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ABSTRACT 

The importance of decreasing the fuel consumption of aircrafts from generation to 

generation, along with the need to reduce emissions and noise, is leading to 

engines with higher By-Pass Ratio (BPR). This generally leads to an increase of 

weight and drag, which can outweigh the earned benefits. One approach which 

allows to reduce these effects implies the reduction of the length of the engine 

intake. Nevertheless, this can reduce the internal diffusion capability and lead to 

flow non-uniformities at the engine fan face, leading to reduced performance of the 

whole engine. 

The aim of the current research project consists in the construction of a reliable 

surrogate model which reflects the behaviour of the intake bottom line when 

exposed to incidence conditions. This model represents an approximation of the 

real behaviour, but it provides a tool for the quick evaluation of bottom line 

designs. The initial objective of the project consisted in the determination of the 

bounds of the design space, which has to be populated for modelling purposes. 

Preliminary to any operation, a thorough analysis of the obtained design space has 

to be carried out for two main reasons: identify region of poor interest which have 

been included in the design space; identify geometries characterised by undesired 

features. 

The surrogate modelling technique chosen is the Kriging method. Its application to 

the design space shows reasonable results, which, at this stage, cannot be 

considered acceptable for the final intended use. The best result achieved required 

an increase of dimensionality, moving from three to four variables, but leading to 

promising results demonstrated by, as indicator of the overall quality of the model, 

a Root Mean Square Error equal to 0.036, considering values of 𝐷𝐶60 ≤ 0.1  as 

aerodynamically acceptable values. The method has shown good potentialities, but 

more complex mathematical solutions have to be introduced to improve the model. 

Keywords: 3D CFD, distortion, Kriging, metamodel, reduced order model 
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1 INTRODUCTION 

1.1 Context of the project and motivation 

The main objective that is driving the innovation in the aeronautical sector is 

represented by the continuous research aimed to reduce the environmental impact 

of the next generation of aero-engines. This requirement is strictly related to the 

continuous monotonic increase of passengers and flights year after year and this 

requires the introduction of some forms of regulations to counteract the bad 

effects of flight travel on the environment. Between the different variables which 

play a role in this, those of major concern are generally identified in the emissions 

of 𝐶𝑂2 and 𝑁𝑂𝑥 and in the external noise produced by an engine. Common short 

and long-term goals have been set in a Strategic Research Agenda by the Advisory 

Council for Aeronautical Research in Europe (ACARE). The short-term targets are 

set for 2020, and between them the different companies in the sector have to 

ensure: 

 50% overall reduction of 𝐶𝑂2, which 20% is from the engine 

 80% overall reduction of 𝑁𝑂𝑥, which 60% is from engine technology 

 50% overall reduction of noise 

As an example of how major manufacturing companies are dealing with the 

defined objectives, in Figure 1.1 the trends which Rolls Royce’s aero-engines have 

drawn since the imposition of the guidelines for 2020 are presented [1].  

The design objectives to meet the requirements of reduced Specific Fuel 

Consumption (SFC), emissions and noise generally involve the design of aero-

engines characterised by an increased By-Pass Ratio (BPR). This usually positively 

affects the performance of the engine, allowing to achieve a reduced Fan Pressure 

Ratio (FPR) and an improved propulsive efficiency [2], which is also related to an 

improved fuel burn [3]. An increase of BPR can be achieved in two ways: 

increasing the size of the whole engine, maintaining the dimensions of the core 
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engine; maintaining the dimensions of the whole engine and reducing the size of 

the core engine. The latter solution is obviously possible, but it requires levels of 

technology that are difficult to achieve in the short-term. Therefore, the former 

solution is more suitable for this kind of terms, but it brings few drawbacks that an 

engine manufacturer has to face. Between these, the major ones are the increased 

weight and size of the whole engine, especially when the section orthogonal to the 

direction of flight is considered. These two drawbacks can offset the benefits 

gained with an increased BPR generally leading to adverse weight effects, 

increased drag and SFC. 

 

Figure 1.1: Future aero-engines - reducing the environmental impact [1] 

In order to reduce the effects of these drawbacks, one solution considered by 

engine manufacturers is the design of shorter intakes, which technically allows 
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reducing weight and drag-related issues. Nevertheless, usually these benefits are 

obtained at the price of a reduced diffusion capability in the intake duct. This 

translates in lower Intake Pressure Recovery (IPR) and higher flow non-

uniformities at the fan face, which adversely influence the overall efficiency and 

performance of the engine. A short intake design should provide optimal 

performance in all the phases of flight that an aircraft faces, almost at the same 

level of performance provided by the conventional length intake. Conditions such 

as take-off and climb pose at the intake designer a difficult problem to solve, since 

the achievement of optimal performance for all the conditions require a great 

number of compromises. Currently, the design of short intakes is carried out 

exploring different solutions manually, leading to the definition of non-optimal 

solutions. Therefore, in order to enhance the design process, the development of a 

procedure to quickly evaluate and generate optimal geometries for short intakes is 

mandatory. The process should automatically design and analyse different 

geometries, created on the base of the conflicting requirements that should be 

respected in all the conditions of flight. 

1.2 Aim and objectives 

The aim of the current research project is to create a surrogate model which 

provides a quick way to obtain optimal solutions for the design of the bottom line 

of a short intake. The objectives can be listed as following: 

 Exploration of the design space of the bottom line geometry at incidence, 

aiming to improve the design space bounds derived from the past approach. 

 Creation of a Latin Hypercube Sampling (LHS) DoE able to explore 

thoroughly the whole design space defined from the previous point. 

 Exploration of the LHS DoE created, aiming to enhance its bounds and to 

filter undesired characteristics generated within it. 

 Exploitation of surrogate modelling techniques for the creation of a 

metamodel able to generalise the behaviour of two metrics of interest. 
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2 LITERATURE REVIEW 

2.1 Intake aerodynamics 

The air intake system is the first component of a jet engine and it can be 

considered as a fluid duct which main task is to bring the free-stream air into the 

engine. In this process it has the fundamental objective to control the incoming air 

flow, ensuring the correct overall performance of the aircraft over a wide range of 

conditions [4]. The intake is designed to provide the appropriate amount of air to 

the compressor in order to achieve the level of thrust required in each phase of a 

flight. For subsonic podded engines, the incoming flow must reach the fan face 

with a moderate subsonic speed, and this imply that a method to reduce the speed 

of the free-stream has to be implemented. Considering as reference cruise flight 

conditions, the average aircraft speed is around M = 0.85. The maximum tolerable 

speed at the fan face for an engine as the one represented in Figure 2.1 is around 

M = 0.5 [5]. If this value is exceeded, this can lead to problems related mainly to 

compressibility effects. In any case, it is paramount that the required deceleration 

is carried out with the minimum amount of losses, ensuring the stability and the 

quality of the flow at the fan face [6]. 

 

Figure 2.1: Typical nacelle elements of an engine [7] 
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2.1.1 Intake theory 

Even though the air intake system can be considered as a simple aerodynamic 

duct, its design is a complex engineering issue, which requires the consideration of 

many compromises in terms of design and performance. As briefly stated above, it 

has to ensure the proper performance of the engine throughout all the operating 

conditions, from full thrust, when the aircraft is on the runway, to cruise, when the 

aircraft is in steady flight conditions. Considering for instance the former one, flow 

initially at rest has to be accelerated to the velocity required by the compressor. 

The typical shape of the stream-lines which characterise this condition is shown in 

Figure 2.2. 

 

Figure 2.2: Flow field at static conditions [6] 

As it can be figured out from the figure above, at full thrust conditions also air 

behind the intake lip is sucked inside the duct. In this situation the shape of the lip 

has an important impact on the behaviour of the flow. If it is too sharp, and so 

characterised by a strong curvature near the leading edge of the intake, separation 

inside the duct can be encountered due to the strong acceleration. In order to avoid 

this issue, the intake designer should solve the problem designing a thicker lip, 

characterised by a well-rounded geometry, which allows a gentle acceleration of 

the flow around the leading edge without encountering separation. Nevertheless, 

as it will be explained thoroughly later, even though this design is optimal for the 

condition considered, it is not desirable when the intake works in cruise 
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conditions. This is because the shape of an ideal stream-tube which drives the air 

stream in the engine is different in the two phases considered. As it will be clearer 

later, this also implies that the flow which enters the intake is characterised by a 

different behaviour in the region near the intake lip. This brief introduction gives 

an example of the difficulties encountered in the design of an intake system, 

highlighting the fact that different compromises must be found in order to find the 

optimal design which ensure correct performance in all the phases of flight. 

In Figure 2.3 the basic concept of aerodynamic duct is reported, and it serves as an 

extreme simplification of the more complex aircraft engine. The intake spans from 

section c to section f and, as it can be inferred, it is mainly characterised by a 

diffuser shape. As stated by Seddon [8], the intake can be considered as a form of 

compressor since a pre-compression of the air stream occurs when this flows 

between the two considered sections. Along with the diffusion, the incoming flow 

is slowed down from the free-stream velocity to an acceptable value of velocity at 

the fan face. This value is determined and fixed by the engine manufacturer, and 

usually is set below MFAN < 0.6. It allows to avoid mechanical and aerodynamic 

problems related to the coupling of the high speed at the fan blades tip and 

compressibility-related effects [5]. 

 

Figure 2.3: Aerodynamic duct in an airstream [8] 

An important concept related to the aerodynamics of a fluid flow duct regards the 

concept of stream-tube. In particular, concerning the air intake system, the main 

interest regards the so-called pre-entry stream tube. Its shape varies from one 

flight phase to another, and it is mainly dependent on the air flow demand of the 
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engine at the different flight phases. An important parameter associated with the 

stream-tube concept is called mass flow capture ratio (MFCR). It is defined as the 

ratio between the area of the stream-tube at infinity and the designed area at the 

highlight of the intake, as expressed in Equation (2.1). 

MFCR =
A∞

AHI
 (2.1) 

Generally, associated with different values of this parameter, it is possible to 

identify four principal phases during a flight: take-off, climb, normal cruise and 

maximum cruise [5]. Depending from the value of MFCR, a representation of the 

different shapes that the pre-entry stream-tube can assume is given in Figure 2.4. 

 

Figure 2.4: Mass flow demand in different flight phases [5] 

For a MFCR greater than 1, typical range for low speed flight, the stagnation point 

is located on the nacelle external surface, as shown in Figure 2.5. Considering the 

airstream located near the boundaries of the stream-tube, when this reaches the 

region near the stagnation point it is forced to turn and enter the intake duct. 

Potential flow calculations yield that this lead to the development of very high 

velocities near the highlight point [8]. This becomes clear visually examining 

Figure 2.5, where the distribution of Mach number in different locations along the 

lip is reported. Considering hypothesis of inviscid flow, the Mach number, 

approaching the highlight point from the stagnation point, significantly increases 

until a shock wave is formed immediately after the leading edge, on the intake lip 

side. This occurs because the real flow is not able to deal with high adverse 
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pressure gradients related to high supersonic peak velocities [8]. The 

consequences caused by the shock wave comprise a rapid deceleration of the flow 

followed by the flow separation from the intake surface. If this separation is not 

properly controlled through, for instance, the shape of the intake duct, this could 

persist until the fan face, affecting the performance of the engine. In addition, in 

some of the cases in which the shape of the intake is not properly designed, 

boundary layer thickening can occur, leading to high losses in the duct. 

 

Figure 2.5: Mach number distribution on intake lip for MFCR > 1 [4] 

Increasing the flight speed leads to the movement of the stagnation point towards 

the highlight point until the condition of maximum cruise is met, when the shape of 

the stream-tube can be assumed almost cylindrical. In cruise flight, characterised 

by a MFCR lower than 1, the stagnation point moves inside the intake, in a position 

generally located on the lip, downstream the highlight point, as shown in Figure 

2.6. Analysing the Mach number distribution on the internal surface of the intake, it 

is clear that the phenomena which occurs in the previous considered condition are 

not present. The airstream velocity increases until the throat point due to the 

convergent profile of the lip, without the formation of shocks. In this situation the 

losses which can occur internally are mainly related to friction issues. In any case, 
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the aerodynamic problem which requires attention in this situation is related to 

the behaviour of the flow on the external surface of the intake. In fact, considering 

for example an intake characterised by a thick shape, the problem of the 

acceleration of the flow around the lip is now moved on the external side of the 

cowl. In this situation the main issue that a designer has to solve consists in the 

reduction of the cowl drag on the nacelle, caused by potential shocks related to the 

high acceleration. 

 

Figure 2.6: Mach number distribution on intake lip for MFCR < 1 [4] 

Considering the intake throat, another important point that becomes paramount in 

the design of an intake is represented by the definition of the throat Mach number. 

Since the condition considered in the design phase is the maximum cruise one, the 

Mach number at the throat section in this situation should be maximised in order 

to achieve an acceptable value of Mach number at the fan face. Obert [9] reports 

that in order to prevent strong shockwaves on the intake walls the average Mach 

number at the throat should be below MTH < 0.8.  

In Figure 2.7 it is reported a study carried out by Seddon [8] on the influence of 

MTH and MFCR on the lip losses encountered in an intake with a well-rounded lip 

and a fixed geometry, defined principally by the contraction ratio. 
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Figure 2.7: Influence of MTH on total pressure loss [8] 

The specification of the term “lip losses” is useful to distinguish the losses due to 

the shape of the lip, dependent also from the ratio between the highlight radius 

and the throat radius, defined as Contraction Ratio (CR), from those related to the 

phenomena which occur in the diffuser, often associated to skin friction. In intake 

design theory, lip losses are usually expressed as in Equation (2.2). 

(
∆𝑃

𝑃∞
)

𝐿𝐼𝑃

=
∆𝑃𝑓

𝑃∞
− (

∆𝑃

𝑃∞
)

𝐷𝐼𝐹𝐹

 (2.2) 

2.1.2 Intake performance 

In order to proceed to the discussion regarding the design of an intake system, it is 

useful to introduce two figures-of-merit with which the performance of this 

component is usually evaluated. For the purpose of the analysis carried out, the 

two metrics which have been analysed are the Intake Pressure Recovery (IPR) and 

the distortion coefficient 𝐷𝐶60, thoroughly described in the following two 

paragraphs. In this context they are also considered as aerodynamic performance 

metrics. 

2.1.2.1 Intake Pressure Recovery 

The value of the static pressure at the fan face is higher compared to the value in 

free-stream conditions. From a thermodynamic point of view, due to the high 

velocity of the incoming flow, the diffusion process which takes place across the 
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intake can be considered isentropic and adiabatic, leading to the preliminary 

assumption of constant total temperature. Nevertheless, the same conclusion 

cannot be considered valid for the total pressure, as shown in Figure 2.8. In fact, it 

is generally assumed that in the intake duct is difficult to limit the different 

phenomena or problems which could occur, such as for example the already 

mentioned separation phenomena and friction problems. The efficiency of an 

intake system is mainly related to the particular phase of flight in which it works 

and, for each one of these, various factors play important roles in determining the 

quality of the flow. For instance, as introduced in the previous paragraph, the 

shape of the lip determines the capability of the intake to deal with the incoming 

air stream and ensure that separation does not occur. 

 

Figure 2.8: Process of intake pressure recovery [8] 

The definition of efficiency of the diffusion process in the intake is given by Seddon 

[8], and it is expresses as in Equation (2.3). This expression is valid for 

compressible flow, but it is not largely used and other forms are usually preferred. 

𝜂 =
𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑖𝑛 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
=

(
𝑃𝑓

𝑝∞
)

𝛾
𝛾−1

𝛾 − 1
2 𝑀∞

2
 

(2.3) 

A more common and convenient way to define the efficiency of the diffusion 

process is presented in Equation (2.4). This is valid for high free-stream velocities, 

as well as for supersonic flows. Moreover, when intake systems are considered, 

this efficiency is well-known under the name of Intake Pressure Recovery (IPR). 
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𝜂 =
𝑃𝑓

𝑃∞
 (2.4) 

Its effect on engine performance, especially in terms of thrust, is assumed to be 

directly translatable, as can be inferred in Equation (2.5) [8]. K is a factor which 

depends on the type of engine and on the flight speed. 

∆ 𝑇ℎ𝑟𝑢𝑠𝑡

𝑇ℎ𝑟𝑢𝑠𝑡
= K

∆𝑃

𝑃∞
 

(2.5) 

IPR has therefore a determining effect upon the engine thrust level. As defined by 

Seddon [8], this is the resultant force which acts in the direction of cruise and 

which is produced on the aerodynamic duct by the internal flow. On the opposite 

side, intake drag is defined as the resultant force which acts in the opposite 

direction to the thrust and which results from the interaction between the external 

flow and the aerodynamic duct. Assuming steady flight conditions, it can be easily 

inferred that a reduction in total pressure in the internal intake duct, leading to a 

reduction of engine thrust, affects also the balance between thrust and the drag, 

requiring more fuel to counteract this outcome. 

The factors which cause the reduction of total pressure in the intake duct depend 

on the operating condition considered [8]. As it has already been reported, for low 

speed flight and climb, characterised by MFCR > 1, the main factors which induce 

losses in the duct are shock waves, flow separation and the turbulent mixing 

related to this. In turn, for high speed steady flight, the main cause is principally 

the friction on the intake walls. 

2.1.2.2 Distortion coefficient 

This figure-of-merit is related with one of the main objectives that an intake 

system has to achieve: uniformity and stability of the flow at the fan face. The term 

“distortion” is used to identify the spatial non-uniformity of total pressure across 

the fan face. In the intake performance literature, the distortion coefficient is 
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usually identified as 𝐷𝐶𝜃, where 𝜃 indicates the angle of one of the sectors in which 

the fan face is subdivided. The distortion coefficient considered in the current 

analysis is identified as 𝐷𝐶60, since the total pressure distribution is evaluated on 

different sectors of 60 degrees on the fan face, as shown in Figure 2.9. This value 

for the angle is usually considered as a satisfactory minimum to obtain a good 

understanding of the level of distortion [8]. The distortion coefficient 𝐷𝐶60can be 

expressed in different forms depending on the country in which the engine is 

constructed, and the form more commonly used in the United Kingdom is 

expressed as in Equation (2.6). Generally, this parameter is given by the engine 

manufacturer to the engine designer as a constraint. 

𝐷𝐶60 =
�̅�𝑓 − 𝑃60

𝑞𝑓
 

(2.6) 

�̅�𝑓 is the area averaged total pressure at the fan face, 𝑃60 is the area averaged 

pressure in the sector with the lowest value of total pressure and 𝑞𝑓 is the mean 

dynamic head corresponding to the whole fan face. 

 

Figure 2.9: Distortion coefficient [6] 

Between the different problems related to high values of distortion, the one of 

major concern is related to the surge of the compressor. The high rotational speed 

of this engine component, along with a non-uniform pressure distribution across 
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the fan face, can lead to failure due to excessive vibrational motion of the 

compressor blades. 

The factors which lead to distortion at the fan face are kind of related to those 

which case a loss in total pressure. Nevertheless, by definition, the derivation of 

the distortion coefficient takes into consideration only pressure terms calculated 

at the fan face, and it evaluates the differences of total pressure between different 

sectors on this “surface”. This means that if the air stream is able to re-attach 

following a weak shock-induced separation, the measured 𝐷𝐶60 is low because 

there are not non-uniformities at the fan face. Though, at the same time, there is a 

marked loss in IPR, since the shock further reduces the value of total pressure. This 

case can be considered valid if the angle of attach of the aircraft is almost zero. 

Nevertheless, when considering incidence conditions attention should be paid in 

the design of both lip and diffuser. In fact, even if the shock occurring on the lip is 

characterised by weak intensity, if the diffuser is not properly design the boundary 

layer can grow and cause diffusion-induced separation, which in turn lead to high 

value of distortion and related issues. 

2.1.3 Intake design 

Kundu[5] provided some basic guidelines for the design of an air intake system, 

and the procedure was principally based on the maximum cruise flight condition. 

The shape of the stream-tube can be considered almost cylindrical, and the capture 

area at infinity can be assumed equal to the area at the highlight of the intake, as 

shown in the first picture on the left in Figure 2.4. Nevertheless, as briefly 

demonstrated in the first paragraph, the design of an air intake system involves the 

consideration of many compromises between the ideal condition of maximum 

cruise and the multiple off-design points. Between the large number of trade-offs 

that have to be considered, for instance, there is the one between IPR and drag 

since, as stated in the previous paragraph, the former has a direct impact on the 

engine thrust and therefore on fuel consumption. The ideal outcome from the 

design process is characterised by an intake which avoid boundary layer 

separation in the inner duct in all phases of flight and which is described by a high 
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value of IPR and by a low value of 𝐷𝐶60. The designer has to solve the difficult task 

of respecting the contrasting requirements defined for each phase of flight. From a 

generic consideration discussed by Seddon [10] in Practical intake aerodynamics 

design, the compromises should be found between: 

 A thin lip required at cruise, condition characterised by a high flight Mach 

number which defines a stream-tube shape as the one pictured on the top of 

Figure 2.10. This shape aids to avoid shocks and induced drag over the 

nacelle surface. In fact, the shape of the stream tube is such that the air 

stream which flows both externally and internally the aerodynamic duct 

does not undergoes rapid acceleration or separation. The only issue which 

affect this condition is not an aerodynamic issue, but it represented by the 

friction on the inner walls of the duct, which can generally lead to pressure 

losses. 

 A thick lip required at take-off, where the shape of the stream tube can be 

visualised in the bottom of Figure 2.10. The blunt shape of the lip allows to 

the air stream on the borders of the stream tube to flow inside the intake 

accelerating in a controlled way around lip, avoiding the rapid acceleration 

which could take place with a sharp lip and which could end up with shocks 

and related pressure losses and distortion. 

 

Figure 2.10: Stream-tube shape at cruise and take-off conditions [4] 
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In order to enhance the design process, it is useful to identify the two main 

sections of an intake system. This is formed by an initial convergent shape, called 

lip, which extends from the highlight point, the outer point of the engine casing, to 

the throat, the point of minimum area inside the intake duct. The second part is 

called diffuser and it is identified by a divergent geometry. The lip geometry can be 

defined by three main parameters which can be defined as in the following 

equations. 

𝐶𝑅 = (
𝑅𝐻𝐼

𝑅𝑇𝐻
)

2

 
(2.7) 

𝐴𝑅 =
𝐿𝑇𝐻

𝑅𝐻𝐼 − 𝑅𝑇𝐻
 (2.8) 

𝑟𝐼𝐿 = 𝑓𝐼𝐿

(𝑅𝐻𝐼 − 𝑅𝑇𝐻)2

𝐿𝐿𝐼𝑃
 

(2.9) 

Moreover, in the design process the diffuser geometry is usually defined by 

parameters such as the curvature at the throat 𝜅𝑇𝐻and at the fan face 𝜅𝐹𝐴𝑁 . A 

particular point which is paramount to highlight at this stage is that a feasible 

diffuser shape is characterised by a single inflection point. This point becomes of 

crucial importance when the automatic creation of the different intake geometries 

will be considered. In fact, the potential generation of multiple inflections along the 

intake length is highly likely, and a solution to limit this problem has to be found. 

In Figure 2.11 it is reported a schematic representation of the different parameters 

which define the geometry of an intake, as specified by the parameterisation 

currently employed at the Cranfield University [11]. 

 

Figure 2.11: Intake design parameters [11] 
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When studies at incidence conditions are considered, as it will be demonstrated 

later, the CFD simulations require the use of a three-dimensional intake geometry 

in order to obtain feasible results which reflect the real aerodynamics effects 

which occur in the duct. Considering a real modern engine, in order to improve the 

performance at incidence, the cowl geometry is modified by two parameters [11] 

which remove the symmetry of the engine with respect to the mid-plane, parallel 

to the horizontal axis, as shown in Figure 2.12. The first parameter is the scarf 

angle, defined as the angle between the highlight plane, described by the inlet 

section of the intake, and the engine centre line. The second parameter is the 

droop, which in the context of this analysis is defined as an offset rather than an 

angle. It is represented by the vertical translation of the highlight centre and it is 

defined as the vertical distance between the highlight centre and the engine axis 

[12]. According to Obert [9] and considering momentarily the droop parameter as 

an angle, real aero-engines intakes are usually drooped of an angle comprised 

between 3 and 5 degrees. 

 

Figure 2.12: Scarf and droop [11] 

2.1.4 Intake at incidence 

The typical value of MFCR which characterise the ascent flight phase is usually 

greater than unity, as can be inferred from the shape of the stream-tube in the 

fourth picture of Figure 2.4. As during take-off, this is related to the low Mach 
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number and high power settings which characterise such flight condition. The 

stream-tube shape is no longer axisymmetric and the locus of the stagnation point 

is slightly moved on the nacelle surface. As shown in Figure 2.13, this is no longer 

located in one unique axial position. 

 

Figure 2.13: Stream-lines representation for cruise and ascent [13] 

Considering the stagnation point located on the external surface of the bottom 

profile, at incidence this is moved downstream the highlight point. The air stream 

which flows around the bottom lip of the intake is therefore subjected to high 

acceleration due to the heavy stream line curvature. For the same reasons 

reported in Paragraph 2.1.1, this leads to a strong shock wave on the lip, as it is 

possible to see from the CFD results shown in Figure 2.14. 

 

Figure 2.14: Mach number contours at high incidence [11] 
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Due to the high angle of the intake, if the bottom line geometry is not designed in 

order to delay or reducing the severity of the separation [8], the shock wave can 

prompt the formation of a growing region of adverse pressure gradient in the 

diffuser, which heavily affects the intake performance in terms of IPR and 𝐷𝐶60. In 

fact, separated flow is considered as the main cause of increased stagnation 

pressure loss and promotions of flow non-uniformity at the fan face, leading to the 

already reported problems of stability of the compressor and thus of the whole 

engine. 

Seddon [8] identified that the geometric key driver which allows to control this 

phenomenon is represented by the contraction ratio, as demonstrated in the graph 

in Figure 2.15. As can be inferred, the effect of incrementing CR becomes more 

significant for high throat Mach numbers. Nevertheless, as it has already been 

demonstrated in Paragraph 2.1.1, high values of MTH are directly related with an 

increase of lip losses. 

 

Figure 2.15: Effect of CR on intake pressure losses [8] 

Another way useful to reduce the effects of incidence conditions is represented by 

the design of intakes with scarf and droop, as presented in the final discussion of 

Paragraph 2.1.3. In this way the incidence angle experienced by the engine is lower 

than the actual angle at which the aircraft flies. This leads to a reduced acceleration 

of the airstream around the intake bottom lip, which in turn reduces the possibility 

of separated flow inside the duct. 
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2.2 Design of Experiment 

Designing an intake requires the study of the effects of a multitude of variables on 

the variation of the metrics of interest, as seen in paragraph 2.1.3. Each variable, 

interacting with one or more other variables, can influence the aerodynamic 

behaviour of the system in different ways. Even with the computational power 

available nowadays, it is not possible to explore all the possible combinations of 

potential designs and optimised strategies have to be established. The examination 

of each combination can require a total analysis time which tends to infinite and 

this is not an affordable time frame in terms of real world applications. Therefore, 

different techniques can be exploited to explore the design space of a problem of 

interest, obtaining feasible results even if the dimensionality of the problem is 

heavily reduced. As stated by Montgomery [14], the designer should carry out 

different experiments with two clear objectives: the determination of the most 

influential design variables in the problem; the identification of the bounds in 

which these variables influence the investigated output the most. Therefore, after 

the determination of the main design variables, specific bounds have to be found in 

order to start the design space creation. The outer surface of this bounded design 

space is known in spatial analysis as convex hull, defined as the smallest set which 

contains all the possible infinite design variables combinations in the Euclidian 

space. Montgomery uses the expression Design of Experiment, also known as DoE, 

to indicate the process of determination of the different experiments which have to 

be carried out in order to collect appropriate data and draw meaningful 

conclusions about the behaviour of the problem of interest. The set of experiments 

has to be determined in an intelligent way in order to explore thoroughly each part 

of the design space. In order to achieve this objective, a large number of different 

methods have been developed during the years. The selection of the methodology 

to exploit starts from the understanding of the available resources. Between them, 

the most important and crucial are represented by the computational power and 

time frame available. These two conditions determine the complexity of the DoE 

technique and the discretisation level at which the design space can be studied. 

Once all the experiments have been carried out, or all the simulations have been 
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run, it is possible to proceed to the next step of the procedure, which usually 

consist in the construction of surrogate model. 

Two DoE techniques have been exploited in the context of this work, both for 

design space exploration and for design space creation. In particular, the 

techniques successfully employed are the Full Factorial (FF) and the Latin 

Hypercube Sampling (LHS). The theory behind them is explored in detail in the 

next two paragraphs. 

2.2.1 Full Factorial 

This method is one of the most common and intuitive strategies to explore the 

design space [15]. The number of experiments that are run with this technique is 

given by Equation (2.10). 

𝑁 =  ∏ 𝑛𝑖

𝑘

𝑖=1

        𝑖 = 1, … , 𝑝 
(2.10) 

𝑝 represents the number of features or independent variables, or in alternative the 

number of dimensions of the problem, whereas 𝑛𝑖  represents the number of levels 

for each variable. For example, considering the case in Figure 2.16b, the problem is 

defined by three independent variables, which determine the three dimensions, 

and for each variable the levels considered are two. Therefore, by definition, the 

total number of experiments is equal to 𝑁 = 23 = 8. 

 

Figure 2.16: Full Factorial Designs examples [15] 
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The main advantage of this technique consists in the fact that it use efficiently the 

data without confusing the specific effects of the different parameters [15]. Since 

the data are distributed on a regular grid, Full Factorial (FF) allows to create the 

base for the creation of response surfaces based on polynomial interpolation of the 

data. Though, generally the quality associated to metamodels created in this way is 

poor and other interpolation techniques are preferred. 

Although this method is easy to implement, its main downside is the exponential 

growth of experiments as the number of variables and levels is increased. For this 

reason, it is not suitable for high-dimensional design spaces or for design spaces 

where a high level of discretisation is required. Moreover, it is possible to remark 

upon the fact that the different points which identify the combinations overlap 

when they are projected on to the axes. Also, a common feature roughly belonging 

to all the approximation models that can be created is that they are more accurate 

nearby the point evaluated in the DoE process [16]. Thus, in relation to this point, a 

uniform spread of points across the design space which avoids this overlapping 

issue should be preferred. In fact, using a cheap DoE technique, such as the FF, is 

not always the best choice, because it usually translates in imprecise results and 

poor design space exploration [15]. The natural development of this concept can 

be found in the technique known as Latin Hypercube Sampling. 

2.2.2 Latin Hypercube Sampling 

Latin Hypercube Sampling (LHS) is one of the so-called Random DoE methods. 

Cavazzuti [15] suggests that this technique, as well as another technique called 

space-filling Sobol, over-perform other methods in the creation of a dataset for 

RSM purposes. Considering 𝑝 dimensions and 𝑛 design points, the design space is 

discretised into an orthogonal grid in which each axis is divided in 𝑛 equal parts. 

The result is a multidimensional space subdivided into many equal sized 

hypercubes, called bins. From a conceptual point of view, the LHS is then 

populated placing in each bin a point, which represents a design variables 

combination which has to be simulated. As can be inferred from Figure 2.17, and 

assumed as one of the key requirements of the Latin Hypercube Sampling, each 
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sample must be unique in every direction parallel to the orthogonal coordinate 

system [16]. An optimal LHS is one which avoids the clustering of design points in 

certain locations, ensuring an optimal distribution of the samples across the design 

space. In this way, the behaviour of the metric examined can be studied thoroughly 

in all the regions of the design space. As an extreme example to give a better idea of 

this mentioned concept, also a simple distribution of samples along the diagonal of 

the design space satisfies the requirement imposed by this technique. Though, it 

clearly shows a strong correlation between the different dimensions and, in 

particular, most of the design space remains unexplored. 

 

 

Figure 2.17: LHS designs examples [15] 

This method does not suffer the collapse problem, because if one or more of the 

factors appear not to be important, every point in the design space still gives 

information about the influence of the other factors on the response. 

One desired outcome required to the Latin Hypercube Sampling is to be space-

filling, so the samples do not cluster in certain zones of the design space. In order 

to ensure the uniformity of the distribution of samples, conditions are set on the 

minimal distance between two consecutive design points, and the measure which 

is widely used to evaluate the uniformity of the sample is the maximin metric [16]. 
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2.3 Surrogate modelling 

Surrogate models, also known as metamodels, are often used after a DoE run to 

build a statistical model which aims to generalise the behaviour of the design 

space. Once the results from the DoE are collected, we have a multi-dimensional 

space characterised by different values of the response variable investigated. 

Nevertheless, all these different values are not interconnected and nothing can be 

said about the response variable in the locations of the design space outside the 

samples examined. The aim of surrogate modelling is to find the function 𝑦 = 𝑓(𝒙) 

which represents the behaviour of the response in the design space [16]. The 

mapping of the function is based on the known values of the output variable in the 

locations specified by the DoE technique used. Another expression used as 

synonym for surrogate modelling is Response Surface Methodology (RSM). This 

name indicates that the relationship between the input and output variables can be 

represented as a hypersurface in the ℝ𝑝 dimensional space, identified by the 𝑝 

different features, or independent variables, that describes the problem. 

2.3.1 Kriging 

This method finds its origins in geostatistics, when Danie Krige, South African 

mining engineer, applied mathematical statistics to gold mining, in order to 

determine the location of gold reserves [16]. Kriging is a derivation of the Gaussian 

processes, and in particular it belongs to the family of the least squares algorithms, 

where it finds large use for processing highly non-linear responses. Given the set of 

input variables 𝑿 = {𝒙(1), 𝒙(2), … , 𝒙(𝑛)} and the corresponding set of responses 

𝒀 = {𝑓(𝒙(1)), 𝑓(𝒙(2)), … , 𝑓(𝒙(𝑛))} = {𝑦(1), 𝑦(2), … , 𝑦(𝑛)}, where the term between 

brackets in the exponent stands for the i-th observation, the aim of the method is 

to obtain a response surface where is possible to find the value of the desired 

output for a generic 𝒙. Kriging defines the response in that point as a weighted 

linear combination of the known response values, in the form 

𝑓(𝒙) = ∑ 𝜆𝑖(𝒙) 𝑦(𝑖)

𝑛

𝑖=0

 (2.11) 



26 

The term 𝜆𝑖 represents the weight given to each observation obtained through the 

DoE. The weights are obtained as solution of a system of linear equations which 

looks for the Best Linear Unbiased Estimator (BLUE) based on a stochastic model 

of spatial dependence quantified by a semivariogram 𝛾, or by the average of the 

experimental responses 𝜇, and by the covariance function [15]. The concept of 

variogram, represented as 2𝛾, is found in spatial statistics and it is described as in 

Equation (2.12), where E is the expectation and 𝜈 the expected value of 𝑓(𝒙𝒋). As 

briefly stated, the variogram represents the degree of spatial dependence of a 

stochastic process, and it is defined as the variance of the difference between the 

response values at two locations in the design space [17]. 

2𝛾(𝒙(𝒊), 𝒙(𝒋)) = var (𝑓(𝒙(𝒊)) − 𝑓(𝒙(𝒋)))

= E [(𝑓(𝒙(𝒊)) − 𝜇 − 𝑓(𝒙(𝒋)) + 𝜈)
2

] 

(2.12) 

The average of the experimental responses is given by 

𝜇 = E[𝑓(𝒙)] = ∑
𝑓(𝒙(𝑖))

𝑁

𝑁

𝑖=1

 
(2.13) 

The covariance function is expressed as in Equation (2.14), and it is used to 

calculate the correlation between pair of variables. 

cov(𝒙(𝒊), 𝒙(𝒋)) = cov (𝑓(𝒙(𝒊)), 𝑓(𝒙(𝒋))) =  E [(𝑓(𝒙(𝒊)) − 𝜇 )( 𝑓(𝒙(𝒋)) − 𝜈 )] 
(2.14) 

From Equation (2.12) and (2.14), assuming 𝜇 = 𝜈, for any two points in the design 

space Equation (2.15) represents the correlation between the semivariogram and 

the covariance function. 

𝛾(𝒙(𝒊), 𝒙(𝒋)) =
1

2
var( 𝑓(𝒙(𝒊)) ) +

1

2
var( 𝑓(𝒙(𝒋)) ) − c(𝒙(𝒊), 𝒙(𝒋)) 

(2.15) 

Many types of Kriging exist depending on how the average 𝜇 is computed [15]. 

Some of the most commonly employed types are: 

 Simple Kriging 𝜇(𝒙) = 0 
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 Ordinary Kriging 𝜇(𝒙) = 𝜇 

 Universal Kriging 𝜇(𝒙) = ∑ 𝛽𝑗𝑥𝑖,𝑗
𝑘
𝑗=1  

The Kriging variance �̂�2, called also Kriging error, is defined as 

�̂�2 = var (𝑓(𝒙) − 𝑓(𝒙)) = E (𝑓(𝒙) − 𝑓(𝒙)) 
(2.16) 

In order to compute the weights 𝜆𝑖 the variance should be minimised assuming the 

unbiasedness condition in which it is assumed equal to zero. Avoiding to report the 

entire mathematical derivation behind this statement, it is found, for instance in 

case of ordinary Kriging, that the weights are given by 

∑ 𝜆𝑖(𝒙) = 1

𝑛

𝑖=1

 (2.17) 

After some passages, from the mathematical extension of Equation (2.16) it is 

found that  

cov(𝒙(𝒊), 𝒙(𝒋)) 𝝀(𝒙) = cov(𝒙(𝒊), 𝒙) 
(2.18) 

and therefore the weights are given by Equation (2.19). 

𝝀(𝒙) = cov−1(𝒙(𝒊), 𝒙(𝒋)) cov(𝒙(𝒊), 𝒙) 
(2.19) 

The covariance terms are unknown and they have to be estimated through a 

semivariogram model [15]. 

In the current research project, the implementation of the Kriging method is done 

in Python. A better description of the underlying mathematical background is 

given in Paragraph 3.4.2, where the above introduction to the Kriging approach is 

adapted to the special needs of a programming language. 
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2.4 State of art 

2.4.1 Short intake aerodynamics 

The aero-engines currently operating on long-range flights are typically 

characterised by intakes with a ratio between their length and the fan diameter in 

the range 𝐿 𝐷⁄ = 0.5 ÷ 0.65 [18]. As described in the introductory chapter, the 

current trend in the design of next generation aero-engines, along with the 

increase of BPR and therefore of the size of the engine, requires intakes 

characterised by a shorter geometry, aimed to avoid the issues related to the 

increased weight and drag. The analysis of the performance of the bottom line of a 

short intake was thoroughly studied by Peters [13]. It was found that the critical 

flight phase for this line was represented by climb conditions, and therefore, as a 

design guideline, the design process should be mainly oriented to the optimisation 

of the bottom line in this phase. The aerodynamic performance was analysed for 

different configurations, specifically at different ratios 𝐿 𝐷⁄  and with the presence 

or absence of the fan rotor. The main findings showed that the shortest length 

which is possible to design corresponds to a ratio equal to 𝐿 𝐷⁄ = 0.25. Below this 

value, the overall benefits gained in terms of performance are lost due to excessive 

fan efficiency penalties, which outweigh the benefits potentially gained from 

nacelle drag reduction. 

 

Figure 2.18: Mach number contours at incidence conditions [13] 

In Figure 2.18 the Mach number distributions in the region near the bottom line at 

high incidence conditions are shown for the conventional and short length intakes. 
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As it can be inferred from the figures, in the former contour plot it is possible to 

see how the flow, after the initial shock formation at the intake highlight point, re-

attaches and reaches the fan face with a lower axial Mach number . Though, the 

results obtained from the analysis of the short intake solution on the right show 

that, even though the axial Mach number is higher compared to the first case, the 

design is characterised by a separation-free inlet flow. Moreover, along with this 

optimisation achieved at climb conditions, this solution allows also to obtain a 

reduction of the nacelle drag by 16% at cruise. The guidelines given by Peters as 

conclusions of the described thorough study suggest that the optimal range in 

which a short intake should be designed is comprised in 𝐿 𝐷⁄ = 0.25 ÷ 0.4. 

Work on the short intakes design has been also carried out at the Cranfield 

University. Initially, a tool for the automatic design, meshing and simulation of 

two-dimensional geometries was designed, which exploited the iCST method [11] 

to construct aerodynamically-feasible geometries. The initial analysis aimed to 

validate and improve the tool, and the different tests were carried out on an intake 

characterised by a ratio 𝐿 𝐷⁄ = 0.35 [19] in flight phases such as cruise and climb. 

Considering the latter condition, the tool was improved in order to better 

characterise the issues related to high incidence conditions, moving from 

inadequate two-dimensional models to more precise three-dimensional 

representations of the intake, as shown in Figure 2.19 by the Mach number 

distributions for 3D and 2D axi-symmetric simulated cases. 

 

Figure 2.19: Mach number contours for 3D and 2D axi-symmetric designs [11] 
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2.4.2 Intake design optimisation 

The study that followed what introduced in the previous section, aimed to find a 

way to solve the problem of determining the optimal geometries for the intake 

bottom line at incidence conditions, is presented. One of the approaches studied 

exploited a method based on Genetic Algorithms (GA) [20]. The intake examined 

was characterised by a three-dimensional geometry, in which features belonging 

to real engines were also included, such as the already described droop and scarf. 

The 3D analysis was carried out on the conventional length intake, characterised 

by a ratio 𝐿 𝐷⁄ = 0.50. The automatic Python script for the design, meshing and 

CFD simulation of the different three-dimensional cases was tested, and it 

provided good results in terms of computational efficiency and accuracy. The 

former one is particularly important in the framework of a study centred on 

optimisation. For each geometry, the whole process took 2 hours and a half on a 64 

CPU machine, and this was the best result achieved with the imposed convergence 

strategy and a mesh size of almost six millions cells. Even though the mentioned 

amount of time can be considered a good achievement in terms of computational 

effort required by a single case with such number of cells, when GA are employed 

this becomes unfeasible. It was derived that, for optimal results, the optimisation 

routine should run for 50 generations composed by 50 individuals each. In other 

words, 2500 total geometries have to be created, meshed and simulated during the 

whole optimisation process. This translates in a total estimated duration of the 

process of almost eight months, amount of time required to obtain the optimal 

solution searched. Logically, this time frame is not suitable for real world 

applications. For this reason, a new method has to be designed in order to provide 

a tool for a quicker evaluation of the optimal geometries of the bottom line of a 

short intake. 

One of the main key findings extracted from the GA optimisation is graphically 

reported in Figure 2.20. In the plot it is shown a close-up of the Pareto plot which 

was obtained after five generations of the optimisation routine. It highlights how 

well the method is able to optimise the geometries at each generation and obtain 

improved values of the examined aerodynamics performance parameters. 
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Moreover, this clearly shows a key feature of the whole study, which was already 

identified during the two-dimensional study and found confirmation in the three-

dimensional approach: a linear relationship between the distortion coefficient and 

the pressure losses encountered in the intake duct is present. In fact, it is 

demonstrated that a reduction of 𝐷𝐶60 implies an increase of IPR, which both lead 

to better intake performance. Nevertheless, as reported in Paragraph 2.1.2.2, this 

conclusion is not always verified. Therefore, particular attention must be paid and 

before drawing any conclusions, both aerodynamics parameters should be 

thoroughly examined. Anyway, for the preliminary analysis of the geometry of the 

bottom line, this finding allows to enhance the study of the intake performance, 

focusing the attention on a single aerodynamics performance parameter, which in 

the particular case of climb conditions can be identified in the distortion coefficient 

𝐷𝐶60. 

 

Figure 2.20: Pareto plot obtained after five generations of optimisation [21] 
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2.4.3 Design space exploration 

The last step taken prior the beginning of current research project consisted in the 

initial analysis of the design space of the bottom line of a short intake. The flight 

condition in which this line was analysed was the climb condition, which can be 

assumed as the most challenging that this line can face, due to all the aerodynamics 

issues that can originate. The short intake design considered in the framework of 

the project was characterised by a ratio 𝐿 𝐷⁄ = 0.35 [22], considered as a design 

trade-off following the thorough study of Peters [13]. 

The initial exploration was carried out exploiting a LHS DoE based on five 

independent design variables, namely CR, AR, 𝑓𝐼𝐿 , 𝜅𝑇𝐻 and 𝑓𝜅𝐹𝐴𝑁
, which were used 

to describe the geometry of the bottom line as described in Paragraph 2.1.3. The 

metrics considered in the analysis were IPR, 𝐷𝐶60 and 𝑀𝑚𝑎𝑥,𝑖𝑠𝑒𝑛, where the first 

two are considered as aerodynamic performance metrics, whereas the latter can 

be assumed as an indicator of performance. The design space bounds were initially 

set based on past experience and the initial population size of the DoE was set to 

127 total samples. Eventually, the outcome of the exploration was characterised 

mainly by noisy results, between which geometries with multiple inflections and 

under-performing designs could be found. Due to these geometrical instabilities 

and poor associated performance, only 16% of the initial DoE geometries was 

considered aerodynamically satisfactory. This identified group of geometries was 

characterised by a value of distortion below 0.2, considered as a cut-off limit above 

which the performance is no longer generally acceptable [22]. The aim of the 

design space exploration was mainly related to find potential trends between 

design variables and metrics considered, in order to reduce the dimensionality of 

the problem and optimise the process of creation of new geometries. Nevertheless, 

the outcome did not allow to extract any trends and therefore it could be assumed 

that no correlations exist between the variables. 

The research focused therefore on an alternative solution aimed to reduce the 

number of independent design variables involved in the definition of the geometry 

of the bottom line. The solution was found in the creation of an Python algorithm 



 

33 

which automatically calculates and defines the two curvatures at the throat and fan 

face points. This implies that just three of the five independent variables 

considered in the beginning of this analysis were maintained independent and 

variable in determined ranges. As an additional advantage of this solution, it is 

technically possible to avoid the issue related to the generation of multiple 

inflections in the profile shape, which is a particular problem when a reduced 

number of independent variables is used to create the geometry. 

The discussion reported poses the foundations of the work carried out during this 

research project. The reduced dimensionality of the problem allows to speed up 

the process of creation of different geometries and, in turn, this allows a better and 

efficient exploration of the design space, which is paramount for the purposes of 

creation of a well-suited surrogate model. 
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3 METHODOLOGY 

The aim of this paragraph is to give an overview of the methodologies employed to 

define, design and study the geometry of the bottom line of the short intake. The 

correct formulation of the problem is considered as a key point in the analysis and 

particular attention has to be placed in the selection of design variables, objectives 

and constraints.  

3.1 Geometrical parameterisation 

The use of geometrical parameterisation is a key driver when DoE analysis is 

involved. It allows to efficiently optimise the process of creation of each geometry 

in the design space by means of a parametric curve, reducing the number of design 

variables required [23] and therefore reducing the dimensionality of the problem. 

Between the different parameterisation techniques available, the one selected for 

the scope of the analysis is the Intuitive Class Shape Transformation (iCST) 

method, developed at the Cranfield University [23]. This parameterisation 

technique was born from the coupling of the Class Shape Transformation (CST) 

method, that has been proven to be very efficient in the geometrical optimisation 

of nacelles and intakes [24], and the parameterisation method for aerofoil sections 

called PARSEC [25], which adds intuitiveness to the design parameters for the 

definition of constraints, missing characteristic in the former method. The CST 

method is the best trade-off for 2D parameterisation, since, as stated, it permits to 

represent the shape of an aerodynamic profile with a limited number of design 

variables ensuring an efficient and rapid geometry definition [24].  

3.1.1 2D parameterisation 

In the CST method, a geometry is represented as the product of a class function 

𝐶(𝜓), which defines the basic profile shape, and a shape function 𝑆(𝜓), as 

expressed in Equation (3.1). The additional term 𝜓Δ𝜉𝑇𝐸  is required to modify the 
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ordinate of the end-point of the curve, since a condition imposed considers the 

starting and end-points of the profile placed at the same value of ordinates. As 

expressed in Equation (3.1), the parametric approach requires the non-

dimensionalisation of the coordinates of all the points of the geometry, which are 

for this reason divided by the chord of the profile. 

𝜉(𝜓) = 𝑆(𝜓)𝐶(𝜓) + 𝜓Δ𝜉𝑡𝑒        𝜉 =
𝑦

𝑐
 , 𝜓 =

𝑥

𝑐
 (3.1) 

Kulfan [26] defines the class function 𝐶(𝜓) in the form defined in Equation (3.2). 

𝐶𝑁2

𝑁1(𝜓) = 𝜓𝑁1[1 − 𝜓]𝑁2      𝑓𝑜𝑟 0 ≤ 𝜓 ≤ 1 (3.2) 

Between the different basic shapes that Equation (3.2) can describe, the one of 

interest in the framework of this research is the round-nosed aerofoil shape, 

obtained imposing 𝑁1 = 0.5 and 𝑁2 = 1, as shown in Equation (3.3). 

𝐶(𝜓) = √𝜓 [1 − 𝜓] 
(3.3) 

In Figure 3.1 it is possible to visualise how the CST method works. The shape 

function is commonly represented by Bernstein polynomials [26] which, through 

the use of different Bernstein polynomial coefficients, are transformed. Since these 

coefficient are not aerodynamically intuitive, the iCST method relates them to the 

design variables, and they can be analytically calculated from the these [23]. The 

output of the multiplication between the basic profile, described by the class 

function, and the transformed shape function is shown in the plot in the bottom of 

Figure 3.1. This demonstrates the capabilities of the iCST method to model smooth 

curves for the design of aerodynamic shapes. 
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Figure 3.1: Intake CST parameterisation [11] 

3.1.2 3D parameterisation 

The engine which has to be simulated is characterised by a three-dimensional 

dropped and scarfed non-axisymmetric configuration, as it can be usually seen in 

modern aero engines. In order to generate such design, the two-dimensional iCST 

approach has been exploited in the representation of three-dimensional 

geometries and this task has been addressed in the past approach [12]. It is 

possible to design the three-dimensional engine cowl specifying the geometry of 

different sections in the azimuthal direction. To improve the efficiency of the 

process, the geometry of four main aero-lines is defined and the profiles are those 

of the top, side, control and bottom lines. Nevertheless, the three-dimensional 

geometry should be described by a greater number of aero-lines in order to 

improve the resolution of the final output. Through sensitivity analysis was found 

that in order to obtain accurate results the minimum number of cuts should be 

256. Therefore, the geometries of all the aero-lines which are not specified by the 
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user are obtained from the interpolation of the constraints set on the user-defined 

aero-lines. A graphical representation of what discussed is shown in Figure 3.2. 

 

Figure 3.2: Azimuthal variations of the iCST constraints [12] 

The focus of the current analysis is oriented only on the optimisation of the bottom 

line of the intake. Therefore, it was decided to fix the geometries of the other 

principal aero-lines, while varying the parameters which define the intake bottom 

line geometry. 

3.2 CFD methodology 

Computational Fluid Dynamics (CFD) is a powerful tool for the study of complex 

flow phenomena [27], as the ones which characterise the flow inside an intake at 

incidence. As previously stated, the aerodynamic properties which are considered 

of most interest to study this flight phase are IPR and 𝐷𝐶60. The software suite 

used for meshing, simulate and post-process the results was ANSYS, through the 

use of, respectively, ICEM 15, Fluent 15 and CFD-Post 17.1. 
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3.2.1 Meshing methodology 

The first assumption to take into consideration in the CFD approach to this 

problem regards the size of the domain which has to be simulated. Since the engine 

can be considered symmetric to the vertical plane which contains the intake top 

and bottom profiles, it is possible to lighten the simulation analysing just half of the 

whole initial domain. Nevertheless, even though this assumption can be assumed 

as valid from a geometrical point of view, there are situations in which the flow-

field inside the intake cannot be considered axisymmetric, such as in conditions of 

cross-wind. At incidence, though, it is possible to consider the internal flow-field as 

axisymmetric, and this strengthens the initial assumption of symmetry based on 

the geometry definition. The mesh was produced with ANSYS ICEM 15 through an 

automatic meshing tool written in Python and developed at the Cranfield 

University, which allowed to obtain a fully-structured multi-block mesh. Another 

important step in the early stages of the meshing procedure regards the correct 

setup of the distances between the geometry and the boundaries of the domain, in 

order to avoid the possible numerical errors that can occur in the area of interest 

and also to permit to the flow to stabilise before reaching the boundaries. For all 

these reasons, the domain considered was semi-spherical with a radius equal to 40 

times the maximum diameter of the nacelle. 

The mesh size employed in the current approach was the same as the one used in 

the past approach [21]. A mesh independence study was carried out to select the 

most efficient mesh size in order to speed up the simulation and decrease the 

computational effort required to complete a DoE run. Following the study, it was 

found that the results in IPR and 𝐷𝐶60 were mesh independent and the optimal 

mesh size which was eventually selected had almost six million nodes with a 

𝑦+ ≤ 1, usually imposed in order to obtain more accurate results. 

3.2.2 Solver settings 

The simulations were run on ANSYS Fluent 15. The solver setup is common to all 

the simulations run during the DoE. Particular attention has to be placed on this 

task, since it can affect the convergence of the simulations and lead to unwanted 
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problems or failed solutions. The simulations are considered as steady and the 

solver type for the analysis is an implicit density-based solver. The aerodynamics 

of the flow inside the intake in condition of flight at incidence may involve regions 

of separated flow for certain geometries. In order to solve turbulent motion, the 

use of turbulence models based on the Reynolds-Averaged Navier-Stokes (RANS) 

equations is mandatory. The selected turbulence model must be able to deal with 

high adverse pressure gradients and to predict the transition from laminar to 

turbulent flow. In fact, the growth of the boundary layer has to be adequately 

represented, since the shock-induced separation influences directly the 

aerodynamics parameters take into considerations for the analysis and it affects 

the performance of the whole engine. After these considerations, the model used 

for the analysis was the k-ω Shear Stress Transport (SST), one of the most valuable 

and accurate models available at the moment for the prediction of flow separation. 

It combines the advantages earned from another turbulence model, the k-ε model, 

in the outer free-stream region and the advantages of the k-ω model in the near-

wall region. Air was modelled as a compressible gas and its density was calculated 

with the ideal gas law. The solution method used was an implicit scheme with flux 

calculations based on the RoE-FDS scheme and with gradient evaluation, required 

to compute velocity derivatives, calculated using the Green-Gauss node-based 

approach [23]. 

3.2.3 Boundary conditions 

As previously discussed, since the engine has been cut in two symmetric parts with 

respect to the vertical plane, a symmetry condition has to be set on the plane 

where the engine lies. The boundary condition related to the pressure far field is 

defined on this plane and extended to the whole three-dimensional domain 

external the engine. This condition required the definition of static pressure, 

temperature, Mach number, velocity components and turbulence parameters. The 

pressure outlet condition was set to simulate the engine fan face, but as it can be 

visualised in the figure the condition was set downstream the nominal fan face. 

This was helpful to aid convergence, avoiding the influence that this condition 

could have on the real plane [23]. The pressure outlet condition required the 
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specification of static pressure, total temperature, target mass flow rate and 

turbulence parameters, as defined for the pressure far field condition. All the 

values required by these boundary conditions were derived by previous works 

carried out and which set the parameters for the operating condition in which the 

current simulated engine works. The last boundary condition set was the pressure 

inlet at the outlet of the engine. The required value of static pressure was obtained 

from a previous work carried out with Turbomatch at the Cranfield University. 

3.2.4 Convergence criteria 

The different geometries created within the DoE should be automatically meshed 

and simulated without encountering potential issues which can originate at any 

flow condition the engine may be involved in. This requires a solid convergence 

strategy, especially because for some geometries there is the possibility to 

experience large regions of separated flow, which can lead to a more difficult 

convergence. In the past approach [21] a unified convergence strategy has been 

developed, which is able to deal even with the most challenging cases maintaining 

the computational cost within acceptable limits. In order to improve the 

convergence, the under-relaxation factor for the specific turbulent dissipation rate 

is lowered to 0.05, while the other are maintained to their standard values. Each 

simulation has a standard duration of 3000 iterations, of which the first half is run 

with a first order discretisation scheme which then changes to second order for the 

remaining part. Moreover, during the first half of the simulation, the Courant 

number is increased from 1 to 50 at non-regular steps almost every 200 iterations. 

The same happens during the following 1200 iterations, but in this interval the 

Courant number varies between 1 and 30. The last 300 steps are used to achieve 

the prescribed mass flow rate, setting therefore a target mass flow as objective. 

The simulations are run on the Astral cluster, the High Computational Power (HPC) 

cluster available at the Cranfield University. Considering the selection of 32 CPU on 

the mentioned cluster, each simulation takes approximately 3 hours and a half to 

complete. 
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3.3 Design of Experiment 

Design of Experiment (DoE) is defined as the process of planning an experiment in 

order to collect meaningful data and draw valid conclusions on the behaviour of a 

problem of interest [14]. DoE has increasingly become an important mean in 

conceptual design and Multi-Disciplinary Optimisation (MDO). 

The current analysis focuses solely on the optimal design of the bottom lip, which 

geometry can be assumed defined principally by five design variables. Among 

these, just three are considered as independent variables: contraction ratio (CR), 

aspect ratio (AR) and a coefficient which sets the radius of curvature at the 

highlight, represented by 𝑓𝐼𝐿 , and obtained from Equation (2.9). 

The other two remaining parameters, considered as design variables, are the 

curvature at the throat 𝜅𝑇𝐻 and the curvature at the fan face 𝜅𝐹𝐴𝑁 . For sake of 

completeness, the curvature is generally defined as in Equation (3.4), where 𝑟 is 

defined as the radius of curvature in the point where the curvature is calculated. 

𝜅 =
|
𝑑2𝑅
𝑑𝑥2|

[1 + (
𝑑𝑅
𝑑𝑥

)
2

]

3
2⁄

=  
1

𝑟
 (3.4) 

Considering for instance the intake throat, in this location the first derivative of the 

radius of curvature is set to zero. The curvature is therefore given by Equation 

(3.5). 

𝜅𝑇𝐻 = |
𝑑2𝑦

𝑑𝑥2
| =  

1

𝑟𝑇𝐻
 

(3.5) 

The two curvatures mentioned can be considered as two “derived” independent 

variables, since they are implied in the definition of the bottom line geometry, but 

they are intrinsically dependent from the other three variables.  

The non-dimensional length of the intake 𝐿/𝐷, expressed as the ratio between the 

length of the intake itself and the fan diameter, is set to 0.35, which is a value 

comprised in the optimal range for short intakes studied by Peters [13]. It ensures 
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that the engine performance is maintained almost at the same level as in the 

conventional length intake case, usually characterised by a ratio 𝐿/𝐷 = 0.5, 

without jeopardising the operability and also leading to a general improvement in 

terms of weight and drag. 

The use of dimensional values in the phase of creation of a design space could 

likely lead to failed or infeasible cases due to scaling issues [16]. Therefore, in 

order to avoid these problems, as a rule of thumb the parameters should be always 

exploited in their non-dimensional form after the normalisation into the unit cube, 

defined by the [0,1] range. 

3.3.1 Design space bounds definition 

Prior to obtain the final DoE that will be used to derive the RSM, an extensive 

investigation has to be carried out in order to find the optimal values for the design 

space bounds. Therefore, initially, the research focused on the improvement of the 

design space bounds used in the previous approach to the problem [21]. The initial 

objective was therefore to reshape these bounds, aiming to achieve a twofold 

result: eliminate regions of poor interest for the intake design, characterised solely 

by geometries which lead to poor aerodynamic performance; explore new regions 

that could be overlooked in the past analysis. Moreover, another important matter 

to take into consideration comparing the current work with the previous one is the 

number of independent design variables considered. This has been reduced from 

five to three, and therefore an investigation is due in order to review the possible 

changes caused by this dimensionality reduction. 

3.3.1.1 Design space exploration through FF DoE 

The investigation and determination of the new design space bounds have been 

carried out exploiting the Full Factorial (FF) DoE technique. As described in 

Paragraph 2.2.1, with this approach the design space is divided in a multi-

dimensional regular grid and the responses are evaluated in its nodes. Starting 

from the bounds determined in the past approach for the three independent 

design variables considered in the current analysis, the design space is sliced in 

equal parts. Considering the variation of the bounds of one variable at a time, the 
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approach permits to expand uniformly these bounds until the region characterised 

uniquely by bad geometries is found. The last extreme feasible values of the 

considered variable determines the upper and lower bounds. As it will be 

discussed later in Paragraph 4.1, the determination of the bounds is based on the 

value of 𝐷𝐶60, which is the critical parameter of major interest in this analysis. The 

post-processing of the results obtained with the Full Factorial DoE will be carried 

out with the help of pair plots. Since there are just three independent variables in 

the problem, it is pretty easy to study the design space for the bounds evaluation. 

The limits for two of the three variables are set and kept fixed across all the plots, 

while, in regard of the left out variable, its value will vary from plot to plot. 

Therefore, the final output comprises a series of pair plots at different levels of the 

left out variable. From the visual inspection of these, aided by the visualisation of 

contour lines for different levels of 𝐷𝐶60, it will be possible to understand where 

the lower and upper bounds will be reached. As a rule of thumb, a region with a 

𝐷𝐶60 greater than 0.20 will not be considered. Since the design space considered 

can be viewed as a regular n-dimensional polytope, in the two-dimensional 

visualisation with pair plots the design space bounds are represented by vertical 

and horizontal lines. Hence, concerning the variables defined on the Cartesian axes, 

the values corresponding to the intersections of the vertical and horizontal lines 

passing for the extreme allowable values found and the axes define the bounds of 

the design space. 

As described in Paragraph 2.2.1, along with the definition of the number of 

independent variables, the creation of a FF DoE requires the definition of the 

number of levels with which the interval of each variable is subdivided. The 

approach followed employed three independent variables and five levels. 

Therefore, the total number of samples analysed is equal to 35 = 243. This 

corresponds to the initial size of the design space, which can be further expanded if 

the bounds are not found in the first run. 
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3.3.2 Design space creation 

Once the bounds of the design space have been set for all the three independent 

variables, the final DoE can be created and populated. The sampling technique 

selected to accomplish this task is the Latin Hypercube Sampling method since, as 

described thoroughly in Paragraph 2.2.2, it is one of the best methods which allow 

to obtain a uniform distribution of samples which are well spread in the design 

space, especially thanks to the space-filling random distribution feature. Following 

the determination of the bounds of the design space through the FF DoE, it has 

been found that the amount of geometries created with a single inflection point, 

located in the diffuser, is around 38% of the total number of geometries created. 

The decision about the number of samples which should populate the LHS design 

space was based on the number of cases which ideally populate a FF design space 

composed by five variables and three levels. This means that the total number of 

cases which should be found in the final DoE is equal to 243. Therefore, 

considering the previous mentioned point regarding the generation of geometries 

with multiple inflection points, the number of cases which has to be simulated in 

order to populate the LHS design space is given by 243/0.38 = 639, which is 

reduced and rounded to 625 total cases. Assuming that the same ratio between 

number of single inflection designs and total number of geometries remains, the 

final population of the DoE for RSM purposes will be equal to 243 samples. 

3.4 Surrogate modelling 

This paragraph is divided in two main sections, which will give an overview of the 

two investigated methodologies employed to create the metamodels. The first part 

focuses on the implementation of the Kriging method, established method for the 

creation of response surfaces from highly non-linear data and introduced in 

Paragraph 2.3.1; the second part will introduce a hybrid method which has been 

subject of investigation in the creation of surrogate models for intake and nozzles 

during this year at the Cranfield University. The methods to obtain the response 

surfaces are developed in Python 2.7. 
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3.4.1 Design variable selection 

The geometries created during the LHS DoE are all based on three principal 

independent variables and two derived independent variables, as reported in the 

introduction of this paragraph. The approach to the creation of the metamodels 

focused on two different sets of variables. The first tested approach was based on 

three variables, namely the CR, AR and the radius of curvature at the highlight 𝑟𝐼𝐿. 

The use of the latter rather than the use of the non-dimensional factor 𝑓𝐼𝐿 , used to 

obtain the different geometries, was considered more suitable for a real 

application based on surrogate modelling. In fact, considering the exploitation of 

the metamodels in real world applications, from a design point of view the 

definition of a radius can be considered more meaningful than the definition of a 

factor. 

3.4.2 GPML Kriging Model 

The mandatory step before the creation of the metamodel consists in the scaling of 

the explanatory variables 𝒙 into the unit cube [0,1]p, with 𝑝 the number of 

dimensions of the problem. This step is important for two main reasons: it can 

avoid subsequent multi-dimensional scaling issues [16]; it permits to have the 

same degree of activity of the autocorrelation 𝜃𝑗  parameter from problem to 

problem [15]. Objective of the current research is to construct a Kriging 

approximation model based on the LHS DoE obtained and then use this model as a 

surrogate for further analysis. 

According to the computer experiments literature, the most popular method for 

generating functions are the Gaussian stochastic processes [28]. The Kriging model 

is obtained exploiting the Gaussian Processes class implemented in the scikit-learn 

module for Python [29]. In the environment of this programming language, the 

mentioned class is more commonly called Gaussian Processes for Machine 

Learning (GPML) and it consists of a generic supervised learning method designed 

for regression and classification problems [30]. Since the current work concerns a 

regression problem, the approach considered takes advantage of some of the 

potentialities implemented in GPML for regression, such as: 
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 Possibility to define confidence intervals which are used to refit the 

prediction in some region of interest. 

 Possibility to exploit different regression and correlation models, along 

with the chance to define custom models if required. 

3.4.2.1 GPML mathematical formulation 

The mathematical formulation thoroughly presented in Paragraph 2.3.1 is 

reported in this section in a simplified way to support the setup decisions made in 

the creation of the Kriging metamodel. 

Consider the unknown function 𝑓 in ℝ𝑝 → ℝ which models the behaviour of the 

design space obtained from the Latin Hypercube Sampling. GPML assumes that this 

function can be interpreted as the conditional sample path of a Gaussian process 𝐺 

[28], defined as in Equation (3.6). 

𝐺𝑃(𝒙) = ∑ 𝑔𝑖(𝒙)𝛽𝑖 + 𝑍(𝒙) =

𝑝

𝑖=1

𝒈𝑇(𝒙)𝜷 + 𝑍(𝒙) 
(3.6) 

The first term on the right member of the equation, 𝑔𝑖, represents the i-th known 

regression functions, while 𝜷 is a vector of unknown regression coefficients. 𝑍 is 

defined as a zero-mean Gaussian process with a fully stationary covariance 

function shown in Equation (3.7). 

cov(𝒙(𝒊), 𝒙(𝒋)) = 𝜎2 corr(𝒙(𝒊), 𝒙(𝒋)) 
(3.7) 

The 𝜎2 is the process variance and corr(𝒙(𝒊), 𝒙(𝒋)) is the correlation matrix defined 

also in Paragraph 2.3.1. The objective is to find the Best Linear Unbiased Prediction 

(BLUP) of the sample path 𝑔 condition on the observations [29], described by 

Equation (3.8). 

𝐺�̂�(𝒙) = 𝐺𝑃( 𝒙 | 𝑦1 = 𝑓(𝑥1), … , 𝑦𝑛 = 𝑓(𝑥𝑛) ) 
(3.8) 

This prediction �̂�(𝒙) is characterised by three main properties: 

 It is given by a linear combination of observations 𝐺�̂�(𝒙) = 𝑎𝑇(𝒙) 𝑦 
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 It can be considered unbiased E[GP(𝐱) − 𝐺�̂�(𝒙)] = 0 

 The MSE is minimum 𝐺�̂�(𝒙)∗ = min E[(GP(𝐱) − 𝐺�̂�(𝒙))2] 

Eventually, the BLUP is defined as a Gaussian random variate with mean given by 

Equation (3.9) 

𝜇�̂�(𝒙) = 𝑔𝑇(𝒙)�̂� + 𝑟𝑇(𝒙)𝛾 
(3.9) 

and variance expressed as in Equation (3.10). 

𝜎2
�̂�(𝒙) = 𝜎2

𝑌 (1 − 𝑟𝑇(𝒙) 𝑐𝑜𝑟𝑟−1 𝑟(𝒙) + 𝑢𝑇(𝒙)(𝐹𝑇𝑐𝑜𝑟𝑟−1𝐹)−1 𝑢(𝒙)) 
(3.10) 

Equations (3.9) and (3.10) introduce from a mathematical point of view the terms 

which are found in the setup of the Kriging model. The most important and 

fundamental terms that should be mentioned are: 

 Correlation matrix, defined by the correlation function and the 𝜃 parameter 

corr𝑖𝑗 = corr ((𝒙(𝒊), 𝒙(𝒋)), 𝜃) , 𝑖, 𝑗 = 1, … , 𝑛 
(3.11) 

 Vector of cross-correlations between the point where the prediction is 

made and the points in the DoE 

r𝑖 = corr ((𝒙, 𝒙(𝒊)), 𝜃) , 𝑖 = 1, … , 𝑛 
(3.12) 

 Regression matrix 

G𝑖𝑗 = 𝑔𝑖(𝒙𝑗), 𝑖 = 1, … , 𝑝, 𝑗 = 1, … , 𝑛 (3.13) 

The definition of the correlation and regression functions cannot be made in 

advance, but it requires a series of empirical test to select the more suitable [29]. 

Once these functions have been selected, the procedure focuses on the setup of the 

various required parameters. These can be determined and fixed for the whole 

duration of the process, but usually it is preferred to calculate them through a 

Maximum Likelihood Estimation (MLE) technique. This turns the estimation 

problem into a global optimisation problem and evaluates the auto-correlation 
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parameters searching for the optimum values within determined bounds set by the 

user. 

3.4.2.2 Kriging model setup 

The setup involves the selection of many different parameters and settings, leading 

to a great number of possible available combinations. Nevertheless, according to 

the design space analysis consequent the DoE, some of them could be discarded in 

advance due to expected poor feasibility. In any case, it is required to the user to 

test the remaining combinations and find the more suitable for the needs of the 

problem. The documentation available [29] for the model setup is pretty thorough, 

but this does not allow to avoid the empirical tests to find out the optimal settings. 

For sake of clarity, in the following discussion the names of the different functions 

and parameters that are found in the GPML module are identified with a different 

font, specifically Courier New, to facilitate the reader to identify them in the code. 

The first two mandatory choices that have to be taken regard the selection of the 

correlation and regression functions.  

In the GPML module different correlation functions are implemented, but the ones 

of interest for the majority of the problems are, specifically, the 

absolute_exponential, squared_exponential, linear and cubic 

functions. The inputs required by the functions are common between all of them, 

and they comprise: 

 Auto-correlation parameter 𝜃, passed as a single value or as a vector of 

values 𝜃 = [𝜃1, 𝜃2, … , 𝜃𝑝], each one dependently determined by its 

corresponding predictor 𝒙𝑝. 

 A vector containing all the componentwise distances between each pair of 

samples in the design space. In other words, for each dimension all the 

distances between each possible pair of observations are evaluated. The 

total number 𝑀 of cross-distances 𝑑𝑘
(𝑖𝑗)

 possible in one single direction is 

given by Equation (3.14), where 𝑛 represents, as usual, the total number of 

samples. 



50 

𝑀 =
𝑛 (𝑛 − 1)

2
 

(3.14) 

Each correlation function is characterised by its own expression. Considering the 

functions of greatest interest, which can be identified as the first two mentioned 

above, they are expressed by the following equations: 

 Absolute_exponential (Ornstein-Uhlenbeck stochastic process) 

For a pair of samples identified as 𝑖 and 𝑗, the 𝑚𝑡ℎ correlation term 

determined by this correlation function is given by Equation (3.15). 

𝑟𝑚(𝜃, 𝒙) = exp (∑ −𝜃𝑘 |𝑑𝑘
(𝑖𝑗)

|

𝑝

𝑘=1

) 
(3.15) 

 Squared_exponential (infinitely differentiable stochastic process) 

For a pair of samples identified as 𝑖 and 𝑗, the 𝑚𝑡ℎ correlation term 

determined by this correlation function is given by Equation (3.16), where 

the main difference with the previous one is that each cross-distance is 

elevated to two. 

𝑟𝑚(𝜃, 𝒙) = exp (∑ −𝜃𝑘  |𝑑𝑘
(𝑖𝑗)

|
2

𝑝

𝑘=1

) 
(3.16) 

The output 𝑟(𝜃, 𝒙) is an array of the length 𝑀, where each term is represented by 

𝑟𝑚(𝜃, 𝒙), which, as presented in the above reported equations, represents a 

correlation-weighted sum of the distances in each dimension between a generic 

pair of samples. After several test, it has been demonstrated that for the current 

problem of interest the absolute_exponential function allows to obtain the 

best results and it can therefore assumed as the correct type of correlation 

between the samples. As stated on the guide [29], this is often also the case when, 

from the study of the dataset obtained, the original experiment is known to not be 

smooth and therefore infinitely differentiable. 

The built-in regression models available in the GPML module are, specifically, the 

“constant”, “linear” and “quadratic” functions, which are linear regression 
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models which represent, respectively, zero-, first- and second-order polynomials. 

The only input required by all of them is the predictors vector 

𝑿 = {𝒙(1), 𝒙(2), … , 𝒙(𝑛)}. The resulting output is a vector of ones, in the case of the 

“constant” regression function, or a matrix containing the values of the functional 

set. Sometimes it could happen that the mentioned functions implemented in the 

module do not work properly with the dataset available. In this situation it is 

possible to derive a custom regression function, designed and coded as the default 

models. The first rule to respect in the creation of the new function is that the 

number of terms in the regression model must not be greater than the number of 

observations in the DoE. This ensures that the underlying regression problem is 

not underdetermined. 

Of at least the same importance, along with the two fundamental functions above 

mentioned, also the type of optimiser to use. As discussed in the paragraph 

regarding the mathematical formulation for the GPML, the estimation problem is 

turned into a global optimisation problem and this has to be solved exploiting one 

of the two optimisation functions implemented in the GPML module. They are 

identified by the names “fmin_cobyla” and “Welch”. The former one is an 

optimisation algorithm contained in the SciPy library for Python [31], and 

generally it aims to minimise a function exploiting the Constrained Optimisation 

BY Linear Approximation (COBYLA) method [32]. The latter method has been 

developed by Welch et al. [33] in order to lower the computational cost involved in 

the MLE of the correlation parameters for high-dimensional problems. For the 

purpose of this analysis both method have been tested. The better results are 

obtained with the COBYLA algorithm and it is therefore selected as the 

optimisation algorithm for the model creation. 

After the selection of the different functions to exploit, there are some important 

parameters that have to be adequately selected. The first that will be considered is 

the auto-correlation parameter 𝜃. This can be input as a single value, which is 

therefore the same for all the dimensions, or as a vector of length 𝑝, in which it is 

possible to define a different value of 𝜃 for each feature. Of primary importance, 

the GPML requires the definition of an initial value of the auto-correlation 
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parameter, or set of values, commonly identified with the term 𝜃0 or theta0 in 

the code, in order to initialise the MLE of the same parameter. Though, this 

estimation starts just if also the values, or vectors of values, for the lower and 

upper bounds are set. These are identified respectively as 𝜃𝐿 , or thetaL, and 𝜃𝑈 , 

or thetaU. When they are not specified, their default value is None and the MLE 

does not start, setting 𝜃0 as the fixed and general value of the auto-correlation 

parameter for the whole estimation. After several tests, two important points have 

been found: 

 As it will be reported in Paragraph 4.4, optimal solutions have been 

obtained both from the definition of a fixed auto-correlation parameter and 

from the use of the MLE for its determination. 

 The optimal values used for the creation of the different surrogate models 

reported in Paragraph 4.4 are given in Table 3.1. These are given as results 

of different tests which have proven that a narrower interval should be 

maintained around the 𝜃0 values. The two main reasons associated with 

this are: increasing the size of the interval generally requires an increase of 

the number of MLE cycles within the interval, which in turn leads to very 

high computational effort for a single evaluation; if a low number of cycles 

is imposed (around 200) the results obtained exploiting the MLE on a large 

interval are characterised by a large error. 

 

Table 3.1: Auto-correlation parameter values definition for MLE 

 CR AR 𝑟𝐼𝐿 𝜅𝑇𝐻 

𝜃0 1 1 1 0.5 

𝜃𝐿  0.9 0.9 0.9 0.4 

𝜃𝑈  1.1 1.1 1.1 0.6 
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In case the limits of the 𝜃 parameter are set, the estimation of the auto-correlation 

parameter is performed, but it requires the definition of an additional parameter 

which determines the number of times the MLE will be performed. The starting 

point of the process is always the value, or values, of 𝜃0. The following value of 𝜃 is 

determined randomly in the interval between 𝜃𝐿  and 𝜃𝑈 , according to a log-

uniform distribution, and this is repeated for the number of restarts specified. In 

the code this parameter is defined as random_start, and it has to be set carefully 

in order to find the optimal 𝜃 within the range, otherwise, as reported earlier, it is 

highly likely to obtain wrong results. For the creation of the metamodels reported 

in Paragraph 4.4 a number of restarts equal to 200 has been set, trade-off between 

computational cost and accuracy. Moreover, it has been found that increasing this 

number above 200 does not produce significant improvements, but instead it 

slows down the construction of the model. 

Last but not least, another important parameter is the so-called nugget. This term 

can be a single value, valid for all the samples included in the design space, or it can 

be defined individually for each sample, in a vector of length 𝑛. Cavazzuti [15] 

defines it as a noise parameter, since it is usually exploited when noisy data are 

involved. In this case, it is possible to specify the nugget as the variance of the noise 

for each point. Considering for example the squared_exponential auto-

correlation function, the term is defined as in Equation (3.17) [29]. 

nugget𝑖 = [
𝜎𝑖

𝑦𝑖
]

2

 
(3.17) 

Basically, if its value is zero, the Kriging method is defined as interpolating and the 

response surface exactly pass through the DoE data, condition which is often 

difficult to achieve; if its value is different from zero the Kriging method becomes 

an approximating method, and the parameter allows smooth predictions from 

noisy data, as it can be seen in . In the code, the nugget is added to the diagonal of 

the covariance matrix, acting as Tikhonov regularisation term, which is a method 

of regularisation of ill-posed problems [29]. Put simply, in the resolution of a 

system of linear equations, such as 𝐴𝒙 = 𝑏, the OLS approach can lead to situations 
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with no solutions or situations identified by more than one solution. Since the OLS 

method searches for the minimum sum of squared residuals min ‖𝐴𝒙 − 𝑏‖2, a 

regularisation term is added as in Equation (3.18). 

min‖𝐴𝒙 − 𝑏‖2 + ‖Γ𝒙‖2 
(3.18) 

The term Γ is the Tikhonov matrix, usually given by Γ = 𝛼𝐼, 𝐼 the identity matrix. 

The nugget definition is not a straightforward task, since it involves a lot of tests 

to find the optimal solution. The most feasible, in the context of this work, has been 

found in the selection of a different value for each sample. Also, after several tests, 

it has been decided that a hybrid solution provides the best results. This solution 

considers two different nugget values for two different regions in the design space: 

 A nugget value equal to machine precision (~10−16) is assigned to the 

samples characterised by a value of 𝐷𝐶60 in the range of interest. 

 A nugget value equal to the value of the metric is assigned to all the samples 

outside the range of interest. 

 

Figure 3.3: Nugget effect [34] 

An alternative tested consisted in the definition of a different nugget value for each 

sample, values defined as fractions of each metric value. Nevertheless, this solution 

showed good outcomes in the beginning, but it was then overcome by the above 

mentioned solution. 
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4 RESULTS AND ANALYSIS 

The discussion presented in this chapter follows the order in which the process of 

creation of a metamodel for design purposes should be carried out. The outcome of 

the design space exploration for the determination of its bounds is presented and 

it represents the base of the current work. Next, the result obtained from the 

creation of the dataset within the bounds previously determined is presented in 

the Design space bounds determination paragraph, along with the thorough 

preliminary analysis carried out on the DoE. Another important step in the analysis 

is represented by the geometrical study of the shape of the intake, which is 

reported in the Lip design analysis paragraph. Eventually, the process of creation 

of the response surfaces through the two methodologies described in Paragraph 

3.4 are presented in the Surrogate modelling section, along with their validation 

using the Leave-One-Out (LOO) method. 

4.1 Design space bounds determination 

The preliminary exploration of the design space for the design of short intakes has 

to be carried out in order to establish the bounds within which only feasible 

geometries can be created. This exploration allows indeed to identify regions 

characterised solely by geometries with non-desired features, such as multiple 

inflections along the intake length, or characterised uniquely by design which lead 

to high distortion and significant losses. The reduction of dimensionality of the 

problem, along with the automatic determination of the other two derived 

independent variables, has required the identification of new different bounds in 

comparison to those found during the previous year. The determination of the 

design space bounds, as briefly reported in Paragraph 3.3.1.1, is based on a Full 

Factorial (FF) DoE. This allows to explore the design space in an ordered way, 

analysing the results on different slices and allowing a uniform expansion of the 

bounds. The initial step in the exploration involved the exploitation of a FF defined 
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by three levels which, along with the three independent variables defined, 

determined an initial population of 27 geometries. For each geometry the other 

two derived independent variables have been calculated using the approach 

already described in the introduction of Paragraph 2.4.3. The method succeeded in 

the creation of a smooth geometry from the highlight to the throat, but in some 

cases it led to geometries characterised by multiple inflections in the diffuser. This 

could be mainly related to the fact that for certain values of the three main 

independent variables a smooth curvature distribution can be obtained on the lip, 

since the three parameters technically describe the shape it should present. 

Nevertheless, in order to respect the constraints at the throat and at the fan face 

points, and also considering the fixed geometry parameters ahead the throat point, 

the behaviour of the curve along the intake length can be distorted and 

characterised by multiple inflections. This provides an example of what stated 

earlier. In fact, after a proper analysis of the whole design space, the conclusions 

can lead to the removal from the design space of the region characterised by this 

behaviour, specifically because it is mainly characterised by practical non-feasible 

geometries. After the exploration carried out with the first FF, the bounds were not 

found and the design space had to be expanded adding new levels to the original 

hypercube. The study took several steps, until a final six levels FF DoE was created. 

This was composed by 216 geometries, but after the different steps taken to reach 

this design space some of them were filtered due to the problem of multiple 

inflections, reaching a total of 150 geometries. In Figure 4.1 the contour plots for 

IPR and 𝐷𝐶60 are presented. These plots are useful to provide a preliminary idea of 

the behaviour of the metrics across the design space, but care must be paid since 

they have not to be intended as response surfaces. They are the result of a simple 

linear interpolation of the values in the dataset and not the result of more complex 

RSM method such as Kriging. Nevertheless, from the figure below is possible to 

extract the information needed to define the bounds of the design space that will 

be used for RSM purpose. The values found on the different subplots in the figure 

are obtained from the non-dimensionalisation of the original values against the 

final values established. 
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Figure 4.1: Design space exploration for bounds determination

𝑓𝐼𝐿𝑛𝑑  𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 
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In the figure reported, the distributions of the metrics of interest are given at 

different levels of a selected independent variable, which in this case is 

represented by 𝑓𝐼𝐿𝑛𝑑. Moreover, the figure above is mainly divided in two parts:  

 On the upper row the distribution of IPR for different slices of the 6x6x6 

hypercube is presented. In order to ease the representation, it has been 

decided to report only five slices along the direction represented by 𝑓𝐼𝐿𝑛𝑑. 

 On the bottom row the distribution of 𝐷𝐶60 is presented. The red and blue 

lines within the plots represent two critical values iso-lines. 

The determination of the bounds of the design space is based on the analysis of the 

plots of the bottom row, since it has been assumed that, or a preliminary analysis, 

the distortion coefficient 𝐷𝐶60 is the most crucial parameter to analyse and control 

when the performance of the intake bottom line at incidence is studied. The 

bounds are determined based on a limit value of this coefficient equal to 

𝐷𝐶60 = 0.2, which has been defined as the admissible limit under which the 

geometries can be considered aerodynamically satisfactory [22]. Therefore, the 

analysis of the bounds focuses on the area described by the red iso-line in Figure 

4.1. As can be inferred from the fourth subplot in the bottom row, the number of 

geometries related to a distortion coefficient within the limit established is 

narrowing. For this reason it has been decided to fix the upper bound for the 𝑓𝐼𝐿𝑛𝑑 

slightly above the value it has in the considered slice. The same is valid for the 

determination of the lower bound of this variable, as can inferred from the first 

subplot, where the number of feasible geometries is drastically reduced. 

The other bounds for the remaining two independent variables can be easily 

extracted from the figure above. Nevertheless, difficulties have been encountered 

in the determination of the upper limit of the aspect ratio. In order to determine it 

in the most efficient and quick way, it has been opted for a random selection of 

samples located in different slices for values of ARnd above those represented in 

Figure 4.1. in this way the computational effort required by the generation and 

simulation of 36 new geometries, corresponding to a new slice of ARnd, has been 

avoided. Though, it is highlighted that this is not the correct way to proceed, but it 
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was the quickest given the limited amount of time available. The outcome of the 

exploration is plotted in Figure 4.2. The post-processing of these results can 

highlight a kind of outlier in correspondence of the slice defined by the higher 

value of ARnd in Figure 4.1. Nevertheless, it is shown that increasing the aspect 

ratio above the limit already examined lead to higher values of 𝐷𝐶60. For this 

reason, the previous limit has been selected as the upper bound of the design space 

for ARnd, since no improvement of the convex hull shape can be derived increasing 

its value. 

 

Figure 4.2: Upper bound determination for ARnd 

4.2 Design space exploration 

An introduction to the preliminary work done on the design space obtained after 

the LHS DoE is given. As discussed in the introduction of Paragraph 3.3, the 

different samples which populate the design space are geometrically defined by 

three independent variables, namely CR, AR and 𝑓𝐼𝐿 , and two derived independent 

variables, namely 𝜅𝑇𝐻 and 𝜅𝐹𝐴𝑁 . In the discussion presented in this chapter, a 
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slightly different set of independent variables is considered. In place of 𝑓𝐼𝐿 the main 

independent variable which will be used is 𝑟𝐼𝐿, which represents the radius of 

curvature of the intake profile at the highlight point. 𝑟𝐼𝐿 is characterised by a better 

“physical” meaning compared to the coefficient used for the design space creation. 

Nevertheless, the use of 𝑓𝐼𝐿 for this purpose has been certified to be feasible, but 

for RSM purposes it is more indicated to use variables with a physical meaning, 

which can be easily defined from a designer point of view. The set of geometrical 

parameters considered is expressed in the non-dimensional form after being 

normalised in the unit cube. The metric of interest used to evaluate the 

performance of the bottom line at incidence are IPR and 𝐷𝐶60. In the current 

report, the latter one will be used predominately to analyse the performance of the 

bottom line at incidence, both because it has been demonstrated that optimising 

the geometry for this metric leads to better results and because there is a linear 

relationship between IPR and 𝐷𝐶60, which preliminary allows to focus on just one 

single aerodynamics performance parameter. 

4.2.1 LHS result 

Following the discussion of Paragraph 3.3.2, an automatic Python script was 

responsible for the creation, mesh and simulation of each one of the 625 intake 

design initially planned. After the creation of each geometry the shape was 

analysed to check the number of inflection points along the intake length. Each 

design was automatically examined and, in case more than one inflection point was 

detected, it did not pass to the following phase of meshing and simulation. In order 

to facilitate the post-processing and delete all the undesired geometries from the 

dataset, they were marked with a 𝐷𝐶60value equal to 1. As stated in Paragraph 

3.3.2, it was expected that the number of geometries available after the creation of 

the LHS DoE was around 243, number ideally correspondent to a FF composed by 

five variables and three levels. Eventually, the Python script detected 285 

geometries with multiple inflection points, reducing the number of samples 

available from 625 to 340, yet increasing the number of expected designs of almost 

100 cases. After a preliminary inspection of the design space through scatterplots 

and three-dimensional visualisation, the objective of creation of a space-filled 
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design space can be considered achieved, thus providing a good insight in the 

behaviour of the dataset and, especially, in the sensitivity of the metrics of interest 

to variations in the design parameters. Though, in some situation a high amount of 

samples can be seen as a drawback since, if a highly non-linear behaviour of the 

measured parameters is found, the applicability of RSM techniques becomes 

difficult and alternatives, advanced solutions and trade-offs have to be found. 

 

 

Figure 4.3: 3D visual representation of the design space 

In Figure 4.3 the three-dimensional visualisation of the design space obtained is 

shown. Each dot represents a geometry, defined by the three main independent 

variables, namely 𝐶𝑅nd, 𝐴𝑅nd and 𝑟𝐼𝐿nd, and the different colour associated to each 

one is related to the calculated value of 𝐷𝐶60. As it will become clearer with more 

precise representations, at a first examination it can be noted that the design space 

is not perfectly contained in a regular structure, but instead the shape of the 

convex hull is pretty irregular. Moreover, the preliminary analysis reveals that the 

geometries characterised by a low value of CR are no longer present in the design 
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space, and this is principally due to the fact that a correlation between the low 

value of such design variable and the non-desired formation of multiple inflections 

in the intake is found. Due to the linear relationship between IPR and 𝐷𝐶60, the 

three-dimensional scatterplot describing the distribution of the former has a 

similar distribution as the one of the latter. Therefore, it has been considered of 

poor meaning to report the plot for IPR in the current discussion. 

4.2.2 Geometric correlations 

Following the mention of the sensitivity of the metrics of interest to the variations 

of the considered design parameters, one way to graphically analyse this is 

through Parallel Coordinates (PC) plots. This graphical aid is a very useful way for 

visualise and analyse multivariate data and it is mainly employed in this research 

to help to identify certain trends in the dataset. In fact, PC plots allow to graphically 

detect patterns, but, especially with high dimension design spaces, it requires few 

tests to find the most suitable combination of design parameters which can 

highlight them. One important pre-requisite of this kind of plot is to have data 

normalised in the unit cube, since PC is based on the linear combination of 

consecutive pairs of variables [35]. Therefore, the scaling of the data can also be 

viewed as an advantage in terms of improvement of the quality and significance of 

the PC outputs. In the PC plot each vertical line identifies one single design 

parameter and it represents the non-dimensional interval [0,1] in which this lies. 

Each geometry is then represented by a polyline which connects the values of its 

design parameters on the vertical axes. 

In the PC plot of Figure 4.4 the 340 considered design variables are drawn and 

each geometry is coloured depending on its associated value of 𝐷𝐶60. On the 

horizontal axis it is also possible to see which combination of the design variables 

has been considered as the most meaningful for the current analysis in order to 

highlight potential trends. Though, as can be inferred, no particular patterns can be 

extracted from the analysis. One point that is worth noticing regards the clustering 

of some of the high 𝐷𝐶60cases in a small interval of values of 𝜅𝑇𝐻. In other words, it 

appears that geometries which lead to high values of 𝐷𝐶60are also characterised by 
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a certain narrow interval of curvatures at the throat. This issue raised should be 

investigated in an enhanced analysis which includes also 𝜅𝑇𝐻 as main independent 

variable. 

 

Figure 4.4: Parallel coordinates for distortion coefficient distribution 

 

Figure 4.5: Parallel coordinates coloured for RoI 
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In Figure 4.5 the study based on PC plots is enhanced classifying geometries by 

colour, according to their associated value of the distortion coefficient metric. Red 

polylines mean that the geometries are associated to values of the metric above a 

determined critical value, below which is defined the Region of Interest (RoI). In 

the previous figure, based on the colour map describing the entity of 𝐷𝐶60, it was 

not possible to extract specific trends between the design parameters and the 

metric considered. Yet, the thorough analysis of the figure above allows to draw 

some interesting conclusions. Focusing on the two design parameters on the left of 

the PC plot, namely the non-dimensional variables 𝐶𝑅𝑛𝑑and 𝑟𝐼𝐿𝑛𝑑, it is possible to 

notice that in the upper region of both intervals there is the presence of designs 

associated only to undesired values of 𝐷𝐶60. As already stated, it is not possible to 

remove samples from a dataset only because they possess a value of the metric of 

interest higher than the desired output. Nevertheless, in this case, since these 

regions of high 𝐶𝑅𝑛𝑑and high 𝑟𝐼𝐿𝑛𝑑 have been thoroughly explored through 

different simulations, it is possible to remove the samples from the dataset, leading 

to the reshape of the convex hull and to the re-definition of the design space 

bounds. 

The same conclusions can be obtained also through the analysis of the scatterplots 

which define the relationships between the different pairs of variables. In Figure 

4.6 it is shown one of the scatterplot obtained, whereas in Appendix A.1.1 is 

possible to find the whole set of correlations studied. The preliminary visual 

inspection of the scatterplot reported leads to the same results derived from the 

analysis of the PC plot for the same set of two variables. In the scatterplot the 

presence of regions in which the geometries are characterised solely by a value of 

𝐷𝐶60 higher than that researched for the bottom line design is made clear. 

Following the visual analysis, the geometries in these regions are extracted and 

filtered out from the dataset. In addition to the filtering based on 𝐶𝑅𝑛𝑑 and 𝑟𝐼𝐿𝑛𝑑, a 

further investigation showed that also 𝑓𝐼𝐿𝑛𝑑, related to𝑟𝐼𝐿𝑛𝑑  by Equation (2.9), 

allowed to filter some of the geometries due to a region characterised by the same 

behaviour highlighted above. The final amount of samples which were possible to 

remove from the dataset was equal to 29 total cases. Therefore, the filtering based 
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on the refinement of the design space bounds through the analysis of the 

correlations between the different variables allowed to pass from an initial dataset 

composed by 340 cases to a dataset of 311 total cases. 

 

Figure 4.6: Geometric correlations scatterplot 

The new bounds found are given in Table 4.1, and they constitute the new design 

space bound of the filtered dataset. 

Table 4.1: Design space bounds refinement 

𝐶𝑅𝑛𝑑 0.9185 

𝑟𝐼𝐿𝑛𝑑 0.9697 

𝑓𝐼𝐿𝑛𝑑 0.8188 

 

critical 
value 
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4.3 Lip design analysis 

One of the main requirements to meet in the design of the intake lip is the 

maximum incidence angle capability at which separation occurs and leads to 

reduced performance of the whole engine [36]. Therefore, one point to ensure in 

the analysis at incidence conditions is the effective design of the intake lip in order 

to avoid separation inside the intake duct. For this reason, one procedure which, in 

the context of the current analysis, can give a good insight about the aerodynamics 

of the bottom lip of a short intake is the thorough study of the shape of the 

geometries created. In order to facilitate the analysis, the shape of each profile has 

been analysed separately for lip and diffuser design. After a preliminary study, it is 

possible to state that the shape of the diffuser does not tell much about the 

aerodynamic behaviour of the geometries, especially those which lead to high 

values of distortion at the fan face. Though, for further analysis, the profile of the 

diffuser can play an important role in the reduction or growth of the boundary 

layer resulting from the diffusion-induced separation. In turn, the aerodynamic 

behaviour of the different designs becomes very clear examining the shape of the 

lips. For this reason, the study reported in this section focuses solely on the 

examination of this part of the profiles, which extend from the highlight point to 

the throat point of the intake. 

The two geometrical parameters used to analyse the profiles are the radius of 

curvature, identified by 𝑟, and the rate of change of the radius of curvature, 

identified by the acronym ROCOR, which corresponds to the first derivative of 𝑟 in 

each point on the intake profile. All the geometries created are characterised by 

different combinations of values of the design parameters, especially regarding AR, 

for the purposes of this analysis. Therefore, the position of the throat in the 

relative intake reference system is different for each geometry. For this reason, the 

non-dimensionalisation of the intake length is necessary to ease the comparison 

between the geometries. In order to do that, the position of a point on a generic 

profile projected on the horizontal axis has been divided by the length of the lip of 

the same profile, and it is identified by 𝑥/𝐿𝐿𝐼𝑃. Another important operation to 
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improve the comparison process is to non-dimensionalise the radius of curvature, 

and this is done dividing it by the radius at the highlight 𝑅𝐻𝐼 , which is common and 

fixed for all the geometries. 

In Figure 4.7 and Figure 4.8 the distribution of the non-dimensional radius of 

curvature and non-dimensional ROCOR across the non-dimensional lip length are 

shown for all the 340 geometries in the dataset. Each design is coloured based on 

the fact that its related value of 𝐷𝐶60is greater or lower than a determined value of 

interest. As an aid for the following analysis, the twofold coloration is useful to 

have a quick understanding of which designs are going to be considered and 

filtered. 

 

 

 

Figure 4.7:Non-dimensional radius of curvature distribution on lip profile 
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Figure 4.8: Non-dimensional ROCOR distribution on lip profile 

Red-coloured geometries are related to a 𝐷𝐶60value higher than the range of 

interest, in accordance with what initially stated, and therefore, since their design 

is not desirable, it is possible to filter them out from the dataset. As mentioned in 

the introduction of Paragraph 3.3, the ideal objective of the intake design process 

for the bottom line at incidence conditions is to design a lip profile with a linear lip 

curvature distribution [11]. This is required in order to avoid the rapid 

acceleration and associated shock-induced separation which can occur with both 

rapid reduction and increase of curvature near the highlight region. In fact, 

controlling the lip curvature distribution allows to limit the strength of the shock 

resulting from the acceleration and possibly avoid the separation [13]. The 

research reported in this paragraph focuses therefore in the selection of the 

optimal design which allows avoiding the phenomena described earlier. As can be 

inferred from the figures, and described in detail later, the twofold coloration 

generally highlight the fact that geometries which do not respect what stated are 

also characterised by a related high value of distortion. Blue-coloured geometries, 

all related to a value of 𝐷𝐶60 comprised in the range of interest, can be 

preliminarily assumed acceptable for intake lip design. They are in fact 
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represented by a smooth increase of radius of curvature near the highlight. 

Nevertheless, there are some exceptions between these geometries, likely related 

to the design of the diffuser, which can easily lead to distortion at the fan face. 

In order to improve the outcome of the analysis, the lip profile has been divided in 

fore-lip, which has been defined as the first half of the non-dimensional lip length, 

and in aft-lip, defined as the second half of the lip. This separation between the two 

parts of the lip can be easily assumed after a preliminary analysis of both figures, 

where it is clear that some geometries are characterised by an increase of radius of 

curvature in the first part of the lip, near the highlight point, while others are 

characterised by a marked increase in the region near the throat point. 
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4.3.1 Fore-lip design analysis 

The initial focus of the analysis was placed on the fore-lip design. Based on the data 

available after the DoE, the geometries corresponding to the red-coloured 

distributions in Figure 4.7 were extracted and analysed. They are reported in Table 

4.2, where each one of these geometries is represented by the maximum value of 

non-dimensional radius of curvature and the corresponding position along the 

non-dimensional lip length, as well as by the associated value of distortion at the 

fan face. The highest value of the latter is equal to 𝐷𝐶60 = 0.587. In Appendix A.2 

the locations of the geometries considered in the fore-lip design analysis are 

identified in the design space. 

Table 4.2: Fore-lip analysed designs 

Max 𝐫 𝐑𝐇𝐈
⁄  Position max 𝐫 𝐑𝐇𝐈

⁄  𝑫𝑪𝟔𝟎 

1.195 0.378 0.504 

1.065 0.276 0.249 

1.752 0.336 0.334 

1.324 0.325 0.538 

1.159 0.354 0.472 

1.406 0.384 0.466 

1.139 0.297 0.569 

2.032 0.319 0.352 

1.093 0.255 0.233 

0.990 0.286 0.294 

1.315 0.308 0.587 

1.627 0.336 0.438 

1.071 0.331 0.512 

1.305 0.348 0.486 

1.274 0.336 0.543 
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Along with the extraction of these considered “bad” geometries, a design space 

exploration was also exploited. In Figure 4.9, the design which leads to the worst 

value of distortion is shown. In order to give a clearer idea of what will be 

discussed, the design reported corresponds to the fifth profile from the top in 

Figure 4.7, considering just the fore-lip. The axial component of the velocity is 

represented in the plot below, useful to highlight regions characterised by reverse 

flow. From the figure it is easy to identify a long flat profile in the lip design. This is 

related to the rapid increase of the radius of curvature near the highlight which, as 

can be inferred, easily trigger the separation of the air stream from the surface. 

Generally, as a rule of thumb for a good intake lip design, the increase of radius of 

curvature should be linear and the profile obtained results well-rounded and 

suitable to be employed in the flight condition considered. 

 

 

Figure 4.9: Fore-lip analysis - worst design – axial velocity 
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4.3.2 Aft-lip design analysis 

Analysing the radius of curvature distribution on the aft-lip, it is possible to see 

that, for few geometries, the increase of 𝑟 is more marked than it was in the fore-

lip. As reported earlier, the geometries characterised by rapid increases of 𝑟 lead to 

flat regions along the lip profile. As reported in Table 4.3, from the analysis of the 

aft-lip design it is possible to extract 11 geometries which do not respect the 

requirements expressed in the beginning. Each design extracted is characterised 

by both a rapid increase of non-dimensional radius of curvature near the throat 

point and by a related high value of 𝐷𝐶60. Eventually, the highest value found for 

the distortion parameter is equal to 𝐷𝐶60 = 0.425. It corresponds, on the second 

half of the lip, to the second profile from the top drawn in Figure 4.7, specifically 

identified by a maximum non-dimensional radius of curvature equal to 𝑟 = 2.877. 

Table 4.3: Aft-lip analysed designs 

Max 𝐫 𝐑𝐇𝐈
⁄  Position max 𝐫 𝐑𝐇𝐈

⁄  𝑫𝑪𝟔𝟎 

1.697 0.757 0.360 

1.965 0.757 0.415 

1.943 0.766 0.394 

2.877 0.748 0.425 

1.735 0.766 0.330 

2.371 0.748 0.348 

1.906 0.766 0.407 

2.898 0.740 0.291 

1.804 0.783 0.339 

2.391 0.722 0.180 

1.822 0.740 0.311 

 

In Figure 4.10 it is possible to have a better idea of what discussed previously 

regarding the requirement of a smooth increase of radius of curvature while 

designing an intake lip. Considering the “bad” profiles for the aft-lip design in 
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Figure 4.7, if only the distribution of 𝑟 until the end of the fore-lip is considered, 

the geometry reported in the figure below presents exactly the design which is 

desired to achieve. Though, after the fore-lip, as can be inferred from Figure 4.7, 

the radius of curvature markedly increases and it translates in the flat region prior 

the throat point, as it is clearly visible in Figure 4.10. As highlighted in the 

isentropic Mach number distribution in Figure 4.11, the sudden change in profile 

causes a shock formation upstream the flat region, which triggers the shock-

induced separation of the air stream from the duct surface. 

 

 

Figure 4.10: Aft-lip analysis - worst design – axial velocity 
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Figure 4.11: Aft-lip analysis - worst design – Isentropic Mach number 

4.3.3 Filtering based on lip design analysis 

The work carried out to analyse the intake lip design showed that some of the 

geometries generated are not in accordance with the objectives of the current 

research. It can be inferred that geometries characterised by a non-monotonic 

increase of radius of curvature along the lip length generally lead to distortion at 

the fan face. As a rule of thumb, usually it is not correct to filter samples from the 

initial population of a design space, but this should be avoided just if the filtering is 

based on undesired values of the metric evaluated. Though, in this situation, since 

the geometries analysed in the previous paragraphs are not suitable for intake 

design, they can be removed from the dataset. Therefore the filtering is based on 

geometrical undesired features, and not simply on undesired metrics, which is 

more acceptable in the context of creation of a response surface which aims to 

generalise the behaviour of the metrics of interest. 
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Figure 4.12: Filtered non-dimensional radius of curvature distribution 

In Figure 4.12 the non-dimensional radius of curvature distribution on the lip is 

presented. As a general remark, it is possible to assert that the profiles of the fore-

lip respect the requirement of smooth and monotonic increase of radius of 

curvature, while the same is not valid for the aft-lip. For this part of the lip it is 

clearly visible that there is a group of geometries designed with a non-linear 

increase of 𝑟. Nevertheless, they are characterised by a low value of distortion 

which ensure a correct performance of the engine, and therefore, even if the shape 

is not the one desired, they can be preliminarily considered acceptable. 
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4.4 Surrogate modelling 

The results presented in this paragraph represent the key point of the entire work, 

aimed to obtain a surrogate model to quickly evaluate the optimal design of the 

bottom line of a short intake at incidence conditions. A thorough analysis of all the 

results obtained from the validations of the different models tested is reported. 

Prior to present the work carried out to obtain the metamodels, it is paramount to 

assert that the behaviour of the initial dataset created is highly non-linear, 

highlighting the difficulties in the design of a short intake. A lot of effort has to be 

put in order to improve the design space, for instance through filtering or other 

kind of conclusions, and obtain a surrogate model as more general as possible. 

Nevertheless, the results obtained are encouraging, but still not optimal for use in 

real world applications. In the following analysis all the issues and problems 

solved are analysed, as foundation for future improvement. 

4.4.1 Kriging model 

The creation of a reduced order model is just the tip of the iceberg of the whole 

process, since it is not possible to employ the model until the validation process 

confirms its reliability. In order to assess it, cross-validation is performed every 

time a model is created, even if it is usually a very computational expensive 

procedure. This is paramount since this method helps to make an informed 

decision on whether the model obtained is reliable of not for the exploitation in a 

real world application, and usually this decision is based on statistics parameters 

which serve as diagnostics. In the context of this work, the cross-validation of the 

different models created is based on the concept of Leave-One-Out (LOO), in which 

each sample participates to the assessment of the quality. The basic idea behind 

this technique consists of two steps: initially, a surrogate model is created without 

one sample, removed temporarily from the dataset; subsequently, the value of the 

metric in the position of the sample left-out is obtained from the metamodel and it 

is compared against the actual value of the metric in the same location. These steps 
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are repeated for all the points in the design space, and the outcome gives useful 

information about the quality of the obtained model. 

The two summary statistics used to assess the quality are the Root Mean Squared 

Error (RMSE) and the Pearson r coefficient [37]. The former is defined as in 

Equation (4.1), and it is commonly employed when the relationship between 

predictions and real values is subjected to investigation. From a statistical point of 

view, it can be considered as the sample standard deviation of the differences 

between the predicted metrics �̂�(𝑖) and the real metrics 𝑦(𝑖). From a practical point 

of view, it can be viewed as a measure of how well the model predicts the real 

values. The main advantage for which the RMSE is evaluated consists in the fact 

that it is expressed in the same units as the data. Therefore, it is easier to 

understand the entity of the error that characterises the metamodel in 

correspondence of the known locations in the design space, and it gives an idea of 

the level of error which can be encountered when predictions are made outside 

these locations. Considering Equation (4.1), since the cross-validation is carried 

out within the design space bounds and especially just using the dataset obtained, 

the term between brackets is well-known as “residual”. Attention should be paid 

on the use of different terms, because, for instance, this term is different from the 

“prediction error”, which generally represents the error for a prediction made 

outside of the known values [37]. 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

(4.1) 

The Pearson r coefficient is a common representation of the correlation between 

two different variables, which in the context of this work are represented by the 

two sets of predicted and real metrics. 

For the scope of this research, the ideal values that the two statistics considered 

should have are: 

 RMSE ≅ 0, which indicates that the model perfectly predicts the 

observations 𝑦(𝑖) in the known locations obtained from the DoE. 
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 r ≅ 1, which reflects the same concept stated in the previous point, and 

which highlight the fact that there is perfect correlation between 

predictions and real values. Though, the critical analysis of this term should 

be carefully considered along with the other considered statistics. 

In addition to the summary statistics, which give a quantitative representation of 

the quality of the model, two plots are usually provided after the cross-validation 

to visually assess the quality of the metamodel created. The first one is the 

scatterplot of the predicted values plotted against the real values. Ideally, a 1:1 

correspondence is desired, but usually it is more likely that the linear fitting 

between the two quantities measured is characterised by a slope lower than 45 

degrees. Nevertheless, this is an known characteristic of the Kriging method, since 

generally it tends to under-predict large values and over-predict small values, 

within the specified dataset of interest [37]. The second plot considered the 

scatterplot of the residuals values plotted against the predicted values of the 

metric. Ideally, the points plotted on this plot should lie on the horizontal axis, 

corresponding to a residual value of zero. Nevertheless, since it is not expected 

that a generic prediction 𝑦(𝑖) corresponds exactly to the real value in the same 

location, the different points are spread in the plot. In few occasions, the inspection 

of this plot allows to extract trends, which lead to the re-definition of the surrogate 

modelling technique that should be employed. In order to ease the readability of 

the following discussion, only the former plot described is reported, while the 

second one can be found in Appendix B for all the models considered. 

The initial study, aimed to create a metamodel for intake design purposes, focused 

on the creation of a model based solely on the three main independent variables 

already defined in the description of the project and which are identified by CR, AR 

and 𝑟𝐼𝐿. Nevertheless, as it will be shown, it has been found that a careful increase 

of the dimensionality of the problem allows to improve the quality of the 

metamodel created. In fact, increasing the dimensionality of the design space 

adding the design variable 𝜅𝑇𝐻 has shown significant improvements in the 

surrogate model results. Nevertheless, it has to be reminded that this variable is a 

“derived” independent variable, and therefore its influence cannot be examined 
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outside the values automatically calculated during the geometry creation at the 

DoE stage. Even though this mathematical constraint is present, the 

implementation of this additional variable is still valid. Though, when the 

metamodel created from these four variables set will be queried, 𝜅𝑇𝐻 should be 

derived in the same way it was derived in the initial DoE. In other words, while the 

three main variables will be selected within their determined ranges, 𝜅𝑇𝐻 will be 

determined from the same least square approach described in Paragraph 2.4.3.  

For sake of clarity, the discussion regarding the results commences analysing the 

outcomes obtained considering the non-filtered design space. This is mainly done 

for two reasons: the study started from the mentioned condition, and therefore it 

shows the initial point of the analysis which led to the thorough study carried out 

and described in the previous paragraphs; it serves as a meaningful measure of 

comparison with the results obtained from the subsequent filtered design space. 

As demonstrated in Paragraph 3.4.2.2, the number of settings which control the 

creation of a surrogate model is high, and different configurations have to be tested 

to find the optimal settings. During the testing phase of the current study a large 

number of these have been tested and in the following sections the most significant 

results found for the most significant configurations are reported. 

In the following discussion the results are analysed and compared with the 

statistics parameters described earlier. Along with them, one additional parameter 

employed, which gives a better understanding of the quality of a model in 

relationship with the specific considered dataset, is the ratio RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒, in 

which the range is the simple difference between the maximum and minimum 

value of the metric considered. Even if the consideration of the other two 

parameters is paramount, as suggested by Forrester [16] the ratio provides an 

improved indication of quality. As it will be found in the following sections, the 

post-processing of the results focuses also on the analysis of the different statistics 

in two different ranges. These are mainly identified as the “overall” one, where the 

quality of the whole model is assessed, and the “RoI” one, which defines the region 

with geometries characterised by a value of 𝐷𝐶60 below a critical value. 



80 

Concerning the three variables model approach, the results reported are divided 

into two parts: User-Defined Auto-Correlation Parameters (UDACP), in which the 

auto-correlation parameter 𝜃 has been fixed for all the different MLE evaluations 

in the cross-validation process; MLE-Defined Auto-Correlation Parameters, in 

which the auto-correlation parameter is calculated through the Maximum 

Likelihood Estimation at each evaluation of the LOO process. This allows also to 

understand the limits of the employed method since, as it will be demonstrated, 

the MLE does not provide feasible results and it requires further investigation to 

assess its potential. 

In any case, especially following the realisation that the intake design space is 

highly complex, the results which will be obtained from a surrogate model 

obtained with the current method employed have to be post-processed 

considering also the results of the corresponding cross-validation. 
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4.4.1.1 Three variables – non-filtered dataset 

USER-DEFINED AUTO-CORRELATION PARAMETERS (UDACP) 

 

Figure 4.13: Predicted vs real - 3 variables model - non-filtered – UDACP 

Table 4.4: 3 variables model - non-filtered - UDACP 

Overall 

RMSE 0.075 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.132 

Pearson′s r 0.801 

RoI 
RMSE 0.052 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.520 
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The first model analysed is based on the three main independent variables which 

have been defined earlier and, in order to avoid confusion, are identified by CR, AR 

and 𝑟𝐼𝐿. As described at the end of the introductory paragraph, the analysis 

reported in this section focuses on models obtained through UDACP. It was found 

that optimal results for the three variables models can be found assigning a value 

of 𝜃 common to each feature considered, and this value has been set to 1. In Figure 

4.13 the result of the cross-validation procedure is presented exploiting the main 

scatterplot described in the previous paragraph. As an aid to the visual inspection 

of this plot, Table 4.4 is provided and it contains all the summary statistics used to 

evaluate the quality of the model created. The grey line in the plot represents the 

ideal linear correspondence between predictions and actual values of the metric 

considered, where, ideally, all the points should lie. The red line is a basic linear 

regression of the data in the plot. As stated earlier, one of the summary statistics of 

major interest considered in this work is the Pearson r coefficient. Often to this 

parameter is also associated the slope of the red line, which gives a rough 

indication of how far the data are from the 1: 1 correspondence. Though, as it has 

always to be reminded in this kind of analysis, the slope does not give a proper 

indication of the quality of the model and it must always examined along with 

another more significant statistics parameter. 

As it becomes clear from the visual analysis of the scatterplot, the distribution of 

the points in the plot “almost” finds agreement with what reported in the main 

introduction of this paragraph. In fact, it can be inferred that for low values of 

actual 𝐷𝐶60 the prediction is over-estimated, while the region outside the range of 

interest is a general characterised by an under-estimation of the predictions of the 

metric considered. 

In Table 4.4 the different summary statistics allow to have a better idea of the 

quality of the model. Concerning the quality of the predictions in the range of 

interest, the RMSE describes a model which is not acceptable. In fact, it is 

highlighted that the value given from the surrogate model for a generic query in a 

location within the design space bounds can lie in an interval of 𝐷𝐶60 ± 0.052. 
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MLE-DEFINED AUTO-CORRELATION PARAMETERS 

 

Figure 4.14: Predicted vs real - 3 variables model - non-filtered– MLE 

Table 4.5: 3 variables model - non-filtered - MLE 

Overall 

RMSE 0.119 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.211 

Pearson′s r 0.459 

RoI 
RMSE 0.029 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.290 
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In this section the results obtained from the cross-validation of a Kriging model in 

which the auto-correlation parameters are calculated through MLE are presented. 

As it is possible to understand examining Figure 4.14, the behaviour of the model 

changes when the parameters are not user-defined. In particular, except for few 

cases out of the total 340 designs, the surrogate is assumed to have a stiffer 

behaviour compared to the previous analysed case. This seemingly describes a 

quasi-flat response hypersurface, likely characterised by various spikes across it, 

related to the variability of the predicted values reported in the figure below. 

A first comparison between the statistics in Table 4.4 and Table 4.5 shows a 

notable improvement in the quality within the region of interest, but a general 

worsening of the quality of the overall model. This is mainly related to what 

reported previously, since a stiff model is not able to well generalise the behaviour 

of a highly non-linear dataset. It approximates only the low values of the metric 

considered, since eventually it is not able to generalise the behaviour of potential 

increases of the metric in some zones. In any case, it is notable the reduction of the 

RMSE for the region characterised by low values of the metric of interest, but this 

does not still allow to consider the model as completely acceptable. 
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4.4.1.2 Three variables – filtered dataset 

USER-DEFINED AUTO-CORRELATION PARAMETERS (UDACP) 

 

Figure 4.15: Predicted vs real - 3 variables model - filtered– UDACP 

Table 4.6: 3 variables model - filtered - UDACP 

 

Overall 

RMSE 0.054 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.141 

Pearson′s r 0.731 

RoI 
RMSE 0.036 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.360 
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In this section the main effects related to the filtering of some of the geometries out 

of the dataset are studied and the results are presented following the scheme of 

the previous section. The filtering considered is the one resultant after the initial 

design space exploration, as described in Paragraph 4.2, and after the lip design 

analysis, as described in Paragraph 4.3, which allowed to discard some of the 

geometries analysed during the DoE. Also in this case the UDACP approach 

employed the same common auto-correlation coefficient defined in the previous 

section, and set to 1. From the plot reported in Figure 4.15 it is not completely 

possible to understand the improvement achieved after the filtering, but important 

information are derived examining Table 4.6. According to the data obtained after 

the cross-validation, there is a general improvement of the whole metamodel 

quality, with an overall reduction of the error associated to the predictions. 

Nevertheless, the reduction of the Pearson correlation coefficient, in comparison 

with the non-filtered dataset case, denotes that the settings used and maintained 

constant in the two situations lead to a reduction of the predictive capabilities of 

the model. Therefore, further investigation on the variation of the settings from 

one model to the other has to be carried out in order to reduce the stiffness of the 

model created, which is not able to well approximate regions of high 𝐷𝐶60. 
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MLE-DEFINED AUTO-CORRELATION PARAMETERS 

 

Figure 4.16: Predicted vs real - 3 variables model - filtered– MLE 

Table 4.7: 3 variables model - filtered - MLE 

 

Overall 

RMSE 0.075 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.196 

Pearson′s r 0.595 

RoI 
RMSE 0.024 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.240 
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The automatic estimation of the auto-correlation parameters has the same effect 

on the filtered model created as it had on the non-filtered case. This can be 

considered as a trivial conclusion, but it was expected that an improvement of the 

design space bounds and the filtering of some of the undesired geometries would 

eventually lead to an improved model, where the characteristic stiffness 

highlighted earlier was no longer present. Though, as it is demonstrated in Figure 

4.16 and Table 4.7, this conclusion is not verified and, as suggested in the previous 

section, a modification of the different settings of the Kriging model should be 

carefully considered when the filtered case is employed. 



 

89 

4.4.1.3 Four variables – non-filtered dataset 

MLE-DEFINED AUTO-CORRELATION PARAMETERS (UDACP) 

 

Figure 4.17: Predicted vs real - 4 variables model – non-filtered– MLE 

Table 4.8: 4 variables model – non-filtered - MLE 

Overall 

RMSE 0.054 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.095 

Pearson′s r 0.901 

RoI 
RMSE 0.043 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.430 
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The discussion concerning the use of four variables instead of the standard main 

three starts from the analysis of the model created using the complete dataset 

without geometries filtered out. Moreover, for this increased dimensionality case, 

the focus is solely on the automatic calculation of the auto-correlation parameters 

through the MLE method, which is a key feature of the Kriging method and it is 

exploited to obtain improved results. From Figure 4.17 and Table 4.8 it is possible 

to clearly notice that there is a marked improvement in the quality of the 

metamodel created. Focusing the attention on the range of interest, the spread of 

the predictions in this region is less pronounced compared to the non-filtered 

dataset case based on three variables. Nevertheless, in this zone of the plot, 

characterised by 𝐷𝐶60 < 𝑅𝑜𝐼 there is the unexpected presence of some samples 

which predicted values are above 𝐷𝐶60 > 0.2. Even if the statistics parameters 

achieved a marked improvement, these outliers require a further investigation to 

understand the underlying reasons for such behaviour. Therefore, at this stage the 

model cannot be considered acceptable, but it allowed to reach a level of overall 

quality which was not possible to achieve in the smaller dimensionality case. 

 

An enhanced analysis of the current non-filtered increased dimensionality 

metamodel has been carried out. Eventually, as in an optimisation routine, the 

achievement of the reported results has led to the necessity to exploit a thorough 

analysis of the design space in order to understand the underlying driving 

behaviour of the intake design dataset, which was represented by the one reported 

in the first paragraphs of this chapter. The initial investigation, which has led to the 

consequent thorough analysis, focused on the analysis of the points which can be 

identified as outliers in Figure 4.17. It has been found that this two points, which 

are situated externally the cloud of points in the region of interest, if they are 

analysed in a three-dimensional visualisation of the design space it is possible to 

see that they are located near a region of high values of 𝐷𝐶60, situated near the 

borders of the convex hull. Therefore, the possible explanation for such result is 

that the response hypersurface in this region tends primarily to approximate the 

high values of the metric, returning a value of the same magnitude when the 

surrogate is queried in the considered region. For this reason, the question which 
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arises is if it is possible to remove them or the neighbour samples from the dataset 

in order to improve the quality of the metamodel in the generalisation of the 

behaviour in this region. The answer, as already stated, lies in the first paragraphs 

of this chapter and in the final model reported in the next section. 

 

4.4.1.4 Four variables – filtered dataset 

MLE-DEFINED AUTO-CORRELATION PARAMETERS 

The filtering of undesired geometries from the dataset for the four variables based 

model, as can be inferred from Table 4.9, allows to obtain the best level of quality 

achieved so far. As an example of the effect of the filtering, the two geometries 

considered in the previous section, characterised by an associated actual value 

well below 𝐷𝐶60 < 𝑅𝑜𝐼, are now located in the cloud of points of the region of 

interest and this is due to the removal of some of the designs related to high 𝐷𝐶60 

which, in the previous case, constrained the response hypersurface in this region. 

The current surrogate model is still considered scarcely acceptable, but few 

conclusions can be derived: 

 The RMSE value compared with the range of the metric indicates that the 

overall error is slightly below 10%. According to Forrester [16], below this 

percentage the model can be considered a reasonable global model. 

 The over-prediction of the different metric in the region above 𝐷𝐶60 > 0.2 

has been eliminated, and in the filtered case there is accordance with what 

stated in the beginning of this paragraph regarding under- and over-

predictions. 

From the Pearson’s coefficient is also possible to derive the so-called coefficient of 

determination r2. This is usually employed as statistic in linear least squares 

regression, but it can also be applied to different models with a slightly different 

meaning. In the context of this work, it represents a measure of how well a real 

metric can be constructed from the predicted observations [38]. Regarding the 

values that this statistic should have, Forrester [16] reported that for values of 
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r2 > 0.8 the surrogate has good predictive capabilities. For the case under analysis 

this is equal to r2 = 0.794, and therefore, along with the statement in the first 

bullet point, it can be assumed that the surrogate model created is a feasible 

foundation for future improvements. 

According to the results reported in Table 4.9 for the RMSE in the region of 

interest, if the surrogate model is exploited in a real world application it is almost 

certain that it can well predict values of the metric included in the interval 

0.028 < 𝐷𝐶60 < 0.072. In fact, it can be assumed that, since the RMSE of the data 

contained in the RoI is equal to 0.028, the real metric value lies in the interval 

�̂� ± 0.028, with �̂� value of the predicted metric obtained querying the surrogate. 

 

 

Figure 4.18: Predicted vs real - 4 variables model - filtered– MLE 
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Table 4.9: 4 variables model – filtered - MLE 

Overall 

RMSE 0.036 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.095 

Pearson′s r 0.891 

RoI 
RMSE 0.028 

RMSE ⁄ 𝑟𝑎𝑛𝑔𝑒 0.280 

 

 

4.4.1.5 Comparison results 

The summary of the results obtained from the creation of the different surrogate 

models is given and reported in Table 4.10. The models based on three variables 

show a general lower value of correlation between predictions and actual values 

and therefore their predictive capability, also possibly expressed by the coefficient 

of determination, is certainly inadequate. Though, in the case of the filtered dataset 

for the three variables models, the best and lowest result for the RMSE within the 

region of interest is achieved. Though, this model, considering both correlation 

coefficient and overall model quality, expressed by the ratio RMSE 𝑟𝑎𝑛𝑔𝑒⁄ , is not 

feasible for the purposes of the current research. 

Nevertheless, after different tests, the major interest has been moved to the four 

variables model, since clear improvements are obtained when the dimensionality 

of the problem is increased. The overall quality of this enhanced model is generally 

better than the one related to three variables models and, moreover, when the 

filtered dataset is considered the RMSE in the range of interest reaches almost the 

same value as the one associated to best case found in the previous models. The 

additional advantage earned with this model is that the RMSE evaluated on the 

complete dataset is at its lowest and it is considered within the acceptable limits 

established by Forrester [16], as stated in the previous paragraph. 
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Table 4.10: Comparison between Kriging models created 

  Overall RoI 

Variables Dataset RMSE 
RMSE

𝑟𝑎𝑛𝑔𝑒
 r RMSE 

RMSE

𝑟𝑎𝑛𝑔𝑒
 

CR, AR, 𝑟𝐼𝐿 

Non-filtered 

MLE 
0.119 0.211 0.459 0.029 0.290 

Filtered 

MLE 
0.075 0.196 0.595 0.024 0.240 

CR, AR, 𝑟𝐼𝐿, 𝜅𝑇𝐻 

Non-filtered 

MLE 
0.054 0.095 0.901 0.043 0.430 

Filtered 

MLE 
0.036 0.095 0.891 0.028 0.280 
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5 CONCLUSIONS 

Scope of this chapter is to provide to the reader a summary of all the work carried 

out during this project. The main findings will be thoroughly summarised in order 

to build the foundations of the future work on the argument. Always focusing on 

the next steps, few recommendations and suggestions are given with the intention 

of guiding future candidates towards the complex achievement of creation of a 

surrogate model for intake design. 

5.1 Project summary 

The principal objective of the project was the construction of a reliable surrogate 

model for the future exploitation in the optimal design of the short intake bottom 

line. The whole analysis focused on this line and to the aerodynamics behaviour 

when it is exposed to the worst flight condition which it can face. This condition is 

represented by the climb phase, in which the high incidence angle can lead to 

potential pressure losses and non-uniformities at the fan face, in the situation in 

which the bottom line is not properly designed. These aerodynamics issues affect 

irremediably the performance of the engine, leading to surge and to all the 

potential mechanical damages which can take occur when the flow interacts with 

the fan rotor and with the compressor. In order to create a reliable surrogate 

model, different steps were required before the achievement of acceptable results. 

The project started from the foundations built by the outcome of the initial design 

space exploration carried out for the bottom line at incidence [22]. The result led 

to the decision of opting for a reduced dimensionality problem, moving from five 

independent design parameters, characterised by specific ranges, to three main 

independent variables and two automatically derived parameters. The ranges of 

the new reduced design space had to be found, and an initial exploration carried 

out by means of a Full Factorial (FF) Design of Experiment (DoE) was exploited. It 

allowed to efficiently determining the convex hull of the hypercube which was 
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going to be populated by all the time- and computationally-affordable design 

combinations of the three main design parameters. After an analysis of the 

different surrogate modelling techniques available in literature, the one which was 

selected was the Kriging method, efficient solution when highly non-linear 

problems are subject of investigation. In fact, as preliminary shown in previous 

approaches to the problem, the intake bottom line behaviour when exposed to 

incidence condition is highly non-linear. Along with the selection of the surrogate 

modelling technique, the proper selection of the DoE method used to populate the 

design space on which the creation of the final metamodel is based is crucial. The 

decision about which technique was best for this purpose was pretty 

straightforward and eventually the Latin Hypercube Sampling (LHS) was selected, 

due to its high reliability accompanied by enhanced space-filling capabilities [15]. 

This particular characteristic of the LHS method led to the generation of a well-

spread distribution of samples across the entire design space, allowing to analyse 

the behaviour of the intake bottom line at incidence conditions for a large number 

of possible combinations of the design variables. In accordance with what found in 

the initial analysis of the intake bottom line aerodynamics [21], since the two 

aerodynamics performance parameters evaluated, namely Intake Pressure 

Recovery (IPR) and distortion coefficient 𝐷𝐶60, are linearly related, it was decided 

to focus the attention solely on one of the two metrics. The one which showed the 

worst behaviour in the aerodynamic analysis was the 𝐷𝐶60, and for this reason it 

was selected as the main metric to study. After the LHS DoE, the design space 

exploration showed that the dataset obtained was characterised by a highly non-

linear distribution of the metric of interest. This was also demonstrated by the fact 

that the application of the surrogate modelling technique selected was ill-suited for 

such dataset. A thorough analysis of the design space was therefore mandatory, 

and this required the refinement of the design space bounds and the geometric 

analysis of the intake shape, with main focus oriented to the study of lip geometry. 

This combined analysis allowed to filter some of the undesired geometries and 

poor meaning regions out of the initial dataset. At this stage it was possible to 

optimise the surrogate modelling technique selected and adapt it to the filtered 

design space. Due to the high complexity of the surrogate modelling technique 
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selected, related to the high number of possible combinations of the different 

settings, a large number of tests was required to find the optimal settings which 

allowed its proper operation. Nevertheless, the creation of the reduced order 

model based on the three main independent variables selected has been 

demonstrated to be barely acceptable. Eventually, an important result was 

obtained: a careful increase of the dimensionality of the problem, from three to 

four design parameters leads to improved results, demonstrated by a better 

overall quality of the metamodels created. This conclusion, along with the whole 

discussion reported in this document, should serve as a starting point for the 

improvement of the employed method and the potential achievement of the 

objective of creation of the surrogate model for the bottom line design. 

5.2 Main findings 

As conclusion of the work, few points can be highlighted as main findings and they 

can be summarised as following: 

 After the completion of a DoE run, a thorough analysis of the design space 

through scatterplots of the correlations between the different variables has 

to be carried out. This can lead to a refinement of the design space which is 

not possible to achieve at the stage of determination of the design space 

bounds. Considering an intake geometry, in the specific case of intake at 

incidence the analysis of the lip design is mandatory, since it is a key feature 

which drives the aerodynamic behaviour of the air stream which flows 

inside the intake duct. The methodologies implemented are not completely 

able to smooth out the radius of curvature distribution of the lip, and 

therefore a manual inspection is due, in order to identify the potential 

geometries characterised by an undesired shape. 

 The Kriging method is a complex method to implement, and it requires a 

rigorous strategy which allows to determine the settings which lead to 

optimal solutions, or metamodels. Based on the achievements reached at 

the end of this project, further investigation has to be carried out in order to 
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explore new combinations of settings, which can over-perform the ones 

tested during this work. 

 The three variables based models have shown an overall poor quality in 

terms of generalisation capabilities. The quality of a metamodel was 

assessed through Leave-One-Out (LOO) cross-validation, and two different 

summary statistics were used to describe the found results quantitatively. 

The best result was achieved when the filtered dataset was considered, and 

when the auto-correlation parameters were defined by the user and set as 

fixed for all the cycles of the cross-validation. The overall quality can be 

described by RMSE = 0.054. Though, it has been demonstrated that when 

the auto-correlation parameter is defined at each cycle of the cross-

validation by a method known as Maximum Likelihood Estimation the 

overall quality decreases, but the quality for the range of interest of the 

metric, set at 𝐷𝐶60 < 𝑅𝑜𝐼, improves and reaches the best values found at 

RMSE = 0.024. This can be assumed as a good quality results, but it has 

been shown that the associated Pearson coefficient is very low and it 

highlights poor predictive capabilities of the model [16]. 

 The four variables based models have shown an overall better quality in 

terms of RMSE compared to the previous discussed models. Considering the 

filtered dataset, the overall quality reaches RMSE = 0.036, while in the 

range of interest it was almost equal to the lowest found in the three 

variables model. Nevertheless, according to Forrester [16], if the ratio 

RMSE 𝑟𝑎𝑛𝑔𝑒⁄ = 0.095 is evaluated, it is possible to assert that with the 

current model it was reached a reasonable level of prediction capabilities, 

which Forrester sets until a maximum acceptable value of RMSE 𝑟𝑎𝑛𝑔𝑒⁄ =

0.10. 

5.3 Future considerations 

In the path of achievement of the main objective, the current project has explored a 

numerous variety of possible ways in which the surrogate modelling technique 

selected could be applied. Nevertheless, many of these have led to inexact 
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conclusions and many others have led to cross-validations which highlighted the 

creation of metamodels affected by very high errors in the predictions. 

The suggestions which are derived from the work carried out during this year can 

be summarised in few points: 

 The results showed that the increase of dimensionality of the problem led 

to improved results. In the context of this research, the additional design 

parameter was added to the dataset using the values automatically 

calculated during the DoE creation. In fact, as thoroughly discussed, the 

additional variable is not allowed to vary within determined ranges, but it 

has to be considered only for the values obtained from the automatic 

calculations. Following the same strategy, and assuming that the behaviour 

of the metamodel is the same, it should be tested the addition of a fifth 

variable to the already increased dimensionality problem. Few tests have 

been carried out during the project, trying to introduce as additional 

variables average diffuser angle and curvature at the fan face 𝜅𝐹𝐴𝑁 . 

Nevertheless, this has not generally led to improved results, and, in some 

cases, they even worsened the original result. 

 Accordingly to the previous bullet point and to the final results obtained in 

the current research, it is suggested to employ the curvature at the throat 

𝜅𝑇𝐻 as an additional main independent variable, instead of calculating it 

through the least square approach described. The possibility to vary its 

value within determined bounds could allow to explore more precisely the 

design space, with the added potential benefit of enhancing the design of 

the lip. Moreover, since the addition of the automatic calculated 𝜅𝑇𝐻 leads to 

substantial improvements of the quality of the metamodel created, it is 

expected that if the bounds of the same variable could be enhanced through 

the same procedure exploited at the beginning of the current research, this 

parameter can more efficiently participate to the improvement of the 

metamodel. Nevertheless, the potential benefits related to the addition of a 

new independent parameter to the original three variables set can be 

overweigh by the computational time required to obtain the same number 
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of samples as the one obtained at the beginning of the project. In fact, this 

problem is well-known as ‘curse of dimensionality’ [16], and it requires a 

thorough analysis of the various relationships between metrics of interest 

and design variables to examine the actual feasibility. Though, the clear 

demonstration obtained in terms of quality improvement following the 

addition of 𝜅𝑇𝐻 suggests that it could be worthy to explore this possibility. 

 Further analysis of the literature available regarding the creation of 

surrogate models, it appears that interesting results have been obtained 

with the exploitation of Neural Networks. The mathematical background of 

this method is even more complex than the one which lies behind the 

Kriging method, and it offers a robust method which is worthy to be 

examined. The MATLAB® implementation is thoroughly documented [39] 

and its reliability has been well reported in different papers. Solutions for 

programming languages such as Python are available as extensions of the 

SciKit module [40], the same class of modules in which the Gaussian 

Processes module exploited for the current research is contained. 
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APPENDICES 

Appendix A  

A.1 Design space exploration 

The material contained in this appendix has a twofold objective:  

 It can be used for future analysis. 

 It is useful in order to have a deeper insight in the work carried out in the 

context of the geometry analysis. 

It mainly consists of plots and tables, which are an integration or extension of the 

arguments discussed in Chapter 4. 
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A.1.1 Geometric correlations analysis 

 

Geometric correlations scatterplots 
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Geometric correlations with differentiation based on RoI 
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A.2 Lip design analysis 

 

 

Fore-lip undesired geometries – radius of curvature distribution 

 

Aft-lip undesired geometries – radius of curvature distribution 
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Fore-lip undesired geometries - ROCOR distribution 

 

Aft-lip undesired geometries - ROCOR distribution 
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Lip undesired geometries highlighted in design space 
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Appendix B  

B.1 Kriging model – residuals vs predicted values 

The plots representing the relationship between the residuals and the predicted 

values of the metric are reported. They are not included in the discussion about the 

Surrogate modelling in order to improve the readability, but they are can be 

subjected of investigation for further analysis. 
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B.1.1 Three variables models – non-filtered dataset 

 

Residuals vs Predicted - 3 variables - non-filtered - UDACP 

 

Residuals vs Predicted - 3 variables - non-filtered - MLE 
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B.1.2 Three variables models – filtered dataset 

 

Residuals vs Predicted - 3 variables - filtered - UDACP 

 

Residuals vs Predicted - 3 variables - non-filtered - MLE 
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B.1.3 Four variables models 

 

Residuals vs Predicted - 4 variables - non-filtered - MLE 

 

Residuals vs Predicted - 4 variables – filtered - ML
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