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1 Introduction

Industrial automation has brought about increased efficiency and precision in vari-

ous sectors. Among the components that constitute an automated system, conveyor

belts hold a significant position. They are integral to numerous industrial processes,

facilitating the smooth transition and handling of goods.

In the context of quality control, conveyor belts work together with other automated

systems such as cameras and sensors. These technologies monitor the products as

they move along the conveyor belts, inspecting them for any defects or inconsisten-

cies. This real-time monitoring and inspection ensure that only products meeting

the set quality standards progress further in the production line, thereby maintaining

high quality output and minimizing waste.

This thesis focuses on a specific application that involves the use of a Luxonis

camera, specifically the OAK-D Lite and Pro models [23][21], positioned above a

conveyor belt system. The use of Smart cameras, such as the aforementioned, offer

significant advantages over traditional cameras. They process images in real-time,

have advanced features like AI for tasks such as object recognition, and can be in-

tegrated with IoT devices. Their adaptability to varying conditions and efficient

data management make them ideal for industrial use. Based on this, the primary

objective of this setup is to study and implement an algorithm that enhances quality

control performance. This includes providing a swift response to light variations

and other disturbances, and importantly, controlling the conveyor belt speed to re-

duce the effects of motion blur for longer exposure times.

The conveyor belt system under consideration here is made by the BMTec [3]

and consists of three cascading belts, each approximately 1.5 m in length as can be

seen in Figure 1a and 1b. A vibrating plate, in Figure 1c, is a common component

in such systems, is used to position small objects like screws, nuts and washers onto

the belt. The system is equipped with a control panel, as shown in Figure 1d, which

provides comprehensive control over the conveyor belt parameters. This includes

the ability to regulate the speed of each of the three conveyor belts individually.

Additionally, it offers control over a lighting system that is currently in the process
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of being integrated into the system.

(a) (b)

(c) (d)

Figure 1: BMTec’s conveyor belt subject of the study

Industrial conveyor belts operate at varying speeds, in the case of study between

0.03m/s and 1.8m/s. At these speeds, the exposure time must be significantly low

to achieve a shape reconstruction error of, for example, one-tenth of a millimeter.
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This requirement presents a unique challenge.

The relationship between conveyor speed (v), exposure time (t), and positional

error (e) can be expressed as:

e = v · t (1)

For an error of 0.1 mm (0.0001 m) and the maximum conveyor speed of 1.8

m/s , the required exposure time would be:

t =
e

v
=

0.0001

1.8
≈ 0.000055 s ≈ 55 µs (2)

This calculation shows that even at the maximum speed of the conveyor belt,

the required exposure time to maintain the positional error within 0.1mm is within

the camera’s exposure time range (10 to 33000 µs). However, this is quite close

to the lower limit of the camera’s capabilities, leaving little room for error. This

underscores the need for a rapid response to changes in lighting conditions and

other disturbances to maintain image quality and accuracy. It also highlights the

precision required to address it.

Moreover, the environment where the conveyor belt operates is usually charac-

terized by low light conditions. This typically necessitates a higher exposure time

or an increase in the sensor’s sensitivity. However, both these adjustments can lead

to a significant reduction in image quality. This further emphasizes the need for

an effective control algorithm that can maintain optimal image quality under these

challenging conditions.

One important consideration of this project is to create a solution that can be eas-

ily implemented even on conveyor belts that are not predisposed to. While it would

be possible to achieve better performance by creating an enclosure and maintaining

a constant light source to avoid problems of shadows and under or over-exposures,

the philosophy of the project is to obtain something that does not require too much

hardware implementation. This means finding a balance or compromise between

the ideal conditions for the camera and the practical conditions of the conveyor belt

system.
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In addition to the primary goal of this thesis, another crucial objective is to

provide a quality parameter for each acquired image. This parameter serves as an

indicator of the image’s quality, which is fundamental in digital image processing.

By ensuring good prepossessing and providing a quality parameter with each im-

age, we can potentially decrease the complexity of the system as it won’t have to

deal with images of poor quality or disturbances.

Poor quality images could be due to various factors such as low resolution, high

noise levels, poor lighting conditions, or motion blur. By controlling these factors,

we can ensure that the images fed into the system are of high quality, thereby re-

ducing the chances of errors or inaccuracies in the subsequent stages of processing.

For instance, if the subsequent algorithm, which could be a neural network or a

simpler object detection/classification algorithm using computer vision, produces

some unexpected results, we have an additional parameter (the quality parameter)

to verify if the results are reliable or not.

The goal of this thesis, therefore, is to study and implement an algorithm that

can effectively control the parameters of the Luxonis cameras in response to varying

conditions. By doing so, it aims to improve the performance of the conveyor belt

system in applications such as product quality control and product quantity estima-

tion. This endeavor, if successful, could significantly enhance the efficiency and

accuracy of industrial automation processes. This approach, therefore, not only en-

hances the performance of the conveyor belt system but also ensures the reliability

of the results produced by the system.

In conclusion, this thesis aims to strike a balance between ideal and practical

conditions, and in doing so, hopes to contribute significantly to the field of industrial

automation.
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2 Cameras in industry

In the modern era, cameras have become an integral part of various industrial ap-

plications. They are used in a wide range of applications, from quality control

and safety monitoring to process control and automation. With the advancement in

technology, cameras have become more sophisticated and capable, making them an

indispensable tool in the industry [1].

Cameras in the industry are primarily used for inspection and surveillance pur-

poses [1]. They help in maintaining the quality of products, ensuring the safety

of the workplace, and monitoring the efficiency of the production process. With

the help of cameras, defects in products can be detected early, reducing waste and

saving costs. Surveillance cameras also help in preventing accidents by monitor-

ing the working conditions and alerting the concerned authorities in case of any

discrepancies.

2.1 Importance of camera in industry

The importance of cameras in the industry cannot be overstated. They are used in

a variety of applications, each serving a unique purpose. For instance, in the manu-

facturing industry, cameras are used for quality control. They inspect products for

defects, ensuring that only high-quality products reach the customers. This not only

improves customer satisfaction but also reduces the cost associated with defective

products.

In addition to quality control, cameras are also used for safety monitoring. They

monitor the working conditions in factories and alert the authorities in case of any

safety hazards. This helps in preventing accidents and ensuring the safety of the

workers.

Furthermore, cameras are used for process control. They monitor the production

process and provide feedback to the control system. This allows the system to make

necessary adjustments to the process, improving efficiency and reducing waste.

The advent of cameras, especially those equipped with advanced computer vi-

sion algorithms, has indeed brought about a paradigm shift in the field of robotics.
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Acting as the ‘eyes’ for robots, these cameras capture high-resolution images or

video feeds of their surroundings. This visual data has opened up new avenues for

robots to interact with their environment in ways that were once thought to be be-

yond reach. Consider mobile robots, for instance. They can now recognize minute

features, subtle changes, and variances in their surroundings. This ability has em-

powered them to navigate through challenging terrains, identify and avoid obstacles,

and control items with remarkable precision.

In the realm of industrial processes, object detection and classification have be-

come indispensable for maintaining quality control. Cameras are used to capture

images of moving objects, which are then classified based on their size, color, and

other properties. This technology has found its application in autonomous driv-

ing technology as well. Here, it works together with image recognition software

to ensure the safe operation of vehicles, detect traffic, create 3D maps, and enable

navigation without the need for a driver.

The importance of spatial data analysis, often facilitated by the use of cameras,

cannot be overstated in various industries. It has proven to be a game-changer

in reducing costs, boosting business revenue, and significantly enhancing machine

productivity. Moreover, it has made the work process more efficient.

The advancements and applications elucidated above are integral components of

Industry 4.0 and 5.0 that has revolutionized the industrial sector with the integration

of digital technologies.

In Industry 4.0, cameras play a crucial role in enabling automation. They are used

in conjunction with machine learning algorithms for tasks such as object detection,

defect identification, and process monitoring. The data captured by the cameras is

processed and analyzed to make informed decisions, thereby reducing human inter-

vention and increasing efficiency.

Industry 5.0 takes the use of cameras a step further by integrating them into a hyper-

automated environment. In this setup, cameras are not just passive data collectors

but active participants in the industrial process. They are connected to a network of

devices and systems that can communicate and make decisions in real-time. This

allows for more complex and adaptive industrial processes.
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Hyperautomation is a key concept in Industry 5.0. It involves the use of advanced

technologies such as Artificial Intelligence (AI), Machine Learning (ML), and In-

ternet of Things (IoT) to automate processes to a degree that was not possible in

Industry 4.0. In the context of cameras, hyperautomation could involve real-time

image processing, predictive maintenance of camera systems, and adaptive control

of camera parameters based on environmental conditions.

While cameras have been an integral part of Industry 4.0, their role is signifi-

cantly enhanced in Industry 5.0 with the advent of hyperautomation. As we move

towards more connected and intelligent industrial systems, the role of cameras as

data collectors and decision-makers will continue to evolve.

2.2 Types of cameras for industrial applications

In the realm of industrial applications, a variety of cameras are employed, each

bringing its unique set of features and benefits to the Table.

Area Scan Cameras, for instance, capture a two-dimensional image of the entire

field of view in one go. This ability makes them a popular choice for applications

such as quality control, sorting, and packaging where a comprehensive view of the

scene is required [1].

On the other hand, Line Scan Cameras work differently. They capture a single

line of pixels at a time, gradually building a two-dimensional image line by line.

This unique capability makes them ideal for inspecting cylindrical objects and web

materials, where a continuous stream of data is needed [1].

In addition there are also the 3D Cameras. These cameras capture three-dimensional

images of the subject, providing valuable information about the shape, volume, and

surface profile. This depth of data finds its use in applications like robot guidance,

quality control, and logistics, where understanding the spatial relationships between

objects is crucial [1].

Infrared (Thermal) Cameras offer a different perspective altogether. They cap-

ture images based on the heat, or infrared radiation, emitted by objects. This makes

them useful for applications like predictive maintenance, safety monitoring, and

process control, where temperature variations are key indicators. Their ability to
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capture images in low light or darkness also makes them invaluable in security and

wildlife observation [1].

X-ray cameras, on the other hand, are used in industrial radiography to inspect

materials and components, locate and quantify defects, and detect degradation in

material properties. They also play a crucial role in maintaining security at airports,

ports, and borders [1].

In essence, the type of camera chosen for an application depends on the specific

requirements of the task at hand. Each type of camera, with its unique capabili-

ties, contributes to the overall efficiency and effectiveness of industrial processes.

However, it’s important to note that these advanced cameras come with a high price

tag. Despite the cost, the efficiency and precision they offer often justify the invest-

ment, as they can significantly enhance the quality and productivity of industrial

processes.
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3 Luxonis cameras

Luxonis [16], a company based in Colorado, is at the forefront of the robotic vi-

sion industry. Their mission is twofold: to democratize access to robotics and to

enhance engineering efficiency on a global scale. To achieve these goals, Luxonis

has developed camera systems that seamlessly integrate artificial intelligence (AI),

computer vision, and image processing.

Their flagship product, the Depth-AI camera, is a testament to their innovative

approach. These cameras are designed to deliver high-resolution images, depth vi-

sion, and on-chip machine learning. The integration of AI, computer vision, and

image processing directly into the camera system significantly reduces the compu-

tational load on the robot’s computer, making the system more efficient.

This chapter aims to provide a comprehensive overview of the existing cameras

and the possibilities offered by Luxonis. While the primary focus of the thesis is

on the prepossessing part, it’s important to note that the capabilities of Luxonis

cameras extend beyond this. The advanced features of these cameras also open

up possibilities for implementing sophisticated algorithms after the prepossessing

stage.

3.1 Hardware specifications

All Luxonis OAK cameras are equipped with a variety of on-device features, includ-

ing AI inference, computer vision (CV) functions, video encoding, Python script

execution, and more. The OAK-D family of devices stands out with its built-in

stereo depth camera pair. This enables stereo depth perception, seamlessly inte-

grated with AI capabilities. As a result, these devices can execute Spatial AI tasks,

such as generating 3D spatial coordinates (XYZ) for identified objects and features

or assigning a class to each depth point. The Pro version of OAK cameras takes it

a step further by incorporating an on-board IR laser dot projector for active stereo

and an IR illumination LED for enhanced night vision capabilities.
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Figure 2: Luxonis cameras nomenclature system - Figure taken from the site [18]

3.1.1 Luxonis family

Luxonis company offers lots of different affordable cameras, each with specific

characteristic. The name of the camera specifies its main features, as can be seen in

Figure 2.

The Luxonis camera is compose by three main type of camera with different vari-

ants. The OAK-D family of cameras consists of three image sensors, one RGB in

the centre and two B/W at the sides, which allow the depth of the scene to be cal-

culated with good accuracy under optimal conditions. The OAK-D family comes

with different version based on user’s requirements, in fact there are cameras that

are specific for long or short range depth capabilities (respectively OAK-D LR and

OAK-D SR), camera with IR-dot projector and flood illumination (PRO versions)

and cameras with smaller or bigger image sensor (respectively OAK-D lite and

OAK-D S2/PRO).

The OAK-1 models are cameras that have just one sensor, meaning that they don’t

provide stereo depth perception but incorporate most of the other features given by

the robotic vision core 2 (RVC2).

The OAK FFC line provides an excellent platform for prototype flexibility. Given

the modular design of the cameras, users have the flexibility to position them at var-

ious stereo baselines. However, this adaptability requires careful consideration: one

must decide on the method and location for mounting, followed by the essential

step of performing a stereo calibration post-mounting. It’s important to note that

these cameras do not offer a ”plug and play” experience like some other options.

Instead, they are better suited for applications that demand a customized approach

to mounting, specific baseline configurations, or unique camera orientations.
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Most of the Luxonis cameras come with a Power over Ethernet (PoE) version that

directs the product towards mainly industrial applications. The main advantages

of this characteristic are that these cameras are more robust and above all have the

capabilities of work in standalone mode due to the presence of a flash memory in-

side, thus meaning that they don’t need to be connected to a host computer. The

host can be also a simple Raspberry, in fact the OAK CM models have an on-board

Raspberry Pi Compute Module [17], which is technically the host computer of the

OAK SoM, but the device still runs on its own.

All the main features of the Luxonis cameras described above are summarised in

Table 1.

3.1.2 Robotics Vision Core 2

The Robotics Vision Core 2 (RVC2), the second generation of Luxonis’s Robotics

Vision Core, is a powerful core that provides 4 Tera Operations Per Second (TOPS)

of processing power, with 1.4 TOPS dedicated to AI tasks. This allows the RVC2 to

handle complex AI models, even those that are custom-designed, albeit these mod-

els need to be converted to a compatible format first.

The RVC2 supports various encoding formats, including H.264, H.265, and MJPEG,

and can handle 4K resolution at 30 frames per second (FPS) or 1080P at 60 FPS.

This ensures the images captured by the camera are of high quality and detail.

In terms of computer vision tasks, the RVC2 is capable of performing operations

such as resizing and cropping images, detecting edges, and tracking features in real-

time. It also supports stereo depth perception, which allows the camera to perceive

the 3D world around it. This is achieved through a combination of filtering, post-

processing, and RGB-depth alignment.

One of the key features of the RVC2 is its object tracking capability. It can perform

both 2D and 3D tracking using the ObjectTracker node. This means that the camera

can keep track of objects as they move in space, which is crucial for applications

like autonomous navigation and object detection.

Furthermore, the RVC2 provides performance metrics for various models. This al-

lows for the evaluation of an AI model’s performance based on factors like FLOPs

15



OAK model

AI, CV,

tracking,

encoding,

...

Spatial

data

PoE,

IP67

Active

stereo,

night

vision

Standalone

mode
Coprocessor Camera

OAK-1,

OAK-1 lite

OAK-D,

OAK-D lite

OAK-D S2

Wide

FOV

option

OAK-D pro

Wide

FOV

option

OAK-1-PoE

OAK-D-

PoE

OAK-D S2

PoE

Wide

FOV

option

OAK-D pro

PoE

Wide

FOV

option

OAK-D-

CM3,

OAK-D-

CM4

RPi CM

OAK-D-

CM4 PoE
RPi CM

OAK-FFC-

3P,

OAK-FFC-

3P-OG

Custom

Table 1: Comparative main features

and parameters, which can be very useful when optimizing a model for better per-

formance.

Table 2 provides a comprehensive overview of the features of each camera
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model, demonstrating the versatility and power of the RVC2. The models listed

in Table 2 were compiled for 8 shaves and were using 2 NN inference threads. The

latency includes getting results from the device over USB3. Furthermore, 5 iter-

ations were run for each model and the Frames Per Second (FPS) was calculated

as an average. These performance tests were conducted by Luxonis, providing a

reliable evaluation of the performance of various models under different conditions.

Model name Image size FPS Latency [ms]

MobileOne S0 224x224 165.5 11.1

Resnet18 224x225 94.8 19.7

DeepLab V3 256x256 36.5 48.1

DeepLab V3 513x513 6.3 253.1

YoloV6n R2 416x416 65.5 29.3

YoloV6n R2 640x640 29.3 66.4

YoloV6t R2 416x416 35.8 54.1

YoloV6t R2 640x640 14.2 133.6

YoloV6m R2 416x416 8.6 190.2

YoloV7t 416x416 46.7 37.6

YoloV7t 640x640 17.8 97.0

YoloV8n 416x416 31.3 56.9

YoloV8n 640x640 14.3 123.6

YoloV8s 416x416 15.2 111.9

YoloV8m 416x416 6.0 273.8

Table 2: Performance Metrics for Various Models

3.1.3 Standalone version

The Standalone mode refers to a configuration where the camera initiates the flashed

application upon receiving power, operating independently without the need for a

specific host computer connection. This mode proves valuable in scenarios where

the camera remains stationary, performing tasks such as environmental inspection

and analytics, including people/vehicle counting, License Plate Recognition (LPR),
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fall detection, and more.

This mode offers increased stability, particularly in the face of potential instabilities

like networking issues that could disrupt the connection between the camera and a

host computer. In the standalone mode, the application automatically restarts in the

event of such issues.

It’s important to note that standalone mode is exclusive to OAK models equipped

with onboard flash memory, such as OAK POE and OAK IOT camera models.

Moreover it’s worth mentioning that if a computer is already onboard (e.g., on a

robot or drone), Standalone mode may introduce unnecessary complexity.

For communication with the external environment (e.g., a server), POE cameras

can employ the Script node to send/receive networking packets, supporting proto-

cols such as TCP, UDP, HTTP, and MQTT. These models are also compatible with

the Robot Operating System (ROS) environment, enabling seamless integration and

operation within ROS-based applications, without using a host device.

3.1.4 Technical comparison OAK-D lite/PRO

Figure 3: Luxonis OAK-D lite Figure 4: Luxonis OAK-D pro

The cameras that are the subject of this technical specifications comparison are

the OAK-D lite and the OAK-D pro, shown in Figures 3 and 4 respectively. Both

lite and pro versions are based the OAK-D camera that is one of the first series of

camera made by Luxonis. Since also this camera is based on the RVC2, they shared

approximately the same performances with regard to AI, CV, tracking, encoding,

etc. as it is in fact shown in Table 1. To be more specific the OAK-D pro camera is

based on the second series of the OAK-D, so the OAK-D S2 but, as it’s reported in
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the official website [23], the main differences between the first and second version

are related to the enclosure (smaller and lighter in the series 2) and in the type of

connection that in the newest camera is composed by a single USB-C connector for

both power and communication.

The OAK-D pro version is the OAK-D S2 but with the IR laser dot projector and

IR illumination LED that make a huge difference in depth perception (thanks to the

active stereo function) and in poor lighting conditions.

The OAK-D lite is an upgrade of the OAK-D camera but it is equipped with smaller

and cheaper image sensors that don’t significantly reduce the performance in the

context of AI, CV, tracking, encoding, etc, but make difference in the stereo per-

ception at high distances due to lower resolution cameras. Table 3 shows the main

hardware differences among the subjects of this report.

Color camera Stereo pair

Camera Specs OAK-D Lite OAK-D Pro OAK-D Lite OAK-D Pro

Sensor
IMX214 (PY014

AF, PY114 FF)

IMX378 (PY004

AF, PY052 FF)

OV7251

(PY013)

OV9282

(PY091 BP @

940nm)

DFOV / HFOV

/ VFOV
81° / 69° / 54° 81° / 69° / 55° 86° / 73° / 58° 89° / 80° / 55°

Resolution
13MP

(4208x3120)

12MP

(4056x3040)

480P

(640x480)

1MP

(1280x800)

Focus
AF: 8cm - ∞

FF: 50cm - ∞

AF: 8cm - ∞

FF: 50cm - ∞
FF: 6.5cm - ∞ FF: 19.6cm - ∞

Max

framerate
35 FPS 60 FPS 120 FPS 120 FPS

F-number 2.2 ± 5% 1.8 ± 5% 2.0 ± 5% 2.0 ± 5%

Lens size 1/3.1 inch 1/2.3 inch 1/7 inch 1/4 inch

Effective Focal

Length
3.37mm 4.81mm 1.3mm 2.35mm

Pixel size 1.12µm x 1.12µm 1.55µm x 1.55µm 3µm x 3µm 3µm x 3µm

Table 3: Combined Camera Specifications for OAK-D Lite and OAK-D Pro.
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3.2 Software integration

This chapter delves into the software integration aspect of Luxonis cameras. One of

the key strengths of Luxonis cameras is their compatibility with popular program-

ming languages such as Python and C++. This compatibility is facilitated through

the use of Application Programming Interfaces (APIs) and Software Development

Kits (SDKs).

APIs and SDKs serve as the bridge between the hardware (Luxonis cameras in this

case) and the software. They provide a set of tools, definitions, and protocols that

enable the interaction between the software and the hardware.

An API, or Application Programming Interface, is a set of rules and protocols for

building and interacting with software applications. APIs simplify the process of

integrating different software components and allow them to communicate effec-

tively. When it comes to controlling Luxonis cameras, APIs offer a more precise

control over the camera parameters and functions.

On the other hand, an SDK, or Software Development Kit, is a collection of soft-

ware tools and programs used by developers to create applications for specific plat-

forms. SDKs for Luxonis cameras typically include APIs, programming tools, and

other utilities that assist in the development process.

While both APIs and SDKs play crucial roles in software integration, for more

precise control over the Luxonis cameras, it is often recommended to use APIs.

This is because APIs provide a more direct interface to the camera’s functions and

parameters, allowing for a higher degree of customization and control.

3.2.1 depthai libraries

The DepthAI SDK is a Python package built on top of the depthai-python API li-

brary that improves ease of use when developing apps for OAK devices. It provides

an abstraction of the DepthAI API library, containing convenience classes and func-

tions that assist in common tasks while using the DepthAI API.

The DepthAI API allows users to connect to, configure, and communicate with

their OAK devices. It supports both Python and C++. The API is designed around
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the concept of nodes and messages.

In particular the nodes are the building blocks when populating the pipeline. Each

node provides a specific functionality on the DepthAI, a set of configurable proper-

ties, and inputs/outputs. After creating a node on a pipeline, you can configure it as

desired and link it to other nodes.

Linking nodes is achieved through the use of messages. Messages are the only way

nodes communicate with each other. They are sent between linked nodes, and the

data flows from one node to another in a defined sequence while different opera-

tions are performed on the data at each node.

A DepthAI message can be created either on the device by a node automatically, or

manually inside the Script node. It can also be created on a host computer and sent

to the device via the XLinkIn node.

Let’s consider a simple example. Suppose there is a system composed by two

nodes, node A and B, and the information (message) passes data from Node A to

Node B. This can be represented as:

Node A
Message
−−−−→ Node B

In this example, Node A performs some operation and generates a message.

This message is then passed to Node B through a link. Node B receives the mes-

sage, performs its operation, and the process continues.

The complete example represented the OAK device connected to the host using

APIs is shown in Figure 5. As can be seen in the host side there are more ways to in-

teract with the camera, the first (depthai demo) is the simplest and less customizable

since it is just an executable file; with it is possible to set basic and preconfigured

features, The second that stays in the middle is the aforementioned SDK way and

finally the more sophisticated APIs.

This system of nodes and messages allows for a flexible and powerful pipeline

for processing data on OAK devices. It enables developers to build complex data

processing pipelines with ease, leveraging the power of the DepthAI platform.
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Figure 5: API configuration diagram - Figure taken from the site [18]

3.3 Applications

The high versatility of the OAK-D platform allows this hardware to be integrated

into various applications, in view of the fact that both cameras are capable of per-

forming built-in and custom computer vision routines and run built in and custom

Neural Network models. Moreover considering the cost of these two cameras when

compared to some of the high end cameras used in industrial applications and the

fact that the performances offered are of good quality, it is fair to state that these de-

vices can be used in both the prototyping phase and a definitive version of a project.

In addition to the features previously mentioned both cameras present either a

9-axis inertial measurement unit that combines accelerometer, gyroscope and mag-

netometer (for the OAK-D pro) or a 6-axis inertial measuring unit with gyroscope

and accelerometer (for the OAK-D lite camera), thus suggesting the possibility of

using such devices for eye-in-hand applications with a robotic manipulator.
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4 The Camera Response Function

The Camera Response Function (CRF) is a critical component in digital imaging,

representing the relationship between the scene irradiance and the image brightness.

This function essentially describes how a camera responds to different light inten-

sities in a scene. In this chapter are described the principles behind this concept.

Additionally, since each image sensor has its own response and is essential for the

algorithms implemented in this project, the method used to derive the CRF function

is illustrated.

4.1 Operating principles of cameras

A camera operates on the fundamental principle of capturing and recording light to

produce images. At its core, a camera consists of a lens, an aperture, and a light-

sensitive surface.

Light enters the camera through the lens, which focuses the incoming light onto the

light-sensitive surface (see Figure 6). The aperture, a small opening within the lens,

controls the amount of light that enters into the camera. By adjusting the size of

the aperture, the algorithm can control the exposure of the image, determining how

much light reaches the digital image sensor.

In the case of this study, the image sensor doesn’t have a shutter since it oper-

ates differently. Instead, the image sensor continuously accumulates light during

the exposure process, and the exposure time is controlled electronically. This al-

lows precise control of exposure duration without the need for a physical shutter.

Additionally, the aperture is fixed, as mentioned in Table 1, further simplifying the

exposure control process. This fixed aperture ensures consistent light transmission,

avoiding use of mechanical components and so reducing size and possible failures.

Once the light enters the camera and passes through the aperture, it is captured by

the light-sensitive surface. In digital cameras, this medium is a sensor composed of

millions of light-sensitive pixels that convert the incoming light into digital signals.

These signals are then processed and stored as digital image files.

In addition to controlling the amount of light that enters the camera, it is possible

23



to adjust the camera’s sensitivity to light using the ISO setting. ISO measures the

sensor’s sensitivity to light, with higher ISO values making the sensor more sen-

sitive and able to capture images in low-light conditions. However, increasing the

ISO can also introduce digital noise, affecting the quality of the image. Further-

more, depending on the camera manufacturer and the control system, ISO can be

replaced by gain, which represents an increase/decrease in sensitivity in dB. The

two parameters are equivalent but are processed differently.

In an ordinary photographic camera, the lens has a fixed focal length. Focusing

at various distances is achieved by varying the distance between the lens and the

imaging plane [6], where the sensitivity surface is located, see Figure 6.

Figure 6: Simple pinhole camera model

In the human eye, the converse is true; the distance between the center of the

lens and the imaging sensor (the retina) is fixed, and the focal length needed to

achieve proper focus is obtained by varying the shape of the lens. This adjustment

is accomplished by the ciliary body, allowing for a range of focal lengths from ap-

proximately 14 mm to 17 mm. The retina, particularly the fovea, primarily receives

the focused retinal image, enabling perception through the excitation of light recep-

tors and subsequent interpretation by the brain [6] (see Figure 7).

Brightness adaptation and discrimination are crucial aspects of the human vi-

sual system when processing digital images. The eye can adapt to a vast range of

light intensity levels, from the scotopic threshold to the glare limit, on the order of

1010. Subjective brightness perception follows a logarithmic function concerning

incident light intensity. The visual system achieves this wide adaptation range by
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Figure 7: Graphical representation of the eye looking at a palm tree. Point C is the

focal center of the lens - Figure taken from the book [6]

changing its overall sensitivity, known as brightness adaptation. However, the eye

can only discriminate a relatively small range of distinct intensity levels simulta-

neously, corresponding to the current brightness adaptation level. This adaptation

level determines the range of subjective brightness perception, with stimuli below a

certain threshold perceived as indistinguishable blacks [6], some example of bright-

ness sensations are represented in Figure 8.

Figure 8: Range of subjective brightness sensations - Figure taken from the book

[6]

In digital photography, the Camera Response Function (CRF) and the ISO value

serve analogous functions to the brightness adaptation mechanism in the human vi-
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sual system. The CRF maps accumulated sensor irradiance to pixel intensities in

the final image, similar to how the eye adjusts its sensitivity to light to perceive

brightness levels. This adjustment is achieved through a logarithmic function, en-

suring a smooth transition between different brightness levels in the image. Simi-

larly, changing the ISO value in digital photography allows the camera to adapt to

varying levels of brightness, analogous to the eye’s sensitivity adjustment. How-

ever, increasing the ISO value can introduce noise and compromise image quality,

similar to the eye’s limited range of discrimination.

4.2 Image formation process and camera response function

In the process of digital image formation, the radiance L of a scene point is cap-

tured by a camera sensor element. If the radiance received by a moving observer

is independent of the observer’s viewing angle, the scene point exhibits Lambertian

reflectance behavior.

The total amount of energy received at a sensor location x per unit time is termed

as irradiance E(x) and it is expressed as (W/m2). However, for most cameras, a

radiometric fall-off of pixel intensities occurs towards the image borders due to

vignetting effects. This vignetting effect is represented by a vignetting factor V :

Ω → [0, 1], dependent on the spatial location x of the image sensor [2]. Thus, the

irradiance E(x) can be obtained by multiplying the scene point’s radiance with the

vignetting factor:

E(x) = V (x)L (3)

When capturing an image, the sensor irradiance is integrated over a time window

specified by the camera’s exposure time ∆t, resulting in accumulated irradiance X:

X(x) = E(x)∆t (4)

The accumulated irradiance X(x) is then mapped by the camera response func-

tion (CRF) f : R → [0, 255] to an image output intensity. For real cameras, the

input of the CRF is limited by the camera’s dynamic range. If the accumulated ir-

radiance falls outside the dynamic range, the scene point is under or overexposed,

resulting in pixel values of 0 or 255, respectively.
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Figure 9: Image acquisition process - Figure taken from the paper [30]

The entire image formation process, mapping a scene point’s radiance L to an

image output intensity I , is shown in Figure 9 and can be compactly written as:

I = f (V (x)L∆t) (5)

In this study, the effect of vignetting will not be considered due to simplicity

and technical difficulties in deriving the V (x) function for the cameras taken into

consideration, also given the scarce documentation in this regard.

The function f(·) is invertible, ensuring that intensity increases monotonically

with exposure [30]. For convenience, the inverse response function is defined as:

g = ln f−1 (6)

which allows us to rewrite the equation 5 as:

g̃(I) = lnL+ ln∆t (7)

As mentioned earlier, in digital images, intensities are represented by discrete

values within a range {0, 1, ..., Imax}. Consequently, the inverse response function

g̃ is constrained to take values g(k), where k ranges from 0 to Imax. These specific

values are determined through the analysis of images captured from a static scene

under varying exposure times, as elaborated in Chapter 4.3 and explained in [4].

4.3 Estimating CRF using captured images

The algorithm summarised below is used to calculate the CRF function from a set

of specific images. The study was first presented by Paul E. Debevec and Jitendra

Malik in 1997 [4].
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The algorithm is based on the concept of reciprocity in the image. Reciprocity

in this context implies that only the product L · ∆t is important, therefore if this

product remains constant, the values of L or ∆t can be varied without changing the

result.

The input for the algorithm consists of N images obtained with a duration ∆tj

where j corresponds to the respective image. In the paper is assumed that the scene

is static and that this process is completed quickly enough that lighting changes

can be safely ignored. Consequently, the irradiance values Li for each pixel i are

considered constant. Pixel values will be denoted by Iij where i serves as a spa-

tial index over pixels. The starting formula 8 is an extension of equation 7, with

conditions added for each pixel i and for each input image j.

g(Iij) = lnLi + ln∆tj (8)

The key point of the algorithm is to recover unknown elements g and Li from

the known parameters Iij and ∆tj . To do so the basic idea is to minimize the least-

squared error obtained from equation 8, by finding the Imax − Imin + 1 values of

g(I) and the N values of lnLi that minimize the quadratic objective function 9 [4].

O =
N
∑

i=1

P
∑

j=1

[g(Iij)− lnLi − ln∆tj]
2 + λ

Imax−1
∑

I=Imin+1

g′′(I)2 (9)

The first term in the equation ensures that the solution satisfies the set of equa-

tions arising from equation 8 in a least squares sense.

The second term acts as a smoothness constraint on the sum of squared values of

the second derivative of g, ensuring that the function g is smooth. In this discrete

setting, the expression 10 is utilize to approximate the second derivative. The pa-

rameter λ should be chosen appropriately based on the expected amount of noise

present in the measurements of Iij . To solve the problem the singular value decom-

position is used [4].

g′′(I) = g(I − 1)− 2g(I) + g(I + 1) (10)

As explained in more detail in the paper, the solution to the minimization prob-

lem is affected by a bias factor that can scale the result without breaking the con-

straints. To mitigate this, an additional constraint has been added, assuming that
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g(Imid) = 0. This constraint is visible in Figure 12, where it can be observed that

the intensity value around 127 corresponds to 0.

Finally, it has been added another constraint since to achieve a better fit in the so-

lution, it’s beneficial to anticipate the fundamental shape of the response function.

Given that g(I) typically exhibits a steep slope near Imin and Imax, it has been an-

ticipated that g(I) will be less smooth and fit the data less accurately near these

extremes. To do so the function 11 has been integrated in the minimization function

9, obtaining 12.

w(I) =











I − Imin for I f 1
2
(Imin + Imax)

Imax − I for I > 1
2
(Imin + Imax)

(11)

O =
N
∑

i=1

P
∑

j=1

w(Iij)[g(Iij)− lnLi − ln∆t]2 + λ

Imax−1
∑

I=Imin+1

[w(I)g′′(I)]
2

(12)

After the minimization process the function g(I) and the values lnL are ob-

tained, ready to be used in the subsequent processes.

To get a more precise and complete description refer to [4].

4.3.1 Image capture for CRF estimation

In order to estimate the inverse camera response function f(·), a series of images

were acquired using a simple code developed in C++, which facilitated sequential

adjustments of exposure and ISO values of the camera. The Luxonis Oak-D Lite

camera was utilized for this purpose since it has similar performance to the pro

version in this contest. The algorithm systematically adjusted exposure and ISO

values across the entire available range, specifically varying ISO from 100 to 1600

and exposure time from 10 µs to 33000 µs, reaching the maximum frame rate of 30

fps. Subsequently, the resulting files were converted to grayscale and saved as .png

images.

To ensure consistency and minimize variations in the captured images, the cam-

era was securely mounted on a tripod. This setup effectively eliminated vibrations

or movements during the image acquisition process, ensuring the stability of the

captured frames, necessary for the estimation process.
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Following the acquisition process, four images were selected based on specific

criteria. Firstly, the chosen images exhibited uniform differences in exposure be-

tween them while maintaining identical ISO values. This selection criterion aimed

to provide a diverse set of images for subsequent analysis and processing.

Additionally, the selected images were curated to ensure that a significant portion

of pixels covered the entire range of values from 0 to 255.

This approach, as described in Paul E. Debevec and Jitendra Malik’s paper [4],

ensures comprehensive coverage of irradiance levels, facilitating accurate analysis

and comparison.

The selected images are shown in Figure 10 with value of ISO 1000 and respec-

tively exposure time of 4 ms, 13 ms, 23 ms, 33 ms.

(a) ∆t: 4 ms, ISO: 1000 (b) ∆t: 13 ms, ISO: 1000

(c) ∆t: 23 ms, ISO: 1000 (d) ∆t: 33 ms, ISO: 1000

Figure 10: Images captured for CRF estimation

4.3.2 CRF estimation

The development involved the creation of a C++ code for estimating the Camera

Response Function (CRF) using the OpenCV library. Initially, the set of images

choosen in the previous step was uploaded.
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Subsequently, the images were aligned using the cv::alignMTB class from OpenCV

to ensure accurate pixel-to-pixel correspondence. Although minimal camera motion

occurred during capture, precise alignment was necessary for quality assurance.

Following alignment, the CRF was estimated using the cv::CalibrateDebevec class

from OpenCV. The result was then saved in a .csv file in order to be used in the

following steps. In light of the fact that the cv::CalibrateDebevec class returns

the equivalent of f−1 as discussed in Chapter 4.2, and given the necessity of the

function g for subsequent algorithms, a MATLAB script was employed to obtain

the function g and perform other necessary processing steps. The resulting function

g specific for the Luxonis OAK-D lite is represented in Figure 11.

Figure 11: log of inverse CRF from Debevec method on Luxonis OAK-D lite camera

In order to analyze the behavior of the camera with respect the change of light it

is better to refer to Figure 12 where the CRF is shown. In particular the steep initial

slope indicates that the camera is highly sensitive to light variations in low-light

conditions. In other words, small changes in the amount of light (L ∗ dt) can lead

to significant changes in pixel value. This can be beneficial for capturing details in

low-light conditions, but it can also result in overexposure if not careful.

Instead the linear and shallow slope at the end indicates that the camera has a more

uniform response to light variations in bright conditions. In other words, an increase
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in incoming light will result in a proportional increase in pixel value. This can help

prevent overexposure in intense lighting conditions, as the camera will not respond

excessively to the increase in light.

In terms of dynamic range, a CRF curve that is steep at the beginning and linear

at the end indicates a camera with a wide dynamic range. This is because the cam-

era is capable of capturing details both in low-light conditions (thanks to the steep

part of the curve) and in bright conditions (thanks to the linear part of the curve).

However, the CRF is just one aspect influencing the dynamic range, other factors

include sensor size, pixel count, lens quality, and so on.

Figure 12: CRF from Debevec method on Luxonis OAK-D lite camera
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5 Overview of the literature

Before delving into the conceptual explanation of the algorithms developed in the

various selected papers, it is beneficial to clarify some recurring key concepts that

form the foundation upon which these algorithms are built.

High Dynamic Range (HDR) imaging captures a broader spectrum of light intensi-

ties than standard digital imaging by combining multiple exposures of a scene. This

technique is particularly useful in HDR environments, which feature high contrast

ratios with intense highlights and deep shadows, preserving details that standard

imaging techniques cannot [6].

Visual odometry estimates a camera’s position and orientation through image se-

quence analysis, providing essential real-time navigation data for autonomous ve-

hicles and robotics.

Visual Simultaneous Localization and Mapping (vSLAM) involves constructing

or updating a map of an unknown environment while tracking an agent’s location

within it, integrating visual odometry and SLAM techniques for a comprehensive

environmental understanding.

Lastly, The gradient descent method is an optimization algorithm used to find the

minimum of a function. The core idea is to iteratively move in the opposite direc-

tion of the function’s gradient, which indicates the direction of steepest ascent, to

reach a local minimum. The general formula for parameter update is as follows:

xn+1 = xn − α∇f(xn)

where xn is the current parameter value, α is the learning rate, and ∇f(xn) is the

gradient of the objective function evaluated at xn [29].

This process is repeated until a convergence condition is met, such as a minimal

change in the function value or a maximum number of iterations.

These concepts, together with the CRF explained in Chapter 4, are central to the

research reported below.

Subsequent chapters aim to provide an overview of how the various proposed

algorithms work. For a more in-depth and comprehensive explanation, please refer

to the papers cited [7] [8] [30].
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5.1 Camera Attributes Control for Visual Odometry With Mo-

tion Blur Awareness

The algorithm developed in the paper under review presents a highly relevant solu-

tion for the given case study, primarily due to its meticulous consideration of motion

blur. Unlike conventional approaches that prioritize increasing exposure time, this

algorithm ingeniously favors boosting ISO sensitivity to mitigate motion blur. By

opting for ISO adjustments over exposure time extension, the algorithm effectively

tackles motion blur while maintaining image quality.

The algorithm demonstrates innovative concepts such as image synthesis, high-

lighting its inventive approach to tackling complex challenges in image processing.

Unfortunately, despite the algorithm’s promising potential, its implementation was

not possible due to the unavailability of the project repository at the current date

(February 2024).

Nevertheless, in place of implementing the aforementioned algorithm, an alternative

approach has been adopted. This alternative algorithm, derived from a study cited

in the paper subject of this chapter [8], has similarities with the proposed algorithm.

Though not identical, it serves as a viable substitute as elucidated in Chapter 5.2.

5.1.1 Summary

They propose a method for controlling camera attributes by utilizing a weighted

sum of image gradient and entropy as quality metrics. The method includes a linear

convergence search algorithm to optimize camera exposure, considering the first or-

der derivative of the quality metrics. Scene change speed is estimated using optical

flow to determine the maximum exposure time without motion blur. The conver-

gence of the algorithm is accelerated through simulated image generation, allowing

for the direct acquisition of nearly optimal camera attributes from overexposed or

underexposed images [7].
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5.1.2 Metrics adopted

In evaluating image quality, they suggest that the use of image local gradient sum-

mation has limitations, particularly within the overexposure range where it fails to

effectively distinguish images due to overall increased gradient caused by overex-

posure. Conversely, image local entropy provides better insight into image infor-

mation, especially in overexposed scenarios. By combining the advantages of both,

they proposed a weighted sum of gradient and local entropy as a more compre-

hensive image exposure evaluation criterion. The behaviour and the combination

of these criteria are shown in Figure 13. The effective ranges of gradient and en-

tropy criteria complement each other, with gradient criterion being more effective

for underexposed images, and entropy criterion being more representative for over-

exposed ones [7].

Figure 13: Metric used - Figure taken from the paper [7]

5.1.3 Control architecture

The algorithm comprises three main components: iterative optimization for deter-

mining the ideal exposure, estimation of motion state, and control of camera pa-

rameters. In the first part, the optimal exposure value is iteratively computed by

generating simulated images. During each iteration, the derivatives of the gradient

and entropy of the simulated image concerning exposure time are calculated, and

the exposure value is updated in the opposite direction of the gradient. The second

part involves using the median of optical flow vectors from two consecutive frames

to establish the maximum exposure time without causing motion blur. Lastly, cam-
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era properties are adjusted based on target exposure and maximum exposure time

limits to capture a well-exposed image with minimal motion blur and noise [7].

Figure 14: Control architecture of the proposed method - Figure taken from the

paper [7]

5.2 Proactive camera attribute control using Bayesian optimiza-

tion for illumination-Resilient visual navigation

The paper to be briefly outlined in this section was published prior to the one dis-

cussed in Chapter 5.1. It shares similarities, particularly in the synthesis of images

using the camera response function (CRF). The implemented algorithm is more in-

tricate, which made its implementation challenging, especially since the repository

was tailored to a specific camera model. This necessitated significant modifications

to adapt the algorithm for the application under consideration.

5.2.1 Summary

This article introduces a proactive control scheme for managing two key camera

settings: exposure time and gain control.

They approach camera attribute control as an optimization problem without prior

knowledge of the underlying function. They define a new metric for images con-

sidering both image gradients and signal-to-noise ratio simultaneously. Using this
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metric, they employ Bayesian optimization (BO) to formulate the attribute control

and learn environmental changes from captured images. To reduce the workload

of image acquisition and Bayesian optimization, they synthesize images using the

camera response function instead of directly capturing frames [8].

5.2.2 Metric adopted

In this article, they expand on their previously developed entropy-weighted gradient

(EWG) approach and enhance it by incorporating the noise level measure from the

signal-to-noise ratio (SNR). This modification creates a comprehensive image util-

ity measure that considers saturation (entropy), edges (gradient), and noise (SNR)

altogether. They use entropy to gauge saturation, aiming to reward local patches

with greater diversity while penalizing saturation. This is because even a uniformly

colored surface may exhibit slight variations, while saturated regions lack any vari-

ation in the local image patch [8]. This evaluation metric is referred to as NEWG

both in the academic paper and is also reported under this name in this studio.

5.2.3 Control architecture

The control architecture is outlined in Figure 15. It begins with capturing a seed im-

age to assess the environment, which then triggers the camera attribute controller.

This controller utilizes the seed image to generate synthetic images via a synthe-

sizing module, feeding them into the Bayesian optimization (BO) module. The

optimal camera attributes determined by the BO module are applied to capture real

images until a significant change in global illumination is detected. Each incoming

image frame is scrutinized for illumination changes by comparing the image metric.

The BO phase is activated only when a notable difference between the synthesized

image and the actual frame grab is identified in terms of the metric, indicating an

illumination variance [8].

The method comprises three main modules: image metric evaluation, control,

and image synthesis. In the initial step, they analyze the seed image by computing

both its gradient and entropy. Subsequently, they utilize the entropy-derived weights

to diminish noise present in the image gradient. Subsequently, a saturation mask is
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generated based on local entropy to compensate the entire metric using an activation

function. Once metric calculation concludes, a series of steps are iterated until a

Gaussian process (GP) identifies optimal attributes. Synthetic images are produced

using the camera response function (CRF) and gain functions for the subsequent

query image to be learned in the Gaussian process [8].

Figure 15: Control architecture of the proposed method - Figure taken from the

paper [8]

5.3 Active exposure control for robust visual odometry in HDR

environments

The algorithm proposed in this paper introduces a simpler calibration and imple-

mentation process. One of its advantages is that the libraries developed by the au-

thors facilitate testing with various control metrics, all based on the gradient descent

method for optimization. This enables the evaluation of different control options,

allowing for the selection of the most suitable for the desired application. Com-

pared to other studied algorithms, this one boasts faster execution times during the

optimization process, thereby enabling, for instance, the possibility of increasing

camera frames per second (fps) if required.

5.3.1 Summary

In this article they propose an active exposure control method aimed at enhancing

the robustness of visual odometry in HDR environments. Their method assesses

the appropriate exposure time by maximizing a robust gradient-based image quality
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metric. This optimization is accomplished by leveraging the camera response func-

tion of the camera, in fact, with the latter, they were able to evaluate the derivative of

their metric concerning the exposure time. Such information allows them to apply

mathematically grounded methods, such as gradient descent, in exposure control.

[30].

5.3.2 Metric adopted

The metrics developed in this paper for the optimisation process are based on the

gradient calculation. They define two metrics, the first is a percentile metric which

takes a certain percentile of all gradient magnitudes of the image:

Mperc(p) = percentile(G(ui)ui∈I
, p)

where p indicates the percentage of the pixels whose gradient magnitudes are smaller

than Mperc, G(ui) is the gradient at pixel ui and I represent the image. The second

metric is called Msoftperc that is a weighted sum of the sorted gradient magnitudes

in ascend order.

Msoftperc(p) =
∑

i∈[0,S]

With(p) ·Gith

One of the advantage of the soft percentile metric over the percentile metric is

that it changes smoothly with the exposure time, which ensures that the estimation

of its derivative is more accurate, necessary to apply the gradient descent method

[30].

5.3.3 Control architecture

The authors demonstrated, as reported in the paper, that the soft percentile metric

Msoftperc serves as a robust indicator of image quality. Hence, the objective of their

exposure control is to maximize Msoftperc for future images. To accomplish this

objective, the exposure time is adjusted based on the most recent image obtained

from the camera driver using a gradient ascent approach. Specifically, given an

image I and its corresponding exposure time ∆t, the desired exposure time for the

next image is calculated as follows [29]:
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∆tnext = ∆t+ γ
∂Msoftperc

∂∆t
(13)

Here, the derivative of Msoftperc is computed with the aid of the derivative of the

camera response function, which plays a crucial role in the optimization process.

The sole calibration parameter of the system is γ that represents the magnitude of

the update step. Subsequently, the newly determined exposure time is transmitted

to the camera driver, and then the formula 13 is executed on the subsequent image

[30].
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6 Implementation of the exposure control algorithms

In the initial stages of the project, various programming experiments were con-

ducted using the Python language for controlling the cameras. However, as the

development progressed, the need for more comprehensive and fine-grained control

over the camera functionalities became apparent. Consequently, the decision was

made to transition to C++ programming, as it provides greater control and more

efficient performance compared to Python.

The shift to C++ not only allowed for more precise control over the cameras

but also facilitated easy integration of third-party algorithms and utilization of more

efficient image processing libraries. This opened up new avenues for development

and significantly enhanced the system’s capabilities.

Moreover, the C++ language offers greater flexibility in code optimization and

implementation of advanced features, enabling the achievement of more satisfactory

results in terms of performance and functionality.

6.1 Integration into the camera control system

The API structure is based on the depthai-core libraries for C++ and depthai-python

as explained in section 3.2.1. The API comprises two main components: the host

and the device, in the latter is upload the pipeline.

The pipeline represents the complete workflow on the device side. In the case of

study the pipeline is composed by three nodes: colorCamera node, xLinkIn and

xLinkOut as shown in Figure 16. Each node encapsulates a specific functionality,

have inputs and outputs, and their behavior can be customized through configurable

properties.

The colorCamera node is the most important in this contest, it has the task of captur-

ing the images based on the configurations given by the inputControl message. The

latter is linked to the xLinkIn node that connects the host with the camera, instead

the video output message is linked to the xLinkOut node providing the captured

frames to the host.

The other messages wasn’t linked since they weren’t useful for the purpose of this
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thesis. In particular inputConfig can be used for cropping, warping, rotating, resiz-

ing, etc. an image in runtime. Furthermore raw data is the primary information that

needs to be converted into a more easily readable format if one does not require this

type of file. The conversion can be performed directly by the ISP module or by the

host, but it is more convenient from a speed standpoint to perform it locally. Still

is a type of message that collects the frames that are requested to be saved by the

host via the inputControl message. ISP, video and preview deliver the same type of

information but based on the configuration can be used for different purposes.

In the case of this study the video message was used since provides more flexibility

with regard the resolution settings, since the preview message is more used as input

to neural networks or other computer vision tasks that required small squared size

images.

(a) ColorCamera node

(b) xLinkIn node (c) xLinkOut node

Figure 16: Nodes used to implement the algorithms

Listing 1 presents the basic code used to define and load the pipeline into the
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camera, the code is placed inside the main, before the control and acquisition pro-

cess. In particular, the first step is to create the pipeline object (line 2) and then

populate it with the necessary nodes (lines 6, 7, 8). After this procedure, the stream-

Name is set for each message, which allows interfacing with the device from the

host, and the nodes are configured. In this case, it was necessary to configure only

the colorCamera node.

Among the main steps, there is the linking between the various nodes (lines 21 and

22), which allows the transmission of messages between them. Finally, the pipeline

is loaded into the device, and during this phase, if there are connection problems

between the host and the camera during the program’s run, an error is reported.

Once the loading phase is complete, the queues containing the outgoing and incom-

ing messages are defined. The system operates through FIFO type buffers. At line

29, it is possible to note the presence of a 1 and a false parameter among the settings.

These settings refer to the buffer size and the blocking parameter. In particular, it

was chosen to set the buffer to a single element with the possibility of being over-

written if not emptied beforehand. This choice was made to have better control over

the frames acquired by the camera and to simplify the acquisition phase by the host,

as explained in the following chapters.

The last setup performed before starting to capture and adjust control parameters

is setting the manual focus. There are primarily three possible configurations: the

first is continuous automatic focus, which continuously adjusts focus throughout

the acquisition process based on internal camera algorithms; the second allows for

automatic focusing only at the beginning of the acquisition; and finally, the third is

manual setup.

The first option was not chosen because during the focus point search, the camera

lens, as explained in Chapter 4.1, moves, and to find the correct focus point, the

entire available range is traversed before stopping at the optimal point. The issue

with this type of mechanism is that during the process, the acquired images are in-

evitably out of focus, resulting in unusable frames.

The second option might be valid, but since automatic focusing in these cameras

depends heavily on good exposure, it’s necessary for the exposure to be optimal

43



during the initial acquisition phase. However, this cannot be guaranteed, resulting

in sub-optimal focus values that then affect the entire subsequent phase.

On the other hand, the third option was chosen for the reasons described earlier

and also based on the fact that the camera is positioned at a fixed distance from the

conveyor belt. Therefore, once set correctly, it doesn’t need further adjustment.

1 // Create pipeline

2 dai::Pipeline pipeline;

3

4 // Define sources and outputs -> 3 nodes: colorcamera

5 // and xlinkin/out nodes

6 auto camRgb = pipeline.create<dai::node::ColorCamera>();

7 auto controlIn = pipeline.create<dai::node::XLinkIn>();

8 auto videoOut = pipeline.create<dai::node::XLinkOut>();

9

10 // Define the names of the messages that travels

11 // between host and camera via xlink

12 controlIn->setStreamName("control");

13 videoOut->setStreamName("video");

14

15 // Properties

16 camRgb->setBoardSocket(dai::CameraBoardSocket::CAM_A);

17 camRgb->setResolution(

18 dai::ColorCameraProperties::SensorResolution::THE_1080_P);

19

20 // Linking

21 camRgb->video.link(videoOut->input);

22 controlIn->out.link(camRgb->inputControl);

23

24 // Connect to device and start pipeline

25 dai::Device device(pipeline);

26

27 // Get data queues

28 auto controlQueue = device.getInputQueue("control");

29 auto videoQueue = device.getOutputQueue("video",1,false);

30

31 // Set manual focus
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32 dai::CameraControl ctrl;

33 ctrl.setManualFocus(0); //0-255 far - near

34 controlQueue->send(ctrl);

35

36 cv::waitKey(300);

Listing 1: Pipeline creation for Luxonis camera

6.1.1 Control and acquisition process

To control the camera parameters, it is necessary to create an object of the class

cameraControl found in the deptai-core library. Subsequently, the function set-

ManualExposure is used to set the instances of the cltr object to the desired values

expTime and sensIso. Finally, the previously created object controlQueue (line 28,

Listing 1) is used to write the desired settings into the control buffer. Listing 2 shows

an excerpt of the code that performs this operation. Specifically, at line 1, there is

a command that, when associated with a variable, allows for the acquisition of a

list of messages present in the xlinkOut buffer; in the case of this application, the

only message present is ”video”. The list returned by the device.getQueueEvent()

function presents a single element as the buffer size has been set to one element.

In this case study, this function was chosen to be inserted at this specific point

as it allows synchronization with the camera’s workflow.

Another fundamental aspect of this function is that it waits for the arrival of a new

message, meaning that if it is called at the beginning of the acquisition of a new

frame in the camera workflow, the algorithm will pause for at most 33 ms, cor-

responding to the camera’s 30 fps acquisition rate. This is necessary to perform

optimization operations in the time slot between the acquisition of one frame and

the next, approximately 33 ms. This concept is fundamental to have a precise con-

trol of the frames and of them settings, in fact the exposure control algorithms need

of the acquired images and the corresponding exposure settings to be able to esti-

mate the optimum values for the next frames. This can’t be done if there isn’t this

kind of synchronisation.

1 device.getQueueEvent();
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2

3 dai::CameraControl ctrl;

4 ctrl.setManualExposure(expTime, sensIso);

5 controlQueue->send(ctrl);

Listing 2: Set exposure parameters code

The final step, as is shown in Listing 3, involves acquiring the message from the

buffer using the get function on the videoQueue object previously created in Listing

1. Subsequently, a cv::Mat variable is created, to which the frame contained within

the videoin message is assigned. From this point forward, it is possible to utilize all

the functionalities provided by the OpenCV library on the newly acquired image.

1 auto videoIn = videoQueue->get<dai::ImgFrame>();

2 cv::Mat init_img = videoIn->getCvFrame();

Listing 3: Frame acquisition code

6.2 Problems of the development phase and solutions

Subsequent chapters address common issues encountered in the algorithm’s imple-

mentation process. In Chapter 7, instead, there is a more detailed analysis for each

individual algorithm.

6.2.1 Gain to ISO conversion

One of the challenges encountered is that the tested control algorithms modify the

sensitivity of the image sensor by setting a value in dB, known as gain. In the case

of the algorithms under consideration, this value oscillates between 0 dB and 12

dB, representing the maximum and minimum values, respectively. In contrast, the

camera, as already explained, is controlled by ISO, from 100 to 1600.

The term ’dB’ stands for decibel, which is a logarithmic unit used to express the

ratio between two values of a physical quantity, often power or intensity. The deci-

bel is one-tenth of a bel, a unit named after Alexander Graham Bell. The formula

to calculate the ratio in decibels (dB) is given by:

Ratio in dB = 10 · log10

(

P1

P0

)

(14)
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where P1 is the power level of interest, and P0 is the reference power level. For

amplitude quantities such as voltage or sound pressure, the formula is modified to:

Ratio in dB = 20 · log10

(

V1

V0

)

(15)

where V1 and V0 are the amplitude values. The decibel scale is a convenient way

to express large or small numbers. For power quantities, a 10 dB increase means

that the power ratio is 10 times greater. For amplitude quantities, a 10 dB change

would correspond to a square root of 10 change in amplitude, and a 20 dB change

would represent a tenfold change in amplitude

The progression of ISO values exhibits an exponential behavior, thus matching

the utilization of a decibel (dB) scale. Indeed, by doubling the preceding ISO value,

one achieves the equivalent of doubling the light exposure on the sensor. The chal-

lenge arises from the discrepancy between the utilized scale and the one operable

in the camera. Specifically, the ISO values that can be employed range from 100 to

1600, following the sequence: 100, 200, 400, 800, 1600. As elucidated earlier, the

sensitivity doubles at each increment.

In this particular case study, the development of a function was imperative to align

the decibel (dB) scale with the pre-established ISO values. It was specifically cho-

sen to double the ISO values at every 3 dB increment as in formula 14, as opposed

to the standard 6 dB increment for amplitude quantities, as in formula 15. This cal-

ibration enabled a correspondence of ISO 100 to a gain of 0 dB and ISO 1600 to a

gain of 12 dB, contrary to how it is considered in the algorithms implemented and

explained in Chapter 5, which instead refer to the formulation 15.

A straightforward function, as shown in Listing 4, was developed to integrate

both exposure time and ISO control, converting the gain value derived from the

control algorithm into an equivalent ISO setting. Additionally, modifications were

made to libraries that required linear values rather than decibel measurements. This

was particularly pertinent for the libraries involved in image synthesis, referenced

in section 5.2 [8].

The final formulas used for the conversion are shown in 16, where min ISO corre-

sponds to the minimum ISO value, which is 100.
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gain = 10 · log10

(

sensISO

min ISO

)

sensISO = min ISO × 10(
gain

10
) (16)

In this function, a further clamp function is invoked to guarantee that the de-

sired values do not surpass the established boundaries defined as the function’s ar-

guments. Finally the exposure control message is send as explained in Listing 2.

1 void setExp(int expTime_, double gain_,

2 std::shared_ptr<dai::DataInputQueue> controlQueue_) {

3

4 double a = min_ISO;

5 double b = pow(10.0,0.1);

6 double sensIso_ = a*pow(b,gain_);

7 expTime_ = clamp(expTime_, min_exp_t, max_exp_t);

8 sensIso_ = clamp((int)sensIso_, (int)min_ISO, (int)max_ISO);

9

10 dai::CameraControl ctrl_;

11 ctrl_.setManualExposure(expTime_, sensIso_);

12 controlQueue_->send(ctrl_);

13 }

Listing 4: Set exposure function

6.2.2 Control delay

After implementing the algorithms proposed by the papers, an analysis was per-

formed on the operation of the programs since both did not show the anticipated

results. A thorough evaluation of all parameters led to the hypothesis that the exe-

cution of the message in inputControlwas not immediate, or at least not carried

out in the frame following the one in which the message was dispatched.

To validate this hypothesis, a C++ software was crafted to ascertain the time inter-

val between dispatching the control message and the actual implementation of the

settings. This was accomplished by analyzing the mean value of the absolute differ-

ence between the current and preceding frames. Operating under the premise that

environmental conditions are stable throughout the test, the absence of variations

should yield a value approximately equal to zero. Conversely, a change in settings
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should prompt a variation in the parameter being scrutinized.

The test was executed by applying this concept to two distinct programs. The first

was expressly developed to conduct the aforementioned test, while the second en-

tailed altering an example within the depthai-core library. This phase was pivotal

in determining whether the issue could indeed be ascribed to the company or to

programming errors. Moreover, the test was performed on both the OAK-D lite and

pro cameras, yielding equivalent outcomes.

The test yielded results that undermine the actual applicability of the algorithms

under study due to a delay ranging from approximately 220 ms to 270 ms. Con-

sequently, any employed algorithm cannot achieve optimal results. Assuming the

optimal exposure value is attained within 3 to 4 frames with an average delay of

250 ms, the overall time spans between 750 ms and 1000 ms, which are excessively

high for a control system. Furthermore, this issue introduces significantly greater

complexity in algorithm application, as the synchronization between the setting of

exposure values and the corresponding frame is not assured.

Figure 17: Mean difference between two consecutive frames

The outcome of the test is illustrated in the graph of Figure 17, which was exe-

cuted multiple times as evidenced by the data. The graph of Figure 17 exhibits the
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mean intensity value of the difference between the current and preceding frames. A

discernible peak manifests, evidencing the actual moment of setting modification.

The transmission of the message containing new exposure time and sensitivity set-

tings is designated at the zero point on the graph, correlating with the program’s

initiation of the timer upon message dispatch. The amplitude of intensity variation

is not markedly significant, as the test was performed on a library example that

permitted only minimal changes upon each message transmission, notably 100 ms

and 50 ISO, leading to the similarity between successive frames. However, this

did not hinder the verification of the hypothesis, as it is verifiable that the change

in exposure transpires between 219 ms and 278 ms subsequent to the dispatch of

the control message. Various solutions aimed at enhancing the synchronization be-

tween the transmitted messages, the control algorithm, and the frame capture were

explored to resolve this issue. Nevertheless, none led to substantial outcomes, as the

challenge is associated with the communication between the host and the device, es-

pecially the ColorCamera node. Regrettably, although the tests corroborate the

issue, there is an absence of documented information that might have predicted the

problem or elucidate a potential resolution. It is likely requisite to employ an al-

ternative camera type, switch brands, or evaluate the Power over Ethernet (PoE)

cameras from the same producer.
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7 Analysis of the implemented control algorithms

In this chapter, various algorithms derived from the papers that have been previously

analyzed are discussed. An additional algorithm has been introduced which allows

for the testing of the image evaluation part and the calculation of the conveyor belt

speed, with implementation in ROS. Various aspects of the different controllers

have been analyzed and, where necessary, useful information has been acquired and

displayed to explain the characteristics, performance and problems of the various

codes.

7.1 Proactive camera attribute control using Bayesian optimiza-

tion for illumination-Resilient visual navigation

The algorithm proposed in the paper [8] is hosted in a GitHub repository, which

also contains separate modules for independently testing the different components

of the full algorithm.

In this case study, the complete algorithm was implemented, with tests conducted

on the various individual modules. Notably, the primary modules pertaining to

Bayesian optimization and image synthesis are thoroughly elaborated upon in the

subsequent chapters, which also include a discussion of the encountered problems.

A subsection is dedicated to explaining the approach employed for the potential

calibration of the optimization process parameters, which are instrumental in iden-

tifying the optimal exposure parameters. As explained in Chapter 6.2.2, the delay

between setting the desired exposure and the frame with the correct settings does not

allow for better performance compared to the auto-exposure system present within

the Luxonis camera. Despite this, the algorithm has been implemented to maintain

30 fps by synchronizing the frames, even though the response time is around 250

ms. In particular, the algorithm developed for this application was structured in

order to set the exposure time and sensitivity for each available frame, therefore 30

times per second. This was feasible because the algorithm presented in the paper

relies on a seed image with a fixed exposure value, which is also its main flaw as

will be explained later.
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The strategy involves alternating the seed exposure settings with those proposed

by the optimization process, thus creating, at steady state, a buffer that alternates

between a seed image and an image with the proposed settings. The latter is the

one displayed and used for subsequent processes and the seed image is fed into the

optimization process.

Despite an inherent delay, this method allows for the utilization of idle times to pro-

cess images. It should be noted that the acquisition of the correct images occurs at

15 fps, as the other 15 fps are allocated for the seed images.

7.1.1 Synthetic image generator

The designated module synthesizes from a seed image all the exposure time and

gain values supported by the utilized camera. For each synthesized image, it com-

putes the corresponding evaluation metric, termed NEWG as explained in 5.2.2.

Upon completion of the calculations, it selects the optimal parameter and exhibits

the synthesized image with the exposure settings that garnered the highest evalua-

tion.

Adaptations were made to the image synthesis module to accommodate the Luxo-

nis camera’s specifications. Modifications were particularly focused on the sections

involving the conversion of gain to ISO value, as delineated in 6.2.1. Displayed in

Figure 18 is a chart elucidating the variation of NEWG in relation to the set exposure

time and ISO. In Figure 18, a red star marks the point corresponding to the optimal

exposure parameters, chosen at an exposure time of 4 ms and ISO 400.

Figure 19 displays the seed image (a) and the resulting synthetic image (b).

Conversely, Figure (c) depicts the same test context in terms of lighting and scene

but with the optimal settings applied base on the calculation done in the previous

step. The seed image was set with minimum exposure values of 4 ms and ISO 100

(0 dB gain). This decision was made because, for shorter exposure times, the image

was completely underexposed, and consequently, the algorithm could not synthesize

the image. The synthesis process involves multiplying two factors derived from the

desired exposure time and gain value [8]. The first factor is calculated based on

the camera response function, while the second follows the analysis explained in
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Figure 18: NEWG result for each synthetic image

Chapter 6.2.1. Essentially, for every 3 dB increase, the values of the individual

pixels are doubled.

The issue encountered with this approach is that if the seed image, which has

fixed exposure values, is in an environment with insufficient lighting, it will not

be capable of capturing any detail. Consequently, the resulting frame will be com-

posed of pixels with a value of zero. Multiplying these zero-valued pixels by the

synthesis parameters will only yield a result of zero. This issue results in a loss of

information during the frame acquisition process, rendering the frame inadequate

for the scene’s requirements, this concept is more clear in Chapter 7.1.2. Despite

the aforementioned issue, under optimal conditions, such as those recreated during

testing and visible in Figure 19, the algorithm demonstrates potential. It can recre-

ate a synthetic image upon which the NEWG evaluation metric is applied to estimate

the scene’s optimal exposure time and gain parameters. Indeed, Figure (c) reveals

that the image captured with the optimal settings closely resembles the synthesized

image (b), though certain areas like the central patio door or the left bookshelf are

not accurately synthesized due to the problems described earlier.
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(a) Seed image (b) Optimal synthetic image

(c) Captured image with optimal exposure parameter

Figure 19: Images used in the synthetic image generator

7.1.2 Bayesian optimization

The module related to the Bayesian optimization process facilitates the calibration

and testing of the optimal parameter search process without interacting with the

rest of the algorithm. This allows for a more rapid and accurate calibration, as

modifications to the algorithm can be made without concern for impacting the entire

program.

Bayesian optimization is a strategy for optimizing objective functions that are

costly to evaluate. It constructs a probabilistic model of the function, often employ-

ing a Gaussian process as the surrogate model. A Gaussian process is a stochas-

tic process where every point in some continuous input space is associated with a

normally distributed random variable [29] [5]. Within Bayesian optimization, this

model is utilized to predict the location of the function’s maximum in the case of

study, with the Gaussian process providing a measure of uncertainty in these pre-

dictions.

Given the complexity of the optimization process, the separate module helps in test-
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ing and calibration of the optimization parameters. The module in question is di-

vided into two subprograms: one in MATLAB that also integrates image synthesis,

and one in C++ based on a .csv file, which allows for a greater focus on evaluating

the performance of the individual optimization process and for which there is a spe-

cific focus in the next chapter 7.1.3.

Figures 20, 21, 22, and 23 refer to the MATLAB program. In fact, the algorithm

for synthesizing images explained in Chapter 7.1.1 is implemented to obtain the

NEWG for each exposure setting using a seed image. However, in this case, the

search for the optimal value is not conducted by finding the maximum value in the

NEWG value matrix but by using the Bayesian optimization process. Particularly in

this instance, a maximum number of iterations was set to five steps, which, as can

be seen in Figures 20 and 22, amply allows reaching the optimal NEWG value. This

confirms the correct and efficient functioning of this approach, as in real conditions,

it is not necessary to evaluate every synthesized image and then find the exposure

parameters that obtain the maximum NEWG value. It is sufficient to refer to the

Bayesian optimization process, synthesizing only the required images that will be

used to train the algorithm until the optimal value is found or the maximum number

of iterations is reached.

Figure 20: Bayesan optimisation based on NEWG
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Figure 21: Comparison between seed (left) and synthetic (right) image with optimal

exposure values obtained by the Bayesan optimization process

To better understand the issue discussed in Chapter 7.1.1, two different tests

were conducted. The first test, illustrated in Figures 20 and 21, was performed

using a seed image with exposure time and ISO values set to 4 ms and 200 (3

dB gain), respectively. These values correspond to optimal conditions; despite the

seed image being underexposed, it presents much information, as seen in Figure 21

(left). The result shown in Figure 21 (right) demonstrates proper functioning under

optimal conditions, as the image can be considered correctly exposed.

Conversely, the test depicted in Figures 22 and 23 was conducted using a more

underexposed seed image corresponding to an exposure time and ISO of 4 ms and

100 (0 dB gain). This test demonstrates how, in conditions of low light, the use of

an exposure time and ISO that are too low for the environmental conditions means

that the image synthesis algorithm is unable to produce an image consistent with

the scene. This impacts the calculation of the NEWG evaluation parameter and,

consequently, the entire optimization process.

To address this issue, it is necessary to ensure that the seed image has exposure val-

ues that result in an underexposed image suitable for this exposure process, but not

too low for the brightness conditions present in the scene. Alternatively, this algo-

rithm can be chosen under conditions where there is a minimum level of brightness,

for example, from a light source, which would allow for the calibration of the mini-

mum exposure values so that the seed image contains enough information to create

the synthesized images.

As explained in Chapter 6.2.2, due to the problem of control delay, no further
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investigations were conducted to improve this aspect of the proposed algorithm.

Moreover, theoretically, this issue might have been overcome with a different ap-

proach in the paper [7], which, as previously mentioned, was not possible to imple-

ment. Despite this, software has been developed that allows for the rapid calibration

of the Bayesian optimization process, which is explained in the following chapter.

To conclude, the graphs in Figures 20 and 22 have the Y-axis with values ranging

from 1 to 13. These values were set in this way due to software requirements, as

described in the Y-axis label, the values refer to the gain + 1. This implies that the

actual gain values range from 0 to 12 dB, corresponding to ISO from 100 to 1600.

Figure 22: Bayesan optimisation based on NEWG

Figure 23: Comparison between seed (left) and synthetic (right) image with optimal

exposure values obtained by the Bayesan optimization process
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7.1.3 Tuning software

As explained in the previous chapter 7.1.2, two pieces of software have been de-

veloped to calibrate and demonstrate the functioning of the Bayesian optimization

process. This chapter illustrates the calibration algorithm developed by the authors

of the paper in C++. The underlying idea of the software is quite straightforward:

it involves extracting data related to exposure and the corresponding NEWG evalu-

ation parameter from a .csv file and applying the optimization algorithm to ensure

that the optimal value achieved is the expected one, namely the maximum value

of NEWG. If not, it is possible to calibrate the system parameters and restart the

program. This simple application allows focusing solely on the search for exposure

parameters linked to the optimal NEWG value evaluating speed and accuracy, ab-

stracting everything from the context, especially from the synthesis of images and

the calculation of the evaluation parameter, thus reducing time and potential bugs.

To ensure the proper functioning of the software, a specific C++ application was

developed for this purpose. It is designed to sequentially acquire frames from the

Luxonis camera, incrementing exposure time and ISO to cover the entire spectrum

available from the camera. This ranges from exposure values of 10 us to 33000

µs in steps of 500 µs, and ISO values from 100 to 1600 in steps of 50. For each

obtained frame, the corresponding NEWG evaluation parameter was calculated, to

do so it was necessary the implement the libraries containing the specific functions

for this purpose. The data obtained were saved in a .csv file, making it available for

use in the calibration program mentioned above.

In Figure 24, we observe the behavior of the Bayesian optimization process.

The optimization steps are marked with numbered crosses, indicating the sequence

of iterations. A green star marks the final chosen point as the optimal value. In

this instance, the number of iterations was set to 6 steps; hence, the optimal value

is obtained at the seventh step. Conversely, a red star indicates the maximum value

of NEWG, which corresponds to the optimal exposure value. The colored bands

plotted in the graph represent the NEWG value calculated for each exposure, and

acquired based on the algorithm previously explained. The test was done in a con-

text with constant ambient light conditions.
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Figure 24: Bayes optimization test

The optimization algorithm, as can be seen by the trend of the numbered crosses in

Figure 24, requires calibration to ensure its effectiveness and reliability. However,

this calibration has not been performed due to encountered issues already discussed

and because the calibration should be conducted in the actual context of the cam-

era’s usage.

7.2 Active exposure control for robust visual odometry in HDR

environments

The Figure 25 illustrates the exposure time calculated by the algorithm developed

in the paper [30] and implemented in this case study. The graph is divided into three

distinct areas: an initial blue area representing the initialization phase, followed by

red and green areas which correspond to the ’light off’ and ’light on’ phases, re-

spectively. The experiment was conducted in an environment where the luminosity

can be considered constant during these two phases. This constancy allowed for

an assessment of the algorithm’s performance. However, due to issues encountered

as referenced in Chapter 6.2.2, it was not possible to evaluate the execution speed.

The software developed for this case study, written in C++, is engineered to wait be-

tween the acquisition of one frame and the next. This interval allows the necessary
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time for the desired exposure settings to be correctly established. Without this mea-

sure, the controller would lack the correct references, rendering it non-functional.

This careful design ensures that the exposure settings are accurately synchronized

with the frame capture process.

Figure 25: Exposure time set by the algorithm developed by [30], the red and greed

areas are respectively light off and on, whereas the blue one is the initialisation

phase. The red segmented lines correspond to an increase in ISO

Aside from the issue of the delay between the command to set the exposure

parameters and the actual frame with the updated parameters, the algorithm requires

calibration. This calibration can be performed once the installation on the conveyor

belt is completed. In this case study, it was not possible to calibrate the algorithm,

partly because the integrated camera control, which does not have this delay, would

still outperform it.

To calibrate the system, given the simplicity of the control algorithm, it is sufficient

to adjust the parameter γ in the gradient descent method equation 13.

Given the oscillatory behavior of the exposure time, it is possible that the value of

γ is too high, which may prevent the controller from stably reaching the optimal

value. This could lead to fluctuations in the exposure time, indicating the need

for a finer adjustment of the γ parameter to achieve a more stable control over the
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exposure, as can be seen in the red and green areas in Figure 25.

In addition to the parameter γ, it is possible to calibrate the threshold values

for the increment and decrement of ISO values. The latter is modified based on two

parameters that act as the upper and lower limits of a hysteresis control. Specifically,

in this case, the ISO is increased if it exceeds a value of 20000ms and is decreased

when it falls below 200ms. In the graph shown in Figure 6.2.2, the changes in ISO

are represented by dashed red vertical lines, corresponding to an increase from 200,

to 400, to 800, and finally to 1600 ISO.

As expected, an increase in ISO corresponds to an immediate decrease in exposure

time, which allows for maintaining a constant overall exposure. The relationship

between ISO increment and exposure time decrement is crucial for achieving the

desired exposure balance.

7.3 Luxonis integrated auto-exposure control

In this chapter, the automatic exposure control within the camera has been tested

and implemented. To complete the system, a library was implemented that allows

the calculation of the NEWG evaluation parameter introduced in Chapter 5.2. Fur-

thermore, calculations were made to control the speed of the conveyor belt and

ROS was implemented to communicate the information acquired from the camera

to possible other devices.

In this case, it was not necessary to implement any particular algorithm to con-

trol the exposure and sensitivity of the camera. It was sufficient to acquire the

exposure data through the getSensitivity() and getExposureTime() functions on the

previously created dai::ImgFrame object.

The camera’s auto-exposure system, by default, prioritizes increasing expo-

sure over ISO, up to around frame-time (subject to further limits imposed by anti-

banding) [11]. This conflicts with the purpose of the thesis, but it was necessary to

implement it to test the rest of the code due to the problems encountered regarding

the delay explained in Chapter 6.2.2.

The test was carried out in a room with five identical light sources, which were

turned on in sequence to verify the variations of the control parameters, the speed of
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the controller, and its behavior. The first graph at the top in Figure 26, named ”Light

condition”, shows the trend of the light conditions of the environment where the

”light level” indicates the number of light sources switched on, where 0 corresponds

to a slight light source to still have information to capture.

Figure 26: Performance of Luxonis auto-exposure control and related calculations

of NEWG and RPM of the conveyor motor

The segmented red lines in the graphs in Figure 26 correspond to the moments

when there is a change in brightness in the environment. This allows us to analyze

the response time of the algorithm which, as mentioned above, prefers to prioritize

the variation of sensitivity and maximize the exposure time. This behavior is visi-
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ble in the ”Exposure sensitivity” and ”Exposure time” graphs in Figure 26. At the

moment when there is a change in brightness, the first parameter that is modified is

the ISO with a response time that varies between 100 and 120 ms, corresponding

to 3/4 frames. This results in improved performance, from this point of view, by

more than 100%. The variation of the exposure time occurs more slowly, but more

abruptly, varying only when the ISO value has reached a lower limit. As soon as

the conditions allow it, such as at the level two of illumination, the exposure time

tends to remain as high as possible, modifying the ISO if necessary.

The trend of the NEWG evaluation parameter of the frames behaves in a way that

corresponds to the behavior of the controller. In particular, it can be seen in Fig-

ure 26 in the ”Evaluation metric” graph that there is a constant behavior when the

controller has reached optimal values. On the contrary, during moments of bright-

ness variation, during the optimization process, there are oscillations that manifest

as undershoots proportional to the variation in brightness in the environment, given

by the contribution of the entropy calculation which suppresses and exceeds the

contribution of the gradient calculation.

7.3.1 Conveyor belt speed calculation

Figure 27: Illustrative diagram of the conveyor belt, d is the diameter of the driving

rollers, rpm are the numbers of revolutions per minute done by the driver and v is

the resulting belt speed

In Figure 27, an illustrative diagram is presented to understand the parameters to

consider when calculating the conveyor belt’s speed. It is assumed that the motor’s

revolutions per minute (rpm) are calculated at the drive roller, thereby bypassing
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any potential gear reducers. The C++ code is developed to input as model param-

eters the maximum error associated with motion blur, denoted as e, the diameter

of the rollers d, and optionally the maximum and minimum rpm values. This ap-

proach ensures that values incompatible with the used conveyor belt are not trans-

mitted. The maximum speed v to achieve an error e less than the set threshold is

calculated using the formula 17, and the corresponding rpm is determined using the

formula 18. The variable exp time represents the exposure time of the frame that has

been captured. Specifically, by defining an object of the class depthai.ImgFrame, it

is possible to acquire frames and their corresponding data from the ColorCamera

node via the xlinkout messages, as explained in Chapter 6.1.

v =
e

exp time
(m/s) (17)

rpm =
(v × 60)

π × d
(rpm) (18)

Based on the specific application where the system is used, it is possible to

calculate the parameters that best fit the type of control required. In the case study,

it was not possible to implement automatic control of the conveyor belt’s speed, as

it is manually controlled with a potentiometer that acts on the inverter controlling

the motor. Therefore, the maximum and minimum speeds were set, and the optimal

speed was transmitted as a percentage value.

Due to the fact that the maximum and minimum speed values of the conveyor belt

are not reported in the BMTec documents, it was necessary to manually calculate

the speed of the belt using the cameras that are the subject of this study in order to

obtain consistent data and a possible percentage value of the speed. Specifically, a

reference was set on the moving part of the belt and two fixed references were set in

the system frame at a distance of 41 cm. The machine was started and set first to the

minimum speed and then to the maximum. With simple calculations, the minimum

and maximum speed were calculated considering the time taken to move from the

first to the second reference. The values obtained are approximately 0.03 m/s and

1.8 m/s, as already mentioned in the introduction.
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In Figure 26, in the graph named ”conveyor maximum RPM”, it is possible to

see the trend of the expected rpm on the conveyor belt, considering an error e = 0.1

mm and a roller diameter of 0.08 m.

7.3.2 Determining the e error parameter in the context of motion blur

In the context of motion blur reduction, the selection of the error parameter e is

critical as it represents the maximum permissible error that can be set to limit motion

blur. This choice has a direct consequence on the calculation of the conveyor belt’s

speed as explained in the previous chapter, necessitating a careful selection based

on the specific application. For instance, in applications involving the calculation

of density, defined as the number of objects on the conveyor belt, a larger error e

can be tolerated. This is because the presence of motion blur does not significantly

affect the final result, allowing for a higher value of e which can enhance system

performance. Conversely, when precise measurements of objects’ dimensions on

the belt are required, such as in quality control scenarios, the value of e must be

chosen in accordance with the tolerances specified by ISO standards.

ISO 4759, particularly, outlines a set of tolerances for fasteners, which can be

analogous to setting tolerances for motion blur in imaging systems. According to

ISO 4759, tolerances are categorized into product grades A, B, and C, with grade A

being the most precise and grade C the least. These tolerances are crucial for ensur-

ing that components fit together correctly without excessive looseness or tightness,

which in the context of motion blur, translates to ensuring that the image quality is

maintained within acceptable limits. The standard was last reviewed and confirmed

in 2022, indicating its relevance and applicability to current technologies.

To better understand the problem of motion blur in the context of study, the

system was tested using washers. Specifically, the OAK-D lite camera was fixed on

a structure set up above the conveyor belt, and the system was started with washers

placed on the plane. Mainly two tests were carried out, the first with the maximum

speed of the belt and the second by manually setting a speed low enough not to

cause motion blur. Due to the manual control of the system, it was not possible to

precisely set the belt speed based on the error e, but it was possible to analyze the
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consequences of incorrect system calibration. In fact, as can be seen in Figure 28,

setting a speed too high and/or an exposure time too long results in an effect like the

one in the Figure on the left where the washers are blurred and inaccurate. On the

contrary, with correct calibration, the outcome is as depicted in the Figure on the

right. In this instance, the washers are notably precise and sharp, thereby enabling

for example an accurate calculation of the dimensions.

Figure 28: Effect of motion blur in the conveyor belt system

Therefore when applying these principles to the selection of e, one must con-

sider the application’s tolerance for error against the desired precision of the imag-

ing results. For quality control purposes where dimensions are critical, a lower e

corresponding to a higher product grade, such as A, would be necessary to meet

the stringent ISO tolerances. This ensures that the dimensions of objects captured

on the conveyor belt are within the acceptable limits set by the ISO 4759 standard,

which is essential for maintaining quality assurance and meeting regulatory compli-

ance. Thus, the selection of e is not merely a technical decision but also a strategic

one that aligns with industry standards and quality benchmarks.

7.3.3 Implementation with ROS environment

The integration of ROS, or Robot Operating System, into the C++ codebase en-

hances the communication capabilities with other nodes within a robotic system.

ROS is a middleware that provides a structured communications layer above the
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host operating systems, offering a set of software frameworks for robot software

development. It includes tools and libraries that aid in creating complex and robust

robot behavior across various robotic platforms [28].

In the case study, ROS Noetic was chosen in conjunction with Ubuntu 20.04,

reflecting the version used in University laboratories. The use of ROS brings several

benefits, such as modularity, allowing for software to be written in nodes that can be

reused and adapted for different applications. Its flexibility supports a wide range of

hardware and software, making it adaptable to diverse robotic platforms. The open-

source nature of ROS fosters a large community that contributes to its development

and provides extensive support. Additionally, ROS comes equipped with numerous

tools and libraries that facilitate the development, testing, and deployment of robot

software.

The C++ code’s ROS integration allowed for the setting of the conveyor belt’s

speeds, the exposure time and ISO. In particular the camera is set as a node that has

three topics, through which the messages are sent.

To test locally the code, a ROS network was initialize using roscore in the terminal,

then in another page rosnode list was used to check the correct set up of the node

and rostopic list to check the topics. Then using rostopic echo followed by the topic

was checked the correct sending of the messages.

Although the case study did not implement automatic control of the conveyor belt’s

speed due to the manual control, the inclusion of ROS opens up possibilities for

future automation and data exchange with other systems, enhancing functionality

and adaptability.
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8 Future prospects

This chapter presents potential projects, highlighting their advantages and features.

The aim is to inspire further research and innovation in these areas.

8.1 ROS and Gazebo for conveyor belt control and simulation

One potential implementation involves leveraging simulation software such as RViz

and Gazebo to simulate the behavior of the conveyor belt. These simulation algo-

rithms have already been tested and proven feasible using ROS, thus demonstrating

their viability. One key aspect of this possible implementation is to integrate cam-

eras into the simulation system, this allows the evaluation and optimization of posi-

tioning along the production line to streamline the process. Furthermore, within the

same simulation environment, other devices like robotic manipulators or packag-

ing and distribution systems can be incorporated, simulating the entire production

process. Moreover, it may be possible to simulate the feasibility of implemented

control algorithms by simulating objects on the conveyor belt and analyzing the

performance of the algorithms and their repercussions on the overall system.

Thanks to the flexibility of ROS, real physical systems can be integrated simultane-

ously with simulated ones by associating the node of such a device not only with

simulation but also with the chosen algorithm and hardware for the application.

In conclusion, this type of implementation, albeit complex, allows for cost reduction

during the design phase by having a fully simulated system communicating within

a ROS framework, where each component can be managed as an individual node,

leading to significant cost savings and enhanced problem-solving capabilities.

8.2 Integration of a centralized exposure control system

The implementation of a centralized system for camera control and potential post-

processing algorithms, integrating a series of cameras into a ROS network, could

be possible. This is due to the previously explained algorithms that allow simul-

taneous control of various cameras, creating and initializing different objects for

each camera on which various optimization operations are then implemented. This
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allows comprehensive control of the various integrated systems, reducing costs and

hardware implementation. However, this system could have gaps that stem from

problems already encountered in this thesis. In fact, everything should be tested to

verify that the chosen cameras are fast enough in both the execution of commands

and the transmission of information in order to reduce possible delays. Furthermore,

the computer managing everything must have sufficient computing power to handle

the workload. Once these issues are overcome, it could be possible to have a single

control system that exchanges information between the various devices integrated

into the system through a ROS network.

In addition to the advantages already mentioned, it could be possible to make the

various production lines collaborate, optimizing the workload based on the infor-

mation acquired from the cameras. The possible disadvantages, on the other hand,

could be related to the maintenance and failures of such a system as they would in-

volve the interruption of the entire production chain since the control is centralized

for several production lines.

The potential implementation just described could bring advantages in an industrial

context, but it is crucial to carefully evaluate the needs and potential issues that may

arise.
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9 Conclusions

In conclusion, this thesis has offered an in-depth analysis of the multifaceted aspects

related to the incorporation of cameras into industrial systems. The algorithms stud-

ied have shown a wide range of potential applications, and by addressing latency

issues in exposure control, they can achieve superior performance compared to the

original control algorithm.

In particular, among the two implemented algorithms, the one developed in the pa-

per ”Proactive camera attribute control using Bayesian optimization for illumination-

Resilient visual navigation” [8] demonstrates better performance compared to the

algorithm proposed in the paper ”Active exposure control for robust visual odome-

try in HDR environments” [30]. However, it encounters problems under low-light

conditions as described in Chapter 7.1.2. Despite this, the complexity of the first al-

gorithm is higher, and therefore its integration might be inefficient in systems with

low computational power. On the contrary, the algorithm proposed in the paper

”Camera Attributes Control for Visual Odometry With Motion Blur Awareness” [7]

combines the advantages of the two systems by proposing a less computationally

complex algorithm that integrates the key features of the first algorithm. Unfortu-

nately, it was not possible to implement and test its actual performances.

The choice of cameras is crucial for the desired application. Unfortunately, with

the current software releases available for the Luxonis cameras, it was not possible

to implement the algorithms as desired. Moreover, despite the various challenges

described throughout the thesis, which prevented the physical implementation of

the system, the control algorithm still holds significant potential for integration.

This research highlights the importance of optimizing camera integration within in-

dustrial environments, paving the way for improved efficiency and effectiveness in

industrial processes. Even though the full potential of the system could not be real-

ized due to the limitations of the current software releases, the theoretical ground-

work laid in this thesis provides a solid foundation for future advancements in this

field. The potential for the integration of the control algorithm into industrial sys-

tems remains promising, despite the current challenges.
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