
DOUBLE MASTER’S DEGREE IN MATHEMATICS – MAPPA
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Introduction

The Dirac equation represents a milestone of modern physics, being able to
describe the behaviour of spin-1/2 particles in a relativistic setting. The aim of
this Master’s thesis is to study the dispersive properties of the Dirac operator, in order
to apply them to the context of general relativity.

With the term dispersion we mean, roughly speaking, the property of each
component of a wave packet to travel with different speeds. Due to this phe-
nomenon, certain physical quantities, such as energy, have the peculiar trait of
decaying locally while being conserved globally.

In Chapter 1, we present the construction of the Dirac equation, which is defined
to be invariant under Lorentz transformations. Hence, it is not difficult to imagine
that there is a deep connection between the differential operator and the Lorentz
group. Therefore, a brief overview of this group and its spin representations is
given to better understand the derivation of the Dirac equation. Denoting with
η := diag(1,−1,−1,−1) the Minkoswki metric, in flat spacetime (R1+3, η) , the
equation writes

iγµ∂µψ = mψ ,

where ψ is the unknown, m ≥ 0 is the mass of the particle and the Dirac matrices
γµ satisfy the anticommutation property {γµ, γν} = 2ηµν and are given by

γ0 :=

(
Id2 0

0 −Id2

)
, γj :=

(
0 σj

−σj 0

)
, for j = 1, 2, 3 ,

where σj denote the Pauli matrices

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0

0 −1

)
.

A crucial feature of the Dirac equation is that it squares to the Klein–Gordon
equation

∂2t ψ −∆xψ +m2ψ = 0 ,

iii
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for which many dispersive properties are known. Therefore, it is straightforward
to infer that the Dirac flow shows the same behaviour.

However, things become much more delicate when you generalize the equa-
tion to a spacetime manifold (M, g). Indeed, many tools of differential geometry
and a new notion of covariant spinorial derivative are needed to preserve the
Lorentz invariance in this latter case. In particular, the definition of a matrix
bundle ea µ, called vierbein, is a core step to locally link the curved and the flat
spacetimes as follows

gµν = ea µ ηab e
b
ν .

Thanks to the power of this formalism, the equation still maintains an extremely
elegant and compact form

iγµDµψ = mψ ,

where γµ := eµ aγ
a and Dµ is the new covariant derivative for Dirac spinors

Dµ := ∂µ +
1

8
ωabµ [γa, γb] ,

where [· , ·] denotes the commutator and ω is the spin connection, which writes in
terms of the affine connection Γ associated to g as ωabµ := e aν ∂µe

νb + e aν Γ
ν
µσe

σb .

In curved background, the squaring trick mentioned above is no longer as ef-
fective due to the spinorial structure and hence proving dispersive inequalities
is definitely a much harder task. However, it is quite reasonable to expect that
when the underlying metric is not that far from the flat one, also the solution be-
haves well. In Chapter 2, we confirm this intuition by presenting some Strichartz
estimates, proven in [CdSM23], when the manifold (M, g) is assumed to decouple
space and time and to be static and asymptotically flat. Mathematically speaking,
this means

g(t, x) =

(
1 0

0 −h(x)

)
,

where h is positive and with smooth entries satisfying for any multi-index |α| ≤ 3

and all x,

|∂α(hjk(x)− δjk)| ≤ Ch⟨x⟩−|α|−1−σ , for j, k = 1, 2, 3 ,

for some constants Ch ≪ 1 and σ ∈ (0, 1). The crucial fact that is heavily used
in the proof of the theorem is the squaring property of the Dirac equation, which
now yields a spinorial Klein–Gordon equation,

∂2t u−∆hu−
1

4
Rhu+m2u = 0 ,
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where Rh is the scalar curvature associated to h and ∆hu = DjDj = hjkDkDj is
a ”spinorial” Laplacian. The strategy consists in rewriting the modified Lapla-
cian in terms of the standard Laplace–Beltrami operator. In this way, one can
take advantage of the geometric assumptions to deduce proper decay and local
smoothing estimates and thus control effectively the perturbative spinorial terms.
Thanks to these arguments, one finally obtains the following Strichartz estimates,

massless case (m = 0) : ∥eitDu0∥Lq
t Ḣ

1−s
r (Mh)

≲ ∥u0∥Ḣ1(Mh)
,

massive case (m > 0) : ∥eitDmu0∥Lq
tH

1/2−s
r (Mh)

≲ ∥u0∥H1(Mh) ,

where Dm denotes the Dirac operator (with D = D0) and the exponents (p, s, q)

must satisfy specific admissibility conditions associated to the wave and the Klein–
Gordon flows.

These results become extremely relevant in the context of general relativity,
where the dynamics of the particles described by the Dirac equation is influenced
by gravity, whose law is governed by the Einstein equations. Coupling these two
aspects, one obtains the so-called Einstein–Dirac system.
To approach this delicate topic, Chapter 3 begins with its derivation as the Euler–
Lagrange equations of the following action

S[ψ, eµ a] =
∫
Rg e d

4x+

∫ [ i
2

(
ψγµDµψ −Dµψγ

µψ
)
−mψψ

]
e d4x ,

where e =
√
| det g|. Computing the variations with respect to the vierbein and

the mass field, one obtains the Einstein–Dirac system
Gµν + Tµν = 0 ,

iγµDµψ = mψ ,

where Gµν = Rµν − 1
2
gµνRg is the Einstein tensor and

Tµν =
i

4

(
ψγµDνψ −Dνψγµψ

)
+
i

4

(
ψγνDµψ −Dµψγνψ

)
is the energy-momentum tensor.
Moreover, by taking advantage of the first spherical harmonics, we present an
explicit form of the Einstein–Dirac system in the spherically symmetric case.
Eventually, we present some open questions related to this model that will be
addressed in future doctoral studies, such as the well-posedness issue and stability
of solutions.

Finally, Appendix A is devoted to the detailed study of a Dirac local smoothing
estimate [CdS19b], crucial in the second chapter. Indeed, the proof is quite instruc-
tive since it relies on techniques that are widely used in the analysis of dispersive
PDEs. In particular, we retrace the arguments to establish a virial identity and we
carefully bound its perturbative terms to deduce the result.





Chapter 1

The Dirac equation

Introducing the Dirac operator in a self-contained way and covering all the

underlying ideas needed for its construction is not an easy task. In this chapter,

we give the essential concepts of Lie groups and Lie algebras, in order to better

understand the Lorentz group and its representations. This set of transformations

plays indeed a key role in relativity theory and in the definition of the Dirac oper-

ator. Finally, we see how it generalizes to the curved case, through a new notion

of covariant derivative.

1.1 Lie groups, Lie algebras and representations

We start this first section by briefly presenting the main ingredients that are

useful to understand the inner structure of the Lorentz group. To this end, we

follow the approach given in [Woi17].

Definition 1.1 (Lie group). A Lie group is a smooth manifold G where the maps

multiplication and inverse

m : (g1, g2) ∈ G×G 7→ g1g2 ∈ G and i : g ∈ G 7→ g−1 ∈ G

are smooth with respect to the differentiable structure.

In our context, a Lie group is seen as a ”transformation group”, that is a group

of elements acting as geometric transformations. In particular, we especially treat

matrix Lie groups, which are hence contained in GL(n,C).

Definition 1.2 (Complex representation). Let G a matrix Lie group. Then a com-

plex representation of G is a continuous group homomorphism

π : g ∈ G→ π(g) ∈ GL(n,C) .

1



2 1.1. LIE GROUPS, LIE ALGEBRAS AND REPRESENTATIONS

The representation π is called irreducible if it has no subrepresentations, meaning

non-zero proper subspaces W ⊂ GL(n,C) such that (π|W ,W ) is a representation.

Furthermore, (π, V ) is said to be unitary if π(g) is unitary for any g ∈ G.

We prefer to work with complex representations, since we can rely on many

important results and properties, for instance Schur’s lemma and diagonalization

of operators.

The differential structure of a Lie group G gives rise to another important object,

the Lie algebra g, which is the tangent space at the identity of G. Since we re-

stricted to matrix Lie groups, we can define the Lie algebra in a more concrete

way.

Definition 1.3 (Lie algebra). Let G be a matrix Lie group. The Lie algebra g of G

is the set of all matrices X ∈ M(n,C) such that eitX ∈ G for all t ∈ R , where eA

denotes the matrix exponential.

Remark 1.1 (Lie bracket and matrix commutator). In the case of a matrix Lie group,

the Lie algebra is naturally endowed with a Lie bracket given by the matrix com-

mutator [A,B] := AB −BA ∈ g for A,B ∈ g .

Remark 1.2 (Physicists’ convention). Note that we adopted the physicists’ conven-

tion of multiplying by i before exponentiating to be consistent with the notations

in Parker and Toms’ book [PT09]. Below, we will refer to the elements of the Lie

algebra as infinitesimal group elements.

Another important fact is that representations of Lie groups also induce repre-

sentations at the level of their Lie algebras. This is motivated by the fact that the

homomorphism property causes the map π to be largely determined by its be-

haviour infinitesimally near the identity, and thus by the derivative π′. The next

theorem shows a way to define the derivative of such a map in terms of velocity

vectors of paths.

Theorem 1.1 (Lie algebra representation). Let π : G → GL(n,C) be a group repre-

sentation of a matrix Lie group G. Then

π′ : X ∈ g→ π′(X) :=
d

dt

∣∣∣
t=0
π(eitX) ∈ gl(n,C) =M(n,C) ,

is such that

1. π(eitX) = eitπ
′(X) , for all t ∈ R , X ∈ g ;

2. π′(gXg−1) = π(g)π′(X)(π(g))−1 , for all g ∈ G , X ∈ g ;
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3. π′([X, Y ]) = [π′(X), π′(Y )] , for all X, Y ∈ g .

A linear map satisfying the last property is called a Lie algebra representation.

Proof. See [Woi17, Section 5.4].

This theorem shows that every representation of a matrix Lie group gives rise

to a representation of the associated Lie algebra. For our purposes, a crucial as-

pect is understanding the reverse process. That is, what circumstances are suffi-

cient to guarantee that, given a Lie algebra representation, we have an associated

representation of the Lie group. An answer to this problem is given by the con-

nectedness and simple-connectedness properties.

Theorem 1.2 (One-to-one correspondence). Let G be a connected and simply con-

nected matrix Lie group. If π̃ is a representation of g , then there exists a representation π

of G such that π̃ = π′ .

Proof. See [Hal00, Corollary 5.35].

Remark 1.3. Below, we will notice that the Lorentz group is not simply connected.

Therefore, to recover this crucial property, we will consider its double covering

SL(2,C) and study the representations of sl(2,C) .

Remark 1.4 (Complexification). It is important to stress that Lie algebras are real

vector spaces (even if they can be made of complex matrices). This property

makes the Lie algebra representation π′ to be real, even if π is a complex Lie

group representation. To obtain a complex Lie algebra representation from a real

one, we define the complexified Lie algebra as

gC := g+ ig .

Consequently, we can extend π′ to a representation of gC by complex linearity

π̃′(X + iY ) := π′(X) + iπ′(Y ) .

We now give the definition of another algebraic structure, the Clifford algebra.

To simplify its statement, we will directly restrict to the case of our interest.

Definition 1.4 (Clifford algebra Cliff(1, 3,C)). The Clifford algebra Cliff(1, 3,C) ⊂
M(4,C) is the algebra generated by 1, γµ for µ = 0, 1, 2, 3 satisfying the relations

{γµ, γν} = 2ηµνId4 , (1.1)
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where {a, b} := ab+ ba denotes the anticommutator and η := diag(1,−1,−1,−1).
These elements can be chosen so that γ0 is hermitian while the other γj are anti-

hermitian.

Remark 1.5 (Sign convention). In this work, we follow the sign convention for the

Minkowski metric η given, for instance, in [BD64].

Remark 1.6. If (γµ)µ and (γ̃µ)µ both satisfy (1.1), then there exists U ∈ GL(4,C)
such that γ̃µ = U−1γµU . Hence, all families of generators are equivalent.

The choice we will opt for along this work is the following.

Definition 1.5 (Dirac matrices).

γ0 :=

(
Id2 0

0 −Id2

)
, γj :=

(
0 σj

−σj 0

)
, for j = 1, 2, 3 ,

where σj denote the Pauli matrices

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0

0 −1

)
.

We will refer to these matrices as Dirac or Gamma matrices.

In the next section, we will see how to express a representation of the Lorentz

algebra in terms of the generators of the Clifford algebra.

1.2 Lorentz group and spin representation

The fundamental principles of relativity theory are that space and time must

be treated together and that every law must be invariant under admissible changes

of frame of reference. Mathematically speaking, this leads to the definition of a

four dimensional spacetime and of the corresponding group of transformations

preserving this structure.

Definition 1.6 (Minkowski spacetime). The Minkowski spacetime is the vector space

R1+3 equipped with the inner product defined by

(x, y) := xT η y =
3∑

µ,ν=0

xµηµνyν

where (x0, x1, x2, x3) and (y0, y1, y2, y3) are the coordinates of respectively x, y ∈
R1+3. The metric η = diag(1,−1,−1,−1) is called the Minkowski metric.
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Definition 1.7 (Lorentz group and restricted Lorentz group). The Lorentz group

O(1, 3) is the group of linear transformations preserving the Minkowski space

inner product. In other words, a Lorentz transformation Λ is real square matrix

of size 1 + 3 satisfying the following condition

Λ ∈ O(1, 3) ⇐⇒ ΛTηΛ = η .

The restricted Lorentz group SO+(1, 3) is the connected component of the identity

and it is given by proper orthochronous Lorentz transformations (i.e. Lorentz

transformations which have determinant +1 and preserve the time orientation).

Furthermore, we note that SO+(1, 3) is not simply connected (cf. [Hal00, Section

2.5]).

SO+(1, 3) is a Lie group of dimension 6 and is generated by the rotations

around the three spatial axes and the boosts in the three spatial directions: for

instance, the rotation around the x-axis and the first boost are respectively

Rx(θ) :=


1 0 0 0

0 1 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

 , Bx(ϕ) :=


coshϕ sinhϕ 0 0

sinhϕ coshϕ 0 0

0 0 1 0

0 0 0 1

 .

For a basis of its Lie algebra, one can consider

l1 :=


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 , l2 :=


0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

 , l3 :=


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 ,

k1 :=


0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , k2 :=


0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , k3 :=


0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0

 ,

which satisfy the following commutation relations

[li, lj] = iϵijklk , [ki, kj] = −iϵijklk , [li, kj] = iϵijkkk ,

where ϵijk is the Levi-Civita symbol. These elements are respectively called in-

finitesimal rotations and boosts. Indeed, according to Theorem 1.1, exponentiating
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for instance by l1 and k1, one recovers respectively the rotation Rx(θ) and the

boost Bx(σ).

Even if these elements give us the geometric idea of a Lorentz transformation,

for our purposes we need to define other ways to represent SO+(1, 3). To this end,

we give a brief argument showing that SL(2,C) is the double cover of SO+(1, 3),

meaning that there exists a two-to-one mapping

Φ̃ : SL(2,C)→ SO+(1, 3) .

Idea (Construction of Φ̃). We start by identifying R1+3 with the space of 2 by 2

complex self-adjoint matrices by

(x0, x1, x2, x3)↔

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
and observe that

det

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
= x20 − x21 − x22 − x23 .

Hence, the Minkowski space can be seen as the space of complex self-adjoint

matrices with norm-squared the determinant of the matrix.

For Ω ∈ SL(2,C), let us define the linear transformation given by conjugation(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
7→ Ω

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
Ω∗ ,

where ·∗ denotes the conjugate transpose. One can see that it preserves the de-

terminant, i.e. the inner product, and maps self-adjoint matrices to self-adjoints

matrices, i.e. it maps R4 to R4. Furthermore, we notice that both Ω and −Ω in-

duce the same linear transformation above and it can be proven that all elements

of SO+(1, 3) arise from a conjugation map with an appropriate Ω. This gives in-

deed the double covering map Φ̃ : SL(2,C)→ SO+(1, 3) we were looking for.

Remark 1.7. In this digression, we avoided to present the deep motivation ex-

plaining this 2-fold property, which involves the theory of spin groups. Indeed,

we took advantage of the isomorphism SL(2,C) = Spin(1, 3) to simplify the ar-

gument. For more details, we refer to [Woi17, Chapter 40].

This doubling property emerges also at the level of the Lie algebras. To see it,

we complexify so+(1, 3), by defining the following combinations

Aj :=
1

2
(lj + ikj) , Bj :=

1

2
(lj − ikj) ,
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which now satisfy the relations

[Ai, Aj] = iϵijkAk , [Bi, Bj] = iϵijkBk , [Ai, Bj] = 0 ,

that are the laws defining the algebra so(3)C . This means that the Lie algebra

so+(1, 3)C splits into a sum of two copies of so(3)C. Finally, using the fact that

so(3)C = su(2)C = sl(2,C) (see [Woi17, Section 8.1.2]), we conclude that

so+(1, 3)C = sl(2,C)⊕ sl(2,C) = sl(2,C)C .

Doing this allows us to classify the finite dimensional irreducible representations

of so+(1, 3)C by studying sl(2,C)C representations.

Remark 1.8 (Projective representations). We will take advantage of this ”doubled”

version of the restricted Lorentz group to define below the so-called spin repre-

sentation. However, we stress that the 2-fold covering map Φ̃ gives rise to a sign

ambiguity, preventing us from defining a true representation of SO+(1, 3). Ex-

amples like this are known as ”projective representations”. Nevertheless, this

aspect will not affect our analysis and thus we shall overlook this technicality. In

this way, thanks to Theorem 1.2 and since SL(2,C) is connected and simply con-

nected, we can construct its group representations by looking at the Lie algebra

representations of sl(2,C)C.

Theorem 1.3 (Classification of sl(2,C)C representations).

The finite dimensional irreducible representations of sl(2,C)C are labeled by (s1, s2) for

sj = 0, 1
2
, 1, ... . These representations are given by the tensor product representations

(πs1 ⊗ πs2 , V s1 ⊗ V s2) ,

where (πs, V s) is the sl(2,C) irreducible representation of dimension 2s+1 and (πs, V
s)

its complex conjugate. Such representations have dimension (2s1 + 1)(2s2 + 1) .

Proof. See [Woi17, Section 41.1].

The representations of particular interests are the two half-spinor represen-

tations (1
2
, 0) and (0, 1

2
), which give rise to respectively to left-handed and right-

handed Weyl spinors. Since Dirac fermions are supposed to satisfy a chiral sym-

metry, we also define the bi-spinor (or Dirac) representation (1
2
, 0) ⊕ (0, 1

2
), that

is a four-dimensional and reducible complex representation. This choice allows
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us to describe charged, massive, 1
2
-spin particles using Dirac spinors, that are ex-

pressed in terms of chiral eigenstates as

ψ =

(
ψL

ψR

)
,

where ψL and ψR are two-components wavefunctions, of left and right chirality

respectively.

Given a family of generators Σab providing a matrix representation of the Lie

algebra so+(1, 3), we can represent a Lorentz transformation Λ as

π(Λ) = exp (iεabΣab) , (1.2)

where εab are the parameters characterizing the Lorentz transformation. In this

way, we can write an infinitesimal Lorentz transformation as

Λa b = δa b + εa b(x) , π(1 + ε) = 1 + iεabΣab . (1.3)

Note that, from the characterization of a Lorentz transformation Λa cηabΛ
b
d = ηcd ,

one finds that the infinitesimal parameters satisfy εab = −εba . Therefore, we can

assume that the generators satisfy Σab = −Σba .

Furthermore, we can deduce the commutation rules that any matrices that are to

represent the Lorentz algebra must obey.

Lemma 1.4 (Commutation rules of the Lorentz algebra so+(1, 3)).

Let Σab = −Σba be the generators of a matrix representation of the Lie algebra so+(1, 3) .

Then, they satisfy

[Σab,Σcd] =
i

2

(
ηacΣbd − ηadΣbc − ηbcΣad + ηbdΣac

)
. (1.4)

Proof. Since π is a representation, given Λ and Λ′ two Lorentz transformations,

we have that

π(Λ)π(Λ′)π(Λ−1) = π(ΛΛ′Λ−1) .

Linearizing first in Λ′ and π(Λ′), using (1.3), we obtain

π(Λ)(1 + iεabΣab)π(Λ
−1) = π(Λ(1 + ε)Λ−1) ,

and by linearity of π,

π(Λ)Σabπ(Λ
−1) εab = εab(Λc a(Λ

−1)b
d)Σcd .
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From the antisymmetry of εab, it follows

π(Λ)Σabπ(Λ
−1) =

1

2

(
Λc a(Λ

−1)b
d − Λc b(Λ

−1)a
d
)
Σcd .

Finally, linearizing in Λ and π(Λ), using (1.3), the last identity rewrites

iεcdΣcdΣab − iΣabε
cdΣcd =

1

2

(
εc aδb

d − δc aεb d − εc bδa d + δc bεa
d
)
Σcd

−iεcd[Σab,Σcd] =
1

2

(
ηadε

cdΣcb − ηbcεcdΣad − ηbdϵcdΣca + ηacϵ
cdΣbd

)
,

from which we obtain, using Σab = −Σba ,

[Σab,Σcd] =
i

2

(
ηacΣbd − ηadΣbc − ηbcΣad + ηbdΣac

)
.

The Dirac representation is related, as the name suggests, to the Dirac matrices

of Definition 1.5, that generate the Clifford algebra.

Definition 1.8 (Dirac representation). The Dirac representation is given by the ele-

ments

Σab := − i
8
[γa, γb] , (1.5)

which generate the Lorentz algebra so+(1, 3) and indeed satisfy the commutation

relations (1.4). In particular, in this representation, the infinitesimal rotations and

boosts are respectively given by

Σjk = − i
8
[γj, γk] =

1

4
ϵjkl

(
σl 0

0 σl

)
, for j < k and j, k = 1, 2, 3,

Σ0j = − i
8
[γ0, γj] = − i

4

(
0 σj

σj 0

)
, for j = 1, 2, 3.

Remark 1.9 (Non-unitary representation). Note that this representation is not uni-

tary due to the presence of the boost generators Σ0j . For instance, if we compute

π(Bx(ϕ)) = eiϕΣ
01

=
∑
k

1

(2k)!

(ϕ
4

)2k
Id4 +

∑
k

1

(2k + 1)!

(ϕ
4

)2k+1
(

0 σ1

σ1 0

)

= cosh
ϕ

4
Id4 + sinh

ϕ

4

(
0 σ1

σ1 0

)
,

we see that it is clearly not unitary. More generally, this is a consequence of the

fact that connected simple non-compact Lie groups cannot have any nontrivial
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unitary finite-dimensional representations, see [RB86, Section 8.1.B]. The non-

compactness of the Lorentz group is indeed caused by the presence of boosts: in-

tuitively, unlike rotations, iterating a boost makes you go to infinity never bring-

ing back to the starting point and this is clearly preventing compactness.

Below we will require the solution of the Dirac equation to be invariant under

the action given by the Dirac representation of the Lorentz group.

1.3 The Dirac equation in flat spacetime

In this section, we briefly retrace the original approach that Paul Dirac fol-

lowed almost a century ago, in 1928 [Dir28], when he stated his famous equation.

For further details regarding the historical derivation of the Dirac equation, refer

to [BD64] or [Pes18].

Dirac’s goal was to describe the motion of spin fermions in R3 with the ad-

dition of relativistic corrections. Mathematically speaking, this translates in two

core properties:

• quantum mechanics evolution: we are looking for an equation that can be writ-

ten in the form of a Schrödinger equation i∂tu = Hu, where H is a Hamil-

tonian function to be determined. This condition comes from quantum for-

malism, whereby H can be interpreted as a self-adjoint differential operator

representing the ”physical observable” energy;

• relativistic covariance: if a solution satisfies an equation of the form Dψ = 0,

for some differential operator D, we expect that if we perform a Lorentz

transformation (i.e. basically, a rotation or a boost) the transformed solution

in the new frame satisfies the same equation. This condition comes from the

relativistic principle that laws of physics must be independent by the choice

of the frame of reference.

The transition from classical to quantum mechanics, at least at a formal level,

can be achieved by replacing the classical quantities with suitable differential op-

erators. In this way, the state of the system which is given by a pair (x(t), p(t))

of position and momentum, is replacecd by a wavefunction ψ(t) representing the

density of probability associated to the particle. In particular, the ”observables”

energy E and the momentum p of a particle are generalized as follows

E → iℏ∂t , p→ −iℏ∇x ,
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where ℏ is the Planck’s constant. With this substitution, the relativistic energy–

momentum relation

E =
√
c2p2 +m2c4 , (1.6)

where c is the speed of light and m the mass of the particle, gives the square-root

of the Klein–Gordon equation

iℏ ∂tψ(t, x) =
√
−c2ℏ2∆x +m2c4 ψ(t, x) , for (t, x) ∈ R1+3 ,

where ∆x = ∂2x1 + ∂2x2 + ∂2x3 is the standard Laplace operator. However, the asym-

metry of space and time derivatives was not compatible with a relativistic invari-

ant description in presence of external fields. Also, squaring the equation was not

appealing since, as said above, we are looking for a first order in time evolution.

Hence, Dirac restarted again from the energy-momentum relation and linearized

it before performing the formal transition to quantum mechanics. Thus, we have

E = c
3∑
j=1

αjpj + βmc2 = cα · p+ βmc2 , (1.7)

where α = (α1, α2, α3) and β are matrices determined by (1.6). Indeed, squaring

both (1.6) and (1.7), the following system must be satisfied

αjαk + αkαj = 2δikIdn , for j, k = 1, 2, 3 ,

αjβ + βαj = 0 , for j = 1, 2, 3 ,

β2 = Idn ,

where the size n of the matrices is not clear yet and δjk denotes the Kronecker

symbol. At this point, performing E → iℏ∂t , p → −iℏ∇x we obtain the Dirac

equation written in the form

iℏ∂tψ = Dmψ , Dm := −iℏcα · ∇+ βmc2 . (1.8)

To gather some information on these matrices and to discuss covariance, we

prefer to rewrite the Dirac equation in a four-dimensional notation. Therefore,

we multiply (1.8) by β and we define the matrices

γ0 := β , γj := βαj ,

to finally obtain

iγµ∂µψ = mψ , (1.9)
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where we set for convenience ℏ = c = 1. In this form, we notice that the new

(γµ)µ now satisfy a more elegant and compact anticommutation relation

{γµ, γν} = 2ηµνIdn ,

with γ0 hermitian and the other γj antihermitian. These anticommutation rela-

tions are exactly defining the Clifford algebra structure Cliff(1, 3,C). This tells us

γµ ∈M4(C), and thus the solution ψ ∈ C(R;L2(R3;C4)).

On the other hand, as noticed in Remark 1.6, the choice of the matrices γµ

is, mathematically speaking, arbitrary since any (γµ)µ and (γ̃µ)µ , both satisfying

(1.1), are equivalent up to an invertible transformationU . Furthermore, ifψ solves

iγµ∂µψ = mψ, then ψ̃ := U−1ψ solves iγ̃µ∂µψ̃ = mψ̃.

(However, we stress that, from a physical point of view, some choices may be

preferable to better highlight some behaviours and quantities of the observed

particle.)

Going back to the covariance requirement, we impose that our solution is in-

variant under Lorentz transformations, which means that if ψ solves (1.9), then

ψ′ := ψ ◦ Λ must solve i(γ′)µ∂µψ′ = mψ′. This is equivalent to require that the

Dirac matrices must transform under Lorentz transformations as

(γ′)µ = γν(Λ−1)µ ν .

Note that this condition is compatible with the anticommutation relations found

before, indeed

{(γ′)µ, (γ′)ν} = {γα, γβ}(Λ−1)µ α(Λ
−1)ν β = 2ηαβ(Λ−1)µ α(Λ

−1)ν β = 2ηµν .

Putting together the two aspects, in the Minkowski spacetime (R1+3, η) one

obtains a structure that assures that if ψ is a solution of the Dirac equation, then

ψ′ := U−1(Λ)ψ ◦Λ is again a solution of the equation with corresponding matrices

(γ′)µ := U−1(Λ)γνU(Λ)(Λ−1)µ ν . Indeed,

i(γ′)µ∂µψ
′(x) = i U−1(Λ)γνU(Λ)(Λ−1)µ ν ∂µ(U

−1(Λ)ψ(Λx))

= i U−1(Λ)γν(Λ−1)µ ν ∂σψ(Λx)Λ
σ
µ

= U−1(Λ)(iγν∂νψ(Λx)) = U−1(Λ)(mψ(Λx))

= mψ′(x) .

Note that the mapping Λ ∈ SO+(1, 3) 7→ U(Λ) ∈ GL(4,C) defines a group

representation (which is however not unitary, as already remarked). At this point,
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writing explicitly the Dirac equation, is a matter of choosing a family of matrices

(γµ)µ with the desired anticommutation relations and covariance laws. We recall

that the convention we fixed in Definition 1.5 is given by

γ0 :=

(
Id2 0

0 −Id2

)
, γj :=

(
0 σj

−σj 0

)
, for j = 1, 2, 3 ,

where σj denote the Pauli matrices

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0

0 −1

)
.

To conclude this section, we stress two important properties of the Dirac equa-

tion iγµ∂µψ = mψ, that were indeed the starting points for our derivation:

• if we multiply by γ0 the Dirac equation, we indeed obtain a Schrödinger-

type equation

i∂tψ = Dmψ , Dm := −iα · ∇+ βm , (1.10)

where αj := γ0γj , β := γ0 and Dm is the Dirac operator, that is now fully

determined by our choice of the Gamma matrices;

• by construction, when we square the Dirac equation, we recover the Klein–

Gordon equation (or the wave equation in the massless case),

(∂2t −∆x +m2)ψ = 0 .

This feature becomes extremely useful (as we will see later) in the study

of the behaviour of Dirac solutions, since many properties can be thus de-

duced from the Klein–Gordon flow.

Finally, we observe one can see thatDm is indeed self-adjoint but not bounded

from below. This mathematical fact appeared paradoxical and absurd from a

physical point of view, since it would imply that negative energy states were

admissible. Dirac interpreted these states as positive energy states associated to

some antiparticles, which indeed have been discovered experimentally years later.

1.4 Preliminaries of differential geometry

In order to generalize the Dirac operator to curved spacetime, we briefly recall

the main definitions and formulas of Riemannian and Lorentzian geometry.

We start with the geometrical object that generalizes the flat Minkowski space.
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Definition 1.9 (Four-dim Lorentzian manifold). A four-dimensional Lorentzian man-

ifold (M, g) is a smooth manifoldM equipped with Lorentzian metric g, i.e. an

everywhere non-degenerate, smooth, symmetric metric tensor g with signature

(1,3) in every point p ∈M.

When we deal with non-flat manifolds, the presence of curvature requires

some corrections in the definition of the derivative. We recall the core object that

permits a first generalization of covariant derivative.

Definition 1.10 (Levi-Civita connection and Christoffel symbols). The Levi-Civita

connection ∇ is the unique affine connection that preserves the Lorentzian metric

g and is torsion-free, i.e.

∇g = 0 and ∇XY −∇YX = [X, Y ] , for any X, Y vector fields.

Fixed a coordinate basis, the Christoffel symbols are the coefficients of the Levi-

Civita connection and they write

Γσµν :=
1

2
gσρ(∂µgνρ + ∂νgµρ − ∂ρgµν) .

In coordinates, the compatibility with the metric and the absence of torsion rewrite

∇αgµν = ∂αgµν − Γσαµgσν − Γσανgµσ = 0 ,

T µαβ =
1

2
(Γµαβ − Γµβα) = 0 .

Thus, the Levi-Civita connection differentiates tensors as follows.

Definition 1.11 (Covariant derivative for a tensor field in coordinates). Let T be

a (s, r)−tensor. The covariant derivative in coordinates is given by the formula

∇µT
α1α2...αs

β1β2...βr
: = ∂µT

α1α2...αs

β1β2...βr
+ Γα1

µνT
να2...αs

β1β2...βr
+ ...+ Γαs

µνT
α1α2...ν
β1β2...βr

− Γνµβ1T
α1α2...αs

νβ2...βr
− ...− ΓνµβrT

α1α2...αs

β1β2...ν
.

We conclude this section by introducing the principal curvature tensors and

their main properties.

Definition 1.12 (Riemann curvature tensor). The Riemann curvature tensor R is a

(1, 3)-tensor defined by

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

and in coordinates write

Rα
βγµ := ∂µΓ

α
γβ − ∂γΓαµβ + ΓαµνΓ

ν
γβ − ΓαγνΓ

ν
µβ .
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Proposition 1.5 (Symmetries of the curvature tensor). The Riemann curvature ten-

sor R satisfies the following properties:

Rαβγµ = −Rαβµγ ,

Rαβγµ = −Rβαγµ ,

Rαβγµ = Rγµαβ ,

Rαβγµ +Rαµβγ +Rαγµβ = 0 ,

∇νRαβγµ +∇βRναγµ +∇αRβνγµ = 0 ,

where the last two equations are respectively the first and the second Bianchi identities.

Definition 1.13 (Ricci curvature tensor and scalar curvature). The Ricci curvature

tensor Rβµ and the scalar curvature Rg are defined by contracting the Riemann

tensor

Rβµ := Rα
βαµ , Rg := gβµRβµ .

1.5 Vierbein formalism and spin connection

This section will be devoted to the construction of another, and in some sense

more general, connection that will be crucial in the definition of the Dirac oper-

ator in curved spacetime. A more precise discussion regarding this topic can be

found in [PT09, Section 5.6].

To achieve this goal, we begin with a naive introduction of the vierbein for-

malism.

Idea (Vierbein). Given a Lorentzian manifold (M, g), if we consider some local

spacetime coordinates {xµ}µ, we can associate a coordinate basis {dxµ}µ in the

cotangent space. Hence, the line element is given in local coordinates by

ds2 = gµν(x)dx
µdxν

On the other hand, one may pass to a local orthonormal frame {ea(x)}, whereby

the line element writes

ds2 = ηab e
a(x)eb(x) ,

where η is the Minkowski metric. Since {dxµ}µ and {ea(x)}a both span the cotan-

gent space, there exist some (spacetime dependent) coefficients such that

ea(x) = ea µ(x)dx
µ . (1.11)
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We will call this object ea µ vierbein (or tetrad). From the relations above, we de-

duce the characterizing property of a vierbein,

gµν(x) = ea µ(x) ηab e
b
ν(x) , (1.12)

which could be interpreted, in some sense, as the ”square root” of the metric.

Remark 1.10 (Global vierbein). In principle, vierbeins are defined only locally,

since in the above construction we considered local orthonormal frames. In prac-

tice, dealing with small perturbations of flat spacetime will allow us to consider

a globally defined vierbein. We conclude by mentioning that the presence of a

global vierbein is a topological requirement characterizing an important class of

manifolds, called spin manifolds (see [GLJ80, Section 1]).

Defining the dual vierbein ea µ := gµνηabe
b
ν , one has

ea
µ(x)ea ν(x) = δµν , ea

µ(x)eb µ(x) = δab ,

which allows to reverse the previous formulas

dxµ = ea
µ(x) ea(x) , ηab = ea

µ(x) gµν(x) eb
ν(x) .

Hence, from (1.11), ea µ can be seen as a matrix transforming the coordinate basis

dxµ of the cotangent space to an orthonormal basis, and similarly the dual ea µ

behaving in the same way on the tangent space ofM,

ea(x) := ea
µ(x)∂µ .

Notation (Flat and curved indices). From now on, Greek and Latin indices will be

fundamental to distiguish between the coordinate system representation and the

orthonormal frame. In particular, we will also refer to the former as flat indices

and to the latter as curved ones, and they will be raised or lowered respectively

by the metric g and η. The power of this formalism lies in the fact that the vierbein

allows us to switch between Greek and Latin bases: indeed, for example, given a

(1, 1)-tensor, we have

T ab = ea µ eb
ν T µν , T µν = ea

µ eb ν T
a
b .

Idea (Spin connection). At this point, we notice that the standard Levi-Civita con-

nection∇ only interacts with curved indices. Thus, we need to extend it to a new

covariant derivative, being able to act also on flat indices, i.e.

DµX
a = ∂µX

a + ωµ
a
bX

b ,
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where ωµ a b replace the standard Christoffel symbols and define the components

of a new connection to be determined: this is indeed the spin connection we want

to construct.

To gather some information about it, we start by imposing the Leibniz rule for

the covariant differentiation, i.e.

DµX
a = Dµ(e

a
νX

ν) = (Dµe
a
ν)X

ν + ea ν(∇µX
ν) .

From Definition 1.11,∇µX
ν = ∂µX

ν + ΓνµσX
σ, and thus it follows

Dµ e
a
ν = ∂µe

a
ν − Γσνµe

a
σ + ωµ

a
b e

b
ν , (1.13)

which relates the covariant derivative of the vierbein to the spin connection.

To completely determine ωµ a b , we introduce Cartan’s formalism which, roughly

speaking, approaches differential geometry through the language of differential

forms rather than tensors. For further details regarding similarities and differ-

ences between Cartan’s and Riemann’s approaches, we refer to [EGH80].

Now, let us define the spin one-form

ωa b := ωµ
a
b dx

µ . (1.14)

From (1.11), the exterior derivative of the orthonormal frame is given by

dea = (∂µe
a
ν − Γσµνe

a
σ) dx

µ ∧ dxν . (1.15)

Following Cartan’s approach, we state the two Cartan’s structure equations, by

defining the torsion 1-form T a and the curvature 2-formRa
b ,

T a : = dea + ωa b ∧ eb ,

Ra
b := dωa b + ωa c ∧ ωc b .

These two objects should be thought of, as their names suggests, as the equiva-

lents of the torsion and curvature tensors in Riemannian geometry. In Definition

1.10, we recalled the two conditions uniquely determining the Levi-Civita con-

nection; similarly, using Cartan’s formalism, the spin connection is now defined

imposing the two following conditions

ωab = −ωba ,

T a = dea + ωa b ∧ eb = 0 .
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The first compatibility condition makes the spin connection coefficients antisym-

metric in the flat indices, ωµab = −ωµba. On the other hand, the absence of torsion,

together with (1.15), determines their explicit formula

ωµ
a
b = −eb ν(∂µea ν − Γσµνe

a
σ) . (1.16)

As a consequence, (1.13) and (1.16) imply the so-called tetrad postulate

Dµe
a
ν = 0 . (1.17)

This property shows that covariant differentiation commutes with the conversion

of tensors to and from the local orthonormal frame, since the Leibniz rule written

before simply reduces to

DµX
a = Dµ(e

a
νX

ν) = ea ν(∇µX
ν) .

Finally, we derived a new generalized covariant derivative that acts both on

curved and flat indices, through the Levi-Civita and the spin connections respec-

tively: for instance, we have

DµT
a
ν = ∂µT

a
ν − ΓσµνT

a
σ + ωµ

a
bT

b
ν .

As a last remark, we give the formula relating the Cartan curvature formRa
b

and the Riemann curvature tensor Rλ
σµν . Indeed, from the definition of Ra

b and

explicitly computing the exterior derivative of the spin form, it follows

Ra
b =

1

2
(∂µων

a
b − ∂νωµ a b + ωµ

a
c ων

c
b − ων a c ωµ c b) dxµ ∧ dxν

=: −1

2
Rµν

a
b dx

µ ∧ dxν .

Using (1.16) and Definition 1.12, one obtains

Rµν
a
b = ea λeb

σRλ
σµν . (1.18)

1.6 The Dirac equation in curved spacetime

At this point, we are ready to present the construction of the Dirac operator in

curved background. As mentioned before, the Dirac equation represents a mile-

stone in the framework of Quantum Field Theory, describing charged massive
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particles with relativistic corrections. The extension to the curved setting is fun-

damental to study this equation in the context of general relativity, where, as we

will see later, the spacetime metric is governed by the Einstein Field Equations.

To this end, we start by pointing out a fact, quite obvious from the properties

of the frame, but definitely crucial.

Remark 1.11 (The vierbein is not uniquely determined). Let ea µ be a vierbein and

Λ a matrix representing a local Lorentz transformation (i.e. the parameters repre-

senting the Lorentz transformation are functions of spacetime coordinates). Then

(e′)a µ(x) := Λa b(x)e
b
µ(x) , (1.19)

is again a vierbein, indeed

(e′)a µ ηab(e
′)b ν = Λa c e

c
µ ηab Λ

b
d e

d
ν = ec µ ηcd e

d
ν = gµν .

Hence, we deduce that the metric structure characterizes a vierbein up to

Lorentz transformations. Since the spacetime metric is not affected by the differ-

ent choice of the vierbein, we expect that the same property of Lorentz invariance

should hold also for any field equation.

This principle translates into a specific law of covariance for the spin con-

nection. Consider, for instance, a vector field Xµ(x), whose flat components are

Xa = ea µX
µ. Now, from what we said, Xa must transform, under local Lorentz

transformations Λ, like

X ′a(x′) = Λa bX
b(x) ,

D′
µX

′a(x′) =
∂xν

∂x′µ
Λa b(x)DνX

b(x) ,

where DµX
a = ∂µX

a + ωµ
a
bX

b is the covariant derivative found above. These

covariance laws are compatible if the spin connection satisfies

ω′
µ
a
b =

∂xν

∂x′µ

(
Λa c ων

c
d(Λ

−1)d b − (∂νΛ
a
c)(Λ

−1)c b

)
. (1.20)

So far, we defined the covariant behaviour of vector fields. We are now in-

terested in the construction of a suitable covariant derivative being able to to

preserve the invariance of the Dirac equation. Therefore, we now focus on Dirac

spinors.

Idea (Dirac spinor). A four-component field ψ is called a Dirac spinor if it trans-

forms under local Lorentz transformations Λ as
ψ′(x′) = π(Λ(x))ψ(x) ,

D′
µψ

′(x′) =
∂(x′)ρ

∂xµ
π(Λ(x))Dρψ(x) ,
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where π is the spin representation of SO+(1, 3), induced by the Dirac representa-

tion of Definition 1.8. (For simplicity, from now on we suppress the component

indices of ψ and we will use a matrix notation.)

In practice, we are looking for a new covariant derivative

Dµψ := ∂µψ +Bµ(x)ψ ,

where Bµ is a field, to be determined, which lies in the Lie algebra representation

of so+(1, 3). This requirement comes from the fact that the covariant differentia-

tion must be defined on the tangent space and thus on the Lie algebra.

Therefore, we impose that the following map

F (Λ) : ψ 7→ D′
µψ

′ − ∂(x′)ρ

∂xµ
π(Λ)Dρψ (1.21)

is identically zero. Since SO+(1, 3) is connected, it is sufficient to require that both

F and its differential are vanishing at the identity. Hence, we linearize near the

identity and choose Bµ such that F is zero up to the first order. To this end, we

recall from (1.3), that infinitesimal variations of the identity write

Λa b = δa b + εa b(x) , π(1 + ε) = 1 + iεabΣab ,

where the coefficients satisfies εab = −εba and the generators of the representation

of so+(1, 3) are such that Σab = −Σba. Hence, we have

D′
µψ

′ = ∂µψ
′ +B′

µψ
′ = ∂µ(π(Λ)ψ) +B′

µ(π(Λ)ψ)

= (∂µπ(Λ))ψ + π(Λ)∂µψ +B′
µ(π(Λ)ψ)

and, on the other hand,

D′
µψ

′ = π(Λ)Dµψ = π(Λ)(∂µ +Bµ)ψ ,

where the prefactor ∂(x′)ρ/∂xµ has been replaced with δνµ, since we are restricting

to infinitesimal local Lorentz transformations. From these two last relations, we

deduce that the field Bµ must satisfy

B′
µ = π(Λ)Bµπ

−1(Λ)− (∂µπ(Λ))π
−1(Λ)

and thus using the infinitesimal form of a Lorentz transformation (1.3),

B′
µ = Bµ + iεabΣabBµ − i Bµε

abΣab − i∂µεabΣab = Bµ + iεab[Σab, Bµ]− i∂µεabΣab .
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Since Bµ takes values on the Lie algebra, we can express it in terms of the gener-

ators, i.e. Bµ(x) = Bab
µ (x)Σab. Therefore, after some manipulations of indices and

commutators,

B′
µ = Bµ − iεcdBab

µ [Σab,Σcd]− i∂µεabΣab .

By Lemma 1.4, we deduce the infinitesimal law of covariance

B′
µ
ab = Bµ

ab +Bµ
b
c ε

ca −Bµ
a
c ε

cb − i∂µεab .

If we compare it with the infinitesimal form of the spin connection (1.20),

ω′
µ
ab = ωµ

ab + ωµ
b
c ε

ca − ωµ a c εcb − ∂µεab ,

we finally conclude that

Bµ
ab = iωµ

ab .

Hence the covariant derivative of ψ is given by

Dµψ = ∂µψ + iωµ
abΣabψ . (1.22)

In this formula, we see that the covariant derivative is determined by two main

factors: the spin connection, which is purely given by the geometry of the mani-

fold (and the choice of the vierbein), and the algebraic spin representation, that is

related to the nature of the particle observed.

Before stating the final form of the Dirac equation, we give an important tech-

nical lemma regarding the new covariant derivatives. Indeed, in order to pre-

serve Lorentz invariance, we sacrificed the commutativity of derivatives.

Lemma 1.6 (Commutator of covariant derivatives). Let Dµ the covariant derivative

defined as in (1.22). Then

[Dµ, Dν ] = −iRµν
abΣab , (1.23)

where Rµν
ab is the ”mixed” curvature tensor given by (1.18).

Proof. The assertion follows from direct computations. Indeed,

[Dµ, Dν ] = [∂µ + iωµ
abΣab , ∂ν + iων

cdΣcd]

= i∂µων
cdΣcd − i∂νωµ abΣab − ωµ abων cd[Σab,Σcd] .

Using Lemma 1.4, the last summand rewrites

ωµ
abων

cd[Σab,Σcd] =
i

2

(
− ωµ b aων cdΣbd − ωµ abων c aΣbc − ωµ a cων cdΣad + ωµ

abων
c
bΣac

)
= i(ωµ

a
cων

cb − ωµ cbων a c)Σab ,
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where in the last equality we used ωµab = −ωµba. Finally, from (1.18), we conclude

[Dµ, Dν ] = −i(∂νωµ ab − ∂µων ab − ωµ a cων cb + ωµ
cbων

a
c)Σab

= −iRµν
abΣab .

We are ready to generalize the Dirac equation. We recall that in flat spacetime,

it writes iγµ∂µψ = mψ . We perform the following substitution

∂µ ← ea
µDµ ,

where Dµ is the covariant derivative is defined as in (1.22). Thus, we find

iγaea
µDµψ = mψ .

We denote γµ(x) := ea
µ(x)γa , and we call them spacetime-dependent Dirac matrices,

which satisfy the following anticommutation rules

{γµ(x), γν(x)} = 2gµν(x)Id4 . (1.24)

Furthermore, we note that the new matrices γµ are covariantly constant: this fact

can be easily deduced from the tetrad postulate (1.17).

Theorem 1.7. The Dirac matrices γµ := ea
µγa are covariantly constant, i.e. Dνγ

µ = 0 .

Proof. Using the Leibniz rule and the tetrad postulate Dνea
µ = 0, we have

Dνγ
µ = Dν(ea

µγa) = ea
µ(Dνγ

a) = ea
µ(∂νγ

a +
1

8
ων

bc[γb, γc]γ
a) =

1

8
ea

µ ων
bc[γb, γc]γ

a .

Recalling that ων cb = −ων bc and {γb, γc} = 2ηbc, we have

Dνγ
µ =

1

8
ea

µ ων
bc(γbγc − γcγb)γa =

1

8
ea

µ ων
bc{γb, γc}γa =

1

4
ea

µ ων
b
bγ
a = 0 .

Finally, recalling the spin representation of Definition 1.8, Σab = − i
8
[γa, γb] ,

we fully determine the spinorial covariant derivative

Dµψ = ∂µψ +Bµψ := ∂µψ +
1

8
ωµ

ab[γa, γb]ψ , (1.25)

which satisfies, by Lemma 1.6, the following

[Dµ, Dν ]ψ = −1

8
Rµν

ab[γa, γb]ψ . (1.26)

At the end of Section 1.3, we noticed that the flat Dirac equation has the re-

markable property of squaring to the Klein–Gordon equation. We will see, with

the help of the next lemma, that the same happens even in the curved (more del-

icate) case.
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Lemma 1.8 (Schrödinger-Lichnerowicz identity, [Sch32]). Let Dµ the spinorial co-

variant derivative defined as in (1.25). Then

(γµDµ)
2 = □g +

1

4
Rg ,

where □g := DµDµ = gµνDνDµ is the d’Alembertian operator and Rg is the scalar

curvature associated to g.

Remark 1.12 (Spinorial d’Alembertian operator). Before presenting the proof, let

us briefly show how □g acts in coordinates. Given a spinor ψ, we have

□gψ = gµνDνDµψ = gµν
(
(∂ν +Bν)Dµψ − ΓσνµDσψ

)
= gµν(∂ν∂µψ − Γσνµ∂σψ) + gµν(Bν∂µ +BνBµ + ∂νBµ − ΓσνµBσ)ψ

= □̃gψ +Bµ∂µψ +BµBµψ + D̃µBµψ ,

where □̃g denotes the wave operator for scalar fields and D̃νXµ := ∂νXµ−Γσ µ νXσ .

Proof. We start by multiplying by γµγν both sides of (1.26), obtaining

γµγν [Dµ, Dν ] = −
1

8
γµγνRµν

ab[γa, γb] .

We focus first on the right-hand side: recalling that Rµν
a
b = ea λeb

σRλ
σµν , we

have

−1

8
γµγνRµν

ab[γa, γb] = −
1

8
γµγνea λe

b
σR

λσ
µν [γa, γb] = −

1

8
γµγνRλσ

µν [γλ, γσ]

= −1

4
γµγνγλγσRµνλσ ,

where, in the last equality, we used the symmetries of the Riemann curvature

tensor, stated in Proposition 1.5. Due to the first Bianchi identity, and using re-

peatedly the anticommutation properties of γµ, we obtain

γµγνγλγσRµνλσ = −2γµγλgσνRµνλσ .

Using again {γµ, γν} = 2gµν and Rµνλσ = Rλσµν , one has

γµγλRµνλσ = 2gµλRµνλσ − γλγµRµνλσ = 2Rλ
νλσ − γλγµRλσµν ,

which gives, relabeling the indices

γµγλRµνλσ = Rλ
νλσ = Rνσ .
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Summarizing, the right-hand side gives

−1

8
γµγνRµν

ab[γa, γb] = −
1

4
γµγνγλγσRµνλσ =

1

2
gσνγµγλRµνλσ =

1

2
gσνRνσ =

1

2
Rg .

On the other hand, by Theorem 1.7, we have that (γµDµ)
2 = γµγνDµDν . Thus,

the left-hand side simply rewrites

γµγν(DµDν −DνDµ) = (γµDµ)
2 − (2gµν − γνγµ)DνDµ = 2(γµDµ)

2 − 2□g .

Hence, the identity follows

(γµDµ)
2 = □g +

1

4
Rg .

Therefore, it is straightforward to see that squaring the Dirac equation, we

recover a curved Klein–Gordon equation(
□g +

1

4
Rg +m2

)
ψ = 0 .

However, we stress once again that the wave operator □g = DµDµ is ”spinorial”,

meaning that is defined by spinorial covariant derivatives. This feature, in gen-

eral, severely complicates the understanding of the curved Dirac operator. In the

following chapter, we will analyze in detail this aspect.

For later use, we conclude the paragraph by briefly introducing the adjoint

spinor, without entering in further details.

Definition 1.14 (Adjoint spinor and main properties). Denoting with ·∗ the her-

mitian adjoint, we define the adjoint spinor ψ of ψ as

ψ := ψ∗γ0 ,

which transforms under local Lorentz transformations as ψ ′ = ψ π−1(Λ). The

action of the spinorial covariant derivative writes

Dµψ := ∂µψ − ψBµ = ∂µψ −
1

8
ψ ωµ

ab[γa, γb] .

Thanks to this construction, we can deduce the adjoint equation of the Dirac

equation.

Theorem 1.9 (Adjoint Dirac equation). Ifψ is a solution of the Dirac equation iγµDµψ =

mψ, then the adjoint spinor ψ solves

iDµψγ
µ = −mψ . (1.27)
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Proof. To prove the statement, we start with two properties of the Dirac matrices,

that can be easily checked recalling that γ0 is hermitian while the γj, j = 1, 2, 3 are

antihermitian:

γ0[γa, γb]
∗γ0 = −[γa, γb] and γ0(γa)∗γ0 = γa .

Therefore, we deduce Dµψ = Dµψ , indeed

Dµψ = (∂µψ +Bµψ)
∗γ0 = ∂µψ

∗γ0 +
1

8
(ωµ

ab[γa, γb]ψ)
∗γ0

= ∂µψ +
1

8
ψ∗ωµ

ab[γa, γb]
∗γ0 = ∂µψ −

1

8
ψ∗ωµ

abγ0[γa, γb] = Dµψ .

Finally, recalling that (γ0)2 = Id4 , we have

γµDµψ = (Dµψ)
∗(γµ)∗γ0 = (Dµψ)

∗γ0γ0(γµ)∗γ0 = Dµψ γ
µ = Dµψ γ

µ ,

and thus we conclude

imψ = γµDµψ = Dµψ γ
µ .





Chapter 2

Dispersive estimates for the Dirac

equation

Now that the Dirac operator in curved background has been constructed, in

the second chapter we finally study some of its properties. In particular, we ob-

serve how things become more difficult in the curved case and show how to re-

cover, under suitable assumptions, a ”dispersive” behaviour.

The main result of the chapter concerns some Strichartz estimates on asymp-

totically flat manifolds, that have been proven in the recent years by Cacciafesta,

de Suzzoni and Meng, see [CdS19b] and [CdSM23].

2.1 Dispersion in flat spacetime

Before looking at the analytical properties of the Dirac operator in curved

spacetime, let us take a step back to the flat case. In this simplified setting, we

briefly introduce the concept of dispersion, which may help understanding the

behaviour of the solution.

By dispersion we mean, roughly speaking, the property of each component of

a wave packet to travel with different speeds. This peculiar feature often yields,

on the one hand, some physical quantities (the energy, for instance) to be globally

conserved, but on the other, on every compact region a decay is observed. The

most important equations of quantum mechanics share this trait and we have

encountered them from time to time throughout this work. We are referring to

27
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the Schrödinger, the Klein–Gordon and the wave equations,

Schrödinger :

i∂tψ +∆xψ = 0 ,

ψ(0, x) = ψ0(x) ;

Klein–Gordon :

∂
2
t ψ −∆xψ +m2ψ = 0 ,

ψ(0, x) = ψ0(x) , ∂tψ(0, x) = ψ1(x) ;

Wave :

∂
2
t ψ −∆xψ = 0 ,

ψ(0, x) = ψ0(x) , ∂tψ(0, x) = ψ1(x) ;

for (t, x) ∈ R+ × R3. In the flat case, the Dirac equation is also clearly dispersive.

Indeed, we recall from Section 1.3, that each component of a Dirac solution solves

a Klein–Gordon (or wave) equation. Hence, exploiting this ”squaring trick”, many

estimates for the Dirac flow can be easily deduced from the well-known results

for these latter equations.

For instance, let us look at the Strichartz estimates, which write respectively

Klein–Gordon : ∥eit
√
m2−∆xf∥Lp

tH
s
q
≲ ∥f∥L2 ,

Wave : ∥eit
√
−∆xf∥Lp

t Ḣ
s
q
≲ ∥f∥L2 ,

where by A ≲ B we mean that A ≤ CB, with C a constant independent of the

parameters. At this stage we omit the details regarding the exponents (p, s, q)

and the Sobolev spaces appearing in the mixed norms, since these objects will be

discussed extensively in the following sections.

As anticipated, thanks to the squaring property, one deduces immediately the

same Strichartz estimates for the Dirac flow

massive case : ∥eitDmf∥Lp
tH

s
q
≲ ∥f∥L2 ,

massless case : ∥eitDf∥Lp
t Ḣ

s
q
≲ ∥f∥L2 ,

where Dm := −iα · ∇+ βm is the Dirac operator (with D = D0).

These estimates formalize the idea of dispersion mentioned above. Indeed,

locally in time they describe a sort of smoothing effect, through a gain of integra-

bility in a Lp time-averaged sense. On the other hand, globally in time, they pre-

scribe a decay effect of the spatial norm, again in some Lp time-averaged sense.

However, this approach becomes extremely complicated when we pass to

curved spacetime. As we already noticed in the end of Chapter 1, the curved

Dirac equation squares to a spinorial Klein–Gordon equation, where all the com-

ponents are not decoupled anymore. Below, we will see how to deal with this
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new difficulty, starting with a digression regarding the geometric hypotheses on

the manifold.

The reason why we are interested in this family estimates is related to the

analysis of nonlinear problems. Strichartz estimates represent indeed a funda-

mental tool for many techniques used in the study of well-posedness for disper-

sive equations. For some (non exhaustive) references regarding these topics, see

for instance [Tao06] and [Str77].

2.2 Asymptotically flat manifolds

Going back to the curved context, the spinorial covariant derivative Dµ is de-

fined in terms of the spin connection, whose behaviour is deeply related to the

geometrical structure of the manifold. Hence, it is quite reasonable to expect a

well-behaved solution when the underlying manifold is nice: for instance, when

it is not that far from the standard flat Minkowski metric. In this section, we

formalize this intuition specifying the geometric hypotheses on the Lorentzian

manifold and we study the consequent behaviour of the Dirac operator.

We start with the following assumption, that considerably simplifies the spin

structure.

Definition 2.1 (Static and decoupling metric). Given a Lorentzian manifold (M, g),

we say that the metric g is static in time and decoupling, if it writes

gµν(x) =


1 if µ = ν = 0; ,

0 if µν = 0 and µ ̸= ν ,

−hµν(x) otherwise ,

(2.1)

where x = (x1, x2, x3) is the space variable and h ∈ C∞(R3) is a Riemannian

metric.

Notation (Index notation). We recall that the Latin indices a, b, ... denote the flat

components, while the Greek letters µ, ν, ... denote the spacetime curved ones. In

addition, to refer specifically to the curved spatial components, we use j, k, ... .

The first important property of a metric decoupling space and time, is that the

vierbein ea µ reduces to a ”dreibein” fa j , satisfying

hjk(x) = fa j(x) δab f
b
k(x) ,
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where all the indices belong to {1, 2, 3} and δab is the Kronecker symbol.

In particular, for a static decoupling metric, we can build a vierbein given a

dreibein in a very natural way.

Lemma 2.1. Let h be a Riemannian metric and fa j be a spatial dreibein associated to h,

then

ea µ(x) :=


1 if µ = a = 0; ,

0 if µa = 0 and µ ̸= a ,

fa µ(x) otherwise .

defines a spacetime vierbein associated to g as in Definition 2.1.

Proof. We omit the proof since it is only a matter of evaluating explicitly the three

possible cases. For more details, see [CdS19b, Proposition 2.1].

Furthermore, under the standing assumptions on g , we also have a clear rela-

tion at the level of the affine connections.

Lemma 2.2. Let g be a static and decoupling metric, and let Φi
jk and Γσµν be the affine

connection coefficients associated respectively to h and g . Then

Γσµν =

Φσ
µν if σµν ̸= 0 ,

0 otherwise .

Proof. As with the previous lemma, we omit this proof for the same reasons. For

more details, see [CdS19b, Proposition 2.2]

Remark 2.1 (Scalar curvature). Thanks to the last lemma, we immediately deduce

that Rg = −Rh , the scalar curvature associated to h.

Therefore, due to these results, it is not difficult to imagine what the behaviour

of the spin connection is.

Lemma 2.3. Let g be a static and decoupling metric, and let αj ab and ωµ ab be the spin

connection coefficients associated respectively to h and g . Then

ωµ
ab =

αµ
ab if µab ̸= 0 ,

0 otherwise .

Proof. From (1.16), we recall that ωµ ab = ea ν(∂µe
bν+Γνµσe

bσ) .We proceed by cases:

if µ = 0,

ω0
ab = ea ν(∂te

bν + Γν0σe
bσ) = ea ν∂te

bν = 0 ,
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since Γν0σ = 0 and ea µ does not depend on t, by Lemmas 2.2 and 2.1. Hence

ω0
ab = 0 for any a, b .

If a = 0, and assuming µ ̸= 0,

ωµ
0b = e0 ν(∂µe

bν + Γνµσe
bσ) = ∂µe

b0 + Γ0
µσe

bσ = 0 ,

where in the first equality the sum over ν gives only ν = 0 and thus one concludes

using again Lemmas 2.2 and 2.1. Hence

ωµ
0b = 0 for any µ, b .

Since ωµ ab = −ωµ ba, we immediately deduce the case b = 0

ωµ
a0 = 0 for any µ, a .

If µab ̸= 0, which means µ = j,

ωj
ab = ea ν(∂je

bν + Γνjσe
bσ) = ea k(∂je

bk + Γkjle
bl) = fa k(∂jf

bk + Φk
jlf

bl) = αj
ab ,

since the sums over ν and σ give only the spatial indices.

We are now ready to formalize the idea of dealing with a ”controlled and

decaying perturbation” of the Minkowski flat metric.

Definition 2.2 (Asymptotically flat manifold). Let (M, g) be a four-dimensional

Lorentzian manifold with g static and decoupling and geodesically complete (i.e.

maximal geodesics are defined on the whole R).

(M, g) is asymptotically flat if there exist constants Ch and σ ∈ (0, 1) such that for

any multi-index α ∈ N3 with |α| = α1 + α2 + α3 ≤ 3 and all x,

|∂α(hjk(x)− δjk)| ≤ Ch⟨x⟩−|α|−1−σ , for j, k = 1, 2, 3 , (2.2)

where ∂α := ∂α1
x1
∂α2
x2
∂α3
x3

and ⟨x⟩ := (1 + |x|2)1/2 .

Remark 2.2 (Non-trapping condition). The constant Ch plays a fundamental role

and it is strongly related to the so-called non-trapping condition on the metric g. In-

deed, to observe dispersive dynamics on non-flat manifolds, it is necessary that

the underlying metric does not confine geodesic flows in some compact and local-

ized regions. In our context, this is guaranteed if Ch is small enough and indeed

this will be an implicit requirement throughout this chapter.
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Remark 2.3 (Uniform bounds on inverse and derivatives). The asymptotically flat

condition (2.2) implies uniform bounds on the inverse hjk(x). For instance, sup-

posing Ch small enough, we can establish

|h−1(x)| ≤ 2 , for all x ,

where | · | denotes the matrix norm. Furthermore, regarding the bounds on the

derivatives of h, we can rewrite (2.2) in a more compact way as

|h′(x)| ≤ Ch⟨x⟩−2−σ , |h′′(x)| ≤ Ch⟨x⟩−3−σ , |h′′′(x)| ≤ Ch⟨x⟩−4−σ ,

where |h′(x)| :=
∑
|α|=1

|∂αh(x)| , |h′′(x)| :=
∑
|α|=2

|∂αh(x)| , |h′′′(x)| :=
∑
|α|=3

|∂αh(x)| .

The next lemma shows how the assumption on the metric affects both the

geometric structure and the Dirac operator.

Lemma 2.4. Let (M, g) be an asymptotically flat manifold with constant Ch ≪ 1 . Then

there exist some geometric constants CR and CΓ such that for all x,

|Rh(x)| ≤ CRCh⟨x⟩−3−σ , |Γ(x)| ≤ CΓCh⟨x⟩−2−σ .

Furthermore, the dreibein e exists globally and can be chosen such that there exist con-

stants CB and C ′
B

|B(x)| ≤ CBCh⟨x⟩−2−σ , |∂B(x)| ≤ C ′
BCh⟨x⟩−3−σ for all x.

Proof. We start by estimating the the geometric quantities, not depending on the

choice of the dreibein. Recalling that the scalar curvature is given by

Rh = hjk(∂kΓ
i
ij − ∂iΓijk + ΓiklΓ

l
ij − ΓiilΓ

l
jk) ,

we obtain, for Ch small enough,

|Rh(x)| ≤ C ′
R(|∂Γ(x)|+ |Γ(x)|2) ,

where we used the uniform bound on the inverse given in Remark 2.3. Hence,

recalling that Γijk =
1
2
hil(∂jhkl + ∂khjl − ∂lhjk) ,

|Γ(x)| ≤ CΓ|h′(x)| ≤ CΓCh⟨x⟩−2−σ .

On the other hand, writing (h−1)′(x) = −h−1(x)h′(x)h−1(x), we obtain

|∂Γ(x)| ≤ C ′
Γ(|h′(x)|2 + |h′′(x)|) ≤ C ′

ΓCh⟨x⟩−3−σ .
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Hence, we get the following estimate on the curvature

|Rh(x)| ≤ CRCh⟨x⟩−3−σ .

Let us now focus on the choice of a suitable dreibein, which by definition must

satisfy hjk(x) = ea j(x) δab e
b
k(x) . If we impose (eja)1≤j,a≤3 to be symmetric, the

relation gives

h = e2 .

Hence, we can interpret the choice of the dreibein given the spatial metric h as the

inverse map of e ∈ Sym(3,R) 7→ e2 ∈ Sym(3,R), which sends symmetric matrices

to their square. Such a map is smooth, Id2
3 = Id3 and its differential at the identity

is twice the identity. Thus, by inverse function theorem, it can be reversed, in a

neighborhood of Id3, into a smooth map F . For Ch suitably small, for any x, h(x)

takes values in the domain of definition K of F , which means that the dreibein

exists globally. In particular, we define e(x) := F (h(x)) . Using the increment

theorem, we find
|e(x)− Id3| ≤ sup

K
|DF ||h(x)− Id3| .

Furthermore, we can also obtain estimates on its derivatives

|e′(x)| ≤ sup
K
|DF ||h′(x)| ,

|e′′(x)| ≤ sup
K
|D2F ||h′(x)|2 + sup

K
|DF ||h′′(x)| ,

|e′′′(x)| ≤ sup
K
|D3F ||h′(x)|3 + 3 sup

K
|D2F ||h′(x)||h′′(x)|+ sup

K
|DF ||h′′′(x)| .

Therefore, by the asymptotically flat assumption and Remark 2.3,

|e(x)− Id3| ≤ CeCh⟨x⟩−1−σ , |e′(x)| ≤ CeCh⟨x⟩−2−σ ,

|e′′(x)| ≤ CeCh⟨x⟩−3−σ , |e′′′(x)| ≤ CeCh⟨x⟩−4−σ .

Finally, recalling that ωµ ab = ea ν(∂µe
bν + Γνµσe

bσ) and Bµ = 1
8
ωµ

ab[γa, γb] , the

remaining estimates follow immediately

|ω(x)| ≤ CωCh⟨x⟩−2−σ , |B(x)| ≤ CBCh⟨x⟩−2−σ , |∂B(x)| ≤ C ′
BCh⟨x⟩−3−σ .

2.3 Strichartz estimates for the Dirac equation

Thanks to the previous section, we can easily deduce the explicit formulas for

the spinorial covariant derivatives,

D0 = ∂t , Dj = ∂j +Bj = ∂j +
1

8
αj

ab[γa, γb] ,
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where αj ab are the coefficients of the spin connection associated to h. Therefore,

the Dirac operator rewrites

iγµDµ = iγaea
µDµ = iγ0∂t + iγafa

jDj ,

where fa j is the spatial dreibein linking h to the flat space metric. Finally, multi-

plying by γ0, the Dirac equation rewrites

i∂tu = (−iγ0γafa jDj + γ0m)u =: Dmu .

Coupling it with an initial datum u0, we obtain the following Cauchy problemi∂tu−Dmu = 0 for (t, x) ∈ R+ × R3 ,

u(0, x) = u0(x) , for x ∈ R3 .
(2.3)

To state the main result of this section, we recall the definition of admissible

exponents. The following conditions are, in some sense, related to the scaling

properties of the equations they are related to.

Definition 2.3 (Admissible Strichartz exponents). In dimension d = 3, a triple of

exponents (s, q, r) is called wave admissible if

1

q
=

1

2
− 1

r
, 2 ≤ q, r ≤ ∞ , r ̸=∞ , s =

1

2
− 1

r
+

1

q
.

The triple (s, q, r) is called Klein–Gordon (or Schrödinger) admissible if

2

q
=

3

2
− 3

r
, 2 ≤ q ≤ ∞ , 2 ≤ r ≤ 6 , s =

1

2
− 1

r
+

1

q
.

We are are finally ready to state the theorem regarding Strichartz estimate for

the Dirac flow.

Theorem 2.5 (Strichartz estimates for Dirac, [CdSM23]). Let (M, g) be a four-dimensional

Lorentzian and asymptotically flat manifold. Then the following estimates for the Dirac

flow hold:

• massless Strichartz estimate, i.e. m = 0 ,

∥eitDu0∥Lq
t Ḣ

1−s
r (Mh)

≲ ∥u0∥Ḣ1(Mh)
,

for any wave admissible triple (s, q, r) ;

• massive Strichartz estimate, i.e. m > 0 ,

∥eitDmu0∥Lq
tH

1/2−s
r (Mh)

≲ ∥u0∥H1(Mh) ,

for any Klein–Gordon admissible triple (s, q, r) with q > 2 .
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Notation (Lebesgue and Sobolev norms). On (M, g) Lorentzian manifold, with g

static and decoupling, we define the space Lebesgue norm as

∥f∥pLp(Mh)
:=

∫
R3

|f(x)|p
√
deth(x) d3x .

The homogeneous and inhomogeneous Sobolev spaces are defined via Fourier

multipliers by

∥f∥Ḣs
p(Mh)

:= ∥(−∆̃h)
s/2f∥Lp(Mh) , ∥f∥Hs

p(Mh) := ∥(1− ∆̃h)
s/2f∥Lp(Mh) ,

where ∆̃h is the standard Laplace–Beltrami operator. We recall that these spaces

are defined also for negative s by duality and for fractional s by interpolation, see

for instance [DNPV12] and [Tar07]. Finally, the mixed spacetime norms are given

by

∥f∥Lq
tX(Mh) :=

(∫
R+

∥f(t, ·)∥qX(Mh)
dt
)1/q

, with X = Ḣs
p , H

s
p .

The proof of the theorem, as we will see later, is not difficult, but relies on

many important and advanced results of local smoothing estimates and Strichartz

estimates on manifolds.

At the beginning of the chapter, we emphasised how effective the squaring trick

was in deducing properties about the Dirac flow in the flat case. In general, how-

ever, this argument no longer works due to the presence of spinorial derivatives.

Hence, the strategy is to take advantage of the geometric assumptions on the

manifold to control and bound such new terms using Lemma 2.4. With the help

of some additional local smoothing estimates, we will be able to prove the de-

sired results using the standard Strichartz estimates for the Klein–Gordon and

wave equations.

The next section will be devoted to presenting all the ingredients necessary

for the proof of Theorem 2.5.

2.4 Preliminary estimates

We start by showing the relation between the Dirac equation (2.3) and its

square, that is a ”spinorial” Klein–Gordon (or wave) equation. The result is a

straightforward consequence of Lemma 1.8 and Remark 1.12.
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Theorem 2.6 (Squared Dirac equation). If u is a (smooth enough) solution to (2.3),

then it also solves∂
2
t u−∆hu−

1

4
Rhu+m2u = 0 , for (t, x) ∈ R+ × R3 ,

u(0, x) = u0(x) , ∂tu(0, x) = −iDmu0(x) , for x ∈ R3 ,
(2.4)

where ∆h = DjDj = hjkDkDj . Furthermore,

∆hv = ∆̃hv +Bj∂jv + D̃jBjv +BjBjv , (2.5)

where ∆̃h is the standard Laplace–Beltrami operator, D̃jXk = ∂jXk−Γl k
jXl and Bj =

hjkBk .

Remark 2.4. We stress that the opposite sign of the scalar curvature term (see

[CdSM23, Theorem 2.2]) is due to the different convention of the Riemann ten-

sor (cf. Definition 1.12 and [CdSM23, Formula (10)]).

We now compare the problem above with the Klein–Gordon and wave equa-

tions defined via the standard Laplace–Beltrami operator ∆̃h, for which we have

the following Strichartz estimates.

Theorem 2.7 (Strichartz estimates for wave/Klein–Gordon). Let (M, g) be a four-

dimensional Lorentzian and asymptotically flat manifold and u be a solution to the Cauchy

problem ∂
2
t u− ∆̃hu+m2u = 0 , for (t, x) ∈ R+ × R3 ,

u(0, x) = u0(x) , ∂tu(0, x) = u1(x) , for x ∈ R3 .

Then the following estimates hold:

• massless Strichartz estimate, i.e. m = 0 ,

∥u∥Lq
t Ḣ

1−s
r (Mh)

≲ ∥u0∥Ḣ1(Mh)
+ ∥u1∥L2(Mh) ,

for any wave admissible triple (s, q, r) ;

• massive Strichartz estimate, i.e. m > 0 ,

∥u∥
Lq
tH

1/2−s
r (Mh)

≲ ∥u0∥H1/2(Mh)
+ ∥u1∥H−1/2(Mh)

,

for any Klein–Gordon admissible triple (s, q, r) .
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Proof. We omit the details of the proof.

For the case m = 0, one can look at [SW10, Theorem 1.4].

Regarding the case m > 0, we notice that an asymptotically flat manifold

in the sense of our definition, satisfies also the decay |∂α(h − δ)| ≲ ⟨x⟩−|α|−1.

Hence, it is also asymptotically conic (see [HTW05, Definition 1.1 and Remark

1.2]). Therefore, our statement is a specific case of the more general global-in-

time Strichartz estimate on non-trapping conic manifolds, [ZZ19, Theorem 1.1

with F = 0].

Therefore, from Theorems 2.6 and 2.7, we see that a solution of the Cauchy

problem (2.3) solves a perturbed Klein–Gordon (or wave) equation∂
2
t u− ∆̃hu+m2u =

1

4
Rhu+Bj∂ju+ D̃jBju+BjBju ,

u(0, x) = u0(x) , ∂tu(0, x) = −iDmu0(x) .

Now, using the Duhamel formula, we can write the solution as follows

u(t, x) := eitDmu0 = Ẇm(t)u0 − iWm(t)Dmu0 +
∫ t

0

Wm(t− s)
(
Ω1(u)(s) + Ω2u(s)

)
ds ,

(2.6)

where

Wm(t) :=
sin
(
t

√
m2 − ∆̃h

)
√
m2 − ∆̃h

, Ẇm(t) :=
d

dt
Wm(t) ,

and

Ω1(u) := 2Bj∂ju , Ω2 := ∂jBj +BjBj − Γj k
kBj +

1

4
Rh . (2.7)

Hence, proving Theorem 2.5 is clearly a matter of controlling the perturbative

terms (2.7) appearing in the Duhamel formulation.

The following local smoothing estimates will in fact do this work.

Theorem 2.8 (Local smoothing estimate for Dirac – I). Let (M, g) be a four-dimensional

Lorentzian and asymptotically flat manifold and u be a solution to the Cauchy problem

(2.3). Then, for m ≥ 0, the following local smoothing estimate holds

∥⟨x⟩−3/2−u∥L2
tL

2(Mh) + ∥⟨x⟩
−1/2−∇̃u∥L2

tL
2(Mh) ≲ ∥Dmu0∥L2(Mh) ,

where ∇̃ denotes the scalar gradient and ⟨x⟩α± := ⟨x⟩α±η for η > 0 .
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Proof. The theorem can be easily deduced from the following result proven in

[CdS19b] (see Appendix A for an idea of the proof),

∥⟨x⟩−3/2−u∥L2
tL

2(Mh) + ∥⟨x⟩
−1/2−∇u∥L2

tL
2(Mh) ≲ ∥Dmu0∥L2(Mh) . (A.1)

This estimate, together with Lemma 2.4, gives

∥⟨x⟩−1/2−Bu∥L2
tL

2(Mh) ≤ CBCh∥⟨x⟩−3/2−u∥L2
tL

2(Mh) ≲ ∥Dmu0∥L2(Mh) .

Therefore, recalling that the spinorial gradient∇ = ∇̃+B, we conclude by trian-

gular inequality

∥⟨x⟩−3/2−u∥L2
tL

2(Mh) + ∥⟨x⟩
−1/2−∇̃u∥L2

tL
2(Mh)

≤ ∥⟨x⟩−3/2−u∥L2
tL

2(Mh) + ∥⟨x⟩
−1/2−∇u∥L2

tL
2(Mh) + ∥⟨x⟩

−1/2−Bu∥L2
tL

2(Mh)

≲ ∥Dmu0∥L2(Mh) .

Theorem 2.9 (Local smoothing estimates for wave/Klein–Gordon). Let (M, g) be

a four-dimensional Lorentzian and asymptotically flat manifold. Then, the following local

smoothing estimates hold

∥⟨x⟩−1/2−eit
√

−∆̃hf∥L2
tL

2(Mh) ≲ ∥f∥L2(Mh) ,

for any f ∈ L2(Mh) , and

∥⟨x⟩−1 eit
√
m2−∆̃hf∥L2

tL
2(Mh) ≲ ∥(1− ∆̃h)

1/4f∥L2(Mh) ,

for any f such that (1− ∆̃h)
1/4f ∈ L2(Mh) .

Proof. We start with the massless case m = 0, briefly retracing the argument pre-

sented in [BH09]. Let us define the unitary transform

V : u ∈ L2(Mh) = L2(R3,
√

deth(x)dx) 7−→ (deth(x))1/4u ∈ L2(R3, dx) ,

which maps −∆̃h to

P := −V∆̃hV−1 = −(deth(x))1/4∆̃h(deth(x))
−1/4 .

Therefore, if we consider u := eit
√

−∆̃hf ∈ L2(M, dg) and v := Vu, we obtain the

following equivalence

∂2t u− ∆̃hu = 0⇐⇒ ∂2t v + Pv = 0 .
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Hence, from [BH09, Theorem 1.3 with G = 0], we obtain the desired estimate

∥⟨x⟩−1/2−u∥L2
tL

2(Mh) = ∥⟨x⟩
−1/2−v∥L2(R+×R3) ≲ ∥v(0)∥L2(R3) = ∥f∥L2(Mh) .

Regarding the Klein–Gordon estimate, we need two more results. The first

one is [ZZ17, Formula (3.5) with V = 0],

∥⟨x⟩−1e−it∆̃hf∥L2
tL

2(Mh) ≲ ∥f∥L2(Mh) ,

which means that ⟨x⟩−1 is −∆̃h- smooth.

On the other hand, [D’A15, Theorems 2.2 and 2.4] together imply that ⟨x⟩−1(m2−

∆̃h)
−1/4 is

√
m2 − ∆̃h- smooth. Hence, we exactly obtain the second statement

∥⟨x⟩−1eit
√
m2−∆̃hf∥L2

tL
2(Mh) ≲ ∥(m

2 − ∆̃h)
1/4∥L2(Mh) .

Remark 2.5 (Dual local smoothing estimates). Once the two local smoothing esti-

mates above are proven, one can use standard TT ∗ arguments to deduce the dual

estimates (that will actually be the ones we will use in the proof of Theorem 2.5):∥∥∥∥∥
∫ T

0

e−is
√

−∆̃hf(s, ·) ds

∥∥∥∥∥
L2(Mh)

≲ ∥⟨x⟩1/2+f∥L2
tL

2(Mh) ,∥∥∥∥∥
∫ T

0

e−is
√
m2−∆̃hf(s, ·) ds

∥∥∥∥∥
H−1/2(Mh)

≲ ∥⟨x⟩f∥L2
tL

2(Mh) .

The last tool needed is the following lemma, which states an equivalence be-

tween the Sobolev norm and the one that is induced by the Dirac operator. The

proof is a bit technical, but it relies only on the geometric estimates of Lemma 2.4

and on the self-adjointness of −∆̃h and Dm, proven in [Che73].

Lemma 2.10 (Norm equivalence). Let (M, g) be a four-dimensional Lorentzian and

asymptotically flat manifold. For m ≥ 0, it holds

∥(m2 − ∆̃h)
1/2u∥L2(Mh) ≲ ∥Dmu∥L2(Mh) ≲ ∥(m

2 − ∆̃h)
1/2u∥L2(Mh) .

Proof. Since −∆̃h is self-adjoint on L2(Mh), we have for m ≥ 0

∥(m2 − ∆̃h)
1/2u∥2L2(Mh)

= ⟨(m2 − ∆̃h)u, u⟩L2(Mh) .

Using that

−⟨∆̃hu, u⟩L2(Mh) = hij⟨∂iu, ∂ju⟩L2(Mh) ,
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we can rewrite

−⟨∆̃hu, u⟩L2(Mh) = δij⟨∂iu, ∂ju⟩L2(Mh) + (hij − δij)⟨∂iu, ∂ju⟩L2(Mh) .

From the asymptotically flatness condition, |hij − δij| ≪ 1 and hence by Cauchy-

Schwarz inequality

δij⟨∂iu, ∂ju⟩L2(Mh) ≲ −⟨∆̃hu, u⟩L2(Mh) ≲ δij⟨∂iu, ∂ju⟩L2(Mh) .

We also have, using the self-adjointness of Dm,

∥Dmu∥2L2(Mh)
= ⟨(m2 − ∆̃h)u, u⟩L2(Mh) − ⟨Ω1(u) + Ω2u, u⟩L2(Mh) ,

where Dm = m2 − ∆̃h − Ω1 − Ω2, with Ω1,Ω2 as in (2.7). Since Bi are skew-

symmetric, we have

⟨Bi∂iu, u⟩L2(Mh) = −⟨∂iu,B
iu⟩L2(Mh) , ⟨Bi∂

iu, u⟩L2(Mh) = −⟨∂
iu,Biu⟩L2(Mh) .

Thus, by Cauchy-Schwarz inequality, we obtain

|⟨Ω1(u), u⟩L2(Mh)| ≤
∑
i

∥∂iu∥L2(Mh)∥⟨x⟩B∥L∞∥⟨x⟩−1u∥L2(Mh) .

Thanks to the assumption on h, the norms L2(Mh) and L2(R3) are equivalent and,

using Hardy inequality, we find

|⟨Ω1(u), u⟩L2(Mh)| ≲ ∥⟨x⟩B∥L∞∥(m2 − ∆̃h)
1/2u∥2L2(Mh)

.

Let us now consider the term in Ω2, which gives

|⟨Ω2u, u⟩L2(Mh)| ≲ ∥⟨x⟩
2Ω2∥L∞∥(m2 − ∆̃h)

1/2u∥2L2(Mh)
.

According to Lemma 2.4, it finally follows

∥⟨x⟩B∥L∞ ≪ 1 ,

∥⟨x⟩2Ω2∥L∞ ≤ ∥⟨x⟩2(∂iBi +BiBi − Γj i
iBj +

1

4
Rh)∥L∞ ≪ 1

and hence we conclude

∥(m2 − ∆̃h)
1/2u∥2L2(Mh)

≲ ∥Dmu∥2L2(Mh)
≲ ∥(m2 − ∆̃h)

1/2u∥2L2(Mh)
.
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2.5 Strichartz estimates for the Dirac equation – Proof

We are finally ready to prove the Strichartz estimates of Theorem 2.5.

Proof. We recall the Duhamel formulation (2.6) of the solution

u(t, x) = Ẇm(t)u0 − iWm(t)Dmu0 +
∫ t

0

Wm(t− s)
(
Ω1(u)(s) + Ω2u(s)

)
ds ,

where

Wm(t) =
sin
(
t

√
m2 − ∆̃h

)
√
m2 − ∆̃h

, Ẇm(t) =
d

dt
Wm(t) ,

and

Ω1(u) = 2Bj∂ju , Ω2 = ∂jBj +BjBj − Γj k
kBj +

1

4
Rh .

We start with the massless case. Thanks to Theorem 2.7 and Christ–Kiselev

Lemma [CK01], we only need to study the inhomogeneous term. Hence,∥∥∥∥∥
∫ T

0

Wm(t− s)
(
Ω1(u)(s) + Ω2u(s)

)
ds

∥∥∥∥∥
Lq
t Ḣ

1−s
r (Mh)

≲

∥∥∥∥∥eit
√

−∆̃h√
−∆̃h

∫ T

0

e−is
√

−∆̃h

(
Ω1(u)(s) + Ω2u(s)

)
ds

∥∥∥∥∥
Lq
t Ḣ

1−s
r (Mh)

≲

∥∥∥∥∥
∫ T

0

e−is
√

−∆̃h

(
Ω1(u)(s) + Ω2u(s)

)
ds

∥∥∥∥∥
L2(Mh)

.

Using the dual form of the wave local smoothing estimate in Theorem 2.9,∥∥∥∥∥
∫ T

0

e−is
√

−∆̃h

(
Ω1(u)(s) + Ω2u(s)

)
ds

∥∥∥∥∥
L2(Mh)

≲ ∥⟨x⟩1/2+(Ω1(u) + Ω2u)∥L2
tL

2(Mh) .

Combining the local smoothing estimate for the Dirac equation of Theorem 2.8

and Lemma 2.4, we control both Ω1 and Ω2 :

∥⟨x⟩1/2+Ω1(u)∥L2
tL

2(Mh) ≲ ∥⟨x⟩
1/2+Bj∂ju∥L2

tL
2(Mh)

≲ ∥⟨x⟩1+B∥L∞
x
∥⟨x⟩−1/2−∇̃u∥L2

tL
2(Mh) ≲ ∥Du0∥L2(Mh)

and

∥⟨x⟩1/2+Ω2u∥L2
tL

2(Mh) ≲ ∥⟨x⟩
2+Ω2∥L∞

x
∥⟨x⟩−3/2−u∥L2

tL
2(Mh) ≲ ∥Du0∥L2(Mh) .

Finally, using Lemma 2.10, the first case is proven

∥u∥Lq
t Ḣ

1−s
r (Mh)

≲ ∥u0∥Ḣ1(Mh)
+ ∥Du0∥L2(Mh) ≲ ∥u0∥Ḣ1(Mh)

.
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Let us focus now on the massive case. As before, thanks to Theorem 2.7,

we restrict to the inhomogeneous term and we can apply Christ–Kiselev Lemma

[CK01] since q > 2. Hence,∥∥∥∥∥
∫ T

0

Wm(t− s)
(
Ω1(u)(s) + Ω2u(s)

)
ds

∥∥∥∥∥
Lq
tH

1/2−s
r (Mh)

≲

∥∥∥∥∥ eit
√
m2−∆̃h√

m2 − ∆̃h

∫ T

0

e−is
√
m2−∆̃h

(
Ω1(u)(s) + Ω2u(s)

)
ds

∥∥∥∥∥
Lq
tH

1/2−s
r (Mh)

≲

∥∥∥∥∥
∫ T

0

e−is
√
m2−∆̃h

(
Ω1(u)(s) + Ω2u(s)

)
ds

∥∥∥∥∥
H−1/2(Mh)

.

Using the dual form of the local smoothing estimate in Theorem 2.9,∥∥∥∥∥
∫ T

0

e−is
√
m2−∆̃h

(
Ω1(u)(s) + Ω2u(s)

)
ds

∥∥∥∥∥
H−1/2(Mh)

≲ ∥⟨x⟩(Ω1(u) + Ω2u)∥L2
tL

2(Mh) .

Combining the local smoothing estimate for the Dirac equation of Theorem 2.8

and Lemma 2.4, we control both Ω1(u) and Ω2:

∥⟨x⟩Ω1(u)∥L2
tL

2(Mh) ≲ ∥⟨x⟩B
j∂ju∥L2

tL
2(Mh)

≲ ∥⟨x⟩3/2+B∥L∞
x
∥⟨x⟩−1/2−∇̃u∥L2

tL
2(Mh) ≲ ∥Dmu0∥L2(Mh)

and

∥⟨x⟩Ω2u∥L2
tL

2(Mh) ≲ ∥⟨x⟩
5/2+Ω2∥L∞

x
∥⟨x⟩−3/2−u∥L2

tL
2(Mh) ≲ ∥Dmu0∥L2(Mh) .

Finally, using Lemma 2.10 and Sobolev embeddings, also the second case follows

∥u∥
Lq
tH

1/2−s
r (Mh)

≲ ∥u0∥H1/2(Mh)
+ ∥Dmu0∥H−1/2(Mh)

+ ∥Dmu0∥L2(Mh) ≲ ∥u0∥H1(Mh) .



Chapter 3

Einstein–Dirac system with spherical

symmetry

The following chapter is devoted to the derivation of the Einstein–Dirac sys-

tem, which links Curved Quantum Field Theory and General Relativity. In par-

ticular, we present an explicit model describing the interaction between gravity

and Dirac particles in the spherically symmetric case. Part of the calculations

presented below were inspired by [FSY99].

The purpose of this chapter is to define the starting point for the next doctoral

studies. In fact, we intend to present a series of open problems, to be addressed in

the future, concerning the Einstein–Dirac system under this geometric assump-

tion, such as the well-posedness issue and stability of solutions.

3.1 Derivation of the Einstein–Dirac system

So far, when dealing with the curved Dirac equation, we have treated the un-

derlying manifold (M, g) as something given a priori. However, we know thanks

to Einstein’s works, between 1905 [Ein05] and 1915 [Ein15], that matter affects

space and time. Hence, gravity is no longer treated as a force, but as inducing a

deformation of the spacetime manifold, whose curved geometry determines the

geodesic flows followed by particles.

In standard General Relativity, the coupled system describing this phenomenon

is given by the Euler–Lagrange equations associated to the Einstein–Hilbert ac-

tion S[ψ, g], where g is the metric and ψ the mass field. However, due to the spin

structure, if we want to preserve local Lorentz invariance, we need to simulta-

43
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neously vary the vierbein (and the related spin connection), in place of g. This

correction yields the following action (cf. [Che22] for the massless case),

S[ψ, eµ a] : = SG[eµ a] + SM [ψ, eµ a]

=

∫
Rg e d

4x+

∫ [ i
2

(
ψγµDµψ −Dµψγ

µψ
)
−mψψ

]
e d4x ,

where Rg is the scalar curvature associated to g, ψ = ψ∗γ0 denotes the adjoint

spinor (recall Definition 1.14) and e := | det(ea µ)|. Notice that, using gµν =

ea µ ηab e
b
ν , we recover e =

√
| det g| . (All the physical constants have been nor-

malized for readability.)

The term SG[eµ a] corresponds to the action of the gravitional field, while

SM [ψ, eµ a] determines the action of the mass Dirac field. Now, to obtain the

Einstein–Dirac system, we need to compute the Euler–Lagrange equations

δeSG + δeSM = 0 ,

δψSM = 0 ,

where δe and δψ denote respectively the variation with respect to the vierbein

and the Dirac field. We briefly outline the main computations leading to the final

system: for more details, see for instance [Yep11].

Let us begin with the variation with respect to the field ψ, which yields the

so-called equation of motion. Recall that, due to the skew-symmetry of Dµ , to

Dµψ = Dµψ and to the fact that the γµ are covariantly constant (see Theorem 1.7),

we have ∫
Mg

ψ1γ
µDµψ2 = −

∫
Mg

Dµψ1γ
µψ2 , for any spinors ψ1, ψ2 .

Thus, we deduce

0 = δψSM =

∫ [
δψ(iγµDµψ −mψ)− (iDµψγ

µ +mψ)δψ
]
e d4x .

Using δψ = δψ, we note that the second addend is nothing but the adjoint of the

first one and thus we recover, as expected, the Dirac equation

iγµDµψ −mψ = 0 . (3.1)

On the other hand, varying the vierbein, we obtain the Einstein equations. If

we considered δgSG, after standard computations we would find

δgSG = −
∫ [

Rµν − 1

2
gµνRg

]
δgµν

√
| det g| d4x .
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Now, from

δ(ea µ ea
ν) = δ(ebµ η

ab eaλ g
λν) = δ(gµλg

λν) = δ(δνµ) = 0 ,

we deduce

δ(ea µ) ea
ν = −ea µ δ(ea ν) .

Hence, we can express the variation δg in terms of the vierbein as

δgµν = δ(ea µ ηab e
b
ν) = δ(ea µ) eaν + ebµ δ(e

b
ν) = −ea µ δeaν − δeaµea ν

= −(gνλea µ + gµλe
a
ν)δea

λ ,

and consequently

δeSG =

∫ [(
Rµ
λ −

1

2
δµλRg

)
ea µ

]
δea

λ
√
| det g| d4x .

Multiplying the quantity in round brackets by gλν , we obtain the Einstein tensor

Gµν := Rµν − 1

2
gµνRg .

Regarding δeSM , assuming that ψ satisfies the on shell condition (that is, it solves

its own equation of motion), the variation reduces to

δeSM =

∫
i

2

(
ψγaDµψ −Dµψγ

aψ
)
δea

µ
√
| det g| d4x .

We define the Belifante–Rosenfeld energy-momentum tensor as

T a µ :=
i

2

(
ψγaDµψ −Dµψγ

aψ
)
,

which reads in curved indices as

Tµν : =
1

2

(
ea µ ηab T

b
ν + ea ν ηab T

b
µ

)
=
i

4

(
ψγµDνψ −Dνψγµψ

)
+
i

4

(
ψγνDµψ −Dµψγνψ

)
.

Hence, we have found

δeS[ψ, eµ a] =
∫ [(

Rµ
λ −

1

2
δµλRg

)
ea µ + T a λ

]
δea

λ
√
| det g| d4x = 0 .

Since the variation of the vierbein field does not vanish in general, me must im-

pose that the quantity in square brackets is zero. Multiplying it by gλν and noting

that ea µ ̸= 0, we deduce the Einstein equations under the Dirac action

Gµν + T µν = 0 . (3.2)

Finally, coupling (3.1) and (3.2), we obtain the Einstein–Dirac system

Gµν + T µν = 0 ,

iγµDµψ = mψ .
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Remark 3.1. If ψ solves the Dirac equation (and consequently ψ satisfies the adjoint

equation iDµψγ
µ = −mψ), the trace of T can be easily computed. Indeed,

trgT = gµνTµν =
i

2

(
ψγµDµψ −Dµψγ

µψ
)
= mψψ .

Furthermore, if the Einstein equations also hold, then it follows

trgG = gµνGµν = −Rg = −trgT ,

which means Rg = mψψ . Note that when m = 0, the energy–momentum tensor

is hence traceless, and consequently Rg = 0 .

Remark 3.2 (Einstein Vacuum Equations). In general, one can couple the Ein-

stein equations with other matter fields, obtaining different systems, such as the

Einstein–Maxwell or the Einstein–Klein–Gordon systems.

On the other hand, in absence of an external field, the energy-momentum tensor

is zero and thus one obtains the Einstein Vacuum Equations (EVE),

Rµν = 0 . (3.3)

We stress that the zero scalar curvature constraint, found in the previous remark,

is not sufficient to ensure that the entire curvature tensor is zero and thus it does

not imply the Einstein Vacuum Equations.

Furthermore, we mention that, although this system of equations may seem quite

simple, it is actually very rich. Indeed, in addition to the trivial Minkowski metric

η, also spacetime metrics modelizing black holes solve (3.3). For brevity, we limit

ourselves to stating the Schwarzschild metric

gM(t, r, θ, ϕ) :=
(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2 θ dϕ2) .

3.2 Spherically symmetric manifolds

In this section, we present the geometric hypotheses we make on the mani-

fold and we compute the quantities needed to explicitly write the Einstein–Dirac

system.

In particular, we assume that the Lorentzian manifold (M, g) is endowed

with a time-dependent, decoupling and spherically symmetric metric, that is (cf.

[FSY99, Section 8])

g(t, r, θ, ϕ) = F 2(t, r)dt2 −G2(t, r)dr2 − r2(dθ2 + sin2 θ dϕ2) , (3.4)
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where F,G ∈ C∞(R2) . Hence, in coordinates,

gµν = diag
(
F 2(t, r),−G2(t, r),−r2,−r2 sin2 θ

)
,

gµν = diag
( 1

F 2(t, r)
,− 1

G2(t, r)
,− 1

r2
,− 1

r2 sin2 θ

)
.

We will see that, thanks to the spherical symmetry, raising an index simplifies the

angular dependence. Therefore, we are interested in writing the Einstein–Dirac

system in the following form

T µν = −Gµ
ν ,

iγµDµψ = mψ .

We begin by giving the formulas of the Christoffel symbols.

Lemma 3.1. Let g be a metric of the form (3.4) and Γσµν be the associated affine connection

coefficients. Then, the non-vanishing Christoffel symbols are given by

Γ0
00 =

∂tF

F
, Γ0

01 = Γ0
10 =

∂rF

F
, Γ0

11 =
G∂tG

F 2
,

Γ1
00 =

F ∂rF

G2
, Γ1

01 = Γ1
10 =

∂tG

G
, Γ1

11 =
∂rG

G
, Γ1

22 = −
r

G2
, Γ1

33 = −
r sin2 θ

G2
,

Γ2
12 = Γ2

21 =
1

r
, Γ2

33 = − sin θ cos θ ,

Γ3
13 = Γ3

31 =
1

r
, Γ3

23 = Γ3
32 = cot θ .

Proof. If follows from direct computations.

Therefore, we can now compute the Ricci curvature tensor and the scalar cur-

vature.

Lemma 3.2. Let g be a metric of the form (3.4) and Rβµ be the Ricci curvature tensor.

Then, the non-vanishing components are given by

R00 = −
F∂2rF −G∂2tG

G2
+
F (∂rF )(∂rG)

G3
− (∂tF )(∂tG)

FG
− 2

F (∂rF )

rG2
,

R11 = −
G∂2tG− F∂2rF

F 2
+
G(∂tG)(∂tF )

F 3
− (∂rF )(∂rG)

FG
− 2

∂rG

rG
,

R22 = −
r∂rG

G3
+
r∂rF

FG2
+

1

G2
− 1 ,

R33 = sin2 θ R22 ,

R01 = −2
∂tG

rG
.

As a consequence, the scalar curvature Rg := gαβRαβ writes

Rg =
2

FG

(∂2tG
F
− ∂2rF

G
+

(∂rF )(∂rG)

G2
− (∂tF )(∂tG)

F 2

)
+

4

rG2

(∂rG
G
− ∂rF

F

)
+

2

r2

(
1− 1

G2

)
.
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Proof. Recalling that the Ricci curvature tensor is given by

Rµν = Rα
µαν := ∂νΓ

α
αµ − ∂αΓαµν + ΓασνΓ

σ
αµ − ΓαασΓ

σ
µν ,

we proceed by cases. Starting from R00, we have

R00 = ∂t(Γ
0
00 + Γ1

01)− ∂tΓ0
00 − ∂rΓ1

00 + Γ0
00Γ

0
00 + 2Γ1

00Γ
0
01 + Γ1

01Γ
1
01

− Γ0
00(Γ

0
00 + Γ1

01)− Γ1
00(Γ

0
01 + Γ1

11 + Γ2
12 + Γ3

13)

= ∂tΓ
1
01 − ∂rΓ1

00 + Γ1
00Γ

0
01 + Γ1

01Γ
1
01 − Γ0

00Γ
1
01 − Γ1

00(Γ
1
11 + Γ2

12 + Γ3
13)

=
G∂2tG− (∂tG)

2

G2
− ((∂rF )

2 + F∂2rF )G
2 − 2FG(∂rF )(∂rG)

G4

+
(∂rF )

2

G2
+

(∂rG)
2

F 2
− (∂tF )(∂tG)

FG
− F∂rF

G2

(∂rG
G

+
2

r

)
=
G∂2tG− F∂2rF

G2
+
F (∂rF )(∂rG)

G3
− (∂tF )(∂tG)

FG
− 2

F (∂rF )

rG2
.

Then, passing to R11,

R11 = ∂r(Γ
0
01 + Γ1

11 + Γ2
12 + Γ3

13)− ∂tΓ0
11 − ∂rΓ1

11 + Γ0
01Γ

0
01 + Γ1

01Γ
0
11 + Γ0

11Γ
1
01

+ Γ1
11Γ

1
11 + Γ2

12Γ
2
12 + Γ3

13Γ
3
13 − Γ0

11(Γ
0
00 + Γ1

10)− Γ1
11(Γ

0
01 + Γ1

11 + Γ2
12 + Γ3

13)

= ∂r(Γ
0
01 + Γ2

12 + Γ3
13)− ∂tΓ0

11 + Γ0
01Γ

0
01 + Γ0

11Γ
1
01 + Γ2

12Γ
2
12 + Γ3

13Γ
3
13

− Γ0
11Γ

0
00 − Γ1

11(Γ
0
01 + Γ2

12 + Γ3
13)

=
F∂2rF − (∂rF )

2

F 2
− 2

r2
− ((∂tG)

2 +G∂2tG)F
2 − 2FG(∂tF )(∂tG)

F 4

+
(∂rF )

2

F 2
+

(∂tG)
2

F 2
+

2

r2
− G(∂tF )(∂tG)

F 3
− ∂rG

G

(∂rF
F

+
2

r

)
=
F∂2rF −G∂2tG

F 2
+
G(∂tG)(∂tF )

F 3
− (∂rF )(∂rG)

FG
− 2

∂rG

rG
.

The components R22 and R33 are respectively given by

R22 = ∂θΓ
3
23 − ∂rΓ1

22 + 2Γ2
12Γ

1
22 + Γ3

23Γ
3
23 − Γ1

22(Γ
0
01 + Γ1

11 + Γ2
12 + Γ3

13)

= ∂θΓ
3
23 − ∂rΓ1

22 + Γ2
12Γ

1
22 + Γ3

23Γ
3
23 − Γ1

22(Γ
0
01 + Γ1

11 + Γ3
13)

= − 1

sin2 θ
− 2

r∂rG

G3
+

1

G2
− 1

G2
+ cot2 θ +

r∂rF

FG2
+
r∂rG

G3
+

1

G2

= −r∂rG
G3

+
r∂rF

FG2
+

1

G2
− 1 ;

R33 = −∂rΓ1
33 − ∂θΓ2

33 + 2Γ3
13Γ

1
33 + 2Γ3

23Γ
2
33 − Γ1

33(Γ
0
01 + Γ1

11 + Γ2
12 + Γ3

13)− Γ3
23Γ

2
33

= −∂rΓ1
33 − ∂θΓ2

33 + Γ3
13Γ

1
33 + Γ3

23Γ
2
33 − Γ1

33(Γ
0
01 + Γ1

11 + Γ2
12)

= −(sin2 θ)
2rG(∂rG)−G2

G4
+ (cos2 θ − sin2 θ)− sin2 θ

G2
− cos2 θ

+
r sin2 θ

G2

(∂rF
F

+
∂rG

G
+

1

r

)
= sin2 θ

(
− r∂rG

G3
+
r∂rF

FG2
+

1

G2
− 1
)
= sin2 θR22 .
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The non-diagonal components write

R01 = ∂r(Γ
0
00 + Γ1

01)− ∂tΓ0
01 − ∂rΓ1

01 ++Γ0
01Γ

0
00 + Γ1

01Γ
0
01 + Γ0

11Γ
1
00 + Γ1

11Γ
1
01

− Γ0
00Γ

0
01 − Γ1

01Γ
0
01 − Γ1

01(Γ
0
01 + Γ1

11 + Γ2
12 + Γ3

13)

= ∂rΓ
0
00 − ∂tΓ0

01 + Γ0
11Γ

1
00 − Γ1

01Γ
0
01 − Γ1

01(Γ
2
12 + Γ3

13)

=
F∂2rtF − (∂rF )(∂tF )

F 2
− F∂2trF − (∂rF )(∂tF )

F 2
+

(∂tG)(∂rF )

FG

− (∂tG)(∂rF )

FG
− 2

∂tG

rG

= −2∂tG
rG

,

Rµν = 0 , for µ ̸= ν and (µ, ν) ̸= (0, 1), (1, 0) .

From the above computations, it follows

Rg =
1

F 2
R00 −

1

G2
R11 −

1

r2
R22 −

1

r2 sin2 θ
R33

=
2

FG

(∂2tG
F
− ∂2rF

G
+

(∂rF )(∂rG)

G2
− (∂tF )(∂tG)

F 2

)
+

4

rG2

(∂rG
G
− ∂rF

F

)
+

2

r2

(
1− 1

G2

)
.

Therefore, thanks to Lemma 3.2, we can evaluate the Einstein tensor Gµν =

Rµν − 1
2
Rggµν ,

G00 = −2
F 2 ∂rG

rG3
+
F 2

r2

( 1

G2
− 1
)
,

G01 = −2
∂tG

rG
,

G11 = −2
∂rF

rF
+

1

r2

(
G2 − 1

)
,

G22 =
r2

FG

(∂2tG
F
− ∂2rF

G
+

(∂rF )(∂rG)

G2
− (∂tF )(∂tG)

F 2

)
+

r

G2

(∂rG
G
− ∂rF

F

)
,

G33 = sin2 θ G22 .

Raising up one index, the angular dependence in θ simplifies and we finally

obtain the first ingredient of the Einstein–Dirac system

G0
0 = −2

∂rG

rG3
+

1

r2

( 1

G2
− 1
)
,

G0
1 = −2

∂tG

rF 2G
,

G1
1 = 2

∂rF

rFG2
+

1

r2

( 1

G2
− 1
)
,

G2
2 = G3

3 = −
1

FG

(∂2tG
F
− ∂2rF

G
+

(∂rF )(∂rG)

G2
− (∂tF )(∂tG)

F 2

)
− 1

rG2

(∂rG
G
− ∂rF

F

)
.

(⋆1)
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We conclude this section by presenting the choice of the vierbein and the con-

sequent behaviour of the spin connection.

In order to have a vierbein ea µ satisfying gµν = ea µ ηab e
b
ν , we can choose

ea µ(t, r, θ, ϕ) := diag
(
F (t, r), G(t, r), r, r sin θ

)
.

Therefore, defining ea := ea µdx
µ, we obtain

e0 = F dt , e1 = Gdr , e2 = r dθ , e3 = r sin θ dϕ .

Writing their exterior derivatives, we have

de0 = ∂rF dr ∧ dt = −
∂rF

FG
e0 ∧ e1 ,

de1 = ∂tGdt ∧ dr =
∂tG

FG
e0 ∧ e1

de2 = dr ∧ dθ = 1

rG
e1 ∧ e2 ,

de3 = sin θ dr ∧ dϕ+ r cos θ dθ ∧ dϕ =
1

rG
e1 ∧ e3 + cot θ

r
e2 ∧ e3 .

Letting ωa b := ωµ
a
bdx

µ be the spin-one form, we recall the the characterization

of the spin connection, given in Section 1.5,

dea + ωa b ∧ eb = 0 , for a = 0, 1, 2, 3 .

Solving the linear system defined by this family of equations, one gets

ω0
1 =

∂rF

FG
e0 +

∂tG

FG
e1 , ω1

2 = −
1

rG
e2 , ω1

3 = −
1

rG
e3 , ω2

3 = −
cot θ

r
e3 .

Hence, passing from the orthonormal frame to the standard one and raising a flat

index with η, we completely determine the spin connection.

Lemma 3.3. Let g be a metric of the form (3.4), ea µ the vierbein defined as above and

ωµ
ab be the associated spin connection coefficients. Then, the non-vanishing components

are given by

ω0
01 = −∂rF

G
= −ω0

10 , ω1
01 = −∂tG

F
= −ω1

10 , ω2
12 =

1

G
= −ω2

21 ,

ω3
13 =

sin θ

G
= −ω3

31 , ω3
23 = cos θ = −ω3

32 .

3.3 Dirac operator with spherical symmetry

Now that the spin connection has been computed, we can focus on the Dirac

equation. In this section we show how to exploit the radial symmetry of the
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spacetime to separate the variables and simplify the angular dependence. To

this end, we introduce partial wave subspaces and spherical harmonics and we

”decompose” the Dirac operator in a sum of ”radial” operators. This approach is

widely discussed in [Tha13, Section 4.6], [CH96] and [CdS19a].

To implement this strategy, from now on we will opt for a different choice for

the Dirac matrices, which simply consists of a permutation of the γj , j = 1, 2, 3 :

γt := γ0 , γr := γ3 , γθ := γ1 , γϕ := γ2 . (3.5)

Remark 3.3 (Dirac operator on S2). We will see in a moment the importance of this

change. Thanks to this choice, we will recover the Dirac operator on the sphere

−i∇̂, for which many diagonalization results are available.

Recalling the definition of the spinorial covariant derivative

Dµ = ∂µ +
1
8
ωµ

ab[γa, γb] , we easily obtain

D0 = ∂t +
1

8
ω0

ab[γa, γb] = ∂t −
∂rF

2G
γtγr ,

D1 = ∂r +
1

8
ω1

ab[γa, γb] = ∂r −
∂tG

2F
γtγr ,

D2 = ∂θ +
1

8
ω2

ab[γa, γb] = ∂θ +
1

2G
γrγθ ,

D3 = ∂ϕ +
1

8
ω3

ab[γa, γb] = ∂ϕ +
1

2

(sin θ
G

γrγϕ + cos θγθγϕ

)
,

while the spacetime-dependent Dirac matrices γµ = ea
µγa are given by

γt =
1

F
γt , γr =

1

G
γr , γθ =

1

r
γθ , γϕ =

1

r sin θ
γϕ .

Therefore, the Dirac equation iγµDµψ = mψ with spherical symmetry writes

i
[ 1
F

(
γt∂t +

∂rF

2G
γr
)
+

1

G

(
γr∂r +

∂tG

2F
γt
)
+

1

r

(
γθ∂θ +

1

2G
γr
)

+
1

r sin θ

(
γϕ∂ϕ +

1

2

(sin θ
G

γr + cos θγθ
))]

ψ = mψ ,

which yields, rearranging the terms,

i
[ 1
F
γt
(
∂t +

∂tG

2G

)
+

1

G
γr
(
∂r +

∂rF

2F
+

1

r

)
+

1

r

(
γθ
(
∂θ +

cot θ

2

)
+

1

sin θ
γϕ∂ϕ

)]
ψ = mψ .

Multiplying the equation by Fγt and defining αj := γtγj , for j = r, θ, ϕ, we find

the following Schrödinger form

i∂tψ =
[
− i∂tG

2G
− iαrF

G

(
∂r +

∂rF

2F
+

1

r

)
− iF

r

(
αθ
(
∂θ +

cot θ

2

)
+

1

sin θ
αϕ∂ϕ

)
+ γtFm

]
ψ .
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If we define the angular part of the Dirac operator as

DS2 := αθ
(
− i∂θ −

i cot θ

2

)
− αϕ i

sin θ
∂ϕ ,

the Dirac equation rewrites

i∂tψ = (D + γtFm)ψ , where D := −i∂tG
2G
− iαrF

G

(
∂r +

∂rF

2F
+

1

r

)
+
F

r
DS2 .

Now, if we recall the Dirac operator on the sphere S2

−i∇̂ := −iσ1
(
∂θ +

cot θ

2

)
− i σ

2

sin θ
∂ϕ ,

and recalling our choice (3.5), we obtain as desired

DS2 = −iα1
(
∂θ +

cot θ

2

)
− i α

2

sin θ
∂ϕ =

(
−i∇̂

−i∇̂

)
.

Therefore, we have rewritten the Dirac equation as i∂tψ = HF,Gψ , where

HF,G =

 −i∂tG
2G

+ Fm −iσ3 F
G

(
∂r +

∂rF
2F

+ 1
r

)
+ F

r
(−i∇̂)

−iσ3 F
G

(
∂r +

∂rF
2F

+ 1
r

)
+ F

r
(−i∇̂) −i∂tG

2G
− Fm

 .

In this way, we managed to isolate the radial and the angular components,

which are now expressed in terms of the operator−i∇̂. As anticipated, this allows

us to take advantage of its diagonalization properties, which are stated in [AJ02].

Indeed, we have that −i∇̂ diagonalizes into

−i∇̂Γ±
j,mj

= ±λjΓ±
j,mj

,

where j ∈ 1
2
+N ,mj ∈ 1

2
+Z with−j ≤ mj ≤ j and λj = 1

2
+j. The two-component

eingenfuctions Γ±
j,mj

can be chosen such that

Γ±
j,mj

= ±iσ3Γ∓
j,mj
⇔ −iσ3Γ±

j,mj
= ±Γ∓

j,mj

and such that they form an orthonormal basis of L2(S2,C2),

⟨Γε1j1,mj1
,Γε2j2,mj2

⟩ = δε1,ε2δj1,j2δmj1
,mj2

.

Defining E±j,mj
:= 1√

2
(Γ+

j,mj
±Γ−

j,mj
), we can construct an orthogonal basis ofL2(S2,C4),

which is given by

G+j,mj
:=

(
E+j,mj

0

)
, G−j,mj

:=

(
0

−E−j,mj

)
, F−

j,mj
:=

(
E−j,mj

0

)
, F+

j,mj
:=

(
0

E+j,mj

)
.
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Hence, if we define the following spaces,

H̃−
j,mj

:= Vect(G+j,mj
,G−j,mj

) , H̃+
j,mj

:= Vect(F−
j,mj

,F+
j,mj

) ,

we obtain the orthogonal decomposition

L2(S2,C4) ∼=
⊕
j,mj

(H̃+
j,mj
⊕ H̃−

j,mj
) .

As reported in [AJ02], the functions E±j,mj
(and consequently F±

j,mj
,G±j,mj

) can be

expressed in terms of the spherical harmonics Y m
l , up to a local rotation R1 =

ei
θ
2
σ2ei

ϕ
2
σ3 :

E+j,mj
= R1

√ j+mj

2j
Y
m−

j

j−√
j−mj

2j
Y
m+

j

j−

 , E−j,mj
= R1

 √
j−mj+1

2j+2
Y
m−

j

j+

−
√

j+mj+1

2j+2
Y
m+

j

j+

 , (3.6)

where j± = j ± 1
2

and m±
j = mj ± 1

2
.

Remark 3.4 (Spherical harmonics Y m
l ). Similarly to einθ spanning the space of

complex-valued functions on the circle, spherical harmonics Y m
l (θ, ϕ) define a

complete orthonormal family in L2(S2,C2). They can be expressed in terms of

Legendre polynomials

Y m
l (θ, ϕ) :=

√
2l + 1

4π

(l −m)!

(l +m)!
eimϕPm

l (cos θ) , for m ∈ {−l,−l + 1, ..., l − 1, l},

where Pm
l (x) := (−1)m

2ll!
(1 − x2)m/2 dm+1

dxm+1 (x
2 − 1)l . One can use these functions to

define the canonical partial wave subspaces Hj,mj ,kj , with kj = ±λj , in Thaller’s

book and orthogonally decompose L2(S2,C4) . Thanks to (3.6), we infer that

Hj,mj ,kj = (R∗
1 ⊕R∗

1)H̃±
j,mj

and for this reason, we will also call H̃±
j,mj

partial wave subspaces. For more

details regarding spherical harmonics and their application to the Dirac operator

on the sphere, see for instance [Tha13, Section 4.6].

The above construction is extremely useful to simplify the angular depen-

dence, but it hides a crucial subtlety, namely that in general the Dirac operator

does not preserve radial spinors. Indeed, as proven in [Cac11, Section 5], the par-

tial wave decomposition is preserved by the nonlinear dynamics provided the

initial condition has an angular part belonging to one of the four H̃±
1/2,m1/2

spaces.

For this reason, to construct our model, we restrict to H̃−
1/2,1/2 = Vect(G+1/2,1/2,G

−
1/2,1/2).
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We conclude this section by computing explicitly the Dirac equation in this

latter case. Using eiθσj = cos θI + i sin θσj , the rotation is given by

R1 =

(
ei

ϕ
2 cos θ

2
e−i

ϕ
2 sin θ

2

−eiϕ2 sin θ
2

e−i
ϕ
2 cos θ

2

)
Therefore,

E+1/2,1/2 = R1

(
Y 0
0

0

)
=

1

2
√
π
R1

(
1

0

)
=

ei
ϕ
2

2
√
π

(
cos θ

2

− sin θ
2

)
,

E−1/2,1/2 = R1

 1√
3
Y 0
1

−
√

2
3
Y 1
1

 =
1

2
√
π
R1

(
cos θ

eiϕ sin θ

)
=

ei
ϕ
2

2
√
π

(
cos θ

2

sin θ
2

)
from which we deduce

G+1/2,1/2 =

(
E+1/2,1/2

0

)
=

ei
ϕ
2

2
√
π


cos θ

2

− sin θ
2

0

0

 , G−1/2,1/2 =

(
0

−E−1/2,1/2

)
=

ei
ϕ
2

2
√
π


0

0

− cos θ
2

− sin θ
2

 .

Hence, the generic function ψ ∈ L2(F (t, r)G(t, r)r2dt dr)⊗H̃−
1/2,1/2 can be writ-

ten as

ψ(t, r, θ, ϕ) := u+(t, r)G+1/2,1/2(θ, ϕ) + u−(t, r)G−1/2,1/2(θ, ϕ) =
ei

ϕ
2

2
√
π


u+(t, r) cos

θ
2

−u+(t, r) sin θ
2

−u−(t, r) cos θ2
−u−(t, r) sin θ

2

 .

Now, let us compute the action of the Dirac operator on a spinor of this type. We

start with the first addend

γtD0ψ =
1

F

(
γt∂t +

∂rF

2G
γr
)
ψ =

1

F

(
γ0∂t +

∂rF

2G
γ3
)
ψ

=
ei

ϕ
2

2
√
πF



∂tu+ cos θ

2

−∂tu+ sin θ
2

∂tu− cos θ
2

∂tu− sin θ
2

+
∂rF

2G


−u− cos θ

2

u− sin θ
2

−u+ cos θ
2

−u+ sin θ
2


 .

The second term is then given by

γrD1ψ =
1

G

(
γr∂r +

∂tG

2F
γt
)
ψ =

1

G

(
γ3∂r +

∂tG

2F
γ0
)
ψ

=
ei

ϕ
2

2
√
πG



−∂ru− cos θ

2

∂ru− sin θ
2

−∂ru+ cos θ
2

−∂ru+ sin θ
2

+
∂tG

2F


u+ cos θ

2

−u+ sin θ
2

u− cos θ
2

u− sin θ
2


 .
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Passing to the two angular components, we find

γθD2ψ =
1

r

(
γθ∂θ +

1

2G
γr
)
ψ =

1

r

(
γ1∂θ +

1

2G
γ3
)
ψ

=
ei

ϕ
2

4
√
πr



−u− cos θ

2

u− sin θ
2

u+ cos θ
2

u+ sin θ
2

+
1

G


−u− cos θ

2

u− sin θ
2

−u+ cos θ
2

−u+ sin θ
2


 ,

γϕD3ψ =
1

r sin θ

(
γϕ∂ϕ +

sin θ

2G
γr +

cos θ

2
γθ
)
ψ =

1

r sin θ

(
γ2∂ϕ +

sin θ

2G
γ3 +

cos θ

2
γ1
)
ψ

=
ei

ϕ
2

4
√
πr sin θ



−u− sin θ

2

u− cos θ
2

u+ sin θ
2

u+ cos θ
2

+
sin θ

G


−u− cos θ

2

u− sin θ
2

−u+ cos θ
2

−u+ sin θ
2

+ cos θ


−u− sin θ

2

−u− cos θ
2

u+ sin θ
2

−u+ cos θ
2


 .

Finally, imposing ψ to solve the Dirac equation γµDµψ = −imψ, we obtain a

system of two linearly independent PDEs with no angular dependence,

1

F
∂tu+ −

1

G
∂ru− =

(
− ∂tG

2FG
− im

)
u+ +

( ∂rF
2FG

+
1 +G

rG

)
u− ,

− 1

G
∂ru+ +

1

F
∂tu− =

( ∂rF
2FG

+
1−G
rG

)
u+ +

(
− ∂tG

2FG
+ im

)
u− .

(⋆2)

Remark 3.5 (Comparison with the flat case). Notice that taking F = 1, G = 1

reduces (M, g) to the standard Minkowski space. Hence, if we define

ψ+(t, r) := ru+(t, r) , ψ−(t, r) := −iru−(t, r) ,

the Dirac equations on L2(r2dt dr)⊗ H̃−
1/2,1/2 become

i∂t

(
ψ+

ψ−

)
=

(
m −∂r − 1

r

∂r − 1
r

−m

)(
ψ+

ψ−

)
,

which is exactly [Tha13, Formula (4.129) with kj = −1 and null potential].

3.4 Energy-momentum tensor

The last remaining ingredient for writing the Einstein–Dirac system is the

energy-momentum tensor Tµν . Therefore, we proceed with the computation of

the non-vanishing components.
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Let us start with the component T00 = i
2

(
ψγtD0ψ−D0ψγtψ

)
: we treat the two

addends separately

ψγtD0ψ = Fψ∗
(
∂t +

∂rF

2G
αr
)
ψ = Fψ∗

(
∂t +

∂rF

2G
α3
)
ψ

=
F

4π

(
u+∂tu+ + u−∂tu−

)
+
F∂rF

2G
ψ∗α3ψ ,

D0ψγtψ = F
(
∂tψ

∗ +
∂rF

2G
ψ∗αr

)
ψ = F

(
∂tψ

∗ +
∂rF

2G
ψ∗α3

)
ψ

=
F

4π

(
∂tu+u+ + ∂tu−u−

)
+
F∂rF

2G
ψ∗α3ψ .

Hence,

T00 = −
F

4π
ℑ(u−∂tu− + u+∂tu+) .

Then, let us focus on T01 = i
4

(
ψγtD1ψ−D1ψγtψ

)
+ i

4

(
ψγrD0ψ−D0ψγrψ

)
. In this

case, computing preliminarly

ψγtD1ψ = Fψ∗
(
∂r +

∂tG

2F
αr
)
ψ = Fψ∗∂rψ +

∂tG

2
ψ∗α3ψ

=
F

4π

(
u+∂ru+ + u−∂ru−

)
+
∂tG

2
ψ∗α3ψ ,

D1ψγtψ = F
(
∂rψ

∗ψ +
∂tG

2F
ψ∗αrψ

)
= F∂rψ

∗ψ +
∂tG

2
ψ∗α3ψ

=
F

4π

(
∂ru+u+ + ∂ru−u−

)
+
∂tG

2
ψ∗α3ψ ,

ψγrD0ψ = −Gψ∗
(
αr∂t +

∂rF

2G

)
ψ = −Gψ∗α3∂tψ −

∂rF

2
ψ∗ψ

=
G

4π

(
u+∂tu− + u−∂tu+

)
− ∂rF

2
ψ∗ψ ,

D0ψγrψ = −G
(
∂tψ

∗αrψ +
∂rF

2G
ψ∗ψ

)
= −G∂tψ∗α3ψ − ∂rF

2
ψ∗ψ

=
G

4π

(
∂tu+u− + ∂tu−u+

)
− ∂rF

2
ψ∗ψ ,

we obtain

T01 = −
F

8π
ℑ(u+∂ru+ + u−∂ru−)−

G

8π
ℑ(u+∂tu− + u−∂tu+) .

Passing to T11 = i
2

(
ψγrD1ψ −D1ψγrψ

)
, we have

ψγrD1ψ = −Gψ∗
(
αr∂r +

∂tG

2F

)
ψ = −Gψ∗

(
α3∂r +

∂tG

2F

)
ψ

=
G

4π

(
u+∂ru− + u−∂ru+

)
− G∂tG

2F
ψ∗ψ ,

D1ψγrψ = −G
(
∂rψ

∗αr +
∂tG

2F
ψ∗
)
ψ = −G

(
∂rψ

∗α3 +
∂tG

2F
ψ∗
)
ψ

=
G

4π

(
∂ru+u− + ∂ru−u+

)
− G∂tG

2F
ψ∗ψ ,
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from which we deduce

T11 = −
G

4π
ℑ(u−∂ru+ + u+∂ru−) .

Let us now compute T22 = i
2

(
ψγθD2ψ −D2ψγθψ

)
:

ψγθD2ψ = −rψ∗
(
αθ∂θ +

1

2G
αr
)
ψ = −rψ∗

(
α1∂θ +

1

2G
α3
)
ψ

= −i r
4π
ℑ(u−u+)−

r

2G
ψ∗α3ψ ,

D2ψγθψ = −r
(
∂θψ

∗αθ +
1

2G
ψ∗αr

)
ψ

= −r
(
∂θψ

∗α1 +
1

2G
ψ∗α3

)
ψ = i

r

4π
ℑ(u−u+)−

r

2G
ψ∗α3ψ ,

hence,

T22 =
r

4π
ℑ(u−u+) .

Similarly, computing T33 = i
2

(
ψγϕD3ψ −D3ψγϕψ

)
, we find

ψγϕD3ψ = −r sin θψ∗
(
αϕ∂ϕ +

sin θ

2G
αr +

cos θ

2
αθ
)
ψ

= −r sin θψ∗
(
α2∂ϕ +

sin θ

2G
α3 +

cos θ

2
α1
)
ψ

= −ir sin
2 θ

4π
ℑ(u−u+)− (r sin θ)ψ∗

(sin θ
2G

α3 +
cos θ

2
α1
)
ψ ,

D3ψγϕψ = −r sin θ
(
∂ϕψ

∗αϕ +
sin θ

2G
ψ∗αr +

cos θ

2
ψ∗αθ

)
ψ

= −r sin θ
(
∂ϕψ

∗α2 +
sin θ

2G
ψ∗α3 +

cos θ

2
ψ∗α1

)
ψ

= i
r sin2 θ

4π
ℑ(u−u+)− (r sin θ)ψ∗

(sin θ
2G

α3 +
cos θ

2
α1
)
ψ ,

which yields

T33 =
r sin2 θ

4π
ℑ(u−u+) = sin2 θ T22 .

Finally, raising one index to simplify the angular dependence, we obtain

T 0
0 = − 1

4πF
ℑ(u−∂tu− + u+∂tu+) ,

T 0
1 = − 1

8πF
ℑ(u+∂ru+ + u−∂ru−)−

G

8πF 2
ℑ(u+∂tu− + u−∂tu+) ,

T 1
1 =

1

4πG
ℑ(u−∂ru+ + u+∂ru−) ,

T 2
2 = T 3

3 = − 1

4πr
ℑ(u−u+) .

(⋆3)
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Remark 3.6 (Trace of the energy-momentum tensor). We note that, if we impose

the two Dirac PDEs (⋆2), the first component can be rewritten as

T 0
0 = − 1

4πF

(F
G
ℑ(u−∂ru+ + u+∂ru−)−

2F

r
ℑ(u−u+) +mF (|u−|2 − |u+|2)

)
= − 1

4πG
ℑ(u−∂ru+ + u+∂ru−) +

1

2πr
ℑ(u−u+) +

m

4π
(|u+|2 − |u−|2) .

Hence, the trace of the energy-momentum is given by

trgT = T jj =
m

4π
(|u+|2 − |u−|2) = mψψ ,

consistently with Remark 3.1.

3.5 The final system and open questions

Finally, putting together (⋆1), (⋆2) and (⋆3), we write the Einstein–Dirac system

− 1

4πF
ℑ(u−∂tu− + u+∂tu+) = 2

∂rG

rG3
− 1

r2

( 1

G2
− 1
)
,

− 1

8πF
ℑ(u+∂ru+ + u−∂ru−)−

G

8πF 2
ℑ(u+∂tu− + u−∂tu+) = 2

∂tG

rF 2G
,

1

4πG
ℑ(u−∂ru+ + u+∂ru−) = −2

∂rF

rFG2
− 1

r2

( 1

G2
− 1
)
,

− 1

4πr
ℑ(u−u+) =

1

FG

(∂2tG
F
− ∂2rF

G
+

(∂rF )(∂rG)

G2
− (∂tF )(∂tG)

F 2

)
+

1

rG2

(∂rG
G
− ∂rF

F

)
,

1

F
∂tu+ −

1

G
∂ru− =

(
− ∂tG

2FG
− im

)
u+ +

( ∂rF
2FG

+
1 +G

rG

)
u− ,

− 1

G
∂ru+ +

1

F
∂tu− =

( ∂rF
2FG

+
1−G
rG

)
u+ +

(
− ∂tG

2FG
+ im

)
u− .

As already noticed in Remark 3.1, coupling the Einstein and the Dirac equa-

tions automatically guarantees an additional constraint on the trace of the energy-

momentum tensor. Therefore, the fourth equation above, which corresponds to

T 2
2 = −G2

2 , is linearly dependent on the others and thus it can be discarded.



3.5. THE FINAL SYSTEM AND OPEN QUESTIONS 59

Therefore, the Einstein–Dirac system with radial symmetry reduces to

− 1

4πF
ℑ(u−∂tu− + u+∂tu+) = 2

∂rG

rG3
− 1

r2

( 1

G2
− 1
)
,

− 1

8πF
ℑ(u+∂ru+ + u−∂ru−)−

G

8πF 2
ℑ(u+∂tu− + u−∂tu+) = 2

∂tG

rF 2G
,

1

4πG
ℑ(u−∂ru+ + u+∂ru−) = −2

∂rF

rFG2
− 1

r2

( 1

G2
− 1
)
,

1

F
∂tu+ −

1

G
∂ru− =

(
− ∂tG

2FG
− im

)
u+ +

( ∂rF
2FG

+
1 +G

rG

)
u− ,

− 1

G
∂ru+ +

1

F
∂tu− =

( ∂rF
2FG

+
1−G
rG

)
u+ +

(
− ∂tG

2FG
+ im

)
u− .

Finally, if we define the new components of ψ as

ψ+(t, r) :=
r
√
F (t, r)

8π
u+(t, r) , ψ−(t, r) := i

r
√
F (t, r)

8π
u−(t, r) ,

the Dirac spinor rewrites

ψ(t, r, θ, ϕ) := ψ+(t, r)G+1/2,1/2(θ, ϕ) + ψ−(t, r)G−1/2,1/2(θ, ϕ) = 4
√
π
ei

ϕ
2

r
√
F


ψ+(t, r) cos

θ
2

−ψ+(t, r) sin
θ
2

iψ−(t, r) cos
θ
2

iψ−(t, r) sin
θ
2

 .

Due to this change of variables, the Einstein–Dirac system with spherical symme-

try slightly simplifies and it writes

16π

rF 2
ℑ(ψ+∂tψ+ + ψ−∂tψ−) = −2

∂rG

G3
+

1

r

( 1

G2
− 1
)
,

− 8π

rG
ℑ(ψ+∂rψ+ + ψ−∂rψ−)−

8π

rF
ℜ(ψ−∂tψ+ − ψ+∂tψ−) = 2

∂tG

G2
,

16π

rFG
ℜ(ψ+∂rψ− − ψ−∂rψ+) = 2

∂rF

FG2
+

1

r

( 1

G2
− 1
)
,

1

F
∂tψ+ +

i

G
∂rψ− =

[ 1

2F

(∂tF
F
− ∂tG

G

)
− im

]
ψ+ −

i

r
ψ− ,

1

G
∂rψ+ +

i

F
∂tψ− =

1

r
ψ+ + i

[ 1

2F

(∂tF
F
− ∂tG

G

)
+ im

]
ψ− ,

(⋆)

consistently with equations found in [FSY99, Section 8 with T = F−1, A = G−2].

In their paper, Finster, Smoller and Yau started from these computations to nu-

merically construct linearly stable soliton-like solutions.

Throughout this work, we have tried to cover in the most self-contained way

possible the arguments and motivations that led us to the statement of the Einstein–

Dirac system with spherical symmetry. Our aim was not simply to compute the
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final equations, but also to start approaching some of the tools and techniques

useful in future doctoral studies.

We conclude by providing an overview of the state of the art in the study of

this system and by giving some ideas for the next research goals.

In fact, now that our object is determined, many questions arise and one of the

first ones is related to the local well-posedness of the system and the understanding

of the suitable regularity conditions for the initial data.

Furthermore, being the Minkowski metric and the null Dirac spinor (g, ψ) = (η, 0)

a solution to (⋆), the question of its stability is natural.

For the Einstein Vacuum Equations, Lindblad and Rodnianski [LR10] showed

the stability of the Minkowski metric with a proof based on specific commut-

ing vector fields, pointwise estimates and bootstrap arguments. In [Che22] these

techniques have been adapted to prove the stability of Minkowski spacetime for

the Einstein–Dirac system with zero mass.

Regarding the massive case, we expect that additional pointwise estimates for the

Dirac operator in asymptotically flat manifolds are needed. We aim to show

them by establishing new virial identities, in the same spirit as what was done

in [CdS19b].

Finally, one can turn to the study of other geometries. Indeed, as already

mentioned, Schwarzschild metrics gM also satisfy the EVE and thus the same issue

about stability applies to the pairs (g, ψ) = (gM , 0). The focus on these mani-

folds is motivated by Birkhoff’s theorem, which states that the only asymptoti-

cally flat spherically symmetric solutions to the EVE are precisely Schwarzschild

black holes. Moreover, we notice that a metric gM can be separated into two

regions: far from the black hole the geometry is asymptotically flat, while it be-

comes asymptotically hyperbolic approaching the event horizon. Therefore, new

dispersive estimates for the Dirac operator will be needed to deal with this latter

behaviour of the metric.



Appendix A

Complements

The appendix is devoted to tracing the main ideas for the proof of a second

local smoothing estimate for the Dirac equation. We recall that this result is fun-

damental to establish Theorem 2.8.

Notation. Throughout this last section, solutions to the Dirac equation are sim-

ply treated as C4-valued functions, ignoring the underlying spinorial properties.

Hence, given u a C4-valued function, u will simply denote its hermitian adjoint,

and not its spinorial adjoint. We prefer to keep the same notation, since it still

holds Diu = Diu, where Diu := ∂iu− 1
8
ωi

abu[γa, γb] .

A.1 Local smoothing estimate for the Dirac equation

Theorem A.1 (Local smoothing estimate for Dirac – II, [CdS19b]). Let (M, g) be a

four-dimensional Lorentzian and asymptotically flat manifold and u be a solution to the

Cauchy problem (2.3). Then, for m ≥ 0, the following local smoothing estimate holds

∥⟨x⟩−3/2−u∥L2
tL

2(Mh) + ∥⟨x⟩
−1/2−∇u∥L2

tL
2(Mh) ≲ ∥Dmu0∥L2(Mh) , (A.1)

where ∇ denotes the spinorial gradient∇ = ∇̃+B.

The result is implied by the following, and slightly more general, estimate that

the authors proved in [CdS19b]

∥u∥2XL2
t
+ ∥∇u∥2Y L2

t
≲ ∥Dmu0∥2L2(Mh)

, (A.2)
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where the Campanato-type norms are defined as

∥v∥2X : = sup
R>0

1

⟨R⟩2

∫
Mh∩SR

|v|2 = sup
R>0

1

⟨R⟩2

∫
Mh∩SR

|v|2
√
det(h) dS ,

∥v∥2Y : = sup
R>0

1

⟨R⟩

∫
Mh∩BR

|v|2 = sup
R>0

1

⟨R⟩

∫
BR

|v|2
√
det(h) dx ,

where dS denotes the surface measure, while SR and BR are respectively the sur-

face and the interior of the sphere of radius R and centered at the origin. Further-

more, we note that ∥ · ∥Y is equivalent to the norm

∥u∥2
Ỹ
:= sup

R≥1

1

R

∫
Mh∩BR

|u|2 . (A.3)

Remark A.1 (Weaker geometrical assumption). Before outlining the proof of (A.2),

we stress that the result holds with a weaker assumption on the decay of the

asymptotically flat condition. Indeed, from now on, the power −|α| − 1 − σ is

weakened to −|α| − σ. Adapting Lemma 2.4 and assuming Ch small enough, one

can still choose a global vierbein and deduce the following decays

|Γ(x)| ≤ CΓCh⟨x⟩−1−σ, |∂Γ(x)| ≤ C ′
ΓCh⟨x⟩−2−σ, |e(x)− Id3| ≤ CeCh⟨x⟩−σ . (A.4)

The strategy of the proof consists in using the properties of the Dirac operator

and fixing a suitable multiplier function ψ to establish a virial identity. The last

step, but still laborious, is to carefully estimate the terms appearing in both sides

of the resulting equation and finally deduce the result.

We conclude this section by defining the preliminary function from which the

virial identity will arise. For this purpose, recall from Theorem 2.6 that squaring

the Dirac equation i∂tu−Dmu = 0, we obtain

∂2t u+ Lu = 0 ,

where L := −∆h − 1
4
Rh +m2 is self-adjoint by [Che73] for the inner product

⟨f, g⟩h :=
∫
Mh

fg =

∫
fg
√

det(h) d3x .

Then, given a a real-valued function of space ψ, we define

Θ(t) := ⟨ψ∂tu, ∂tu⟩h + ℜ⟨(2ψL− Lψ)u, u⟩h ,

which satisfies the following properties.
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Proposition A.2. Let u be a solution of the Dirac equation, then Θ satisfies

Θ′(t) = ℜ⟨[L, ψ]u, ∂tu⟩h ,

Θ′′(t) = −ℜ⟨[L, [L, ψ]]u, u⟩h .
Proof. These identities are a straightforward consequence of the self-adjointness

of L. We start by proving the first identity.

Θ′(t) = ⟨ψ ∂2t u, ∂tu⟩h + ⟨ψ∂tu, ∂2t u⟩h + ℜ⟨(2ψL− Lψ)∂tu, u⟩h + ℜ⟨(2ψL− Lψ)u, ∂tu⟩h .

Since u is a solution of the Dirac equation, it also solves ∂2t u+ Lu = 0 . Thus

Θ′(t) = −⟨ψLu, ∂tu⟩h − ⟨ψ∂tu, Lu⟩h + ℜ⟨(2ψL− Lψ)∂tu, u⟩h + ℜ⟨(2ψL− Lψ)u, ∂tu⟩h
= −2ℜ⟨ψLu, ∂tu⟩h + ℜ⟨(2ψL− Lψ)∂tu, u⟩h + ℜ⟨(2ψL− Lψ)u, ∂tu⟩h
= −ℜ⟨∂tu, ψLu⟩h + ℜ⟨(2ψL− Lψ)u, ∂tu⟩h
= −ℜ⟨ψLu, ∂tu⟩h + ℜ⟨Lψu, ∂tu⟩h = ℜ⟨[L, ψ]u, ∂tu⟩h .

The second identity then follows by deriving again in time,

Θ′′(t) = ∂tℜ⟨[L, ψ]u, ∂tu⟩h =
1

2
∂t

(
⟨[L, ψ]u, ∂tu⟩h + ⟨∂tu, [L, ψ]u⟩h

)
=

1

2

(
⟨[L, ψ]∂tu, ∂tu⟩h + ⟨[L, ψ]u, ∂2t u⟩h + ⟨∂2t u, [L, ψ]u⟩h + ⟨∂tu, [L, ψ]∂tu⟩h

)
= ⟨[L, ψ]∂tu, ∂tu⟩h − ⟨[L, ψ]u, Lu⟩h = −ℜ⟨[L, [L, ψ]]u, u⟩h .

A.2 Virial identity

Finally, we can pass to the proof of the virial identity. From the last proposition

above, we see that finding the formulas for the derivatives of Θ is a matter of

computing explicitly the commutators.

Proposition A.3 (Virial identity). Let u be a solution of the Dirac equation, then

Θ′ =−ℜ
(∫

Mh

(∆hψ)u ∂tu+ 2

∫
Mh

∇hψ · ∇hu ∂tu
)
,

Θ′′ =−
∫
Mh

(
∆2
hψ −

1

2
∇hψ · ∇hRh

)
|u|2 + 4

∫
Mh

(DjuDiu)D
2(ψ)ij

− 1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu ,

whereD2(ψ)ij := hilhkj∂l∂kψ−Φk,ij∂kψ . Hence, we deduce the following virial identity

−
∫
Mh

(
∆2
hψ −

1

2
∇hψ · ∇hRh

)
|u|2 + 4

∫
Mh

(DjuDiu)D
2(ψ)ij − 1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu

= −∂tℜ
(∫

Mh

(∆hψ)u∂tu+ 2

∫
Mh

∇hψ · ∇hu ∂tu
)
.
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Remark A.2 (Leibniz rule). Before proceeding with the computations, we recall

that ∆h and ∇h denote respectively the spinorial Laplace–Beltrami operator and

the spinorial gradient. Thanks to the properties of covariant derivative and con-

nections, we have the Leibniz rule

Dj(φu) = ∂jφu+ φDju ,

for any real scalar function φ and any spinor u .

Proof. We start by proving the first identity, which involves the commutator be-

tween L = −∆h − 1
4
Rh +m2 and ψ . Since ψ trivially commutes with Rh and m2 ,

we have

[L, ψ] = [−∆h, ψ] = −∆hψ − 2∇hψ · ∇h , (A.5)

where ∇hf · ∇h := hij⟨Dif,Dj·⟩C4 . Hence, the first identity follows

∂tΘ = ℜ⟨[L, ψ]u, ∂tu⟩h = ℜ⟨(−∆hψ − 2∇hψ · ∇h)u, ∂tu⟩h

= −ℜ
(∫

Mh

(∆hψ)u ∂tu+ 2

∫
Mh

∇hψ · ∇hu ∂tu
)
. (A.6)

Now, let us study the second commutator. Using (A.5), we obtain

[L, [L, ψ]] = [L,−∆hψ] + 2[∆h,∇hψ · ∇h] +
1

2
[Rh,∇hψ · ∇h] =:M1 +M2 +M3 .

The action of M1 in the sense of distributions, is given by

M1 = ∆2
hψ + 2∇h(∆hψ) · ∇h ,

hence,

⟨M1u, u⟩h =
∫
Mh

∆2
hψ|u|2 + 2

∫
Mh

∇h(∆hψ) · ∇huu .

We focus our attention on the second addend. To understand its structure, we

start by computing the symmetric of∇hφ · ∇h , for any φ regular enough. Testing

the operator against v, w smooth, using the skew-symmetry ofDj and the Leibniz

rule, we obtain

⟨∇hφ · ∇hv, w⟩ =
∫
hij∂iφDjv w

√
deth d3x = −

∫
v Dj

(√
dethhij∂iφw

)
d3x

= −
∫
∂j

(√
dethhij∂iφ

)
v w d3x−

∫ √
dethhij∂iφvDjw d

3x

= −
∫
Mh

v
(
(∆hφ)w +∇hφ · ∇hw

)
,
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since ∆h on scalar functions coincides with the standard Laplace–Beltrami oper-

ator. Hence, for any φ, the symmetric operator is given by

(∇hφ · ∇h)
∗ = −∆hφ−∇hφ · ∇h . (A.7)

Choosing φ = ∆hψ ,

⟨∇h(∆hψ) · ∇hu, u⟩ = −
∫
Mh

(∆2
hψ)|u|2 − ⟨u,∇h(∆hψ) · ∇hu⟩h ,

from which we deduce

ℜ⟨∇h(∆hψ) · ∇hu, u⟩ = −
1

2

∫
Mh

(∆2
hψ)|u|2 . (A.8)

Hence, going back to the contribution of M1,

ℜ⟨M1u, u⟩h = 0 .

Passing to M3, its action in the sense of distributions is

M3 = −
1

2
∇hψ · ∇hRh ,

hence, we immediately deduce that

ℜ⟨M3u, u⟩h = ⟨M3u, u⟩h = −
1

2

∫
Mh

∇hψ · ∇hRh |u|2 .

We now focus on M2 = 2[∆h,∇hψ ·∇h], which acts in terms of distributions as

M2 = 2∆h(∇hψ · ∇h)− 2(∇hψ · ∇h)∆h .

Using (A.7) with φ = ψ and the self-adjointness of ∆h, we manipulate the second

term to obtain

⟨M2u, u⟩ = 2⟨∆h(∇hψ · ∇h)u, u⟩h + 2⟨∆hu, (∆hψ)u⟩h + 2⟨u,∆h(∇hψ · ∇h)u⟩h .

Taking the real part, we find

ℜ⟨M2u, u⟩h = 4ℜ⟨∆h(∇hψ · ∇h)u, u⟩h + 2ℜ⟨∆hu, (∆hψ)u⟩h . (A.9)

From

⟨∆hu, (∆hψ)u⟩h = −⟨∇hu,∇h((∆hψ)u)⟩h

= −⟨∇h(∆hψ) · ∇hu, u⟩ −
∫
Mh

(∆hψ)∇hu · ∇hu ,
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and using (A.8), the second term of (A.9) rewrites

2ℜ⟨∆hu, (∆hψ)u⟩h =
∫
Mh

(∆2
hψ)|u|2 − 2

∫
Mh

(∆hψ)∇hu · ∇hu .

To completely determine the contribution of M2, it remains to compute the real

part of

I := 4⟨∆h(∇hψ · ∇h)u, u⟩h .

We have

I = −4⟨∇h(∇hψ · ∇hu),∇hu⟩h

= −4
∫
hijDj

(
hkl∂kψDlu

)
Diu
√
deth d3x

= −4
∫
hij∂j(h

kl∂kψ)DluDiu
√
deth d3x− 4

∫
hijhkl∂kψDjDluDiu

√
deth d3x .

Recalling that

[Dj, Dl] = −
1

8
Rjl

ab[γa, γb] = −
1

8
ea µe

b
νRjl

µν [γa, γb] = −
1

8
Rjl

µν [γµ, γν ] ,

we can rewrite the last term as

−4
∫
hijhkl∂kψDjDluDiu

√
deth d3x

= −4
∫
hijhkl∂kψDlDjuDiu

√
deth d3x+

1

2

∫
Mh

∂kψR
ikµν [γµ, γν ]uDiu

= −4
∫
hijhkl∂kψDlDjuDiu

√
deth d3x− 1

2

∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu

=: II + III ,

where we used that [γa, γb] = −[γa, γb] , for a, b ∈ {1, 2, 3} . Hence, we find

ℜI = −4ℜ
∫
hij∂j(h

kl∂kψ)DluDiu
√
deth d3x− 4ℜ

∫
hijhkl∂kψDlDjuDiu

√
deth d3x

− 1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu .

We are now interested in estimating the term

II = −4
∫
hijhkl∂kψDlDjuDiu

√
deth d3x .

Using again the skew-symmetry of the spinorial derivative,

II = 4

∫
DjuDl

(√
dethhijhkl∂kψDiu

)
d3x

= 4

∫
∂l

(√
dethhijhkl∂kψ

)
DjuDiu d

3x− II .
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Thus,

ℜII = 2

∫
∂l

(√
dethhijhkl∂kψ

)
DjuDiu d

3x ,

which yields

ℜI = −4ℜ
∫
hij∂j(h

kl∂kψ)DluDiu
√
deth d3x+ 2

∫
∂l

(√
dethhijhkl∂kψ

)
DjuDiu d

3x

− 1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu .

Relabeling the indices, we rewrite it as

ℜI = ℜ
∫
Mh

(DjuDiu)D(ψ)ij − 1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu ,

where
D(ψ)ij :=

2√
deth

∂l

(√
dethhijhkl∂kψ

)
− 4hil∂l(h

kj∂kψ) .

Decomposing

∂l

(√
dethhijhkl∂kψ

)
= hij∂l

(√
dethhkl∂kψ

)
+ (∂lh

ij)
(√

dethhkl∂kψ
)
,

we have

D(ψ)ij = 2(∆hψ)h
ij + 2hkl∂kψ ∂lh

ij − 4hil∂l(h
kj∂kψ) .

Summarizing, recalling that Θ′′ = −ℜ⟨[L, [L, ψ]]u, u⟩h, we have so far

Θ′′ = −
∫
Mh

(
∆2
hψ −

1

2
∇hψ · ∇hRh

)
|u|2 + 2

∫
Mh

(∆hψ)∇hu · ∇hu

−ℜ
∫
Mh

(DjuDiu)D(ψ)ij − 1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu .

Manipulating the two terms in the middle, we find

Θ′′ = −
∫
Mh

(
∆2
hψ −

1

2
∇hψ · ∇hRh

)
|u|2 + ℜ

∫
Mh

(DjuDiu)D
1(ψ)ij

− 1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu ,

where
D1(ψ)ij : = 2(∆hψ)h

ij −D(ψ)ij

= −2hkl ∂kψ ∂lhij + 4hil∂l(h
kj∂kψ)

= 2∂kψ(−hkl ∂lhij + 2hil∂lh
kj) + 4hil hkj∂l∂kψ .

Due to the real part in the second addend, we obtain a symmetry in i and j, that

is

ℜ
(
DjuDiuD

1(ψ)ij
)
= ℜ

(
DiuDjuD

1(ψ)ij
)
.
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Therefore, D1(ψ)ij = 1
2
(D1(ψ)ij +D1(ψ)ji) and

ℜ
∫
Mh

(DjuDiu)D
1(ψ)ij = 4

∫
Mh

(DjuDiu)D
2(ψ)ij ,

with

D2(ψ)ij :=
1

2
∂kψ(−hkl ∂lhij + hil∂lh

kj + hjl∂lh
ki) + hil hkj∂l∂kψ .

Recognizing the Christoffel symbols associated to h,

Φk,ij = hil hjmΦk
lm =

1

2
(hkl ∂lh

ij − hil∂lhkj − hjl∂lhki) ,

we rewrite

D2(ψ)ij = −Φk,ij∂kψ + hil hkj∂l∂kψ .

Finally, relating the two expressions for Θ′ and Θ′′, we obtain the virial identity

−
∫
Mh

(
∆2
hψ −

1

2
∇hψ · ∇hRh

)
|u|2 + 4

∫
Mh

(DjuDiu)D
2(ψ)ij − 1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu

= −∂tℜ
(∫

Mh

(∆hψ)u∂tu+ 2

∫
Mh

∇hψ · ∇hu ∂tu
)
.

A.3 Choice of the multiplier and final arguments

Now that we have achieved the desired virial identity, we can give the explicit

definition of the multiplier ψ. Finally, we outline the remaining arguments to

obtain estimate (A.2).

Let us define,

ψ0(x) :=

∫ r

0

ψ′
0(s) ds , where ψ′

0(r) :=


r

3
, r ≤ 1 ,

1

2
− 1

6r2
, r > 1 ,

where we committed a small abuse of notation, not distinguishingψ(x) andψ(r) =

ψ(|x|). Finally, the multiplier is given by the rescaled function ψ := ψR

ψR(r) := Rψ0

( r
R

)
, for R > 0 fixed.

Thanks to this choice, the multiplier and its derivatives enjoy many good proper-

ties. We limit ourselves to mentioning the one we will use most, that is

ψ′
R(r) ≤

1

2
, for any r ≥ 0 . (A.10)
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At this point, the strategy of the authors of [CdS19b] is to deal with the left

(LHS) and the right (RHS) hand-sides of the virial identity of Theorem A.3 sep-

arately. In particular, one can recognize some terms as ”leading” and others as

”perturbative”, depending on their contribution in the asymptotically flat case.

For brevity, we omit the details of the proof, but the goal is to obtain a chain of

inequalities of the following type

∥u∥2X + ∥∇hu∥2Y ≲ LHS = RHS ≲ ∥Dmu∥2L2(Mh)
,

which yields, integrating in time and exchanging the integrals, the estimate (A.2).

We conclude with a final argument proving the perturbative nature of the

following term in the LHS,

III = −1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu ,

since this analysis is missing in the original article. We stress that, due to the

presence of the Riemann tensor, III becomes marginal as Ch ≪ 1, therefore the

Campanato-type estimate and thus Theorem A.1 still hold unaltered.

In particular, we bound the absolute value of III . From the definition of the

spacetime-dependent Dirac matrices, we rewrite

|III| ≤ 1

2

∫
Mh

|∂kψ||Rik
µν ea

µeb
ν ||u[γa, γb]Diu| .

We proceed by estimating separately the factors appearing in the integrand. Us-

ing (A.10), we immediately have

|∂kψ| ≤ |ψ′| ≤ 1

2

and thanks to the (weakened) asymptotically flat decays (A.4),

|Rik
µνea

µeb
ν | ≲ |Rik

µν | = |hkjRi
jµν | ≲ |h−1||Ri

jµν | ≲ |∂Γ|+ |Γ|2 ≲ C ′
ΓCh⟨x⟩−2−σ .

Therefore, noting that

|u[γa, γb]Diu| ≲ |∇hu||u| ,

if we split ⟨x⟩−2−σ = ⟨x⟩−1/2−σ/2⟨x⟩−3/2−σ/2 and use the Young inequality, we ob-

tain

|III| ≲ C ′
ΓCh
2

∫
Mh

(
⟨x⟩−1−|∇hu|2 + ⟨x⟩−3−|u|2

)
, (A.11)

where we omit σ to lighten the notation.
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Let us deal with the two terms separately. Using [CdS19b, Estimate (4.6)], it

follows ∫
Mh

⟨x⟩−1−|∇hu|2 ≤
∫
Mh

⟨x⟩−1−|∇hu|2 ≲ ∥∇hu∥2Y .

On the other hand,∫
Mh

⟨x⟩−3−|u|2 =
∫
Mh∩B1

⟨x⟩−3−|u|2 +
∫
Mh∩Bc

1

⟨x⟩−3−|u|2 .

Regarding the first summand, we have∫
Mh∩B1

⟨x⟩−3−|u|2 ≤
∫
Mh∩B1

1

|x|2⟨x⟩1+
|u|2 ≤

∫
Mh∩B1

|u|2

|x|2
≤ 4∥∇hu∥2L2(Mh∩B1)

≲ ∥∇hu∥2Ỹ ≈ ∥∇hu∥2Y ,

where we used respectively [CdS19b, Hardy-type inequality (4.1)] and the norm

equivalence (A.3).

The other integral can be controlled using [CdS19b, Estimate (4.8)],∫
Mh∩Bc

1

⟨x⟩−3−|u|2 ≤
∫
Mh∩Bc

1

1

|x|2⟨x⟩1+
|u|2 ≲ 2∥u∥2X .

Finally, from (A.11), if we integrate in time, between 0 and T , and exchange the

integrals, we find∫ T

0

(
− 1

2
ℜ
∫
Mh

∂kψR
ikµν u[γµ, γν ]Diu

)
dt ≳ −Ch

(
∥∇hu∥2Y L2

T
+ ∥u∥2XL2

T

)
.

Therefore, adding this contribution to the other arguments shown in the article,

one obtains an estimate of the form

(M1 − CIIICh)∥u∥2XL2
T
+ (M2 − CIIICh)∥∇hu∥2Y L2

T

≲ ∥Dmu(T )∥2L2(Mh)
+ ∥Dmu(0)∥2L2(Mh)

,

whereMj := Cj−C̃jCh are explicitly given in [CdS19b, Section 4.5]. Hence, forCh
small enough, the multiplicative constants are positive and the proof is concluded

by letting T to infinity and using the conservation of the L2-norm of Dmu.
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tion on asymptotically Euclidean manifolds. Communications in Partial

Differential Equations, 35(1):23–67, 2009.

[Cac11] Federico Cacciafesta. Global small solutions to the critical radial Dirac

equation with potential. Nonlinear Analysis: Theory, Methods & Appli-

cations, 74(17):6060–6073, 2011.

[CdS19a] Federico Cacciafesta and Anne-Sophie de Suzzoni. Strichartz esti-

mates for the Dirac equation on spherically symmetric spaces. arXiv

preprint arXiv:1902.07572, 2019.

[CdS19b] Federico Cacciafesta and Anne-Sophie de Suzzoni. Weak dispersion

for the Dirac equation on asymptotically flat and warped product

spaces. Discrete and Continuous Dynamical Systems, 39(8):4359–4398,

2019.

[CdSM23] Federico Cacciafesta, Anne-Sophie de Suzzoni, and Long Meng.

Strichartz estimates for the Dirac equation on asymptotically flat man-

ifolds. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze,

2023.

[CH96] Roberto Camporesi and Atsushi Higuchi. On the eigenfunctions of

the Dirac operator on spheres and real hyperbolic spaces. Journal of

Geometry and Physics, 20(1):1–18, 1996.

71



72 BIBLIOGRAPHY

[Che73] Paul R. Chernoff. Essential self-adjointness of powers of generators

of hyperbolic equations. Journal of Functional Analysis, 12(4):401–414,

1973.

[Che22] Xuantao Chen. Global stability of Minkowski spacetime for a spin-

1/2 field. arXiv preprint arXiv:2201.08280, 2022.

[CK01] Michael Christ and Alexander Kiselev. Maximal functions associated

to filtrations. Journal of Functional Analysis, 179(2):409–425, 2001.

[D’A15] Piero D’Ancona. Kato smoothing and Strichartz estimates for wave

equations with magnetic potentials. Communications in Mathematical

Physics, 335(1):1–16, 2015.

[Dir28] Paul Adrien Maurice Dirac. The Quantum Theory of the Electron.

Proceedings of the Royal Society of London. Series A, Containing Papers of

a Mathematical and Physical Character, 117(778):610–624, 1928.

[DNPV12] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitch-

hiker’s guide to the fractional Sobolev spaces. Bulletin des sciences
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