expected, exactly
the opposite in respect of what highlighted in RMSDplots: elongated and closed have a nearly
identical trend, while beads-on-a-string have a huge peak at 0.1 TM-score recalling again their
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low similarity compared to units belonging to the other two classes. On the other hand, figure
3.5 depicts a different but confirmatory scenario: the three curves are almost overlapping and
peaking at a very small TM-score value. Again, even if they contain the least amount of units,
beads on a string are the ones peaking the highest at very lowTM-score values confirming they
contain structurally unique units.
Another interesting plot is 3.6 where TM-score standard deviation has been computed for

each column of the matrix and represented separately for the three classes. Closed repeats and
beads on a stringhave a less variable standarddeviation andmore clusterednear 0.01. Elongated
repeats, instead, have more sparse points in a range between 0.01 and 0.04 highlighting the
increased amount of variability characterizing this class.

Figure 3.6: scatterplot showing the TM‐score standard deviation for the three classes
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Figure 3.7: density plots comparing median RMSD vs median absolute unit length difference and median
TM‐score vs median absolute unit length difference

Until now we have observed the distribution of RMSD and TM-score without taking into
consideration also the median absolute difference in unit length. Figure 3.7 represent bivariate
probability distributions between RMSD and TM-score against median absolute unit length
divided per class. On the left average unit RMSD is compared with median absolute unit
length difference: for closed and elongated repeats most of lowest RMSD and highest TM-
score matches are present when the average unit length is small. On the contrary beads on a
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string show the opposite behaviour: RMSD and TM-score are lower when the median abso-
lute unit length different is higher. This is probably caused by the fact that is very difficult to
find a good match between beads on a string units and other class units, but at the same time
some of the structural elements contained in the long beads on a strings units share a high sim-
ilarity with units that are part of the other two classes. Finally it is fundamental to notice that
we want to observe general trend, hence we are considering medians computed on highly pop-
ulated classes containing lots of structurally different topologies so it shouldn’t be surprising
that in all the cited plots RMSD values are not that low and TM-score ones are not that high.
Indeed median was chosen over mean because it is less sensitive to outliers. Going deeper in
the RepeatsDB classification a better analysis can be done by looking at topologies. As i did for
classes i plotted the bivariate probability distributions average absolute unit length difference
againstRMSDfor topologies. In figure 3.8 i plotted closed repeats: the distribution as expected
is more shifted to the left and it id more similar between propeller, beta-trefoil, alpha/beta tre-
foil, alpha/beta barrels and alpha beta prism having a vertically elongated distribution. Beta-
barrel and TIM-barrel are insteadmore flat, probably also related to the high variability in unit
lengths and their average unit length which is lower than other topologies and which comes
clear from barplot presented previously in 2.4 and 2.5. The distribution of elongated repeats,
shown in figure 3.9 is completely different from the one of closed repeats and spread horizon-
tally. Except for box repeats there are always a few units showing some similarities with other
ones even when the difference in length is high. Alpha-solenoids, for example, could share a
good structural similarity with the alpha-helices contained in the alpha-beads regions of beads-
of-a-string. The very short beta-hairpins repeats could match with beta-sandwich beads too.
Beads-on-a-string represented in figure 3.10 share all similar distributions but shifted in very
different ways. Beta-sandwich beads and alpha/beta beads share more similarities when the av-
erage difference in length is high, because they are structurally more close to motifs of units of
other classes. Alpha/beta-beads, beta-beads and alpha-beads, instead, have a distribution very
shifted to the left and clustered where the average absolute unit length difference is between 25
and 40.
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Figure 3.8: density plot comparing average rmsd with average absolute unit length difference for closed
repeats
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Figure 3.9: density plot comparing average rmsdwith average absolute unit length difference for elongated
repeats
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Figure 3.10: density plot comparing average rmsd with average absolute unit length difference for beads
on a string
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3.5 Preparing data for clustering

As mentioned in the previous section the final purpose of comparison matrices is to use them
to generate a dataset where each row represents a units and each column should contain the
RMSD or the TM-score derived by the comparison with any other unit. The dataset should
then be used to apply a clustering algorithm to make the search in the SRUL by the algoritm,
which will be presented in 4, faster and more targeted as possible. For this reason for the final
dataset i just decided to use thematrix of RMSD and not the TM-score because it is more sensi-
tive to small deviations. A t the same time, however, wewant to provide information also about
the difference in unit length to group in the same cluster units with a similar length. Speaking
of which, i decided to merge the RMSD matrix and the matrix of lengths in a unique matrix
with the same number of rows and double the number of columns. As before the first two
column of the matrix will contain the unit id and the pdb chain to which the unit refers too.
The columns from 2 to 6374 of each row will contain the RMSD values, while the one from
6374 to 12746 will contain the absolute difference in length. In the end our matrix will be
6372x12746 with a number of columns extremely higher than the number of rows. A dataset
of this kind is called a high dimensional data dataset because the number of features is higher
than the number of observation. In this scenario a phenomena called the curse of dimensional-
ity (term coined by Bellman [16]) occurs: objects become very difficult to interpret and visual-
ize and data become very sparse meaning that the amount of data necessary to balance the high
number of features is exponential, thus if you don’t have many observation data will become
sparse in the space and most of the methods coming from machine learning and data mining
wont work anymore. To overcome this problem first i normalized the values in the dataset and
then i applied a dimensionality reduction technique called Principal component analysis.

3.6 Normalization and dimensionality reduction

In order to normalize the dataset theMinMax scaler from sklearn* has beenused to to scale each
feature individually such that the minimum value is 0 and the maximum one is 1. The reason
behind normalization is that PCA, which is a variance maximization algorithm, require data
to be defined in the same range, otherwise it will project data in a wrong way. More in general
Principal component analysis is used during data processing and before submitting data to a
predictive model. It is a dimensionality reduction technique which projects each observation

*https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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only onto the first few principal components to obtain lower dimensional data while preserv-
ing most of the available variance. As a consequence the first components will be the ones
explaining the highest amount of variance. It can be proved, using some linear algebra, that
the principal components are the eigenvectors of the data covariance matrix that can be easily
calculated using the singular value decomposition (SVD). In order to choose a good number
of components i first computed the amount of variance explained by each single components
obtained by the features of our dataset: Figure 3.11 shows the amount of variance explained
by the first 13 components. It can be noticed howwith only 13 features we can explain 0.96 of
the variance of the entire dataset which is actually a lot. The remaining 12731 account for only
4 % of the variance so they can be easily discarded. Summarizing by using PCA we were able
to decrease the dimensionality of our dataset from 12744 numerical features to only 13 solving
the issue of curse of dimensionality.

Figure 3.11: Amount of explained variance by the first 13 components

46



3.7 Clustering

Our final dataset is made of 6372 units and 13 features. Our algorithm, which will be further
explained in 4.1, predicts units boundaries by doing multiple comparisons of the units con-
tained in our SRUL and the input structure. For this reason it is mandatory to design a strat-
egy to select the best candidates that can have some structural similarity with our input and to
discard instead units that could not provide any information and make the algorithm slower.
In this regard an optimal technique coming from unsupervised learning and called clustering
can be very useful. Clustering is the procedure of grouping objects sharing a strong similar-
ity: the idea behind this procedure establishes that observations in the same group should be
more similar than those that are located in other groups. Clustering can be performed in differ-
ent ways: some algorithms like the gaussian mixture use statistical distributions, some others
like DBScan are density based models which try to connect dense regions located in the space.
Our approach, instead, is based on hierarchical clustering which seeks to build a hierarchy of
clusters by optimizing an objective function that defines the distance between observations.
The graphical representation commonly used in hierarchical clustering is called dendrogram, a
rooted tree representing how clusters are arranged. Different kind of objective functions exist
and this is what makes hierarchical clustering so flexible and useful even when not enough in-
formation are available for the dataset under analysis. Each objective function have its strength
and weaknesses and privilege clusters of a difference size. For our purposes we want clusters
to have a small size (between 10 and 15 units) but with each clusters having units sharing the
maximum possible similarity. For this reason among the linkage criteria available i decided to
use one very common in bioinformatics called WPGMA. WPGMA is able to produce a den-
drogram rooted tree from a similarity matrix: it is an agglomerative bottom up procedure very
used in biology that recalls the behaviour of amolecular clock. Amolecular clock is a procedure
applied to biochemical data to estimate when two life molecules diverged in time. According
to the molecular clock theory the rate of evolutionary change of any protein is almost constant
over time and over different lineages. It is very common when comparing two proteins, DNA
orRNA sequence. TheWPGMAassumption for building the dendrogram is exactly the same
of a molecular clock: the distance from the root to every branch of the tree is equal. Initially
each unit is assigned to one single cluster as a singleton. At each iteration the twonearest cluster
say i and j are combined in a unique cluster. The distance between the newly obtained higher
level cluster and the other clusters is computed as the arithmetic mean of the average distances
between members of clusters k and cluster i and cluster j and k ( see formula in figure 3.12).
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d(u, v) =
dist(s, v) + dist(t, v)

2

Figure 3.12: update formula for the WPGMA algorithm

Cluster are made of lots of units, hence it is essential to find one unit for each cluster that can
somehow summarize the main shared characteristics . For other clustering technique, like K-
means it is way easier because a point called centroid is directly computed by the algorithm and
can be used to instantly find cluster representatives by just calculating the distance between
units and the respective centroids. With hierarchical complex things get trickier: in order to
achieve this i first computed for each group the average cluster unit: the average cluster unit is a
fake unit calculated by averaging cluster units based on its features. The average cluster unit is
then used to find its nearest unit in the cluster which it will become the representative for that
specific cluster.

3.8 Number of clusters

One of the most difficult step when dealing with cluster is to select a correct and functional
number of clusters. There is nomathematical theory forunsupervised learning that canhelpon
this and even heuristic methods commonly available (gap statistics, elbowmethods, silhouette
score) aremore suited for centroid based clustering tecniques or are not tied for the specific task
you are required to solve. Moreover elbowmethod is often inexact if clusters are very different
size and gap statistics is not that easy to compute. For this reason i decided to prepare a set
made of 15 structures to submit to RepeatsDB-Lite 2 (the new algorithm presented in 4.1)
representing each one a different topology to verify empirically how the algorithm described
in 4.1 performs in terms of accuracy, precision, recall varying the number of clusters (from
100 to 1000 using a stepsize of 10). Theoretically speaking, the number of cluster should be
neither too big or too small. If it is too small clusters will become very populated, hence for
most of the inputs the algorithmwill go throughmany units in a single clusters. If the number
of clusters is too highmost of themwill be singletons, thus the algorithmwill have to go before
many units before providing a valid solution. The graph in 3.13 highlights that the algorithm
performs very well when the number of cluster is less than 100 or greater than 300. Infact
between 100 and 200 there is a sharp drop in the overall performances.However themain issue
with this graphs does not take into account that some of the regions associated to the PDBs
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Figure 3.13: Performance of the algorithm (RepeatsDB‐Lite 2) when varying the number of clusters

used for validation could be undetected. if we look at 3.14 we observe a step like decrease in
the number of undetected regions: as we keep increasing the number of clusters the algorithm
seems to bemore precise in detecting all required regions. This is probably related to the strong
inbalance of units in our SRUL: when the number of clusters is low it is more frequent that
most of the cluster representatives belong to the topologies that aremore present in the dataset,
thus the algorithm fails to detect regions of the most marginal topologies. In the end 3.14 was
useful becausewe could understand that even if precision, recall and accuracy have their highest
peak when the number of clusters is less than 100, the number of undetected is high and never
inferior to 4. For this reason the optimal number of cluster seems to be included between 500
and 600. Indeed 500 seemed to be the best number of clusters where a average unit precision
of 75 % and a average unit recall of 70% was reached.
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Figure 3.14: Number of undetected regions when varying the number of clusters
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4
TRPs prediction

This chapter can be divided in two part: the first aims to present RepeatsDB-Lite 2, a new and
faster approach based on superposition and relying on clustering to predict units and annotate
regions extremely faster than RepeatsDB-Lite. Moreover, the technique used to validate pre-
dictions will be shown too. The second part of the chapter will show the results obtained by
the new algorithm on a dataset coming from RepeatsDB. Therefore a comparison in terms of
time and performances with RepeatsDBLite will be made. Finally, some real case use scenario
will be presented highlighting how this algorithm could be useful to make prediction using
automatically predicted structures from the primary sequence thanks to AlphaFold.

4.1 RepeatsDB-Lite 2 algorithm

The new algorithm, that from now on it will be called RepeatsDB-Lite 2, is shown in 4.1 and
was designed to classify and predict repeated regions in tandem repeats proteins. It takes as
input a single PDB chain or a list of PDB chain, the Structural Repeat Unit Library and a
file containing for each unit of the SRUL the assigned label according to the clustering proce-
dure explained in 3.7. First, if not present, the PDB file is downloaded from the PDB database
* and then parsed by the algorithm while the SRUL is loaded in memory. Differently from
RepeatsDB-Lite the PDB structure is compared only with some selected candidates of the

*https://www.rcsb.org/
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SRUL to speed up thewhole process: indeed, the input structure is comparedwith each cluster
representative (computed as explained in 3.7) by making a superposition with sliding window
of the unit with the input structure. This first superposition is essential because it can help
to discard also very populated clusters that do not share any similarity with the input. After
that the algorithm select the cluster for which the superposition with representative gave the
highest TM-score and the lowest RMSD and compares the input structure with each unit of
the cluster. Again, a superposition is made between the input structure and each component
of the cluster but two times: the first time to select the three fragment of the input where the
unit matches the best, the second time to re-superimpose the selected fragment which are unit
candidate in turn with the input structure. The whole procedure is repeated for each unit of
the cluster and the resulting fragments of the second superposition having a TM-score higher
than 0.20 are maintained. It is worth to point out that only TM-score has been used here: in-
fact it is less sensitive to small local deviations and it is normalized. While RMSD can go from
0 to infinity, TM-score is bounded between 0 and 1 so it’s more prone to be used to set thresh-
olds. After exploring all the cluster a first tentative of merging units with a strict filter is done
following the procedure described in scheme 4.2: only the units having aTM-score higher than
0.30 and less than 5 gaps are taken into consideration. The one having the highest TM-score is
the master unit and it is picked as first unit to build a path by minimizing gaps with preceding
and succeeding units . If the result is not satisfying the algorithm picks another master unit by
selecting the second with highest TM-score for a maximum of 10 times. If after trying many
different master units no path is found hence three units were not paired together, filters are
relaxed and the whole procedure is repeated for other 2 iterations by lowering the TM-score
threshold. If, still no result is obtained the maximum number of gaps allowed is relaxed for
a maximum of 2 times and the previously described iterations of TM-score is repeated(see ta-
ble 4.1) . Moreover, If no result is found even when filters are fully relaxed the algorithm goes
in the second best cluster to gather more potential unit candidates for a maximum of 5 times.
On the other hand, when at least three units are found they become a candidate region and
an annotation in terms of class, topology, fold and clan is inherited from the master unit and
assigned. Moreover, gaps between units are labelled as insertions if greater than 7 or filled oth-
erwise. After that the algorithm checks if the left fragment or the right one in respect to the
found region of the input structure have more than 40 residues, and if it is that the case it cuts
the structure and it repeats the whole procedure. When no more fragments can be processed
the obtained candidate regions are compared: if candidate they share an identical topology an-
notation and they are found to be in proximity of each other they are merged together in a
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unique region. Results are then written in a csv file(Table 4.2). The whole algorithm has been
written in Python using the library Biopython†.

Figure 4.1: schematic representation of the Algorithm

†https://biopython.org/
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Figure 4.2: scheme representing how gaps between units are managed when fixing fragments

Tentative iteration TM-score max gaps

1 1
2
3

0.30
0.25
0.20

5

2 1
2
3

0.30
0.25
0.20

10

3 1
2
3

0.30
0.25
0.20

15

Table 4.1: Set of parameters used by the algorithm. At each iteration if no solution is found the TM‐score
threshold is relaxed until a maximum of 0.20. If still no solution is found also the max gaps filter is
relaxed.
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PDB region interval predicted units insertions class topology fold clan

6kivR 46-305 [[46, 86], [87, 129] ..] None Elongated Propeller .. ..

Table 4.2: Example of output of the algorithm for a structure having one repeated region
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4.2 Assessment methods

Validation is a very important step when designing a new algorithm because it can be useful to
empirically establish how much your method is correct and if it performs consistently. Here,
validation is intended as validation of the single units: indeedwewant to check how good is the
algorithm in predicting units boundaries. Unfortunately For tandem repeats proteins the situ-
ation is very complex because there is nomodel available for the majority of the repeats present
in the world. For this reason the validation set will be only composed by some of the manually
annotated proteins that are contained inRepeatsDB. The onlywaywe can benchmark our pre-
diction is by comparing them with the reference model available in RepeatsDB. As shown in
figure 4.3 each unit of the prediction will be paired with one corresponding unit of the model
that fits the best and if two units of the prediction can pair with the same unit of the model
the one overlapping the most will be chosen [13]. After pairing units we have to compute the
confusion matrix:

• True positives are the residues part of the same unit both in the model and in the pre-
diction

• True negatives are the residues that are not part of any unit neither in the model or in
the prediction

• False positives are the residues that are part of a predicted unit but not of the corre-
sponding one in the model

• False negatives are residues contained in themodel unit but not in the pairing predicted
one.

The confusion matrix is the used to compute three fundamental metrics that are very com-
mon also in machine learning:

accuracy =
TP + TN

P +N
precision =

TP

TP + FP
recall =

TP

TP + FN
(4.1)

In our case they are useful because:

• Accuracy represents the fraction of residues our model was able to classify correctly

• Precision represents the amount of correctly classified residues among the ones thatwere
assigned to units

• Recall identifies the amount of correct predicted residues in each unit.
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Figure 4.3: schematic representation of the validation procedure applied to two example regions. Units
are represented as green blocks. Unit 1 of the model is paired with unit 1 of the prediction and unit 3 of
the model is paired with unit 3 of the prediction. Hence, unit 2 is left out. True positives, false positives,
true negatives and false negatives are highlighted
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4.3 Prediction accuracy

Results were obtained by testing the algorithm on a dataset of 63 reviewed PDB selected ran-
domly fromRepeatsDB. Each PDB contains only one region for making evaluation easier and
it is associated to one unique UniProt (no UniProt duplicates). Furthermore the units belong-
ing to a region that was found in the input PDBwere all discarded from the SRUL in order to
force the algorithm to choose the master unit from other PDBs. We are interested in testing 3
different things using most of the metrics explained in 4.2.

• The accuracy, precision and recall in detecting units

• The precision and the recall in detecting repetitive regions.

• The correctness of the annotation given in terms of class, topology, fold and clan.

The full process of prediction of 63 PDBs lasted approximately 48minutes. Only twoPDBs
out of 63 were labelled as ”not containing repetitive regions”.

class number of regions
Beads-on-a-string 8
Closed repeats 27

Elongated repeats 28

Table 4.3: Number of regions associated to each RepeatsDB class

Table 4.3 shows how regions are divided per PDB. Elongated and closed repeats share a com-
mon number of candidates while beads-on-a-string are extremely lower.

accuracy precision recall
region 77 % 92% 80%
unit 70 % 75 % 75 %

Table 4.4: Performance evaluation of RepeatsDB‐lite 2.Measures are averaged over all repeat
classes/topologies

Table 4.4 contains some general statistics about the results obtained: both precision and
recall in detecting regions and units are encouraging. It is worth to notice that average unit
detection match the one found in the validation set while recall is even higher. The average
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class region accuracy region precision region recall
Beads-on-a-string 75% 99% 75 %
Closed repeats 76% 92 % 80 %

Elongated repeats 77% 91 % 80 %

Table 4.5: Class precision and recall in detecting repetitive regions for RepeatsDB‐Lite 2

topology region accuracy region precision region recall
Alpha-barrel 97 % 98 % 99 %
Alpha-beads 92 % 99 % 93 %

Alpha-solenoid 87 % 99 % 88 %
Alpha/beta barrel 53 % 100 % 53 %
Alpha/beta prism 99 % 100 % 99 %

Alpha/beta sandwich beads 39 % 100 % 39 %
Alpha/beta solenoid 93 % 97 % 96 %
Alpha/beta trefoil 94% 97 % 97 %
Beta hairpin repeat 72 % 96 % 74 %

Beta-barrel / beta hairpins 50 % 100 % 50 %
Beta-beads 82 % 99 % 82 %

Beta-solenoid 58 % 78 % 63 %
Propeller 78 % 90 % 78 %
TIM-barrel 80 % 92 % 88 %

Table 4.6: Topology precision and recall in detecting repetitive regions for RepeatsDB‐Lite 2

execution time per structure is a bit more than one minute, but we have to take into account
that the RepeatsDB structures are usually smaller than the ones predicted by AlphaFold, so on
real case scenario it will certainly require more time.
Theprecision and recall indetecting regions as represented in4.5 are comforting. Closed and

elongated repeats share same results, while beads-on-a-string have a lower recall. This probably
due to the fact thatmost of beads-on-a-stringhave very longunits that canbewrongly predicted
as shorter and confused with other topologies belonging to closed and elongated repeats like
beta-hairpin and alpha-solenoids.

Table 4.6, instead, show statistics about region precision and recall grouped by topologies.
Most of the highly represented topologies like Propellers, TIM-barrels, alpha-beta solenoids
and alpha-solenoids obtainedgood results. Other topologies likebeta-barrels andbeta solenoids
even if quite present in the SRUL obtained worse results. It is possible that most of the can-
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class unit accuracy unit precision unit recall
Beads-on-a-string 68% 71 % 66 %
Closed repeats 69 % 80 % 76 %

Elongated repeats 71 % 70 % 76 %

Table 4.7: Class accuracy precision and recall in detecting units

topology unit accuracy unit precision unit recall
Alpha-barrel 78 % 72 % 98 %
Alpha-beads 94 % 95 % 91 %

Alpha-solenoid 80 % 81 % 85 %
Alpha/beta barrel 16 % 51 % 35 %
Alpha/beta prism 85 % 88 % 95 %

Alpha/beta sandwich beads 28 % 41 % 18 %
Alpha/beta solenoid 85 % 76 % 93 %
Alpha/beta trefoil 88 % 90 % 97 %
Beta hairpin repeat 58 % 68 % 72 %

Beta-barrel / beta hairpins 43 % 87 % 46 %
Beta-beads 69 % 68 % 73 %

Beta-solenoid 58 % 56 % 58 %
Propeller 73 % 81 % 75 %
TIM-barrel 68 % 78 % 82 %

Table 4.8: Topology accuracy precision and recall in detecting units

didates contained in the SRUL are not quite good representative of those structural motifs.
Moving on unit predictions by looking on table 4.7 we can notice that the class for which we
obtained the best results are closed results with 80 % of precision. Elongated repeats are not
that far but got 10 % less of precision. Beads-on-a-string got the worst results both in terms of
accuracy and recall (as expected) since they are a minority in the SRUL.

In table 4.8 we group metrics results by topology to go more in depth in order to under-
stand what were the structural motifs that got the most wrongly predicted: Alpha-solenoids,
Propellers and TIM-barrels, alpha-beta solenoids are the most present both in the test dataset
and in the SRUL and they got the best results. Beta-solenoid, instead, got not very good results
probably because it is more difficult to detect unit boundaries and they can be easily confused
with beta hairpins when using low TM-score threshold. Both beta-hairpins and beta solenoid
are made of beta strands arranged in an antiparallel way, but in the case of beta hairpins they
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classification level correct annotations wrong annotations
class 51 12

topology 48 15
fold 37 26
clan 36 27

Table 4.9: Amount of correct and wrong annotation per classification level

form an hairpin like structure while in the case of a beta solenoid they look like a superhelix.
Alpha barrels, alpha beads and alpha/beta prisms all got good results but they should be tested
on a wider sample: the number of regions in the dataset was not as representative as for ex-
ample for TIM-barrels or Propellers. Beta-barrels, instead, are subject to the same problem of
beta-solenoid but in a more serious way: beta-barrels, infact, are beta-sheet composed of beta-
hairpins repeats.

Table 4.9 shows the number of correct and wrong annotations assigned to the regions. We
expect class and topologies to be correct for most of the inputs and fold and clan to be more
misspredicted. Results seems to confirm this tendency: for 12 PDBout of 63 the class level was
missed and as a consequence also the more nested level of classification. However it is interest-
ing to notice how the topology seems to be paired in the class in the sense that when the class is
correctly predicted in most of the case also the topology is predicted (only in 3 cases the class is
predicted and the topology is not predicted). The same reasoning is valid for fold and clan (for
36 regions out of 37 for which the fold was predicted the clan was guessed to). Plots 4.4 4.5
and 4.6 show the class, the topology and the fold of the regions that were annotated wrongly
by the algorithm. By just looking at class we do not obtain many information: elongated re-
peats seems to be a bit more misspredicted in respect to beads-on-a-string and closed repeats
but it could be related to the sample taken. The topology level highlights that many different
topologies often belonging to different classes share common structural motifs: alpha-helices
are at the same time units of alpha-solenoids but also of alpha-beads even if in alpha-beads
alpha-helices are usually very long, beta beads on the other hand can be found smaller in beta-
hairpins and longer in beta-beads. If, instead, we take a look at the fold levelwe see that themost
wrongly predicted are alpha-solenoids and beta-solenoids. Indeed they can be often confused
with alpha/beta-solenoids and in the case of beta solenoids evenwith beta-hairpin repeats. This
reasoning makes clear how it is easy for an algorithm to assign wrong annotations: if we relax
by a lot our TM-score andRMSD threshold it is waymore probable that partially correct units
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can match with our input.

Figure 4.4: number of regions in each class annotated with a different class from the correct one
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Figure 4.5: number of regions in each topology annotated with a different topology from the correct one

Figure 4.6: number of regions in each clan annotated with a different clan from the correct one
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4.4 RepeatsDB-LiteandRepeatsDB-Lite2: performances

In this section we are interested in making a comparison between RepeatsDB-Lite, the actual
method used to annotate structures in RepeatsDB and RepeatsDB-Lite 2, the new algorithm.
The 63 structures used to validate RepeatsDB-Lite2 were submitted toRepeatsDB-Lite which
is freely available at http://old.protein.bio.unipd.it/repeatsdb-lite/. A first
important thing to notice is the fact that RepeatDB-Lite was not able to identify repeats for
14 of the 63 structures unlike from RepeatsDB-Lite 2 were only 2 of 63 regions were not an-
notated. Moreover RepeatsDB-Lite, didn’t discard from the SRUL units belonging to the
input structure, hence this could affect predictions positively if those units are picked as mas-
ters. Table 4.10 show the average accuracy, precision and recall in detecting units and regions
for RepeatsDB-Lite: precision and recall in detecting regions are overall extremely better for
RepeatsDB-Lite but not in detecting units especially in accuracy and precision where the dif-
ference is at most 6 %: RepeatsDB-Lite 2 obtained a 70 % accuracy and a 75 % precision while
RepeatsDB-Lite 76 % accuracy and 80 % precision. If we go more in details (table 4.11) and
we compute metrics at a class level we can notice that beads-on-a-string and elongated repeats
are overall better predicted by RepeatsDB-Lite, but for Closed repeat there are not impor-
tant differences: precision is slightly higher for RepeatsDB-Lite 2 but accuracy and recall are
similar or almost equal. Taking into consideration topologies as shown in table 4.12 we can
make additional observations: alpha-barrel and alpha-beads, for example, are predicted bet-
ter by RepeatsDB-Lite 2 (accuracy of 32 % against 78 % and 94 % against 70 %). For alpha-
solenoids there are notmany difference except for precisionwhich is 7 % higher forRepeatsDB-
Lite. Alpha/beta barrel and alpha/beta prism are overall better recognized by RepeatsDB-
Lite even if also RepeatsDB-Lite achieved very good results. The same is valid for alpha/beta
solenoids. Alpha-beta trefoil, on the other hand, are better predicted by RepeatsDB-Lite 2.
Beta-beads, beta-hairpin repeat, beta-solenoid and beta-barrel/beta hairpins are predicted bet-
ter by RepeatsDB-Lite: RepeatsDB-Lite seems more powerful in detecting beta-strands than
RepeatsDB-Lite 2. On the other hand RepeatsDB-Lite 2, as highlighted before when analyz-
ing metrics computed on classes is way better when dealing with closed repeats: accuracy and
precision in detecting units is higher for both Propeller and TIM-barrel.
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accuracy precision recall
region 90 % 97% 92%
unit 76 % 80 % 98 %

Table 4.10: Performance evaluation of RepeatsDB‐lite.Measures are averaged over all repeat
classes/topologies

class unit accuracy unit precision unit recall
Beads-on-a-string 81% 80 % 98 %
Closed repeats 70 % 73 % 83 %

Elongated repeats 81 % 87 % 85 %

Table 4.11: Class accuracy precision and recall in detecting units for RepeatsDB‐Lite

topology unit accuracy unit precision unit recall
Alpha-barrel 32 % 33 % 32 %
Alpha-beads 70 % 69 % 96 %

Alpha-solenoid 82 % 88 % 89 %
Alpha/beta barrel 98 % 98 % 100 %
Alpha/beta prism 97 % 97 % 100 %

Alpha/beta solenoid 91 % 87 % 96 %
Alpha/beta trefoil 83 % 84 % 94 %
Beta hairpin repeat 71 % 76 % 79 %

Beta-barrel / beta hairpins 65 % 83 % 75 %
Beta-beads 97 % 97 % 97 %

Beta-solenoid 72 % 93 % 66 %
Propeller 68 % 66 % 82 %
TIM-barrel 63 % 70 % 83 %

Table 4.12: Topology accuracy precision and recall in detecting units for RepeatsDB‐Lite
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4.5 RepeatsDB-Lite andRepeatsDB-Lite 2: execution
times

RepeatsDB-Lite was a revolutionary and very well designed algorithm in the end. The main
problemwith it are its execution time: on average you require 8 to 10minutes toprocess oneRe-
peatsDB structure which is not feasible when youwant to analyze thousand of PDB structures.
For this reason i want tomake clear that by implementing a new algorithmwe had a radical im-
provement in terms of time performances. By submitting the 63 structures toRepeatsDB-Lite
i was also able to estimate the execution times for each structure. Since RepeatsDB-Lite was
executed from a webserver i removed 60 seconds from the final predictions to remove any over-
head produced by the server answer. The total running time required RepeatsDB-Lite was 10
hours while the new algorithm was able to elaborate all inputs in just 40 minutes. Overall the
difference is huge and also not expected. Figure 4.7 highlights in logarithmic scale how many

Figure 4.7: Histogram showing the big gaps in execution times between RepeatsDB‐Lite (on the left) and
the new algorithm (on the right) in logarithmic scale

seconds most of the predictions required. For RepeatsDB-Lite most of the structures required
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between 200 and 500 seconds (3 and 8 minutes) to be processed while for the new algorithm
between 15 and 50 seconds. Overall, the difference is around one order of magnitude but we
have to take into consideration a few additional things:

• RepeatsDB-Lite is not only a structural predictor but also a sequence based predictors.
Its analysis are not limited to structural alignments

• The output produced by RepeatsDB-Lite is extremely more detailed and interactive
than the one produced by our algorithm: RepeatsDB-Lite shows a multiple sequence
alignments and also how units of the found regions align themselves

• RepeatsDB-Lite uses external software to make predictions and to plot results which
can influence computational times in turn.

Implementing additional features on our algorithm would probably make execution times
worse and more comparable to the ones of RepeatsDB-Lite, however preliminary results look
very promising.
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4.6 Large scale predictions

One of the main aims of structural bioinformatics is to develop new computational methods
for the prediction of protein structures from the primary aminoacid sequence. Those predic-
tors became fundamental mainly at the start of the XI century when the number of discov-
ered sequences started to grow exponentially and became impossible to use the expensive and
slow experimental techniques coming frommolecular biology to determine for each sequence
a corresponding structure. Since 1994 a biannual and community event called CASP (critical
assessment of protein structure prediction) provided a way to different research groups to test
the currently available software for secondary structure prediction. One of the most succesful
results was obtained by Rosetta in 2004 when at 6th edition of the CASP conference was able
to produce a close atomic level prediction with ab initio techniques (without using structural
information coming from other structures). Ab initio predictors are considered the most dif-
ficult to design because they have to rely on just sequence information or on the modelling of
physical interactions. Just for saying, RepeatsDB-Lite and the new algorithm explained in sec-
tion ?? cannot be considered ab-initio methods since they both rely on a library of structural
units. Rosetta starts by selecting from a library of sequence fragments the ones that match
best with the input sequence. After that it combines the fragments and tries to produce a first
model by optimizing non-local contacts. The process of optimization continues until the min-
imumof an energy function is reached by using themetropolis hastings algorithm. At the 13th
edition of the CASP competition in 2018 a new algorithm developed by Google DeepMind
and based on deep learning placed at the top rank. Its name is AlphaFold. AlphaFold [17] was
considered a revolution in the world of structural predictors even if the full process leading
to protein folding is still unknown, and it is still the standard secondary structure predictor
nowdays. The first version of Alpha-fold uses an attention-based neural network which was
modified for the second version that came out in 2020. AlphaFold 2 is based on a end-to-end
neural networkmodel for detecting residues structural relationships. It is an iterative procedure
that after producing a raw model keep refining local interactions until a valid one is obtained.
Molecular dynamics is used only in the final steps to refine the final predictions coming out
from the neural networks. The importance of Alpha-Fold in the bioinformatics community
just widened also to the world of tandem repeats where monthly new predicted proteins could
expand our knowledge on repeats and contribute to enrich our currently available databases
like RepeatsDB. Having new candidates structures is essential for template based methods: if
we keep discovering new structure we can also generate a new improved (not necessarily bigger)
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version of the SRUL and make our algorithms better in detecting what before they were not
able to spot. But it is not only this: keep testing algorithms on AlphaFold structures is a good
procedure to understand if our current version of the SRUL contains undesidered too long or
too short units that need to be filtered out.

4.6.1 Easy target

A first example i want to show is represented in figure 4.8. The protein represented is a pro-
teins working as an antibody containing an immunoglobulin-like domain and found in hedge-
hogs. The structure shownwas downloaded from the alphafold protein structure database and
submitted to our algorithm ‡. Even if no PDB data are associated to this structure, hence no
units are represented in the SRUL the algorithm was able to detect two regions in 2 minutes
and 44 seconds. The one on the left side of the picture (residues 84-474) was annotated as an
alpha-beta solenoid and more specifically as a leucine rich repeats while the one on the right
(residues 506-791) are considered beads-on-a-string (beta-sandwich beads). The validation of
these structures is not possible because we have no PDBdata associated to those structures, but
we know specific structural topogies are often associated to specific functions so we can cross
our information on structural repeats with the annotated domains in Pfam. Pfam is a database
of protein families which seeks to provide a complete classification of protein families and do-
mains. Figure 4.9 shows a comparison between the structural units found by the algorithm for
the region 506-791 and the domains available in Pfam. It is evident that each of these struc-
tural repeats has a fundamental role in the function of the protein: the first domain ig_3 is a
domain that is often involved in protein-protein interactions and protein-ligand interactions,
while the second and the third domain are usually found in cell adhesionmolecules where they
play a fundamental role in the immune response.

‡https://alphafold.ebi.ac.uk/
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Figure 4.8: Alphafold predicted structure of UniProt A0A1S2ZKA9
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Figure 4.9: Comparison between structural domains found by the algorithm and information retrieved
from Pfam

However often units do not form a domain on their own but they have to be assembled
together. This is the case of region 84-474 which is shown in figure 4.10. The region is made
of 16 units that are not forming a domain on their own: usually 2 or 3 units assembled together
to form the so called leucin rich repeat (LRR) domain having a typical horsehoe shape with an
interior array of beta-sheets and a external array of alpha helices.
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Figure 4.10: Comparison between structural domains found by the algorithm and information retrieved
from Pfam

4.6.2 Difficult target

Another example i want to show is the AlphaFold structure related to UniProt Q8IXQ5 rep-
resented in figure 4.11. The algorithm was able to spot three different regions: the one of the
right is a fibrous repeat, a coiled-coil for which no units are present in the SRUL. Indeed this
region was annotated as an alpha-solenoid. Another region is a closed repeat and more specif-
ically a seven blade propeller for which some units are present in the SRUL so it is easier to
detect. The third region is something not expected and it is the one linking the propeller and
the coiled coil. For this region which is an alpha-solenoid no PDB are available, so no repeated
units associated with this region exist in the SRUL. The region was overall correctly spotted
and annotated but the units are not: the first four helices are annotated as four independent
units. This is a mistake because usually alpha-helices are made of two helices linked to each
other having a length of at least 25 residues. This wrong prediction highlighted that the prob-
lem was one of the unit of the SRUL which was annotated as an alpha-solenoid but was just
too short to be considered as such.
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Figure 4.11: Prediction of the new algorithm for structure related to UniProt Q8IXQ5
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5
Conclusion

We have developed an algorithm able to detect units inside repetitive regions and to annotate
those regions using the classification of RepeatsDB. Two main aspects were curated: one is
the Structural Repeat Unit Library containing a set of annotated units from RepeatsDB, the
other is the algorithm itself. Many improvements can bemade: The SRUL is certainly still not
perfect, for example, oversampling or undersampling techniques could be explored tomitigate
the elevate imbalance between classes and other clustering technique could be used. Develop-
ing a good algorithm for detecting repeats can put in front of many difficulties: most of the
available predictors in the bioinformatics literature are not good at doing everything but they
are biased and better in terms of performances towards specific classes or categories. It is im-
portant to be aware of the fact that when you are developing a computational method you
are unconsciously putting some strong assumptions on the table and you are probably limit-
ing your own algorithm when looking for the solution: in most of the cases it will work but
in some other it will not, especially when you are dealing with biological entities that do not
always obey to the strict and precise rules of mathematics. Even AlphaFold, one of the top
tier automatic predictors in bioinformatics has its faults: its performances are great but when
it has to deal with the full complexity of the world of proteins sometimes it fails. This is also
something we have noticed for our new algorithm: some topologies were predicted better and
some other not correctly detected. The issues here are doubled: you don’t have to design only
a fast, precise and correct algorithm but also to have a vast and comprehensive unit library that
takes into considerationmost of the variability present in nature. When dealingwith biological
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data we widen our knowledge every day and we have to be continuously open to gather new
data as soon as they become available. In order to test the correctness of our predictions we
should rely onmore than one predictor and build a good consensus because each predictor has
its strengths and weaknesses. This is all to say that work here will never finish: the amount of
structures available is still not representative of the thousand of proteins that are present in the
environment and the computer will be even faster than today with higher amount of available
memory and more speed. tomorrow there will be certainly more structure available, and as a
consequence more chance to develop a faster and better-performing predictor.
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