
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Area of Experimental Particle Physics

MASTER OF SCIENCE IN PHYSICS

FINAL DISSERTATION

Autoencoder-based characterization of QCD
multijet background at the LHC

Author:
Javier MARIÑO VILLADAMIGO

Supervisor:
Dr. Tommaso DORIGO

(Istituto Nazionale di Fisica Nucleare)

Co-supervisor:
Dr. John ALISON

(Carnegie Mellon University)

Academic Year 2022-2023

https://www.unipd.it/en/
https://www.dfa.unipd.it/en/
http://www.dfa.unipd.it/en/research/research-areas-and-groups/experimental-physics-of-fundamental-interactions/experimental-particle-physics/
https://userswww.pd.infn.it/~dorigo/
https://home.infn.it/en/
https://www.cmu.edu/physics/alison-group/
https://www.cmu.edu




iii

UNIVERSITÀ DEGLI STUDI DI PADOVA

Abstract

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Area of Experimental Particle Physics

Master of Science in Physics

Autoencoder-based characterization of QCD multijet background at the LHC
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A proof of principle for the application of autoencoders in encoding high-dimensional mul-

tijet data is presented. A simulation with events containing four b-quark QCD jets is used

to train the autoencoder. The reconstruction of events after a reduced dimension step is at-

tempted. We also demonstrate the capabilities of this autoencoder to generate new artificial

events.

The characterization of QCD multijet events plays a crucial role in estimating background

samples for processes involving 4b-jets final states, including the production of Higgs boson

pairs. Such a process is accessible at the LHC and may be observed in a combined search

by the end of the high-luminosity run of the LHC. The 4b channel is expected to contribute

significantly to this combined search, and it is the goal of this work to showcase the ability

of autoencoders to model such multijet events in a reduced-dimension space. This approach

has the potential to yield embedded metrics for effective background-signal discrimination.

A deep learning architecture, largely inspired by an ongoing analysis within the CMS col-

laboration, is built as the autoencoder skeleton. After the description of the architecture, loss

function, and training schedule, reconstruction of events is done successfully.

To quantify the accuracy of this reconstruction, we compute the Wasserstein distance be-

tween several kinematic variables of interest, along with a figure of merit to measure the

similarity between the reconstructed dijet and quadjet invariant masses. Furthermore, our

approach demonstrates the capability to generate an arbitrarily large number of events from

the encoded space, showing promising agreement with the reconstructed samples. This

study not only underscores the applicability of autoencoders in high-energy physics but

also offers insights into their potential contributions to future experimental analyses within

the field.
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Chapter 1

Introduction

Our current understanding of physics at the subnuclear level is essentially described by the

Standard Model (SM) of particle physics. It is, as of today, the most successful (and experi-

mentally consistent) theory able to describe particle properties, interactions, and high-level

observables in experiments. It is a theoretical construction based on the SU(3)c ⊗ SU(2)L ⊗
U(1)Y gauge group, describing quantum chromodynamics (QCD), the chiral SU(2)L elec-

troweak (EW) sector and the hypercharge U(1)Y sector in which quantum electrodynamics

(QED) is embedded. The SM describes three of the four types of forces that are known in

nature: strong, weak, and electromagnetic interactions. In the case of non-abelian groups,

such as SU(3)c and SU(2)L, also the self-interactions that can take place between force

carriers of the same type are described. The messengers of these interactions, known as

gauge bosons, have been identified in the very recent history of particle physics, primarily

through discoveries made using particle accelerators. Among these bosons, the photon was

the first one to be postulated, though it is unclear whether we can assign a concrete date to its

first inception. Albert Einstein talked, as early as 1905, about “discrete packages” of energy

in the transmission of light during the photoelectric effect. On the other hand, the charged

weak boson W± was discovered in January of 1983 by the UA1 and the UA2 experiments

[1, 2]. The observation of its neutral counterpart, the Z boson, followed a few months later,

in May 1983. These discoveries promptly led to the award of the Nobel Prize in physics to

Carlo Rubbia and Simon van der Meer in the same year.

The SM, first formulated in the 1960s, also includes a scalar field that enables the breaking of

the EW symmetry, which in turn allows for the existence of non-zero mass terms for a triplet

of weak bosons in the Lagrangian density [3]. The Higgs boson, which is a scalar particle,

is the remaining Goldstone boson from such field after the EW symmetry breaking. The

search for this particle, whose mass is a free parameter of the SM, lasted for decades: over

twenty years passed since its formulation before it was possible to narrow the investigation.

This was achieved with the Large Electron Positron (LEP) collider [4] at CERN and later

with the Tevatron [5] at Fermilab. Even though the Higgs boson was not discovered at

the LEP, which was running at a
√

smax ≃ 210 GeV, the mere missed discovery implied

a lower bound on the Higgs boson mass of MH ≥ 114 GeV. The Large Hadron Collider

(LHC) [6] was therefore devised, in good part, as a Higgs discovery machine, working at
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√
s = 7-8 TeV in its first run. In 2010, when the LHC started taking data, the achieved

energy of the collisions was finally large enough to probe the existence of the Higgs boson.

Thus, in July 2012, CMS [7] and ATLAS [8] experiments reported the observation of a particle

of 125 GeV of mass [9, 10]. Subsequent results from both experiments, summarized in refs.

[11–15], established that all the properties of the discovered particle, including its spin, CP

properties, and coupling strengths to the SM particles, were indeed consistent within the

uncertainties with the SM Higgs boson. After the discovery of the Higgs boson, a new era

in understanding the EW symmetry breaking, completing the SM, and setting constraints

on New Physics (NP) phenomena has opened. Regarding the Higgs boson, specifically,

one of the most pressing matters is the precise measurement of its self-couplings. The

self-couplings of the Higgs boson determine the shape of the EW potential and dictate the

absolute stability of the EW vacuum, which is connected to the phase transition of the early

universe from the unbroken to the broken EW symmetry. These self-couplings are also very

loosely constrained from EW precision measurements, and can therefore be highly sensitive

to NP phenomena and Beyond Standard Model (BSM) effects [16, 17].

The Higgs boson trilinear coupling can be probed essentially in two manners: with the

so-called direct method, which involves measuring the direct effects the coupling has on

the production of multi-Higgs boson final states via an intermediate Higgs boson; and

the indirect method, based on measuring the loop corrections the coupling induces on the

production of single-Higgs boson final states. The quartic self-coupling, being further sup-

pressed with respect to the trilinear coupling, is not (and will not be) accessible at the LHC.

This work will focus solely on the direct process, which has the perk of being theoretically

“cleaner” with respect to the indirect method (where the higher order effects of the trilinear

coupling are harder to disentangle) and the disadvantage of having a lower cross section.

The direct mechanism leads, as mentioned earlier, to multi-Higgs boson final states, most

commonly di-Higgs final states. The searches for these processes are enormously challeng-

ing from the perspective of the substantial background that arises with the same final states.

It is therefore of the utmost importance to characterize these background distributions,

mainly arising from QCD processes, as precisely as possible, in order to perform an accurate

signal versus background discrimination.

This is where deep learning and neural networks come into play. Machine-learning tools

have seen extraordinary growth in recent years, opening up more and more possibilities

in high-energy physics, including tasks that were previously considered impractical. In

particular, autoencoders, which take advantage of an encoding-decoding structure, are be-

ing used for projects that include anomaly detection, dimensionality reduction, and metrics

studies. One of their main advantages lies in the inclusion of a reduced-dimension space

between the encoding and decoding halves. As a result, when the autoencoder is forced

to reproduce the same objects it receives as input in the output, it learns to capture the

distinctive features of the input objects and embed them in the encoded space. This work is
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centered on the use of such a tool to achieve a faithful reconstruction of the QCD background

distributions present in searches for Higgs boson pair production. In particular, it exploits

the use of an autoencoder to reproduce the main features of 4 b-jets background, aiming

to reconstruct in output the principal kinematic distributions of the jets given in input.

This is particularly meaningful, as will be described in the corresponding section, when

the embedded space dimension is highly reduced, allowing for the efficient compression of

the relevant information in the phase space of the input jets. Some studies have been carried

out thus far exploring the metrics between these events [18, 19], and some of them have even

been applied to the background of double Higgs boson production [20]. In this work, one of

these metrics, the Wasserstein distance [21, 22], will be used to assess the similarity between

the true and the reconstructed background samples, which is an indirect measurement of

the quality of the encoded space distribution.

In Section 1.1, a brief introduction to the Standard Model of particle physics is presented,

focusing on the spontaneous symmetry breaking in Section 1.1.1, and on the importance of

the measurement of the Higgs boson self-coupling in Section 1.1.2.

In Section 1.2, the Higgs boson pair production at the LHC is addressed, presenting current

estimates for the most contributing process to the cross section. Sections 1.3 and 1.4 show

the latest results obtained for the measurement of the cross section for Higgs boson pair

production at CMS and ATLAS experiments, respectively.

In Chapter 2, a brief description of the Large Hadron Collider complex is presented, along

with a detailed explanation of the structure and functioning of the CMS detector.

In Chapter 3, we outline the challenging difficulties in estimating the QCD background

dominant in the Higgs boson pair production searches, and we describe two state-of-the-

art methods to do so in Sections 3.1 and 3.2.

Chapter 4 serves as a description of the material and methods used for this work, with

a brief introduction to basic elements of machine learning and the general autoencoder

skeleton in Section 4.1, data preparation in Section 4.2, working principles and the employed

architecture in Sections 4.3 and 4.4. Lastly, Section 4.5 is dedicated to the training dataset,

loss, and training setup.

Results are thoroughly described in Chapter 5. We provide some general aspects of those in

Section 5.1, while the results for decoded and generated datasets are presented separately

(although analyzed similarly) in Sections 5.2 and 5.3, respectively.

Lastly, conclusions are drawn in Chapter 6, where we also outline the future prospects that

this proof of concept is likely to undergo.
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1.1 The Standard Model

The Standard Model is arguably the only quantum field theory that is able to describe

the observable universe, that is, the particles we can observe and their interactions. It is,

however, not complete, since it does not include a description of one of the four elementary

forces known in nature: gravity. The Standard Model fails to describe other aspects of

nature: it cannot provide an explanation for the hierarchy of fermion masses, for the non-

zero mass of the neutrinos, or for the matter-antimatter asymmetry in the universe. This

should not prevent us from using it to make predictions, since as an effective field theory, it

predicts with astonishing precision a large percentage of experimental results. Nonetheless,

it is worth mentioning that the SM could fail at large energy scales, i.e. ∼ O(TeV), where

heavier degrees of freedom could come into play and become an essential ingredient in the

description of the subnuclear processes. Furthermore, there is an expectation (or hope) that

these hypothetical degrees of freedom could aid in explaining the phenomena that the SM

currently cannot account for [23].

The particle content of the SM is formed by 12 fermions, 4 vector gauge bosons and 1 scalar

Higgs boson. Fermions differ from bosons in their spin numbers, a quantum property

that is conserved under rotations of a given symmetry group. In particular, fermions are

characterized by having half-integer spin numbers, whereas bosons possess integer spin

numbers. Fermions can be further divided in:

• Leptons: which interact through weak forces and, in case they are charged under

U(1)em, also through the electromagnetic force. Charged leptons include the electron,

muon and tau, each with a charge of −1 in electron charge units. Neutral leptons are

called neutrinos and each one of the charged leptons has its neutrino counterpart.

• Quarks: they differ from leptons in that they interact not only through the weak

and electromagnetic forces but also through the strong force. They thus possess an

additional quantum number with respect to leptons, known as the color charge: a

conserved quantity under SU(3)c transformations. They can, just like leptons, be

divided into 3 generations, approximately according to their mass scale: up and down
quarks belong to the first generation, charm and strange quarks to the second, and top
and bottom quarks to the third.

Fermions can be grouped in SU(2) doublets, according to their generation or, equivalently,

their mass scale: (
e
νe

)
,

(
µ

νµ

)
,

(
τ

ντ

)
︸ ︷︷ ︸

Leptons

;

(
u
d

)
,

(
c
s

)
,

(
t
b

)
︸ ︷︷ ︸

Quarks

. (1.1)
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The main difference between the strong and the weak/electromagnetic forces is their be-

havior concerning the energy scale (or distance) of the interaction. While the weak and elec-

tromagnetic forces become less intense when the particles are further apart, the strong force

behaves in the opposite way. This has profound implications for the way strong interactions

occur: when a quark is produced, for example, in a particle accelerator, the interaction with

other quarks quickly becomes non-perturbative (αs ≫ 1) as the distance between them is

large enough. This energy gain results in the creation of quark-antiquark pairs, which can

form bound states or undergo successive creation of more of such pairs. Such a process is

akin to an avalanche, building up until it eventually creates a cone (conventionally called

jet) of particles originating from a single quark. A more technical discussion about jets will

be developed in Sections 2.2.7 and 2.2.8.

Regarding bosons, they can also be divided in two categories:

• Gauge bosons: consisting of spin-1 force mediators. The gluon and the photon are

massless gauge bosons that mediate the strong and electromagnetic forces, respec-

tively. The W± and Z bosons are massive, with a mass of around 80 GeV and 91 GeV,

respectively. They are responsible for mediating the weak force.

• Scalar (Higgs) boson: the Higgs boson, on the other hand, is the only scalar funda-

mental particle of the SM, or at least that is what the experimental results show (see for

example [14]). Unlike gauge bosons, the Higgs boson does not transmit electroweak

or strong forces; it is the remnant of a scalar field that confers mass to other particles.

It is also important to note that particles that are electromagnetically charged possess an

anti-particle counterpart, with opposing charge. In the case of neutral bosons, like Z, the

photon or the Higgs boson, they can be thought of as their own antiparticle. In the case

of neutrinos, though, the discussion is more complex, since neutrinos and antineutrinos

present manifest differences in their interactions and decay modes.

The particle content of the SM and the principle particle properties are detailed in Figure

1.1.

1.1.1 Spontaneous Symmetry Breaking (SSB): the Higgs mechanism

Before considering the particular case of the EW symmetry breaking, let us first introduce

the spontaneous breaking of a global symmetry. The Lagrangian density for a complex

scalar ϕ(x) can be written as

L = T −V =
1
2
(∂µϕ)2 − µ2ϕ†ϕ− λ(ϕ†ϕ)2, (1.2)

where λ > 0 and L is invariant under U(1) : ϕ → ϕ′ = eiαϕ transformations. The

potential can acquire two distinctive shapes, as shown in Figure 1.2, that have different

physical meanings.
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Figure 1.1: From [24]. The particle content of the Standard Model of particle physics.
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1. if µ2 > 0, the potential presents only the trivial minimum, corresponding to ϕ = 0,

describing a scalar field with mass µ and quartic coupling λ (Figure 1.2 left).

2. if µ2 < 0, the potential presents a degenerate ring of minima, defined by the condition

|ϕv| =
√
−µ2

2λ
≡ v√

2
, (1.3)

where ϕv is the vacuum expectation value (v.e.v.) of the ϕ field (Figure 1.2 right).

φ

V (φ)

φ

V (φ)

Figure 1.2: Scalar potential from Equation 1.2 for the cases where µ2 > 0 (left) and µ2 < 0
(right).

It is now clear that, for a specific ground state, the original U(1) symmetry gets sponta-

neously broken. This is apparent when the scalar field is parameterized as:

ϕ(x) = v +
1√
2
[ϕ1(x) + iϕ2(x)] . (1.4)

The potential then takes the form:

V(ϕ) = V(ϕv)− µ2ϕ2
1 + λvϕ1(ϕ

2
1 + ϕ2

2) +
λ

4
(ϕ2

1 + ϕ2
2). (1.5)

The real part of the field, ϕ1, describes thus a scalar particle with mass mϕ1 =
√

2λv2 = −2µ2,

whereas ϕ2 describes a massless state. This is nothing but a consequence of the Goldstone

theorem [25], which states that in a Lagrangian that is invariant under a group of symmetry

G, where dim(G) = N, if M < N generators of the group are spontaneously broken (i.e.

their currents are conserved, but the ground state is not invariant under the action of the

corresponding charges), then there will be M (one for each broken generator) massless

particles, named Nambu-Goldstone bosons, that do not preserve the ground state.

The Brout-Englert-Higgs (BEH) mechanism [3, 26–30] is the particular case of the sponta-

neous breaking of the EW symmetry SU(2)L⊗U(1)Y. In this scenario, the Goldstone bosons

resulting from the symmetry breaking would be the longitudinal polarizations of W± and

Z bosons which, however, are not directly observable. Since this symmetry is gauged, the
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three would-be Goldstone bosons are absorbed by the three gauge bosons. This gives them

a mass and the associated polarization third degree of freedom.

To make a similar discussion for the case of the SM, a SU(2) doublet of complex scalar fields

should be introduced:

ϕ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
(1.6)

The potential can be instead written as

V(ϕ) = µ2(ϕ†ϕ) + λ(ϕ†ϕ)2, (1.7)

where λ is assumed to be positive (otherwise the potential would be unbounded from

below). In the unitary gauge, the scalar potential ground state can be chosen to be:

ϕ1 = ϕ2 = ϕ4 = 0, ϕ3 =

√
−µ2

λ
= v (1.8)

The ϕ field can consequently be expanded around the vacuum as a function of a perturbation

H(x):

ϕ(x) =
1√
2

(
0

v + H(x)

)
. (1.9)

The perturbation H(x) is in reality the physical Higgs scalar field. We now have all the

ingredients to write the scalar Lagrangian including the physical gauge fields:

LHiggs =
1
2

∂µH∂µH + µ2H2 +
g2

4
(v + H)2

(
W+

µ Wµ− +
1

2 cos2 θW
ZµZµ

)
−

− λvH3 − λ

4
H4,

(1.10)

where θW is the mixing angle (see for example the introduction of [31] and [32]). The first

two terms of the Lagrangian represent the kinetic and the mass terms of the Higgs scalar

field, respectively; whereas the next term is composed of different summands dependent

on the W and Z gauge fields: their mass terms and the summands describing the vertices

of the interaction with the Higgs boson. The last two terms, on the other hand, contain the

trilinear and the quartic couplings of the Higgs boson. Some physical quantities that can be

derived from the previous expression are:

M2
H = 2λv2, M2

W =
g2v2

4
, M2

Z =
g2v2

4 cos2 θW
, v =

√
1√
2GF

≃ 246 GeV; (1.11)

where MH, MW , MZ are the masses of the Higgs and weak gauge bosons, respectively; and

v is the v.e.v. of the Higgs scalar field.
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1.1.2 The Higgs boson self-coupling

The last two terms in Equation 1.10 describe the Higgs self-interactions. However, if we

consider the SM an effective theory, λ stands for two otherwise free parameters, namely the

trilinear (λHHH) and the quartic (λHHHH) couplings, respectively [33, 34]:

λHHH (or λ3) =
3M2

H
v

, λHHHH (or λ4) =
3M2

H
v2 . (1.12)

The Higgs self-coupling determines, as can be deduced from Equation 1.10, the shape of the

Higgs potential for large values of the field i.e. V(H) ∼ λH4/4. It is therefore unclear

whether the EW vacuum that has been measured up to this day is the true vacuum of

the field, or if otherwise there could be a more stable vacuum, to which the field could

eventually quantum-tunnel within a finite time scale (see Figure 1.3).

Figure 1.3: From [35]. Left: The Higgs potential for µ2 < 0. Choosing any of the points
at the bottom of the potential spontaneously breaks the rotational U(1) symmetry. Right:
Quantum corrections can change the shape of the Higgs potential and its stability.

Large deviations of the trilinear and quartic couplings from the nominal values are possible

in BSM scenarios. As an example, in the Two-Higgs-Doublets Model (THDM), deviations of

the trilinear coupling can be of the order of 100%, even when all the couplings of the lightest

Higgs boson with gauge bosons and fermions are consistent with SM values. At linear

colliders, such a large difference in the HHH coupling may be detected [36]. Anomalous

Higgs boson self-couplings also appear in other BSM scenarios, like theories with a com-

posite Higgs (see for example [37] and references therein) or Little Higgs models [38]. As

previously stated, the trilinear Higgs boson self-coupling can be probed directly in searches

for multi-Higgs final states and indirectly via its effects on precision observables or loop

corrections to single-Higgs production. In contrast, the quartic coupling is not accessible at

the LHC [33].

1.2 Higgs boson pair production at the LHC

The direct manner to probe the Higgs boson trilinear coupling is by producing pairs of

Higgs bosons. At hadron colliders, Higgs pairs are dominantly produced via gluon-gluon

fusion (ggF), vector boson fusion (VBF) associated production of Higgs boson pairs with a
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vector boson (VHH), and associated production of top quark pairs with Higgs boson pairs

(tt̄HH). The dominant mode at the LHC is ggF, which for
√

s = 13 TeV, MH = 125 GeV and

Mt = 173 GeV, yields the current estimation for the cross section [39]:

σ
ggF
pp→HH = 31.05± 3.0%(PDF + αS)

+6%
−23%(scale + Mt unc.) fb, (1.13)

which is almost 20 times larger than the second most dominant mode, vector boson fusion,

and a factor 1000 times smaller than the single Higgs production cross section [39]. The

uncertainties on Equation 1.13 make reference, in the case of “PDF+ αS”, to the uncertainties

of the PDFs combined with that of αS computation; and “scale + Mt unc.” refers to the

uncertainty in QCD renormalization and factorization scale combined with the uncertainty

arising from missing finite top quark mass effects.

Figure 1.4: Main processes contributing the Higgs boson pair production at the LHC. Top
row: ggF processes. Bottom row: VBF processes. On both rows, the left-most diagram
indicates the process through which the trilinear coupling contributes.

In Figure 1.4, one can find the diagrams contributing to the ggF production mode (top row)

and VBF production mode (bottom row), where only the left-most diagram in both rows

is dependent on the trilinear self-coupling. While searches in the ggF production mode

are more sensitive to deviations in the Higgs self-interactions, the VBF production mode is

particularly sensitive to c2V , i.e. the coupling between two Higgs bosons and two vector

bosons (HHVV). Figure 1.5 shows the current total cross sections for Higgs pair production

at a proton-proton collider inluding higher-order corrections.

Final states for the study of the Higgs boson pair production (like most other processes)

are typically chosen as a balance between a sufficiently large branching fraction and a suffi-

ciently background-clean final state [43]. As a result, one Higgs boson is typically required

to decay to a pair of b quarks, while the other can be observed in a leptonic final state i.e.

decaying to a pair of τ leptons (bb̄ττ̄), two photons (bb̄γγ), etc. The second Higgs boson

can also be required to decay to an additional pair of b quarks (bb̄bb̄), taking advantage of
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Figure 5. The total cross sections for Higgs pair production at a proton-proton collider, including

higher-order corrections discussed in the text, in the main production channels as a function of

the c.m. energy with MH = 125 GeV. The MSTW2008 PDF set has been used and theoretical

uncertainties are included as corresponding bands around the central values.

2.4.3 Expectations for triple Higgs production

As stated already in the literature [156–158] the cross section for triple Higgs production

at at the LHC is very small (note that the results in Ref. [158] include approximate NLO

QCD corrections). We display in Table 5 the production rates in the dominant gg ! HHH

channel at a central scale µR = µF = MHHH for the parameter set of Eq. (2.7). We have

used our own implementation and checked our code against the numbers given in Ref. [157]

and found full agreement. The rates are indeed negligible at the LHC being three orders

of magnitude smaller than pair production. Nevertheless, at 100 TeV, the cross section

reaches the level of 3 fb (maybe a factor 2 higher if the K–factors are the same as in single

and pair production) and could thus lead to a few thousand events with a luminosity of

1 ab�1. The extraction of the signal, in particular in the 6b [39], 4b2� [40] and 4b2⌧ [41]

detection channels, requires very large integrated luminosities and is nevertheless extremely

challenging in view of the formidable backgrounds.

3 Dark matter and the Higgs–portal

3.1 Higgs–portal dark matter models

A very interesting scenario would be that the particles that form partly or entirely the dark

matter in the universe interact only with the Higgs sector [21–23] (see also Ref. [24] for a

review and more references). The DM particles can be made stable by a Z2 symmetry and

annihilate to SM states through the exchange of Higgs bosons. These Higgs portal scenarios

for DM can be of several kinds, depending on whether the models contain additional Higgs

and/or matter particles or not, but the simplest one would be the scenario in which the SM

– 19 –

Figure 1.5: From [40]. The total cross sections for Higgs boson pair production at a proton-
proton collider, including higher-order corrections discussed the indicated corrections, in
the main production channels as a function of the center-of-mass energy with MH =
125 GeV. The MSTW2008 [41, 42] PDF set has been used and theoretical uncertainties are
included as corresponding bands around the central values.

its larger branching fraction. Six of the largest branching fractions for the Higgs boson pair

system decay are shown in Table 1.1.

Decay channel Branching fraction

bb̄bb̄ 3.37 · 10−1

bb̄W+W− 2.50 · 10−1

bb̄τ+τ− 7.27 · 10−2

bb̄γγ 2.64 · 10−3

W+W−γγ 9.77 · 10−4

W+W−W+W− 4.63 · 10−2

Table 1.1: From [34]. HH branching fractions for a Higgs boson of mass MH =
125.09 GeV.

1.3 CMS results

The latest results of the CMS collaboration on the HH production cross section, as well as the

Higgs boson self-coupling, were produced in 2023, encompassing measurements in different

decay channels and production modes [44]. Comprehensively, results shown in Figure 1.6

use datasets corresponding to an integrated luminosity (L) up to 138 fb−1, collected by CMS

in 2016-2018 at a center of mass energy of
√

s = 13 TeV.

The cross section for Higgs boson pair production is extremely small, thus escaping de-

tection at the LHC so far. The results are therefore expressed as an upper limit on the

production cross section. Figure 1.6 (left) shows the expected and observed limits on Higgs
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boson pair production, expressed as ratios with respect to the SM expectation, in searches

using different final states and their combination. The current upper value for the HH

production cross section corresponds to 3.4 times the SM expected value at 95% CL. Figure

1.6 (right) shows the evolution of the limits for the cross section for the three most sensitive

channels, and also a projection of the expected upper value after the High-Luminosity

run of the LHC (HL-LHC), which is expected to collect data up to 3000 fb−1 of integrated

luminosity [45].
10
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Figure 5: Limits on the production of Higgs boson pairs and their time evolution.
(left) The expected and observed limits on the ratio of experimentally estimated production
cross section and the expectation from the SM (sTheory) in searches using different final states
and their combination. The search modes are ordered, from upper to lower, by their expected
sensitivities from the least to the most sensitive. The overall combination of all searches is
shown by the lowest entry. (right) Expected and observed limits on HH production in different
data sets: early LHC Run 2 data (35.9 fb�1), present results using full LHC Run 2 data (138 fb�1),
and projections for the HL-LHC (3000 fb�1).

using the different final states and their combination. With the current data set, and combining
data from all currently studied modes and channels, the Higgs boson pair production cross
section is found to be less than 3.4 times the SM expectation at 95% CL. Figure 5 (right) shows
the evolution of the limits from the three most sensitive modes and the overall combination
for: the first comprehensive set of measurements using early LHC Run 2 data (35.9 fb�1) [73],
the present measurements using the full LHC Run 2 data (138 fb�1), and the projections for
the HL-LHC (3000 fb�1) [69]. The HL-LHC projections are also expressed as limits, assuming
that there is no Higgs boson pair production. The fact that the combined limit is expected to
be below unity shows that the sensitivity is sufficient to establish the existence of the SM HH
production.

Figure 6 presents the expected and observed experimental limits on the HH production cross
section as functions of the Higgs boson self-interaction coupling modifier kl and the quartic
VVHH coupling modifier k2V. Cross section values above the solid black lines are experimen-
tally excluded at 95% CL. The red lines show the predicted cross sections as functions of kl

or k2V, which exhibit a characteristic dip in the vicinity of the SM values (k = 1) due to the
destructive interference of the contributing production amplitudes, as highlighted in Section 4.
The experimental limits on the Higgs boson pair production cross section (black lines) also
show a strong dependence on the assumed values of k. This is because the interference be-
tween different subprocesses, besides changing the expected cross sections, also changes the
differential kinematic properties of the two Higgs bosons, which in turn affects strongly the
efficiency for detecting signal events. With the current data set we can ascertain at 95% CL that

Figure 1.6: From [44]. Limits on the production of Higgs boson pairs and their time
evolution. Left: expected and observed limits on the ratio of experimentally estimated
production cross section and the expectation from the SM (σTheory) in searches using
different final states and their combination. The search modes are ordered, from upper
to lower, by their expected sensitivities from the least to the most sensitive. The overall
combination of all searches is shown by the lowest entry. Right: expected and observed
limits on HH production in different datasets: early LHC Run 2 data (35.9 fb−1), present
results using full LHC Run 2 data (138 fb−1), and projections for the HL-LHC (3000 fb−1).

Figure 1.7 displays the expected and observed upper limits on the value for the Higgs boson

self-coupling modifier κλ ≡ λ/λSM (left) and for the coupling between two vector bosons

and two Higgs bosons (VVHH) κ2V ≡ g2V/g2V
SM. The red lines illustrate the predicted

cross sections as a function of the coupling modifiers, which exhibit a characteristic dip

in the vicinity of the SM value (κ = 1) due to the destructive interference of contributing

production amplitudes. The experimental limits on the Higgs boson pair production cross

section (black lines) also exhibit a strong dependence on the coupling modifiers, due to not

only the changes in the cross sections that the couplings introduce, but also to the effects this

has on the efficiency for detecting such signal events, characterized by different kinematic

properties.

With the current dataset, the values for the coupling modifiers at a 95% CL are

−1.24 < κλ < 6.49, 0.67 < κ2V < 1.38. (1.14)
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the Higgs boson self-interaction coupling modifier kl is in the range �1.24 to 6.49, while the
quartic k2V coupling modifier is in the range 0.67 to 1.38. Figure 6 (right) shows that k2V = 0
is excluded, with a significance of 6.6 s.d., establishing the existence of the quartic coupling
VVHH depicted in Fig. 1n.
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Figure 6: Limits on the Higgs boson self-interaction and quartic coupling.
Combined expected and observed 95% CL upper limits on the HH production cross section for
different values of kl (left) and k2V (right), assuming the SM values for the modifiers of Higgs
boson couplings to top quarks and vector bosons. The green and yellow bands represent,
respectively, the 1 and 2 s.d. extensions beyond the expected limit; the red solid line (band)
shows the theoretical prediction for the HH production cross section (its 1 s.d. uncertainty).
The areas to the left and to the right of the hatched regions are excluded at 95% CL.

7 Current knowledge and future prospects
The discovery of the Higgs boson in 2012 completed the particle content of the standard model
(SM) of elementary particle physics, a theory that explains visible matter and its interactions in
exquisite detail. The completion of the SM spanned 60 years of theoretical and experimental
work. In the ten years following the discovery, great progress has been made in painting a
clearer portrait of the Higgs boson.

In this paper, the CMS Collaboration reports the most up-to-date combination of results on
the properties of the Higgs boson, based on data corresponding to an L of up to 138 fb�1,
recorded at 13 TeV. Many of its properties have been determined with accuracies better than
10%. All measurements made so far are found to be consistent with the expectations of the SM.
In particular, the overall signal strength parameter has been measured to be µ = 1.002 ± 0.057.
It has been shown that the Higgs boson directly couples to bottom quarks, tau leptons, and
muons, which had not been observed at the time of the discovery, and also proven that it is
indeed a scalar particle. The CMS experiment is approaching the sensitivity necessary to probe
Higgs boson couplings to charm quarks [74]. The observed (expected) 95% CL value for kc is
found to be 1.1 < |kc | < 5.5 (|kc | < 3.40), the most stringent result to date. Moreover, the recent
progress in searches for the pair production of Higgs bosons has allowed the setting of tight
constraints on the Higgs boson self-interaction strength, and the setting of limits on the Higgs
boson pair production cross section not much above twice the expected SM value.

Much evidence points to the fact that the SM is a low-energy approximation of a more compre-
hensive theory. In connection with the mechanism of spontaneous symmetry breaking, several

Figure 1.7: From [44]. Limits on the Higgs boson self-interaction (left) and coupling
between two Higgs bosons and two vector bosons (right). Combined expected and
observed 95% CL upper limits on the HH production cross section for different values
of κλ (left) and κ2V (right), assuming the SM values for the modifiers of Higgs boson
couplings to top quarks and vector bosons. The green and yellow bands represent,
respectively, the 1 and 2 s.d. extensions beyond the expected limit; the red solid line
(band) shows the theoretical prediction for the HH production cross section (its 1 s.d.
uncertainty). The areas to the left and to the right of the hatched regions are excluded at
95% CL.

It is interesting to note that κ2V = 0 is excluded with a significance of 6.6 s.d., establishing

the existence of such coupling, as depicted in Figure 1.4 (bottom row, right).

1.4 ATLAS results

The most recent results for HH production from ATLAS collaboration, however, still only

include a fraction of the integrated luminosity of Run 2, which are reported in [46]. The

results are extracted from data consisting of 36.1 fb−1 of integrated luminosity of proton-

proton collisions at a center of mass energy
√

s = 13 TeV. The combination is done us-

ing six analyses searching for Higgs boson pairs decaying into bb̄bb̄, bb̄W+W−, bb̄τ+τ−,

W+W−W+W−, bb̄γγ and W+W−γγ final states. Although the article provides results for

the resonant Higgs boson pair production (with no discovery reported), these are beyond

the objective of the present paper, and we will only focus on the non-resonant analyses.

The upper limits at 95% CL on the cross section of the ggF Higgs boson pair production

normalized to the SM value are shown in Figure 1.8 for the mentioned final states and their

combination. The combined observed (expected) upper limit on the SM HH production

cross section is 6.9 (10) times the SM predicted value.

Regarding the Higgs boson self-coupling modifier, on the other hand, expected (black dashed

line) and observed (black solid line) upper limits are shown in Figure 1.9. Also the individ-

ual observed limits for the three most sensitive channels are shown as solid lines. In the case

of the expected combined upper limit, the ±1 and ±2 s.d. bands are also shown as shaded

green and yellow regions, respectively.
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Figure 1.8: From [46]. Upper limits at 95% CL on the cross section of the ggF SM
HH production normalized to its SM expectation σSM

ggF(pp → HH) from the bb̄τ+τ−,
bb̄bb̄, bb̄γγ, W+W−W+W−, W+W−γγ and bb̄W+W− searches, and their statistical
combination. The column “Obs.” lists the observed limits, “Exp.” the expected limits
with all statistical and systematic uncertainties, and “Exp. stat.” the expected limits
obtained including only statistical uncertainties in the fit.
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Fig. 4. (a) Signal acceptance times efficiency as a function of κλ for the bb̄bb̄, bb̄τ+τ− and bb̄γ γ analyses. The bb̄bb̄ curve is the average of the 2015 and 2016 curves 
weighted by the integrated luminosities of the two datasets. (b) Upper limits at 95% CL on the cross-section of the ggF non-resonant SM H H production as a function of 
κλ . The observed (expected) limits are shown as solid (dashed) lines. In the bb̄γ γ final state, the observed and expected limits coincide. The ±1σ and ±2σ bands are 
only shown for the combined expected limit. The theoretical prediction of the cross-section as a function of κλ is also shown. The effect of non-SM Higgs decay branching 
fractions due to κλ variations is not taken into account, which impacts the κλ intervals by no more than 7%.

The signal acceptance times efficiency as a function of κλ is 
shown in Fig. 4(a). Given that, for each final state, the same selec-
tion was applied over the full scanned κλ range, the shape of the 
acceptance times efficiency curve is determined by the variation of 
the event kinematics as a function of κλ . For high values of |κλ|
the A2 term dominates the total amplitude, causing a softer mHH
spectrum, and thus a lower acceptance times efficiency. Around 
κλ = 2.4 the interference between A1 and A2 amplitudes is max-
imal, producing the hardest mHH spectrum and, consequently, the 
highest signal acceptance times efficiency.

In each analysis, and in their combination, the 95% CL upper 
limit on the σggF(pp → H H) cross-section is computed for differ-
ent values of κλ . The results are shown in Fig. 4(b). The theoret-
ical σggF(pp → H H) cross-section as a function of κλ is overlaid 
in the figure. It is computed by multiplying the H H SM cross-
section σ SM

ggF(pp → H H) by the ratio R (κλ) of the pp → H H cross-
section computed at κλ , σκλ

ggF(pp → H H) to the same quantity 
σκλ=1

ggF (pp → H H) computed at κλ = 1. The R(κλ) factor is com-
puted at NNLO+NNLL with the infinite top-quark mass approxi-
mation [68]. The resulting observed (expected) confidence interval 
at 95% CL for κλ is: −5.0 < κλ < 12.0 (−5.8 < κλ < 12.0).

In Fig. 4(b) the shape of the upper-limit curves approximately 
follows the inverse of the signal acceptance shown in Fig. 4(a). In 
the bb̄bb̄ analysis, the observed limits are more stringent than the 
expected limits at low values of κλ . For these κλ values the sig-
nal mH H distributions have significant populations in the region 
500-600 GeV, where the data deficit sits, as explained above. For 
larger values of κλ the mH H distribution is shifted to lower mH H
values, and thus the excess in data below 300 GeV leads to the 
observed limits being less stringent than expected. In the bb̄τ+τ−

final state the observed limits are more stringent than the ex-
pected limits over the whole range of κλ , due to a deficit of data 
relative to the background predictions at high values of the BDT 
score. The bb̄γ γ limit shows a weaker dependence on κλ than the 
bb̄bb̄ and bb̄τ+τ− limits because the bb̄γ γ acceptance varies less 
as function of κλ .

The 95% CL allowed κλ intervals are given in Table 2. The 
systematic uncertainties weaken the κλ limits by less than 10% 
relative to those obtained with only statistical uncertainties. The fi-
nal state least (most) affected by systematic uncertainties is bb̄γ γ
(bb̄bb̄). The Higgs boson branching fraction depends on κλ due to 

Table 2
Allowed κλ intervals at 95% CL for the bb̄bb̄, bb̄τ+τ− and bb̄γ γ final states and 
their combination. The column “Obs.” lists the observed results, “Exp.” the expected 
results obtained including all statistical and systematic uncertainties in the fit, and 
“Exp. stat.” the expected results obtained including only the statistical uncertainties. 
The effect of non-SM Higgs decay branching fractions due to κλ variations is not 
taken into account, which impacts the κλ intervals by no more than 7%.

Final state Allowed κλ interval at 95% CL

Obs. Exp. Exp. stat.

bb̄bb̄ −10.9 — 20.1 −11.6 — 18.8 −9.8 — 16.3
bb̄τ+τ− −7.4 — 15.7 −8.9 — 16.8 −7.8 — 15.5
bb̄γ γ −8.1 — 13.1 −8.1 — 13.1 −7.9 — 12.9

Combination −5.0 — 12.0 −5.8 — 12.0 −5.3 — 11.5

NLO electroweak corrections [20]. This dependence is neglected in 
the present treatment, but its overall impact on the allowed κλ in-
terval is evaluated to be no more than 7%. Theory uncertainties on 
the signal cross section shown in Fig. 4(b) are not taken into ac-
count when computing the κλ limits in Table 2, they affect the 
limit by less than 8%.

6. Combination of results for resonant Higgs boson pair 
production

The resonance decaying into a pair of Higgs bosons is assumed 
to be either a heavy spin-0 scalar particle, S , with a narrow width 
or a spin-2 KK graviton, GKK.

The search for the heavy scalar particle S is performed with 
all six final states included in this combination. With the excep-
tion of bb̄τ+τ− and bb̄bb̄, all signal samples were simulated at 
NLO with MadGraph5_aMC@NLO using the CT10 PDF set. The 
matrix-element generator was interfaced to Herwig++ with the
UE-EE-5-CTEQ6L1 tune. The bb̄τ+τ− final state uses an LO model 
generated with MadGraph5_aMC@NLO using the NNPDF 2.3 LO 
PDF set interfaced to Pythia 8.2 with the A14 tune, while the bb̄bb̄
final state uses the same LO event generator but interfaced to Her-
wig++ with the UE-EE-5-CTEQ6L1 tune.

The scalar resonance search is performed in the mass range 
260–3000 GeV, and within this range no statistically significant ex-
cess is observed. In the combination, the largest observed deviation 
from the background expectation is 1σ for the search mass range. 
The combined upper limit on the cross-section is shown as a func-

Figure 1.9: From [46]. Upper limits at 95% CL on the cross section of the ggF non-resonant
SM HH production as a function of κλ. The observed (expected) limits are shown as solid
(dashed) lines. In the bb̄γγ final state, the observed and expected limits coincide. The
±1 and ±2 s.d. bands are only shown for the combined expected limit. The theoretical
prediction of the cross section as a function of κλ is also shown. The effect of non-SM
Higgs decay branching fractions due to κλ variations is not taken into account, which
impacts the κλ intervals by no more than 7%.
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The resulting observed (expected) confidence interval at 95% CL for κλ is:

−5.0 (−5.8) < κλ < 12.0 (12.0). (1.15)
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Chapter 2

The LHC and the CMS detector

This chapter provides a concise overview of the Large Hadron Collider and the Compact

Muon Solenoid detector. In particular, Section 2.1 offers a general description of the LHC,

focusing on the primary experiments it hosts, with specific emphasis on the CMS experiment

in Section 2.2. The CMS detector’s structure is described from the inside out, starting with

the depiction of the inner tracking system in Section 2.2.1, followed by a comprehensive ac-

count of the calorimetry structure in Sections 2.2.2 and 2.2.3. Additionally, a brief overview

of the muon system is provided in Section 2.2.4. To manage the remarkably high collision

rate, the CMS detector is equipped with an advanced trigger system, detailed in Section

2.2.5. The event reconstruction algorithm used to obtain physics objects is explained in

Section 2.2.6. Lastly, Section 2.2.7 discusses the reconstruction of jets in the CMS detector,

dedicating Section 2.2.8 to the identification of jets originating from b quarks.

2.1 The LHC complex

The Large Hadron Collider (LHC) [47] is a proton-proton and heavy-ion collider operating

at CERN since 2009. It is situated in the same ring tunnel that previously hosted the Large

Electron-Positron collider (LEP) [4] from August 1989 to November 2000. This collider is

designed with two accelerating rings, each featuring superconducting magnets.

The LHC injection chain is composed of several accelerators [48]. It all begins at Linac4 (a

small linear accelerator), where negative hydrogen ions H− are accelerated up to 160 MeV.

Subsequently, the ions are then stripped of their two electrons during injection from Linac4

into the Proton Synchrotron Booster (PSB), leaving only protons. These are accelerated to 2

GeV before being injected into the Proton Synchrotron (PS), which further boosts the beam

to 26 GeV. Protons are then sent to the Super Proton Synchrotron (SPS), where they are

accelerated up to 450 GeV.

Lastly, protons will be transferred to the two beam pipes of the LHC, where one of the beams

will circulate clockwise while the other will do it anti-clockwise. After around 20 minutes,

both beams will attain their final collision energy of 6.5 TeV, culminating in a total center of

mass collision energy of 13 TeV. These beams will intersect and collide inside four detectors
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Figure 2.1: From [48]. The CERN accelerator complex, layout in January 2022.

at the experiment site: the Compact Muon Solenoid (CMS) [7] and the A Toroidal LHC

ApparatuS (ATLAS) [8] are multipurpose detectors designed to provide sensitivity to SM

processes (including the Higgs boson), extra dimensions and particles that could make up

dark matter; the LHC beauty experiment (LHCb) [49] is dedicated to heavy flavor physics,

designed to look for pieces of evidence of CP-violation and rare decays of b and c quarks;

and A Large Ion Collider Experiment (ALICE) [50] focuses on the study of quark-gluon

plasma produced in heavy-ion collisions and strongly interacting matter. These are however

not the only experiments conducted at CERN, but are the biggest four located around the

two large rings of the LHC. A schematic view of the CERN accelerator complex is shown in

Figure 2.1, where the accelerating structures, along with other experiments, are also shown.

2.2 The CMS detector

The CMS experiment, depicted in Figure 2.2, is a 21 meters long, 15 meters wide, and 15

meters high general-purpose detector built around a superconducting magnet [51]. Note-

worthy aspects of its design include the capability for precise measurement of the muon mo-

mentum in the muon system, an excellent energy determination for electrons and photons

in the electromagnetic calorimeter, and a state-of-the-art tracking system enabling accurate

measurements of the transverse momentum and impact parameter of charged particles.
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CMS DETECTOR

Pixel (100x150 μm2) ~1 m2 ~66M channels
Microstrips (80–180 μm) ~200 m2 ~9.6M channels

Figure 2.2: From [52]. Cutaway diagram of CMS detector.

The CMS magnet is the largest and most powerful among the 4 largest experiments at the

LHC. Its design permits the tracker (pixel and strips), the electromagnetic (ECAL), and

hadronic (HCAL) calorimeters to be positioned inside the superconducting coil. The high

current provides a homogeneous magnetic field of about 3.8 T [53]. In contrast, ATLAS

opted to embed only the tracker inside its 2 T solenoid, with the calorimeters and muon

system located outside of the magnet in two additional toroidal magnetic fields.

Figure 2.3: From [54]. Left: CMS coordinate system, including the LHC and a compass
(the z axis points to the Jura). Right: CMS coordinate system with the cylindrical detector.

The CMS coordinate system, detailed in Figure 2.3, is oriented such that the x axis points

toward the center of the LHC. Perpendicular to the x axis, the y axis points upward from

the LHC plane. The z axis aligns with the direction of the anti-clockwise circulating beam,

pointing toward the Jura mountains, with the origin of coordinates located at the interaction
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point. The azimuthal angle ϕ is measured from the x axis to the y axis in the x-y plane,

extending from 0 to 2π. On the other hand, the polar angle θ is defined in the plane formed

by the z axis and the projection of a specific momentum vector onto the x-y plane. It extends

from θ = 0 at the z axis to θ = π/2 at the x-y plane, with a range spanning from 0 to π. The

pseudorapidity η is defined as η = − log [tan (θ/2)]. For particles moving perpendicular to

the beam, this leads to η = 0, and for particles moving parallel (or anti-parallel) η → ±∞.

The rapidity is another related quantity, defined as y = log [(E + pz) / (E− pz)] /2. Differ-

ences in rapidity possess the advantageous property of being invariant under boosts along

the beam axis. However, in practice, rapidity can be a difficult quantity to measure; one

needs both the energy and the total momentum and for highly relativistic particles, where

the z component of the momentum is large, this might be challenging as the beam pipe

can be in the way of measuring it precisely. Pseudorapidity is thus highly useful, since for

highly relativistic (or equivalently, massless) particles, both quantities are equivalent, which

is likely to be the case in the LHC experiments. The momentum component transverse

to the beam direction, denoted pT, is known as transverse momentum and is computed

from the x and y components of the total momentum vector. Similarly, several transverse

quantities can be defined, including the transverse energy ET = E sin θ or the transverse

mass M2
T = E2 − p2

z . Differences both in η (∆η) and ϕ (∆ϕ) are Lorentz-invariant quantities.

Consequently, the distance between two particles can be measured by a third Lorentz-

invariant variable known as ∆R, defined as ∆R = [(∆η)2 + (∆ϕ)2]1/2.

In the subsequent sections, various specific aspects of the CMS detector capabilities are

described. However, for a more detailed description, reference [7] should be consulted.

2.2.1 Tracker

The CMS tracking system [55] is the innermost detector subsystem. It is composed of

essentially two parts: the Pixel Tracker and the Strip Tracker, covering a pseudorapidity

range up to |η| = 2.5. Both parts possess different characteristics:

• The Pixel Tracker is the detector that sits the closest to the interaction point. It com-

prises approximately 66 million silicon pixel cells with dimensions 100 × 150 µm2,

covering a total area of about 1.6 m2. Pixel detectors allow a spatial resolution of 10 µm

in the r-ϕ plane and around 15 µm in the z direction. This resolution is crucial not only

for an accurate track reconstruction but also for the determination of primary and

secondary interaction vertices.

• The Strip Tracker constitutes the outer layers of the tracking system. It is composed of

silicon strip tracker modules, each one of them bearing one or two silicon sensors. In

the barrel region, the Strip Tracker modules are arranged in ten layers, extending up

to a radius of 1.1 m (see Figure 2.4). These are further divided into an inner part called

Tracker Inner Barrel (TIB), consisting of string modules, and an outer part, named

Tracker Outer Barrel (TOB), which consists of rod modules. In the endcap region (|η| >
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1.6), the silicon Strip Tracker is formed by two blocks of disks. Three of them belong

to the Tracker Inner Disks (TIDs) substructure, while nine disks are part of the Tracker

EndCaps (TECs). In the barrel, the strips are oriented along the z direction, while in the

endcaps they are oriented along the r direction. All four regions (TIB, TOB, TID, TEC)

are equipped with both single- and double-sided microstrip modules. This detector is

designed to provide a spatial resolution of approximately 20-50 µm in the r-ϕ plane,

and between 200-500 µm along the z direction.

For a more detailed description of the tracking system, and also for the upgrades planned

for Phase-2 of the LHC, the reader is referred to [55, 56].
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Figure 2.4: From [56]. Sketch of one quarter of the Phase-1 CMS tracking system in r-z
plane view. The pixel detector is shown in green, while single-sided and double-sided
strip modules are depicted as red and blue segments, respectively.

2.2.2 Electromagnetic calorimeter

The CMS Electromagnetic CALorimeter (ECAL) [57] is a crystal calorimeter that measures

the energy of electrons and photons, located just outside the tracker system, but still inside

the solenoid. It provides excellent energy resolution in the harsh radiation environment

of the LHC, being able to achieve, in particular, a 1% mass resolution for the Higgs boson

in the γγ decay channel [58]. The calorimeter offers a coverage up to |η| = 3, and can

be split into barrel and endcap regions as shown in Figure 2.5. The barrel region is com-

posed of 61200 crystals across 36 supermodules and uses avalanche photodiodes (APDs)

and photodetectors, whereas the endcap region contains 14648 crystals in four half-disk dees

and uses vacuum phototriodes. These crystals are composed of lead tungstate (PbWO4), a

transparent material denser (8.3 g/cm3) than iron, with a radiation length of X0 = 0.89 cm,

a Molière radius of RM = 2.19 cm, and with fast response (80% of light is emitted within 25

ns). The barrel crystals have a front area of 2.2× 2.2 cm2, a length of 23 cm (25.8X0) and are

positioned at r = 1.29 m. On the contrary, the endcap crystals are built with a 2.47× 2.47 cm2

front area, a length of 22 cm (24.7X0) and are positioned at z = ±3.17 m. The barrel covers a

region |η| < 1.48 while the endcap extends within 1.48 < |η| < 3 [59].
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increased rate of anomalous signals (“spikes”), which are caused by hadrons impacting
directly on the APDs.

Figure 1. Layout of the CMS ECAL. One of the 36 barrel supermodules is highlighted in yellow, and
the endcaps are highlighted in green.

2. Materials and Methods

The current ECAL on-detector electronics is comprised of a very front end (VFE) and
front end (FE). The VFE card, which serves five readout channels, contains multi-gain
pre-amplifiers (MPGAs), charge sensitive amplifiers with 3 output gain values: ⇥1, ⇥6 and
⇥12, and multi-channel ADCs which have a resolution of 12 bit/gain value and a sampling
frequency of 40 M samples per second. The FE card, which receives data from up to five
VFE cards, controls the data pipeline and trigger primitive generation, which is information
used by the L1 trigger processors. In this system the trigger data granularity is an array of
5 ⇥ 5 crystals.

The plan for the HL-LHC is to replace the endcaps with a high granularity calorimeter
because of the radiation damage that will be sustained, particularly at high |h| [4]. All
ECAL barrel supermodules will be refurbished during long shutdown 3 (LS3), between
2026 and 2028. The lead tungstate crystals and APDs in the barrel will be retained, though
the operating temperature will be reduced from 18 �C to 9 �C to keep noise levels below
250 MeV. This new operating temperature requires new coolant distribution pipes carrying
chilled water at 6 �C, though the current cooling distribution inside the supermodule
will not require any modifications. Further cooling would require an extra chiller with
significantly larger capacity. The on-detector electronics will be replaced with new radiation
hard ASICs with faster pulse shaping and a factor of 4 increase in the sampling rate. A
schematic detailing the HL-LHC electronics can be seen in Figure 2. This will reduce
impact of out-of-time pileup and limit the increase in APD noise, as well as improve spike
rejection at L1 via pulse shape discrimination. For energies greater than 50 GeV, 30 ps
timing resolution will be achieved.

A new streaming front-end board will provide single crystal information to the L1
trigger via high speed radiation hard optical links (lpGBT). The new off-detector board will
allow the use of more advanced algorithms in high performance FPGAs.

Figure 2.5: From [59]. Layout of the CMS ECAL. One of the 36 barrel supermodules is
highlighted in yellow, and the endcaps are highlighted in green.

The ECAL energy resolution can be parameterized by three different contributions:

σE

E
=

a√
E
⊗ b

E
⊗ c, (2.1)

where the first term represents statistical fluctuations associated with the showering process

and amplification through photodiodes. The second term accounts for electronic noise

contributions and pileup effects and the last term is related to calibration offset.

2.2.3 Hadronic calorimeter

The CMS Hadronic CALorimeter (HCAL) [60] is a sampling calorimeter that plays an im-

portant role in the reconstruction of missing energy. It is located immediately outside the

ECAL and inside the magnetic coil. Its active elements are brass absorber plates, selected

for their short interaction length (providing great capability for containing hadron showers)

and non-magnetic nature. The hadron calorimeter can be divided in two segments: the

central calorimeter (|η| < 3.0) and the forward/backward calorimeter (3.0 < |η| < 5.0).

The central calorimeter comprises the Hadron Barrel (HB) and Hadron Endcap (HE) calorime-

ters, both positioned inside the magnetic cryostat. To ensure the complete containment of

high-energy jets, an Outer Calorimeter (HO) is situated in the barrel and endcap regions.

The thickness of the absorber layers composing the HCAL ranges from 60 mm in the barrel

to 80 mm in the endcaps.

In the barrel region, the total thickness along a particle trajectory ranges from 5.46 interaction

lengths at η ≈ 0 to 10.8 at η ≈ 1.3, while in the endcaps the average is of 11 interaction

lengths [61].



2.2. The CMS detector 23

The photodetection readout of the HCAL is based on multi-channel hybrid photodiodes,

providing an amplified response proportional to the original signal across a wide range of

particle energies. The energy resolution of the HCAL can be parameterized as:

σE

E
=

a√
E
⊗ b (2.2)

where a accounts for statistical fluctuations, analogously to Equation 2.1, and varies along

the η range, whilst b is related to calibration and remains relatively independent over the

entire pseudorapidity range.

The main feature of the HCAL is its hermeticity, which is crucial for precise energy mea-

surements. To ensure comprehensive energy containment, the central calorimeter is comple-

mented with the forward/backward calorimeter, situated outside the magnet return yokes,

11 meters away from the interaction point.

2.2.4 Muon system

At the time of the construction of the LHC, it was well known that electrons and muons

would play a fundamental role in the studies of any physics sector: from the Higgs search

(where the H → llll are the so-called “golden channels”) to “new physics” phenomena, and

from electroweak precision measurements to b and t physics [62]. For these reasons, the

CMS muon system has been designed and built to have excellent trigger, identification and

reconstruction performances with these particles. The LHC physics signatures, along with

their separation from the expected background, impose several requirements that must be

–and are– fulfilled by the muon system:

• Muon trigger: excellent trigger performances are required on single and multi-muon

events. An unambiguous identification of the bunch crossing is obtained by combin-

ing fast dedicated trigger detectors, known as Resistive Plate Chambers (RPCs), with

detectors that possess precise spatial resolution, such as Drift Tube (DT) and Cathode

Strip Chambers (CSCs).

• Redundancy in both trigger and reconstruction is obtained using three technologies.

This approach ensures the presence of two independent angular systems that cover

the entire angular region.

• CMS provides the capability to measure muons using both the tracker system and the

muon spectrometer, enabling accurate measurements of both muon momentum and

charge throughout the whole η region, spanning from a few GeV up to a TeV.

• Muon identification: in order to achieve a very high efficieency up to η = 2.4, at least

16 interaction lengths of material are required, along with a very sophisticated set of

algorithms.

• Robustness: detectors are able to cope with large magnetic fields and high radiation.
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To meet these requirements, the muon system is located inside the magnet return yoke and

consists of three types of gaseous detectors to account for different radiation environments:

DT chambers in the barrel and CSCs in the endcaps, both complemented by a RPC system

(see Figure 2.6). The system is equipped with four layers of muon chambers in the barrel

and four in each endcap region, with each layer providing track segments reconstructed

from distributed hits. These tracks are combined with information from the tracker to form

complete muon tracks. The geometric arrangement of the system enables the coverage of a

pseudorapidity range of up to 2.4. The high return yoke field ensures excellent momentum

resolution and charge identification, even in the absence of inner tracker information.
2

Figure 1: An R-z cross section of a quadrant of the CMS detector with the axis parallel to the
beam (z) running horizontally and the radius (R) increasing upward. The interaction point is
at the lower left corner. The locations of the various muon stations and the steel flux-return
disks (dark areas) are shown. The drift tube stations (DTs) are labeled MB (“Muon Barrel”) and
the cathode strip chambers (CSCs) are labeled ME (“Muon Endcap”). Resistive plate chambers
(RPCs) are mounted in both the barrel and endcaps of CMS, where they are labeled RB and RE,
respectively.

Three types of gas ionization chambers were chosen to make up the CMS muon system: drift
tube chambers (DTs), cathode strip chambers (CSCs), and resistive plate chambers (RPCs). A
detailed description of these chambers, including gas composition and operating voltage, can
be found in Ref. [1]. The DTs are segmented into drift cells; the position of the muon is de-
termined by measuring the drift time to an anode wire of a cell with a shaped electric field.
The CSCs operate as standard multi-wire proportional counters but add a finely segmented
cathode strip readout, which yields an accurate measurement of the position of the bending
plane (R-f) coordinate at which the muon crosses the gas volume. The RPCs are double-gap
chambers operated in avalanche mode and are primarily designed to provide timing informa-
tion for the muon trigger. The DT and CSC chambers are located in the regions |h| < 1.2 and
0.9 < |h| < 2.4, respectively, and are complemented by RPCs in the range |h| < 1.9. We dis-
tinguish three regions, naturally defined by the cylindrical geometry of CMS, referred to as the
barrel (|h| < 0.9), overlap (0.9 < ||h|| < 1.2), and endcap (1.2 < |h| < 2.4) regions. The cham-
bers are arranged to maximize the coverage and to provide some overlap where possible. An
event in which two muons are reconstructed, one in the barrel and one in the endcap, is shown
in Fig. 2.

In the barrel, a station is a ring of chambers assembled between two layers of the steel flux-
return yoke at approximately the same value of radius R. There are four DT and four RPC
stations in the barrel, labeled MB1–MB4 and RB1–RB4, respectively. Each DT chamber consists
of three “superlayers”, each comprising four staggered layers of parallel drift cells. The wires
in each layer are oriented so that two of the superlayers measure the muon position in the
bending plane (R-f) and one superlayer measures the position in the longitudinal plane (R-
q). However, the chambers in MB4 have only the two R-f superlayers. The two innermost

Figure 2.6: From [63]. An R-z cross section of a quadrant of the CMS detector with the axis
parallel to the beam (z) running horizontally and the radius (R) increasing upward. The
interaction point is at the lower left corner. The locations of the various muon stations
and the steel flux-return disks (dark areas) are shown. The Drift Tube (DT) chambers
are labeled MB (“Muon Barrel”) and the Cathode Strip Chambers (CSCs) are labeled ME
(“Muon Endcap”). Resistive Plate Chambers (RPCs) are mounted in both the barrel and
endcaps of CMS, where they are labeled RB and RE, respectively.

Given the uniform magnetic field, the low muon rate and the neutron-induced background

events, DTs are the choice for the muon detectors in the barrel region within |η| < 1.2. DTs

are long aluminum cells operated with a mixture of gases and an anode in the center to

collect ionization charges. CSCs are instead used in the endcap regions due to the expected

high number of background of events, the high muon flux and a large non-uniform magnetic

field. These cover the pseudorapidity range 0.9 < |η| < 2.4. CSCs are trapezoidal multiwire

proportional chambers filled with different gases, allowing for charge collection in the event

of gas ionization. Lastly, the RPC system, which consists of 6 layers of RPCs, complements

the measurements up to |η| = 1.6. Although the spatial resolution is poor, the RPCs

compensate for it with an excellent time resolution of about 1 ns, making them ideal for

identification of bunch crossings and triggering purposes. The RPCs consist of double-gap
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bakelite chambers filled with several gases, sharing similar functionality with DTs and CSCs.

2.2.5 CMS trigger system

The opposing beams circulating around the LHC cross each other once every 25 ns, resulting

in a crossing frequency of 40 MHz. Depending on the luminosity, multiple collisions occur

at each bunch crossing, translating into a data flux of ≥ 40 MHz. However, due to technical

limitations, the rate at which events can be recorded is restricted to a few hundred per

second, as the average disk space required for a single event is typically a few MBytes.

In addition, if all events were to be recorded, the physical space needed for data storage

would quickly become unmanageable. Therefore, during data-taking (online), events must

undergo selection criteria, significantly reducing the storage rate while maintaining a high

efficiency for potentially interesting events.

The system responsible for this task is the trigger, while the data acquisition system (DAQ)

handles the transfer of data from the subdetectors to the storage structures. The CMS trigger

is implemented at two levels:

• The Level-1 (L1) trigger [64] is the first selection that the events have to pass in order

to be recorded. The L1 trigger serves as a rapid and coarse selection, aimed at discrim-

inating as many non-interesting events as possible. It reduces the rate of events from

the order of 40 MHz (with tens of event for each bunch crossing) down to around 100

kHz in less than 3 µs. The L1 trigger makes use of calorimetric measurements and

the muon system without considering any information from the tracker. The trigger

decision is based on what is known as “trigger primitives”, which entail the presence

and number of objects, such as electrons, photons, muons, jets, τ-jets, and Emiss
T with

transverse energy or pT above a certain threshold.

• The High Level Trigger (HLT) [65] is a software system deployed on a filter farm of

approximately a thousand commercial processors. The HLT has full access to the

complete readout data and can execute more complex calculations than the L1 trig-

ger, similar to those performed by offline analysis software. By doing this, the HLT

reduces the rate of events from approximately 100 kHz down to about 300 Hz and,

subsequently, these events are pipelined toward data storage.

2.2.6 Event reconstruction at CMS

The CMS detector has cylindrical symmetry along the beam axis, and a particle that emerges

from the interaction point crosses several subsystems which can, in turn, provide informa-

tion about its nature and kinematic properties. The global event reconstruction at CMS

strongly relies on this combination of information between the several subdetectors that

compose it. This approach is called particle-flow (PF) algorithm [66, 67].
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The energy of photons is directly obtained from an energy cluster measured in the ECAL,

without any association to a track in the tracker system. Electrons, on the other hand, being

charged particles, are identified as clusters in ECAL linked with a compatible track in the

tracker system. Their energy is derived from a combination of the measurement of the

electron momentum at the primary interaction vertex, the energy of the ECAL cluster, and

the energy sum from all the bremsstrahlung photons that are spatially compatible with orig-

inating from the electron track. The momentum of muons is obtained from the curvature of

the corresponding track. Charged hadrons are identified as energy clusters in the HCAL and

the ECAL, accompanied by a compatible track in the tracker system. Their energy is inferred

from the combination of measurements of their momenta inside the tracker and the energy

deposits inside the ECAL and HCAL. Lastly, neutral hadrons are identified as clusters in the

HCAL and ECAL with no track associated, or as energy excesses in ECAL clusters that are

not compatible with energy depositions of the corresponding electromagnetic signature.

The PF algorithm is an iterative process that attempts to link all these signals from individual

subdetectors. Initially, the algorithm selects a global muon, giving rise to a “particle-flow

muon”. If the combined momentum of a “particle-flow muon” aligns within three standard

deviations with that determined solely from the tracker, it is removed from the pool of

physical signatures, or “block”. The identification and reconstruction of electrons follow

a similar procedure, employing the ECAL clusters and compatible tracks within the tracker

system. If the link of the physical signatures is of sufficient quality, then the elements of the

event are removed from the block. Similar procedures are followed for the rest of the tracks

and clusters, in order to identify charged and neutral hadrons, along with photons, until no

objects are left in the block. For a more thorough description of the particle-flow algorithm

and global event reconstruction at CMS, the reader is referred to [66, 67].

2.2.7 Jet reconstruction

In this text, mainly final states with four b quarks will be analyzed. As already mentioned

in Section 1.1, b quarks undergo hadronization shortly after they are produced, due to the

nature of strong interactions. This leads to the impossibility of detecting them directly; in-

stead, the hadronization process produces several particles that leave traces in the calorime-

ters of the experiment. Generally, these particles emerge along the momentum direction

of the initial quark, and their distribution can serve as an indicator of the initial quark’s

momentum boost. Therefore, it is of the utmost importance to discuss the procedure for jet

reconstruction in this section. In Section 2.2.8, also flavor tagging will be addressed.

CMS reconstructs jets (PFJets) starting from all the PF candidates in the event: muons,

electrons, photons, neutral hadrons, and charged hadrons. As explained in the previous

section, clusters in the ECAL (HCAL) that are linked with compatible tracks in the tracker

system are associated with electrons (charged hadrons). If instead an excess of calorimetric

energy deposition is found with respect to the momentum as measured from the track
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reconstruction, or the calorimetric deposits are not linked with any tracks, then the energy is

identified to be coming from a photon or neutral hadron. Linked objects, like jets, are built

starting from the list of particle candidates in the event.

Clustering algorithms are responsible for tentatively merging together these particle candi-

dates into jets. The clustering algorithm most widely used at CMS is the anti-kt algorithm

[68], which successively merges pairs of particle candidates in order of increasing relative

transverse momentum. Firstly, one can define the distance dij between entities (particles,

pseudojets) i and j:

dij = min(p2m
Ti , p2m

Tj )
∆2

ij

R2 , (2.3)

where ∆2
ij = (yi − yj)

2 + (ϕi − ϕj)
2 and pTi, yi and ϕi are respectively the transverse mo-

mentum, rapidity and azimuth angle of particle i. In addition to the parameter R (which

is typically 0.4 in most reconstructions), the parameter m governs the relative power of the

energy versus geometrical (∆ij) scales. The m = 1 choice recovers the inclusive kt algorithm,

while the case m = 0 corresponds to the inclusive Cambridge/Aachen algorithm. The

anti-kt algorithm employs a value of m = −1. This is particularly convenient, since in

the case where an event presents few well-separated hard particles and many soft particles,

the distance between a hard particle 1 and a soft particle i,

d1i = min(1/p2
T1, 1/p2

Ti)
∆2

1i
R2 , (2.4)

is entirely determined by the transverse momentum of the hard particle and the ∆1i sepa-

ration. The dij between similarly separated soft particles will instead be much larger. As

a consequence, soft particles will tend to cluster with hard ones long before they cluster

with other soft particles. The key feature of this algorithm is that soft particles do not

modify the shape of the jet, making it inherently resilient to soft radiation. This feature

is known as infrared safety. The anti-kt is also collinear safe, which means that the splitting

of a hard particle in two or more collinear softer candidates does not change the result of

the clustering. A schematic depiction of the anti-kt clustering algorithm compared to other

algorithms is shown in Figure 2.7.

Once the clustering ends, the raw jet momentum is determined as the vectorial sum of the

momenta of all the particles present in the jet. However, this energy measurement is biased

[69], and several corrections need to be applied to obtain the energy of the initial parton.

The jet energy resolution typically amounts to 15% at 10 GeV, 8% at 100 GeV and 4% at 1

TeV.

2.2.8 B-tagging at CMS

The ability to identify jets containing B hadrons is important to many of the physics anal-

yses developed at the LHC: bb̄ and tt̄ production, Higgs bosons with bb̄ final states, and

essentially any process that involves the production of b quarks [70].
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Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random

soft “ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas

of the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by

the specific set of ghosts used, and change when the ghosts are modified.

have more varied shapes. Finally with the anti-kt algorithm, the hard jets are all circular

with a radius R, and only the softer jets have more complex shapes. The pair of jets near

φ = 5 and y = 2 provides an interesting example in this respect. The left-hand one is much

softer than the right-hand one. SISCone (and Cam/Aachen) place the boundary between

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which

clips a lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various

quantitative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet bound-

aries for different algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures

a jet’s susceptibility to point-like radiation, and the active area (A) which measures its

susceptibility to diffuse radiation. The simplest place to observe the impact of soft resilience

is in the passive area for a jet consisting of a hard particle p1 and a soft one p2, separated

– 4 –

Figure 2.7: From [68]. A Monte Carlo sample parton-level event, together with many
random soft particle candidates, clustered with four different jets algorithms, illustrating
the “active” catchment areas of the resulting hard jets.

The simplest lifetime-based b-tags are based on the 3D signed impact parameter d0. This is the

signed distance of closest approach of a track to the primary vertex, and indicates that the

track is oriented in the direction of the jet if it is positive, while a negative value is a result

of a track originating away from the jet. Quality cuts are applied in this algorithm to reject

tracks that are badly reconstructed or originating from γ conversions, etc. By analyzing the

d0 values of tracks within a jet, the algorithm can identify jets that are likely to be originating

from b quarks.

Track-counting b-tagging method, on the other hand, orders the tracks in a jet by decreas-

ing impact parameter significance d0/σ, which serves as the discriminator, and it typically

presents large, positive tails for b-jets. The algorithm is based on the simple requirement of

a minimum number of good quality tracks with an impact parameter significance above a

certain threshold.

The slightly more sophisticated probability b-tag calculates a confidence level for each track in

the jet, indicating how compatible it is with being originated from the primary vertex. These

individual track confidence levels are then combined to form a single pseudo-confidence

level, representing the probability that all the tracks in the jet originated from the primary

vertex. This pseudo-confidence level serves as the b-tag discriminator.

As an even more complex alternative, one can also tag b-jets by searching for the electronic

and muonic signatures arising at semi-leptonic B decays. Several variables relating to the

lepton are fed and combined inside a neural network. This is however less efficient than the
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lifetime tags, due to the small B semi-leptonic decay branching fraction.

Lastly, the most sophisticated algorithm is the Combined Secondary Vertex (CSV) b-tag. This

attempts to reconstruct a secondary vertex of the weakly decaying B hadron and employs

variables related to such decay to calculate its b-tag discriminator. The combined algorithm

merges the information about track impact parameters and secondary vertices, providing

information even when no secondary vertices are found. A likelihood discriminator is built

and trained on categories ordered by the characteristics of the reconstructed jets, such as the

number of tracks in the jet, the secondary vertex mass, etc (see Reference [71] for a thorough

description).

Figure 2.8: From [72]. Sketch of a b-jet (blue cone) originating from the secondary vertex
(green point) where B hadron has decayed a distance d0 apart from the primary vertex of
the interaction.

The efficiency of the b-tagging and the rate of the misidentification of non-b-jets depends

on the cut of whichever discriminant is used for each algorithm. Typically, three working

points are defined depending on the efficiency values: the tight (T) working point, for a

considerably low misidentification rate of non-b-jets (0.1%), which in turn provides a not-

so-high b-tag efficiency; the loose (L) working point, in which the b-tag efficiency is high,

but also the misidentification rate is increased (10%); and the medium (M) working point,

which is a compromise between both (1% of misidentification rate). The performance of

tagging algorithms is measured on independent samples of multijet events, which produce

multiplicative scale factors to account for differences between data and simulation.
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Chapter 3

Determination of the kinematics of the
QCD background

As already mentioned in Chapter 1, the search for Higgs boson pair production decaying to

a final state containing four b quarks poses significant challenges. However, as shown in the

CMS [44] and ATLAS [46] di-Higgs combination results, this channel, along with bb̄τ+τ−,

has the potential to exceed the clean but statistically limited bb̄γγ sensitivity. Doing so will

require high-dimensional background models to facilitate the multivariate signal extraction

required for optimal sensitivity. To avoid being dominated by systematic uncertainties,

these models will have to be validated at sub-percent level precision. In this chapter we

present, in Sections 3.1 and 3.2, two novel methods that have been used to determine the

QCD background probability density function (PDF). The approach described in Section

3.2, in particular, is used in an ongoing analysis that takes advantage of a complex neural

network to estimate this PDF, and serves as a stepping stone toward the construction of the

autoencoder architecture, which will be described in Chapter 4.

Here we shall indicate, nonetheless, that the determination of the PDF of QCD background

at the LHC is an intricate problem. In particular cases, physics backgrounds from QCD

processes may also often prove impossible to precisely model with simulated data, due

to the very large cross section of the reactions to be considered and the consequently un-

manageable demands posed on computing time. The LHC experiments obtain, in those

cases, estimates of background shapes and normalization by using data-driven methods in

a variety of ways that depend on the specific features of the final states in examination.

Two of such methods are the hemisphere mixing and the kinematic reweighting techniques,

which can also be used complementarily for cross-validation.

3.1 Hemisphere mixing

A previous CMS HH → bb̄bb̄ analysis [73] estimated the 4b background using a hemisphere

mixing technique [74]. Hemisphere mixing forms a synthetic dataset by splitting individual

events into two “hemispheres” and then combines hemispheres from different events. The
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main idea behind this approach is that the mixed dataset will be similar to the expected

4b background because the b-jets primarily arise from gluon splitting from an underlying

2→ 2 scattering process. For searches with a sufficiently low signal-to-background ratio, as

it is the case for HH in the 4b channel, the hemisphere mixing produces synthetic datasets

that are essentially signal-depleted. The assumption under which this mechanism works is

that the relevant event-level correlations are captured at the level of hemispheres, and not

between hemispheres’ substructures. The substructures between hemispheres are assumed

to be uncorrelated for background events, whereas for HH events, both hemispheres will

have a similar substructure from the underlying 125 GeV resonances. The way this method

is applied is the following: let us consider a dataset of QCD multijet events, either collected

at an LHC experiment or simulated my an MC program. For each event an axis may be

constructed on the plane transverse to the beams, the “transverse thrust axis”, defined as

the azimuthal angle ϕT which maximizes the transverse thrust quantity T:

T = ∑
j

pT,j| sin(ϕj − ϕT)|, (3.1)

where pT,j is the transverse momentum of the jet j. Once ϕT is known, one can also define

the related quantity Ta:

Ta = ∑
j

pT,j| sin(ϕj − ϕT)|. (3.2)

The transverse thrust axis defines a plane orthogonal to it which divides the event in two

separate hemispheres. Each hemisphere is characterized by its number of jets Nj, its number

of b-tagged jets Nb, the sum of the projections of the pT along the thrust axis T, the combined

mass of the jets M, the variable Ta, and the sum of the jets pz components, Pz. If we start with

N events, we can form a library of 2N hemispheres. With this library, artificial replicas of the

original events can be formed by exchanging hemispheres of events with similar kinematics.

For each original event, composed of hemispheres h1 and h2, we can look in the library for

the two hemispheres hp and hq that are the most similar to h1 and h2, in the sense that they

have the same exact value of Nj and Nb, and the smallest distances D(1, p) and D(2, q),
defined as below:

D(1, p)2 =
[T(h1)−T(hp)]

2

VT
+

[M(h1)−M(hp)]
2

VM
+

[Ta(h1)−Ta(hp)]
2

VTa
+

[|Pz(h1)|−|Pz(hp)|]
2

VPz
, (3.3)

D(2, q)2 =
[T(h2)−T(hq)]

2

VT
+

[M(h2)−M(hq)]
2

VM
+

[Ta(h2)−Ta(hq)]
2

VTa
+

[|Pz(h2)|−|Pz(hq)|]
2

VPz
. (3.4)

In the equations above, the denominators contain the variances of the considered variables.

The identified pair of hemispheres hp, hq constitutes an entirely new event, as they are

prevented from being equal to h1, h2, respectively. Lastly, hp and hq are rotated along the

azimuthal direction to match the original thrust axis of the modeled event. This procedure,

also depicted in Figure 3.1, allows to create a synthetic dataset with the same number of

events as the original sample. When the original sample contains a small fraction (say, a few
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percent) of events originated by a heavy particle decay, for example, di-Higgs boson decay,

the mixing procedure smears out the features of the minority component. This happens

naturally as the probability of the mixing procedure of combining two hemispheres both

proceeding from a signal event scales as the square of the signal fraction. The remaining

dataset is therefore a faithful model of the dominant process, in this case, QCD background.
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9
)
1
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b-tag jets non b-tag jets

x

y

x

y

Original Event
break in two hemispheres

transverse 
thrust axis

Mixed Event
using replaced hemispheres

Figure 2. An illustration of the hemisphere mixing procedure. The transverse thrust axis is
defined as the axis on which the sum of the absolute values of the projections of the pT of the jets
is maximal. Once the thrust axis is identified, the event is divided into two halves by cutting along
the axis perpendicular to the transverse thrust axis. One such half is called a hemisphere (h). In a
preliminary step, each event in the original N -event data set is split into two hemispheres that are
collected in a library of 2N hemispheres. Once the library is created, each event is used as a basis
for creating artificial events. These are constructed by picking two hemispheres from the library
that are similar to the two hemispheres that make up the original event.

four variables are the combined invariant mass of all jets contained in the hemisphere Mh
tot,

transverse thrust of the hemisphere T h, the scalar sum of the projections of the pT of all the

jets onto the axis orthogonal to the thrust axis on the transverse plane, T h
a , the projection

of the vectorial sum of the momenta of the jets along the beam axis, Σphz . If we label the

original hemisphere o, and q the one in the library that is compared to o, the number of

jets in o and q is required to be equal, No
j = N q

j , and also the number of b-tagged jets are

required to be equal, No
b = N q

b . These two requirements are used to maintain the topology

of the original events and to avoid introducing events that would not pass the selection

described in section 7 (e.g. by combining a hemisphere with 2 jets with a hemisphere with

1 jet, resulting in an event with 3 jets). The requirement for equal numbers of jets is

waived for the infrequently occurring pairs of hemispheres that both have at least four

jets and at least four b-tagged jets. For each hemisphere q in the library fulfilling the

above criteria, a multidimensional distance from hemisphere o is computed using the four

jet-related variables, as follows:

D(o, q)2 =
(Mo

tot −M q
tot)

2

V (Mtot)
+

(T o − T q)2

V (T )
+

(T o
a − T q

a )2

V (Ta)
+

(|Σpoz|− |Σpqz|)2

V (Σpz)
. (8.1)

In the equation above, V (x) represents the variance for the variable x, within the subset of

events of given Nb and Nj characterizing the hemisphere in question. Once all D(o, q) are

computed, the kth nearest-neighbour hemisphere in the library, with k ≥ 1 (i.e. the one such

that 0 = D(o, 0) < . . . < D(q, k)) can be chosen to model the corresponding hemisphere

of the original event; the nearest hemisphere, corresponding to k = 0, is by construction

– 11 –

Figure 3.1: From [73]. An illustration of the hemisphere mixing procedure. The transverse
thrust axis is defined as the axis on which the sum of the absolute values of the projections
of the pT of the jets is maximal. Once the thrust axis is defined, the event is divided into
two halves by cutting along the axis perpendicular to the transverse thrust axis. One
such half is called a hemisphere. In a preliminary step, each event in the original N-event
dataset is split into two hemispheres that are collected in a library of 2N hemispheres.
Once the library is created, each event is used as a basis for creating artificial events.
These are constructed by picking two hemispheres from the library that are similar to the
two hemispheres that make up the original event.

Hemisphere mixing has, however, several potential drawbacks. First, because the 4b dataset

is used to derive the background, the statistical uncertainty in the predicted background is

the same as for that observed in the Signal Region (SR)1. A second concern is that mixing

may not fully suppress the event-level signal correlations, especially when the hemisphere

matching is likely to form pairs of hemispheres both belonging to signal events. If this

happens, then the background model will effectively be biased by signal contamination. In

Figure 3.2, the percentage of bias on the signal fraction estimated in [74] from fits to the re-

constructed Higgs boson mass distributions is drawn as a function of the true signal fraction.

For signal fractions above 5%, the signal contamination is seen to affect the corresponding

artificial sample.

There is generally a trade off in choosing the matching criteria: the mixed events can be

more similar to the ones from the unmixed dataset, but at the cost of preserving event-level

correlations, which are more likely, in turn, to introduce signal contamination biases. Some

studies have employed this method to determine the shape and scale of the 4b background
1To be fully precise, one can actually create more than one pair starting from the same event, so the statistical

uncertainty could thus be largely reduced. This technique has been employed in [74] to evaluate the systematic
uncertainties.
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Hemisphere Mixing: a Fully Data-Driven Model of QCD Multijet Backgrounds for LHC Searches
T. Dorigo

signal event with the combination of two hemispheres also originally belonging to signal events
scales with the square of the signal fraction. That probability also depends on how “recognizable”
are the signal hemispheres, according to the metric defined above. As long as D uses variables
that do not discriminate too strongly the signal from QCD multi-jet production, a small signal con-
tamination will not affect the results of the mixing procedure, which will still produce an artificial
sample faithfully modeling the dominant process. This property makes the method quite attractive
to model the large QCD background in small-signal searches.

Figure 1: The percentage bias B (black points) on the estimated signal fraction extracted from fits to the
reconstructed Higgs boson mass distributions is drawn as a function of the true signal fraction Ftrue

s . The
green band shows the level of bias considered acceptable for searches of new signals in hadron collider
data. The upper right inset shows the distribution of the leading jet pair mass M12 of the QCD (black) and
signal (red) components, their sum (blue), and the fit result (points with uncertainty bars) for a 5% signal
contamination.

The validity of the model is tested using fast-simulated LHC 13-TeV proton-proton collisions
produced by the Delphes MC [7]. We consider a dataset corresponding to 5 inverse femtobarns of
QCD multi-jet events and a detector simulation mimicking the average characteristics of ATLAS
and CMS. We add to it different fractions of simulated hh! bb̄bb̄ events in turn, creating several
datasets of different composition.

The datasets are reduced by the following event selection. Jets are considered if they have
pT > 30 GeV and pseudo-rapidity2 |h | < 2.5, and events are kept if they contain at least four b-
tagged jets, Nb � 4. In order to reconstruct a variable sensitive to the signal component, we pair
up the four b-tagged jets3 such that the two jet pairs have minimum invariant mass difference;
this defines two-jet masses M12 and M34 which exhibit peaking distributions at about 125 GeV
in signal events, and smoother distributions in QCD events. We finally extract an estimate of the
signal fraction in each mixture dataset by a two-component likelihood fit to the two-dimensional
distribution of M12 and M34, by using artificial data as a model of the QCD background alone, and

2Pseudo-rapidity is defined as h =� log(tanq/2), where q is the angle that a jet makes with the beams direction.
3In order to carry out the procedure described in the text, we order jets by the b-tagging discriminator variable [8]

and consider the leading four jets in the list.

3

Figure 3.2: From [74]. The percentage bias B (black points) on the estimated signal
fraction extracted from fits to the reconstructed Higgs boson mass distributions is drawn
as a function of the true signal fraction Ftrue

s . The green band shows the level of bias
considered acceptable for searches of new signals in hadron collider data. The upper
right inset shows the distribution of the leading jet pair mass m12 of the QCD (black) and
signal (red) components, their sum (blue), and the fit result (points with uncertainty bars)
for a 5% signal contamination.

templates (see for example [73]), but others use it as a cross-validation method, to assess

systematic uncertainties of alternative approaches, such as kinematic reweighting.

3.2 Kinematic reweighting

Kinematic reweighting is a general procedure with a major use-case for particle physics in

modifying the output of MC simulations to reduce the disagreement with real data collected

at colliders [75]. The idea behind kinematic reweighting is that with the help of a Boosted

Decision Tree (BDT) or more advanced techniques, such as MultiVariate Analysis (MVA)

[76], one is able to identify regions in the phase space that are the most sensitive to differ-

ences between MC simulations and real data, and thus compute weights for the events in

those regions to account for such differences. An example of application of this method is

the study carried out by CMS [77]. In that work, the multijet background arising from QCD

and tt̄ hadronic processes is estimated from data using background-dominated regions.

Analysis signal (ASR) and control (ACR) regions are defined by requiring χ < 25 GeV and

25 GeV < χ < 50 GeV, respectively, where χ is the distance from the expected peak position

of the two Higgs boson candidates’ invariant masses and is defined as:

χ =
√
(mH1 − 125 GeV)2 + (mH2 − 120 GeV)2. (3.5)
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The center of the expected peak differs from (125, 125) GeV because of the residual momen-

tum dependence of multivariate energy regression that more strongly impacts the softer H
candidate. Both ASR and ACR are divided into a four b-jet (4b) and three b-jet (3b) region

by requiring the b-jet candidate with the lowest value of the b-tagging discriminant to either

satisfy or fail the medium working point of such discriminant. An example of the mentioned

control and signal regions in the 4b split of the dataset is shown in Figure 3.3 (left).
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Figure A.1: Distribution of data events selected in the three (top row) and four (bottom row) b-
tagged jet categories for events recorded in 2016 (left column) and 2017 and 2018 (right column)
as a function of the masses of the two Higgs boson candidates. The blue and green circles
correspond to the analysis and validation regions, respectively, denoted by the letters A and
V. The inner circle corresponds to the signal region while the ring around it defines the control
region used for the background modeling. The figure also shows the definition of the variables
mk and m? that are used in the analysis.
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7. Background estimation
Background events in the are modeled from events in the region (richer in background, similar 
kinematic properties)

1. Normalization is obtained by scaling the number of observed events in         by a transfer factor computed
as the ratio of the number of events in the and          regions.

2. Differences in the distributions of several variables in 3b and 4b are adressed with a BDT-based reweighting
method

Lead ST m2j [GeV]
0

1000

2000

3000

4000

5000

6000

C
o
u
n
ts

FourTag

ThreeTag

SM HH! bb̄bb̄

40 60 80 100 120 140 160 180 200

Lead ST m2j [GeV]

0.0

0.5

1.0

1.5

2.0

F
ou

r/
T

h
re

e

Lead ST m2j [GeV]
0

1000

2000

3000

4000

5000

6000

C
o
u
n
ts

FourTag

ThreeTag

SM HH! bb̄bb̄

40 60 80 100 120 140 160 180 200

Lead ST m2j [GeV]

0.0

0.5

1.0

1.5

2.0

F
o
u
r/

T
h
re

e

Leading dijet &!#

Internal

3b
CR

4b
SR

3b
SR

4b
CR

More BG-like

More signal-like{
f4b/3b

Figure 3.3: Left: from [77]. Distribution of data events selected in the four b-tagged
category for events recorded in 2017-2018 as a function of the masses of the two Higgs
boson candidates. The blue and green circles correspond to the analysis and validation
regions, respectively, denoted by the letters A and V. The inner circle corresponds to the
signal region while the ring around it defines the control region used for the background
modeling. The figure also shows the definition of the variables m∥ and m⊥ that are used
in the analysis. For a full description of the analysis method, we invite the reader to
consult [77]. Right: depiction of the computation of the normalization factor to 3b signal
region events to model the background in the 4b signal region.

Background events in the A4b
SR region are modeled from events in the A3b

SR region. The

former is the most sensitive region to signal contamination of the analysis, while the latter

provides a sample enriched in multijet background events. The normalization is determined

by scaling the observed number of events in A3b
SR by a transfer factor computed as the ratio

between the number of events in A4b
CR and A3b

CR regions (called f4b/3b in Figure 3.3, right).

Differences in the distributions of several variables between the 3b and the 4b regions are

then addressed with the BDT-reweighting method, which uses a dedicated metric to identify

the regions in the phase space with the largest differences in the distributions, and computes

an event weight to correct for them. In this approach, the space of variables is split into a few

large regions, and a decision tree is used to separate these regions based on fulfilling simple

conditions. The regions (associated with leaves of the tree) that are suitable for reweighting

are found by optimizing the χ2:

χ2 = ∑
leaf

(ωleaf, 3b −ωleaf, 4b)
2

ωleaf, 3b + ωleaf, 4b
. (3.6)

This procedure is validated by applying it to a signal-depleted region, defined by shifting
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the signal and control regions according to the definition of χ, using (179, 172) GeV as the

center position in the candidates’ invariant masses distribution.

46

Figure 37: Two LO partial amplitudes contributing to the multijet background. The diagram on
the left represents two to two gluon scattering which is one of the dominant terms contributing
to the bbbb and bbcc processes. This process produces two low mass pairs of b-jets due to the
off-shell gluon propagators. It contributes to the large enhancment in the peak at low DR(j, j) in
the angular separation between the two closest candidate jets and even more prominantly, the
other two candidate jets which offer an unbiased DR(j, j) distribution of gluon to bb splitting
(Figure 38). The diagram on the right is heavily suppressed in the four-tag selection where you
only get one bb pair from the gluon splitting. In this case the DR(j, j) distribution of the two
candidate jets which are not the closest is expected to be larger.
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Figure 38: These two distributions illustrate one of the key differences in the mixture of pro-
cesses contributing to the Three and four-tag samples.
Left: The DR(j, j) distribution of the two candidate jets with the smallest angular separation.
Right: The DR(j, j) distribution of the other two candidate jets. This is therefore the dijet de-
fined as the complement of the dijet with the smallest angular separation among the four can-
didate jets.
We explain the enhancments at low DR(j, j) in the four-tag sample relative to the three-tag
sample as emerging from the relative contributions of the partial amplitudes shown in Figure
37.

Figure 3.4: From [78]. Two LO partial amplitudes contributing to the multijet background.
The diagram on the left represents two-to-two gluon scattering which is one of the
dominant terms contributing to the bb̄bb̄ and bb̄cc̄ processes. This process produces two
low-mass pairs of b-jets due to the off-shell gluon propagators. The diagram on the right
is heavily suppressed in the four-tag selection where you only get one bb̄ pair from the
gluon splitting. In this case the ∆R(j, j) distribution of the two candidate jets which are
not the closest is expected to be larger.

An example of the variables that are especially sensitive to the differences in the distri-

butions is the angular separation between pairs of dijets. In particular, the 4b sample is

dominated by two-to-two gluon scattering where each outgoing gluon splits to bb̄ (Figure

3.4, left). This produces a topology where the two tagged b dijets are produced with low

∆R(j, j). The 3b sample also contains this process, in addition to a mixture of processes

where the untagged candidate jet can be produced without gluon splitting (Figure 3.4,

right). A recent analysis [78], currently ongoing, exploits this kind of kinematic differences

with a hierarchical residual neural network and attention blocks to perform 4b versus 3b
separation. This network is called FvT (four versus three-tag), and will be discussed further

in Chapter 4, as it will serve as the building skeleton for our autoencoder architecture.
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Chapter 4

Machine learning: the autoencoder

In recent years, Machine Learning (ML) has brought about a revolutionary shift in compu-

tation capabilities. It has allowed computers to learn from data, detect patterns, and make

decisions independently, eliminating the need for explicit programming. This transforma-

tive potential has found applications across various disciplines, propelling advancements

in numerous fields. High-Energy Physics (HEP) has not been an exception, since it is a

field where large amounts of data, complex data structures, and hidden (or, at least, not

apparent) correlations between variables are ubiquitous. These are all characteristics that

make the discipline ideal for the application of ML algorithms, and their success has done

nothing but incite their use in an increasing number of tasks. The current most frequently

used ML algorithms in HEP are Boosted Decision Trees (BDT) and Neural Networks (NN)

[79].

Decision trees are hierarchical structures that make decisions based on a series of rules or

conditions. They split data into subsets based on feature values and make predictions at the

leaves of the tree. Decision trees are known for their ability to handle complex relationships

in data. Neural networks, on the other hand, consist of layers of interconnected nodes, also

known as neurons. These neurons process and transmit information in a way that allows

the network to learn the main features of the data.

In ML applications to HEP, physical variables are typically selected and introduced to a

model. This model is then trained for classification tasks (such as distinguishing between

the signal and background nature of an event) or regression tasks (to capture the most

important features within a dataset). During training, supervised models will use the input

variables to produce output results, which are then compared to the expected output. In

the classification signal-versus-background example, this is done by labeling each event

as signal or background, depending on its origin. Then, during training, events are input

into the network, which employs adjustable weights and biases to produce the probability

that an event belongs to either class. This phase is referred to as the forward pass. The

calculated probability is then compared to the event’s true label, typically represented as

0 or 1. The disparity between the output probability and the actual label contributes to a

quantified loss. However, a fundamental characteristic of machine learning algorithms is
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the differentiability of this loss. This means that its derivatives with respect to the weights

and biases of the network can be computed, and after each training cycle, the network will

automatically adjust its weights to decrease the loss, thus improving the output for the next

round. This process, in which the model adjusts its weights in reverse from the output, is

referred to as backpropagation.

Neural networks have been used in HEP for some time. Yet, advancements in training algo-

rithms and increased computing power have precipitated the widespread adoption of what

are termed Deep Learning (DL) algorithms [80, 81]. These algorithms comprise a distinct

subset of machine learning (ML) techniques, utilizing neural networks with multiple layers–

hence the term “deep”. Deep learning models are particularly well-suited for tasks involv-

ing large and complex datasets, such as image and speech recognition, natural language pro-

cessing, and many more. The deep architecture allows these models to automatically learn

hierarchies of features from the data, which can lead to highly accurate and sophisticated

predictions. Some DNNs used in HEP are: fully-connected (FCN), convolutional (CNN) and

recurrent (RNN) networks. Additionally, NNs are used in the context of generative models,

forming part of Variational AutoEncoders (VAE) and more recent Generative Adversarial

Networks (GAN).

In the following sections, we explain the main characteristics of the autoencoder structure,

its functioning and the implemented model in this work.

4.1 The autoencoder

An autoencoder is a type of artificial neural network used to learn meaningful representa-

tions of unlabeled data. Autoencoders belong to the category of unsupervised learning tools

because they derive knowledge not from external, human-generated labels, but by aiming

to replicate their input as output. Their utility stems from their characteristic “bottleneck”

structure: in essence, the input information undergoes a dimension-reduction phase, fil-

tering out irrelevant or less significant features before attempting reconstruction based on

the retained features. An autoencoder is typically divided into two sections: the portion

preceding the bottleneck is termed the encoder, while the subsequent part is referred to as

the decoder. A generic autoencoder arrangement is illustrated in Figure 4.1.

Given the encoder and decoder, their outputs can be respectively written as:

z = g(x, Wg), y = f (z, W f ); (4.1)

where g and f are the –generally– non-linear transformations and Wg and W f are the

sets of weights of the encoder and the decoder, respectively. As already mentioned, the

autoencoder is an unsupervised learning tool, which means that it learns from comparing

the input with its own output. The loss function that is typically used with such a structure
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Input Encoder Bottleneck Decoder Output

Figure 4.1: General scheme of an autoencoder. The input features are translated by the
encoder into a dimension-reduced latent space in the bottleneck, which is later used by
the decoder to reproduce the input.

is the Mean Squared Error (MSE) loss:

LMSE(x, Wg, W f ) = ||x− y||22 = ||x− f (g(x, Wg), W f )||22, (4.2)

where ||x − y||2 is the L2-norm or the Euclidean distance [82] between the n-dimensional

vectors x and y, defined as:

||x− y||2 =
√
(x1 − y1)2 + . . . + (xn − yn)2. (4.3)

The Equation 4.2 is thus used as an estimator of the true accuracy of an autoencoder in

reconstructing its input, as it measures the squared deviations from the true data. It is,

however, very important that the input features all have a similar magnitude because the

loss will be directly proportional to their difference. Larger quantities, even if reproduced

accurately in proportion, will present a much larger loss than, say, quantities smaller than

1 that are more poorly reproduced. The MSE loss also has other issues, as it tends to

produce outputs centered around the mean of the input features, and the variance of such

distributions has to be carefully examined in order to choose an appropriate architecture to

improve the expressiveness of the output. This will be more deeply discussed in Section 4.5.

4.2 Data preparation

An important process in building machine learning models is data preparation. Typically,

data that will be fed to a DL architecture present hidden symmetries, redundancies, or non-

linear topologies. An example is the azimuthal angle ϕ of jet objects at the LHC. When

using Equation 4.2 to compute the loss between ϕ values, one has to be extremely careful

with the domain where they are defined. If these range in [−π, π], as it is the case, we

cannot simply impose the loss between the output and input values, as a computed output

of 2π for an input of 0, for example, will have a MSE loss of (2π)2, where in fact input and

output correspond to the same point in ϕ space, and should therefore have a loss of zero.

In our case, the autoencoder takes as input the jet four-vectors in {pT, η, ϕ, m} coordinates.
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Figure 4.2: From [78]. High level sketch of the input data preparation.

Its task is to reproduce in output the kinematic features of 4 of such input jets corresponding

to a background event. The preparation of input data is depicted in Figure 4.2 and done in

the following way:

1. Jets coordinates are momentarily transformed from {pT, η, ϕ, m} to {px, py, pz, E}
representation.

2. All the six possible pairs of dijets are formed, by adding the single jets four-vectors.

Pairings are 1-2, 3-4, 1-3, 2-4, 1-4 and 2-3.

3. From the constructed dijets, quadjets are formed in a similar way, adding together the

dijet four-vectors with indices 1-2, 3-4 and 5-6.

4. Lastly, the logarithm is taken on the pT and mass variables. This is done in order to

compress the distributions, which present long tails, with the objective of easing the

training of the network.

There is an important note, however, that should be made on the symmetrization of the input.

While the results that will be presented in Chapter 5 have been obtained with an input

modified only with the prescription detailed above, several tests have been carried out with

such symmetrization, which is explained down below.

It is important to note, beforehand, that reproducing the exact values of {pT, η, ϕ, m} for

all four jets is not necessary for a comprehensive event characterization: one only needs to

retain the same physical information, which remains invariant if the event is rotated in all

three spatial directions. Although this rotation may result in entirely different {pT, η, ϕ, m}
values, the physical meaning remains unchanged. This symmetrization can be achieved by

rotating all events in input, in a way that these rotational symmetries are eliminated, and

the space of possibilities of {pT, η, ϕ, m} representing the same event reduces to a single

combination:

• To make the autoencoder output invariant under η → −η rotations, all four-vectors

can be flipped to the frame where the leading, i.e. the one with highest pT, jet η is

positive.
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• Further degeneracies under ϕ rotations are addressed by setting the leading jet ϕ to 0

(and rotating the other three jets accordingly) and setting the subleading jet ϕ positive.

This ensures that the leading jet has no py component (therefore all the transverse

momentum is in the x direction) and its pz component is positive defined. It is not

difficult to see that once the leading jet four-momentum vector is fixed, one can still

rotate the event within the plane defined perpendicularly to such four-momentum

vector. By rotating the three remaining jets’ ϕ by an angle of π in the cases where the

subleading jet ϕ is negative, one achieves the desired results.

• While the transformations above are maintained in the input features during the com-

putation of the loss (which is what the autoencoder is enforced to learn) one can also

make the architecture intrinsically invariant under arbitrary ϕ rotations. To do this,

one can replace all azimuthal information with relative angular information: the jet ϕ

coordinates are replaced with ∆ϕ(jm, dm,n) i.e. the relative angle with the dijet to which

the jet belongs, dijet ϕ coordinates are replaced with ∆ϕ(dm, qm,n) i.e. the relative angle

with the quadjet to which the dijet belongs, and the remaining global ϕ information

from the quadjet four-vector can be removed.

The symmetrization was originally carried out with the expectation that it would substan-

tially facilitate the training process. However, our findings revealed that the autoencoder

exhibited significantly better performance when the elimination of symmetries was not

implemented; removing global η sign information and performing the aforementioned ϕ

rotations is a strong inductive bias1 motivated by the symmetry of the detector and colliding

beams, but when the task at hand is encoding and decoding input, these transformations

should be avoided. The underlying reason is that the absence of a particular feature in the

input data poses a significant challenge for the autoencoder to accurately reproduce it in the

output. The symmetrization procedure entails transformations that effectively lead to such

removal of information (individual jet ϕ coordinates, for instance) which, in turn, hinders

the autoencoder’s capacity for precise reconstruction.

4.3 Embedding and ghost batch normalization

The autoencoder employs convolutional neural networks [84], which owe their success to

two fundamental properties: they implement intrinsically the property that at each layer

only local features are relevant and they use the same set of weights on each local group of

pixels. The network is thus forced to learn such features in a hierarchical way, being able to

generalize from the most local features to the most general ones, as the layers of convolu-

tions are applied. In particular, layers near the bottleneck become localized representations

of complex non-local features of the input.

1Inductive bias refers to the set of assumptions or prior knowledge that a machine learning algorithm
incorporates to guide its learning process. It reduces overfitting and helps the algorithm make predictions
or generalizations from a limited amount of data [83].
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The first part of the autoencoder architecture can be defined as an embedding. Embedding

is a procedure where physical values of the jets are translated into pixels, rather abstract

objects that contain the physical information in a non-trivial manner, but which are more

practical for the model’s functioning. To perform this embedding, three one-dimensional

(1D) embedding convolutions of stride and kernel2 one are applied to the jet, dijet, and

quadjet input features to project them all into Rd (red triangles in Figure 4.3). The dimension

d has no physical meaning and can be freely chosen. In our case d = 16 was set, keeping the

input dimensions intact throughout the whole encoding process, to finally step it down to

a dimension of 6 in the bottleneck. Bear in mind that this is a large attempted compression,

since the input information dimension is 16. To complete the input feature embedding,

a non-linear activation, the sigmoid-weighted linear unit (SiLU) [85], is applied, followed

by a final set of three single pixel convolutions, completing the embedding. The input

embedding block is shown in Figure 4.3.

Figure 4.3: From [78]. Input embedding block. Red triangles represent 1D convolutions.
Circles with the kinked line inside represent the application of SiLU activations.

Typically, immediately before applying convolutional layers, one has to normalize the input

to have zero mean and unit variance. This normalization is done with each subset of the

events on which the model is training at each time, which is called a batch. Batch Normaliza-

tion (BN) has always been found to improve stability of training, accelerating convergence

and reducing the covariate shift [86]. In this work, however, we do not perform simple batch

normalization but, instead, a variation (see Algorithm 1) of the Ghost Batch Normalization

(GBN) originally proposed in [87] is implemented. GBN works by splitting the training

batches into smaller ghost batches and applying BN to them. This allows training with very

large batches, while also keeping at each layer the regularization that BN provides. We start

with batches of 1024 events that are subdivided into 64 ghost batches of 16 events each. The

batch size is increased by a factor 2, and the number of ghost batches is divided by 4 after

epochs 1, 3, 6, and 10.

2The kernel is the number of pixels in an image that are convolved in a single application of the convolution.
The stride, on the other hand, is the number of pixels by which the convolution filter is moved after each
application.
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Algorithm 1: From [78]. Implemented version of Ghost Batch Normalization (GBN) [87],
which is applied to the input of each convolutional layer. During training, batches are
subdivided into smaller batches, called ghost batches, before shifting and normalizing
them to have zero mean and unit variance.
The number of ghost batches Ng must evenly divide the size of the training batch. The
convolution kernel and stride are assumed to have the same value Ns. The stride must
also divide the number of pixels Np in each input image into the number of kernel
applications per event Nk ≡ Np/Ns. The running mean µ and standard deviation σ for
use during inference are updated at each training step with the average over the ghost
batch means and standard deviations using momentum η.
By default η = 0.9 and the trainings are started with batches of 1024 events. These are
split into Ng = 64 ghost batches of 16 events.

Input: X[event, feature, pixel]
SX, N f , Np = X.shape
Nk = Np/Ns
X ← X.transpose(1, 2) /* Transpose pixel and feature indices */
if training and Ng ! = 0 then

/* Split the training batch into ghost batches. The number of ghost
batches is SX/Ng times the number of kernel applications Nk. The
factor Nk ensures µ and σ are computed over all objects rather than
separately for each object in the event */

Sg = Nk × (SX/Ng)
X ← X.view(Ng, Sg, Ns, N f )

/* Compute the means and standard deviations of each ghost batch */
µg = X.mean(dim = 1)
σg = X.std(dim = 1)
X ← (X− µg)/σg
/* Update running µ and σ with their means over the ghost batches. It
is critical to detach µg and σg from the gradient backpropagation
calculation at this stage to prevent the gradient of this batch from
depending on the gradient of all previous batches */

µX = µg.detach().mean(dim = 0)
σX = σg.detach().mean(dim = 0)
µ← ηµ + (1− η)µX
σ← ησ + (1− η)σX

else
X ← X.view(SX, Nk, Ns, N f )

X ← (X− µ)/σ

/* Rearrange X for application of the convolution */
X ← X.view(SX, Np, N f )

X ← X.transpose(1, 2)
X ← Convolution(X)



44 Chapter 4. Machine learning: the autoencoder

4.4 Autoencoder architecture outline

Deep networks have been studied for a few years now, yet they have seen massive devel-

opment in recent times. In particular, one of the main issues they presented is that the

deeper the network was, the lower the performance and generalization capabilities, and the

longer the training times [88]. However, in 2016, it was shown that learning residual features

at each layer rather than direct convolutions dramatically reduced network training times,

even allowing networks of more than hundreds of layers to quickly converge [89]. The idea

is that instead of learning a non-linear function x → f (x), one could instead learn non-linear

residual features added to the input x → x + f (x). This can be seen as learning a hierarchy

of deformations, rather than a hierarchy of features. These residual networks or ResNets have

been employed in the autoencoder architecture for such reason, and justify the way the

embedding block works. In particular, one may notice that the three quadjets obtained in

the embedding procedure, as detailed in Section 4.3, all represent the same physical four-

vector. This seems obvious from the point of view of the commutativity of the sum of the

individual jets’ four-vectors. However, the differences among them arise from the order in

which the underlying dijets and jets have been paired. This is particularly useful, since the

network is therefore able to learn which pairings are more physically relevant and assigns

proper deformations to account for these characteristics.

We use residual learning to convolve the embedded jets, dijets, and quadjets down to an

encoded feature space, and then to upsample from the encoded feature space to a full

reconstructed event. We present, in the following sections, the encoder and the decoder

architectures.

4.4.1 Encoder

The encoder is the first part that processes the input and encodes the jets’ features into the

encoded space, which we will call z. In this work, z has been chosen to be six-dimensional

as a trade off between a number of meaningful dimensions and a reasonably accurate repro-

duction of the input features. The architecture of the encoder is detailed in Figure 4.4 and

can be described as the following encoding path:

1. First, the physical jets jµ1,2,3,4 are embedded as described in Section 4.3 to produce 12, 6,

and 3 pixels of jets, dijets, and quadjets, respectively; all of them containing 16 features

for each pixel.

2. We define two GBN convolutions of kernel 2 and stride 2, highlighted in blue in Figure

4.4: jets_to_dijets and dijets_to_quadjets. The convolution jets_to_dijets is applied to the

12 pixels of the embedded jets, and produces a pixel for each pair of input pixels,

creating a feature map of 6 pixels, analogous to that of the corresponding embedded

dijets. After applying the SiLU activation, they are summed to the original embedded

dijet features to produce the feature map defined as the yellow rectangle “d” in the
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architecture scheme. The convolution dijets_to_quadjets works similarly, computing

the “deformations” for the “d” feature map and being then added to the original

embedded quadjet features, also after the activation is applied.

3. The previous step produces a map of 16 features of quadjet-level information, each one

with 3 pixels corresponding to each of the possible pairing histories. As mentioned in

the introduction, this is crucial, as it allows the network to keep track of the pairing

combinations along the encoding procedure. The residual feature learning in this step

also allows the network to encode the information in a layered manner, adding the

proper deformations to each dijet first, and then to each quadjet pixel. Once “q” is

obtained, one can perform another GBN convolution select_q, which essentially selects
one of the feature maps from the 16 present in q. Successively, the softmax function

Softmax(xi) =
exp (xi)

∑j exp (xj)
(4.4)

is applied to produce what is called “q_score”, effectively producing a feature that

gives a score to each pixel of the selected q feature, with all the three scores summing

1.

4. The feature map “q_score” is then transposed and the matrix product “event” of “q”

and “q_score” is obtained. This is nothing but the sum of the three quadjet pixels

weighted by the score of the selected feature, across all 16 features. The feature map

“event” becomes then one-dimensional for each feature.

5. Lastly, a final convolution “bn_in” and a SiLU activation is applied to the event-

level features pixel. This finally encodes the information into the bottleneck in a six-

dimensional vector z.

4.4.2 Decoder

The decoder is the second half of the autoencoder and takes the encoded features vector z
as input to produce in output the reconstructed jets four-vectors. The decoding path aims

at being as symmetric as possible with respect to the encoding, although it is impossible to

obtain a complete symmetry given the lack of initial information stored in z. In particular,

one could try to obtain embedded dijets and quadjets from the pseudo-event, but doing so

directly will result in convolutions promptly passing from a (16, 1) to (16, 12)-dimensional

vector, resulting in a large number of dimensions being empty or not containing much

information. The architecture of the decoder is shown in Figure 4.5 and can be described

as the following decoding path:

1. Starting from the encoded vector z, a GBN convolution of kernel and stride 1 bn_out
and a SiLU activation are applied. This exits the bottleneck space and produces a

feature map “pseudo-event” that aims at containing the same kind of information

present at the “event” feature map in the encoding path.
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2. From the pseudo-event pixel, a transposed convolution3 with kernel and stride 3 ob-

tains 3 embedded quadjet pixels: “emb_q”. These are intended to contain the quadjet

pairing history information, just as “q” in the encoding path.

3. Subsequently, we obtain “emb_d” and “emb_j” with two kernel and stride 2 trans-

posed convolutions: dijets_from_quadjets and jets_from_dijets. The obtained feature map

is “emb_j”, which contains 12 pixels for each of the 16 features.

4. The feature map obtained in the previous step is promptly reshaped to a (16× 4, 3)

shape. This means that each jet, for each of the 3 quadjet pairings, contains 16 pixels

of information. This is not completely accurate, as the information between jets is

now shared across the same dimension, but the idea is that these pixels represent a set

of complete information on the 4 jets, and the fact that they are separated into the 3

possible pairing histories allows us to compare which are the most significant for the

network.

5. This comparison is done in a similar way to how we computed the score “q_score” in

the encoding. First, we apply the GBN convolution select_j, which effectively selects

one of the 64 features of 3 pixels, and then apply a softmax activation to turn it into

a score. This feature contains 3 numbers that are to be thought of as the scores of

each of the three pairing histories. These are multiplied by the 64 features contained

in “emb_j”, to produce a feature map that is (16 × 4, 3) ⊗ (3, 1) = (16 × 4, 1)-

dimensional.

6. The obtained feature map is called “sel_j”, and from the way it was constructed, it

contains 64 numbers that can be thought of as a set of 16 numbers corresponding to

each of the 4 jets. It can be thus reshaped into a (16, 4)-dimensional vector. Once this

is done, two GBN convolutions of stride and kernel 1 are applied on top of each other

with an intermediate SiLU activation and a residual addition to obtain “dec_j”, the

final decoded jets.

7. The kinematic features of the jets are the rows of “dec_j”, and to improve the expres-

siveness of the network, hyperbolic cosines are taken on the first row (pT) and last

(m). Additionally, 39 GeV are summed to the pT to ensure that it is larger than 40 GeV

(cosh(x) ≥ 1 ∀x), and 1 GeV is subtracted from the mass for it to be strictly positive

defined.

Before defining the final layout presented in Figures 4.4 and 4.5, this network has withstood

a large number of modifications throughout this work, as we experimented with different

numbers of layers, types of activations, training times, and many other features. The choice

of decoding the {pT, η, ϕ, m} representation is based on practical motivations since the

3Transposed convolutions are standard convolutions with a modified input feature map, with the idea of
carrying out a trainable up-sampling. Transposed convolutions use padding (filling the input borders with
zeros) to obtain larger dimensions in output. For a guide on how to visualize these arithmetic operations, we
invite the reader to consult [90].
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decoding of {px, py, pz, E} has seemed to be less straightforward for the autoencoder. We

believe that this could be induced by the difference in order of magnitude between px, py

(∼ 300 GeV) and pz, E (∼ 1000 GeV). Also, different activations should be applied if one

was to produce these values in output since they are substantially larger than the general

weights of the network, and the general architecture should also be tuned in such a case.

In the following section, we present the general characteristics of the training and hyperpa-

rameters (which are the user-imposed, i.e. non-learnable, parameters) of the network.

4.5 Background sample, training, and loss

The network is trained on a background sample of 4 b-tagged QCD jets. The events have

been generated with the MADGRAPH software [91]. The measured jet energies are smeared

according to the CMS calorimeters’ energy resolution, and the jets’ masses are set to 0 for

simplicity. This approach is adopted due to the absence of a detailed simulation of quark

showering, hadronization processes inside the calorimeters, and detector response. The

simplest solution is then to set the masses to 0, rather than trying to emulate the true mass

distribution. For more details about how this background sample has been obtained, we

refer the reader to [20, Section 6.1]. The sample contains a total of 2,202,261 events with four

b-jets, which is split into three samples with 734,087 events each. Two of the three samples

are used for training with the other one reserved for validation. We cross-validate the results

by training three times changing which third is used for validation in a process known as

k-folding. The event number i modulo 3 specifies the validation set for each k-fold using an

offset in {0, 1, 2}:

eventi ∈

Validation Set offset ≡ i mod 3

Training Set offset ̸≡ i mod 3
(4.5)

The result for event i is therefore obtained from the model with offset ≡ i mod 3. This way,

the final distributions are obtained without biases from the training set.

The training consists of 25 epochs for each of the three models and its schedule is inspired

by [92], which suggests an inverse relationship between batch size and learning rate. The

initial learning rate is set at 0.01 and is divided by 4 in epoch 10. After epoch 15, it is divided

by 4 after every epoch until the end of the training. The training batch size is initially set at

1024 events and is doubled at epochs 1, 3, 6, and 10. The inference batch size is set at 16,384

and does not change throughout training. The model is implemented in PyTorch v2.0.1 [93]

and trained with Adam [94] optimizer (other parameters left at default values).

The implemented loss function is the MSE loss between {px, py, pz, E} representations of

input and output jet features. A loss weighting factor of 0.3 is used to downsize the losses

on pz and E since they are significantly larger than px and py. The final loss for N events is
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obtained as the weighted sum of the square root of MSE losses for each event:

Loss =
∑N

n ωn ·
√

∑
px ,py,pz,E
p ∑

4 jets
j LMSE

n,p,j (input jet, output jet)

∑N
n ωn

(4.6)

The reason why the {px, py, pz, E} representation is used for the computation of the loss

lies in the shape of the distributions. While we are not interested in reconstructing the

mass since it is also not given in the input, the reconstruction of η and ϕ carries problems

on its own. In particular, one has to be very careful with the topology of the ϕ output

values and perform corrections to address the azimuthal symmetries the autoencoder is

not aware of (see the first paragraph of Section 4.2). Additionally, the η distribution ends

sharply at (−2.5, 2.5) due to the lack of angular coverage of the CMS detector. This is an

artificial effect, of course, since the angular distribution of jets produced does not simply

falls to 0 at these values. As such, the autoencoder has trouble acknowledging it, and

values of η produced in a smooth way beyond these limits are highly penalized by the

MSE loss, which consequently incentives the autoencoder to over-centralize the distribution.

The {px, py, pz, E} representation does not present these issues, and output values that

are Gaussian-distributed around the input quantities represent more accurately the true

distributions.
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Chapter 5

Results

In this chapter we present, at last, the results obtained with our autoencoder approach. In

the following Section 5.1, we present the general results of the autoencoder training, and

the reconstructed kinematic features of the input jets. We also remark on some important

aspects of the results, and why they are useful to guide the following steps in the investiga-

tion of autoencoders applied to background modeling.

In Sections 5.2 and 5.3, we outline the main results obtained for the decoding and the

generation of an artificial dataset, respectively. We use a well-known metric to measure the

agreement between one-dimensional distributions, while a dedicated figure of merit is built

to address the compatibility of two-dimensional invariant mass distributions. The summary

of results is also gathered in the final Section 5.4.

5.1 General results and Wasserstein distance

For completeness, we present in Figure 5.1, the training and validation losses obtained

according to Equation 4.6, and whose units are GeV. Each of the three colors represents

the three different models trained, each one withholding one different third of the dataset

for validation. We observe no significant differences in the training among the three models,

with the models with offset 0 and 2 obtaining slightly lower losses than the model for offset

1. The solid lines indicate the trend of the training loss, whilst the dashed line does it for the

validation loss. It is interesting to note that throughout the training of the three models, these

two are practically identical. This is expected from the point of view that the only difference

between the training and validation splits is the event indices and so the performance should

be similar for both.

Once the training is done, we have access to the value of the activations in the bottleneck,

which are essentially 6 numbers that encode the information of the 16 (12 if we do not count

the jets’ masses) initial physical features. The cumulative distributions of such activations

are depicted in Figure 5.2 with the form of the six one-dimensional marginal distributions.

It is important to note that each of these distributions accumulates the activations across
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Figure 5.1: Training (solid lines) and validation (dashed lines) losses for the models with
offset 0 (red), offset 1 (green) and offset 2 (blue). The inset shows a zoom of the region
from epoch 10 up to epoch 25.

the three offsets, and each of the three distributions for each marginal can be profoundly

different, as can be observed in Figure A.4 in the Appendix A.
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Figure 5.2: Marginal one-dimensional distributions of the activations in the bottleneck,
cumulative for all the three models.

After the training is done, one can obtain the decoded dataset, which is the procedure of

feeding the trained decoder with the obtained activations. If the training is reasonably good,

the decoder output should be a similar dataset to that of the input. In order to quantify

the similarity between the output and the input variables, we will use a metric known as

the Wasserstein distance [21, 22]. The Wasserstein metric measures the difference between

two distributions by the optimal cost of rearranging one distribution into the other. The

mathematical definition of the Wasserstein 1-distance between two distributions f : X → R,

g : Y → R can be written as:

W1( f , g) = inf
π∈M( f , g)

∫
R×R
|x− y| dπ(x, y). (5.1)

In the equation above,M( f , g) is the complete set of distributions on R×R whose marginals
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are f and g. In other words M holds the set of all maps that rearrange f into g. The

Wasserstein distance is therefore the distance between f and g computed within the map

that ensures W1 is minimal. In the following Sections 5.2.1 and 5.3.1, we will provide

the Wasserstein distance between the obtained one-dimensional distributions to quantify

the similarity between them. Naturally, the Wasserstein distance between px, py pz and

E distributions has units of energy, and can be directly thought of as an energy cost for

transforming one set of physical events into the other.

5.2 Decoded dataset

The decoded dataset is obtained in inference by decoding the bottleneck features in Figure

5.2. The result is a set of 2,202,261 (same size as the input) reconstructed events with four

b-jets. In Section 5.2.1 we present the comparison between the obtained one-dimensional

distributions, whereas Section 5.2.2 depicts the two-dimensional histogram between the

invariant masses of reconstructed quadjets and dijets, and its comparison with the true

distribution. This comparison is useful as it conveys the accuracy of the reconstruction of

invariant masses, which are, in turn, key variables to discriminate background events from

Higgs boson candidate events. A good reproduction of these distributions is strictly linked

to a good reproduction of background templates.

5.2.1 One-dimensional distributions

The reconstructed distributions for px, py, pz and E are shown in Figure 5.3. The true (or

input) distributions are drawn as a solid red histogram, while the reconstructed events are

shown as a dotted blue histogram. The px and py distributions have a distinctive bimodal

shape, peaking at approximately ±40 GeV, as a result of the pT threshold required in the

event simulation. The reconstructed events, remarkably enough, are able to capture this

feature and reproduce it quite accurately after the bottleneck. It is also worth noting that the

correspondence between reconstructed and true distributions stays reasonably high through

the entire range for all of the 4 kinematic quantities.

We observe, nonetheless, some systematic effects in all four distributions from Figure 5.3

that must be commented on. In particular, we observe an excess of reconstructed events

around the bin containing the highest number of true events. The residuals, defined as the

number of reconstructed events minus the number of true events, all divided by the number

of true events, show thus positive values for px, py close to±40 GeV, pz close to 0 and E close

to 100 GeV. This is a consequence of the construction of the MSE loss, that naturally tends

to produce values that are Gaussian-distributed: when the autoencoder lacks information,

an output set of features produced close to the mode is in average less penalized than if it

is produced in the tail of the distribution. This accumulation of events is the cause, in turn,

of residuals lower than 0 across a large range of the distributions. The Wasserstein distance
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Figure 5.3: True (solid red histogram) and reconstructed (dotted blue histogram)
distributions for px (top left), py (top right), pz (bottom left) and E (bottom right) of the 4
b-jets. Below every distribution comparison, the ratio of reconstructed minus true events
divided by true events is shown.
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between each pair of distributions, true and reconstructed, is given in Equation 5.2:

Wreco
1 (px) ≈ 2.31 GeV, Wreco

1 (py) ≈ 2.13 GeV,

Wreco
1 (pz) ≈ 18.70 GeV, Wreco

1 (E) ≈ 18.82 GeV.
(5.2)

As already mentioned, by the defintion of the Wasserstein metric, one may interpret this

result as the amount of energy one should “put” into one of the distributions to obtain the

other. If we recall that these distributions contain more than two million events, the amount

of energy one should shift in a reconstructed distribution is, in the four cases, less than 10

keV per event.

5.2.2 m2j vs m4j

The two-dimensional distributions m2j(m4j) convey a large amount of information in searches

for Higgs boson pair production. For a final state with four jets, in particular, they show the

invariant masses for each of the 6 possible dijet pairings as a function of the quadjet invariant

mass. This is useful as the Higgs boson candidates should peak at a dijet invariant mass

of approximately 125 GeV, while the other 4 dijet pairings would blend into background.

The background is, unfortunately, also maximal in these regions, making it difficult to

distinguish the signal from the background. In Figure 5.4 (top left), the true (or input)

distribution is shown, where each bin is colored as a function of the number of events

contained in it. The shaded region marks the area with no physical meaning, since there

m2j > m4j. In Figure 5.4 (top right), we show the equivalent distribution for the reconstructed

events, plotted with the exact same binning.

Since the binning is exactly the same in both figures, one can produce a third histogram

shown in Figure 5.4 (bottom left), where each bin content is the difference between the

number of events in the reconstructed distribution (top right) and the true distribution

(top left). Blue bins indicate regions in which the true distribution contains more events,

whereas red bins indicate the opposite, being the magnitude of the difference encoded as

color intensity. It is clear that also here some systematic effects are apparent. In particular,

the reconstructed distribution seems to be biased toward the region where m2j ∼ m4j, which

means, in turn, that the true distribution has a larger presence of jets produced back-to-back

than it is being reconstructed. In order to better visualize the systematic differences between

the two distributions, one can construct the bin-by-bin percent difference:

∆ij ≡
hreco

ij − htrue
ij

hreco
ij + htrue

ij
. (5.3)

In the equation above, the figure of merit ∆ij is the difference in events in reconstructed and

true distributions, divided by their sum for the given ij-th bin. This distribution is shown in

Figure 5.4 (bottom right) where the differences for the bulk of the data (m2j, m4j < 1000 GeV)
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Figure 5.4: Two-dimensional distributions of true (top left) and reconstructed (top right)
dijet invariant masses as a function of the quadjet invariant mass. The bin-by-bin
difference between the reconstructed and true distributions is shown in the bottom left,
whereas the bin-by-bin percent difference defined in Equation 5.3 is shown in the bottom
right.
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are smeared and it is the tails where we find the largest percentage differences, as one could

expect.

One could also calculate the total sum of these differences, i.e. ∑N bins
ij ∆ij, and divide it by

the number of bins, i.e. N = 47 in our case. This provides the result:

∆N ≡
∑N bins

ij ∆ij

N
≈ −2.80, (5.4)

which could be interpreted as the average deviation per bin. The result cited above indicates

a prominence of true events in more bins than those in which reconstructed events domi-

nate. Once again, this is a systematic effect of events being reconstructed in very localized

regions of the phase space, giving rise to few overcompensations in exchange for a general

underestimation of the rest of the regions.

5.3 Generated dataset

One great advantage of the autoencoder is that it can be used to generate data once the

encoded space is a good representation of the input data. By randomly sampling the dis-

tribution in the encoded space, one could decode an entirely new dataset, with similar

features to that of the input. The first attempt to perform this sampling on the encoded

space was carried out by means of a Gaussian Mixture Model (GMM) [95]. The GMM

is a parametric probability density function represented as a weighted sum of Gaussian

component densities, created to represent a complicated –or unknown– distribution. The

GMM-estimated probability can be expressed as:

p(x|λ) =
M

∑
i=1

ωi · g(x|µi, σi). (5.5)

In the equation above, x is a one-dimensional vector representing the encoded space fea-

tures’ values, ωi is the weight for the i-th component in the mixture and g(x|µi, σi) is the i-th
component Gaussian density. The parameter λ is, on the other hand, the set of parameters

that completely defines the mixture model: {ωi, µi, σi} ∀i = 1, . . . , M. For our modeling,

p has been computed for a total number of components M ∈ {1, 2, . . . , 6} for each of the 6

encoded features. For each M, the Bayesian Information Criterion (BIC) [96]:

BIC = −2 log L̂ + d · log N (5.6)

is computed. Above, L̂ is the maximum likelihood of the model, d is the number of param-

eters and N is the number of samples. The optimal number of GMM components for each

of the 6 features is chosen as the one with the lowest BIC. The optimal GMMs obtained for

each of the 6 bottleneck dimensions are shown in Figure 5.5.
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Figure 5.5: Gaussian Mixture Models (GMM) obtained for each of the 6 bottleneck
encoded features. The true encoded features are shown as black histograms. For each
feature, the optimal components number for the GMM is obtained as the one with lowest
BIC (Equation 5.6), and the components are drawn as solid colored lines. The dashed
lines are the GMM estimated probability density functions, and the red histograms are
the result of sampling such PDFs.

Even though the agreement between true and sampled marginal distributions is apparent,

this one-dimensional GMM recipe manifests some flaws. The most important are:

1. The procedure described above was applied to the full cumulative encoded distribu-

tions, i.e. across all three offsets. This is non-ideal as the sampling assumes similar

distributions for all three offsets which is, as explained in Section 5.1, far from being

the case.

2. The algorithm is considerably slow, as one has to generate 6 GMMs for each of the

6 distributions, which gives a total of 36 GMMs. The solution to the problem noted

above, which is to perform independent sampling for each offset, results in a total of

108 GMMs.

3. Even overcoming the first issue and bearing with the extended computing times, the

procedure has a fundamental flaw: sampling the one-dimensional marginal distribu-

tions is not enough to obtain a truthful six-dimensional representation of the original

encoded distribution. This is natural, as sampling 6 dimensions independently does

not in general provide a similar six-dimensional distribution, given the fact that corre-

lations between features are completely lost.

We solve all the previous drawbacks by implementing the Kernel Density Estimation (KDE)

[97] via the available method KernelDensity within the Python module SCIKIT-LEARN [98].

The KDE is the application of kernel smoothing for probability density estimation. It is a

non-parametric method that uses kernels as weights in order to estimate the probability

density function of a random variable in a given number of dimensions. Mathematically, a

kernel is a positive function K(x; h) that is controlled by the bandwidth parameter h. The

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html
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density estimate at a point y within a group of points xi, i = 1, . . . , N; is given by:

ρK(y) =
1
N

N

∑
i=1

K(y− xi; h). (5.7)

In our case, the applied kernel is Gaussian, which means that

K(y− xi; h) ∝ exp
[
− (y− xi)

2

2h2

]
. (5.8)

Additionally, the bandwidth parameter for the density estimation in Equation 5.7 has been

set to the default value h = 1. The sampled distributions using KDE are shown as red

dashed histograms in Figure 5.6. It is important to note that these are not samples of one-

dimensional marginal densities, but of the estimated six-dimensional probability density

function. Naturally enough, the produced marginal distributions are in great agreement

with the original ones.

5.3.1 One-dimensional distributions

Once the sampling has been executed, one can use the artificial samples to generate a new

dataset and perform a completely analogous analysis as the one done in Section 5.2. The

generated dataset should be rather similar to the one decoded, as we are using the exact

same decoder –with the same weights– to obtain physical values from the encoded distri-

bution. The trick is that the points in the six-dimensional bottleneck space are no longer the

same as before, and can thus give rise to a complete new set of data. In this section and,

for direct comparison, we chose to generate the same number of events as in the decoded

dataset, but this could be extended to an arbitrarily large number. In analogy with Section

5.2.1 the px, py, pz and E one-dimensional distributions are shown in Figure 5.7. The true

(or input) distributions are drawn as a solid red histogram, while the generated events

are shown as a dotted blue histogram. The generated events, like the decoded ones, are

able to capture distinctive features, such as the bimodality of px and py, and reproduce

them in output. Similarly to the decoded events, also here a reasonably good agreement

between true and generated distributions throughout the entire range can be observed for

all 4 kinematic quantities.

The same systematic effects present in the decoded dataset (Figure 5.3) are nevertheless

present also in the generated one. In particular, we observe a similar overestimation in the

bins containing the highest number of events, leading to an underestimation of the remain-

ing bins. The Wasserstein distance is also computed for this generated dataset, similarly to

Equation 5.2:

Wgen
1 (px) ≈ 2.15 GeV, Wgen

1 (py) ≈ 1.98 GeV,

Wgen
1 (pz) ≈ 17.75 GeV, Wgen

1 (E) ≈ 17.89 GeV.
(5.9)
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Figure 5.6: Ordered from top to bottom, the encoded features distributions (in solid black
histograms) for models offsets 0, 1, and 2, respectively. The sampled distribution using
KDE (Equation 5.7) is shown as red dashed histograms for each dimension.
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Figure 5.7: True (solid red histogram) and generated (dotted blue histogram) distributions
for px (top left), py (top right), pz (bottom left) and E (bottom right) of the 4 b-jets. Below
every distribution comparison, the ratio of generated minus true events divided by true
events is shown.
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Remarkably enough, the obtained Wasserstein distances between true and generated dis-

tributions are all slightly lower than those between true and reconstructed distributions.

It is not reasonable to draw any conclusions, nonetheless, as we show these numbers as a

quantitative comparison of the similarity between distributions, rather than a comprehen-

sive study of their compatibility. This is also the reason why we are not taking account here

of systematic effects in the distributions, nor assigning them uncertainties.

5.3.2 m2j vs m4j

To follow up and analogously to Section 5.2.2, we outline here the two-dimensional distri-

butions m2j(m4j). In Figure 5.8 (top left), the true (or input) distribution is shown, where

each bin is colored as a function of the number of events contained in it. The shaded region

marks the area with no physical meaning, since there m2j > m4j. In Figure 5.8 (top right),

we show the equivalent distribution for the generated events, plotted with the exact same

binning.
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Figure 5.8: Two-dimensional distributions of true (top left) and generated (top right) dijet
invariant masses as a function of the quadjet invariant mass. The bin-by-bin difference
between the generated and true distributions is shown in the bottom left, whereas the
bin-by-bin percent difference defined in Equation 5.10 is shown in the bottom right.

One can, once again, produce a third histogram shown in Figure 5.8 (bottom left), where

each bin content is the difference between the number of events in the generated distribution

(top right) and the true distribution (top left). Blue bins indicate regions in which the

true distribution contains more events, whereas red bins indicate the opposite, being the
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magnitude of the difference encoded as color intensity. It is clear that similar systematic

effects as the ones present in Figure 5.4 (bottom left) are also apparent here. The generated

distribution, just like the reconstructed one, also seems to be biased toward the region

where m2j ∼ m4j. In order to better visualize the systematic differences between the two

distributions, one can construct the bin-by-bin percent difference for the generated dataset,

analogous to the one defined in Equation 5.3:

∆ij ≡
hgen

ij − htrue
ij

hgen
ij + htrue

ij
. (5.10)

In the equation above, the figure of merit ∆ij is the difference in events in generated and

true distributions, divided by their sum for the given ij-th bin. This distribution is shown in

Figure 5.8 (bottom right), displaying a very similar result to the one depicted in Figure 5.4

for the decoded dataset.

Also for the generated dataset, one could calculate the total sum of these differences, i.e.

∑N bins
ij ∆ij, and divide it by the number of bins, i.e. N = 47 in our case. This provides the

result:

∆N ≡
∑N bins

ij ∆ij

N
≈ −2.83, (5.11)

which is approximately equal to the one obtained for the decoded dataset, ∆N ≈ −2.80. We

remind here that obtaining a negative value is a sign of events being systematically recon-

structed in very localized regions of the phase space, giving rise to the already mentioned

few overcompensations in detriment of a general, more subtle, underestimation.

5.4 Comprehensive results

As the final section for this part, we gather here the numeric estimators obtained through

the course of the results chapter. In Table 5.1, these values are listed as quantifiers of the

agreement between the one-dimensional kinematic distributions and the two-dimensional

mass distributions.

Wasserstein 1-distance m2j(m4j) percent diff.
px py pz E ∆N

Reconstructed 2.31 GeV 2.13 GeV 18.70 GeV 18.82 GeV −2.80
Generated 2.15 GeV 1.98 GeV 17.75 GeV 17.89 GeV −2.83

Table 5.1: Quantitative estimators of the similarities between true distributions and
reconstructed (first row) or generated (second row) distributions. The first 4 columns
show the Wasserstein 1-distance computed as described in Equation 5.1. The last column
shows the sum of the bin-by-bin percent differences divided by the total number of bins,
defined as in Equation 5.3 for the reconstructed dataset and as in Equation 5.10 for the
generated dataset.
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In case of the former, the Wasserstein 1-distance has been used to address the cost of trans-

forming one distribution into the other, giving a sense of the energy “wrongly-allocated” in

the reconstructed/generated dataset. For the latter, on the other hand, a figure of merit has

been built to plot the bin-by-bin percent differences between the true and reconstructed/generated

m2j(m4j) distributions. We believe that this, rather than the simple differences in events per

bin, reflects the performance of the autoencoder in a more meaningful way.
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Chapter 6

Conclusions

In this chapter we draw together the conclusions of this work, centered on the use of an

autoencoder structure for characterizing the QCD multijet background at the LHC. This

text cannot be understood without the context it is embedded in, which is the search of the

Higgs boson pair production carried out at the CMS and ATLAS experiments, at CERN.

In Chapter 1, we have outlined the main theoretical details behind this search, and its

powerful reach in uncovering the value of the Higgs boson self-coupling. This quantity, not

predicted by the Standard Model, stands as one of the most decisive numbers of the effective

theory, so much so that it governs the (meta-)stability of the electroweak vacuum. This has

profound implications in our understanding of many physical processes, as they may be the

meta-stable manifestation of fields that could, eventually, transition to the true stable state

within a finite time scale. Additionally, large deviations of the Higgs boson self-coupling

are expected in minimally modified Beyond Standard Model scenarios, which turns them

into an excellent probe into these new physics processes. The LHC hosts two experimental

facilities to test out these hypotheses, which are the CMS experiment, largely described in

Chapter 2, and the ATLAS experiment. One of the best channels for these collaborations

to observe the production of pairs of Higgs bosons is, along with bb̄τ+τ− and bb̄γγ, the

bb̄bb̄ channel. This channel is characterized by the presence of at least 4 b-jets in the final

state and faces a variety of challenges. First of all, a large number of background processes

lead to the same final state and are considerably more dominant (signal-to-background ratio

is expected to be around 3% in highest purity bins after multivariate signal extraction).

Secondly, the correct flavor tagging of these jets adds an extra layer of difficulty, as already

outlined in Chapter 2, with the best efficiencies in identifying b-jets being around 70%.

These difficulties have been traditionally addressed with quite advanced methods, such

as hemisphere mixing or kinematic reweighting, both explained in Chapter 3. Such tools

aim at extracting a signal-depleted background template, modeled solely from data and

relying on simple assumptions, such as the type of correlations expected between Higgs

boson candidates, or the region where the signal is predicted to appear in the phase space.

The increasing capabilities of machine learning tools, however, have opened the door for

more applications in high-energy physics, with background modeling currently undergoing
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extensive exploration. Many advanced classifiers, for example, are now being used in flavor

tagging, outperforming the traditional multivariate analyzers. Another such tool, known as

the autoencoder, has been employed in this work for the characterization of QCD multijet

background in the di-Higgs search. Autoencoders have a great advantage in working with

very few assumptions regarding the physics of the processes they are presented with. When

the autoencoder is fed a physics dataset, it is trained by trying to reproduce in the output

the features given in input, which is a non-trivial task if the dimension in the middle of

the autoencoder is drastically reduced. The autoencoder is thus able to learn the most

prominent features of the input, embed them in a useful way in the bottleneck, and then

upsample from it. This is part of the reason why they have been recently used for anomaly

detection in particle physics [99, 100], training them on SM processes and analyzing the loss

on anomalies introduced in the simulations.

The purpose of this work has been to successfully encode the 16 kinematic variables cor-

responding to the {pT, η, ϕ, m} values for each of four b-jets. In the utilized simulation

sample, the jets’ masses were all zero for simplicity, so one can think of a reduction from

12 dimensions in input down to a six-dimensional bottleneck, and then up again to an

output with 16 dimensions corresponding to the {px, py, pz, E} values. The primary effort

presented here involved the identification and design of a model capable of reconstructing

the features in input with reasonable fidelity. This was a non-trivial assignment since the

architecture needed to both reflect the internal symmetries of the dataset and encode it

in a way such that reconstructing it was a feasible task. In particular, once the obtained

embedded features were a meaningful representation of the input dataset, which was not

straightforward, the design of the decoder architecture posed an even larger challenge. The

purpose was to construct a reasonably symmetric architecture with respect to the encoder,

but the lack of dimensions in the encoded space was prohibitive to such a goal. After many

tests with high dimensions, we found that convoluting from a pseudo-event feature to an

embedded quadjet space and then applying transposed convolutions to obtain dijets and jets

was a coherent way to expand the physical dimensions. Several convolutional layers were

first applied at that stage, but after carefully refining the final activations, the expressiveness

of the network became good enough to retain only the final decode_j1 and decode_j2 layers, as

shown in Chapter 4. Several tests were also carried out with the way the autoencoder learns.

For example, computing the loss on the {pT, η, ϕ, m} values was attempted, only to find

out that the autoencoder struggled much more with such differently shaped distributions.

In the end, we found that the best way for the autoencoder to learn the physical features

was to implement the loss between {px, py, pz, E} representations.

To summarize, three equal autoencoder models have been trained on a sample of two-thirds

of 2,202,261 background events with four b-jets. Cross-validation has been done by evalu-

ating each model on the third of the dataset it has not been trained on. Results have been

described in Chapter 5, being the decoded dataset analyzed in Section 5.2. For a large di-

mensionality reduction in the bottleneck, a reasonable agreement between one-dimensional
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distributions has been found (Section 5.2.1). To quantify such agreement, the Wasserstein 1-

distance has been calculated for the reconstructed three components of momentum and the

energy of the 4 jets. The two-dimensional distributions of the dijet invariant mass versus the

quadjet invariant mass have been built for the true and reconstructed datasets, observing

general agreement in the bulk region, although revealing several systematic effects. A

figure of merit has been built in order to quantify the agreement in these two-dimensional

distributions, constructed as the sum of the percent bin-by-bin deviations divided by the

total number of bins. A value of approximately −2.80 has been obtained, indicating a

systematic effect of underestimation in the reconstructed mass bins.

Autoencoders can also be used for data generation (more often variational autoencoders)

when the model has produced a useful encoded representation. Therefore, the decoder has

been utilized to upsample a random six-dimensional distribution, producing new artificial

samples. In this work, the first attempt to sample the encoded distribution was done by

using Gaussian Mixture Models. This did not provide the desired results, as the correlations

between sampled one-dimensional marginal distributions were lost. The Kernel Density

Estimation of the six-dimensional distribution, on the other hand, provided an accurate

sampling and thus faithfully reproduced the one-dimensional marginals. Once the artificial

dataset was generated, analogous studies to those carried out with the decoded dataset

were performed, obtaining very similar results. In particular, the generated distributions

reproduce with similar accuracy the same features as the decoded dataset, conserving rather

alike systematic effects.

This work, as a whole, functions as a proof of concept for its primary aim: demonstrating

that significantly reduced encoded features of an input event can hold a large amount of

the initial information, allowing for efficient compression. However, this is not all; this

encoded space could potentially incorporate a metric capable of effectively distinguishing

between background and signal events, thereby achieving a clear separation within the six-

dimensional domain. The natural next step would involve utilizing these encoded features

for extrapolating background from background-populated regions to the signal region. This

extrapolation would allow for accurate modeling of the background in, for example, Higgs

boson pair production searches. However, the predominant concern remains the sizable

systematic effects observed in the autoencoder’s replication of the input dataset. As a

future perspective, we estimate that tackling and quantifying these effects should be the

subsequent steps in achieving a more accurate output. As a general recipe, one could extract

the ratio between generated and reconstructed bins in each distribution. For example, for

the reconstructed variable xreco, define f (xreco) ≡ xreco/xgen. Then, generate a different

distribution from the encoded features, and multiply it by f (xreco). This way, one can obtain

a reconstructed distribution x′reco that is ideally corrected by the generated distribution.

Once this is done, one can extract the distribution of differences xtrue − x′reco. The root mean

square (RMS) of this distribution can be then used as an estimate of the systematic errors in

the modeling of the reconstructed features.
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Appendix A

Additional plots
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Figure A.1: True (solid red histogram) and reconstructed (dotted blue histogram)
distributions for pT (top left), η (top right), ϕ (bottom left) and m (bottom right) of the 4
b-jets. Below every distribution comparison, the ratio of reconstructed minus true events
divided by true events is shown.
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Figure A.2: True (solid red histogram) and generated (dotted blue histogram)
distributions for pT (top left), η (top right), ϕ (bottom left) and m (bottom right) of the
4 b-jets. Below every distribution comparison, the ratio of generated minus true events
divided by true events is shown.
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Figure A.3: Two examples of η-ϕ (left column) and px-py (right column) reconstructed
pairs for event number 602035 (upper row) and 601880 (bottom row). Red (blue) points
represent the input (reconstructed) jets coordinates. The size of the marker scales with the
pT for the η-ϕ pairs, and with the energy of the jet E for the px-py coordinates. Reasonably
good agreement is obtained in all cases, being slightly better for higher pT jets.
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Figure A.4: Ordered from top to bottom, marginal one-dimensional distributions of
the activations for models offsets 0, 1, and 2, respectively. It is evident here the large
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