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Abstract

In recent years, automation played a crucial role in the development of sawmill industry,
especially thanks to the introduction of the first CT scanners dedicated to wood logs.
Such machines allow for the optimization of cutting patterns, therefore contributing to increase
final product value, by detecting in advance internal wood defects: knots are the most relevant
of these defects, significantly affecting the main mechanical and aesthetic properties of timber
Many techniques have been proposed, in the literature, in the field of knot detection and
parameter estimation starting from tomographic images: state-of-the-art performances leave,
anyway, some room for improvement in terms of knot diameter estimation and Dead Knot
Border coordinate regression or, equivalently, knot status determination on single sawn boards.
This work proposes novel approaches to tackle such problems by exploiting Convolutional
Neural Networks (CNNs). Four procedures are proposed, employing either ground truths
obtained from the inspection of CT images or from physical measurements on sawn products.
The first two concern the straightforward application of CNNs for parameter estimation and
status determination, while the others propose a different procedure, which proves to be more
accurate than currently available methods and computationally fast enough to be employed
in in-line applications, reaching more than promising results both in terms of diameter
regression and status estimation. This approach, concerning the subsequent application of a
CNN for status classification to CT voxel sub-blocks containing consecutive portions of each
knot, reaches an overall accuracy of 86.5% when tested on a dataset obtained from physical
measurements on boards and knot blocks automatically extracted by CT Log.
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Chapter 1

Introduction

Since the early 2000s the global market for wood products has, after a few years of slight
decline, steadily kept gaining in volume.
While not holding significant effects in most developing regions of Latin America and Africa,
this phenomenon has lead, alongside with environmental concerns and the consequent growth
of natural and planted forest areas, to an increase in the availability of raw materials and to the
higher request for more diversified and high-quality typologies of product in North America,
Europe and some regions of Asia [1].
This trends have been confirmed by the Food and Agriculture Organization of the United
Nations (FAO), whose last official reports on the subject show how, by the 2016-2017 bien-
nium, the global volume of production had largely surpassed expectations and predictions
carried out barely a decade before [2][3]. All of these factors contribute to the need for better
performing machinery and techniques in wood industry and to the consequent development
of new technologies aiming to speed up production processes and to improve their efficiency
and the quality of final products.
Among the wide variety of commodities the market requests, one of the products having
higher demand volume (nearly 460 millions cubic meters as of 2016, [3]) is sawnwood. The
sawmill industry offers in turn quite a few typologies of product, many kinds of which are
required to have precise properties in terms of quality depending on the intended use, and
thus making it one of the principal sectors for what concerns the need and possibility of
technological innovation aimed at delivering goods of increasing quality.
Given that the goodness of a product is in greater part determined by the defects of wood
composing it, one way to improve the average grading of sawn products is to elaborate
accurate models of these defects and to design efficient methods for their estimation, in order
to acquire enough information for optimizing the cutting pattern for each log before actually
splitting it.
Even though this idea has been rather appealing to researchers and the main industry players
in the field for quite a long time, it has proven of difficult implementation because it implies
the need for fast and accurate means of acquiring information about the inner defects of wood
stems and a noticeable effort towards the improvement of automation techniques in the sawing
line.
After a couple of decades of researches on non-destructive methods for log analysis carried
out on tomographic images from medical scanners, a milestone in the field was marked by
the introduction, in 2008, of the first commercial wood scanner, CT Log by Microtec, which
allowed to use Computer Vision algorithms on computerized tomographies of logs to detect
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with good speed and precision the main features and defects occurring in stems, such as knots,
cracks, resin pockets and the pith (i.e. the center of annual rings) [4][5].
Among all defects, a crucial role in determining the grading of wood products is played by
knots, whose status (i.e. the fact they are live or dead when included in a product) can highly
affect the quality of a sawn board. In lumber, for instance, the presence of many dead knots
could highly affect its mechanical properties, since dead knots may not be adhesive with the
surrounding portion of wood and fall out, leaving holes in the board and thus a weak point
which makes it unfit for use in construction [6].
Furthermore, since the bigger the size of the knot included in the board, the higher is the
effect on the quality of final products, another crucial role for evaluating the precision of a
knot model is played by the accuracy with which its diameter is estimated. Unfortunately,
gathering accurate information about the diameter and, even more, the status of a knot at
its intersection with a specific board in an envisaged cutting pattern proves to be a rather
challenging task when starting from tomographic images, mainly because of the difficulty
in obtaining datasets from real observations of sawn products for the validation of designed
models and algorithms. Current methods, mainly based on segmentation techniques, allowed
for only partially satisfactory performances since mainly or, in most cases, wholly focused on
the estimation of knot diameter.
Given that they are the de-facto standard in many sectors of Computer Vision, and that several
successful architectures have been tested with profit on a wide variety of problems, algorithms
exploiting Convolutional Neural Networks (CNNs) have the potential to yield significant
improvements with respects to the previously employed techniques, in the case proper datasets
for their training are available.
This work has then the objective to design new and better performing techniques for estimating
the status of knot intersections with boards belonging to an envisaged cutting pattern and their
diameter before sawing, starting from tomographic images and using CNNs.
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Chapter 2

Literature review

2.1 Tree biology and wood defects

As common knowledge suggests, the only source for the production of raw wood lays in trees,
whose biological structure and growth processes play a crucial role in determining the quality
of would-be final sawn products. In order to correctly model and predict defects occurring
in wood boards it is therefore necessary to acquire an elementary understanding of natural
principles ruling the growth of trees and the formation of those elements resulting in such
defects after sawing. The following subsections are thus devoted to a basic description of tree
biology.

2.1.1 The structure of trees

Trees are indeed plants, but not all plants can be classified as trees.
A fundamental distinction is the one occurring between woody and non woody plants. The
first category, including trees, lianas and shrubs, can be distinguished since exhibiting four
main characteristics.
Trees can be defined as woody plants having a single, self-supporting stem, being able to
reach an height of at least six meters when fully grown and not generating branches in close
proximity of the ground [7].
Woody plants:

• Are vascular plants. A woody plant must present conductive tissue articulated in a
woody xylem, having the role of forming the wood stem and conducting water and
dissolved minerals to serve as nutrients, and the phloem, acting as a conductor for
organic products of photosynthesis (e.g. sugars) and as one of the means to store these
resources when produced in surplus.
In trees, the xylem is the actual woody part, surrounded by the bark, while the phloem
is the innermost part of the bark itself. As the tree grows, the part of xylem deputed to
conduct sap up the trunk, and therefore having nourishing and food storage functions,
looses these capabilities in its central zone, thus giving origin to the distinction between
heartwood or duramen (the central zone) and sapwood or alburnum (the outer zone
under the bark, conserving its original role). When observing a section of a tree,
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heartwood and sapwood can, in most species, be easily told apart since the latter has a
lighter color due to its greater part of living tissue.

• Are perennial plants. A plant can be defined as perennial if its lifespan is greater than
an year.

• Have a persisting stem. Although being perennial, some plants can’t be classified as
woody since, even if their roots can survive throughout winter, their stem dies every
year. If this doesn’t happen, the stem is said to be persisting. In trees, cambium is thus a
thin layer placed between wood and bark.

• Present secondary thickening. A plant exhibiting secondary thickening has its stem
enlarging by subsequent growths in diameter operated by the cambium or cambian, a
growing layer placed between phloem and the most recent layer of wood xylem.

An illustration of the just described layers of a tree trunk can be found in Figure 2.1.

Figure 2.1: All the layers of a tree stem represented in cross-section [8].

Growth by secondary thickening plays a crucial role in determining the principal features of a
tree stem, such as its shape, structure and defects.
It works as follows: the thin layer of cambium placed under the bark is actually a generative
tissue aimed at producing new vascular cells, which will contribute to increment xylem size
on the inner side and phloem size on the outer one.
This phenomenon makes the tree trunk to expand, with approximately radial symmetry, around
the pith, a small portion of soft vascular tissue that, when the stem is still a twig, has the
function of storing and transporting food reserves for the plant. As the tree grows older its
cells die, making the pith to loose its nourishing functions. It also stops enlarging in favor of
the xylem.
Most species of tree, especially the ones growing in temperate or cold regions, do not grow
uniformly during the year, but alternate some periods of expansion (in spring and summer)
with others where there is no growth. When observing the section of a tree cut in parallel
to the ground, it is possible to observe annual rings, marking the points in which the tree
stopped growing approximately each year. According to how the tree is sawn after felling,
annual rings give origin to a specific pattern of wood-cell fibers lines on each board (highly
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contributing to structural properties in lumber), taking the name of grain.
While newer layers of wood encase older ones by secondary thickening (or growth), the tree
also gets taller by primary growth, which can be described in short as the process of elongation
of branches and tree top. The combination of the two gives the plant a cone-like shape, since
older, lower parts of the tree are covered by more layers of new wood (approximately one
every year) and the ones further up on the trunk are thinner, since originated in subsequent
years (see Figure 2.2) [7][8][9].

Figure 2.2: Longitudinal section of a tree showing the yearly growing pattern [9].

The understanding of this growth pattern proves useful to describe the nature of some of the
principal wood defects occurring in sawn boards, as explained in the following subsection.

2.1.2 Principal wood defects
After the process of sawing, wood boards unavoidably end up presenting some features
labeled as defects.
A defect can be defined as an irregularity in wood pattern that affects its quality in some way,
being it by weakening some mechanical property (e.g. strength) or by spoiling its appearance,
therefore decreasing final product value.
Wood defects occur in many ways, and no kind of wood or wood product is exempt from their
presence. Certain are peculiar, or at least more frequent, in some species of trees, while others
are common to all: some imperfections are inherent to the very biological processes ruling
the growth of trees, such as knots, some are due to environmental conditions the plant was
exposed to during its lifespan and some are due to the intervention of foreign organisms (e.g.
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bugs).
The following subsections report a list of the most common or relevant defects in wood as
described in [7] and [10]. Only the description of defects having a role in the prosecution of
this work is reported.

Knots

As the tree grows, buds originate new twigs along the stem in proximity of the pith, thus
starting the creation of new branches.
Having their own pith and vascular tissue, new twigs grow towards the outer border of the
trunk with the exact same modalities in which the tree itself grows: branches too, in fact, get
longer by primary growth and thicker by secondary growth.
The layer of cambium in branches is, during their period of growth, actually a continuous
extension of the one belonging to the main plant, meaning that, as new portions of the xylem
are formed, the oldest part of the branch gets smoothly encased in the trunk, since its cambium
on the inner side becomes actual wood, and not bark.
A neat distinction between wood from the main trunk and the encased branch is, in any case,
clearly visible when observing sawn logs. A (portion of) branch embedded in the wood of a
tree trunk can be defined as a knot.

Figure 2.3: Section of a Pinus Strobus knot [7].

The previous figure, reporting the vertical cross section of a Pinus Strobus log, permits to
understand how knot growth happens: between mark 1 and 2 it is clearly visible (especially
on the upper part) how fibers in along the vertical direction of the xylem seamlessly bend
towards the axis of the knot and generate a quite smooth transition from trunk to branch.
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In the area comprised between 2 and 3, however, a more marked transition can be observed.
This happens because, at a certain moment in the life of the tree, branches (especially the
older ones, closer to the ground) die and stop growing by secondary growth. For a while the
branch keeps elongating, but its cambium layer gets disconnected from the main one on the
trunk edge, and develops its own bark. After some time, depending on the species, it is cast
by a natural phenomenon known as cladoptosis or breaks and falls (natural pruning).
As the stem widens by secondary growth, this later portion of branch is gradually incorporated
into the main body.
When looking at a knot, its dead part can be easily spotted since wood fibers surrounding it do
not bend to follow its growing direction as for its previous segment and a thin layer of bark is
clearly visible around its borders. The portion of knot ranging from 1 to 2 is said to be sound,
while the one comprised between 2 and 3 is defined as dead or black. Point 2 is also known
as the Dead Knot Border (DKB).
On sawn boards knots can be either spike or round: spike knots occur when the outer surface
of the board is approximately parallel to their growth direction, as in the case of Figure 2.3,
while round knots are generated by almost orthogonal cutting angles and present circular to
oval shapes. Spike knots, except in the case of wholly sound knots at the moment of tree
felling, nearly always present both a black and a sound part, but round knots most often
belong to either one of them.
On lumber, having a dead knot is not a desirable property, since, being it not tightly adherent
to the surrounding wood or even surrounded by its own layer of bark, such knot is likely to
detach and leave a knothole behind, which weakens the product and thus affects its mechanical
properties. Moreover, dead knots are an aesthetic defect, their presence being undesired
in lumber employed for the construction of products in which visual aspect determines a
considerable share of the final selling price.
Figure 2.4 reports an both an instance of sound and black round knots.

(a) An instance of sound knot. (b) An instance of dead knot.

Figure 2.4: Examples of round knots.

While both knots create a noticeable discontinuity with respect to the rest of the board, the
one on the right blends less smoothly, with the surrounding wood grain stopping abruptly on
its border. Moreover, its color is darker, hence the definition of black knot, and it is encircled
by a clearly visible layer of bark.
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(a) Compression wood (bottom left of the log). (b) Lumber with rot (red stains) [11].

(c) A pitch pocket. (d) Spiral grain on a board.

Figure 2.5: Examples of wood defects.

Compression wood

As previously stated, the environment surrounding a tree during its growth is one of the main
sources of wood defects. If the plant, in its first period of life, is forced to lean (e.g. because
it is growing on a slope) an abnormality in the development of its wood tissue known as
reaction wood may occur. Depending on the species of tree on which it is found, it takes
two different names: tension wood in hardwoods and compression wood in conifers (the
distinction between hardwoods and softwoods, or conifers, is dictated by the different ways
in which they manage leaves and nourishing, which is out of the scope of this work).
Being the result of longitudinal stresses in the wood due to tree inclination, reaction wood
generates, as the names suggest, from compression on the underside of the leaning point of
the trunk in conifers and from tension in upper parts, with respect to where the tree bends, in
hardwoods. Since the near totality of the examples reported in the following regards conifers,
only the term compression wood will be hereafter used.
Visually, compression wood can be identified as a redder or generally darker portion of the
trunk with a lifeless appearance.
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Rot

Also known as decay, rot is the decomposition, eventually resulting in the breakdown, of
wood composing a log or board.
A continuing process, it starts by the action of some species of fungus or micro-organisms:
in initial phases it makes wood slightly softer and weaker, but not enough to make it unfit
for construction or any other use. After this early stage, in which the defect may even go
unnoticed to an observer, rot progresses up to a point when the affected wood looses its
structure and leaves a hollow.
It may affect both heartwood and sapwood areas of the xylem.

Pitch pockets

Pitch pockets are a defect common to species where resin canals can be found in wood, such
as pine, spruce and fir, but they can also develop in any conifer after an injury occurred to the
cambium layer.
They are small cavities convex on one side, usually contained inside the wood limited by
two annual rings, with the convexity pointing outwards. Appearing as ellipses with the major
axis laying parallel to the direction of the grain, they can either be empty or contain liquid
or solidified resin. They may even present small portions of bark, included during their
formation. The dimension of a pitch pocket along the principal axis of the oval can span a few
centimeters.

Cross graining

Because of the irregularity of tree growth due to environmental or genetic factors, age rings
are never equal to one another. Different inclinations and sizes with which they form give
origin, after cutting the tree into lumber, to a phenomenon on boards defined as cross-graining,
consisting in a deviation of grain from the vertical axis.
Although it can be introduced by errors in the cut (e.g. extraction of a non perfectly vertical
board from the log, known as diagonal grain), it is a mostly natural defect taking the name
of spiral grain: when debarking a log, its appearance may seem twisted because its grain
follows a spiral pattern around the trunk. This effect is more accentuated close to the base of
the tree, while tends to get weaker going up the stem, with an usual change in the direction of
the spiraling at the height reached by the tree between 10 and 30 years of age.
Its supposed purpose concerns the enforcement of the trunk against atmospheric agents and
food distribution functions [8].

2.2 The role of defects in product quality
The concept of "quality", when linked to the determination of a value for wood products, is
inherently relative to the intended use of the product itself.
When it comes to purely aesthetic factors, defects such as spiral grain or knots of considerable
size may happen to be, if not explicitly wanted, at least accepted.
By "quality" it will be hereafter meant the possession, on part of the board, of certain of the
mostly required mechanical properties in lumber, such as elasticity, strength (e.g. resistance
to bending, tension and compression) and torsion strength [12].
Defects can therefore be re-defined as all those imperfections, meant as deviations from an
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ideal, perfectly cylindrical tree trunk wholly made of perfect and uniform wood, responsible
for lowering final product quality. More specifically, defects treated in this section are grade
defects, i.e. all the imperfections reducing a log or sawn product quality, that can not be
removed by just discarding a fraction of the considered material, to be distinguished from
scalable defects, such as rot, that can most often be so eliminated [10].

2.2.1 Grain angle

Quite a few studies (see, for instance, [12] and [13]) have proven the anisotropy of timber with
respect to tension, compression and bending strength, i.e. its resistance to those operations
is directionally dependent. More specifically, the two aforementioned studies refer to some
experiments performed on test pieces of Douglas Fir, clear of any relevant defect and therefore
exhibiting no angle between the directions of tree growth and grain.
Results are clear: in straightly-grained timber resistance to tension has proven to be approxi-
mately 48 times higher in the direction parallel to tree growth than in its perpendicular and
6 to 7 times for compression. In absence of relevant defects, timber is thus more resistant
to tensile strength than to compression and its resistance to stress is strongly dependent on
the angle at which the perturbation is applied (the more this force is parallel to tree growth
direction, the more resistance wood offers).
These properties are guaranteed by the presence of straight grain, since it is its cellular struc-
ture to provide them: this implies that resistance of timber to compression and tension is
actually dependent on the angle of application with respect to the grain.
Therefore, in case of cross graining, timber boards are less tolerant to compression strengths
applied along their main two axes since they are forming an angle greater than zero with the
grain. Similar results are obtained for bending strength.
Figure 2.6 shows how resistance to compression, tension and bending strengths decreases in
function of the angle at which it is applied with respect to the grain. With slightly different
patterns, resistance to all three strengths suffers steep decreases starting from angles of 15-20◦

and reaches 10-20% of its maximum around 60◦. A more complete series of results on the
effect of grain angle on mechanical properties can be found in [12].

2.2.2 The effect of knots

Under the light of what reported in the previous subsection, any defect on timber affecting
parallelism between grain and main axis of the board weakens its mechanical properties.
Since, as can be seen in figure 2.3, knots can cause strong deviations in grain direction along
their sound portion or even its abrupt interruption in the dead one, they are a considerable
source of weakening in sawn boards. The importance of the role they play in degrading quality
depends, anyway, from their sizes and distribution along the product, since bigger knots have
greater influence than smaller ones and clusters have more detrimental effects than single
instances. Moreover, even their position is relevant since different portions of a product can
be subject to different kinds of stress: taking, for instance, a simple timber beam with some
load applied on the top: if on the upper side, knots would be more subject to compression
strengths, while tensile ones would play the major role on the lower side [12].
Many studies have been conducted on the subject, and the role played by knots in weakening
lumber has been long known, with many articles published in the last seventy years. Many
of them focused on the principal role played by knots in the introduction of grain deviation,
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Figure 2.6: Effects of some strengths on timber, depending on grain angle [14]

while others analyzed other side effects of their presence, such as the inevitable reduction
of clear-wood areas, the redistribution of stresses around in the surrounding portion of
material and their close-to-null tensile strength resistance. Moreover, according to [15], the
presence of a knot causes grain deviation in a zone approximately as large as three times
its diameter. Although sound knots introduce the same effects of grain deviation in a more
quality-degrading fashion, their detrimental effects is surpassed by the ones caused by dead
ones, which can be in full modeled as holes with undisturbed surrounding fiber directions.
These holes serve as concentration points for stresses and thus highly affect overall product
quality. A good summary of the principal studies in this regards can be found in [14].
A quantitative analysis about the influence of knots and grain deviation on the resistance of
timber to bending, tensile and compression strengths was conducted in [13] on some species
of spruce, pine and fir. Its results are reported in the following Table 2.1.

Timber Tension [N/mm2] Compression [N/mm2]

Sitka spruce 19.7 29.5
Douglas fir 21.4 32.1

Canadian spruce/pine/fir 26.3 39.5
Norway spruce 30.5 45.8

Table 2.1: Resistance to tension and compression for some tree species.
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It is possible to notice how, for each and every one of the tested species, the mean value of
tensile stress resistance is lower than the one of compression. Furthermore, in the case of
Douglas fir, a direct comparison with what reported in subsection 2.2.1 is possible: in the case
of straight-grained timber without knots, resistance to compression proved to be 7 to 8 times
smaller than the one to tension, while the presence of defects leads it to be 1.5 times bigger.
Further results are, one again, reported in [12].
In addition, some studies (see, for instance, [14] and [16]) assert that, although the main role
in strength reduction is played by fiber deviations, in boards where large knots are present they
become the most important factor affecting grain orientation and therefore overall strength.
In particular, [14] proves that, although a major role in the decreasing of lumber stiffness
is played by material variations of clear wood or the presence of natural defects, such as
compression wood, which is particularly difficult to quantify, the part played by knots is
still greatly relevant and the effect of their presence is not correlated to these natural defects,
therefore meaning that their influence on stiffness reduction can be estimated without precise
knowledge of material variations inside the board. This implies that, with a fair approximation,
knots alone can even be used to estimate strength and behavior of lumber.
It is therefore clear that knot distribution, sizes and status (sound/dead) play a crucial role in
determining mechanical properties, and therefore overall quality, of sawn boards.

2.3 Tomographic images in sawing optimization
During the years, alongside the development of research and market, new and more accurate
product grading standards have been developed, also including guidelines for machine grading,
which has been gaining ground over plain visual board grading in the last period.
Scanners are nowadays capable of evaluating the quality of boards by considering several
factors, such as dimensions, knots, slope of grain compression wood, presence of bark or
damages and others, thus allowing for a speedup in production and efficiency.
Examples of grading standards and scanners performing their evaluation can be found, for
instance, in [16], [17] and [18].
Anyway, quality evaluation performed on boards is bounded to have a limited contribution in
increasing the value of final products, since it is unavoidably performed after the log has been
split into lumber. Moreover, without any external aid, the choice of sawing pattern solely relies
on the experience of sawyers or sawing machine operators. This often results in non-optimal
cut choices and a sensible decrease, with respect to the optimum, in product grade and even
volume, in case an erroneous choice in sawing results in discarding entire portions of the log.
Although, since the 80s, some optical scanners were used to gain information about log
geometry in order to maximize product volume yield, several studies have shown that a major
increment in value would be guaranteed by an accurate knowledge of defects positioning
before cut, thus allowing to optimize log rotation angle and sawing pattern.
As reported in [19], a milestone in modern sawing optimization, achieving a close-to-optimal
log rotation before log splitting can yield an average of 7% improvement in resulting lumber
value, while improving the cutting pattern by considering the placement of internal knots
could lead to a 12.7% increase in top-grade lumber extraction.
Other studies of the same period confirmed the noticeable grade and value increase achievable
with the optimization of log rotation with respect to the principal defects, up to the point of
stating that they should play the principal role in a sawyer’s decision of log positioning before
the cut.
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2.3.1 Towards the use of tomographic images
After a few years from the introduction of commercial Computerized Tomography (CT) in
1972, it started drawing the attention of the sawmill industry, since the chemical composition
of wood carbon chains allowed to obtain outputs not very different, in quality, from the ones
obtained by its application in medicine, thus paving the way to the analysis of the internal
structure of logs prior to sawing.
One of the first important publications was the already cited one from Taylor et al. ([19]), a
feasibility study on the use of CT images for analyzing knots inside uncut logs. The study,
employing a basic segmentation technique based on thresholding, was the first to prove
the feasibility of defect recognition (and, more specifically, knot recognition) starting from
tomographic images. Other important works soon followed, such as [20], which confirmed
the accuracy of defect detection algorithms operating on CT images, but were still far from
working fast enough for sawing lines.
These first studies, anyway, were bounded to the mere detection of knots, which was indeed a
noticeable improvement with respect to contemporary sawing techniques, but lacked for a
more accurate description of such defects needed in order to further increase the projected
grading, and thus value, of final products. A natural extension of these studies pointed therefore
in the direction of a more accurate prediction of the specific structure of defects present in
the log, in order to gain fundamental information for a considerable improvement in sawing
patterns.
Given the objectives of this work, the following sections and chapters will be entirely focused
on knots, which are the most common grade and value reducing defect present in lumber
coming from many species of tree. The attention will be especially placed to the estimation of
some fundamental knot parameters, discussed in the following, which allow for an accurate
description of the defects needed to optimize cutting choices.

2.3.2 Knot modeling and measurement
In order to properly estimate the impact of knots on the grading of boards resulting from
sawing, according to a chosen cutting pattern, it is necessary to know their size at a given
position and whether, in that very spot, they are sound or dead. This can be done via a proper
modeling of knots by defining some parameters.
Before proceeding with a brief description of the most important knot parameters having a
role in knot modeling, it is necessary to define a reference system for log and knots. From
here on, the longitudinal (l) direction of the log will be the vertical one following tree growth,
the radial direction (r) will be the one running parallel to log radius (i.e. perpendicular to knot
radius), while transversal (t) direction will be perpendicular to it.
Some of the most important knot parameters are:

• Starting point. It is the point where the knot originates, the innermost and closest to log
center. Since it most often resides in the pith, it is itself known by "pith". When dealing
with knot models it is most often chosen as the origin point for the reference system,
thus meaning that all its r, t and l coordinates are equal to 0.

• Knot end. As the name suggests, it is the ending point of the knot. If the knot dies at
a certain point, it is most likely to occur inside the log, while it is on log surface for
sound knots or knots which stopped growing in its close proximity (i.e. its part reaching
log edge is made up of dead wood).
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• Length. It coincides with the radial distance of knot end from the pith.
For a sound knot reaching the edge of the trunk, it indeed coincides with log radius
along the direction marked by knot growth. In some cases a sound knot may happen
to be pruned by man or accidentally broken: this truncation affects its end point (and
therefore its length) and has a detrimental effect with respect to the accuracy of knot
detection in tomographic images since, because of irregularities in the process, branch
end assumes an irregular shape known as scar.

• Diameter. At a given radial coordinate, it is the maximum width of the knot in the
rt-plane. When referring to knot diameter, it is the maximum diameter along the radial
direction.

• Dead Knot Border (DKB). Radial coordinate at which the transition from sound to
black knot takes place. Knots reaching log border without changing state (therefore
globally labeled as sound) do not indeed exhibit one.

The following Figure shows the projection of a knot on a single cross-section along the l axis
and reports a representation of the parameters described above. DKB and (knot) diameter are
represented in two separate lines for the sake of clarity, even though many models make them
coincide.

Figure 2.7: Representation of principal knot parameters. Original image from [21].

Some models developed in the literature also provide mathematical relations between these
parameters. An instance of them can be found in [22], but the most important and validated of
these models is the one designed by Grundberg et al. in 1995 ([23]), improved and validated
by Oja in [24] and Grundberg and Grönlund in [21].
Developed for Scots pine and refined on Norway spruce samples, this model utilizes a set of
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nine parameters (among which there are knot length, DKB coordinate and the distance from
pith to log surface along the radial direction) which have to be obtained from (manual or auto-
matic) measurements and allow to obtain, as their function, the transversal and longitudinal
positioning of knot axis and knot diameter at any radial coordinate.
Such a model turns out to be of particular interest since its parameters could be obtained
by automatic analysis of CT images, especially in the case of diameter and DKB, which
instead of being measured could be defined as the radial coordinate at which the diameter
stops growing.
The previously cited papers, with some others, provide a measure of the accuracy with which
the mentioned model predicts actual knot shape and features starting from CT images. Here
follows a brief summary.

2.3.3 Destructive methods: creating a ground truth
In order to obtain some physical knot measurements to serve as ground truth to validate any
kind of model or algorithm it is unavoidable to perform the breakdown of the log (hence the
name "destructive") and manually measure the quantities of interest. There are several ways
of doing so: only two of them, specifically the ones used by Oja to validate the model from
[23], are here reported.
A first and more lengthy method (Figure 2.8a), but also more precise, makes use of knot whorls,
that is a group of knots whose starting points are placed all around the pith, but in a short
interval along the longitudinal axis, since coming from branches originated approximately in
the same period. This method consists in spotting whorls along the log, and then cut right
above them. Successively each single knot is isolated, split along its center and measured.
Another method (Figure 2.8b) consists in longitudinally splitting the log into flitches, also
referred to as boards, of a certain width (20 mm in the case of Oja’s study), then manually
scanning each board and annotating position, dimension and status for each knot.

(a) Method exploiting whorls. (b) Splitting a log into flitches.

Figure 2.8: Destructive methods for knot measurement [24].

Although the first method proves to be more cumbersome, it also allows for way more accurate
measurement of fundamental knot parameters such as length, DKB and diameter with respect
to any other, even though some knots are unavoidably lost in the process, since splitting
the log in correspondence of very small knots proves to be very prone to errors that can
compromise final measurements. Sawing the log into boards, on the other hand, allows for
the gathering of measurements about approximately every knot, but gives very imprecise
information about knot length, diameter and DKB, since only a few samples for every knots
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are available, i.e. the points where they intersect a board, therefore allowing to obtain only
sparse measurements (except in the case of spike knots). This method was also employed in
the construction of one of the most important and cited databases, the Swedish Pine Stem
Bank, whose structure is described in [23], the original 1995 paper in Swedish and in [21].
The Stem Bank originally included 200 Scots Pine stems coming from all over Sweden, some
of which had been studied for up to a century, and was later on extended to include more
samples. CT images were gathered for all of them, by using a medical scanner by Siemens, the
SOMATOM AR.T., with a precision of 10 mm along the longitudinal axis in correspondence
of the whorls and 40 mm between them.
Logs were then split into boards and each board marked for allowing to reconstruct its
position in the original log. After they were scanned with cameras on all sides, two experts
then analyzed and graded each board.

2.3.4 Using CT images for knot detection and measurement

Preliminary studies

In his test, Oja compares measurements from ground-truths obtained with the two aforemen-
tioned destructive methods with results coming from the analysis of CT images via basic
thresholding techniques. Information obtained via the whorl method is assumed to be the
correct one, since the measurements of knot key parameters is, by construction, more precise.
While being accurate in determining knot position, measurements performed on CT images
overestimate knot diameter, with a mean error of 2.6 mm and a standard deviation (std) of 2.2
mm. The error is quite bigger for DKB, with a 15 mm mean and a 18 mm std.
Oja explains these not very satisfactory results in terms of DKB position estimation as ob-
tained from a probably insufficient number of samples, as possibly affected by the drying of
logs, which can alter knot structure and therefore their parameters, and, mostly, as coming
from the application of an inaccurate model. The model in question, previously mentioned
in subsection 2.3.1, is designed on Scots pine knots and determines as DKB coordinate the
one at which maximum knot diameter is reached: this, Oja states, is not true for the Norway
spruce knots object of his study, whose different geometry does not give a distinct maximum
diameter in CT images.
Grundberg and Grönlund adopt a different technique in [21]: CT acquisition of logs from
the Swedish Stem Bank are simulated by applying a mathematical model of X-ray tube and
detector and the same knot model is applied on images processed basing on density levels,
variations and shapes. Adopted metrics for performance evaluation are different from the one
used by Oja: on 539 knot observations the dead knot volume per considered whorl is predicted
with an R2 of 0.81, while knot diameter had an R2 of 0.66.
Although performed on simulated data, this study contributed to prove the goodness, in
perspective, of the application of CT image analysis to sawing optimization, but also remarked
the difficulty in obtaining a proper estimation of some fundamental knot parameters.

A closer look to CT images of logs

Some of the methods and algorithms available in the literature and dealing with knots work
on the full three-dimensional log tomography, while others just analyze small portions of
consecutive 2D slices.
Log tomographies can be considered as a set of bi-dimensional images stacked along the
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longitudinal direction of the stem, which are also referred to as "slices". An example can be

Figure 2.9: A CT slice from a Scots pine log.

found in Figure 2.9, where it is also possible to notice five knots composing a whorl, clearly
distinguishable as lighter zones with an approximately elliptical shape around which age rings
slightly bend towards the outside of the log.
The distinction between heartwood and sapwood is also clear: the former is the darker zone in
the middle where (in this specific image) most part of the knots resides, while the latter is the
outermost, brighter part. It is important to notice that the difference in density between knots
and sapwood, reflected in image color, is not very marked: this is a well known problem in
the literature, with some studies entirely devoted to it, such as [25].
The resolution of a single slice (in the order of 1mm x 1mm) is usually quite higher than the
one between consecutive slices (up to the order of the centimeter), therefore nearly all the
algorithms presented in the literature are designed to work on slices rather than longitudinally.
The slice reported in Figure 2.9 was taken from the scan of a Scots pine log performed with
CT Log by Microtec [4], the scanner employed for this thesis, treated in the following of this
work.

State-of-the art techniques for knot detection and measurement

In more recent years, several other studies concerning knot modeling and parameter estima-
tion starting from tomographic images have been carried on. While preceding ones were
only feasibility studies aiming to prove the effectiveness of using CT images for sawing
optimization, these latter publications are also focused towards the problem of performing
automatic knot detection. The role of this task is fundamental in industrial applications, since
it is the preliminary step for knot parameter estimation and sawing optimization.
Quite a few papers deal with the subject, an example of which is [26], by Andreu et Rinnhofer,
proposing a knot detection method based on histogram thresholding of consecutive CT slices
of Norway spruce (with a 20 mm resolution along the l axis), preceded by some pre-processing
steps, such as sapwood segmentation aimed at isolating knot surface from the rest of the log.
Extracted shapes in consecutive images are reported to a mathematical model based on fitting
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the knot around a three-dimensional spine. This method allows to correctly extract 73% of
knots with a 13% of false alarms. The employed model also allows for diameter estimation
with a mean error of 0.7 mm and a std of 10.1 mm with respect to a ground truth obtained by
destructive measurements.
Another method exploiting 3D knot connected components among successive slices is pro-
posed by Longuetaud et al. in [27], reaching a 85% detection rate.
Although its results concerning maximal knot diameter estimation appear to be very satis-
factory (approximately 0 mm for mean and 0.9 mm std), they were obtained with respect to
measurements carried out by marking the ground truth directly on CT images via a computer
software, thus not on physical boards or log sections (notice that actual knots may be different
in size from their CT scansion, either because of a limited resolution or imperfect image
reconstruction), and were not tested on an independent validation sample, thus being of
difficult comparison with other studies.
In [28] the authors choose to perform a direct comparison between knots in CT images and
on physical cross-sections of logs, therefore not considering any three-dimensional knot
structure or model. Each knot is isolated as follows: every image is centered around the pith,
then heartwood-sapwood boundary is detected in order to eliminate the sapwood part, which
could affect performances in knot detection. Eventually each knot is segmented by gray level
thresholding with a fixed-value threshold and rotated to be aligned with the vertical direction,
in order to reproduce the scheme employed in manual diameter measurement, which was
performed on physical cross-sections of Norway spruce logs, with three diameter samples for
each knot.
Error mean (1.7 mm) and especially std (4 mm) in diameter measurement are good results if
compared with other studies employing physical measurements on boards as ground truth.
The authors do anyway point out the fact that manual measurements could have an uncertainty
up to 5 mm in some cases, especially in presence of big sound knots, many of which exhibit
only a faint color transition to the surrounding wood and prove tricky to be measured with
high accuracy even by an expert.
The different, previously mentioned study by Longuetaud et al. ([25]), employed a similar
ground truth, and achieved on diameter measurement a mean error of 0.67 mm and a root
mean squared error (rmse) of 3.28 mm.
Cool et al, in [29], perform an interesting study aimed at measuring knot detection and param-
eter estimation performances starting from coarse resolution CT images to simulate the effect
of an high speed industrial scanner. Using four logs from three different North-American
tree species, they apply the algorithm from Johansson et al. [30], reported further on in this
section, on 146 x 146 pixel images and compare its results on a ground truth created by
manual measurements on CT images. The obtained results (−3 mm mean error, 7.2 mm std)
are, anyway, not fully satisfactory and show how knot measurement proves to be a difficult
task with a degraded resolution of CT images.
In [31] the authors test the same algorithm on a set of partially dried logs (therefore exhibit-
ing different sapwood properties, which are reflected in CT images by means of an altered
hardwood-sapwood border) with knots once again measured directly on tomographic images.
The tests yield a −1.87 mm mean error and a 4.87 mm std.

The issue of Dead Knot Border

All the literature reported up to now is mainly focused on the issue of evaluating the effective-
ness of the CT approach in detecting knots and evaluating some of their principal parameters
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having a role in product grading and value. Anyway, the near totality of the available studies
does not provide any result in terms of DKB position estimation.
This lack is, in any case, motivated by some objective difficulties, first of which the one
concerning the creation of a dataset large enough to guarantee the reliability of obtained
results. This happens since DKB is only measurable when viewing a knot in its whole, or
at least its section along the radial direction: it’s the case of a spike knot on a board, which
can be obtained with destructive measurements both in the flitch method and in the whorl
one. But it must be noticed that the former is performed without any knowledge of internal
knot disposition and results in a random fraction of spike knots in the obtained boards, while
the latter, although allowing for a more accurate split of nearly each knot present in a whorl,
is very time consuming, requiring approximately 5 hours of work per log and the hand of a
skilled expert.
Moreover, methods only exploiting CT information and considering the DKB as the point
where knot diameter stops increasing are inherently imprecise, since the determination of
such a point is hardly ever univocal and is rather prone to judgment errors.
Some few works reporting results about DKB position estimation are, anyway, allowable in
the literature, among which are noticeable another study by Oja [32], dating back to 2000 and
the one by Johansson et al. [30], published in 2013.
The algorithm designed in [30] and employed in some of the papers cited above (but only now
discussed to serve as direct comparison with Oja’s) works by employing concentric surfaces
(CSs) centered, in each slice, around the pith: these surfaces do not have a fixed, circular
shape, but can follow either the shape of heartwood-sapwood border or log exterior shape. In
three dimensions, these surfaces extend to close-to-cylindrical shells intersecting the log (and
therefore its knots) at a certain distance from the pith.
On the slice plane, each knot portion comprised by two surfaces, isolated by a thresholding
operation, is roughly approximated with an ellipse: since ten CS are employed (5 in heartwood
and 5 in sapwood) nine ellipses are fit to knot portions. A whole knot is then formed by
joining them and its shape refined, especially in sapwood where it tends to be confused with
the surrounding portion of log, by morphological dilation. Eventually knots are fit to the
model designed in [23], with the DKB set to be the coordinate in which diameter reaches its
maximum.
This procedure, tested on a mixed ground truth of pine and spruce coming from the Swedish
Stem Bank reached a mean error, for diameter estimation, of −0.93 mm (4.6 mm for std) on
pine and of 0.93 mm (5.1 mm for std) on spruce.
Results on DKB are only available for pine, and report a mean error of −4 mm, with a std of
12 mm. Measured R2 is equal to 0.19.
In [32], Oja follows a different approach: while adopting the same procedure of his previous
work ([24]), he validates it on a wider sample of Norway spruce in the process of being added
to the Swedish stem bank, therefore guaranteeing a higher reliability on the ground truth
results are tested against.
Once knots are detected and their parameters measured by the algorithm, virtual boards are
created according to these measurements and the original cutting pattern with which logs con-
stituting the ground truth were split. These reconstructed boards are then compared with the
scansion (via CCD line camera) of original ones, so allowing to evaluate the performances on
any single board, thus globally obtaining more than one measurement per knot and increasing
dataset dimension.
Knot diameter was evaluated only on samples whose ground truth was a spike knot, thus
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allowing for the contemporary identification of maximum diameter and DKB as the coordinate
at which it is reached. Only 27 of these knots were found on sawn boards, resulting in a
prediction with mean error of −2 mm and std 3 mm.
Although DKB was estimated for every knot in the model, only the results relative to 12
boards are reported in the paper. Since knowing the DKB position allows to assert the state of
a knot on a sawn board intersecting it at a certain position, a possible metric for evaluating the
performances of its prediction is the share of sound knots on a single board correctly labeled
so by the algorithm. In the article only the accuracy on boards with more than 30% of sound
knots in the ground truth is reported, while it is stated that the algorithm fails on wider logs
with a majority of small, dead knots since trunk width allows for a weaker x-ray penetration
and thus a lower resolution in CT images, resulting in poorer performances.
The image reporting Oja’s results can be found in Figure 2.10.
Only real knots (i.e. belonging to the ground truth) found on innermost, central boards of the
cutting pattern and placed on its their sapwood-facing side are considered.
The abscissa represents the share of sound knots of the reconstructed board generated by the
data provided by the algorithm, while the ordinate corresponds to its ground-truth equivalent.
The coefficient of determination of the linear regression is measured to be R2 = 0.72.

Figure 2.10: Results on DKB prediction by Oja [32].

Summary

In the course of this subsection several methods and results concerning knot parameter mea-
surement starting from tomographic images were presented. Two main possible choices for
ground truth creation were introduced: one involving parameter estimation directly from the
same CT images against which algorithms and techniques are tested and the other employing
destructive methods on logs, after the tomographic scansion has been performed, to obtain
accurate measurements directly on wood.
Moreover, some of the most relevant paper on the subject were briefly discussed. Table 2.2
reports the only couple of available results in terms of DKB estimation.
It is immediate to notice that these result, even if obtained with CT images coming from the
same scanner, are not of easy comparison since completely different metrics are adopted, i.e.
actual error with respect to ground truth measurements in the case of Johansson et al. and
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Paper Performance
Johansson et al. [30] mean error = −4mm, std = 12mm

Oja [32] R2 = 0.72

Table 2.2: Comparison between performances on DKB estimation.

coefficient of determination of the linear regression between the share of actual and predicted
sound samples on a board for Oja.
Table 2.3 reports instead the results on knot radius estimation. Even though in this case they
are of easier comparison, performances are here split in two main groups: those obtained from
measurements operate on CT images (the first four) and those evaluated on a ground truth
obtained from a destructive method.
Scanner resolution is also reported for completeness of information: the first two numbers
indicate horizontal and vertical resolution for each CT slice, while the third stands for the
resolution along the longitudinal axis.
Results reporting rmse instead of std are marked with an asterisk (*)

Paper mean error [mm] std [mm] Scanner resolution [mm]
Longuetaud et al. [25] 0.67 3.28* 0.36-0.81 x 0.36-0.81 x 1.25
Longuetaud et al. [27] 0.0 0.9 0.74 x 0.74 x 3.75

Cool et al. [29] −3.0 7.2 1.43 x 1.43 x 4.0
Friedriksson et al. [31] −1.87 4.87 0.605 x 0.695 x 1.0

Oja 1997 [24] 2.6 2.2 n.a x n.a x n.a
Andreu and Rinnhofer [26] 0.7 10.1 1.55 x 1.55 x 20

Breinig et al. [28] 1.7 4.0* 1.0 x 1.0 x 1.1
Johansson et al. [30] −0.93 4.6 n.a x n.a x 10

Oja 2000 [32] −2.0 3.0 n.a x n.a x 10

Table 2.3: Comparison between performances on knot diameter estimation.

Letting alone the one from Cool et al., obtained by working on images coming from a coarser
resolution scanner with respect to the others adopting the same procedure in ground truth
creation, and therefore not easily comparable with them, results in the first part of the table
are generally better than the rest. This is most likely the effect of the CT-originated ground
truth, which inherently guarantees higher performances with respect to measurements on
wood, since excluding differences between actual defects and their scanned version.
In any case the performances on diameter available in the literature are already quite satisfac-
tory, even if improvable still, while just a few, limited studies have been conducted on DKB,
therefore leading to the need of new and more performing techniques.
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Chapter 3

Materials and Methods

3.1 CT Log by Microtec

Since all algorithms and techniques described in the following of this work are developed and
tested on data coming from the CT Log, the industrial log scanner by Microtec reported in
Figure 3.1, the following section is devoted to a brief description of the technical specifications
of such scanner, of the techniques it employs for extracting useful information for sawing
process optimization and of the outputs it provides, alongside with some comments on the
performances it achieves in terms of diameter and DKB coordinate estimation.

Figure 3.1: The CT Log [5].

3.1.1 Scanners in the wood industry
As the studies reported in the previous chapter suggest, since the middle Eighties the possibility
of applying computerized tomographies to the detection and measurement of wood defects
before sawing has appealed to more and more researchers and wood industry operators.
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Anyway, the currently available literature mainly focuses on the feasibility of CT application
to log scanning or on the performances of algorithm on tomographic data: a point that is not
sufficiently stressed in most publications is the fact that, in order to be actually applicable in
real case scenarios, all of these techniques and methods must be efficient and computationally
fast enough to be run in the brief time span in which a log stays in the line before the actual
sawing happens.
CT scanners designed to work in sectors other than the sawmill industry, given the quite
different nature of their employment, are generally much slower than what is required in
the sawing line, that is from 1 up to 4 m/s. In 2011 (the year in which Giudiceandrea et al.
published the first work on the CT Log), the fastest medical scanner by Siemens (Siemens
2008), operated at at 0.5 m/s, while the average airport scanner for luggage had a speed of
0.3 m/s [4]. Furthermore, medical scanners necessitate of some time to cool down x-ray
tubes between subsequent scans, thus making them even more unfit to the use in lines which
typically operate continuously on all 24 hours.
These factors, alongside the need for real-time outputs and data processing, lead to the
impossibility of application, even with specific adaptations, of such scanners to the sawing
line, thus paving the way to ad-hoc scanning solutions. It is also worth pointing out that such
solutions have not to bear the same degree of scanning accuracy as medical scanners, but
can be perfectly suited to the task with coarser resolutions, especially along the longitudinal
direction of logs, being the attention focused on general properties of wood defects, such
as shape and maximum width in the case of knots, and not on the minute details of, for
instance, the human body object of medical scanning. Such a "compromise" between speed
and accuracy is exploited by CT Log, whose main features are reported in the following
subsection.

3.1.2 Working principles and main features

In order to speed up its acquisition times, CT Log deviates from the typical configuration of
tomographic scanner in terms of sensor disposition.
In brief, while the usual scheme employed in scanner is the so called fan beam, requiring
several x-ray emitters and a matching number of linear sensors for data acquisition, each
of which acquiring information about a limited portion of the scanned object, along the
perpendicular line joining it with the emitter, CT Log instead employs the cone beam scheme,
with only one x-ry emitter, but a wider, bi-dimensional array of sensors on the acquisition
side [4].
A representation of the two different schemes is reported in Figure 3.2.
Given the different nature of its configuration, cone beam approach needs more advanced
algorithms to yield satisfactory results, many of which come with computational complexities
that make them unfit for use in real-time scenarios.
CT Log exploits an algorithm that was relatively recent and not implemented in other scanners
at the time of its development, that is the one from Katsevich [33] [34]. This algorithm allows
the scanner to perform a fast enough acquisition, still obtaining a fairly good output, thus
making it fit to be used in the sawing line.
By means of employing this different beam geometry and by adjusting some other physical
parameters (e.g. emitted power and gantry speed; further details, which can be found in the
original paper and in [5], go beyond the scope of this work), the CT Log is able to guarantee
the desired performances for its employment as an industrial in-line scanner:
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(a) Fan beam geometry. (b) Cone beam geometry.

Figure 3.2: Different acquisition geometries for tomography [4].

• Scanning speed: 60 up to 160 m/minute, i.e. 1 to 2.7 m/s.

• Continued operating time: 24h per day, 7 days per week.

• Maximum diameter of scanned logs: 70cm, approximately depending on their density.

• Resolution of 1mm x 1mm for each bi-dimensional, transversal slice and of 10mm along
the longitudinal direction of the log.

For more accurate specifications regarding what has just been reported and what will be
mentioned in the remainder of this paragraph, [5] is to be consulted. Since up to 10 logs
per minute pass through the scanner, CT Log is accompanied by an array of more than 10
computers, equipped with well performing GPUs, in order to perform image processing and
log analysis tasks in a correspondingly short amount of time, i.e. well under six seconds, since
in this time span the tomography itself has to be performed, too.
Taking as an example a six meters long log, all the processing steps required to gather the
necessary information to sawing optimization would take about 25 seconds on a single, GPU-
equipped computer: splitting the work among 10 of them, some of which performing specific
defect-detection tasks, brings the overall processing time to approximately 2.3 seconds.
After the log has been scanned and the resulting information has been processed, an optimiza-
tion software elaborates different possible cutting patterns, according to the specific kinds of
product and product qualities required by the owner. This process involves the creation of
the so called virtual boards, that is to say three-dimensional representations of the would-be
final sawn products, each of which bearing information about the defects it would have after
the cut. Having this information allows the software to estimate the product quality for every
board and the whole log, and then to include this parameter in the final choice of the best
cutting solution available for the specific log at hand. In one second, about 10000 virtual
boards are created and analyzed to extract the optimal solution.
Figure 3.3 reports an instance of log split into virtual boards, each one with marks of different
color identifying its main defects and features.
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Figure 3.3: A representation of the virtual boards created by CT Log [5].

The choice of the best cutting pattern, which has to consider possible log rotations and dif-
ferent allocations of the boards in the log both in terms of positioning and of length, width
and thickness, is eventually performed on the basis of some national or international grading
standards, which most often take into account knots as the prominent defect afflicting product
quality. A study regarding the ability of to achieve accurate grading according to one of these
standards (more specifically the DAB one, mainly adopted in Germany) and to quantify in
economical terms the benefit of applying CT image analysis before sawing is performed in
[35]. This study, conducted on 36 Douglas Fir logs from which 172 boards were extracted,
considers different product qualities defined by the aforementioned standard and different
selling prices,and yields results showing that not only actual product grading was fairly
accurately predicted by the machine, but also that the value of sawn boards with respect to
a cut without a prior CT scan and the consequent optimization can increase between 4 %
and 20 %. This fact, besides providing further proof to the goodness of the CT approach to
sawing optimization, shows that CT Log is an effective mean to detect position and size of
the principal wood defects, such as knots.

Figure 3.4: Representation of a scanned log.
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3.1.3 Scanning a log: CT output and image processing

Original tomography and first processing steps

Before proceeding with the description of the procedures and materials used for the main
goal of this work, it is necessary to continue with the description of the kind of images and
log information provided by CT Log, which is also the starting point of what reported in the
following: the two subsequent paragraphs, both containing material from [36] and [5] and
images taken from CT Log, will be devoted to this purpose.
As previously mentioned, CT Log has a resolution of 1mm x 1mm x 10mm, meaning that each
log is eventually scanned at one-centimeter intervals along its longitudinal axis, obtaining, for
every interval, a slice with a 1mm/pixel resolution. Since the same amount of power is used
for logs with different width, resulting images are sharper in correspondence of thinner trunks
or even between different portions of the same log, being the base usually quite wider than the
top for the phenomenon of secondary growth. This is a point to be taken into account since
it can sometimes partially affect the performances of some algorithm. Figure 3.4 provides
a representation of a whole CT scan of a log and Figure 3.5 shows how, in logs of different
width, the quality of tomographic images tends to be different, too.

(a) Lower quality slice. (b) Higher quality slice.

Figure 3.5: Two slices from CT Log.

The two reported slices come from the very same log: it is anyway possible to notice how the
one on the left, coming from the base of the trunk, carries more blurry details with respect
to the one on the right, placed in the proximity of the top. The difference is more clear if
focusing on growth rings,on the outlines of knots and on the less marked distinction between
different elements in the image (e.g. heartwood-sapwood).
This image set provided after the tomographic scan of the log is then processed via some
computer vision algorithms of different complexity. Some minor features and defects are
identified, such as the presence of bark, rot, metal inclusions in the wood, the width of growth
rings, resin pockets and heartwood-sapwood border: these are the minor operations, requiring
simpler procedures and fewer computational power.
Some major tasks, or at least more important since affecting other subsequent steps, are also
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performed: the first of them is pith detection, which plays a crucial role since providing the
starting point for most of the knots and because many defects and features are placed in a
radial fashion with respect to it. Being the center of year rings, the pith can be identified
by mean of the Hough circle transform applied on each slice. Inter-slice continuity in pith
position has to be guaranteed by means of some regularization filters, since the position of
the pith in the slice plane at different transversal coordinates, if plotted in two dimensions,
biologically follows a regular curve (except in the case of severe wood defects suck as cracks
or broken tree top).
Once these steps are performed, log processing continues with knot detection and parameter
estimation.

Knot detection, extraction and analysis

Before proceeding, it is necessary to make some clarity on the way different coordinates are
referred to in the following: when dealing with the tomographic images coming from CT Log,
horizontal and vertical image coordinates in the transversal slices of the log will be addressed
as x and y respectively, while the longitudinal coordinate (i.e. the one varying slice by slice)
is defined as z. It is also worth pointing out that the z direction is not necessarily the one
coinciding with the one in which the tree grows, since a log can be scanned either starting
from its top or its bottom indifferently.
When dealing with knots, instead, since they will be extracted in separated voxel blocks (as
described in the following), coordinate naming will be slightly different: as already mentioned
in Chapter 2, the vertical coordinate in slices belonging to knot blocks, corresponding with
the one parallel to log radius and therefore defined as radial, will be marked with r, while the
horizontal one will be labeled as t (transversal). The coordinate ranging in knot slices will be
referred to as l (longitudinal), and it can, once again, coincide both with knot vertical growth
direction or with its opposite, according to how the entire log has been scanned.
Knot detection and parameter estimation is performed in three main phases, hereafter listed
and subsequently described:

• Slice segmentation via a CNN.

• Knot detection (also known as identification): definition of knot bounding box and knot
block extraction.

• Knot area analysis, comprising knot parameter estimation.

For their extraction in separate voxel blocks, knots are to be, as a first thing, isolated from
the rest of the image: this is performed by a segmentation operated via a CNN on each slice
provided by CT Log.
The CNN takes as input a voxel block composed of 5 stacked slices, each of which is reduced
to the dimension of 128 pixels both in the x and y axis to keep consistency across logs of
different sizes. Its output is an equally-sized voxel block, having values in [0,1], each of
which expresses the probability that each voxel belongs to a knot. In the subsequent Figure
3.6, the image on the right reports one of the five slices composing an input block, while the
right is the corresponding output provided by the network.
The dataset used for training such CNN was constructed by manually marking the slices
resulting from the scan of 75 Scots Pine logs coming from all over Europe, resulting in a total
of over 10000 knots. The marking proceeded as follows: exploiting a dedicated software from
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Figure 3.6: Input and output of the CNN employed in slice segmentation [5].

Microtec, each knot of each slice was isolated by hand-picking its starting and end points,
its diameter at different positions in r and its DKB (again, marked as the coordinate of the
maximum diameter). Moreover, any number of additional points could be added to each knot
to better define its shape, since many of them can exhibit irregular curvatures depending on
the condition under which their growth happened.
To provide a better understanding of how this software works, and also because of its further
use importance in the creation of other datasets employed in the following, a screenshot of it
is reported in Figure 3.7.

Figure 3.7: The software employed in knot labeling [5].

As it is clearly visible in the top-right slot, 5 points are marked in a single knot (corresponding
to the one whose axis is green on the whole slice on the left), thus allowing to sharply define
its outline. DKB, and therefore knot diameter, is marked as a red line perpendicular to the
axis marking radial direction.
The information obtained by means of this software was then adapted to the aforementioned
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slice blocks to serve as ground truth for network training by marking with one each voxel
belonging to a knot, according to its hand-defined version, and to 0 each voxel not belonging
to any.
In order to get voxel blocks of fixed size for each knot, the information coming from slice
segmentation has to be exploited to locate every knot in the three-dimensional tomography
and to define a bounding box around it, so to gather the necessary parameters to fit it into a
block. Under the simplifying assumption that, for every knot, its axis can be modeled as a
straight line starting from the pith, providing that pith position is known at each slice (as it
actually is, as previously described), only three parameters are needed for its description: its
starting point along the z axis and two angles, that is the one relative to the direction of knot
axis projection on the x-y slice plane and the one formed by the axis and the slice plane itself.
Given a range of slope values in which the actual two just mentioned angles are reasonably
expected to fall, that is, specifically, [−30%,30%] with a 2% step, it is possible to define
one and only one axis per voxel (in the whole tomography) connecting it to the pith. This
step allows to define an angle between knot axis and slice plane and to obtain a precise pith
coordinate, i.e. the one intersected by the axis itself; the angle formed by knot projection
onto the x-y plane can be calculated by means of a plain atan2(·) operation, since x and y
coordinates of pith and considered voxel are known.
Given this triplet of parameters, a three-dimensional line, modeling knot axis, can be defined.
Actual knots positions are then estimated by applying a 3D Hough map to these lines and by
exploiting the information coming from the previous step to calculate the probability that a
triplet of parameters actually belongs to a knot. Local maxima resulting from this process are
selected as correct values for the determination of knot axes.
Once its position is available, a block of voxels containing each knot bounding box is extracted.
Blocks employed in the course of this work have a fixed size of 128 x 64 x 12 along the
r, t and l directions, respectively: since not all knots may fit into this block size, (possibly
different) scaling factors are sometimes applied to the knot representation along one or more
of its three direction. This information has to be carried along with the block for all the
processing steps it goes through, since any parameter estimation performed on it has to be
the re-scaled according to these parameters. Such scaling factors are applied a-priori of every
processing steps according to some heuristics concerning log radius and maximum expected
knot diameter.
An instance of knot block, in which the l coordinate progresses from left to right (i.e. all the
12 vertical slices have been aligned) is reported in Figure 3.8. When referring to this kind of
images, in the following, the t coordinate will span from left to right starting from the top-left
corner of each image, while the r one will span from top to bottom starting from the same
position.

Figure 3.8: A knot block [36].
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As it can be seen, image by image, the approximately elliptical shape of the knot can be found
at increasing r coordinate: this happens because the r-t plane intersects the knot at increasing l
coordinates (each spaced of 1cm because of the resolution of CT Log), thus including a higher
and closer-to-log-edge portion of knot, as it can be inferred from Figure 2.7 by imagining
each slice as a plane cutting perpendicularly to the Figure itself and in parallel to the bottom.
At this point, the process followed by the software accompanying CT Log differs, for what
concerns diameter and DKB coordinate estimation from the one proposed in the following
of this work: a CNN for semantic segmentation is again applied to the just extracted knot
blocks, its output being very similar to the one described in the first part of this paragraph (it
is reported in Figure 3.9a).

(a) Knot block processed by the CNN for segmentation [36].

(b) Output (light blue) and ground truth (blue) for segmentation [5].

Figure 3.9: CNN for knot segmentation.

Once the CNN output is available, knot parameters are straightforwardly measured, including
knot length, end point, diameter and DKB r coordinate (in correspondence of diameter).
For the training of the network more than 5000 blocks were manually labeled by means of
a dedicated software. Figure 3.9b reports the superimposition of marked ground truth and
CNN output for an instance of knot used in the development of such network. CNN prediction
is represented by the oval in the darker-blue color, while the corresponding ground truth is
signaled by the lighter one.
The whole process allows to correctly identify the vast majority of knots, for most species
even in sapwood, and to extract the corresponding blocks, with only a small fraction of
imprecise detection mainly due to the presence of defects exhibiting a quite similar aspect
to knots when scanned, such as pitch pockets, or to the presence of knots growing in very
tight clusters, thus allowing to extract several tens of instances from each log. Other defects or
log features such as rot or dried wood do not affect this step, but have a partially detrimental
effects in the procedures described in the following.
Knot parameter estimation, though, is more prone to small errors, mainly because of some
imprecision introduced by CNN output, in the case of diameter, or because modeling the
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DKB coordinate as exactly the point in which diameter stops growing may not always be
very accurate, since the portion of sound wood in the knot can, in some cases, continue quite
beyond that point.
No accurate estimation of the performances of these algorithms were currently available
before the development of this thesis, mainly because of the difficulty (dealt with in the
remainder of this work) of obtaining a proper physical ground truth for DKB and diameter
values. Anyway, empirical observations on final sawn product suggested that the estimation
of these two important parameters leaves some room for improvement.

3.2 Designed procedures and employed datasets
In order to improve performances of knot parameter estimation, four different approaches
involving CNNs are tested. Each of them differs from the others either in the followed
procedure or in the construction of the dataset employed in network training.
While the first approach consists in the basic application of a CNN to each knot voxel block
to perform direct regression of parameters, the second tries to extend knot analysis by first
determining knot status, in order to cope with the presence of fully sound knots not having
a DKB coordinate. The last two procedures, only differing in dataset construction, aim to
design a more computationally efficient and accurate strategy tackling both the issues of
status determination and, in case of knots deemed as dead, of DKB coordinate and diameter
regression, at once.
Each approach employs a different dataset according to the specific problem at stake: in the
first two cases, CNNs are trained on ground truths obtained by inspection of CT images, the
first of which was already available since employed for other research purposes, while the
second was gathered in order to obtain more sound knot samples. The last two datasets differ
from previous ones since designed to rely on manual measurements, and therefore no software
defined diameter or DKB position is available in this case; they only differ in block extraction,
as explained in the description of the last approach.

3.2.1 Approach 1: direct regression of DKB coordinate and diameter
(DR)

Procedure

The first and most straightforward approach to the problem of diameter and DKB coordinate
estimation consists in performing their direct regression (from here the abbreviation DR, with
which this procedure will be mentioned in the following) by training a simple network aimed
at receiving the whole voxel block containing a knot as input and providing the parameter
as output. Two different approaches, respectively referred to as DR1 and DR2, involving the
training of three separate networks are followed:

• DR1.Training and testing of two CNNs, one aimed to perform diameter regression and
the other with the goal of regressing DKB coordinate.

• DR2. Development of a single convolutional network performing the regression of both
parameters at once. This approach aims at exploiting the inherent correlation between
the two quantities of interest, since DKB coordinate is most often in the close proximity
of the maximum diameter.
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Given the similarity of the faced problems, all three networks are envisaged to have a similar
structure, too.
To be ideally placed after knot block extraction in the course of log analysis, the main goal of
these CNNs is to serve as preliminary test for designing suitable network architectures for the
problem at stake since, as explained in the next paragraph, the structure of dataset employed
in network training has a considerable impact on obtained performances and on their overall
reliability, especially in the case of DKB coordinate estimation.

Dataset

The voxel blocks used in this stage, even though extracted by the same procedure described
above and also employed in the following, were originally obtained for other testing purposes
(out of the scope of this work) and therefore are slightly different in their dimension, presenting
in fact only 8 l slices instead of 12. The difference is, anyway, not very marked since most
knots are contained in a span of 8 consecutive CT images and only a few exceed this size.
The dataset is then composed of 549 128 x 64 x 8 (t x r x l) voxel block coming from Scots
Pine logs scanned with CT Log. Ground truth for diameter and DKB coordinate are obtained
by the means of the same software employed in the marking of knot necessary for the CNNs
mentioned in Section 3.1. One of such blocks is reported in Figure 3.10

Figure 3.10: Knot block from the first dataset.

It is again worth pointing out that, while this procedure may be quite accurate in providing a
ground truth in the case of diameter, its precision in DKB coordinate determination remains
questionable. Moreover, the composition of this dataset appears to be slightly biased towards
knots coming from relatively small logs and showing very few irregularities, meaning that the
vast majority images are very sharp and well defined if compared with real-life scenarios.
Anyway, such dataset is still good to perform preliminary tests to explore the viability of the
CNN approach in the field of knot parameter estimation.

3.2.2 Approach 2: determination of knot status and model fitting (SD)

Procedure

One of the major inconveniences in the procedure described in the previous paragraph is that
it requires an implicit assumption: when determining a DKB coordinate the knot is implicitly
supposed to be dead at some point. This does not always hold true, since in many cases,
especially in the ones of bigger knots growing in proximity of the top of the log, no actual
DKB coordinate can be found. It is indeed possible to set a default value of DKB to, for
instance, the maximum r coordinate as ground truth for sound knots, or in any case to use
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similar expedients, but the limited amount of available samples and some preliminary tests
performed in this direction indicate that such an approach is not optimal, since several tested
network configurations struggled to converge when trained with an adapted version of the
dataset.
A new procedure, referred to as SD, for "Status Determination" is then to be designed in
order to take into account the presence of a not negligible share of sound knots. A simple
CNN for the task of binary classification is an effective means of distinction between wholly
sound knots and knots dying at some point in the block: it has to be applied prior to the one
performing parameter regression or even to the one providing diameter and DKB coordinate
estimation via semantic segmentation, already working in in-line applications.

Dataset

Despite the apparently simpler procedure described in this second step, dataset creation proves
here to be a little more delicate than in the previous case. This is mainly because, being the
distinction between an overall sound and dead knot obviously more marked than the possible
error made in the estimation of knot parameter, mislabeled samples has higher detrimental
effects. Such classification besides presents the possibility of several uncertain cases in which
the knot actually dies, but does so in close proximity of log edge, making thus the correct
labeling highly uncertain, or in some cases not at all possible when starting from CT images
only.
A reasonable solution would be to mark all such uncertain knots as either sound or dead,
depending on which bias is less costly to introduce in the network: this is possible since
the sound-dead transition would happen, in the vast majority of these cases, in an area of
the log where valuable sawn products are very unlikely to be obtained, therefore limiting
the detrimental effect of a misclassified knot in a board. It is anyway to be pointed out that,
once again, the effect of introducing such a bias in the training of a CNN has difficultly
predictable effects on the outcomes of its classification. Furthermore, in this specific case,
very few samples are available: since the physical ground truth is not accessible, only few
sound knot samples can be identified with reasonable certainty.
Employed criteria to mark a knot as sound are:

• As obvious pre-condition, the knot must reach log edge.

• Its diameter has to keep, even very slightly, growing for increasing r coordinates, or at
least not staying constant for a significant portion of a slice. Notice that this is a slightly
weaker condition than the one imposing DKB coordinate (and therefore the presence of
a dead knot) in correspondence of coordinate where maximum diameter is reached.

• Sapwood border must bend outwards in the direction of log edge, creating a character-
istic curvature around knot borders, which signifies that wood fibers are, in that area,
still feeding a growing and thus sound knot.

• Knot borders in sapwood have not to be too sharply defined, since this again signals the
presence of a significant portion of sound, growing wood.
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Figure 3.11: Two examples of sound knot.

Figure 3.11 reports a couple of knots marked as sound. It clearly visible how they both respect
the previously defined criteria: sapwood bends in correspondence of the growing knot, their
outlines are not too sharply defined against sapwood itself and their diameter keeps increasing
up to log edge.
To a large majority of knots selected in this fashion, a group of others coming from actual
observation and classification performed on real logs are added. Such knots all present the
distinctive feature of reaching the exterior of the log, since originally collected for testing the
performances of CT reconstruction and subsequent analysis on this specific kind of defect.
They are, thus, bigger in size than the average knot, but provide the means of giving the
network some information about the limit-cases in which a big knot reaching log edge is dead
(most likely right before the edge). They are of particular importance since, if labeled by an
observed just starting from CT images, correct classification could prove to be particularly
difficult to achieve. An example of such dead knots is reported in the following Figure 3.12.

Figure 3.12: A dead knot reaching log edge.

It is clearly possible to see why such kind of knots can prove tricky to classify only starting
from tomographic images: besides reaching log edge, this knot, which was classified as dead
from the observation of its portion reaching the outside of the log, presents a quite marked
bend in the sapwood area around it and seems to have a slightly increasing diameter for all
the images (except, perhaps, two of the last three). Its outline appears, though, in quite sharp
contrast with the surrounding sapwood, thus providing a clue of its real status.
Even though some of this valuable examples with a verified sound/dead label are available,
many knots coming from CT scans present similar features, but lack for a certain ground truth:
only a small portion of them, i.e. the ones for which labeling was assumed to be correct with
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an high degree of certainty after the inspection of an expert forest scientist, are included in
the final set of samples employed in network training.
The dataset results to be eventually constituted of 343 sound knots and an overall pool of some
hundreds dead ones coming from several tens of Scots Pine logs. At the moment of CNN
training only 343 dead knots are considered to guarantee a fair balancing between classes.
Ground truth certainty coming from real-world observations is available for 30 sound knots
and 35 dead knots. It is also worth mentioning that, in some cases in which labeling is deemed
as too uncertain, a bias towards sound knots is adopted, given that, as previously explained,
uncertainty in parts of the log closest to the edge does not have highly detrimental effects on
final products.
An even smaller number of Maritime Pine samples are available, too (around 30 of them
sound): given their relative similarity, when scanned, to the Scots Pine ones, they were also
kept into consideration during network training and testing.
The reduced number of available samples, mostly due to the uncertainty of correctly labeling
a knot reaching log edge, limits the scope of this approach since providing a restricted amount
of information for proper network training. This procedure remains, anyway, a valid test for
future developments of this approach to knot analysis since, as reported in Chapter 4, some
preliminary simulations yield promising results.

3.2.3 Approach 3: estimation from sparse measurements and manually
marked knot blocks (SMS)

The two previously described strategies, even if still promising under some aspects, bring
to light some major issues that can be encountered when designing efficient way to perform
real-time, in-line knot parameter estimation:

1. Difficulty in obtaining accurate measurements of diameter and DKB position.

2. Sound/dead knot labeling can prove quite imprecise in larger knots.

3. Determining knot status and estimating its parameters in a following steps is potentially
a computationally-costly operation.

4. The lack of fairly accurate measurements and ground truth makes it hard to correctly
evaluate performances.

For what regards point 1, obtaining a suitable amount of good-quality data to train a CNN
for diameter and DKB coordinate regression is a rather lengthy and hard to achieve task,
since it can either be performed by creating the ground truth via a software, thus leading to
possible remarkable discrepancies with respect to the real values, or by manual measurements
on physical wood samples, as performed by some authors whose works have been reported in
Chapter 2, which is a time costly method only allowing to gather relatively small quantities of
samples and is then more suited to studies concerning the feasibility of the CT approach or
the development of algorithms not exploiting neural networks.
Point 2 was already explained in the previous subsection: performing binary classification on
the whole knot can lead to uncertain outcomes.
The third point has not been yet mentioned, but can have significant outcomes in in-line
applications where computational efficiency plays a major role. Moreover, introducing two
separate steps can lead to more potential sources of error.

35



Eventually, point 4 is probably the most important: both the strategies designed above are
either difficult to be measured in terms of performances and to be compared to each other:
this is mostly due, again, to the difficulty in constructing accurate datasets.
It is therefore desirable to design a procedure capable of efficiently determining both knot
status and parameters, possibly employing a large dataset, whose reliability has to be higher
than the one provided by the manually-marked ground truth created via an ad-hoc software (it
has therefore to come from physical measurements). A change of perspective is then necessary
in terms of the way the CNN is applied to input blocks and of how performances are measured:
a possible way of doing so is to exploit a dataset constructed as explained in the following.
The description of the adopted procedure is here postponed since strongly dependent on
dataset structure. This approach will be represented by the abbreviation SMS, standing for
Sparse Measurements, Software. Software refers to the means of block extraction.

Dataset

The approaches followed up to here are strongly focused on the precise value quantities
of interest have, in the sense that they aim to directly obtain its estimate, thus incurring in
the ground truth related issues mentioned above. The ultimate goal of this work is, anyway,
to define a performing procedure to estimate with reasonable accuracy knot parameters to
improve the quality (and thus the selling price) of sawn products.
It appears therefore reasonable to shift the goal of designed networks and algorithms towards
the analysis of data coming from actual boards and to try considering suited datasets for this
purpose, since in this way no perfectly accurate DKB ground truth or overall knot status
knowledge for each knot are needed in order to develop new approaches (it is only necessary
to be able to predict whether a knot intersecting a certain board is either dead or sound at
that point), with the additional benefit of being able to obtain more accurate performance
measurements for the designed procedures since having a perfectly observable ground truth at
disposition.
It is under these motivations that a completely different paradigm is envisaged in this para-
graph: the employed dataset consists of a set of a variable number of samples per knot,
obtained by measuring knot diameter and status of each knot on sawn boards and associating
such values to the corresponding r value on each block of CT slices containing the very same
knot measured on physical boards.
In other words, a similar procedure to the one described in [35] or, equivalently, in [37],
was followed with the replacement of knot blocks instead of reconstructed boards: 15 Scots
Pine logs (only 13 of which were actually employed in dataset creation) were marked by
drilling two holes on their bottom to serve as reference point for the following steps, one in
correspondence of the pith and the other in proximity of log edge. Another reference hole
was drilled on log top. The logs were then cut in thin boards 15 millimeters thick following
a regular cutting pattern; after cut the position of sawn boards with respect to the reference
holes was noted in order to allow for the reconstruction of their exact position in the original
log once removed for performing the necessary measurements.
Figure 3.13a reports the bottom of a log with the reference holes already drilled: they are the
topmost and lowermost ones, the other dots being only additional auxiliary points performed
with a permanent marker. Figure 3.13b gives a hint of how the cutting pattern was designed:
it is worth noticing that boards were fit to span the whole log, even in close-to-the-edge zones
from which valuable products are hardly ever extracted. Board edges were not refined in order
to keep as much information as possible.
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(a) Bottom of the log with reference holes. (b) Log cut into thin boards.

Figure 3.13: Two slices from CT Log.

Every knot on each board was then inspected by an expert who noted its position on the board,
its status and diameter. Three different knot statuses were taken into account: sound, dead and
transitioning (i.e. only partially surrounded by bark or uncertain): this latter category will in
the following be treated as belonging to the "dead" samples, since such knots exhibit closer
properties to black knots than to sound ones.
The final step in ground truth creation required some adaptations to the software employed
in the previous subsection and reported in Figure 3.7 in order to combine the information
coming from manual measurements and the actual position of knots in the log.
As a first thing, the chosen cutting pattern had to be reconstructed in the software by aligning
the position of actual boards (to be rendered in their digital counterpart, the virtual boards)
to the reference holes, so that to also align each knot with its original position in the log. A
representation of this process is reported, for clarity, in Figure 3.14.

Figure 3.14: Aligning virtual boards to the reference holes.
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Each knot containing one or more measurements was then inspected via the software and its
origin and end points marked down. After making sure the alignment of virtual boards with
real ones had achieved sufficient precision, the r coordinate of each knot sample on every
board was computed by firstly intersecting knot axis with the corresponding virtual board and
secondly by projecting, in the board plane, the hand measurement onto the knot axis. This
point is further clarified by Figure 3.15.

Figure 3.15: The modified labeling software.

Considering the log displayed on the left, hand-marked knot profiles with the corresponding
axes drawn in yellow are present as in the original version. The reconstructed cutting pattern
is visible as a series of (in this specific case) 17 progressively numbered virtual boards repre-
sented in green. Each measurement performed on real boards (also referred to as "sample") is
reported in blue.
Inspecting the Figure, it is possible to better understand how the determination of the r
coordinate for each sample works: considering the topmost, central sample, for instance, it is
first necessary to determine at which point knot axis intersect virtual board number 2, and then
to associate the measurement to such intersection, having slightly mismatching coordinates in
the board plane and also being different from the plain distance from knot axis.
When the pairing between real knots and their scanned counterparts was completed, a list
of samples with the relative status, diameter and r coordinate was available for each knot:
excluding the cases of misaligned measurements (e.g. their position on virtual boards was
more than 1cm apart from the closes knot axis) a knot block was extracted for every knot to
serve as input for the CNN described in the next paragraph.
An instance is reported in Figure 3.16.
It is important to point out that such blocks differ from the ones provided by the software
accompanying CT Log since they are extracted starting from manual measurements on the
scanned log and centered (along the t axis) on a precisely defined knot starting point, while
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automatically extracted blocks may present some (even relevant) misalignment, especially in
the case of irregularly shaped knots presenting some curves along their axis.

Figure 3.16: A block extracted by the modified version of the labeling software.

In total, 634 valid voxel blocks were extracted out of the 13 logs, each of which was relative
to one or more of 2412 knot measurements performed on real boards. Each knot block is
associated with possibly several samples both belonging to the sound and dead classes (up to
6 or 7 in total, in the case of large knots):

Procedure

Such dataset structure requires a novel approach with respect to the ones previously described
and to the ones available in the literature. A new performance metric is needed as well, since
having only some sparse samples for each knot and therefore the lack for a well defined
ground truth reference measurement does not obviously allow for the determination of a mean
error and its standard deviation. For this reasons, the focus is here shifted to the accuracy, in
percentage, with which designed algorithms can predict the status of a knot on a given board.
The input to the CNN is also reconsidered: instead of acting on the whole knot, the network is
now designed to operate on small sub-portions of the block. More precisely, if the original
dimension was 128 x 64 x 12, now the input has now size 15 x 64 x 12, while the output still
remains a binary classification indicating whether the knot portion is, as a whole, either sound
or black (for the moment the focus is posed to the problem of knot status determination, while
diameter is left for a latter stage).

Figure 3.17: A knot block with an highlighted sub-portion.
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An intuitive representation of such sub-portions is provided in Figure 3.17: representing the
knot as a block of stacked slices, the input fed to the network is a part of it covering the whole
t and l dimensions, but only spanning 15 pixels in the r one.
For biological reason, if a knot is sound at a certain r coordinate it must be so also in all
the preceding ones and, on the opposite, if it is dead for some r all subsequent samples for
increasing coordinates are black, too. It is thus possible to extract, from every knot, much
more sub-portions with a valid sound/dead label than the number of available samples coming
from measured knots on boards.
In this way, if extracting a 15 pixel wide sub-portion centered around each pixel for which
certain sound or dead label is made available by the presence of a subsequent or preceding
measured sample respectively, technically only two samples per knot, if available, are truly
needed in order to get a quite large number of sub-blocks for network training: the sound
sample having maximal r coordinate and the dead sample having the minimal one. Observing
Figure 3.18, such samples are marked as Ms and md.

Figure 3.18: Zones with certain labeling provided by Ms and md.

The area colored in green contains all the pixels which provide reliable "sound" labels for knot
sub-portions centered around them, while the one in read signifies the same for sub-blocks to
be labeled as dead. The area left in gray is the one for which no information is available, due
to the nature of the employed dataset.
Once a sufficient number of training sub-blocks for the network is extracted and the CNN
effectively trained, a status predictor for dead knot sub-portions (marked here on with label 1,
while sound ones are labeled as 0) is available and ready to be applied in the second part of
the process, that is the one actually concerning knot status prediction on single boards.
Even though this paragraph started with the consideration that a proper ground truth for
DKB is not available, the estimation of such coordinate could still be useful as a mean of
predicting knot status on virtual boards before cut: it is of course possible to apply the CNN
for classification on sub-portions centered around the coordinate intersecting each board, but
this process would be indeed computationally expensive, if considering that several thousands
cutting pattern simulations are performed before the best one is actually chosen, thus leading
to the need to apply the CNN on nearly every one of the r pixels.
So the best solution remains to exploit the structure of the network, together with the same
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biological notions employed for labeling sub-portions, to create an algorithm capable of
providing an estimate of DKB position and to then determine knot status at each r coordinate
by comparing it to the obtained estimate.
To perform this task it is not necessary to obtain a prediction for blocks centered around
each of the 128 r pixels: in order to achieve higher computational efficiency and thus make
the process more suited to run on in-line applications it suffices to identify the region where
network output consistently transitions from 0 to 1, signifying that DKB has been surpassed.
once this zone has been spotted, a pixel-wise analysis can be performed (with the same
selection criterion) to determine the final DKB coordinate. An example is reported in the
following to better clarify this point.
Consider, for instance, an ideal case in which the CNN always correctly predicts sub-portion
status and the DKB is placed at the 101th pixel, numbered as 100 since pixel count starts
from 0. By applying the network to each pixel, the result is a vector of outputs of the kind:

0 0 · · · 0 0 0 1 1 1 · · · 1 1,

where the first one corresponds to pixel 100. The result does not change if only considering
non-overlapping sub-blocks, i.e. applying the classification to blocks centered every 14 pixels
(sub-block dimension minus one), starting from the first available one, in this case the eight
pixel, numbered as 7. In this way, a vector of only 15 values is obtained, including predictions
for sub-blocks centered around pixels 7, 21, 35, 49, 63, 77, 91, 105, 119, resulting in the
following vector:

0 0 0 0 0 0 0 1 1,

with the last 0 being the output of the network applied to the block centered around 91 and
the first 1 corresponding to pixel 105.
By iterating the same procedure, this time pixel by pixel, between these two points (not
included) we get the output:

0 0 0 0 0 0 0 0 1 1 1 1 1,

with the transition happening, once again, at pixel 100.
Thanks to this simple expedient, only a reduced number of positions had to be checked
in order to provide an estimate of DKB position. Anyway, when working under the more
realistic assumption of imperfect CNN outputs, some small modifications have to be taken
into account.
A way of compensating for errors introduced by wrong predictions is to select as transition
point the one in which such transition becomes fairly stable, that is the one in which the number
of 1s on the left equals the number of 0s on the right, assuming the network misclassifies a
sound sub-block as dead and vice-versa with equal probability.
While it is easy to see how the previous case is correctly managed by this procedure, another
example is here after reported in order to make further clarity. Let us assume that the output
vector (128 pixel considered) takes the following forms:

0 0 · · · 0 1 0 · · · 0 0 0 1 1 1 · · · 1 1 1 · · · 1 1,
0 0 · · · 0 0 0 · · · 0 0 0 1 1 1 · · · 1 0 1 · · · 1 1,
0 0 · · · 0 0 0 · · · 0 0 1 0 1 1 · · · 1 1 1 · · · 1 1.

In the first case, the CNN mistakenly classifies as dead a slice in the first part of the block: the
selected DKB coordinate is, in this case, the one marked by the last 0, since the number of 0s
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on its right (including itself) is equal to the number of ones on the left. The second case is
perfectly analogous, but with the opposite classification error.
The last vector reports the case in which both errors are present in equal number (represented
as a simple 0-1 swap in proximity of the DKB for ease of visualization). In this case, the
selected DKB coordinate is the correct one, since the effects of the two errors cancel out.
Even though a 1-2 pixel error does not greatly affect performances, when considering non-
overlapping blocks the impact of errors can increase. Excluding the case in which symmetrical
errors happen, consider the following case in which the actual ground truth is still supposed
to be 100:

0 0 0 0 1 0 0 1 1.

The procedure is here forced by the error to iterate between pixels 77 and 91, resulting in a
predicted DKB of 91 if no further errors are made, or by a slightly lower value if an error
occurs. Some observations are to be made: if the accuracy of the trained network is very high,
errors are very unlikely to occur, this being even truer in the case of the reduced amount
of predictions this procedure requests. It also has to be pointed out that it is preferable to
have some rarer cases of error in the order of one centimeter than always applying a very
computationally expensive algorithm. Furthermore, besides reducing the likelihood of an
error, testing the network against a small number of samples for increasing r coordinates
along the whole block provides a fast means of determining overall knots status, being the
vector with all 0s an indicator of a globally sound knot.
Another important observation to be made regards the fact that, being the last examined
sub-block centered around pixel 119, the final 8 pixels for each knot are never considered as
block center: as already remarked in previous paragraphs, this does not greatly affect final
product quality since they belong to an area in which most cutting patterns do not envisage
the presence of any board.

Up to this point, only status estimation was concerned. But the change in perspective required
by the employed dataset also regards diameter estimation: as the knowledge of actual DKB
position was not strictly necessary (even if an estimate was nonetheless provided), so it is
for diameter, which has only to be estimated at its intersection with boards. The attention is
therefore shifted from knot diameter to diameter estimation at a certain coordinate.

Figure 3.19: Representation of the (n) diameter samples available for a knot.
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To do so, a slightly different procedure from the one adopted for DKB is followed: the
CNN is trained with sub-block of the same size (i.e. 15 pixels wide along r), but this time
no further blocks than the ones having a corresponding manual measurement are created.
This is mainly because, even though an interpolation of inter-sample values could still be
performed by following one of the existing knot models, such dataset adaptation could have
a significant impact in reducing overall precision, since several sources of error, including
imperfect measurements and models, are present.
For what regards the second part of the procedure, following network training, the same
algorithm adopted for DKB can not once again be followed because of the different nature
of the problem (classification vs regression). Since each diameter estimation requires the
application of the CNN to a sub-block, it is envisaged that the application of this network
is to be performed after the final cutting pattern has been chosen and knot status has been
determined. Given that knot diameter plays a role in the determination of the best cutting
option, too, this procedure could also be used as a refinement of an original estimate obtained
by the application of some knot model for diameter estimation and used in cutting pattern
selection.

3.2.4 Approach 4: estimation from sparse measurements and automat-
ically extracted knot blocks (SMA)

Procedure and Dataset

The procedure defined in the description of the previous approach is employed in this last
one as well, with the exact same CNN structure and algorithm working principles. It will be
referred to as SMA, standing for Sparse Measurements, Automatic, where "automatic" refers
to block extraction. Only a small, but significant, change in dataset construction occurs.
In the previous case, all knot blocks came from precise selections starting and ending point
for each knot (in most cases even more than one middle point was selected), thus allowing
for a close-to-perfect knot detection. Such tailored knot blocks are not always available in a
real-life scenario, since some noise coming from the presence of other wood defects or other
knots in close proximity of the one under consideration may slightly alter performances in the
segmentation step performed after scanning.
The end point of a knot can, for instance, happen to be not exactly centered with respect to
the t axis of the corresponding block, as reported in Figure 3.20.

Figure 3.20: An automatically extracted knot block.

Even though this example is just slightly off-center, some worse cases are not too unlikely to
be neglected and give further motivation to employ a slightly different dataset.
The most straightforward and effective way to face this problem is to employ in network
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training the same block extracted after segmentation and employed in the first two approaches
described in this work. Extracting such blocks is not enough, though, to perfect the procedure,
since some decisions have to be made in order to determine how the position of manual
measurements are to be reported to the reference system of each block.
This is necessary since, while in the previous case knot axis could be roughly assumed to be
coinciding with the r one of the block since at least start and end point were aligned with it,
now this assumption can no longer hold true for the reasons listed above. Such adaptation is
performed as follows: the idea, which requires some adaptations to the software accompanying
CT Log, is to keep track of r axis three-dimensional position while extracting each knot
block, and to then make this information available when operating in the labeling software.
Assuming, with more thin fair approximation, the starting point of the block to be in the
pith and knowing its direction from the previous step, it is now possible to determine at
which r coordinate each manually measured knot sample lies by operating the same two-steps
procedure described in the previous subsection.

3.2.5 Summary of employed datasets
As explained in the introduction to section 3.2 and in the following paragraphs, several
datasets with different constructions are employed in this work: this is mainly because of
differences in the design of each approach lead to the need of a specific ground truth.
The network designed in DR is trained and tested on a previously existing dataset with
manually-marked values for DKB and diameter; new blocks concerning sound knots are
needed in SD, but the different block size provided in output by CT Log also leads to the need
of obtaining new dead samples too, not allowing to re-employ blocks relative to CR.
SMS and SMA are based on a completely different paradigm and require an ad-hoc scanning
procedure: while in the previous cases data was gathered from logs scanned in an actual
sawmill application an later analyzed to create the necessary ground truths, stems employed
in these two latter approaches were accurately marked and measured before scanning, and
scanning itself was performed on a CT Log not operating in an in-line plant. The differ from
one another only in knot block extraction (manually marked knots on a software for SMS,
automatically extracted blocks for SMA) while referring to the exactly same logs and knots.
A comparative table is here reported for further clarity.

Procedure Goal Ground Truth Block Dimension Available Data

DR
Diameter/DKB regression

on whole blocks CT 128 x 64 x 08 549 blocks

SD
Status Determination

on whole blocks CT 128 x 64 x 12 686 blocks

SMS
Status/DKB estimation

on boards Physical 128 x 64 x 12
634 blocks,

2412 samples

SMA
Status/DKB estimation

on boards Physical 128 x 64 x 12
634 blocks,

2412 samples

Table 3.1: A summary of employed datasets.
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Chapter 4

Results

The whole developing and testing phases of the proposed methods, as well as time measure-
ments (when reported) were performed on the same computer, running Windows 10 Pro on
an Intel Core i7-4770, 3.4GHz processor and equipped with an Nvidia Geoforce RTX 2080
GPU. All the parts concerning neural networks were developed in python, by using the Keras
2.2.4 library on a Tensorflow 1.13.1 backend.

4.1 Approach 1: Direct Regression (DR)
While training all the three networks, the original set of 549 knots is thus split: 330 for training,
110 for validation and 109 for testing. Data augmentation consisting in flips along the l and t
axis, separately, is performed, raising the total of training samples to 990.
The employed network structure, which is approximately the same utilized for results reported
in the next sections with some obvious problem-related differences in the final layers, is rather
simple: three equal convolutional blocks composed of two convolutional layers and a pooling
one each, followed by a fully connected one. Adam optimizer is employed and mean squared
error is the considered loss function.

(a) Input diameter distribution. (b) Input DKB coordinate distribution.

Figure 4.1: Input distributions.

Before proceeding with the description of obtained results, it seems necessary to comment the
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distribution of input ground truth (see Figure 4.1), since it appears to bear some consequences
to the output. The abscissa on the left reports diameter value in millimeters, while its corre-
spondent on the right marks DKB coordinate in pixels. In this particular case, the distributions
show how available knot samples are, in most cases, of reduced dimensions. DKB coordinate
distribution is approximately centered around 35, but has a tail of some samples over 65, with
a few outliers in the proximity or over 100.
Even though obtained on a dataset created by means of a software and not validated on
physical ground truth, results yielded by the CNN on the test set appear to be quite promising:
a mean error of 0.34 pixels for diameter with a 1.04 std, while corresponding values for DKB
coordinate are 0.864 and 11.60 pixels.
Such results assume a slightly different value if further investigated, as the distribution of the
errors reported in the following figure suggests.

(a) Predicted diameter error distribution. (b) Predicted DKB coordinate error distribution.

Figure 4.2: Error distributions.

While diameter error distribution appears fairly symmetrical and seems to testify for the
goodness of reported performances, the DKB one is strongly unbalanced towards higher
values, showing the presence of errors in the estimation comprised between 20 and 44, which
are quite high values if considering that the r axis only covers 128 pixels.
When more closely inspecting the cases in which the prediction remarkably differs from the
corresponding ground truth, this most often happens for samples whose DKB lies in the tail of
the distribution in Figure 4.1b, either implying that the network consistently underestimates
DKB position and/or that too few samples with high DKB coordinates are available in the
dataset.
The CNN regressing both parameters (procedure DR2, opposed to DR1 employing two dif-
ferent CNNs) at once obtained interesting performances: 0.0 mm mean error and 0.96 std
for diameter, while 0.19 pixels mean error 10.06 std for DKB coordinate. Error distributions
are reported in Figure 4.3, showing DKB in blue and diameter in orange. Results here are,
clearly, slightly better (even though a couple of outliers are still present on the right hand side
of the image) than the case with two separate networks: as the numbers indicate, diameter
error distribution is narrower and more zero-centered, while the DKB coordinate one, even if
still quite spread, presents fewer irregularities.
A possible interpretation of these results is that, since some correlation between the two quan-
tities of interest undoubtedly exists, this fact eases the learning process during the training of
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Figure 4.3: Predicted error distribution of diameter and DKB coordinate together.

the CNN, allowing to obtain slightly better results.
Anyway, in order to provide further evidence to this statement, additional tests involving a
more complete dataset should be carried out.

4.2 Approach 2: Status Determination (SD)

Given that 343 sound Scots Pine knot samples are available, only 343 dead ones are considered
for network training, to guarantee balancing between classes. Training, validation and test
samples are 387, 128 and 171, respectively. Network structure and data augmentation are
the same as the previous case, with an obvious difference in the loss function, being for this
approach the binary cross-entropy one, since dealing with classification.
After several tests, the average reached accuracy on test set is 0.93.
The result alone is, in this case, of rather difficult interpretation: the non-negligible uncertainty
in labeling training samples can result in the network still obtaining high accuracy with respect
to the labels it was provided with, while these labels being consistently wrong because of an
human error in the classification process (which is not totally unlikely given that it was carried
out solely relying on CT images). Further tests are thus required to verify the goodness of
achieved network performances.
For this reason, some simulations of the application of such network to entire logs, whose
knots were not involved in the training and testing process, are run by properly adapting the
software employed in log analysis. A ground truth coming from observation of real boards
is not available in this case, too, but the information relative to knot position in the tree is
accessible: a knot is, in fact, more likely to be sound if it is "large" if compared to log size
and if it is placed in proximity of tree top, rather than in lower portions of it.
Under these assumptions, the CNN seems to achieve quite satisfactory performances, since
consistently classifying as dead all knots not reaching log edge and most larger ones not
respecting all the four points listed in Chapter 4. Moreover, classification appears to be
slightly biased toward marking as sound knots reaching log edge: this is once again a desirable
property, since any error is most likely to occur in the region closest to log edge, hardly ever
included in sawn products.
Similar performances are achieved when running identical simulations on Maritime Pine logs.
Even though not directly acting on DKB coordinate estimation, this classification approach
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still partially improves its performances, since previously employed algorithms failed in some
cases to recognize fully sound knots and assigned them a DKB value, thus fitting products
of worse quality in areas which are instead more valuable and so obtaining a sub-optimal
product value.

4.3 Approach 3: Sparse Measurements, Software (SMS)
Out of the 13 Scots Pine log considered for this study, 634 knots are extracted, carrying a total
amount of 2412 manual measurements on physical boards. Each knot has a variable number
of samples referring to it, ranging from 1 up to, in a few cases 5 or 6.
Before training the network, a set of 158 knots, with a total of 549 relative manual measure-
ments, are randomly chosen as test set both for validating network performances and for the
testing phase aimed at estimating DKB coordinate. Therefore, for network training, 476 knot
blocks and 1863 measurements, are employed.
In total, 46556 knot sub-blocks and the relative sound/dead labels are obtained: 12060 for
testing (from the 158 knots mentioned above), 8624 for validation and 25872 for training.
The CNN, trained with a total of approximately 70000 samples after balancing between
classes is guaranteed (data augmentation with t and l flips performed), reaches an accuracy of
95.9%. The final prediction, resulting after the estimation of a DKB coordinate according to
the second part of the procedure described in subsection 3.2.3, yields a precision of 94.2%
of correct status classification on knots coming from physical boards. The confusion matrix
relative to this test is reported in Table 4.1.

Predicted
Sound Dead

A
ct

ua
l Sound 230 (95.8%) 010 (04.2% )

Dead 022 (07.1%) 287 (92.9%)

Table 4.1: Confusion matrix for SMS.

Even though such results may appear to be very promising, since current performances are
estimated to be around 75%, it is necessary to recall that, in this approach, block coming from
accurate manual definition of knot parameters are employed, instead of the ones resulting from
automatic detection and extraction which are actually concerned in practical applications.
Since the main goal of SMS is to serve as preliminary test for DKB coordinate estimation
algorithm to be employed in SMA, tests concerning diameter are not performed in this case.

4.4 Approach 4: Sparse Measurements, Automatic (SMA)
Since the dataset, for the part concerning manual measurements, is exactly the same as in
the previous section, the split into training, validation and testing phases is very similar, with
the only difference that this time the test set contains 577 measured samples, yielding a
total of 11639 sub-blocks, while training and validation sets have 26188 and 8729 samples,
respectively. After data augmentation and class balancing, a total of approximately 7100
training samples is available.
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The network reaches an accuracy of 94.3% on the test set, while the final algorithm correctly
classifies 86.5% of knot status on boards. The confusion matrix relative to this last result is
reported in Table 4.2.

Predicted
Sound Dead

A
ct

ua
l Sound 301 (88.5%) 039 (16.4% )

Dead 039 (11.4%) 198 (83.5%)

Table 4.2: Confusion matrix for SMA.

A closer inspection to these results reveals that the decrease in performances with respect to
the previous approach is due, besides to the lower accuracy brought in by the structure of
input voxel blocks, by the fact that some few cases with large DKB estimation errors lead to
more than one wrong status prediction on boards, since a single knot block may have several
associated manually measured knots.
Some instances of knots with the relative DKB prediction marked as a white, horizontal line
are reported in the following, starting from some instances of correct prediction in Figure 4.4.
Besides the coordinate relative to DKB position, also the ones referring to the last sound mea-
sured sample and the first dead one are highlighted with a green and a red line, respectively.

(a) Knot dying in proximity of the pith.

(b) Knot dying close to the heartwood-sapwood border.

(c) Sound knot.

Figure 4.4: Some correct predictions.
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Figure 4.4a and Figure 4.4b both report the case in which prediction falls in the desired area,
i.e. the one where no sure information about knot status is available.
While, for the second figure, the standard criterion of marking as DKB the coordinate in
which diameter stops growing would have allowed to perform a fairly correct estimate, it can
be noticed how, in the first one, DKB coordinate is (correctly) placed by the algorithm very
closely to the pith, while an human observer would have more likely, in absence of ground
truth knowledge, provided an estimate lying at higher r coordinates than the red line, where
we know the knot to be surely dead.
Figure 4.4c instead reports a correctly labeled sound knot: in this case no white line is visible
since no DKB coordinate can be found. The last available measurement is reported in green,
since referring to a sound intersection with a board.
Three images are reported for the case of correct prediction in order to point out how the
algorithm is able to recognize the area in which the knot dies without dependence on the
coordinate, i.e. without a bias, or even to distinguish whether a knot is, in its entirety, sound
or not, which are tasks not yet accomplished by the previously described approaches or by
other existing algorithms.
In Figure 4.5 two wrong predictions are reported, instead.

(a) DKB coordinate overestimated.

(b) DKB coordinate underestimated.

Figure 4.5: Two prediction errors.

More specifically, Figure 4.5a shows the case in which the knot is labeled as sound, but a
dead sample is present in near coincidence of block end, and Figure 4.5b reports a block most
likely containing completely sound knot (the last available sample is sound and close to log
edge), where DKB is erroneously marked anyway.
Even though several of the errors, most likely due to the high but not excellent accuracy
obtained by the CNN itself, concern the central r portion of knot blocks, a non-negligible
share of them involves the sapwood area towards the end of the block.
This phenomenon, most likely due to the fact the network is trained on a range of samples
not including the final few r coordinates and which are also not checked, for construction, by
the algorithm, is again on one side negative and on the other acceptable: while the lack of
precision can lead to some wrong classifications in the case of boards close to log edge, this
is an area where few of them are fit.
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Eventually, for what concerns performances, obtaining the prediction for a single sub-block
(also including its extraction from the original knot block) requires about 0.42ms on average,
leading to a total of 9 to 10 ms per knot.

For this last approach, results relative to diameter estimation are also available.
Only a sub-block per obtained measurement is employed in the procedure, thus leading
to 2412 total samples for the training and testing of the network. One quarter of them is
employed on the test set, and one quarter of the remaining is used for validation; the rest is
left for training (1332 in total, without data augmentation).
On the test set, the CNN scores a mean error of -0.1mm, with a 3.2mm std.
A comparison between manual measurements and their prediction operated by the network is
reported in Figure 4.6. As it can be seen, the measured R2 is 0.827.

Figure 4.6: Comparison between measured and predicted knot diameters [36].

4.4.1 Summary
The following Table 4.3 reports a comparison between the designed procedures and the
datasets they employ.

Procedure Train/Val/Test samples Training error/accuracy Accuracy on boards
DR1, diameter 990/110/109 Mean: 0.34px, std: 01.04px -

DR1, DKB 990/110/109 Mean: 0.86px, std: 11.60px -
DR2, diameter 990/110/109 Mean: 0.00px, std: 00.96px -

DR2, DKB 990/110/109 Mean: 0.19px, std: 10.06px -
SD 1161/128/171 Accuracy: 0.930 -

SMS, status 25872/8624/12060 Accuracy: 0.959 0.942
SMS, diameter - - -

SMA, status 26188/8729/11639 Accuracy: 0.943 0.865
SMA, diameter 26188/8729/11639 Mean: -0.1mm, std: 3.2mm -

Table 4.3: A summary of employed datasets.
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Obtained results appear to be rather good if compared with the ones reported at the end
of Chapter 2. Table 4.4 and 4.5 below report an updated comparison with the algorithms
available in the literature.

Paper Performance
Johansson et al. [30] mean error = −4mm, std = 12mm

Oja [32] R2 = 0.72
DR2 mean error = 0.19px, std = 10.06px
SMS acc. = 0.942
SMA acc. = 0.865

Table 4.4: Updated comparison between performances on DKB estimation.

In the case of DKB coordinate estimation, results are again of difficult comparison: obtained
results from DR are in pixel and of difficult conversion to mm (because the scale factor in r
applied to input blocks was not available in this specific case, even if most often the dimension
of a pixel is 1mm x 1mm since dealing with small logs, i.e. compression is not performed),
but are quite similar to the ones obtained by Johansson et al., even if with lower mean error,
while SMS and SMA are not comparable with other metrics. Anyway, the fact these results
are obtained on physical measurements performed on real boards, alongside their rather high
accuracy with respect to currently available performances testifies for their goodness.

Work mean error [mm] std [mm] Scanner resolution [mm]
Longuetaud et al. [25] 0.67 3.28* 0.36-0.81 x 0.36-0.81 x 1.25
Longuetaud et al. [27] 0.0 0.9 0.74 x 0.74 x 3.75

Cool et al. [29] −3.0 7.2 1.43 x 1.43 x 4.0
Friedriksson et al. [31] −1.87 4.87 0.605 x 0.695 x 1.0

DR2 0.0 0.96 1.0 x 1.0 x 10

Oja 1997 [24] 2.6 2.2 n.a x n.a x n.a
Andreu and Rinnhofer [26] 0.7 10.1 1.55 x 1.55 x 20

Breinig et al. [28] 1.7 4.0* 1.0 x 1.0 x 1.1
Johansson et al. [30] −0.93 4.6 n.a x n.a x 10

Oja 2000 [32] −2.0 3.0 n.a x n.a x 10
SMA −0.1 3.2 1.0 x 1.0 x 10

Table 4.5: Updated comparison between performances on knot diameter estimation.

Concerning diameter, results are again reported separately according to the way reference
datasets were constructed.
While DR obtains comparable results with Longuetaud et al., but starting from lower resolution
images, SMA achieves clearly better performances if confronted with the others.
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Chapter 5

Conclusions

The goal of this work was to develop and test new techniques and algorithms to improve
the automatic estimation of knot parameters in wood logs starting from tomographic images,
under the constraint that such procedures are to be run in in-line sawmill applications and
thus possibly lead to a trade-off between accuracy and computational efficiency.
Given that they are employed in many state-of-the-art techniques in the field of computer
vision, CNNs are envisaged to be included in such procedures.
A brief introduction to tree biology and wood defect formation was provided, and the crucial
role of knots, among other wood defects, in the determination of final product value was
assessed. Furthermore, the importance of correct status and prediction and fairly accurate
diameter estimation of knots on final boards, and the corresponding impact on sawn product
were reported.
The performances of algorithms aimed at these two tasks available in the literature were
discussed, marking the distinction between the ones employing datasets directly coming from
manually-marked CT data and those obtained by measuring physical wood samples. The
difficulty in obtaining sufficiently large and accurate datasets for DKB coordinate regression
with such techniques was also underlined.
Once CT Log by Microtec, the scanner employed for obtaining data and performing some
simulations object of this thesis, was introduced, four different approaches tackling the issues
of DKB coordinate regression/status estimation and knot diameter regression were presented.
Approaches 1 and 2 (DR and SD) rely on data marked directly on CT images, and aim at the
direct regression of the parameters and to overall knot status estimation respectively, while
approaches 3 and 4 (SMS and SMA) introduce a novel DKB position estimation algorithm
relying on CNNs, which operate on sub-portions of CT voxel blocks relative to knots, with
the only difference of being trained on two slightly differently constructed datasets.
Obtained results for the first two approaches are quite promising, with some caveats: while
DR achieves results comparable with the best performing algorithms tested on datasets com-
ing from measurements on CT images, even outperforming them if considering the slightly
coarser employed scanner resolution, and is partially completed by SD for what concerns
globally sound knots, it is important to remark that such performances are not obtained on
actual measurements on physical wood samples and therefore are not fully reliable in terms
on in-line applicability.
SMS and SMA, instead, provide a computationally efficient mean of obtaining reliable esti-
mates of knot status and diameter on each virtual board before cutting, without performing
any explicit estimation of overall knot soundness/blackness. Performances obtained by these
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two methods are also more accurately evaluated, since the focus is shifted on the achieved
precision on final sawn products, rather than on the accuracy in the estimation of global knot
parameters. Anyway, only performances of SMA can be taken into account when dealing with
in-line applications, since knot blocks in SMS are not automatically extracted, as it happens
in real-case scenarios.

Some possible improvements are proposed, in the following, solely for SMS, being it the only
one allowing for direct and reliable application in sawmills and also leaving more room for
adjustments.
Concerning diameter estimation, the available number of samples could be increased by fitting
measurements on subsequent boards to one of the existing knot models that can be found
in the literature and then enlarging the training set by adding information about the areas
between physical boards, otherwise not covered by measurements.
To obtain an even higher number of samples and to train the network on boards actually
coming from a real-life scenario, and not from logs cut and measured for this precise purpose,
thus leading to slightly different products than ones in sawmills, a further improvement would
be to obtain knot measurements from an automatic board scanner to be placed right after CT
Log and the sawing line. Such an approach would, anyway, require the development of a
board-matching system capable to retrace every scanned board to its virtual correspondent in
the data obtained by CT Log.
Eventually, another step concerning status prediction, too, is the inclusion of more than one
species in the training and testing process, in order to provide for more training samples and
to obtain higher robustness in the CNN output and more flexibility for the whole system.
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