
University of Padova
Department of Mathematics “Tullio Levi-Civita”

Master Thesis in Computer Science

Automatic vulnerability testing in
android applications

Supervisor Master Candidate
Prof. Eleonora Losiouk Matteo Todescato
University of Padova

StudentID
1207264

Academic Year
2023-2024

ii

“People think that computer science is the art of geniuses, but
the actual reality is the opposite, just many people doing things
that build on each other, like a wall of mini stones.”
–Donald Knuth

iv

Abstract

Scanning software for security vulnerabilities can have many applications and can
be used in many contexts. Cybersecurity researchers can use it to find vulnerabil-
ities in a software and report them to the developers or for bug bounty programs.
Also in the software industry is common practice to scan software to find vulnera-
bilities before these are exploited by attackers, as security breaches can have serious
consequences for the company both financially and in terms of reputation. Unfor-
tunately, the tools of scanning for security vulnerabilities are not perfect, and will
never be perfect. Except from few cases most of the tools widely used in the in-
dustry for scanning for security issues do a wide use of heuristics and therefore the
results will contain false positives and false negatives. For what concerns false neg-
atives, there isn’t much that can be done other that trying to improve the scanning
tools and their heuristics. False positives on the other hand can be mitigated by
the developers manually inspecting the results and deciding if the reported vulner-
abilities are real or not. This approach can fail on many levels, for example, not
all the developers are security experts, and they might not be able to understand
the security implications of the reported vulnerabilities. Moreover, the process of
manually inspecting the results of the scanning tools is time-consuming and can
be error-prone. We propose a new approach to enhance the result of the scanning
tools, by combining the result of the static analysis tools with a dynamic execution
of the supposed vulnerable code. Being able to execute the vulnerable code in a con-
trolled environment allow gaining more informations about the vulnerability, and
if the vulnerability allows it, set up some kind of test or probe to check it automat-
ically. This approach can help developers and security researchers to differentiate
between real vulnerabilities and false positives faster, if not automatically, and also
to provide more informations about the found vulnerabilities, as being able to exe-
cute the supposed vulnerable code easily can greatly help in the understanding the
security implications of the vulnerability. In this way we can speed up the process
of finding the real vulnerabilities, fix them, and avoid wasting resources on false
positives, which is both expensive and frustrating for the developers.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1
1.1 Static code analysis . 2
1.2 Static Application Security Testing 4
1.3 Real-world usage of SAST . 6

2 Requirements and Design 9
2.1 Requirement Analysis . 9
2.2 Design . 11

2.2.1 Speck . 12
2.2.2 Gaps . 14
2.2.3 Cauldron . 14
2.2.4 Vulnerability testing and probes 15

3 Implementation 19
3.1 Speck . 19
3.2 Cauldron . 20

3.2.1 Programming language . 20
3.2.2 Serialization and Deserialization 21
3.2.3 Probes execution . 24

3.3 Probes . 25
3.3.1 Rule 1 - Show an app chooser 26
3.3.2 Rule 5 - Use SSL traffic . 27
3.3.3 Rule 11 - Store only non-sensitive data in cache files 29
3.3.4 Rule 7 - Use WebView objects carefully 31

4 In depth tools testing 33
4.1 Speck . 34

4.1.1 Preliminary Analysis . 34

vii

4.2 Gaps . 45
4.2.1 Path reconstruction . 45
4.2.2 Path execution . 50

4.3 Probes executions . 51
4.3.1 Rule 1 - Show an app chooser 51
4.3.2 Rule 5 - Use SSL traffic . 51
4.3.3 Rule 7 - Use WebView objects carefully 52
4.3.4 Rule 11 - Store only non-sensitive data in cache files 53

5 Mixing everything in our Cauldron 55
5.1 Speck analysis . 55
5.2 Gaps analysis . 56
5.3 Cauldron path matching . 56

6 Design changes after testing 61
6.1 New pipeline output . 62

7 Real-world applications 65
7.1 Security researcher . 65
7.2 Enterprise . 66

8 Future Work and Possible Improvements 69
8.1 Gaps Path Reconstruction . 69
8.2 Adding ML and AI Techniques . 70

9 Conclusion 71

References 73

Acknowledgments 77

viii

Listing of figures

1.1 Soundness of static analysis . 4
1.2 Static Application Security Testing magic quadrant 2023 5
1.3 Secure Software Development Life Cycle 6

2.1 Design of the tool pipeline . 11

4.1 Vulnerable function code . 48
4.2 Vulnerable function usages . 49
4.3 6676667498cb71d5fcce3170 vulnerability path 49
4.4 6676666198cb71d5fcce30dd vulnerability path 50
4.5 6676663198cb71d5fcce3091 vulnerability path 50

6.1 Vulnerabilities priority . 63

ix

x

Listing of tables

4.1 Path reconstruct analysis . 47

5.1 Speck vulnerabilities . 58
5.2 AliExpress matched vulnerabilities 59
5.3 Coinbase Wallet matched vulnerabilities 60

xi

xii

Listing of acronyms

SAST Static Application Security Testing

SDLC Software Development Life Cycle

VA Vulnerability Assessment

PT Penetration Testing

SSDLC Secure Software Development Life Cycle

GAPS Graph-based Automated Path Synthesizer

APK Android Package Kit

SSL Secure Socket Layer

HTML HyperText Markup Language

SQL Structured Query Language

SQLi Structured Query Language Injection

CA Certificate Authority

OS Operating System

API Application Programming Interface

URL Uniform Resource Locator

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

AI Artificial Intelligence

ESA European Space Agency

ML Machine Learning

xiii

xiv

1
Introduction

In the software industry the security of the codebase is a fundamental aspect, this
is especially true for the companies that develop software that is widely used by the
public and for some specific industries such as:

• safety critical systems;

• financial and banking systems;

• trust service providers;

where in these fields is mandatory to periodically check the security of the code-
base. Checking for security vulnerabilities in the software is done in the enterprise
world using mainly two methods:

• vulnerability assessments (VA)/ penetration testing (PT);

• vulnerability scanning;

VA/PT is a process done by a third party company that is specialized in security,
that searches for vulnerabilities in the company products usually by the means of
various scanning tools and or tries to exploit the vulnerabilities. These activities
are quite expensive and therefore are executed periodically, the frequency of the
activities depends on the company and the industry, but generally they are done

1

at least once a year. VA/PT are not sufficient to guarantee the security of the
software, for this reason alongside with these periodic activities, companies are
adopting a more continuous approach to the security of the codebase, with the
use of scanning tools that are integrated in the development process. Companies
are increasingly a more security oriented SDLC (Software Development Life Cycle)
by implementing in their process continuous scanning activities with SAST (Static
Application Security Testing) tools. Many reasons can lead a company to add a
continuous scanning activities in his development process with a SAST tool, some
of them are:

• the company wants to protect its users and its reputation;

• it is required by the clients, especially enterprise ones;

In the following sections we will introduce the base concepts and the state of the
art about static code analysis and SAST tools, and we will show how they are used
in the Enterprise world.

1.1 Static code analysis
Static code analysis (also called static program analysis or static analysis or static
simulation) is a method of analysis of the codebase that is done without executing
the code, in contrast with dynamic code analysis that is done by executing the
code. The analysis aims to prove certain properties in the code, such as security
vulnerabilities or the absence of memory leaks. Apart from trivial properties that
are a minority, the properties that are interesting to us such as:

• memory leaks;

• buffer overflows;

• array out of bounds;

• use of uninitialized variables;

are non-trivial and therefore for the Rice’s theorem [1] they are undecidable. For
this reason it is not possible to build a tool that can prove all the properties exactly,

2

and therefore some kind of approximation is needed. In the past 60 years the aca-
demic community has developed many techniques to approximate non-computable
properties [2–8], and many tools have been developed to apply these techniques. A
strong commercial use of static analysis is in the verification of properties of soft-
ware used in safety-critical computer systems and locating potentially vulnerable
code [9]. For example, the following industries have identified the use of static
code analysis as a means of improving the quality of increasingly sophisticated and
complex software, and some of them event made it mandatory in order to meet
regulations:

• medical software [10];

• automotive and machines [11];

• nuclear software [12];

• aviation and aerospace software [13];

Static analysis tools are categorized based on the concept of soundness and com-
pleteness, creating an opposition between heuristics and formal methods. The con-
cept of soundness is fundamental in static analysis, it defines how the analysis is
going to approximate the properties and what kind of warranties we can have on
the results. The soundness is related to the way the analyzer is going to cover
the spectrum of the results, as we can see in figure 1.1 which take as example a
non-computable property such as termination analysis. We can have three possible
type of analysis:

• complete: a complete analysis is also sound as it perfectly covers the spectrum
of the results, but it is not computable;

• sound: it covers the spectrum of the results partially by being conservative,
with the warranty that no false negatives will be present;

• unsound: it covers the spectrum of the results partially without any war-
ranties;

Both sound and unsound tools have their own use cases, as can be seen by the
success in the industry of unsound tools such as Coverity [14], also sound tools such
as Astree are widely used in safety-critical systems like Airbus, ESA, Bosch [15].

3

Figure 1.1: Soundness of static analysis

The choice of the type of tool is dictated by the needs of the company and its
operation field. For non safety-critical systems the use unsound tools is the most
adopted option as they are generally faster, easier to use and less strict allowing
the developer to use a wide range of libraries, frameworks and languages with their
full set of features. On the other hand safety-critical systems use sound tools as
they are stricter, and they can guarantee that the code is free from certain kind
of vulnerabilities, which is critical to meet the certification requirements at which
safety-critical systems are subject to. In order to have this kind of warranties the
sound tools are generally more complex, slower and require more expertise to use,
as they are generally based on formal methods, and they require the developer to
write the code in a certain way in order to be able to have the best results.

1.2 Static Application Security Testing
The concept of SAST is a special case of a static analysis tool, as in fact it is a
static analysis tool that is ”specialized” in finding security vulnerabilities, and does
not include any form of dynamic testing of the vulnerabilities. SAST is defined by
Gartner [16] as

4

”Static application security testing (SAST) is a set of technologies designed to
analyze application source code, byte code and binaries for coding and design
conditions that are indicative of security vulnerabilities. SAST solutions
analyze an application from the “inside out” in a non-running state.”

The use of SAST tools is getting more and more common in the software indus-
try, and companies have many options to choose from as we can see in Gartner
quadrant for 2023 1.2. Most of the tools in the quadrant use heuristics to find the

Figure 1.2: Static Application Security Testingmagic quadrant 2023

vulnerabilities, the reason behind this is a pragmatic one, the use of heuristics allow
extending and improve the tool more early allowing the tool to stay up to date with
the latest vulnerabilities and technologies, this kind of flexibility is not possible with
sound tools that are based on formal methods. The case of Synopsys with his tools
Coverity showed that an unsound approach can do a good job in finding bugs and
security vulnerabilities [14], even with the use of heuristics.

5

1.3 Real-world usage of SAST
Implementing a process of SAST in an Enterprise scenario is a complex task that
involves many aspects, from the choice of the tool to the integration in the devel-
opment pipeline, to the management of the results and the policies that regulate
the process. For the scope of this work we will focus on the tools and the integra-
tion in the development pipeline, as policies and other process aspects will apply
in the same way to our approach. In the enterprise world the use of SAST tools
is generally done in conjunction with the application of a SSDLC (Secure Software
Development Life Cycle) which comprehends the integration of security as part of
the development process, this kind of development process is vastly used and docu-
mented in the industry as a best practice [17–21]. An example schema of a process
of SSDLC is shown in figure 1.3, showing the integration of the security related
activities in the development process. The SAST tool can be run sporadically run

Figure 1.3: Secure Software Development Life Cycle

manually on the codebase but is not recommended and also defies the purpose of
having a continuous analysis of the codebase. The most common way to integrate
the tool in the process is to run it automatically based on a chosen policy. We can
choose between various policies such as:

• on every commit;

6

• on every merge request;

• on a schedule;

and the choice of the policy will depend on the company and the development
process, with no one-size-fits-all solution. Fixing the vulnerabilities is also a part of
the process which has two possibilities, for each vulnerability the company can:

• Fix it;

• accept the risk;

The fist option require the vulnerability to be assigned to a team or the developer
responsible for the product that will have to manually check the vulnerability and
fix it. The process of fixing the vulnerabilities is the most time-consuming part of
the process, as the list of vulnerabilities might be long and not all of them are real
issues as SAST tool being unsound can have many false positives, so the developers
have to manually check each one of them. The process of manually fixing the
vulnerabilities has many issues:

• error-prone: generally developers aren’t security experts, and they might not
be able to understand the real impact of a vulnerability, and might miss some
real issues;

• time-consuming: the list of vulnerabilities might be long and the developers
have to manually check each one of them, this might take a lot of time. Which
is a cost for the company that need to allocate the resources to do this job
and not to develop new features;

• frustrating: the developer will generally be searching from a needle in a
haystack, as for some tools the ratio of false positives to real vulnerabili-
ties is very high. In the first place at some point the developer will start to
check with less care the vulnerabilities and might miss some real issues. In
the worst cases might lead to the developer ignoring the tool.

For this reasons having a tool that can help the developer in this process is very
important, as it might reduce significantly the time needed to fix the vulnerabilities
and the risk of missing some real issues, but most importantly reducing the risk of
the developers stopping to care about the tool results.

7

8

2
Requirements and Design

We have shown in the previous chapter that most of SAST tools are unsound, and
they can generate false positives, for this reason we choose design a tool that can
be used to test the vulnerabilities found by the SAST tool. We propose a tool
that starting from the vulnerabilities found by the SAST tool can execute a set of
probes that can be used to test the vulnerabilities and gain more information about
them in order to make easier the job of finding and fixing the real vulnerabilities.
In this work we are going to focus on the Android platform, but this concept can
theoretically be applied to other platforms as well. This chapter will have two main
sections, the first one will be about the requirements of the tool, and the second
one will be about the design of the tool.

2.1 Requirement Analysis
The requirements for the tool are the following:

• SAST tool independence: The tool should be able to work with any SAST
tool that can output results in a machine-readable format.

• Dynamic execution of vulnerable code: The tool should be able to
execute the vulnerable code in a controlled environment.

9

• Automated vulnerability probing: The tool should be able to automati-
cally probe the vulnerable code for vulnerabilities.

• Automated vulnerability testing: The tool should be able to automati-
cally test the vulnerable code for vulnerabilities.

• Results reporting and bundling: The tool should be able to report the
results and bundle them in a convenient format.

SAST tool independence

The tool should be able to work with any SAST tool that can output results in a
machine-readable format, or at least be easy to extend to work with a new SAST
tool without the need of rewriting a new tool from scratch, but rather just adding
a new module to the existing tool not requiring structural changes to the existing
code. This requirement is relevant as a company might already be using one or
more SAST tools to find vulnerabilities in their code, and requiring them to change
the tools that they are using would require a lot of effort from both the company
and the developers.

Dynamic execution of vulnerable code

The tool should be able starting from a vulnerability found by a SAST tool to gen-
erate some sort of input that can be used to trigger the vulnerability in a controlled
environment.

Automated vulnerability probing

The tool should provide a set of probes that can be used during the dynamic ex-
ecution phase in order collect data about the behavior of the application and the
vulnerability found by the SAST tool, and therefore gain more information about
the vulnerability.

Automated vulnerability testing

The tool can provide a set of test probes that can be used to automatically check
if the vulnerability found by the SAST tool is real or not. This requirement is

10

desirable as we now that for some of the vulnerabilities it is not possible to write a
generic and automated test.

Results reporting and bundling

The tool should be able to report the results of the testing phase and bundle them
in a convenient format, in order to make easier the job of the developer that has
to fix the vulnerabilities found by the SAST tool. This can be done by providing
some kind of report file or multiple reports one for each vulnerability as opposed
to a SAST tool that only need to display minimal information about the vulnera-
bility found, in our case we possibly need to provide more information about the
vulnerability and the path that leads to it.

2.2 Design
In order to satisfy the requirements we have identified in the previous section and
the principle of not reinventing the wheel, a possible solution is based on a chain of
tools that can be used alongside any existing SAST tool. We propose a tool that
allow us to orchestrate a process or a pipeline allowing it to be SAST independent,
working as shown in figure 2.1. The analysis process is divided in four main steps:

Figure 2.1: Design of the tool pipeline

• scanning: In this step any SAST tool can be used, the only requirement is
that the tool should be able to generate a list of potential vulnerabilities; In
our case we use Speck 4.1;

11

• path reconstruction: in this step GAPS 4.2 reconstruct the paths to the vul-
nerabilities found in the scanning phase, in order to be able to execute them;

• Vulnerability testing: in this phase we use a set of probes or test cases that can
be used to test the vulnerabilities found in the scanning phase and executing
the reconstructed paths.

• Composing the results: in this phase the results of the scanning phase are
composed with the results of the vulnerability testing phase, and execute
the path with the probes in order ti produce a list of real vulnerabilities or
auxiliary information that can be used to understand the real impact of the
vulnerabilities.

2.2.1 Speck
Speck is a static analysis tool designed to search for several bad coding practices
on an Android application. It works based on rules extracted from the Android
documentation, that developers should follow in order to improve the security of
their apps. In particular, for each violated rule, Speck shows the developer the
specific line of code where the vulnerability has been detected, thus prompting him
to fix the issue. There are 32 rules in total, and they are divided in 6 categories:

• PART 1: https://developer.android.com/topic/security/best-practices
Rule1 : Show an App Chooser
Rule2 : Control Access to yours Content Providers
Rule3 : Provide the right permissions
Rule4 : Use intents to defer permissions
Rule5 : Use SSL Traffic
Rule6 : Use HTML message channels
Rule7 : Use WebView objects carefully
Rule8 : Store private data within internal storage
Rule9 : Share data securely across apps
Rule10 : Use scoped directory access
Rule11 : Store only non-sensitive data in cache files

12

Rule12 : Use SharedPreferences in private mode
Rule13 : Keep services and dependencies up-to-date
Rule14 : Check validity of data

• PART 2: https://developer.android.com/training/articles/security-tips
Rule15 : Avoid custom dangerous permission
Rule16 : Erase data in webview cache
Rule17 : Avoid SQL injections
Rule18 : Prefer explicit intents
Rule19 : Use IP Networking
Rule20 : Use services
Rule21 : Use telephony networking
Rule22 : Use cryptography
Rule23 : Use broadcast receivers
Rule24 : Dynamically load code

• PART 3: https://developer.android.com/training/articles/security-ssl
Rule25 : Hostname verification
Rule26 : SSLSocket

• PART 4: https://developer.android.com/training/articles/security-config
Rule27 : Configure CAs for debugging
Rule28 : Opt out of clear text traffic

• PART 5: https://developer.android.com/guide/topics/security/cryptography
Rule29 : Choose a recommended algorithm
Rule30 : Deprecated cryptographic functionality

• PART 6: https://developer.android.com/training/articles/direct-boot
Rule31 : Migrate existing data
Rule32 : Access device encrypted storage

Speck has been chosen as scanning tool because we wanted both to put it at
the test and also because if needed we could modify it to better fit our needs in
the case some limitations were found. One point of attention on Speck is that its

13

analysis don’t have a context of the application, in fact it only scans the code of the
application, and it doesn’t take into account the paths that are reachable from the
entry point of the application. This generates a good amount of issues on library
code even if that code is not reachable from the entry point of the application, as
it is not used by the application.

2.2.2 Gaps
Gaps is a tool designed to provide a reliable method for achieving automated in-
teraction with mobile applications. This property is useful for our purpose as we
have many target methods which we want to execute in order to test the vulnerabil-
ities found by Speck. Gaps have two separate components, a static and a dynamic
one. The static component starting form an APK is able to extract the paths that
leads to a specific method, if the method is reachable from the entry point of the
application. The static component will output a list of paths and actions that can
be used to reach a specific method, allowing us to execute the code without the
need of a manual path reconstruction and interaction with the application. The
dynamic component is an executor of the output of the static component, and is
able to execute the paths extracted by the static component, and check if the path
has been reached correctly.

2.2.3 Cauldron
The responsibility of this component is to compose the results of all the previous
steps in order to provide a simple and clear output to the developer. Cauldron has
many tasks:

• serve as adapter between the different tools, as they might have different
input and output formats: The aim is to support the input from different
SAST tools which is of primary importance, as it is really likely that someone
might want to search for vulnerabilities using a different tool and rules; This
make also possible to replace Gaps with another tool that can do the same
job, but with a different input and output format, but I consider this to be
less likely as is more complex to find a tool that can do the same job as Gaps;

• filter the paths that comes from Gaps in order to remove the ones that are
not interesting: This let us clear out the vulnerabilities found by Speck in the
library code, as in many cases that code is not used.

14

• Generate the input to provide to the Gaps dynamic component: split it by
the different vulnerabilities found by the SAST tool, and then provide the
input to the Gaps dynamic component in order to test the vulnerabilities one
by one;

• execute the correct probe for each vulnerability: This is the core of the tool,
as it is the one that will test the vulnerabilities found by the SAST tool; It
will execute the correct probe for each vulnerability and try to reach the path
using the Gaps dynamic component;

The output should be a list of report containing all the information about the
vulnerability bundled with the information about the path that leads to the vulner-
ability, and the result of the test.

2.2.4 Vulnerability testing and probes
The structure of this component is really simple, like with unit tests we have a
set of probes that can be used to test the vulnerabilities found by the SAST tool.
While designing the probes to test the rules we have to take into account two main
aspects:

• The probes should be as generic as possible, in order to be able to test all the
vulnerabilities of a specific rule with a single probe, if possible otherwise we
would like to use a little amount of probes as possible;

• Computability of the rules properties: as some rules have properties too com-
plex to be checked automatically;

Writing generic exploits

Writing generic probes is not mandatory, but is advisable as it will reduce the
amount of work needed to be compared to write a lot of custom probes for each
vulnerability. Even if having multiple probes for each rule is supported, still the
exploit need to be generic enough to be able to test all the vulnerabilities of that
type, otherwise the probes will become a test for the specific issue defying the
purpose of the tool. Let’s take as example an SQL injection which is a really
common vulnerability and has many ways to be exploited:

15

• Error-based SQLi

• Union-based SQLi

• Blind SQLi boolean-based

• Blind SQLi time-based

Each one of this type of SQL injection has its own way to be exploited, but even
if we choose to write an exploit for each of the types, still the exploit don’t easily
work on all the vulnerabilities of that type, this happens as it is related with the
structure and the content of the query, and the way the query is executed. As an
example the blind SQLi time-based is a really complex vulnerability which can’t
be tested with an exploit that works for every query. For this reason we need to
identify the vulnerabilities that can’t be generically tested in our case of the rule
used by Speck following rules do not allow for generic exploits:

• Rule 4 - Use intents to defer permissions

• Rule 6 - Do not use WebView JavascriptInterface

• Rule 10 - Use scoped directory access

• Rule 13 - Keep services and dependencies up-to-date

• Rule 14 - Check validity of external storage data

• Rule 16 - Erase data in WebView cache

• Rule 17 - Avoid SQL injections

• Rule 20 - Do not export unprotected services

• Rule 22 - Use secure random number generators for cryptographic keys

• Rule 23 - Protect exported Broadcast Receivers

• Rule 24 - Do not load code dynamically

• Rule 29 - Choose a recommended cryptographic algorithm

• Rule 30 - Do not use deprecated cryptographic functionality

For those vulnerabilities we can only provide a way of executing the path to the
vulnerability, but we can’t provide a generic exploit.

16

Approximation of non-computable properties

In order to be able to write the probes we need to understand that this is tightly
related to the computability of the rules properties.
In the case of Speck the rules are defined from the android best practices, and a
majority of them are not computable, and therefore we are each rule needs to be
individually analyzed in order to understand the best type of probe to analyze the
vulnerability.

17

18

3
Implementation

For what concerns the implementation of the pipeline, the work can be divided in
three main parts:

• adapting Speck’s output content;

• Cauldron implementation;

• Probes implementation;

Of these components the most challenging and interesting part is the probes’
implementation, as it requires to write an exploit or an attacker app that is able
to exploit the vulnerabilities that we are testing and be reusable for multiple tests.
In the following sections we will show the implementation of the pipeline and the
tools that are part of it.

3.1 Speck
The implementation work on Speck is quite limited as it is a complete tool, for the
purposes of this work the only adaptation needed was regarding the output of Speck.
The first reason is that as described in section 4.1, Speck return the line of code
where it finds the rule violation, this precision is useful but can carry over a degree

19

of imprecision, especially when collaborating with people that run the analysis
with different configurations, especially having the same jadx is really important to
obtain the same results. The second reason is that Gaps has no concept of line of
code, but it works at method level. Given these two reason, and that adding the
class and method to the Speck output was not really a complex task it has been
adapted in order to output the informations needed by Gaps, but still keeping the
line number. This because for some vulnerabilities Speck can find a violation in a
file which is not a java class or a Kotlin class, for example a manifest.xml issue, in
this case the output of Speck will mark undefined the method name and the class
name, and line number will be the only information that we have. For the scope
of this work this limitation is not relevant as our aim is to execute the vulnerable
code and this can’t be located in the manifest file or in a resource file.

3.2 Cauldron
The responsibility of Cauldron is to manage the pipeline for the analysis and on its
own is not a complex tool, a little of complexity is added by the fact that the ability
to adapt to the different outputs of the tools that are used in the pipeline, but this
can be easily achieved with the right design and technology choice. Cauldron serves
four main tasks:

• parse the output of Speck and Gaps;

• generate the input for Gaps dynamic component;

• execute the probes;

• generate the report;

In the next subsections we will show the implementation of the internal compo-
nents of Cauldron, how they interact with each other in order to accomplish these
tasks, and the technology choices that have been made.

3.2.1 Programming language
The first choice that we had to make was the language to use for the implementation
of Cauldron. Seen its simple nature of parsing, mixing data and trigger scripts, the

20

first choice was to use Python as it is a script language that is easy to use and
handle pretty well this kind of scripting tasks and also Gaps and Speck are written
in python and for that reason it would be reasonable to use the same language.
During the first development phases the prototype tool was written in python, but
as the development went on the output of the tools was changing and the parsing of
the new inputs required to rewrite the parsing code and on top of this the fact that
we wanted this tool to be easy to support other SAST tools pushed us search for
a different solution. As always when choosing programming languages possibilities
are many, we needed a language that with top parsing capabilities and that can work
with other languages or at least with python easily. Given the importance of the
parsing capabilities we evaluated the possibilities in using a functional languages as
they generally have good parsing capabilities, compared with C for example. The
main problem with using a functional language is that generally they are running on
a virtual machine e.g. Haskell, Erlang, Elixir making them unsuitable for running
have the kind of system interaction needed and the ones that support native code
such as OCaml are a little short in libraries and support, making them not the best
choice for this kind of project. After taking out of the game functional languages, the
choice in the imperative languages was easy, Rust gives the capabilities to easily
run scripts and to work with python efficiently, and for what concerns parsing
capabilities Rust has Serde that allow great parsing capabilities, as we will see in
more detail in the serialization and deserialization subsection 3.2.2. Rust is also
known to be a fast language, often benchmarked against top performers like C and
C++, offer a significant performance improvement over python in compute intensive
tasks, an example of performance gap can be seen here [22], this is not a big concern
for the pipeline as the most time-consuming part is the execution of the probes, but
still it is a nice to have feature.

3.2.2 Serialization and Deserialization

The serialization and deserialization of the data is a key feature of the pipeline, as
we need to parse the data coming from Speck and Gaps, generate the input for the
dynamic component of Gaps and generate the report. As said in the previous subsec-
tion Serde has great parsing and decoding/encoding capabilities, as this library allow
defining Rust types such as the one see in the listing 3.1 which are the data structures

21

for decoding and encoding the data coming from Gaps. After defining the data struc-
tures these can be used by Serde to parse the data into the object that defined by call-
ing the function serde_json::from_str::<GapsReport>(&gaps_output) this
will return the object with the type previously defined.

Listing 3.1: Parsing data struct

1 use s e rd e : : { D e s e r i a l i z e , S e r i a l i z e } ;
2 use s td : : c o l l e c t i o n s : :HashMap ;
3
4 use super : : path_data : : PathData ;
5
6 #[d e r i v e (S e r i a l i z e , D e s e r i a l i z e , Debug)]
7 #[serde (t r an spa r en t)]
8 pub struct GapsReport {
9 path_c la s s e s : HashMap<String , PathClass >,
10 }
11
12 impl GapsReport {
13 pub fn new(path_c la s s e s : HashMap<String , PathClass >) −> Sel f {
14 GapsReport { pa th_c la s s e s }
15 }
16
17 pub fn get_path_c las se s (& s e l f) −> &HashMap<String , PathClass> {
18 &s e l f . pa th_c la s s e s
19 }
20 }
21
22 #[d e r i v e (S e r i a l i z e , D e s e r i a l i z e , Debug)]
23 #[serde (t r an spa r en t)]
24 pub struct PathClass {
25 paths : HashMap<String , PathData>,
26 }
27
28 impl PathClass {

22

29 pub fn new(paths : HashMap<String , PathData>) −> Sel f {
30 PathClass { paths }
31 }
32
33 pub fn get_paths(& s e l f) −> &HashMap<String , PathData> {
34 &s e l f . paths
35 }
36 }

For what concerns the serialization the library can be used in the same way to serial-
ize the data into a file or string. For example, we need to assign to each Speck issue
the paths that are related to that issue, this can be done by grouping the paths by
the issue and then serializing the data into a file, like we can see in listing 3.2 generat-
ing the files is easy as is only needed to call the group_gaps_paths_by_speck_issue
function that will output a vector of tuples with the filename and the GapsReport
object that contains the paths, and then in order to create the executable file we
can use the serde_json::to_writer_pretty function that will serialize the object into
a file directly.

Listing 3.2: Speck issues and Gaps path group by

1 use s td : : c o l l e c t i o n s : :HashMap ;
2 use crate : : i o_types : : gaps_report : : GapsReport ;
3 use crate : : i o_types : : path_data : : PathData ;
4 use crate : : i o_types : : speck_report : : SpeckReport ;
5 use crate : : i o_types : : gaps_report : : PathClass ;
6 use crate : : i o_types : : speck_report : : I s s u e ;
7
8 pub fn group_gaps_paths_by_speck_issue (
9 speck : SpeckReport ,
10 gaps : GapsReport)
11 −> Vec<(String , GapsReport)> {
12 l e t i s s u e s = speck . g e t_ i s s u e s () ;
13 l e t mut r e s u l t : Vec<(String , GapsReport)> = Vec : : new () ;
14 for i s s u e in i s s u e s . i t e r () {
15 l e t target_vulnerable_method =

23

16 encode_vulnerable_method (i s s u e . c l on e ()) ;
17 l e t target_method_tr igger s =
18 extract_method_tr igger s (&target_vulnerable_method , &gaps) ;
19 i f target_method_tr igger s . is_empty () == f a l s e {
20 l e t save_f i l ename = format! (”{}− ru l e {} . j s on ” ,
21 i s s u e . get_object_id () . get_oid () ,
22 i s s u e . ge t_ru l e ()) ;
23 r e s u l t . push ((save_f i lename ,
24 GapsReport : : new(target_method_tr iggers))) ;
25 }
26 }
27 r e s u l t
28 }

3.2.3 Probes execution

The implementation of the probes’ execution component is trivial, the example of
the implementation of a probe executor can be seen in the listing 3.3. The executor
is made of two parts, a rule selector that given an input file select the correct
probe to execute, and the probe executor that actually execute the probe. This
way of executing the probes is quite simple and allows to easily add new probes to
the pipeline, as this can be done only by adding a new match arm to the match
statement in the run_trigger function. This solution also provide the feature of
allowing to have more than one probe for a single rule, as the probe runner can be
adapted to run all the probes that might be needed.

Listing 3.3: Probes executor

1 use s td : : { path : : PathBuf , p r o c e s s : :Command} ;
2
3 pub fn run_tr i gge r (f i l e name : PathBuf) −> () {
4 l e t basename = f i l ename . f i l e_s t em () . unwrap () . to_str () . unwrap () ;
5 l e t (oid , r u l e) = basename . sp l i t_once (”−”) . unwrap () ;
6 match r u l e {
7 ” r u l e 5 ” => {

24

8 ru l e 5 (o id . t o_s t r i ng () , f i l e name) ;
9 }
10 _ => {
11 println! (”No␣probe␣ f o r ␣ ru l e , ␣ sk ipped ␣{}” , r u l e) ;
12 }
13 }
14 }
15
16 fn r u l e 5 (o id : String , f i l e name : PathBuf) −> () {
17 println! (” I s s u ed Id : ␣{}” , o id) ;
18 println! (”Running␣ r u l e 5 ␣on␣{}” , f i l e name . to_str () . unwrap ()) ;
19 l e t r e s u l t = Command : : new(” python ”)
20 . arg (” probes / r u l e 5 / r u l e_ t e s t e r . py”)
21 . arg (”−−gaps−input ”)
22 . arg (f i l e name . to_str () . unwrap ())
23 . arg (”−−output ”)
24 . arg (format! (
25 ” . / r e p o r t s /{} . tx t ” ,
26 f i l e name . f i l e_s t em () . unwrap () . to_str () . unwrap ()
27))
28 . output ()
29 . expect (” f a i l e d ␣ to␣ execute ␣ p r o c e s s ”) ;
30 println! (” s t a t u s : ␣ { : ?} ” , r e s u l t) ;
31 }

3.3 Probes

With no doubt writing the probes is the most challenging part of the pipeline, not
necessarily for the complexity of the code, but for the fact that the code needs to
be generic enough in order to not need to write a test for each vulnerability. The
probes are written in python, for two main reason, firstly writing the probes is a
pure scripting task and secondly the majority of the tools that we needed to use
and interact with are in python such as:

25

• Gaps

• Jadx [23]

• Frida [24]

• Androguard [25]

• etc.

Probe scripts can have various forms and complexity based on the rule that we
are trying to exploit, in the following subsections we will show the implementation
of probes covering the various types of probes types and the expected output.

3.3.1 Rule 1 - Show an app chooser

This rule is from the Google Android security best practices [26], and it states:

If an implicit intent can launch at least two possible apps on a user’s device,
explicitly show an app chooser. This interaction strategy allows users to
transfer sensitive information to an app that they trust.

The probe for this rule is quite simple and is entirely contained in a single android
application. The probing application catches the implicit intent that the vulnerable
app sent without the use of the app chooser, and print its content in the log. For
this probe is also possible to have an automatic check for the result as our attacker
app can predictably output a log with the intent content that it received, which is
enough to understand if the probe was successful or not. The data contained in the
received intent might not be sensitive and this shall be checked by hand, but since
the rule doesn’t require the data to be sensitive for the vulnerability to be considered
real, but that the app chooser shall be used. This vulnerability has been mitigated
by the Android OS itself, as now the OS will show an app chooser if the intent can
be handled by more than one app as we will see in section 4, and only applicable to
older versions of Android. For this reason only a partial implementation with toy
apps has been done, as the probe in not really useful anymore and not working on
the test version with Android API 31.

26

3.3.2 Rule 5 - Use SSL traffic
This rule is from the Google Android security best practices [26], and it states:

If your app communicates with a web server that has a certificate issued by
a well-known, trusted CA, the HTTPS request should be used.

For this probe instead of providing a full exploit like we have showed for rule 1 we
have opted for a different approach. In this case we provided a mean to intercept
the traffic between the app and the server, and to check if the app is sending clear
HTTP traffic, but the way this is implemented don’t allow to be used in a real
attack scenario. The probe consist of a proxy that allow to intercept the traffic that
enters and exits the Android emulator allowing us to capture the traffic and check
if the app is sending clear HTTP traffic, as shown in 3.4 the probe is quite simple,
and it is based on the mitmproxy [27].

Listing 3.4: Rule 5 probe

1 import a rgpa r s e
2 import subproce s s
3 import t ime
4 import os
5
6 def run_gaps_with_input (gaps_input , apk_path) :
7 print (’ Running␣GAPS␣with␣ input : ␣ ’ + gaps_input)
8 r e s u l t = subproce s s . run ([’ python ’ , ’ . / probes /gaps_run_old . py ’ ,
9 ’−i ’ , apk_path , ’−i n s t r ’ , gaps_input] ,
10 capture_output = True ,
11 t ex t = True)
12 print (r e s u l t . s tdout)
13 print (r e s u l t . s t d e r r)
14
15
16
17 i f __name__ == ”__main__” :
18 pa r s e r = argpa r s e . ArgumentParser ()
19 pa r s e r . add_argument (”−−gaps−input ” , help=” gaps␣ input ”)

27

20 pa r s e r . add_argument (”−−output ” , help=” output␣ f i l e name ”)
21 a rg s = pa r s e r . parse_args ()
22
23 subproce s s . run ([’ adb ’ , ’ wait−for−dev i c e ’])
24 print (’ Emulator␣ ready ’)
25
26 # S t a r t proxy
27 f = open (a rg s . output , ”w”)
28 proc = subproce s s . Popen ([’mitmdump ’ ,
29 ’−s ’ ,
30 ’ . / probes / r u l e 5 /proxy_addon . py ’] , s tdout=f)
31
32 run_gaps_with_input (a rg s . gaps_input)
33
34
35 # Stop proxy
36 time . s l e e p (15)
37 proc . t e rminate ()

Similarly to the rule 1 probe, the probe provide an automatic check for the Speck
issue, but in the same way we would like to know if also the data that is sent is
sensitive or not, and this shall be checked by hand. In order to allow this probe
to work properly the device need to have the mitmproxy certificate installed, this
allows the application to work properly in the parts where HTTPS is used, otherwise
execution is likely compromised by certificate errors in the requests using SSL. In
this way also the HTTPS traffic can be seen by the probe, to exclude from the
output SSL communications as is a real attack scenario we wrote a mitmproxy
proxy add-on, this allows to filter the traffic based on the properties that we are
interested in, as we can see in the listing 3.5 the script is quite simple and will only
filter out HTTPS connections.

Listing 3.5: Rule 5 proxy addon

1 import l o g g i n g
2
3 c lass Counter :

28

4 def r e que s t (s e l f , f l ow) :
5 i f f l ow . r e que s t . scheme == ” http ” :
6 l o g g i n g . i n f o (f l ow . r e que s t . pret ty_host)
7 i f f l ow . r e que s t . pret ty_host == ” 1 0 . 0 . 2 . 2 ” :
8 f l ow . r e que s t . host = ” l o c a l h o s t ”
9
10 def r e spons e (s e l f , f l ow) :
11 i f f l ow . r e que s t . scheme == ” http ” :
12 l o g g i n g . i n f o (f l ow)
13 l o g g i n g . i n f o (f l ow . r e spons e)
14 l o g g i n g . i n f o (f l ow . r e spons e . content)
15
16 addons = [Counter ()]

The proxy also provide a way to output all the data allowing to bundle together all
the connections data and allowing to easily check if the app is sending clear HTTP
traffic or not, it is enough to check if the output file is empty, this allows to provide
the automatic check for the probe. In order to allow further analysis it also provides
the full content of the request and the response allowing a manual inspection of the
data that is sent and received to understand if sensitive data is sent in clear HTTP
traffic.

3.3.3 Rule 11 - Store only non-sensitive data in cache
files

This rule is from the Google Android security best practices [26], and it states:

To provide quicker access to non-sensitive app data, store it in the device’s
cache. For caches larger than 1 MB in size, use getExternalCacheDir(); oth-
erwise, use getCacheDir(). Each method provides you with the File object
that contains your app’s cached data.

This probe is quite similar to the one for the rule 1, as it can be exploited writing
an attacker app that is able to read the cache of the victim app. This process is
quite simple as the attacker app only need to have the permission to read the cache

29

files, this can be obtained by adding the permissions to the manifest file as we can
see in the listing 3.6.

Listing 3.6: Rule 11 permissions required

1 <uses−pe rmi s s i on android:name=
2 ” andro id . p e rm i s s i on .MANAGE_EXTERNAL_STORAGE”
3 t o o l s : i g n o r e=” ScopedStorage ” />
4 <uses−pe rmi s s i on android:name=
5 ” andro id . p e rm i s s i on .WRITE_EXTERNAL_STORAGE”/>
6 <uses−pe rmi s s i on android:name=
7 ” andro id . p e rm i s s i on .READ_EXTERNAL_STORAGE”/>

Since Android API 24 the permissions to read the cache files are not granted any-
more, so this probe is not working on the test version with Android API 31. Informa-
tions about the cache files can be found in the official Android documentation [28].
Apart from the mitigations put in place not allowing us to actually test this probe,
is fascinating for the computability limitations compared to some other rules. For
the previous two rules the requirement was pointing to a practice like ”HTTPS
traffic shall be used” that has really distinct signals if violated, as this can be easily
checked by searching if there are some HTTP packets in the traffic. For this rule
the requirement is the non-sensitivity of the data, sensitive data may have infinite
forms and encoding making this rule not computable, as data sensitivity is a really
complex concept that can’t be checked by a program in a definitive way. With this
purpose heuristics, artificial intelligence and machine learning can be used in order
to try to understand if the data is sensitive or not, but still would be an unsound
approximation of the property and therefore will need to be manually checked. In
this situation we have two options:

• count as error the fact that the cache file are used: which is a really strict
approach and might be appropriate if our scope were a safety critical system
as this choice really limits the coding opportunities, and if cache file have
been provided by Android it means that they are meant to be used;;

• bundle the fetched cache content and check it by hand: It requires manual
work but is more precise and faster that finding the content of the cache by
reading the application code;

30

Given the scope of this work we implemented the probe using the second option,
but we ended up not testing it as the mitigations put in place by Android OS don’t
allow us to test it on the test version with Android API 31.

3.3.4 Rule 7 - Use WebView objects carefully
This rule is from the Google Android security best practices [26], and it states:

Whenever possible, load only whitelisted content in WebView objects. In
other words, the WebView objects in your app shouldn’t allow users to navi-
gate to sites that are outside your control.

This Speck rule is violated when the app uses a WebView object to load content
that is not whitelisted, this can be exploited by injecting malicious code in the
WebView object and execute it. This can also be automatically checked by injecting
a simple alert that print to console log, and check if the alert is shown. For this probe
instead of starting from a toy example as for the other probes, in this case building
a toy application that is vulnerable to this kind of attack is quite complex, for this
reason we decided to start from a real vulnerable application. Unfortunately we
were unable to find the paths to this kind of vulnerabilities in the test applications,
this is described in more detail in the section 4.3.3, for this reason we have not been
able to implement this probe.

31

32

4
In depth tools testing

During All the design and implementation phases we tested the tools that compose
the pipeline extensively in order to understand the best way to use and combining
them, and also to be able to understand the quality of the results that we can
expect from the composition of the tools in the pipeline. In order to test all the
tools and their composition inside the pipeline we choose to analyze some real
application from the play store [29], as both Speck and Gaps were not much tested
on real world applications but on toy applications. Our goal was to have a deep and
detail analysis, for this reason we initially choose to analyze only one application,
the AliExpress app [30]. Later on for test purposes we needed to analyze another
application as the AliExpress app was missing some classes of vulnerabilities that
we wanted to test, so we choose to analyze also the Coinbase Wallet app [31]. In
this chapter we will show the results of the testing and analysis on the pipeline
components:

• Speck;

• Gaps;

• Probes;

For what concerns Cauldron we have done some testing to ensure that it works
properly, but those are not reported as the results are not interesting, this because

33

differently from the other tools Cauldron is a pretty classical piece of software that
only need to respect its specifications and has not gray areas on his results like
Speck false positives or Gaps that might miss paths.

4.1 Speck
The testing on Speck is primarily focused on understanding the quality of the results
and the effort required to understand the context of the issues found by the tool in
order to be able to fix it or to understand if the issue is a false positive. For the
testing we proceed as follows, we choose a set of 10 random vulnerabilities found
by Speck in the AliExpress app, and we manually analyzed them to understand the
context of the issue which for our purposes is the following set of information:

• the method and class that contains the vulnerable code;

• checking the code if the issue real and exploitable;

• check if the method is used by the application;

We only analyzed 10 issues because the effort required to understand the context
of the issue is quite high, since the purpose of this work was to try to put in place
some kind of automation to reduce this effort, we didn’t want to spend too much
time on this, but it was important to have some insight on the quality of the results
of Speck. In this preliminary analysis we found 2 false positives as the code is not
used, which in 10 issues is a 20% false positive rate. For an application like AliEx-
press that counted 600 vulnerabilities means that 120 of them are false positives.
These two conditions proved the reason behind the usage of also a dynamic analysis
tool and the development of the probes, to reduce the effort required to understand
the context of the issue and to reduce the false positive rate.

4.1.1 Preliminary Analysis
The vulnerabilities are identified by Speck using the issue ID in the form of an oid,
in this instance we will substitute the oid with a name that is more human-readable.
In this section we will show the results in detail of the preliminary analysis of the
10 vulnerabilities found by Speck in the AliExpress app.

34

Alpha

Severity critical
APK com.alibaba.aliexpresshd
File BaseCollectionDetailPresenter.java
Line 85
Rule 1

The vulnerable method identified by Speck is the method N0 of the class BaseC-
ollectionDetailPresenter, the method is called only by the method X of the same
class. The Method create an implicit intent of type android.intent.action.SEND
containing a string as app/user provided data.

1 public f i n a l void N0(S t r i n g s t r) {
2 In t en t i n t e n t = new I n t en t (” andro id . i n t e n t . a c t i on .SEND”) ;
3 i n t e n t . setType (” t ex t /∗ ”) ;
4 i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .SUBJECT” , this . f 10692a) ;
5 S t r i n g a2 = UGCURLGenerator . a (this . f10686a , f 0 () , this . f 47916a) ;
6 i f (g e tHos tAc t i v i t y () != null && ! ge tHos tAc t i v i t y () . i s F i n i s h i n g ())
7 {
8 i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .TEXT” , s t r) ;
9 }
10 ModulesManager . d () . b () . b (this . f 10688a . g e tAc t i v i t y () ,
11 in t en t , a2 , this . c) ;
12 Co l l e c t i onTrack . l (getPageName () , this . f 10686a) ;
13 }

This behavior is compatible with the rule 1 as the application don’t use the cre-
ateChooser method to show the intent to the user. The X function has only two
direct callers, but they don’t directly disclose what kind of data the string might
contain, given the fact that the two callers have more than 50 callers each, the effort
required to understand the context of the issue is too high to be worth the effort in
this stage of the analysis. Since the content of the intent is a string is not known if
the data is sensitive or not, so the issue is marked as a true positive and therefore a

35

potential vulnerability, but further analysis is needed to understand if vulnerability
is truly exploitable.

Beta

Severity critical
APK com.alibaba.aliexpresshd
File UGCPostDetailActivity.java
Line 1651
Rule 1

The application create an intent of the type android.intent.action.SEND in the
openShare method without taking any parameters.

1 public void openShare () {
2 i f (this . f 47942k && St r i ng . valueOf (this . f 10718a)
3 . equa l s I gno r eCase (this . f 47937e)) {
4 AAFToast . c (R. s t r i n g . i n_b la ck_ l i s t_t ip) ;
5 return ;
6 }
7 i f (Constants .SOURCE_LEGACY_ALIEXPRESS. equa l s I gno r eCase (f47935h)) {
8 x () ;
9 return ;
10 }
11 S t r i n g s t r = this . d ;
12 S t r i n g s t r i n g = g e t S t r i n g (R. s t r i n g . itao_share_from_hint) ;
13 S t r i n g a2 = UrlGenerator . a (S t r i n g . valueOf (this . f 10718a)) ;
14 S t r i n g format = MessageFormat . format (” ({1})\n{0} ” , a2 , s t r i n g) ;
15 y () ;
16 In t en t i n t e n t = new I n t en t (” andro id . i n t e n t . a c t i on .SEND”) ;
17 i n t e n t . setType (” image /∗ ”) ;
18 i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .SUBJECT” , s t r) ;
19 i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .TEXT” , format) ;
20 Uri u r i = this . f 10719a ;

36

21 i f (u r i != null) {
22 i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .STREAM” , u r i) ;
23 }
24 i f (Constants .SOURCE_ITAO. equa l s I gno r eCase (f47935h)) {
25 ModulesManager . d () . e () . b (this , i n t en t , a2 ,
26 Pos tDe ta i lHe lpe r . b (this . f 10721a)) ;
27 try {
28 ModulesManager . d () . e () . i (getPage ()) ;
29 } catch (Except ion e2) {
30 Log . d (”UGCPostDetai lAct iv ity ” , e2) ;
31 }
32 }
33 }

The intent has type set to image/* and to it are added three items:

• android.intent.extra.SUBJECT: Takes the value from the member variable d,
which is initialized inside the onCreate method using the data from a received
intent this.d = intent.getStringExtra(EXTRA_POST_DESC);

• android.intent.extra.TEXT:Contains a URL generated via an URLGenerator
class which is able from a variable of type Long to generate a URL or in this
case a base part of if since the URL is composed by two parts:
S t r i n g s t r i n g = g e t S t r i n g (R. s t r i n g . itao_share_from_hint) ;
S t r i n g a2 = UrlGenerator . a (S t r i n g . valueOf (this . f 10718a)) ;
S t r i n g format = MessageFormat . format (” ({1})\n{0} ” , a2 , s t r i n g) ;
i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .TEXT” , format) ;

• android.intent.extra.STREAM: Takes its value from a member variable with
URI type, the name of the variable was not decompiled successfully. The URI
is created from a local file containing some king of image.

The intent is sent without using the createChooser method and therefore can
possibly leak information to other applications, and more specifically the intent
leaks the value of the unique identifier ANDROID_ID. Similarly to Alpha the
vulnerability is real but the data that is leaked is not known, so the issue is marked
as a true positive and therefore a potential vulnerability, but further analysis is
needed to understand if vulnerability is truly exploitable.

37

Charlie

Severity critical
APK com.alibaba.aliexpresshd
File UgcBasePostFragment.java
Line 250
Rule 1

The vulnerable method q6 crating the implicit intent is called only by one class,
UgcVideoPostFragment which call this method inside the onClick() method The
intent string contains the title field from the NPDetail class which is supposed to
handle the information about posts inside the platform.

1 public f i n a l void q6 (S t r i n g s t r , Function0<Str ing> func t i on0) {
2 S t r i n g s t r 2 ;
3 NPDetail nPDetai l = this . f 47872a ;
4 i f (nPDetai l == null) {
5 return ;
6 }
7 In t en t i n t e n t = new I n t en t (” andro id . i n t e n t . a c t i on .SEND”) ;
8 i n t e n t . setType (” t ex t /∗ ”) ;
9 NPDetail f47872a = getF47872a () ;
10 S t r i n g s t r 3 = ”” ;
11 i f (f47872a != null && (s t r 2 = f47872a . t i t l e) != null) {
12 s t r 3 = s t r 2 ;
13 }
14 i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .SUBJECT” , s t r 3) ;
15 S t r i n g a2 = UGCURLGenerator . a (nPDetai l . postId , nPDetai l . apptype ,
16 nPDetai l . d e t a i l S t y l e) ;
17 FragmentAct iv i ty a c t i v i t y = g e tAc t i v i t y () ;
18 boolean z = f a l s e ;
19 i f (a c t i v i t y != null && ! a c t i v i t y . i s F i n i s h i n g ()) {
20 z = true ;
21 }

38

22 i f (z) {
23 i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .TEXT” , s t r) ;
24 }
25 S t r i n g invoke = func t i on0 . invoke () ;
26 i f (g e tAc t i v i t y () == null | |
27 ! com . ugc . aa f . base . u t i l . S t r i n gU t i l . c (invoke)) {
28 return ;
29 }
30 AEProxy b = ModulesManager . d () . b () ;
31 FragmentAct iv i ty a c t i v i t y 2 = g e tAc t i v i t y () ;
32 I n t r i n s i c s . checkNotNul l (a c t i v i t y 2) ;
33 b . b (a c t i v i t y 2 , i n t en t , a2 , invoke) ;
34 Co l l e c t i onTrack .m(getPage () , nPDetai l . postId , nPDetai l . apptype) ;
35 }

Even thought I’m not familiar with the way posts are made in AliExpress I would
say they are public or at worst shared with customer/seller relationship. Given the
type of goods sold inside the platform I would say that the title of the post is really
unlikely to have interesting information. For these reason the issue is marked a
positive as the intent chooser is not used, but it is unlikely exploitable as the data
that is leaked are not sensitive.

Delta

Severity critical
APK com.alibaba.aliexpresshd
File webview/export/internal/android/l.java
Line 22
Rule 1

The code containing this issue is part of Chrome or one of his libraries. In fact can
be seen that the sole purpose of the method is to create an intent to be sent via a
createChooser.

1 public f i n a l I n t en t c r e a t e I n t e n t () {

39

2 In t en t i n t e n t = new I n t en t (” andro id . i n t e n t . a c t i on .GET_CONTENT”) ;
3 i n t e n t . addCategory (” andro id . i n t e n t . ca t ego ry .OPENABLE”) ;
4 i f (Bui ld .VERSION.SDK_INT >= 16) {
5 i n t e n t . setTypeAndNormalize (getAcceptTypes () [0]) ;
6 } else {
7 i n t e n t . setType (getAcceptTypes () [0]) ;
8 }
9 return i n t e n t ;
10 }

The sole usage of this method in fact create an intent chooser as it should, so the
issue is marked as a false positive.

Echo, Foxtrot and Golf

Severity critical
APK com.alibaba.aliexpresshd
File LinkShareDelegate.java
Line 34
Rule 1

Severity critical
APK com.alibaba.aliexpresshd
File MediaShareDelegate.java
Line 49
Rule 1

Severity critical
APK com.alibaba.aliexpresshd
File TextShareDelegate.java
Line 25
Rule 1

40

These three vulnerabilities are pretty much identical, method identified by Speck as
vulnerable does not use createChoose as defined by the rule. The application calls
a custom-made method called ShareContentBuilder.a to choose the right activity
as can be seen from the code snippet below.

1 public stat ic void a (Ac t i v i t y a c t i v i t y , ShareMessage shareMessage ,
2 ShareContext shareContext , IShareCa l lback iSha r eCa l l back) {
3 i f (Yp . v (
4 new Object [] { a c t i v i t y , shareMessage , shareContext , i Sha r eCa l l back } ,
5 null , ” 43186 ” , Void .TYPE) . y
6 | | ParamChecker . b (a c t i v i t y , shareMessage , i Sha r eCa l l back)) {
7 return ;
8 }
9 i f (! (shareMessage . getMediaContent () instanceof LinkContent)) {
10 i f (i Sha r eCa l l back != null) {
11 iSha r eCa l l back . onShareFa i l ed (null , shareMessage , ”−1” , null) ;
12 }
13 } else {
14 i f (TextUt i l s . isEmpty (((LinkContent) shareMessage . getMediaContent ())
15 . e tL inkUr l ())) {
16 i f (i Sha r eCa l l back != null) {
17 iSha r eCa l l back . onShareFa i l ed (null , shareMessage , ”−1” , null) ;
18 return ;
19 }
20 return ;
21 }
22 S t r i n g sho r tUr l = shareMessage . g e tShor tUr l () ;
23 i f (TextUt i l s . isEmpty (sho r tUr l)) {
24 sho r tUr l = shareMessage . getContentUr l () ;
25 }
26 S t r i n g a2 = ShareContentBui lder . a (shor tUr l , shareMessage) ;
27 In t en t i n t e n t = new I n t en t (” andro id . i n t e n t . a c t i on .SEND”) ;
28 i n t e n t . setType (” t ex t / p l a i n ”) ;
29 i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .SUBJECT” , a2) ;
30 i n t e n t . putExtra (” andro id . i n t e n t . ex t ra .TEXT” , a2) ;

41

31 Sha r eSe rv i c eHe lp e r Inne r . s t a r t Sh a r e I n t e n t (a c t i v i t y ,
32 ShareUnitManager . b (a c t i v i t y , i n t en t , true) ,
33 shareMessage , shareContext , i Sha r eCa l l back) ;
34 }
35 }

For this reason unless the custom-made method is flawed the issue is marked as a
false positive.

Hotel

Severity critical
APK com.alibaba.aliexpresshd
File f/a/i/d/b.java
Line 224
Rule 5

The method create a URL starting form a string value passed as parameter to the
method. There is a check if the URL is HTTPS but whether this check fails the
call is executed, allowing the use of unprotected HTTP request.

1 i f (u r l . g e tP ro t o c o l () . e qua l s (” ht tps ”)) {
2 ((HttpsURLConnection) httpURLConnection)
3 . s e tHos tnameVer i f i e r (f37401a) ;
4 ((HttpsURLConnection) httpURLConnection) .
5 setSSLSocketFactory (new TlsSn iSocke tFacto ry (DispatchConstants . a ())) ;
6 }
7 i f (ALog . g (1)) {
8 ALog . c (”awcn . DispatchCore ” , ”amdc␣ r e que s t . ” , s t r2 ,
9 eade r s ” ,␣httpURLConnection . g e tReque s tP rope r t i e s () . t o S t r i n g ()) ;
10 }
11 httpURLConnection . getOutputStream ()
12 ␣␣ . w r i t e (U t i l s . b (map , ␣OConstant .UTF_8) . getBytes ()) ;
13 i n t ␣ responseCode␣=␣httpURLConnection . getResponseCode () ;

42

The f method that send the HTTP request is called only by the method g of the
same class, the data used to create the URLs for the request seems to come from a
map provided as parameter. The exact way URL are created and request executed
further investigation is needed to understand if the vulnerability is actually usable
and the data that we might capture useful.

India

Severity critical
APK com.alibaba.aliexpresshd
File com/google/android/gms/measurement/internal/zzeb.java
Line 57
Rule 5

The method identifier vulnerable by Speck clearly shows that is using clear text
HTTP as can be seen from the code snippet below.

1 public f i n a l HttpURLConnection u (URL u r l) throws IOException {
2 URLConnection openConnection = u r l . openConnection () ;
3 i f (openConnection instanceof HttpURLConnection) {
4 SSLSocketFactory sSLSocketFactory = this . f 65650a ;
5 i f (sSLSocketFactory != null &&
6 (openConnection instanceof HttpsURLConnection)) {
7 ((HttpsURLConnection) openConnection)
8 . se tSSLSocketFactory (sSLSocketFactory) ;
9 }
10 HttpURLConnection httpURLConnection =
11 (HttpURLConnection) openConnection ;
12 httpURLConnection . s e tDe fau l tUseCaches (f a l s e) ;
13 httpURLConnection . setConnectTimeout (6 0 0 00) ;
14 httpURLConnection . setReadTimeout (6 1 0 00) ;
15 httpURLConnection . s e t I n s t an c eFo l l owRed i r e c t s (f a l s e) ;
16 httpURLConnection . setDoInput (true) ;
17 return httpURLConnection ;

43

18 }
19 throw new IOException (” Fa i l ed ␣ to␣ obta in ␣HTTP␣ connec t i on ”) ;
20 }

The function containing the vulnerable code is only used by a single method which
is a Java runnable, but that method is never called.

Juliett

Severity critical
APK com.alibaba.aliexpresshd
File com/google/android/gms/measurement/internal/zzay.java
Line 57
Rule 5

The method identifier vulnerable by Speck clearly shows that is using clear text
HTTP as can be seen from the code snippet below.

1 public f i n a l HttpURLConnection w(URL u r l) throws IOException {
2 URLConnection openConnection = u r l . openConnection () ;
3 i f (openConnection instanceof HttpURLConnection) {
4 SSLSocketFactory sSLSocketFactory = this . f 65568a ;
5 i f (sSLSocketFactory != null &&
6 (openConnection instanceof HttpsURLConnection)) {
7 ((HttpsURLConnection) openConnection)
8 . se tSSLSocketFactory (sSLSocketFactory) ;
9 }
10 HttpURLConnection httpURLConnection =
11 (HttpURLConnection) openConnection ;
12 httpURLConnection . s e tDe fau l tUseCaches (f a l s e) ;
13 httpURLConnection . setConnectTimeout (6 0 0 00) ;
14 httpURLConnection . setReadTimeout (6 1 0 00) ;
15 httpURLConnection . s e t I n s t an c eFo l l owRed i r e c t s (f a l s e) ;
16 httpURLConnection . setDoInput (true) ;
17 return httpURLConnection ;

44

18 }
19 throw new IOException (” Fa i l ed ␣ to␣ obta in ␣HTTP␣ connec t i on ”) ;
20 }

The function w that contains the vulnerable code is never used.

4.2 Gaps
The quality of the results of Gaps is critical for the functioning of the pipeline as
if Gaps is not able to reconstruct the path to the vulnerabilities we stop with only
the static analysis result. Gaps have been tested on a pool of standard application
with good results as we can see here [32] in the reconstructions results is able
to reconstruct over the 65% of the applications paths. However, these test are
based on a set of not really complex applications and with only the percentage
of reconstructed paths as a metric, which in our case is not really as we are not
interested in the path in general but only in the paths that lead to the vulnerabilities.
For example Gaps might even find 80% of the paths for example but those missing
20% might be the paths that we are interested in. For what concerns path execution
Gaps showed to be able to execute the paths, the success rate is more bound with the
quality of the paths than the quality of the execution. In the following subsections
we will show in detail the results of the testing on the Path reconstruction and Path
execution components of Gaps.

4.2.1 Path reconstruction
This in depth analysis with a manual path reconstruction was not planned for the
development of this project, but was made necessary by the fact that we were not
able to find Gaps paths leading to the vulnerabilities that we were interested in.
In this specific case we were interested in the WebView vulnerabilities, as we were
testing the Coinbase Wallet app, and we were finding any path leading to WebView
vulnerabilities. In fact, we were only able to match 4 vulnerabilities to the paths
using Cauldron:

• 66696b45bea0b3be9f8a9640 - rule type n.5;

• 66696b45bea0b3be9f8a9647 - rule type n.5;

45

• 66696b7ebea0b3be9f8a96b5 - rule type n.18;

• 66696b7ebea0b3be9f8a96b6 - rule type n.18;

Which was somewhat disappointing as we added to the testing app the Coinbase
Wallet to specifically target WebView vulnerabilities which is rule n.7 of the Speck
rules that were missing in the AliExpress app. We identified 3 possible reasons for
why we were not hitting our target methods:

• the methods is never used, and therefore Gaps can’t generate a path to it;

• the method is used, but the path is not generated by Gaps;

• Cauldron in failing to match the paths to the vulnerabilities;

For what concerns the last point we manually checked that the paths to the target
methods were not present in the Gaps output, so we can exclude this option. We
know that Gaps is not able to generate all the paths, but since Gaps in this case was
missing all the target paths we decided that a further manual analysis was needed,
to have a better understanding on the issue and the time required to manually find
the paths. For this test our objective was to understand how hard it is to find a
path manually that is not also be found by Gaps, given this scope we choose a
set of 20 vulnerabilities and tried to manually reconstruct the paths to the target
methods. The results of the manual analysis are shown in the table 4.1, where we
can immediately see that existing paths not found by Gaps are not many, and on
top of that is not easy to find by hand. More in detail the following 4 examples
represent the 4 possible structure of the paths that can be found during a manual
reconstruction:

• 6676663198cb71d5fcce3091: complete path;

• 6676666198cb71d5fcce30dd: incomplete path;

• 6676667498cb71d5fcce3170: incomplete path;

• 6676666298cb71d5fcce30ef: incomplete path;

These vulnerabilities are described with more detail in the following subsections,
for the issue 6676666298cb71d5fcce30ef we will also take into consideration the code,
but for the other we will skip it as the focus is on the path reconstruction, not the
quality of the Speck analysis.

46

Table 4.1: Path reconstruct analysis

application IssueID rule Gaps Manual
Coinbase 6676666198cb71d5fcce30dd 16 not found not found
Coinbase 6676667498cb71d5fcce3170 29 not found not found
Coinbase 6676666298cb71d5fcce30ef 17 not found not found
Coinbase 6676663298cb71d5fcce30a7 6 not found not found
Coinbase 6676663298cb71d5fcce30a8 29 not found not found
Coinbase 6676667598cb71d5fcce31e7 29 not found not found
Coinbase 6676667598cb71d5fcce31ed 29 not found not found
Coinbase 6676668498cb71d5fcce3212 32 not found not found
Coinbase 6676666c98cb71d5fcce312c 22 not found not found
Coinbase 6676663198cb71d5fcce30a0 5 not found not found
Coinbase 6676663198cb71d5fcce30a1 5 not found not found
Coinbase 6676663198cb71d5fcce3091 5 not found found
Coinbase 6676666998cb71d5fcce310c 18 not found not found
Coinbase 6676666998cb71d5fcce310d 18 not found not found
Coinbase 6676666998cb71d5fcce310e 18 not found not found
Coinbase 6676666998cb71d5fcce310f 18 not found not found
Coinbase 6676666998cb71d5fcce3110 18 not found not found
Coinbase 6676666998cb71d5fcce3111 18 not found not found
Coinbase 6676666998cb71d5fcce3112 18 not found not found
Coinbase 6676666998cb71d5fcce3113 18 not found not found

6676666298cb71d5fcce30ef – Unused method

This violation found by Speck is a SQL injection vulnerability, taking a look at the
code in figure 4.1 we can clearly see that the code might be vulnerable to a SQL
injection attack, as the query is formed by composition of strings. The code might
also not be vulnerable as the query could be formed by a constant string or strings
not controlled by the user, but in a code review activity this would be flagged as a
potential vulnerability and require a proof that this is the only way of doing this.
Therefore we can assume this as a vulnerability, in this case the function is small
and the codebase not that complex and for these reasons is really easy to understand
that the function is never used, as we can see from the figure 4.2, this is not always
as easy to see as we will see in the following subsections. Even thought the function
can be vulnerable the fact that is never used makes the vulnerability not exploitable,
but this can change in the future as the codebase evolves, so this is still potential

47

Figure 4.1: Vulnerable function code

vulnerability that should be fixed. For this type of cases Gaps correctly does not
generate a path allowing us to exclude this kind of vulnerabilities from the analysis.

6676667498cb71d5fcce3170 – Linear incomplete path

Some methods might be used buy some other methods but still not have an ex-
ecutable path, this is the case of the issue 6676667498cb71d5fcce3170, as we can
see in figure 4.3 the method is used by other internal methods, but not from the
main activity. In this case a manual check of the path is somewhat easy as we only
need to follow a linear call stack and at some point we will reach a method that
is never called, unfortunately this is not always the case as we will see in the next
subsection.

6676666198cb71d5fcce30dd – Branched incomplete path

In some cases the path might be more complex and the method might be used by
more than one method, this is the case of the issue 6676666198cb71d5fcce30dd, as
we can see in figure 4.4 the method is used by more than one method, and the path
is not linear. So we need to follow all the possible branches to understand if the

48

Figure 4.2: Vulnerable function usages

Figure 4.3: 6676667498cb71d5fcce3170 vulnerability path

method is used or not, in this case the method is not used, but is really easy to get
lost in the branches and miss some of them. These are the cases where Gaps make
a huge difference in terms of time saved to analyze an issue, as not having to search
manually for the path is a huge time saver.

6676663198cb71d5fcce3091 – Complete path

In some cases the path might be complete, this is the case of the issue 6676663198cb71d5fcce3091,
as we can see in figure 4.5 the method is used by the main activity, so the path is
complete. Here the point is not how easy it is to follow the path but how many
paths we need to analyze before being lucky enough to find the one that we are
interested in, also this path is not found by Gaps. Even if Gaps lose some paths,
we can’t compare the time needed to find the path manually to the time needed
to find the path with Gaps, as the time needed to find the path manually is not
bounded and is based on pure luck, especially if you don’t know the application you
are working on.

49

Figure 4.4: 6676666198cb71d5fcce30dd vulnerability path

Figure 4.5: 6676663198cb71d5fcce3091 vulnerability path

4.2.2 Path execution
Regarding the Gaps component that execute the path we didn’t really investigate
on it mainly because apart from some corner cases the paths were executed correctly.
For the scope of this project there are only two points of attention regarding the
path execution:

• paths that require to be logged in;

• paths in edge execution cases, like direct boot;

The first point is not really a problem as we can log in before the execution of
the paths that requires it. It might happen that the login is a part itself of the

50

path, in this case we can’t execute the path as we can’t log in before the execution
of the path and Gaps can’t log in for us, it is more likely that the interesting
vulnerabilities are after the login, not the login itself, but should be noted that this
limitation exists. The second point is more a limitation in the scope of action of
Gaps, as It is designed to interact with the application like a user would do, so it
can’t trigger the paths that require direct boot mode, in our rule set for example
we have the rule 31 and 32 that requires the application to be executed in a direct
boot scenario to be triggered, this is not a big limitation as those two rule generate
warnings and not critical vulnerabilities, but should be noted that this limitation
exists.

4.3 Probes executions

4.3.1 Rule 1 - Show an app chooser
This vulnerability has been mitigated by the Android OS itself, as the intent chooser
is always shown to the user, we can see from the android documentation since API
21 the chooser is always shown to the user [33]. Since we are targeting Android
API 31 we can not test properly this vulnerability. Anyway since we had already
implemented the probe we tested it on a toy application used during the develop-
ment of the probe, and we can confirm that the probe is working as expected. Still
we can’t test it on a real application, as is not really relevant as Android 5.0 is not
really used anymore.

4.3.2 Rule 5 - Use SSL traffic
We tested this probe on the AliExpress app with the following Speck vulnerabilities:

• 65e5820a0269d04de7e7eb99 - rule5

• 65e5820a0269d04de7e7eb9c - rule5

• 65e5820a0269d04de7e7eb9e - rule5

• 65e5820a0269d04de7e7ebaa - rule5

• 65e5820a0269d04de7e7ebac - rule5

51

• 65e5820a0269d04de7e7ebb0 - rule5

From which we obtained a report file for each vulnerability in order to check if
the data captured are sensitive or not. We will not show the report files as they are
too long, and not really interesting to see, as the data captured were not sensitive.
But we can say that the probe is working and able to generate a report file with the
data captured, these data can be easily read and a developer con understand if the
data captured are sensitive or not without a lot of effort and with a good degree of
confidence.

4.3.3 Rule 7 - Use WebView objects carefully

This types of vulnerabilities are the reason why we tested also the Coinbase Wallet
app, as for the AliExpress app we were not able to find any WebView related
vulnerabilities matching the path generated by Gaps. For this reason we searched
for new applications to use as a target for this type of vulnerabilities, we initially
identify 4 possible applications:

• Quvideo-xiaojun;

• Quvideo-slideplus;

• Mymail

• Coinbase Wallet;

From a preliminary test to understand what application was the most interesting
to analyze we found that the Quvideo-xiaojun and Mymail where repeatedly crash-
ing during the execution on the emulator. The Quvideo-slideplus was not crashing
but analyzing and app in Chinese is not really easy, if you don’t know the language,
so we choose to analyze the Coinbase Wallet app as it seemed to be more interesting,
and it was easier to understand its functionalities as it is a wallet app. Unfortu-
nately even if we changed the target app to seek for WebView vulnerabilities we
were not able to find any matching the paths generated by Gaps, as it was unable
to generate the paths leading to the vulnerabilities.

52

4.3.4 Rule 11 - Store only non-sensitive data in cache
files

As written in the implementation section this vulnerability have been mitigated by
android itself, as the cache directory is not accessible by other applications, both
with a permission schema that only allow the application that created the cache to
access it and also with a randomization of the cache directory name. This makes
these kinds of vulnerabilities not exploitable, we tested this on a toy application but
on the test system we were not able to access the cache directory of the application,
so we can’t test it on a real application.

53

54

5
Mixing everything in our Cauldron

In the previous chapters we showed the results, issues and limitations of the tools,
in this chapter we will analyze the results of the composition of the tools. For this
purpose we will use the two test applications, the AliExpress and the Coinbase
Wallet app. We are not going to show specific example vulnerabilities as we have
already shown them in the previous chapter as we want to put the emphasis on
the results of the composition of the tools, and give a more general overview of
the results and capabilities of the entire pipeline and understand if it meets the
requirements that we have set in the introduction.

5.1 Speck analysis

As we can see from the table 5.1 the Speck tool has found a considerable amount
of issues in both applications. The AliExpress app has a total of 620 issues and the
Coinbase Wallet app has a total of 377 issues. The amount of issues found by Speck
is compliant with the expectations, as is common to find a considerable amount of
issues when scanning an application with a new static analysis tool.

55

5.2 Gaps analysis
Expressing the number of paths found by Gaps is not trivial as the paths are grouped
by the type of the path, so ideally we should count them separately. For our purpose
the class of the path is not relevant and also Cauldron don’t distinguish between
the type of the path, for these reasons we can just count the total number of paths
found by Gaps without grouping them up. The AliExpress app has a total of 47
complete paths and for what concerns the Coinbase Wallet app we have a total of
36 complete paths. Summing up the total number of paths found by Gaps we have
a total of 83 paths, which is considerably less than the total number of issues found
by Speck.

5.3 Cauldron path matching
During our testing we started the matching phase of our two test applications, the
AliExpress and the Coinbase Wallet app with almost a thousand issues found by
Speck and less than a hundred paths found by Gaps. Given the prior analysis
and testing of Speck is safe to expect that a good majority of the issues will not
be matched on the paths found by Gaps, and this is normal with the design and
configuration of the tools. It should be noted that starting from an X number of
paths doesn’t mean that X is the maximum number of vulnerabilities that we can
match, as a path can match with one o more vulnerabilities and can also not match
with any vulnerability. This is because the matching strategy doesn’t match only
the landing point of the path, but we will match it even if a vulnerable method is
called along the path. Even thought we have many ways of matching the issues
with the paths during the test we only matched a very low percentage of the total
issues found by Speck, as we can see for AliExpress in table 5.2 we have a total
of 29 issues matched and for the Coinbase Wallet app in table 5.3 we have a total
of 4 issues matched of which none of the vulnerabilities of the rule 7 that we were
interested in.

The test run of the pipeline resulted in a 3.6% issues matched, which is a really
low percentage even with the fact that Speck match library code that is not used.
This low percentage is generally a bad result, unless we can search for the paths
with a tool that find all the paths in the application, in that case we know that

56

the 3.6% of the issues are the only real issues in the application, and everything
else is a false positive. As Gaps don’t provide such warranties, as we have seen in
the previous chapter, this results suggest a shift in target users and in the way the
pipeline should be integrated in a SSDLC process, this will be discussed in the next
chapter 6.

57

Table 5.1: Speck vulnerabilities

Rule # of issues AliExpress # of issues Coinbase wallet
rule1 12 11
rule2 0 0
rule3 0 0
rule4 6 3
rule5 56 25
rule6 17 16
rule7 30 16
rule8 0 0
rule9 0 0
rule10 2 2
rule11 35 8
rule12 0 0
rule13 1 0
rule14 7 0
rule15 0 0
rule16 33 18
rule17 9 12
rule18 160 41
rule19 4 1
rule20 25 1
rule21 0 0
rule22 3 4
rule23 11 2
rule24 4 2
rule25 3 2
rule26 0 37
rule27 0 0
rule28 0 1
rule29 184 168
rule30 1 6
rule31 2 0
rule32 15 1

58

Table 5.2: AliExpress matched vulnerabilities

Rule # speck issues # of issues matched
rule1 12 0
rule4 6 0
rule5 56 6
rule6 17 0
rule7 30 0
rule10 2 0
rule11 35 5
rule13 1 0
rule14 7 0
rule16 33 0
rule17 9 0
rule18 160 15
rule19 4 0
rule20 25 0
rule22 3 0
rule23 11 0
rule24 4 0
rule25 3 1
rule29 184 0
rule30 1 0
rule31 2 0
rule32 15 2

59

Table 5.3: CoinbaseWallet matched vulnerabilities

Rule # of Speck issues # of issues matched
rule1 11 0
rule4 3 0
rule5 25 2
rule6 16 0
rule7 16 0
rule10 2 0
rule11 8 0
rule16 18 0
rule17 12 0
rule18 41 2
rule19 1 0
rule20 1 0
rule22 4 0
rule23 2 0
rule24 2 0
rule25 2 0
rule26 37 0
rule28 1 0
rule29 168 0
rule30 6 0
rule32 1 0

60

6
Design changes after testing

Following the prototype testing is clear that the original design of the pipeline is
not feasible, we will discuss the main problems and the new design of the pipeline
output.

• Not all the probes needed for the pipeline can be created, and a vast majority
of the probes are not automatically testable;

• Gaps matched paths can’t be trusted as the sole possible vulnerabilities;

The first point basically undermines the ability of the pipeline to automatically
test the vulnerabilities, which would be a really important feature for the pipeline.
This was a kind of utopian idea, but it was worth trying to see how many of the
probes could automatically check the vulnerabilities. Even without automatic test
for the vulnerabilities, still the probes and the paths can be used to gain insights on
the vulnerabilities. The second point is more like a strategy problem, because we
can’t rely on the Gaps generated paths as the only possible vulnerabilities, we still
need to check all the vulnerabilities found by Speck. These two points put together,
made us reconsider what we wanted to output from the pipeline.

61

6.1 New pipeline output
Originally the output was a reduction of the output of Speck removing the false
positives, given the path misses this filtering is not possible as it would lead to a loss
of real vulnerabilities. Whoever is using SAST tool should be used to vulnerabilities
categorizations, as tools usually have a way of categorizing the vulnerabilities based
on the risk score, the impact of the vulnerability, the ease of exploitation, etc. For
this reason we choose to move the scope of the pipeline and use its output to enrich
the categorization of the vulnerabilities found by Speck based on the likelihood
of the vulnerability to be exploited. We choose to use the pipeline to gain more
insight on the vulnerabilities found by Speck, and not to filter them. We propose
then to fit the vulnerabilities into a hierarchy of classes in order to quantify the
insight about a vulnerability and allow us to prioritize the vulnerabilities based
on this as we can see in figure 6.1, the structure as the form of a pyramid as the
likelihood of finding automatically testable vulnerability is a lot lower the finding
a path for executing a vulnerability. This allows us to generate a report that
classifies the vulnerabilities and prioritize them. As Speck doesn’t really have a
way of classifying the vulnerabilities we didn’t try to create a composed risk score,
but since most static analysis tools have a way of classifying the vulnerabilities this
can be used in conjunction with the pipeline to generate a better risk score, we will
discuss the opportunities about this in the possible improvements’ section 8.

62

Figure 6.1: Vulnerabilities priority

63

64

7
Real-world applications

Given the change in the pipeline objective and output, in this chapter we will
discuss the possible applications and target users for the pipeline in the real world.
We propose two main target users for the pipeline with their respective applications:

• security researcher;

• Enterprise;

In the following sections we will present the possibilities in applications of the
pipeline in these two scenarios.

7.1 Security researcher
The work of the security researcher has many tasks that might benefit from the use
of the pipeline. Nowadays, Bug bounty programs [34] are quite popular, the reason
behind popularity of these programs is that the companies find really advantageous
to have a lot of people looking for bugs in their codebase, and the costing of the
program is really low compared to the cost of having a team of security researchers
looking for bugs in the codebase. A researcher can claim a bounty by finding a
security vulnerability in the codebase of the company that is offering the bounty,
the bounty can be quite considerable, for instance Microsoft has a bug bounty

65

program that can pay up to $250,000 for a single bug [35]. Searching for bugs in
very big codebases can be a really demanding task, as the bug can be hidden in a
lot of different palaces and if we take as example Google Chrome which has around
32 million lines of code [36], can be easily seen that only searching by patiently
reading the code line by line is not a viable option. For these reasons using a
scanning tool can give a hit from where to start looking for bugs, but generally the
tools are unsound and produce a lot of false positives, this would require to spend
a lot of time to analyze the issues found by the tool. The pipeline can be used to
filter the issues found by the tool, as in this use case is not relevant to find all the
vulnerabilities and not lose any, but to find a vulnerability that can be claimed for
a bounty. For this use case the pipeline can offer various advantages:

• false positives are reduced; as the vulnerabilities that are matched on a path
are more likely to be real vulnerabilities;

• provides a way to execute the vulnerable code in a convenient way;

• provides probes that can be used to gain more information about the vulner-
ability;

For these reasons the pipeline can be a really useful tool that can allow the
researcher to save time and focus on the most relevant issue allowing to analyze
more codebases giving the possibility to find more bugs and claim more bounties.

7.2 Enterprise
Differently from the security researcher perspective, the enterprise perspective is
more focused on the general quality and security of the codebase, for this reason
SAST and static analysis tools are widely used in the industry. In the enterprise view
the pipeline is not used to filter the vulnerabilities as is of primary importance to not
lose any vulnerability, but it can be used to gain more insight on the vulnerabilities
found by the SAST tool and allow to prioritize the vulnerabilities based on the
likelihood of the vulnerability to be exploited. This can allow to fasten the process
of choosing which vulnerabilities to fix first and having more information about
the vulnerability in conjunction with the ability to execute the vulnerable code can
allow to fix the vulnerability faster. For these reasons the pipeline can provide

66

the mean to the company to reach is goal of making the codebase more secure
and of higher quality faster and with less effort. On top of making the process of
fixing the vulnerabilities faster and cheaper to the company the pipeline can also
be beneficial for the developers that work on the codebase, as the feature provided
by our solution can allow them to have a simpler way to execute, analyzed and test
the vulnerabilities found by the SAST tool, and also to have less false positives to
deal with.

67

68

8
Future Work and Possible Improvements

During the evaluation of the system, several possible improvements and future work
were identified such as:

• improve Gaps path reconstruction;

• adding machine learning and artificial intelligence techniques;

These improvements are the one that should bring the most significant impact
to the system and will be discussed with more details in the following sections.

8.1 Gaps Path Reconstruction
The improvements that could be made to the Gaps’ path reconstruction are two.
The first one is to use the path reconstruction engine of Gaps to search for spe-
cific paths instead of default searching for every possible path, this will both speed
up the search and might allow applying more complex rules to the path reconstruc-
tion. Secondly, an improvement to the overall percentage of discovered paths would
greatly improve the effectiveness of the system as the amount of information that
can be gathered from the probes is directly proportional to the amount of paths
that are discovered.

69

8.2 Adding ML and AI Techniques
Applying ML and AI techniques can bring significant benefits to the system espe-
cially in the analysis of the results of the probes. The probes are a very powerful
tool to gather information about the vulnerabilities of a system, but as we have
seen in the previous chapters there are some limitations as some rules are not com-
putable. The way non-computable rules are probed is by generating an output that
can be used to help the analyst to understand if the rule is satisfied or not, but this
is a time-consuming process. These outputs can be quite verbose for some types of
vulnerabilities such as the network related ones, where the network traffic is cap-
tured and needs to be analyzed, for this kind of task ML and AI techniques can be
very useful as they can be trained to recognize patterns in the network traffic in
order to recognize or better approximate the satisfaction of the rule.

70

9
Conclusion

In this Master thesis, I present a methodology to improve the results of SAST tools
and to make them more effective in detecting true vulnerabilities and ease the man-
ual analysis needed to assess and fix the vulnerabilities in Android applications.
The solution employs a combination of static and dynamic analysis to gather more
information compared to the sole unsound static analysis. We propose Cauldron
that allows to compose the results of Speck with the path reconstruction and the
path’s guided automatic interaction with the application from Gaps. This compo-
sition provides a mean to execute the vulnerable code in a controlled environment
and set up a system of probes and tests that can allow gathering more information
about the vulnerabilities found by static analysis tools. This approach helps the
developer in the manual analysis of the vulnerabilities in order to filter out false
positives and speed up the process of fixing the vulnerabilities, which is of primary
importance as scanning the code is only the first step in the process of securing
an application. Ultimately Cauldron was tested against two test applications the
AliExpress and Coinbase Wallet applications, the results showed that the approach
can be effective but also showed the fragility of the system which dependent on
the quality of the results of many tools. In fact is really important to start from a
SAST tool with rules and vulnerabilities that are well-defined and not too generic,
in order to ease the probe and test creation. It is also very determinant the quality
of the path reconstruction, in fact if the paths to the vulnerabilities can’t be recon-

71

structed no automatic interaction with the vulnerable code is possible and therefore
no probe can be run, making this approach ineffective. These point emerged from
the tests are points that shall be addressed in the future work in order to improve
this prototype and make it more reliable and effective and possibly allow it to be
used in a production environment.

72

References

[1] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Transactions of the American Mathematical Society, vol. 74, no. 2,
pp. 358–366, 1953. [Online]. Available: http://www.jstor.org/stable/1990888

[2] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ser. POPL ’77. New York, NY, USA:
Association for Computing Machinery, 1977, p. 238–252. [Online]. Available:
https://doi.org/10.1145/512950.512973

[3] J. B. Kam and J. D. Ullman, “Global data flow analysis and iterative
algorithms,” J. ACM, vol. 23, no. 1, p. 158–171, jan 1976. [Online]. Available:
https://doi.org/10.1145/321921.321938

[4] G. A. Kildall, “A unified approach to global program optimization,” in
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ser. POPL ’73. New York, NY, USA:
Association for Computing Machinery, 1973, p. 194–206. [Online]. Available:
https://doi.org/10.1145/512927.512945

[5] O. Coudert and J. Madre, “A unified framework for the formal verification
of sequential circuits,” in 1990 IEEE International Conference on Computer-
Aided Design. Digest of Technical Papers, 1990, pp. 126–129.

[6] R. DeMilli and A. Offutt, “Constraint-based automatic test data generation,”
IEEE Transactions on Software Engineering, vol. 17, no. 9, pp. 900–910, 1991.

[7] P. Cousot and R. Cousot, “Systematic design of program analysis
frameworks,” in Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, ser. POPL ’79. New York, NY,

73

http://www.jstor.org/stable/1990888
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/321921.321938
https://doi.org/10.1145/512927.512945

USA: Association for Computing Machinery, 1979, p. 269–282. [Online].
Available: https://doi.org/10.1145/567752.567778

[8] A. Miné, “The octagon abstract domain,” Higher-Order Symb Computation,
vol. 19, pp. 31–100, 2006.

[9] B. Livshits. Improving software security with precise static and runtime
analysis. [Online]. Available: https://web.archive.org/web/20110605125310/
http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.
pdf

[10] IEC 62304:2006 Medical device software - Software life cycle processes, IEC
Std., may. 2006.

[11] ISO 26262-1:2018, ISO Std., dec. 2018.

[12] J. Lahtinen, M. Johansson, J. Ranta, H. Harju, and R. Nevalainen, “Compar-
ison between iec 60880 and iec 61508 for certification purposes in the nuclear
domain,” in Computer Safety, Reliability, and Security, E. Schoitsch, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 55–67.

[13] DO-178C Software Considerations in Airborne Systems and Equipment Cer-
tification, RTCA, EUROCAE Std., jan. 2012.

[14] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion
lines of code later: using static analysis to find bugs in the real world,”
Commun. ACM, vol. 53, no. 2, p. 66–75, feb 2010. [Online]. Available:
https://doi.org/10.1145/1646353.1646374

[15] astree. Fast and sound static analysis. [Online]. Available: https:
//www.absint.com/astree/index.htm

[16] Gartner. Sast (static application security testing). [Online]. Avail-
able: https://www.gartner.com/en/information-technology/glossary/
static-application-security-testing-sast

74

https://doi.org/10.1145/567752.567778
https://web.archive.org/web/20110605125310/http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.pdf
https://web.archive.org/web/20110605125310/http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.pdf
https://web.archive.org/web/20110605125310/http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.pdf
https://doi.org/10.1145/1646353.1646374
https://www.absint.com/astree/index.htm
https://www.absint.com/astree/index.htm
https://www.gartner.com/en/information-technology/glossary/static-application-security-testing-sast
https://www.gartner.com/en/information-technology/glossary/static-application-security-testing-sast

[17] redhat. Security in the software development lifecycle. [On-
line]. Available: https : //www. redhat . com/en/topics/ security/
software-development-lifecycle-security

[18] microsoft. Security development lifecycle (sdl) practices. [Online]. Available:
https://www.microsoft.com/en-us/securityengineering/sdl/practices

[19] synopsys. Secure sdlc 101. [Online]. Available: https://www.synopsys.com/
blogs/software-security/secure-sdlc.html

[20] owasp. Secure development and integration. [Online]. Available:
https://owasp.org/www-project-developer-guide/draft/foundations/secure_
development/

[21] D. D. Murugiah Souppaya (NIST), Karen Scarfone (Scarfone Cybersecurity).
Secure software development framework (ssdf) version 1.1: Recommendations
for mitigating the risk of software vulnerabilities. [Online]. Available: https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

[22] B. Brace. Speed test : Python vs rust. [Online]. Available: https:
//dev.to/bekbrace/speed-test-python-vs-rust-1mk4

[23] skylot. jadx - dex to java decompiler. [Online]. Available: https:
//github.com/skylot/jadx

[24] Frida. Frida. [Online]. Available: https://frida.re/

[25] Androguard. Androguard. [Online]. Available: https://github.com/
androguard/androguard

[26] Google. Google android security best practices. [Online]. Available:
https://developer.android.com/topic/security/best-practices

[27] mitmproxy. mitmproxy. [Online]. Available: https://mitmproxy.org/

[28] Android-Developers. Data and file storage overview. [Online]. Available:
https://developer.android.com/training/data-storage#filesInternal

[29] Google. Google play store. [Online]. Available: https://play.google.com/
store/games?hl=en

75

https://www.redhat.com/en/topics/security/software-development-lifecycle-security
https://www.redhat.com/en/topics/security/software-development-lifecycle-security
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.synopsys.com/blogs/software-security/secure-sdlc.html
https://www.synopsys.com/blogs/software-security/secure-sdlc.html
https://owasp.org/www-project-developer-guide/draft/foundations/secure_development/
https://owasp.org/www-project-developer-guide/draft/foundations/secure_development/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://dev.to/bekbrace/speed-test-python-vs-rust-1mk4
https://dev.to/bekbrace/speed-test-python-vs-rust-1mk4
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://frida.re/
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://developer.android.com/topic/security/best-practices
https://mitmproxy.org/
https://developer.android.com/training/data-storage#filesInternal
https://play.google.com/store/games?hl=en
https://play.google.com/store/games?hl=en

[30] Alibaba. Aliexpress. [Online]. Available: https://play.google.com/store/
search?q=aliexpress&c=apps&hl=en

[31] Coinbase. Coinbase wallet: Nft & crypto. [Online]. Available: https:
//play.google.com/store/search?q=coinbase+wallet&c=apps&hl=en

[32] S. Doria. Control flow graph-based path reconstruction in android
applications. [Online]. Available: https://thesis.unipd.it/handle/20.500.
12608/52254?mode=simple

[33] Android-Developers. Intents and intent filters. [Online]. Available: https:
//developer.android.com/guide/components/intents-filters

[34] wikipedia. Bug bounty program. [Online]. Available: https://en.wikipedia.
org/wiki/Bug_bounty_program

[35] Microsoft. Microsoft bug bounty program. [Online]. Available: https:
//www.microsoft.com/en-us/msrc/bounty

[36] openhub. Chromium (google chrome). [Online]. Available: https://openhub.
net/p/chrome/analyses/latest/languages_summary

76

https://play.google.com/store/search?q=aliexpress&c=apps&hl=en
https://play.google.com/store/search?q=aliexpress&c=apps&hl=en
https://play.google.com/store/search?q=coinbase+wallet&c=apps&hl=en
https://play.google.com/store/search?q=coinbase+wallet&c=apps&hl=en
https://thesis.unipd.it/handle/20.500.12608/52254?mode=simple
https://thesis.unipd.it/handle/20.500.12608/52254?mode=simple
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://en.wikipedia.org/wiki/Bug_bounty_program
https://en.wikipedia.org/wiki/Bug_bounty_program
https://www.microsoft.com/en-us/msrc/bounty
https://www.microsoft.com/en-us/msrc/bounty
https://openhub.net/p/chrome/analyses/latest/languages_summary
https://openhub.net/p/chrome/analyses/latest/languages_summary

Acknowledgments

77

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Static code analysis
	Static Application Security Testing
	Real-world usage of SAST

	Requirements and Design
	Requirement Analysis
	Design
	Speck
	Gaps
	Cauldron
	Vulnerability testing and probes

	Implementation
	Speck
	Cauldron
	Programming language
	Serialization and Deserialization
	Probes execution

	Probes
	Rule 1 - Show an app chooser
	Rule 5 - Use SSL traffic
	Rule 11 - Store only non-sensitive data in cache files
	Rule 7 - Use WebView objects carefully

	In depth tools testing
	Speck
	Preliminary Analysis

	Gaps
	Path reconstruction
	Path execution

	Probes executions
	Rule 1 - Show an app chooser
	Rule 5 - Use SSL traffic
	Rule 7 - Use WebView objects carefully
	Rule 11 - Store only non-sensitive data in cache files

	Mixing everything in our Cauldron
	Speck analysis
	Gaps analysis
	Cauldron path matching

	Design changes after testing
	New pipeline output

	Real-world applications
	Security researcher
	Enterprise

	Future Work and Possible Improvements
	Gaps Path Reconstruction
	Adding ML and AI Techniques

	Conclusion
	References
	Acknowledgments

