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Abstract

Many theoretical studies and experimental results rely on the use of nu-
merical analysis for the solution of the Schrödinger equation. Indeed, for
nontrivial quantum systems, a complete solution of the dynamics is diffi-
cult to achieve analytically. We extended the implementation of a highly
optimized solver to simulate the evolution of a wave function on a 2D lat-
tice. We also implemented the imaginary time evolution to approximate the
ground state. The dynamics of the system is now described by a Hamilto-
nian that includes an external potential and a contact interaction term. The
algorithm is based on the second-order Trotter–Suzuki approximation and
it is implemented on CPU and GPU kernels that run efficiently on a cluster.
We proved the accuracy of the code solving the Gross–Pitaevskii equation
for a Bose–Einstein condensate and reproducing the experimental results,
obtained at NIST, of the soliton dynamics in a cloud of sodium atoms. The
code is available under an open source license, and it is exposed as an ap-
plication program interface and a command–line interface. The code is also
accessible in Python and MATLAB. Future development of the code include
the extension to a 3D lattice, whereas the actual implementation can already
find applications in ultracold atom physics.
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Toni Aćın for having me in their research group and for all the great support
they gave me. Also, I like to thank Pietro Massignan for his invaluable sup-
port in the physical application of the code. Thanks to all the ICFOnians
who made my internship an enjoyable and productive experience.

Thanks to my parents and my sister for having raised me and always sus-
tained me in my aspirations.

vii





Contents

List of Figures xi

1 Introduction 1

2 Trotter–Suzuki Decomposition 5

2.1 Exponential Operators in Physics . . . . . . . . . . . . . . . . 6

2.2 Exponential Product Approximation . . . . . . . . . . . . . . 7

2.3 Fractal Decomposition . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Example: Spin Precession . . . . . . . . . . . . . . . . . . . . 11

2.5 Example: Symplectic Integrator . . . . . . . . . . . . . . . . . 13

3 Decomposition of Unitary Evolution 15

3.1 Hamiltonian Decomposition . . . . . . . . . . . . . . . . . . . 15

3.2 Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Evolution Towards the Ground-state . . . . . . . . . . . . . . 18

4 Implementation 21

4.1 Cache Optimization . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Organization of Cache Architectures . . . . . . . . . . 24

4.1.2 Data Access Optimizations . . . . . . . . . . . . . . . 25

4.2 CPU Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Matrix Updating Scheme . . . . . . . . . . . . . . . . 27

4.2.2 Cache-aware Implementation . . . . . . . . . . . . . . 28

4.3 GPU Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 GPU Structure . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 GPU Implementation . . . . . . . . . . . . . . . . . . 33

4.4 Hybrid Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Distributing the Workload Across a Cluster . . . . . . . . . . 35

4.6 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



x CONTENTS

5 Dark Solitons in Bose–Einstein Condensates 39
5.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . 39
5.2 Soliton Simulation . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusion 51

A Reduction of Dimension: Constant Spatial Extent of the
Solution 53

Bibliography 57



List of Figures

2.1 Representation of the fourth-order approximation using Eq. (2.18)
(Fig. (a)) and Eq. (2.21) (Fig. (b)). In the Trotter–Suzuki
approximation, the 2n-th order approximation of evolution
operator, from t = 0 to t = x and with n ≥ 1, is decomposed
in a chain of second-order approximants, that evolve the state
back and forth in the time. . . . . . . . . . . . . . . . . . . . 10

2.2 Representation of the time evolution using the sixth-order
approximant (a) and the eighth-order approximant (b). . . . 11

2.3 Energy expectation value for (a) the Trotter–Suzuki approx-
imation (2.29) and (b) the perturbation approximation (2.30). 12

2.4 (Evolution of the point in the configuration space, using the
Trotter approximation (a). The initial condition is p1 = p2 =
0 and q1 = 2, q2 = 1. The energy fluctuation due to the
Trotter approximation (b). The energy increase due to the
perturbation approximation (c). . . . . . . . . . . . . . . . . . 14

4.1 A Common memory hierarchy that present two on-chip L1
caches, on-chip L2 cache, and a third level of off-chip cache.
The thickness of the interconnections illustrate the band-
widths between the memory hierarchy levels. . . . . . . . . . 23

4.2 Access pattern for interchenged loop nests in a (6,8) array. . . 25

4.3 Pseudocode that illustrate the loop interchange transformation. 26

4.4 Pseudocode that illustrate the loop fusion transformation. . . 26

4.5 Single coupling operation. . . . . . . . . . . . . . . . . . . . . 28

4.6 Single time step evolution scheme for the second order Trotter–
Suzuki. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xi



xii LIST OF FIGURES

4.7 Scheme of the CPU cache optimization. A time step evolution
is performed: a block, in buffer 1, and its halo are written
into the cache (a); a time step evolution is performed on the
block and the halo in the cache, by the CPU (b); the halo is
discarded and only the block is written into the main memory
in buffer 2 (c). This operation is performed for each block in
buffer 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.8 Floating-point operations per second for the CPU and GPU. 31

4.9 Instance of a warp execution. The left part of the graph illus-
trates the instructions to be performed by each thread. Each
thread execute three instructions; instructions with the same
color are identical. The right part of the graph illustrates
how the instructions are executed by the threads within a
warp. Threads, that execute the same instruction, perform
the instruction at the same time. Different instructions are
performed on different times. In this example threads are not
in the same execution path – there are at least three different
paths – resulting in a inefficient time performance. . . . . . . 32

4.10 GPU memory hierarchy. . . . . . . . . . . . . . . . . . . . . . 33

4.11 Execution time for linear system size: (a) 4096; (b) 8192; (c)
16384. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Calculated ground-state density along the x axis (a) and the
y axis (b). The simulation is in good agreement with the
Thomas–Fermi approximation. The spatial extension of the
calculated ground state corresponds to the experimental re-
sults, where RTF,x = 45 µm and 2RTF,y = 64 µm. . . . . . . . 45

5.2 Calculated expectation values 〈X〉 (t) and 〈Y 〉 (t). The calcu-
lated oscillation frequency along the x axis, ωx = 2π ·27.9 Hz,
is in agrement with the external potential frequency ωx =
2π · 28 Hz. There is no oscillation along the y axis since no
impulse is imparted in this direction. . . . . . . . . . . . . . . 46

5.3 Calculated soliton position along the x axis over the time. . . 47

5.4 Calculated ground state and particles density at t = 5 ms
along the x axis. The deep soliton is located at x = −8 µm, in
agreement with the experimental value [7]. Other structures
are visible from this figure: a shallow dark soliton at x =
−14 µm moving to the left; other excitations near x = 20 µm
moving fast to the right. . . . . . . . . . . . . . . . . . . . . . 47



LIST OF FIGURES xiii

5.5 Experimental images of the integrated BEC density ((a) to
(e)) [7] and calculated density, from our simulation, ((f) to
(j)) for various times after the phase imprinting. A positive
density disturbance is created and moves rapidly in the +x
direction. A dark soliton is left behind moving in the opposite
direction at significantly less than the speed of sound. . . . . 48

5.6 Calculated particles density for various times after the soliton
stops. These images show how the soliton breaks up. . . . . . 48



xiv LIST OF FIGURES



Chapter 1

Introduction

Since the creation of the first electronic digital computing device, physicists
have used computers as a valuable tool for their research. The study and
implementation of numerical methods to solve physical problems led to the
growth of a new field of physics called computational physics. It is not sur-
prising that this field of study has branches in every major field in physics:
from computational mechanics to computational astrophysics, from compu-
tational condensed matter to computational particle physics. Mathematical
models, developed to accurately describe natural phenomena, are often dif-
ficult to solve analytically. Typically, the construction of a physics model
begins with the definition of the energy of the system, which contains the
interactions between the components of the system and the kinetic energy
of the particles – when these are allowed to move. This in turn leads to
the action of the system and the equations of motion by means of the least
action principle [18]. At this stage, depending on what system is under
study, many features can already be found without considering the equa-
tions of motion. For instance, the phase transitions of a spin system in the
canonical ensemble may be studied considering the partition function which
in turn lets us calculate observables, like the magnetization as a function
of the temperature and the external magnetic field [13]. These features re-
gard the equilibrium properties of the system and may constitute a rather
challenging analytical problem. Even more challenging is the study of the
dynamical properties, in which one has to deal with the equations of mo-
tion. In particular, one would have to solve the Cauchy problem, in which
the initial state of the system is given along with the equations.

The correctness of a physics model is evaluated comparing its results
with the outcomes of the experiment. As we said, it is not always pos-

1



2 CHAPTER 1. INTRODUCTION

sible to get the results we need from the model by mean of an analytical
method. A possible approach to tackle these problems is to use algorithms
to numerically solve the equations.

Complicated systems lead to numerically intense simulations that require
a great amount of computational resources. For this reason, the develop-
ment of efficient code, which is able to take advantage of the computational
resources available nowadays, is of fundamental importance. The lack of
efficiency leads to long execution time that can extend to months or even
years, making the simulations impracticable.

The most powerful computational facilities at our disposal are supercom-
puters. These machines consist of many single processing units connected
with each other to share data. An algorithm can get the most out of these
machines when it is able to use many processing units at the same time, par-
allelizing the tasks to be performed. Processing units can be distinguished
into two main categories: central processing units (CPUs) and graphics pro-
cessing units (GPUs). The former type dedicates most of their transistor
count to improve sequential code performance, while the latter type takes
a different approach, housing hundreds of simple execution units which run
parallel code. Due to their advantageous features, GPUs are gaining pop-
ularity in the computational physics field. They are designed to perform
simple calculations on large amount of data in parallel. This can lead to a
great reduction of the execution time with respect to a sequential or parallel
implementation on a CPU.

In this work we developed a solver for the Schrödinger equation that
scales to massively parallel computing clusters. Our point of departure was
the recent work of Wittek and Cucchietti [43]. In their work, they extended
the single-node parallel kernels in Ref. [1] to use distributed resources. These
kernels are cache optimized kernels for both CPUs and GPUs based on the
second order Trotter–Suzuki decomposition [35], and implement a solver for
the Schrödinger equation of a free particle.

We extended the code implementing the following features:

• The Hamiltonian includes the stationary external potential. The im-
plementation is also able to solve the nonlinear Schrödinger equation,
in which the nonlinear term is given by the delta-function interactions
between bosonic particles – this is currently only implemented in the
CPU kernel.

• Imaginary time evolution to approximate the ground state.

• Command-line interface and application programming interface for
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flexible use.

• Python and MATLAB wrappers are provided.

• Unit testing framework was implemented.

The new version of the program has been already published and appears
in a short paper: [Wittek, P. and Calderaro, L., Extended computational
kernels in a massively parallel implementation of the Trotter–Suzuki approx-
imation, Computer Physics Communications, August 2015.]. The paper
is appended at the end of this thesis.

As an application of the extended implementation, we have been able
to simulate the evolution of an interacting Bose–Einstein condensate de-
scribed by the Gross–Pitaevskii equation. The simulation reproduced the
experimental results in Ref. [7].

The content of the Thesis is organized in the following way. The sec-
ond chapter introduces to the Trotter–Suzuki approximation. In the third
we explicitly calculate the evolution operator that is implemented in our
code. The fourth chapter gives the details of the algorithms used in our
code, describing the optimization techniques. The fifth chapter presents the
application to the interacting BEC and we compare our results with the
experimental study of Ref. [7]. We conclude summarizing our achievements
and outlining the future directions of research.
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Chapter 2

Trotter–Suzuki
Decomposition

Since the publication of the Trotter product formula [41], a great effort has
been carried out by mathematicians to study possible approximations of the
exponential operator. In particular, Masuo Suzuki has studied the higher-
order approximation throughout his carrier, leading to major results on this
subject [33, 34, 35, 36, 37, 38, 39].

The Trotter product formula for the exponential of two not necessarily
commuting linear operators reads as follows:

exp (A+B) = lim
n→∞

(
exp

(
A

n

)
exp

(
B

n

))n
. (2.1)

The Trotter–Kato theorem defines the properties that the operators A and
B must satisfy for the Eq. (2.1) to hold [16]. In the simplest case, A and B
can be seen as arbitrary n×n real or complex matrices, and Eq. (2.1) reduces
to the Lie product formula [31]. The exponential of a generic operator is
usually difficult to calculate, but whenever this operator can be expressed
as a sum of two operators A and B, with easy to calculate exponentials,
Eq. (2.1) provides a method to estimate exp (A+B). However, for practical
purposes, this formula is not appropriate, since it requires to take the limit
in n to infinity. On a practical side, we could calculate the right-hand side
of the equation only for a finite value of n, leading to an approximation of
the original problem. At this point, it becomes important to study what
can be an efficient approximation of the exponential, and how to estimate
the error.

5



6 CHAPTER 2. TROTTER–SUZUKI DECOMPOSITION

2.1 Exponential Operators in Physics

First of all, let us discuss as to why we have to treat the exponential operator
and why we need an approximation to deal with it. The exponential operator
appears in various fields of physics as a formal solution of the differential
equation of the following form:

∂

∂t
x(t) = Mx(t), (2.2)

where x is a function or a vector and M is a finite or infinite dimensional
operator. Typical examples include the Schrödinger equation

ı~
∂

∂t
ψ(t) = Hψ(t), (2.3)

the Hamiltonian equation

d

dt

(
~p(t)
~q(t)

)
= H

(
~p(t)
~q(t)

)
, (2.4)

and the diffusion equation with a potential

d

dt
P (x, t) = LP (x, t). (2.5)

A formal solution of (2.2) is given in the form of the Green’s function as

x(t) = G(t; 0)x(0) = exp (tM)x(0). (2.6)

However, obtaining the Green’s function G(t; 0) = exp (tM) is as difficult as
solving Eq. (2.2) in any other way. Another important instance of the expo-
nential operator is the partition function in equilibrium quantum statistical
physics:

Z = Tr (exp (−βH)) . (2.7)

The exponential operator, however, is hard to compute in most interest-
ing cases. The computation of the exponential operator exp (xM) becomes
straightforward when a basis that diagonalize the operator M is easy to
obtain. In quantum many-body problems, however, the basis of the diago-
nalized representation is often nontrivial, because we are typically interested
in the Hamiltonian with two terms or more that are mutually noncommuta-
tive. For example, the Ising model in a transverse field, written as follows:

H = −
∑
〈i,j〉

Jijσ
z
i σ

z
j −4

∑
i

σxi , (2.8)
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and the Hubbard model,

H = −t
∑
σ=↑,↓

∑
〈i,j〉

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓. (2.9)

In the first example (2.8), the quantization axis of the first term is the spin
z axis, while that of the second term is the spin x axis. The two terms are
therefore mutually non-commutative. In the second example (2.9), the first
term is diagonalizable in the momentum space, whereas the second term is
diagonalizable in the coordinate space. In both examples, each term is easily
diagonalizable. Since one quantization axis is different from the other, the
diagonalization of the sum of the terms becomes difficult.

2.2 Exponential Product Approximation

As we have seen in the previous section, operator exponentiation plays a ma-
jor role in most fields of physics. For this reason it is necessary to find good
approximation to be able to calculate it. The Trotter–Suzuki approximation
provides a way to deal with such operations.

The simplest form of the Trotter–Suzuki approximation comes in the
following form:

exp (x(A+B)) = exp (xA) exp (xB) +O(x2), (2.10)

where A and B are arbitrary general operators with some commutation
relation [A,B] 6= 0, and x is a parameter. This equation is also known as
the Trotter decomposition. To demonstrate that this is actually a first-order
approximant, let us rearrange the formula in to following form:

exp (xB) exp (xA) = exp
(
x(A+B) +O(x2)

)
. (2.11)

We can calculate the form of the correction terms that appears in the expo-
nent of the right-hand side by exploiting a Taylor expansion of both sides
of Eq. (2.10).

exp (x(A+B)) = I + x(A+B) +
1

2
x2(A+B)2 +O(x3) (2.12)

= I + x(A+B) +
1

2
x2(A2 +AB +BA+B2) +O(x3),
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for the left-hand side, and

exp (xA) exp (xB) = (I + xA+
1

2
x2A2 +O(x3))(I + xB +

1

2
x2B2 +O(x3))

= I + x(A+B) +
1

2
x2(A2 + 2AB +B2) +O(x3)

(2.13)

for the right-hand side. The two equations (2.12) and (2.13) differ as the
operator A always comes on the left of the operator B in the latter, which
let us write the form of the correction term:

exp (xA) exp (xB) = exp

(
x(A+B) +

1

2
x2[A,B] +O(x3)

)
(2.14)

Therefore, dividing the parameter x into n slices, we get(
e( xnA)e( xnB)

)n
=

[
exp

(
x

n
(A+B) +

1

2

(x
n

)2
[A,B] +O

((x
n

)3
))]n

= exp

(
x(A+B) +

1

2

(
x2

n

)
[A,B] +O

((
x3

n2

)))
and taking the limit n → ∞ the correction term vanishes, recovering the
exponential operator.

It is interesting to compare this approach with another frequently used
one, namely the perturbational approximation:

exp (x(A+B)) = I + x(A+B) +O(x2). (2.15)

When dealing with a Hermitian Hamiltonian H = A+B, the Trotter–Suzuki
approximation has a remarkable advantage over the Eq. (2.15). Indeed, in
that scenario, the evolution operator is a unitary operator; the same is
not true for the right-hand side of the Eq. (2.15). Contrary, the Trotter–
Suzuki preservers this property since it is a product of unitary operators.
As a consequence, the norm of the wave function is preserved, resulting in a
better accuracy of the evolution. However, a first-order approximation could
not be enough to achieve a high precision. For these reasons it is interesting
to extend the approximation, looking for higher order approximants.

2.3 Fractal Decomposition

To go beyond the simple approximation presented in the previous section, we
can introduce a recursive approach, called fractal decomposition. Bearing
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in mind that we want to preserve the unitarity of the approximant, we are
looking for an approximation of exponentials products.

The easiest improvement of the Trotter formula (2.10) is the symmetriza-
tion

S2(x) ≡ exp
(x

2
A
)

exp (xB) exp
(x

2
A
)

= exp (f(x)) . (2.16)

The symmetrized approximant has the property

S2(−x)S2(x) = exp
(
−x

2
A
)

exp (−xB) exp
(
−x

2
A
)
·

exp
(x

2
A
)

exp (xB) exp
(x

2
A
)

= I,

which proves that f(x) does not have an even-order term in x. Consequently,
S2 is a second-order approximant, with the following form

S2 = exp
(
x(A+B) + x3R3 + x5R5 + · · ·

)
, (2.17)

where Ri are suitable operators.
A fourth-order approximant can be constructed from S2 considering the

product

S(x) =S2(sx)S2((1− 2s)x)S2(sx) (2.18a)

= exp
(s

2
xA
)

exp (sxB) exp

(
1− s

2
xA

)
exp ((1− 2s)xB) ·

exp

(
1− s

2
xA

)
exp (sxB) exp

(s
2
xA
)
, (2.18b)

where s is an arbitrary real number. Using Eq. (2.17) the expression (2.18)
becomes

S(x) =S2(sx)S2((1− 2s)x)S2(sx) (2.19a)

= exp
(
sx(A+B) + s3x3R3 +O(x5)

)
·

exp
(
(1− 2s)x(A+B) + (1− 2s)3x3R3 +O(x5)

)
·

exp
(
sx(A+B) + s3x3R3 +O(x5)

)
(2.19b)

= exp
(
x(A+B) + (2s3 + (1− 2s)3)R3 +O(x5)

)
(2.19c)

The property S(−x)S(x) = I also holds in this case, so we can conclude
that the even-order correction in the exponent of (2.19a) will vanish, and
the parameter s must satisfy

2s3 + (1− 2s)3 = 0. (2.20)
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Solving Eq. (2.20), we obtain s = 1
2− 3√2

= 1.351207 . Suppose now that

S(x) is an approximation of the time-evolution operator, from time t = 0
to t = x. The right term S2(sx) on the right-hand side of Eq. (2.18a)
evolves the system from t = 0 to t = sx > x. The middle-term S2((1−2s)x)
approximates the time evolution from t = sx to t = sx+(1−2s)x = (1−s)x.
Finally the last term S2(sx) approximates the evolution from t = (1 − s)x
to t = x. Representing the evolution as in Fig. 2.1(a), it is evident that
the evolution has a part that goes to the ”past”. In some cases this can be
problematic, for instance when studying the diffusion from a delta peak as
initial state. Indeed, in this case there is no past of the initial delta peak
state.

However, this problem can be easely solved by introducing another fourth-
order approximant. Following the same idea, we consider

S4(x) = S2(s2x)2S2((1− 4s2)x)S2(s2x)2, (2.21)

where s2 is the parameter that solves the equation

4s3
2 + (1− 4s2)3 = 0 or s2 =

1

4− 3
√

4
' 0.4145. (2.22)

Similarly to the S(x), we represent S2(x) as in Fig. 2.2(b). Note that in this
case the evolution remains between the initial and final time.

Figure 2.1: Representation of the fourth-order approximation using
Eq. (2.18) (Fig. (a)) and Eq. (2.21) (Fig. (b)). In the Trotter–Suzuki approx-
imation, the 2n-th order approximation of evolution operator, from t = 0
to t = x and with n ≥ 1, is decomposed in a chain of second-order approxi-
mants, that evolve the state back and forth in the time.
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Figure 2.2: Representation of the time evolution using the sixth-order ap-
proximant (a) and the eighth-order approximant (b).

Now we can move to the sixth-order approximant, using S4(x) and fol-
lowing the same structure:

S6(x) = S4(s4x)2S4((1− 4s4)x)S4(s4x)2, (2.23)

obtaining

4s5
4 + (1− 4s4)5 = 0 or s4 =

1

4− 5
√

4
' 0.3731. (2.24)

We can continue this recursive procedure, ending up with the exact time
evolution. It is easy to see that the procedure can be generalized with the
following formula:

S2n+2 = S2n(s2nx)2S2n((1− 4s2n)x)S2n(s2nx)2, (2.25)

where s2n = 1/(4 − 4
1

2n+1 ). It is interesting to note that the recursive
procedure creates a fractal pattern composed by back-and-forth evolution,
reproducing the exact time evolution.

2.4 Example: Spin Precession

It is worthwhile to give a brief and simple example to show some remarkable
properties of the Trotter–Suzuki decomposition. In this section, we compare
it with the first order perturbation, using a simple example of quantum
dynamics, namely, the spin precession.

Consider the following Hamiltonian:

H = σz + Γσx, (2.26)
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Figure 2.3: Energy expectation value for (a) the Trotter–Suzuki approxima-
tion (2.29) and (b) the perturbation approximation (2.30).

where Γ is a real number, and, as initial state, the up-spin state

ψ(0) =

(
1
0

)
. (2.27)

The evolution is simple to calculate analytically: the spin precesses around
the axis of the magnetic field ~H = (Γ, 0, 1) with the period

T =
π√

1 + Γ2
. (2.28)

However, here we use the Trotter approximation

exp
(
− ı
~
Hδt

)
= exp

(
− ı
~
σzδt

)
exp

(
− ı
~

Γσxδt
)
, (2.29)

and the perturbational approximant

exp
(
− ı
~
Hδt

)
= I − ı

~
(σz + Γσx)δt, (2.30)

Due to the approximations used, the energy expectation 〈H〉 is not constant
throughout the evolution Fig. 2.3(a), as we would expect in the exact so-
lution. However, with the Trotter approximation, the error in the energy
expectation oscillates periodically, and never increases beyond the oscillation
amplitude. This behavior is consistent with the property of the approxima-
tion: due to the unitarity, the state periodically comes back to the initial
state with a good accuracy, producing the oscillation pattern in the energy.
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In contrast, the error in the energy monotonically grows in the case of
the perturbational approximant, as is shown in Fig. 2.3(b). Indeed, with
this approximation, the norm of the wave vector increases by the factor

‖1− ı

~
H∆tH‖ ' 1 + ∆t‖H‖ > 1. (2.31)

This simple example shows how the unitarity of the Trotter approxima-
tion improves the quality of the simulation, compared to the perturbation
approximation.

2.5 Example: Symplectic Integrator

Another interesting example regards the study of chaotic dynamics. In this
case it is important to keep the symplecticity of the Hamilton dynamics.

Consider a classical Hamiltonian

H(~p, ~q) = K(~p) + V (~q), (2.32)

where K(~p) is the kinetic term and V (~q) the potential term. The Hamilton
equation is expressed in the form

d

dt

(
~p(t)
~q(t)

)
=

(
− d

d~qV (~q)
d
d~pK(~p)

)
≡
(

−V̂ ·
K̂·

)(
~p
~q

)
(2.33)

where the operators K̂· and V̂ · act in the following way

K̂ · ~p ≡ d

d~p
K(~p) and V̂ · ~q ≡ d

d~q
V (~q). (2.34)

We can define the ”Hamiltonian” operator as H = K + V with

K ≡
(
K̂·

)
and V ≡

(
−V̂ ·

)
(2.35)

The two operators, K and V, do not commute. This make the exponential
of H not easily tractable. However, the exponential of K and V is easier to
calculate.

We notice that K2 = V2 = 0, and therefore we have

exp (K∆t)

(
~p
~q

)
= (I +K∆t)

(
~p
~q

)
=

(
~p

~q + ∆t d
d~pK(~p)

)
, (2.36)

exp (V∆t)

(
~p
~q

)
= (I + V∆t)

(
~p
~q

)
=

(
~p−∆t d

d~qV (~q)

~q

)
. (2.37)
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(a) (b) (c)

Figure 2.4: (Evolution of the point in the configuration space, using the
Trotter approximation (a). The initial condition is p1 = p2 = 0 and q1 = 2,
q2 = 1. The energy fluctuation due to the Trotter approximation (b). The
energy increase due to the perturbation approximation (c).

Thus, given the form of K(~p) and V (~q) the Trotter approximation of the
evolution operator is determined.

Umeno and Suzuki [42, 40] demonstrated the use of symplectic integra-
tors for chaotic dynamics of the system

K(~p) =
1

2
(p2

1 + p2
2) and V (~q) =

1

2
q2

1q
2
2. (2.38)

The dynamic is constrained by the constant d
dt |q1(t)q2(t)| = 0, thus tuple

(q1(t), q2(t)) is confined in the area surrounded by four hyperbolas as illus-
trated in Fig. 2.4a. The Trotter approximation of the dynamics, gives the
energy fluctuation shown in Fig. 2.4b. Although the energy deviates from
the correct value sometimes, it comes back after the deviation. The major
deviations occur when the system goes into one of the four narrow valleys
of the potential, while they are suppressed when the system is in the central
area.

Contrary to this behaviour, the perturbation approximation(
~p
~q

)
−→ (I + ∆tH)

(
~p
~q

)
=

(
~p−∆t d

d~qV (~q)

~q + ∆t d
d~pK(~p)

)
, (2.39)

yields the monotonic energy increase shown in Fig. 2.4c. The reason of the
difference between the approximants must be keeping the symplecticity, or
the conservation of the phase-space volume.



Chapter 3

Decomposition of Unitary
Evolution

When it comes to solving differential equations that determine the behaviour
of a physical system, an accurate approximation is often needed to find an
explicit solution. As we have seen in the previous chapter, a good approach
is to use the Trotter–Suzuki approximation.

In this chapter we are interested in calculating the evolution operator
U(t) = exp

(
− ıt

~H
)
, the solution of the time-dependent Schrödinger equa-

tion, using the second order Trotter–Suzuki approximation. The Trotter–
Suzuki approximation is based on the splitting of the exponent in a sum of
operators. Thus, starting from a exponential that is difficult to calculate,
we end up with a product of easy-to-calculate exponentials. In the next
sections, we discuss how to decompose the Hamiltonian and the eventual
calculation of the exponential.

3.1 Hamiltonian Decomposition

We consider a single quantum particle in two dimensions in time-independent
potential. The Hamiltonian operator of such system is written as follows

Ĥ =
P̂ 2
x + P̂ 2

y

2m
+ V̂ , (3.1)

where m is the particle mass and V̂ is the external potential.

We use the coordinate reppresentation of the operators, so the kinetic

15
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term becomes

〈x, y| 1

2m

(
P 2
x + P 2

y

)
|ψ〉 =

∫
dx′dy′ 〈x, y|

(
P 2
x + P 2

y

)
|x′, y′〉 〈x′, y′|ψ〉 (3.2a)

=− ~2

2m

(
∇2
x +∇2

y

)
ψ(x, y) (3.2b)

In this basis, the exponentiation of the external potential operator is straight-
forward, since it is diagonal. On the contrary, this is not true for the kinetic
operator.

We consider the discretization of the continuum space into a uniform
mesh, where ∆ is the distance between any two consecutive points. We use
the tuple (i, j) to label the points of the mesh, with i, j = 1, . . . , N , so that
ψ(x, y)→ ψi,j and |x, y〉 → |i, j〉. Using the second-order derivative central
difference, we have:

∂2ψ

∂x2

∣∣∣∣
i,j

=
ψ(i+ 1, j)− 2ψ(i, j) + ψ(i− 1, j)

∆2
+O(∆2), (3.3)

Then we can write the Eq. (3.2b) as

〈i, j| 1

2m

(
P 2
x + P 2

y

)
|ψ〉 = − ~2

2m∆2
(ψi+1,j + ψi,j+1 + ψi−1,j + ψi,j−1 − 4ψi,j) .

To explicitly determine the matrix elements of the kinetic operator, let us
rewrite the previous equation using Kroneker’s delta

〈i, j| 1

2m

(
P 2
x + P 2

y

)
|ψ〉 =

∑
k,l

− ~2

2m∆2
[(δi+1,k + δi−1,k) δj,l + (3.4)

+ (δj+1,l + δj−1,l) δi,k − 4δi,kδj,l]ψk,l.

Since the discretization of Eq. (3.2a) led to the following equation

〈i, j| 1

2m

(
P 2
x + P 2

y

)
|ψ〉 =

1

2m

∑
k,l

〈i, j|
(
P 2
x + P 2

y

)
|k, l〉 〈k, l|ψ〉 (3.5a)

=
1

2m

∑
k,l

〈i, j|
(
P 2
x + P 2

y

)
|k, l〉ψk,l (3.5b)

from the comparison of Eq. (3.4) and Eq. (3.5b), we get

〈i, j| 1

2m

(
P 2
x + P 2

y

)
|k, l〉 = − ~2

2m∆2
[(δi+1,k + δi−1,k) δj,l + (3.6)

+ (δj+1,l + δj−1,l) δi,k − 4δi,kδj,l].
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We introduce two operators that will let us split the Hamiltonian into a
sum of operators that are easy to exponentiate. We define:

Ai,k =

{
δi+1,k, if k is odd

δi−1,k, if k is even
(3.7)

and

Bj,l =

{
δj−1,l, if l is odd

δj+1,l, if l is even
(3.8)

Represented as matrices, these operators have the form of block diagonal
matrices, namely:

A =



0 1
1 0

0 1
1 0

0 1
1 0

. . .


B =



0
0 1
1 0

0 1
1 0

0 1
1 0

. . .


(3.9)

Using the new operators we can rewrite Eq. (3.6) as follow

〈i, j| 1

2m

(
P 2
x + P 2

y

)
|k, l〉 = − ~2

2m∆2
[ (Ai,k +Bi,k) δj,l + (3.10)

+ (Aj,l +Bj,l) δi,k − 4δi,kδj,l]

For the brevity of notation, we adopt the operator notation, so that the
previous equation becomes

1

2m

(
P̂ 2
x + P̂ 2

y

)
= − ~2

2m∆2

[
Âx + B̂x + Ây + B̂y − 4Î

]
, (3.11)

where the label indicates the index on which the operator acts, so that the
following commutation rules are satisfied:

[Âx, Ây] = 0 [Âx, B̂y] = 0 [B̂x, Ây] = 0 [B̂x, B̂y] = 0. (3.12)

Finally, by Eq. (3.11), we get the decomposition formula for the Hamilto-
nian (3.1):

Ĥ = − ~2

2m∆2

[
Âx + B̂x + Ây + B̂y − 4Î

]
+ V̂ . (3.13)
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3.2 Evolution Operator

In the previous section, we shown how to split the Hamiltonian in the dis-
crete space approximation. Now we explicitly calculate the Trotter–Suzuki
decomposition for the evolution operator. Using the Hamiltonian decompo-
sition (3.13), the evolution operator Û(t) = exp(− ıt

~H) can be written as
follows, in the first Trotter–Suzuki approximation

Û1(t) = exp

(
− ıt
~

(
V̂ +

2~2

m∆2
Î

))
exp

(
ıαÂx

)
exp

(
ıαB̂x

)
· (3.14)

· exp
(
ıαÂy

)
exp

(
ıαB̂y

)
+O(t2),

where we defined α = ~t
2m∆2 .

Using the equality

exp(ıασ) = I cos(α) + ıσ sin(α), (3.15)

it is straightforward to calculate the exponential of the operators A and B,
since they are diagonal matrices of the Pauli matrix:

exp
(
ıαÂx

)
= Îx cos(α) + ı sin(α)Âx (3.16)

exp
(
ıαB̂x

)
= Îx(cos(α)(1− δx,0) + δx,0) + ı sin(α)B̂x. (3.17)

The first exponential in Eq. (3.14) is also straightforward to calculate. In-
deed V̂ |i, j〉 = V (i, j) |i, j〉 so,

〈k, l| exp

(
− ıt
~

(
V̂ +

2~2

m∆2
Î

))
|i, j〉 = δk,iδl,j exp

(
− ıt
~

(
V (i, j) +

2~2

m∆2

))
.

The second order approximation of Trotter–Suzuki decomposition is easily
calculated using U1(t), namely

Û2(t) = Û1

(
− t

2

)†
Û1

(
t

2

)
. (3.18)

3.3 Evolution Towards the Ground-state

A reliable and easily-implemented method of approximating the ground
state of the system is by propagation in imaginary time. Consider the
Schrödinger equation

ı~
∂ |ψ(t)〉
∂t

= Ĥ |ψ(t)〉 . (3.19)
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The transformation τ = ıt lead to the equation

~
∂ |ψ(τ)〉
∂τ

= −Ĥ |ψ(τ)〉 . (3.20)

The formal solution for this equation, with initial condition |ψ(0)〉 = |ψ0〉 is
|ψ(τ)〉 = exp

(
− τ

~H
)
|ψ0〉. The initial state |ψ0〉 can be written as a linear

combination of Hamiltonian’s eingenvectors:

|ψ0〉 =
∑
i

ci |φi〉 , (3.21)

where Ĥ |φi〉 = Eiφi for i = 0, 1, 2, . . . . In this basis |ψ(τ)〉 can be written
as follow

|ψ(τ)〉 =
∑
i

ci exp
(
−τ
~
Ei

)
|φi〉 . (3.22)

Taking E0 as the ground-state energy, we can rearrange the previous equa-
tion

|ψ(τ)〉 = exp
(
−τ
~
E0

)∑
i

ci exp
(
−τ
~

∆Ei

)
|φi〉 . (3.23)

where ∆Ei = Ei − E0 > 0, ∀i > 0. We now take the limit for τ → +∞.
As long as the initial state is not orthogonal to the ground state, namely
c0 6= 0, the leading term in the sum of Eq. (3.23) is given by the ground
state

lim
τ→+∞

|ψ(τ)〉 = exp
(
−τ
~
E0

)
c0 |φ0〉 . (3.24)

Thus, evolving the initial state for a sufficient amount of time, it let us reach
an approximation of the ground state.

We implement the evolution operator in imaginary time using the same
Trotter–Suzuki decomposition and Hamiltonian splitting as for the real time
evolution. The operator reads as

Û(τ) = exp

(
−τ
~

(
− ~2

2m∆2

[
Âx + B̂x + Ây + B̂y − 4Î

]
+ V̂

))
, (3.25)

so in the first Trotter–Suzuki approximation we have

Û1(t) = exp

(
−τ
~

(
V̂ +

2~2

m∆2
Î

))
exp

(
ατ Âx

)
exp

(
ατ B̂x

)
· (3.26)

· exp
(
ατ Ây

)
exp

(
ατ B̂y

)
,
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where ατ = ~τ
2m∆2 . Using the equality

exp(ατσ) = I cosh(ατ ) + σ sinh(ατ ) (3.27)

we can calculate the exponential of A and B as

exp (ατAx) = Ix cosh(ατ ) + sinh(ατ )Ax (3.28)

exp (ατBx) = Ix(cosh(ατ )(1− δx,0) + δx,0) + sinh(ατ )Bx (3.29)

Finally, in the second order approximation we have:

Û2(τ) = Û1

(τ
2

)T
Û1

(τ
2

)
(3.30)
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Implementation

Our main goal was to develop a high-performance algorithm. The imple-
mentation uses a distributed version of highly optimized kernel for central
processing units (CPUs) and graphics processing units (GPUs), that runs
efficiently on a cluster [43]. We extended this implementation to Hamiltoni-
ans that include external potential, to allow the simulation of a wider range
of quantum systems.

Particularly important for the purpose of high performance is the opti-
mization of memory access patterns. Large amounts of data are stored in
the main memory: the data needs to be sent to the processing unit. Nowa-
days, processing units are much faster in performing calculations than the
ability of the main memories and the hardware bus to keep streaming data.
So if the processing unit has to fetch data from the main memory, it would
be limited by the bandwidth of the memory and the hardware bus. To
avoid this problem, we exploit cache-aware computation that uses smaller
and faster memories, dubbed caches [10]. Furthermore, a workload across a
distributed memory system requires communication between the nodes. To
proceed to the next iteration, a node needs data of the previous iteration
calculated by other nodes. The transfer of data in a network of nodes is
even slower than the transfer from main memory to the processing unit.
However, to a certain extent, communication between nodes and calculation
in the processing unit can be done simultaneously. For the sake of efficiency,
it is worth to overlap the two as much as possible.

For the purpose of developing reliable scientific software, we added unit
testing to the implementation. In the development of complex software, it
is important to test various parts of the code, to ensure its correctness. A
program can be split into several units, each one having a defined use and

21
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an expected behaviour. Based on this, one can develop a test to exercise
the unit and verify its exactness. We exploit unit testing using the library
CppUnit [20]. Moreover, we use double-precision floating point operations,
to improve accuracy in the simulations.

Our approach was also to ensure that our implementation fits in with
rapid prototyping systems [29]. The program allows to the use of a command
line interface, for the flexibility of the simulation. In addition, the function
that performs the evolution is exposed as an application programming in-
terface (API). We also developed wrappers to make the kernels accessible
from the high-level languages Python and MATLAB.

In this chapter, we describe the implementation of the evolution oper-
ator. There are two CPU kernels, one GPU kernel and a hybrid kernel
that use both types of computational units. Before the kernel explanation,
a short section introduces to the architecture of CPU and GPU memory
hierarchy and gives some basic concepts of high performance programming.
We end with the benchmark performed at the Barcelona Supercomputing
Center.

4.1 Cache Optimization

The gap between CPU speed and main memory performance is enormous.
To alleviate this gap, computer architectures implement hierarchical mem-
ory structures. This approach allows to work around both the low main
memory bandwidth and the latency of main memory accesses. The memory
bandwidth is a measure of the rate at which data can be read from or stored
into the memory by a processor, and it is a crucial parameter that affects the
performance of an algorithm. Furthermore, the memory latency plays an
important role in the overall performance. The memory latency is the delay
time between the moment a memory controller tells the memory module to
access a particular memory location, and the moment these data become
available on the module’s output pins. These parameters characterized the
velocity at which the memory can feed the processor. When the CPUs need
to process a certain data, they request it from the memory, and wait for it
to become available.

The common structure of the hierarchy consists of a series of memories;
the smaller they are, the closer they are to the CPUs; the cheaper they are,
the further they are from the CPUs. Usually, at the top of the hierarchy
there are the registers, memories integrated within the processor chip that
can provide data with low latency and high bandwidth. Between the pro-
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Figure 4.1: A Common memory hierarchy that present two on-chip L1
caches, on-chip L2 cache, and a third level of off-chip cache. The thick-
ness of the interconnections illustrate the bandwidths between the memory
hierarchy levels.

cessor core and the main memory there are memories called cache memories
or caches [10]. Finally, there is the main memory, that usually consist of
large and slow RAM memories. During the execution of a program, some
blocks of data are used more often than others, so the CPUs will work with
this subset of data for most of the time. To get an efficient algorithm, the
idea is to store frequently used blocks of data on fast memories: the more
frequently the block is used, the higher in the hierarchy is the memory that
stores it.

Typically, the data residing within a smaller memory are also stored
within the larger memory, so the levels of the memory hierarchy are subsets
of one another. A common memory hierarchy is show in Fig. 4.1.

An efficient algorithm must consider the stages of the memory hierarchy.
Unfortunately, compilers are not intended to introduce sophisticated cache-
based transformations. Consequently, the optimization effort is left to the
programmer.

This aspect is particularly important when dealing with numerically
intense codes, which occur in science and engineering disciplines, such as
computational physics, mechanical engineering and computational fluid dy-
namics, just to mention some. These types of code are characterized by a
large portion of floating-point operations, and small computational kernels.
Thus, instruction cache misses do not significantly affect the execution per-
formance. Much of the optimization effort concerns data access pattern.
Indeed, due to data access latencies and memory bandwidth issues, it is not
sufficient to optimize the number of arithmetic operation alone. Efficient
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codes in scientific computing must necessarily combine computationally op-
timal algorithms and memory hierarchy optimization.

4.1.1 Organization of Cache Architectures

The common memory hierarchy presents a rather small number of registers
on the chip, which has almost no memory latency. On the chip we can also
find a small cache - called level one (L1) cache – usually limited to 64 Kbyte,
so that low latency and high bandwidth are assured. The latency of on-chip
caches is commonly one or two CPUs cycles. The L1 cache is often split
into two separate parts; one only keeps data, the other instructions. The
second level memory (L2) is tipically placed on-chip as well and it is usually
limited to 1 Mbyte. Due to the bigger size the latency is around 5 to 10
cycles. Another cache level may be implemented off-chip if the L2 cache is
on-chip. The L3 cache size may vary from 1 MByte to 16 MByte. They
provide data with latency of about 10 to 20 cycles [12].

Data within the cache are stored in cache lines. A cache line holds the
contents of a contiguous block of main memory. We say that a cache hit
occurs when the data requested by the processor is found in a cache line. If
the data requested is not founded in the L1 cache, a cache miss occurs. In the
latter case, the contents of the memory block containing the requested words
are then fetched from a lower memory layer, for instance, from the L2 cache,
and copied into a cache line. This operation typically implies another chunk
data in L1 to be replaced by the requested one – an operation that is very
inefficient. Indeed, the replacement of a cache line takes more time than the
CPU to read the same data directly from the main memory. For this reason,
caches implement strategies to increase the rate of cache hits over the cache
misses. The optimal replacement strategy would be to replace the memory
block which will not be accessed for the longest time. However, such strategy
is impossible to implement since it requires information about future cache
references. The most commonly used strategy is the least recently used. It
replaces the block which has not been accessed for the longest time interval.

These strategy are based on the principle of locality references [12], which
states that recently used data are very likely to be reused in the near future.
Locality can be of two different type: temporal locality and spatial locality.
A sequence of references exhibits temporal locality if recently accessed data
are likely to be accessed again in the near future. A sequence of references
manifest spatial locality if data located close together in address space tend
to be referred close together in time.
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4.1.2 Data Access Optimizations

The most straightforward and simple approach to implement an algorithm,
usually does not achieve the best execution performance. As we saw in
the previous section, to reach this goal the programmer has to care about
how the data movements are handled by the memory hierarchy and how
the CPUs access data. In scientific computations, this typically implies the
need to apply a transformation on the code, that change the order in which
iterations in a loop nest are executed. Such transformations are part of data
access optimizations techniques, where the goal is to improve temporal lo-
cality. We focus on a set of loop transformations that improve data locality
for one level of the memory hierarchy: a cache.

Loop Interchange. This transformation reverses the order of two adjacent
loops in a loop nest. This can be generalized to loop permutations where
more than two loops are moved at once [17, 44].

A loop interchange can improve locality by reducing the stride of an
array-based computation. The stride is the distance of array elements in
memory accessed within consecutive loop iterations. For instance, suppose
we want to calculate the square norm of a vector (Fig. 4.3). Furthermore,
suppose that the vector is stored in a 6 by 8 array in memory (Fig. 4.2), in
row major order ; that is, two array elements are stored adjacent in memory
if their second indices are consecutive numbers. The code corresponding
to the left part of Fig. 4.2, accesses the array elements in a column-wise
manner, so the stride is equal to 8. Consequently, the preloaded data in the
cache line marked with grey color will not be reused if the array is too large
to fit entirely in cache. The next element will be fetched from the main
memory. Interchanging the loop nest allows the cache line to be reused, as
the stride is now 1 (right part of Fig. 4.2).

Figure 4.2: Access pattern for interchenged loop nests in a (6,8) array.
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double norm2;
double a[n, n];
for j = 1 to n do

for i = 1 to n do
norm2+ = a[i, j] · a[i, j];

end

end
Algorithm 1: Original loop

double norm2;
double a[n, n];
for i = 1 to n do

for j = 1 to n do
norm2+ = a[i, j] · a[i, j];

end

end
Algorithm 2: Loop interchange

Figure 4.3: Pseudocode that illustrate the loop interchange transformation.

Loop Fusion. This transformation takes two adjacent loops that have the
same iteration space traversal and combines their bodies into a single loop [6].
When loop fusion can be applied – when there are no instruction dependen-
cies between the fused loops – data locality may be improved. Assume
that two consecutive loops perform global sweeps through an array as in
the code shown in Fig. 4.4, and that the data are too large to fit entirely
in the cache. When the first loop finishes, the elements of array b are not
completely loaded in cache, and the second loop will have to reload them
from the main memory. If the two loops are combined with loop fusion only
one global sweep through the array b will be performed, resulting in fewer
cache misses.

for i = 1 to n do
b[i] = a[i] + 1;

end
for i = 1 to n do

c[i] = b[i] · 3;
end
Algorithm 3: Original loop

for i = 1 to n do
b[i] = a[i] + 1;
c[i] = b[i] · 3;

end
Algorithm 4: Loop fusion

Figure 4.4: Pseudocode that illustrate the loop fusion transformation.

4.2 CPU Kernels

The code implements two CPU kernels: both are cache optimized, but one
is further optimized to use the SSE instruction set of the CPU. In this
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section we explain the CPU kernels in a single thread scenario and the
cache optimization strategy adopted.

4.2.1 Matrix Updating Scheme

The initial wave function of the system ψi,j(0) is stored in two arrays in
row major order, one for the real part and one for the imaginary part. The
evolved wave function ψi,j(t) is calculated dividing the time in small time
intervals of length ∆t. To have an accurate simulation, ∆t must satisfy the
inequality ∆t� m∆L2

~ , where m is the particle mass and ∆L is the distance
between two consecutive locations in the mesh. Indeed if we exploit the
Taylor expansion of the evolution operator

exp
( ı
~
H∆t

)
= 1 +

ı

~
H∆t+O(∆t2), (4.1)

we have 1 � ∆t
~ ‖H‖. Suppose that the leading term in the Hamilto-

nian is the kinetic term, hence the second-order derivative approximation
(Eq. (3.3)) leads to 1� ~

m∆L2 ∆t.

In the second-order Trotter–Suzuki approximation, the ψi,j(∆t) is the
result of nine matrix-vector products. From Eq. (3.18) and Eq. (3.14), we
have

ψ(∆t) = eı
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~ V̂ eı
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2
Âxeı

α
2
Âyψ(0) (4.2)

where α = ~∆t
2m∆L2 . Note that we discarded the phase changing factor

e−
ı∆t~
m∆L2 I present in Eq. (3.14). The exponential of the potential is diag-

onal and it is straightforward to implement: it is sufficient to multiply each

element of the vector ψi,j for the proper value (i.e. 〈i, j| e− ıt~ V̂ |i, j〉). The

matrix elements 〈i, j| e− ıt~ V̂ |i, j〉 are calculated before the beginning of the
kernel, and is stored on two real matrices in the main memory. With regards
to the other exponential operators, the matrix vector multiplication can be
decomposed in a series of linear combinations of couples of two neighbouring
sites in the mesh. This can be easily understood from the form of A and B
operators (Eq. (3.7) and Eq. (3.8)) that lead to Eq. (3.16) and Eq. (3.17).
Consider the couple ψi,j and ψi,j+1, when j is even, eı

α
2
Ay acts so that
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(α

2

)
ψi,j + ı sin
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2

)
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)
ψi,j+1 (4.3)
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( i , j ) 

( i , j +1) 

Figure 4.5: Single coupling operation.

In this operation, the sites (i, j) and (i, j+1) in the arrays are updated. We
schematically represent this operation by mean of the diagram in Fig. 4.5.
Note that we do not need to store the exponential operator matrices eı

α
2
A

and eı
α
2
B. It is sufficient to store only two values: cos

(
α
2

)
and sin

(
α
2

)
.

Following this scheme, Eq. (4.2) can be schematized as in Fig. 4.6. The
single time evolution is divided in nine computational steps corresponding
to the matrix vector multiplications. Furthermore, the operations are inde-
pendent from one another, so that sites in each computational step can be
updated in place.

Regarding the imaginary time evolution, Eq. (4.3) changes into:

ψ̂i,j = cosh
(α

2

)
ψi,j + sinh

(α
2

)
ψi,j+1

ψ̂i,j+1 = sinh
(α

2

)
ψi,j + cosh

(α
2

)
ψi,j+1 (4.4)

4.2.2 Cache-aware Implementation

A naive approach to implement the scheme in Fig. 4.6 is by performing
each computational step in a single pass over the entire array of sites. This
performs efficiently as long as the array of sites fits in the cache, so that the
CPU fetches the data directly from the cache. However, for large system
sizes, data need to be fetched from the main memory, resulting in a drop in
performance [1].

Cache optimization can be achieved dividing the array of sites in blocks
that fit in the cache and performing a single time step evolution for each one
of them, separately. This raises the problem of data dependency. Suppose
that a block has been read to the cache and evolved a number of steps. We
cannot write the results back to the same array in the main memory, from
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Steps 1,9 Steps 2,8 

Steps 3,7 Steps 4,6 Step 5 

Figure 4.6: Single time step evolution scheme for the second order Trotter–
Suzuki.

where the block was read, as blocks adjacent to it still need some values
on the boundary between the blocks for their own evolution. This is fixed
through double buffering, allocating two arrays in the main memory instead
of one and going back and forth between the two, reading from one and
writing to the other.

Besides, to perform some computational steps on a block, we need the
sites surrounding the block to be present in the cache as well, otherwise the
sites on the edge of the block will not be valid. This is because each site
needs their four neighbours to complete a single time step evolution. As we
try to perform more computational steps on a block, the amount of nodes
external to the block increases. These nodes generate a halo around a block
that must also be read into the cache and updated, but that at later steps
become invalid because their own halos are not present. The minimum value
of the halo thickness for a single time step evolution is of four sites, since
there are four computational steps that couple sites for each direction.

In a non distributed version of the kernels a single CPU performs the
time step evolutions as schematized in Fig. 4.6. Blocks of the array in the
main memory, with their own halo, are written in the cache memory. A
single time step evolution of the block is performed, writing the results back
to the cache. The halo is discarded, while the block is written to the second
buffer in the main memory (Fig. 4.7). The multiple step strategy, combined
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Figure 4.7: Scheme of the CPU cache optimization. A time step evolution is
performed: a block, in buffer 1, and its halo are written into the cache (a);
a time step evolution is performed on the block and the halo in the cache,
by the CPU (b); the halo is discarded and only the block is written into the
main memory in buffer 2 (c). This operation is performed for each block in
buffer 1.

with the tunable block size that depends on the hardware’s cache size, puts
the algorithm in the family of cache-aware stencil computations [15].

4.3 GPU Kernel

As the time step evolution is composed by simple and high parallelizable
instructions, an implementation that runs on a GPU gains a high speed-
up compare to a CPU kernel. Indeed, GPUs achieve a much high peak
performances in certain parallel workloads compared to CPUs, as illustrated
in Fig. 4.8. This motivated the development of a GPU kernel. In this
section, we outline the differences between the CPU and GPU architectures,
describing the features of the latter. A description of the non-distributed
version of GPU kernel follows.

4.3.1 GPU Structure

The reason behind the discrepancy in floating-point capability between the
CPU and the GPU is that the GPU is specialized for compute-intense, highly
parallel computation and therefore designed such that more transistors are
devoted to data processing rather than data caching and flow control. In-
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Figure 4.8: Floating-point operations per second for the CPU and GPU.

deed, a GPU is well-suited to address problems that can be expressed as
data-parallel computations, where the same calculation is executed on many
data elements in parallel. Consequently, a sophisticated flow control mech-
anism is unnecessary. Furthermore, because the program is executed on
many data elements and has high arithmetic intensity, the memory access
latency can be hidden with calculations instead of large data caches.

GPUs adopt the so-called single instruction, multiple thread architec-
ture as parallel execution model. Data elements are processed by sequences
of parallel instructions called threads. The NVIDIA GPU architecture is
built around a scalable array of multithreaded Streaming Multiprocessors.
Threads are managed, created, scheduled and executed by streaming multi-
processors in groups of 32 parallel threads called warps. Individual threads
composing a warp start together at the same program address, but they
have their own instruction address counter and register state and are there-
fore free to branch and execute independently. When a multiprocessor is
given one or more thread blocks to execute, it partitions them into warps
and each warp gets scheduled by a warp scheduler for execution.

A warp executes one common instruction at a time, so full efficiency
is realized when all 32 threads of a warp agree on their execution path.
If threads of a warp diverge via a data-dependent conditional branch, the
warp serially executes each branch path taken, disabling threads that are



32 CHAPTER 4. IMPLEMENTATION

Figure 4.9: Instance of a warp execution. The left part of the graph illus-
trates the instructions to be performed by each thread. Each thread execute
three instructions; instructions with the same color are identical. The right
part of the graph illustrates how the instructions are executed by the threads
within a warp. Threads, that execute the same instruction, perform the in-
struction at the same time. Different instructions are performed on different
times. In this example threads are not in the same execution path – there
are at least three different paths – resulting in a inefficient time performance.

not on that path, and when all paths complete, the threads converge back to
the same execution path (Fig. 4.9). Branch divergence occurs only within
a warp; different warps execute independently regardless of whether they
are executing common or disjoint code paths. Consequently, the execution
achieve better performance avoiding threads in a warp to branch.

GPU are easily programmed using CUDA (Compute Unified Device Ar-
chitecture) an extension of high-level programming language C. CUDA ex-
tends C by allowing the programmer to define C functions (kernels) that are
executed N times in parallel by N different CUDA threads. Each thread is
associated to a 3-component vector, so that they can be organized in a 1D,
2D or 3D structure. Groups of threads are collected in thread blocks, whose
size is dictated by the programmer. However, there is a limit to the number
of threads per block, since all threads of a block are expected to reside on
the same processor core and must share the limited memory resources of
that core. Blocks are organized into a grid of thread blocks, which can be
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Figure 4.10: GPU memory hierarchy.

one, two or three dimensional.

A GPU’s memory is organized in a hierarchy, as it is also the case for the
CPU (Fig. 4.10). Closest to the processors there are fast and small registers,
in which each thread store a private local memory space. On the next level
in the hierarchy, there are shared memories. Each thread block has access
to a memory space stored on shared memories, which is visible to all the
threads of the block. The last level consist in the global memory, accessible
by all the threads.

4.3.2 GPU Implementation

The GPU kernel implements the same time step evolution as the CPU ker-
nel (Fig. 4.6). In analogy with the CPU kernel, the GPU kernel divides
the array of sites in blocks, which are written in the shared memories of
the multiprocessors, along with their own halo. This strategy benefits from
the higher bandwidth of the shared memories, as it happens for the CPU
cache. Double buffering is required for data dependency; two arrays in the
global memory are allocated, one for reading and one for writing the re-
sults. Contrary to what happens for the CPU kernels, blocks are executed
in parallel, reducing the time of the execution.

The time step evolution is performed using half number of threads as



34 CHAPTER 4. IMPLEMENTATION

there are sites in the shared memory. In particular, each thread executes
a single coupling operation. Data is partitioned so that each thread pro-
cess couples of neighbours sites. This is done by arranging the threads in
a checkerboard pattern; each thread allocates in its local memory the ele-
ment corresponding to its position in the checkerboard, keeping it during
all the single time step evolution execution. Then, it updates the value of
this element and the one in its neighbour in the shared memory, which is
determined by the computational step that is currently executed. The single
coupling operations are executed in parallel by the threads, but the compu-
tational steps are processed in a serialized manner, due to data dependency.
Hence, after each computational step there is a synchronization barrier.

4.4 Hybrid Kernel

During the execution of the GPU kernel, the host’s CPU is idle while waiting
for the GPU to complete the calculations. This CPU time could be used
to perform part of the evolution of the state. Furthermore, GPU have less
memory than CPU, limiting the size of the quantum system for which the
evolution is computed. A hybrid kernel that uses both CPU and GPU
address these two issues.

The algorithm calculates the maximum amount of the array sites that
can be computed on the GPU. Then an internal area of the array site, with
the appropriate size, is sent to the GPU to be calculated. Since CPU and
GPU are in charge of evolving different area of the array sites, GPU requires
a halo surrounding the internal area while the CPU needs the halo that
correspond to the sites at the edge of the internal area. A single time step
evolution is performed, using the CPU and GPU kernels described above
for the corresponding areas. After that, the internal halos must be updated
by performing a communication between CPU and GPU. The GPU receives
the halo from the corresponding part of the mesh evolved by the CPU – for
the CPU is the other way around.

The kernel also uses a directive-driven parallelism to utilize the power
of a multicore system, relying on OpenMP [4]. In the CUDA programming
model, each GPU is associated to a single host, which is a single CPU core,
hence, in a system with a multicore CPU and a single GPU, only one single
CPU core would be used. For this purpose, the CPU kernel is slightly
adjusted to use OpenMP, so that the blocks which divide the CPU mesh are
processed in parallel using more than one CPU core.
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4.5 Distributing the Workload Across a Cluster

The code is designed to run in a distributed multi-node system. The whole
mesh is partitioned in blocks called tiles. Each node processes a tile plus
its halo. After a single time step evolution the halos between the tiles
have to be sent across the nodes. The communication is implemented using
MPI [30]. Using a two-dimensional grid of nodes, a tile contains elements of
halos belonging to a total of eight other tiles: left, right, top, and bottom
neighbours, and also the four diagonal neighbours. To minimize the number
of communication requests, a wave pattern is used in the communication:
left and right neighbours receive the halo first. This halo has the height
of the inner cells of the tile. Then the horizontal halos are sent to the top
and bottom neighbours – the width is the full tile width. In this way the
appropriate corner elements are propagated to the diagonal neighbours.

The communication is performed asynchronously: each halo is sent at the
same time. However, there is a communication barrier between the left-right
and top-bottom halo exchange due to data dependency. To achieve better
performance, the approach is to overlap communication and evolution as
much as possible, evolving the halo first and starting the communication
simultaneously to the evolution of the rest of the tile.

The CPU kernels evolve blocks of the tile at its edge, corresponding to
the halos. Then the asynchronous left-right halo exchange and the evolution
of the inner part of the tile initiates. Once finished the evolution of the
inner part, there is the left-right halo exchange barrier. Consequently, the
asynchronous top-bottom halo exchange starts and the top-bottom barrier
ensure that it finish before swapping the buffers and continuing with the next
time step. In this case, the halo exchange cannot be efficiently overlapped
with computation, since, after the time step evolution is finished, there is a
communication overhead while the vertical halos are exchanged.

As regard the GPU kernel, the communication is performed from the host
memory. This increases the complexity, as asynchronous memory copies
from the device and to the device have to be performed. To work with
such transfer efficiently, the kernel implements streams. A GPU stream is
basically a queue of tasks for the GPU to perform: kernel execution, and
memory copies from and to the device. Tasks in two different streams can
overlap with each other, while tasks on the same stream are performed
sequentially. When the host queues a task into a GPU stream, it does not
have to wait for the task to be completed by the GPU before continuing
with the rest of the algorithm. Two streams are implemented in the kernel:
queueing the halo computation and the memory copies between host and
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device in stream one, and the computation of the inner part of the tile in
stream two.

The host starts queueing the evolution of the blocks at the edge of the
tile, corresponding with the halo, and the halo copy from device to host in
stream one. While the GPU is running the first stream, the host queues
the evolution of the rest of the blocks in the second stream. Once the GPU
finishes the tasks in the first stream the halo can be exchanged between the
nodes, using the wave pattern described above. With this approach, the
communication of all halos is efficiently overlapped with the blocks calcu-
lation – the task in the second stream. When the halo communication is
completed, the host queues the copy of the halos received to the device mem-
ory in the first stream. Once the GPU finishes the tasks in each streams,
the buffers in the global memories are swapped and the kernel starts over.

The hybrid kernel uses only one stream to queue the tasks for the GPU.
The host launch the GPU kernel for the corresponding sites on the internal
area of the tile. After that the host – CPU – proceeds to calculate the
halo and start the halo exchange. Once the halo exchange is initiated, the
sites not in the halo and not on the GPU are evolved by the CPU. Finally,
finished the halo exchange, it exchange the internal halo between the part
of the tile associated with the GPU and the rest of the matrix.

4.6 Benchmarks

To study the scaling pattern of the execution time as the number of nodes
vary, we ran benchmarks on the Minotauro cluster at the Barcelona Su-
percomputing Center. The Minotauro cluster is comprised of 126 compute
nodes, where each node has two Intel Xeon E5649 six-core processors with
12 MB of cache memory, clocked at 2.53 GHz, running a Linux operating
system with 24 GB of RAM memory. Every node is equipped with two
NVIDIA M2090 graphic cards, each one with 512 CUDA cores and 6 GB of
GDDR5 memory. The MPI communication across the nodes is through an
Infiniband Network.

The benchmarks ran ten iterations on increasing cluster sizes, using an
initial state in a square domain of different lenghts L: 4096, 8192, 16384.
The dimensions were chosen so as to fill the device memory on cluster sizes 1,
4 and 16 nodes. GPUs have a better performance when the load is higher,
whereas CPUs are less sensitive to the load. For this reason, choosing a
matrix dimension that fit the GPUs, we get a fair comparison with respect
to the CPU kernels due to their insensitivity to the load. Furthermore, this
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Nodes Matrix size: 4096 Matrix size: 8192
CPU SSE CUDA Hybrid CPU SSE CUDA Hybrid

1 5.30 5.01 0.65 0.84
2 2.68 2.55 0.38 0.53 1.14 1.56
4 1.37 1.29 0.29 0.34 5.37 5.10 0.66 0.85
8 0.68 0.65 0.20 0.27 2.69 2.57 0.46 0.59
16 0.36 0.34 0.17 0.21 1.35 1.29 0.32 0.40
32 0.20 0.18 0.18 0.22 0.72 0.68 0.27 0.34

Nodes Matrix size: 16384
CPU SSE CUDA Hybrid

4 2.27 3.00
8 1.07 1.24 1.68
16 0.53 5.04 0.74 0.90
32 0.28 2.66 0.49 0.68

Table 4.1: Execution time.

configuration shows how the overall performance decays as the cluster size
increases. The times of execution are shown in Table 4.1 and they are also
plotted in Figs. 4.11a-4.11c. The results show only the time taken in the
main loop of the evolution, as each kernel takes different amounts of time
for initialization.

The CPU kernels show an almost linear scaling: as the cluster size is dou-
bled, the execution time is halved. The communication overhead increases
with the cluster size, so eventually the advantage of SSE optimization van-
ishes with large clusters.

The GPU kernel shows a different scaling pattern. When the device
memory is loaded to at least 50%, the scaling is close to linear, as in the
case of CPU kernels. For lower load, the scaling is less efficient, until the
execution time of individual GPUs remains almost constant so the curve
flattens out. There is little benefit to gain by this kernel in large clusters
with a low resolution of the mesh.

The hybrid kernel shows a pattern similar to the GPU. In this config-
uration, where the matrix size fit the GPU memory, the execution time is
slightly longer. The real advantage is in cases where the device memory is
insufficient. In such cases, the speedup can be close to a factor of 2 compared
to the CPU kernels.
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Figure 4.11: Execution time for linear system size: (a) 4096; (b) 8192; (c)
16384.



Chapter 5

Dark Solitons in
Bose–Einstein Condensates

As a case study of the code developed, we carried out simulations of the
dynamics of a Bose–Einstein condensate (BEC). In particular we reproduced
the results of an experimental study performed at the National Institute of
Standards and Technology (NIST), in which they investigated the realization
and evolution of solitons in a BEC of sodium atoms [7]. In this chapter we
briefly introduce the theoretical background of BEC and dark solitons, and
proceed with the illustration of the simulation results, comparing them to
the results by NIST.

5.1 Theoretical Background

The dynamics of a weakly interacting Bose–Einstein condensate may be
described by a nonlinear Schrödinger equation, namely, the Gross–Pitaevskii
equation [24, 5, 19]. Suppose we have a N-particle system, comprised of
bosons interacting with each other. Using the Hartree approximation, we
write the many-body wave function as

ψ(r1, r2, . . . , rN ) =

N∏
i=1

φ(ri), (5.1)

where the single-particle wave function φ(ri) is normalized in the usual way,∫
dr |φ(r)|2 = 1. (5.2)

39
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For low energy particles, the interaction can be described by an effective po-
tential that in coordinate space corresponds to a contact interaction U0δ(r−
r′), where U0 = 4π~2as/m and as is the scattering length of the interac-
tion [24]. Considering an external potential V (ri), the Hamiltonian may be
written as

H =

N∑
i=1

[
p2
i

2m
+ V (ri)

]
+ U0

∑
i<j

δ(ri − rj). (5.3)

Then, the energy of the state is given by

E = N

∫
dr

[
~2

2m
|∇φ(r)|2 + V (r)|φ(r)|2 +

(N − 1)

2
U0|φ(r)|4

]
. (5.4)

It is convenient to introduce the concept of the wave function of the con-
densed state,

ψ(r) = N1/2φ(r), (5.5)

so that the normalization condition becomes∫
dr |ψ(r)|2 = N. (5.6)

Moreover, we suppose that N � 1 so that the energy can be rewritten as,

E =

∫
dr ε =

∫
dr

[
~2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

1

2
U0|ψ(r)|4

]
. (5.7)

The equation of motion may be derived from the principle of least action

δ

∫ t2

t1
dt L = 0 (5.8)

where the Lagrangian L is given by

L =

∫
dr

[
ı~
2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
− ε
]
. (5.9)

Requiring that the variation of the independent variables ψ(r, t) and ψ∗(r, t)
vanishes at t = t1 and t = t2, and on any spatial boundaries, from Eq. (5.8)
one finds the Gross–Pitaevskii equation:

ı~
∂ψ(r, t)

∂t
=

[
− ~2

2m
∇2 + V (r) + U0|ψ(r, t)|2

]
ψ(r, t). (5.10)
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Formally, Eq. (5.10) is not implemented in our code since the Hamil-
tonian is not simply comprised of a kinetic term and an external poten-
tial term. However, if we denote Ṽ (r, ψ(r, t)) = V (r) + U0|ψ(r, t)|2, the
single time step evolution still has the form (4.2) and the exponential op-

erator exp
(
− ı

~ Ṽ (r, ψ(r, t))
)

is still diagonal in the coordinate representa-

tion. Thus, we only have to define the potential such that, in the com-
putational step 5 (Fig. 4.6), each site (i, j) is also multiplied by the factor
exp(− ı

~U0|ψ(i, j)|2) where ψ(i, j) is the wave function calculated in the pre-
vious computational step.

The ground-state of the system may be found numerically using the
imaginary time evolution. However, for sufficiently large number of atoms
an accurate expression is obtained using the Thomas–Fermi approximation.
Suppose that the contribution of the kinetic energy term is negligible with
respect to the one of the interaction terms. Then the ground-state is approx-
imated by the solution of the time independent Gross–Pitaevskii equation
deprived of the kinetic term[

V (r) + U0|ψ(r)|2
]
ψ(r) = µTFψ(r), (5.11)

where µTF is the chemical potential. This gives the solution

n(r) = |ψ(r)|2 =
µTF − V (r)

U0
, (5.12)

for r such that V (r) < µTF . For a BEC trapped in a harmonic potential of
the form

V (x, y) =
m

2
(ω2

1x
2 + ω2

2y
2) (5.13)

the extension of the condensate wave function in the two directions is given
by the two semi-axes

Ri =

√
2µTF
mω2

i

, i = 1, 2, (5.14)

and the particles density has the form of an inverted parabola. Given the
normalization condition in Eq. (5.6), the chemical potential is determined
as a function of U0 and the system dimension (see Appendix A).

The Thomas–Fermi approximation gives an accurate description of the
bulk properties of the system, but it fails near the edge of the cloud. Pro-
vided that V (r) varies slowly, a better solution for the ground state may be
found solving the entire time independent Gross–Pitaevskii equation taking
the linear term of the external potential at the edge of the cloud [24].
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The Gross–Pitaevskii equation has exact analytical solutions in the non-
linear regime. These solutions have the form of solitary waves, called soli-
tons, which are localized disturbances that propagate without changing of
form [26, 14, 8, 45]. This phenomenon is due to the balance between dis-
persion and nonlinearity, which in Eq. (5.10) correspond to the kinetic term
and the nonlinear interaction, respectively. Solitons appear in different con-
texts of science and engineering, such as the dynamics of waves in shallow
water [2], transport along DNA and other macromolecules [25], and fiber
optic communications [11]. Depending on the details of the governing non-
linear equation, they can be either bright or dark. The former are peaks in
the amplitude, while the latter are notches with a characteristic phase step
across. In the present work we focus on dark solitons.

For BEC with repulsive interaction between the atoms, solitons present
a depression in the density profile – a dark soliton. In a homogeneous BEC,
the resulting density profile along the x axis is

n(x, t) = nmin + (n0 − nmin) tanh2

x− νst√
2ξ

√
1−

(
νs
ν0

)2
 , (5.15)

where n0 is the unperturbed density, nmin is the density at the center of the
soliton, νs and ν0 = (nU0

m )
1
2 are the speed of the soliton and the speed of

sound respectively, and

ξ =
~

(2mn0U0)1/2
(5.16)

being the healing length [24]. The speed and the depth of the soliton can
be related with each other [26, 14]. Indeed, the soliton speed νs can be
expressed as

νs = ν0

√
nmin
n

. (5.17)

Note that the soliton speed is less than the speed of sound; feature that
distinguish it from sound waves and excitations. The soliton speed can also
be expressed by means of the change in phase of the wave function across
it:

νs = ν0 cos

(
δ

2

)
. (5.18)

Remarkably, the motion of a soliton in a BEC in an external potential
is the same as that of a particle of mass 2m in the same potential [24].
Consequently, for a potential having a minimum, the period of the motion
of a soliton is

√
2 times that of a particle of mass m in the potential.
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5.2 Soliton Simulation

In the experiments carried out in Ref. [7], the generation and propagation
of solitons were studied in BEC of sodium atoms, confined in a magnetic
trap. The magnetic trap generated a harmonic external potential with fre-
quencies ωx =

√
2ωy = 2ωz = 2π · 28 Hz, while the system were composed

by 1.7(±0.3) · 106 atoms in the 3S1/2, F = 1, mF = −1 state. In this
configuration the scattering length is 2.75 nm [7].

In this experiment, the system is three-dimensional, while our imple-
mentation is designed for a two-dimensional system. This would not be a
problem if the dynamics of the 3D system was described by three decoupled
equations, so that we could independently solve the two corresponding to
the variables that span a 2D plane and ignore the other one. The Gross–
Pitaevskii equation (5.10) cannot be decoupled due to the non-linear term,
so this does not apply to our case. However, our purpose is to study the
evolution of a soliton which propagates in one dimension, so we can ignore
the dynamic along one of the two dimensions perpendicular to the axis of
propagation. An approach to reduce to a two dimensional problem is to
make a phenomenological hypothesis about the form of the solution. In the
literature [14, 32, 27, 28, 22], one can find several methods to reduce a 3D
problem to a 2D one; we adopt the method described in [21]. The condition
is that the solution of the reduced system has the same spatial extent of the
original one. Since the 3D system is well described by the Thomas–Fermi
approximation1, the extension of the ground state is known (Eq. (5.14)).

Then, the approach is to rewrite the coupling constant U
(2)
0 for the 2D sys-

tem, such that the chemical potential for the 2D system is the same as the
one of the 3D system. This will ensure that the spatial extension of the 2D
system will be the same as the 3D system (see Appendix A). For our simu-
lation we reduced the dimension keeping the x and y axes of the 3D system.
The resulting Gross–Pitaevskii equation for the 2D system becomes:

ı~
∂ψ(r, t)

∂t
=

[
2∑
i=1

(
− ~2

2m

∂2

∂x2
i

+
m

2
ω2
i x

2
i

)
+ U

(2)
0 |ψ(r, t)|2

]
ψ(r, t), (5.19)

where

U
(2)
0 =

π

2

µTF
N

(
R̄TF

)2
, (5.20)

1The experimental configuration satisfies the conditions to adopt the Thomas–Fermi
approximation, namely the BEC is close to the ground state with a large number of atoms,
so that kinetic energy term is by far lower than the interaction energy term
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with R̄TF =
√

2µTF /mω̄2 being the mean Thomas–Fermi radius, ω̄ =√
ωxωy the geometric mean of the frequencies, and µTF is the chemical

potential in the Thomas–Fermi approximation for the 3D system given by

µTF =
1

2

(
15N~2ωxωyωz

√
mas

)2/5
(5.21)

Ground state. According to the experiment, the BEC is initially described
by the ground state of Eq. (5.10). They found it to have a spatial extension
described by the Thomas–Fermi diameters of 2RTF,x = 45 µm, 2RTF,y =
64 µm and 2RTF,z = 90 µm, with a uniform phase [5]. In the simulation, we
approximated the ground state of Eq. (5.19) using imaginary time evolution.
We proceeded by taking a Gaussian initial state, evolving it in imaginary
time for a fixed number of iterations and then calculating the energy of
the resulting state. Repeating this procedure using as initial state the one
resulting from the last iteration, the energy decreases converging to the
ground state energy. If we call Ei the energy of the state resulting from
the iteration i, we stopped the procedure once the i−th state satisfied the
convergence condition ∣∣∣∣Ei − Ei−1

Ei−1

∣∣∣∣ < 10−6. (5.22)

This ensure that the i−th state is an accurate approximation of the ground
state. In Fig. 5.1a and Fig. 5.1b the profiles of the particle density along the
two axes are shown. The particles density of the calculated ground state is
in good agreement with the particles density of the Thomas–Fermi approx-
imation and with the experimental results.

Soliton propagation. Solitons can be generated in BEC by phase im-
printing. The phase of the ground state is modified by exposing the cloud
to pulsed, off-resonant laser light with an intensity pattern I(x, y). The
wave function acquires a corresponding phase φ(x, y) proportional to I(x, y)
and the time of exposure T . According to the experiment, they chose T
to be short enough so that the atomic motion was negligible (Raman–Nath
regime). In this condition, the effect of the pulse can be expressed as a
sudden phase imprint, ψ → ψ exp(ıφ(x, y)) [7]. If the center of the BEC
correspond to the origin of the axes, the phase imprint performed in [7] can
be approximated as

φ(x, y) =
φ0

2

[
1 + tanh

(x
l

)]
, (5.23)
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(a)

(b)

Figure 5.1: Calculated ground-state density along the x axis (a) and the
y axis (b). The simulation is in good agreement with the Thomas–Fermi
approximation. The spatial extension of the calculated ground state corre-
sponds to the experimental results, where RTF,x = 45 µm and 2RTF,y =
64 µm.

where φ0 = 1.5π and l = 2 µm.
According to the experimental configuration, we set our simulation tak-

ing as initial state the transformed ground state ψ̃gs, namely

ψ̃gs = ψgs exp(ıφ(x, y)) (5.24)

where ψgs is the ground state calculated with imaginary time evolution.
The phase imprinting correspond to impressing a momentum to a static

ground state, in the region of space where the phase varies. This leads to a
collective motion of the system, which corresponds to an oscillation of the



46 CHAPTER 5. DARK SOLITONS IN BEC

Figure 5.2: Calculated expectation values 〈X〉 (t) and 〈Y 〉 (t). The calcu-
lated oscillation frequency along the x axis, ωx = 2π ·27.9 Hz, is in agrement
with the external potential frequency ωx = 2π ·28 Hz. There is no oscillation
along the y axis since no impulse is imparted in this direction.

BEC along the x axis. This can be seen in the simulation. Fig. 5.2 illustrates
how the expectation value of the position along the x axis varies in time.
As expected from the theory, the oscillation along the x axis has the same
frequency as the harmonic potential ωx, while the position along the y axis
remains stable. We found a frequency of ωx = 2π · 27.9 Hz, in agreement
with the experimental value.

To observe soliton propagation they exploited absorption imaging, mea-
suring the BEC density distribution. Immediately after the phase imprint,
they observed a positive density disturbance travelling in the +x direction,
and a dark notch left behind it, which travels in the opposite direction –
this is the soliton (Fig. 5.5a to 5.5e). The positive disturbance travels with
a speed higher than the soliton.

They determined the soliton speed along the x axis, measuring the dis-
tance after 5 ms of propagation between the notch and the position of the
imprinted phase step. At that time the soliton had not travelled far from the
BEC center, so this is a good estimation of the soliton speed at the center
of the condensate. They obtained a mean soliton speed of 1.8 ± 0.4 mm/s.
This value is lower than the mean speed of sound ν0 = 2.8 ± 0.1 mm/s,
which ensures that the dark notch is a soliton and not a sound wave [7]. In
our simulation, we tracked the position of the soliton along the x axis for
14 ms (Fig. 5.3). We also calculated the mean speed of the notch after it
had travelled for 5 ms, obtaining a mean speed of 1.7 mm/s, in agreement



5.2. SOLITON SIMULATION 47

with the experimental value.

Figure 5.3: Calculated soliton position along the x axis over the time.

Figure 5.4: Calculated ground state and particles density at t = 5 ms along
the x axis. The deep soliton is located at x = −8 µm, in agreement with
the experimental value [7]. Other structures are visible from this figure: a
shallow dark soliton at x = −14 µm moving to the left; other excitations
near x = 20 µm moving fast to the right.

The soliton speed is not the same throughout the BEC, as it depends on
the particles density (Eq. (5.17)). It is zero at the edge of the BEC, while it
reaches its maximum at the center of the BEC. Indeed, rewriting Eq. (5.17)
as follows

νs = ν0

√
1− n− nmin

n
, (5.25)

we see that νs goes to zero at the edge where both n and n − nmin go
to zero, whereas the fraction (n − nmin)/n reaches its lowest value at the
center and νs is maximum. This implies that the soliton assumes a curved
shape, whose curvature increases as the soliton travels far from the center.
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(a) 1 ms (b) 2 ms (c) 5 ms (d) 7 ms (e) 10 ms

(f) 1 ms (g) 2 ms (h) 5 ms (i) 7 ms (j) 10 ms

Figure 5.5: Experimental images of the integrated BEC density ((a) to
(e)) [7] and calculated density, from our simulation, ((f) to (j)) for various
times after the phase imprinting. A positive density disturbance is created
and moves rapidly in the +x direction. A dark soliton is left behind moving
in the opposite direction at significantly less than the speed of sound.

(a) 14 ms (b) 17 ms (c) 18 ms (d) 20 ms

Figure 5.6: Calculated particles density for various times after the soliton
stops. These images show how the soliton breaks up.

This feature of the soliton is observed both in the experiment and in our
simulation (Fig. 5.5).

In Fig. 5.4, the particles density profile along the x axis is shown after
5 ms from the phase imprinting. The deep soliton is located at x = −8 µm,
in agreement with the experimental value [7]. Other structures are visible
from this figure: a shallow dark soliton at x = −14 µm moving to the left;
other excitations near x = 20 µm moving fast to the right. These features
are not well resolved in the experimental images, but they are in agreement
with the simulations in [7].

Since the external potential has a minimum, the soliton is expected to
oscillate with a frequency of ωs = ωx/

√
2. This behaviour was also found

by previous simulations [23, 3]. In our case, the soliton should stop after
one-quarter of the oscillation time: Ts/4 = π√

2ωx
= 12.6 ms, which is in
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good agreement with our simulation (Fig. 5.3).
We were able to evaluate a quarter of period of the soliton and not the

whole period because after the notch stops it breaks up, becoming rather
perturbed (Fig. 5.6). This behaviour is found also in the simulations carried
out in [7].

In conclusion, though our simulation is based on the solution of the
two-dimensional Gross–Pitaevskii equation, we were able to reproduce the
results of both their experiment and simulation, which was based on the
solution of the 3D Gross–Pitaevskii equation [7].
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Chapter 6

Conclusion

In this Thesis we developed a code for solving the time-dependent Schrödinger
equation of a wave function in a two-dimensional space. The code imple-
ments a solver for quantum systems described by Hamiltonians with a static
external potential and a self-interacting term. Furthermore, the code in-
cludes a solver for the imaginary time evolution, to approximate the ground
state of the system.

This result has been obtained by extending a recent work of Wittek and
Cucchietti [43], in which they developed a solver for a free quantum particle
that scales to massively parallel computing clusters. The code implements
the algorithm on four different kernels: two cache optimized kernels for
central processing unit (CPU) – one is further optimized to use the SSE
instructions –, a kernel for general-purpose graphics processing unit (GPU)
and a hybrid kernel that use both CPUs and GPUs. The algorithm is based
on the second order of the Trotter–Suzuki approximation, which provides an
accurate approximation of the evolution operator. Moreover, the approxi-
mation leads to an algorithm easy to parallelise that results in an efficient
distribution of the workload across the nodes of a cluster. Indeed, the CPU
kernels show a linear scaling of the throughput, so that doubling the number
of cores, involved in the calculation, results in a halved time of execution.
This can lead to very fast simulations on big clusters. On the other hand,
GPU and hybrid kernels obtain better performances on a smaller scaled
system, which makes them preferable on a single workstations.

We proved the accuracy of our code reproducing the results obtained by
an experiment carried out at the National Institute of Standard and Tech-
nology (NIST) [7]. We approximated the ground state of a Bose–Einstein
condensate (BEC) of sodium atoms, confined in a magnetic trap, and sim-
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ulated the evolution of the state that underwent on a phase imprinting.
We were able to see the generation of a soliton and other excitations in
agreement with the experimental observations.

We achieved this by mean of the approximation described in Ref. [21].
This approximation let us reduce the three dimensional Gross–Pitaevskii
equation, which provides a model of the BEC, to a two dimensional model
solvable by our code.

The software comes with the General Public License and it can be redis-
tributed under the terms of this license. We developed an application pro-
gramming interface (API) that exposes the function that performs the evo-
lution. Furthermore, the CPU and SSE kernels are accessible from Python
and MATLAB1.

A clear direction for future extensions of the code is the implementation
of the nonlinear Schrödinger equation to all the kernels – at the moment it is
only supported on the CPU kernel. These would be useful in many fields of
physics, for instance in ultracold atom physics, in which the Gross–Pitaevskii
equation plays a major role in describing the systems. In this case, the
phenomenology to be studied include vortexes, spin-orbit coupling [9] and
quantum thermalization. Other applications may regards the simulations of
cloak system and quantum holography.

The method used to rescale a three dimensional problem to a two di-
mensional one may not be always applicable. This motivates the extension
to three dimensions. The variety of possible decomposition strategies in this
case is large, and a flexible implementation would be very useful to test out
the performance of the different choices.

1For more information about how to get the code visit the web site
https://github.com/peterwittek/trotter-suzuki-mpi.



Appendix A

Reduction of Dimension:
Constant Spatial Extent of
the Solution

The understanding of a phenomenon, in science, goes through the solution
of a model. Often this task is difficult or even impossible to accomplish
without making some hypothesis that simplifies the problem. The approach
is to reduce the problem to solve simpler equations with fewer degrees of
freedom. A good method is to identify the symmetries of the problem, and
rewrite the equations in a new set of variables which makes them decoupled.
So that the dynamic can be solved for independent groups of variables or
even be ignored for some of them, reducing the problem to a lower number
of variables. For instance, the equations for the tri-dimensional dynamic of
the two bodies problem can be written as a system of three independent
equations, using the appropriate variables.

For many models this approach is not suitable, as in the case of the
Gross–Pitaevskii equation for a self-interacting BEC. Another procedure
consist of making a posteriori (phenomenological) hypotheses, that let us
deal with a simpler problem with fewer variables. In this work we reduce a
3D Gross–Pitaevskii equation to a 2D equation, requiring that the solution
of the 2D equation has the same spatial extent [21].

The general d-dimensional Gross–Pitaevskii equation, with an anisotropic
harmonic potential, is written as:

ı~
∂ψ(r, t)

∂t
=

[
− ~2

2m

d∑
i=1

∂2

∂x2
i

+
m

2

d∑
i=1

ω2
i x

2
i + U

(d)
0 |ψ(r, t)|2

]
ψ(r, t), (A.1)
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where the form of U
(d)
0 depends on the dimension of the problem; for d = 3

we have:

U
(3)
0 =

4π~2as
m

. (A.2)

In the Thomas–Fermi approximation, the wave function of a stationary
state satisfies the condition

|ψTF (r)|2 =
µTF − V (r)

U
(d)
0

if µTF > V (r), (A.3)

so, given the external potential, the spatial extent of the system is deter-
mined by the chemical potential µTF . From Eq. (A.3) we see that, in the
case of an anisotropic harmonic potential, the spatial extent of a reduced
system will be the same as the complete one if the chemical potential is the
same.

Furthermore, in the Thomas–Fermi approximation it is possible to ex-
press the coefficient of the self-interaction, U0, as a function of the chemical
potential, due to the normalization condition of the wave function, namely:
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(A.4)

where N is the number of particles, R̄TF =
√

2µTF /mω̄2 is the mean

Thomas–Fermi radius, ω̄ = d

√∏d
i=1 ωi is the geometric mean of the fre-

quencies and S
(d)
1 is the d-dimensional sphere. This gives us the formula

U
(d)
0 =

µTF
N

(
R̄TF

)d πd/2

Γ(d/2 + 2)
, (A.5)
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that for d = 2 gives

U
(2)
0 =

π

2

µTF
N

(
R̄TF

)2
. (A.6)

Combining Eq. (A.6) and the constant of the chemical potential we can
reduce the problem from three to two dimension. The resulting equation for
the reduced system will be

ı~
∂ψ(r, t)
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Abstract

We extended a parallel and distributed implementation of the Trotter–Suzuki
algorithm for simulating quantum systems to study a wider range of physi-
cal problems and to make the library easier to use. The new release allows
periodic boundary conditions, many-body simulations of non-interacting par-
ticles, arbitrary stationary potential functions, and imaginary time evolution
to approximate the ground state energy. The new release is more resilient to
the computational environment: a wider range of compiler chains and more
platforms are supported. To ease development, we provide a more extensive
command-line interface, an application programming interface, and wrappers
from high-level languages.
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Programming language: C++, CUDA, Python, MATLAB
Computer: x86-64
Operating system: Linux
RAM: 5 MByte–512 GBytes
Number of processors used: 1–64 in a single node, more in a cluster
Supplementary material:
Keywords: GPU Computing, MPI, Quantum Evolution, Trotter–Suzuki Algo-
rithm, Hybrid Kernel
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Classification: 4.12 Computational Methods: Other Numerical Methods
External routines/libraries: OpenMP, MPI, CUDA
Subprograms used:
Journal reference of previous version: Computer Physics Communications 184 (4),
1165–1171 (2013)
Does the new version supersede the previous version?: Yes. The original ver-
sion is not held in the CPC Program Library but can be obtained from https:

//github.com/peterwittek/trotter-suzuki-mpi.
Nature of problem:
The evolution of a general quantum system is described by the time-dependent
Schrödinger equation. The solution of this equation involves calculating a matrix
exponential, which is formally simple, but computer implementations must con-
sider several factors to achieve both high performance and high accuracy.
Solution method:
The Trotter–Suzuki approximation leads to an efficient algorithm for solving the
time-dependent Schrödinger equation [1, 2]. The implementation relies on high-
performance parallel kernels in a distributed environment to maximize the com-
putational power of this algorithm [3, 4].
Reasons for the new version:
The computational kernels were generalized to be able to address a much wider
range of physics problems. Furthermore, the code has been modularized to make
development easier, providing both a command-line and an application program-
ming interface. High-level wrappers from Python and MATLAB provide further
ease of use.
Summary of revisions:

1. The implementation was generalized to include a richer variety of physics
problems. The problem can have periodic boundary conditions. Many-body
simulations of non-interacting particles became possible extension. We can
define an arbitrary stationary potential function. The convenience function
expect_values helps to obtain expectation values.

2. Imaginary time evolution was implemented to find the ground state be-
fore starting the simulation. To avoid imposing the overhead of conditional
branching in the most computationally intense parts of the code, some of
the core kernel functions were duplicated to include the imaginary time evo-
lution.

3. Most of the functionality is exposed through a command-line interface (CLI)
for convenience. This allows specifying the files of the initial state and the
potential, the parameters of the Hamiltonian, and further parameters related
to the simulation, such as the computational kernel to use and the frequency
at which snapshots should be written to the disk.
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CPU SSE GPU Hybrid
old release 6512259 4835126 2566198 1758244
new release 7721790 6634026 3110414 2120868

ratio of slow down 19% 37% 21% 20%

Table 1: Comparison of execution time between the old and the new release. The unit is
microseconds.

4. The full functionality of the implementation is exposed as an application
programming interface (API) through the ‘trotter‘ function. This allows for
integrating the simulation in a larger MPI programme and it is also useful
for initializing the state and the potential without having files on the disk.
To demonstrate the use of the API, several examples are provided with the
code.

5. To further ease development, we redesigned the structure of the implementa-
tion, making it more modular. We also introduced a unit testing framework
to avoid regression.

6. We improved the testing of MPI dependencies by the configure script and
allow compilation without MPI. We also improved the treatment of Intel
and Visual C++ compilers.

7. We developed wrappers for Python and MATLAB for the CPU kernel for a
high-level interface with the library.

Restrictions:
The vectorized CPU kernel must have a tile width that is divisible by two. This
puts a constraint on the possible matrix sizes for this kernel. For instance, running
twelve MPI threads in a 4×3 configuration, the dimensions must be divisible by
six and eight.
Unusual features:
The library currently only supports the CPU kernel under Windows. The Python
and MATLAB wrappers support the CPU and SSE kernels.
Additional comments:
The high-performance kernels were independently extended to study spin dynam-
ics [5]. It remains for future work to include lattice models in this implementation.
Running time:
The generalization slightly altered the memory access patterns of the computa-
tional kernels, yielding performance penalty of approximately 20 % compared to
the previous version (Table 1). The scaling properties did not change and we see
a near-optimal scaling when increasing the number of nodes. The actual running
time depends on the system size and the duration to be simulated, and the com-
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putational resources. It can range from a few seconds to several days.
Acknowledgment: LC was sponsored by the Erasmus+ programme. Further calcu-
lations were sponsored by the Spanish Supercomputing Network (FI-2015-2-0023).
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