
University of Padova École Polytechnique
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Abstract

The purpose of this work is to develop and test a localization algorithm that can be

used by flying Unmanned Aerial Vehicles to locate Wi-Fi devices on the ground. As-

suming the target to be uncooperative, we measure the received signal strength on the

packets that are periodically and spontaneously broadcasted by the Wi-Fi cards, and

we use this information to estimate their position. Gaussian Processes allowed us to

reinforce the system against the noise that affects the measurements and the possible

lack of useful data in certain positions. Bayesian optimization finally proved to be an

efficient approach for collecting data in crucial locations, thus improving the accuracy

of the estimation while saving time.
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Chapter 1

Introduction

1.1 Overview and motivation

Over the last years, with the advancement of the technology, we witnessed the birth,

the development and the growth of many new devices. Smartphones, smartwatches,

tablets and laptops now belong to our everyday life, and through the Internet network

they keep us in continuous connection with each other. In this new florid technological

environment, Unmanned Aerial Vehicles (UAVs) are also experiencing a tremendous

expansion. Rather than being employed exclusively for military purposes, nowadays

UAVs (also known as drones) are used for several civilian and scientific applications,

and the industry is also producing low-cost UAVs for entertaining intents.

Due to the speed and ease with which drones can be deployed in large areas, one

possible application for UAVs is the localization of people on the ground. On the

one hand, after catastrophic events when all the network infrastructure is unavailable,

drones could be used to locate survivors and to direct the emergency teams. On the

other hand, rather than confining the usage to emergency situations, geolocalization

using drones is also gathering interest in the scientific and industrial community. For

example, Amazon [4] is now developing a new technology for the delivery of packages

using UAVs, where the localization of the user clearly plays a crucial role. In other

projects, where the objective is to provide internet connection using aerial devices,

localizing people on the ground and moving the aerial access point accordingly could

potentially yield an improvement in the offered Quality-of-Service (QoS).

Localization of people on the ground could potentially be performed using bird’s-

eye view camera mounted on a UAV [5]. However, in order to acquire and analyze

the images, the UAV needs to fly at a low altitude and at low speed, thus limiting the
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CHAPTER 1. INTRODUCTION

dimension of the search area. Furthermore, the approach is confined to applications

where the people are clearly visible from the onboard camera.

In this work we consider a different approach to the problem, and we estimate the

location of people on the ground monitoring the activity of their Wi-Fi devices. Due to

the massive wide spread of Wi-Fi-enabled devices, locating the device often corresponds

to locating its owner. This approach allowed us to design a system that can be used

to scan efficiently areas that can be potentially vast. Our idea is to monitor the Wi-Fi

activity using a UAV that carries a Wi-Fi monitor, with an active-sensing approach

where the sensor can be quickly moved in different locations.

One key assumption for this work is to consider the target devices to be uncooper-

ative and unaware of the localization process, meaning that such devices do not send

specific packets that contain their location and do not run any particular software.

Since the natural application of this work is for rescue operations, we want to limit

our assumptions on the devices as much as possible. Even if the target is uncoopera-

tive, as specified in the 802.11x standards, device periodically broadcasts a management

frame, called probe-request frame (PRF), to actively scan the environment and find the

available access points (APs). Any Wi-Fi enabled device operating in monitor mode

(the UAV, in our case) can capture and decode the unencrypted PRF. By measuring

the intensity of this received signal, we can estimate the location of the device on the

ground. Intuitively, if the signal strength is high it means that the UAV is flying close

to the source, if the signal is weak the UAV is far from the transmitting device. We will

measure the signal strength using the Received Signal Strength Indicator (RSSI), that

is a measure performed by the receiving wireless card that indicates the power level

of the received signal, and it is usually employed by the operating system to roughly

evaluate the quality of the connection. The RSSI is an indication of the power level

being received by the antenna, and therefore the higher the RSSI number, the stronger

the signal. More details on the IEEE 802.11 standard and on the RSSI will be given in

Section 2.2.

1.2 System requirements

The requirements of the system, and the design choices, are here briefly summarized.

• Robustness: the usage of the RSSI as a metric for locating devices has always

been very controversial in the scientific community, mainly because this indicator

was not designed for this specific localization purpose. Therefore the algorithm

should be robust and able to deal with noisy measurements and potential missing
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CHAPTER 1. INTRODUCTION

data, since the RSSI can be measured only if the UAV is close enough to the

source. We will use Gaussian Processes (GPs) to estimate the device’s location

from the noisy measurements, mainly for their flexibility and robustness.

• Autonomous and real-time: to be completely autonomous, and perform a

real-time estimation, the UAV carries a small embedded computer that is able to

process the incoming data and drive the UAV throughout the localization process.

Furthermore, the onboard computer should be able to communicate with a ground

station to report step-by-step the evolution of the mission and the current location

estimate.

• Energy efficiency: an exhaustive scan of the area would be extremely expensive

both in terms of battery’s energy an time. For this reason, we use a Bayesian-

optimization driven search algorithm. In a nutshell, based on the observations

collected so far, we decide if it is better to explore areas of where the estimate

exhibits a high uncertainty, or to stick with the the current estimation and refine

it.

• Search area: the target to be located is assumed to be inside a pre-defined

search area. To cover a potentially vast areas, we used a fixed-wing drone that

can easily fly at high speed.

• Non cooperative target: differently from what is usually assumed in the lit-

erature, the target to be located is assumed to be uncooperative. This is why,

relying on the 802.11x standard, we perform the localization using only the PRFs

that are periodically and spontaneously transmitted from the device.

1.3 Outline

The remainder of this thesis is organized as follows.

We describe in Chapter 2 the UAV that we used to conduct the experiments and

the onboard computer that processes the incoming data. In the same chapter, we also

present some relevant aspects of the IEEE 802.11 standard, with particular focus on

the network architecture, the management frames and the scanning techniques. The

results of a preliminary feasibility analysis are also reported there, to prove that, in

our environment, the RSSI can be used for localization purposes. At the beginning

of Chapter 3 we give the formal statement of the problem and its formulation as a

regression problem. We also explain why a traditional approach could potentially yield
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CHAPTER 1. INTRODUCTION

poor performance. Chapter 4 describes how Gaussian Processes are used in our work

to solve the regression problem. The mathematical core of the thesis lies in Chapter

5, where we describe how the uncertainty of our estimation can guide us through an

efficient exploration of the search area. The localization algorithm is then fully described

in Chapter 6. To provide some reliability measures we designed a small MATLAB

simulator that is described in Chapter 7, along with the simulated and experimental

results. Finally, in Chapter 8, we present the conclusions of the project and the possible

future extensions.
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Chapter 2

Background

2.1 Unmanned Aerial Vehicles

A Unmanned Aerial Vehicle (UAV) (also known as drone or Remotely Piloted Aircraft

(RPA)), is an aircraft without a human pilot onboard. The initial and natural develop-

ment field for drones has been the military industry, where the absence of a human pilot

onboard allowed to conduct riskier missions without the threat of casualties. However,

with the advancement of technology and driven by a rising demand, the development

of UAVs has become more and more relevant also for civilian and commercial applica-

tions. Nowadays, beyond the military applications of drones, UAVs are used for aerial

surveying [6], search and rescue operations [7], aerial photography [8], climate observa-

tion [9], wildlife counting [10], forest fire detection [11] and lot more [12]. UAVs have

also been proven to be useful for deploying self-organizing wireless networks to support

rescue operations in case of natural disasters or catastrophes, as shown in [13]. Small

UAVs can be divided in 2 categories:

• Rotary-blade UAVs, commonly known as mini-copters or multi-copters, in which

lift and thrust are supplied by rotors. This allows them to take off and land

vertically, and to stay in a specific position in the air. Rotary-blade UAVs are

very stable and they usually move slowly, thus making them suitable for aerial

photography, but not convenient when the area to be monitored is vast.

• Fixed-wing UAVs, that are moved forward from a propeller, so that the wings

can generate the necessary lift to keep the plane in the air. Fixed-wings drones

usually fly at a relatively high speed and are mostly used for covering huge areas.
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CHAPTER 2. BACKGROUND

Fig. 2.1: SenseFly eBee UAV.

For this project we used the fixed-wing eBee UAV developed by SenseFly, a Swiss

company that produces aerial imaging drones for professional applications [8]. The UAV

is shown in Figure 2.1. The plane wingspan is 96 cm and the body is made of expanded

polypropylene, a light material that makes eBee harmless in case of unexpected crash.

This is the reason why, in lot of countries including Switzerland, eBee can be flown

without any particular permission. The battery can provide an autonomy of about

45 minutes of flying time and the engine can push the plane to a speed of 60 km/h

withstanding wind flurries up to 30 km/h.

The plane comes with some useful instruments onboard: a pitot tube that measures

the macroscopic speed of the plane, a barometer, an inertial measurement unit, a GPS

receiver and a ground proximity sensor that is used to determine the absolute altitude

with respect to the ground. All those data are processed by the onboard autopilot,

that is responsible for flying the plane and is in control of the engine and all the plane’s

ailerons. To assign a specific flight path to the plane, and monitor all the parameters, we

can use the provided Windows software, named eMotion, that makes use of an external

2.4 GHz USB radio modem to communicate with the onboard autopilot. Using the GUI

provided by eMotion, we can easily setup a mission for the UAV, monitor its progress

and eventually land. After the mission has been initially specified using eMotion, the

UAV can be flown autonomously by the onboard autopilot, since it has access to all

the sensors.

6



CHAPTER 2. BACKGROUND

SenseFly produces eBees for aerial imaging professional applications, and that’s

why, in the central part of the main body, a standard camera can easily be arranged.

Instead of a digital camera, we housed inside the compartment a mini ARM-based

Gumstix Overo Tide board, a small embedded computer developed by Gumstix Inc

[14]. Gumstix runs Yocto (kernel version 3.5.0) [15], a tiny Linux distribution that

is especially designed for embedded devices. The Gumstix board is connected with

the onboard autopilot through a serial port, and can take control of the mission flying

the plane to specific locations using a C++ library directly provided by SenseFly.

Furthermore, using the same library, Gumstix can fetch all the vital information from

the UAV, such as the latitude, the longitude and the altitude of the plane. All the

software and the algorithms we developed, and that will be described later, run on this

Gumstix computer.

The Gumstix computer is connected also to an expansion board, that has been

designed and produced at EPFL to fit the compartment minimizing the occupied space.

Two different USB Wi-Fi cards are connected to the expansion board (see Fig. 2.2):

• A WLAN Fritz! USB card [16], configured in monitor mode to operate on a

frequency of 2.4 GHz, used to perform packet sniffing.

• A WLAN Linksys AE3000 USB card [17], set to work in the 5 GHz unlicensed

band. Using this interface we can create an ad-hoc network that gives us the access

to the data onboard and allows to give instructions to Gumstix realtime from any

station on the ground. This is an high data-rate link, that works only on short

distances (typically some hundreds meters if we are in Line-of-sight propagation).

It may seem unreasonable to choose the 5 GHz band for this card, since at higher

frequencies electromagnetic signals undergo an higher attenuation. However, as

seen from previous experiments, the less crowded 5GHz bands gives better results

in terms of data rate and covered distance.

2.2 IEEE 802.11 standard

In this section we introduce the IEEE 802.11 standard, focusing our analysis on three

different aspects. After a brief history of the standard, we present the network ar-

chitecture, that is needed to better understand the involved devices and their role.

We then move to the management frames used by the standard to provide the basic

functions and to the active scanning techniques, that are of utmost importance in our
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Fig. 2.2: WLAN Fritz! USB card (left side) and Linksys AE3000 USB card (right side).

work. Finally, we describe a software framework that can be used to parse and extract

information from received 802.11 packets.

2.2.1 Introduction

Wireless local area networking has experienced an incredible growth in the last decades.

Since 1971, when the first packet-based wireless network was created by researchers

at the University of Hawaii [18], a tremendous improvement in the performance of

wireless networks has been achieved, both in terms of performances and deploying and

maintenance costs. This large and sustained growth is in large part due to the benefits

that Wireless Local Area Networks (WLANs) offer over their wired counterpart. In

fact, providing wireless network connectivity in houses or enterprises, usually involves

the installation of simple access points that can be easily deployed to serve even a large

area. Furthermore, the proliferation of laptops, smartphones and handheld devices,

has meant that people desire to be connected wherever they are despite of where the

network connection is located, thus encouraging even more the deployment of wireless

networks [1].

The Institute of Electrical and Electronics Engineers (IEEE) started in 1990 the de-

velopment of an international WLAN standard identified as IEEE 802.11. The purpose

was to design a Medium Access Control (MAC) and Physical Layer (PHY) specifi-

cation for wireless fixed, portable and moving stations within a local area. With an

increased commercial interest on wireless networks, the principal manufacturer formed

the Wi-Fi Alliance in 1999, to certify interoperability between IEEE 802.11 devices.

Ideally, users of wireless networks will want the same services and capabilities that

they have commonly come to expect with wired networks. However, to fulfill those ex-

pectations, the wireless community faced certain challenges that were not imposed on
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the wired counterpart. Interference management, reliability, security issues, power con-

sumption, mobility are a few examples of problems that had to be properly addressed

to achieve the good level of service we are nowadays used to [19]. The commercial

interest has pushed the scientific community to propose solutions to those problems,

bringing WLANs to an undeniable level of diffusion and utilization. Shipment of Wi-Fi

certified integrated circuits are expected to exceed 2.5 billion units by 2016 [20].

2.2.2 The network architecture

As a member of the 802 family of local area networking (LAN) standards, 802.11 inherits

the 802 reference model (based on the OSI reference model) and the 48-bit universal

addressing scheme. The Basic Service Set (BSS) is the basic building block of any

802.11 WLAN. Stations that remain within a certain coverage area and are somehow

associated form a BSS [1].

The basic form of association is an ad-hoc network, where stations communicate

directly with one another and form an independent BSS (IBSS). Usually, however,

devices associate with a central station (referred as access point (AP)) that is in charge

of managing the BSS. A BSS that is built around an AP is called an infrastructure

BSS, and it may be interconnected with other BSSs via their AP trough a distribution

system (DS). The BSSs interconnected by a DS form and extended service set (ESS),

and devices belonging to the same ESS can address each other directly at the MAC

layer. An illustration of both the association schemes is shown in Figure 2.3. Each BSS

is identified using a 24 bit long unique code, named BSS IDentification (BSSID), that

is the formal name of the BSS.

Fig. 2.3: On the left side an independent BSS, where devices form an ad-hoc network.
On the right side, two infrastructure BSSs connected using a DS trough their APs to
form an ESS [1].
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2.2.3 The MAC layer

The MAC layer is responsible for channel allocation procedures, packet data unit (PDU)

addressing, frame formatting, error checking, fragmentation and reassembly [19]. The

wireless transmission medium can operate exclusively in contention mode, thus re-

quiring all stations to contend for accessing the channel for each packet transmission.

Influenced by the huge market success of Ethernet, the 802.11 MAC adopted a vari-

ant of a simple distributed access protocol: carrier sense multiple access with collision

avoidance (CSMA/CA). With this access technique, if a station sees the medium to

be busy, it uses a more conservative approach following the medium and waiting for

a random backoff time. The performance using this conservative approach improves,

since on wireless networks collisions cannot be directly detected and need to be inferred

through the lack of the acknowledgement. Therefore, the penalty factor for a collision in

WLAN is higher with respect to the wired LAN, thus justifying this more conservative

approach.

The standard IEEE 802.11 frame format is illustrated in Figure 2.4. We focus our

attention on the Frame Type and Frame Subtype fields, that are respectively 2 and

4 bits long. The frame type bits specify the nature of the frame as either control,

management or data, while the frame subtype field further contributes to identify the

particular role of the frame. Table 2.1 shows the type and subtype bits for three

management frames that are relevant in our analysis, since their role is related to the

scanning techniques that are now explained.

Fig. 2.4: Standard IEEE 802.11 frame format.

Type Subtype Frame name

00 0100 Probe request
00 0101 Probe response
00 1000 Beacon

Table 2.1: Type and subtype bits for three relevant management frames.

10
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2.2.4 Scanning techniques

Usually, when a device wants to connect to a wireless network, it uses a process that is

called scanning. This procedure can be active, where the node that wants to connect is

directly involved in the transmission of a join request, or passive, where the node relies

on the information that are periodically distributed from the available BSSs.

(a) Active scanning (b) Passive scanning

Fig. 2.5: Scanning techniques for IEEE 802.11 standard.

In active scanning (see Fig. 2.5a), the scanning station transmits a particular man-

agement frame, called probe request frames (PRFs). Inside the PRF, the node can

specify the SSID of the BSS he wants to connect to, or choose to leave this field empty,

meaning that he is willing to connect with any available BSS. The unencrypted PRF,

that contains the MAC address of the source, is then broadcasted. If there is a BSS

that matches the SSID contained in the PRF, that BSS replies by sending a probe

response frame to the scanning station. This approach can minimize the scanning time

if the node knows which channel should be used for the transmission, but scanning all

the available channels may take time and be expensive in terms of consumed energy.

Note that the PRFs can be captured and interpreted from any device that is in the

range of the transmitting scanning station, that can be uniquely identified by the mean

of its MAC address. Therefore, any station performing active scanning can be detected

by monitoring the transmitted PRFs.

In passive scanning (see Fig. 2.5b), instead, the scanning node listens for beacons

that are periodically transmitted from the APs. This operation can be repeated for

different channels until the node is connected with a BSS. This approach is conservative

in terms of energy, but may take long time to be completed, since the beacon frames

11
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are transmitted only at predetermined instants by the APs.

2.2.5 The radiotap header

If we analyze any received management frame, coming from a generic wireless card

using a suitable application, such as Wireshark [21], we will observe that the frame is

composed of two different parts: first the radiotap header, and then the content of the

management frame (similar to what is shown in Figure 2.4). The radiotap header is a

flexible mechanism that supplies additional information about frames from the drivers

of the wireless card to the userspace applications. All the details and the information

contained in the radiotap header can be found at [22]. We will make an extensive use

of the Received Signal Strength Indicator (RSSI, or simply SSI), that is an information

coded inside the radiotap header. The RSSI is a measure performed by the receiving

wireless card that indicates the power level of the received signal, and it is usually

employed by the operating system to roughly evaluate the quality of the connection.

RSSI is an indication of the power level being received by the antenna, and therefore the

higher the RSSI number, the stronger the signal. It is important to know that there is

no standardized relationship of any particular physical parameter to the RSSI reading.

The 802.11 standard does not define any relationship between RSSI value and power

level of the received signal, and vendors and chipset makers use their own accuracy,

granularity, and range.

2.2.6 Scapy and Libcrafter

To decode, interpret and capture packets from a network card, several options are

available. Some applications, for example Wireshark, provide also a Graphical User

Interface (GUI) to perform a visual inspection of the packets. Other tools, such as

tcpdump, can monitor an interface logging all the received data into a file that can

then be parsed and interpreted. For this work we need an application that can run

on the onboard Gumstix computer, and that is capable of receiving packets, decoding

them, and extracting the RSSI. This needs to be performed real-time, since the new

RSSI measurements affect the estimation of the location, and therefore the actions of

the UAV.

Scapy is python module that allows to capture, decode, forge, dissect and send

packets complying with a huge variety of protocols [23]. Scapy recognizes all the fields

of 802.11 management frames, and easily allows for their extraction. Nonetheless,

despite its user-friendly programming style, Scapy is not a suitable tool when the device

12
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operates under heavy load conditions. In fact, the module doesn’t have a proper buffer

to store unprocessed packets: if a new packets comes when the previous is still being

processed, the latter is simply discarded. This limitation is also mentioned on the

developer website [23]. We implemented a basic sniffer in Scapy and run it on our

onboard Gumstix computer confirming that, under heavy load conditions, around 20%

of the packets were dropped and were not properly inspected and logged.

For those reasons, we moved to Libcrafter [24], an high level C++ library that has

an interface very similar to Scapy. We managed to run Libcrafter on the Gumstix

computer, and we tested the script under heavy load conditions, seeing that all packets

were correctly received and interpreted. A small piece of the basic code is reported

in the following box. In particular, in the main routine, we define the interface to be

monitored and the filter, that follows the same syntax used in tcpdump. The instruction

sniff.Capture() blocks the execution of the code: all the lines that follow that instruction

in the main file will never be reached. Each time a packet that matches the specified

filter is received, the function PacketHandler will be invoked. The PacketHandler

function is responsible for obtaining the payload of the packet, extracting the RSSI

and saving it into a file, along with the current position of the UAV. According to

the structure of the radiotap header, the RSSI is a 2 bytes-long field contained in the

14th and 15th bytes, and it is expressed in ones’ complement notation. Finally, if the

packet length is different from what it is declared in the header, the packet is marked

as malformed and dropped, to avoid an inconsistent measures of the RSSI.

void PacketHandler(Packet* sniff_packet , void* user)

{

int packetSize=sniff_packet ->GetSize ();

byte* buffer = new byte[packetSize ];

int readData=sniff_packet ->GetData(buffer);

short RSSI=(short)(buffer [14]) -256;

getPosition (); //Get from GAPI the current position

logPacket (); //Log the RSSI and the position on a file

}

int main(int argc , char** argv)

{

string iface = "mon.ap0"; // Interface ’s name

string filter = "type mgt subtype probe -req"; // Filter for packets

//Start sniffing packets on the interface.

Sniffer sniff(filter , iface , PacketHandler);

sniff.Capture ();

return 0;

}

13
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The application, to work properly, requires to set the interface to Radio Frequency

MONitor (RFMON) mode, so that it can monitor all the traffic received from the

wireless network. Unlike promiscuous mode, which is also used for packet sniffing,

monitor mode allows packets to be captured without having to associate with an access

point or ad hoc network first. In our UAV, the WLAN Fritz! USB card is set to operate

in monitor mode and is used to collect the RSSI measurements.

2.3 RSSI-based ranging

The underlying idea to perform RSSI-based localization is simple: the signal strength

should be greater when the monitor approaches the source, and should decade as the

monitor moves away. Therefore, by measuring the RSSI in certain locations, one should

be able to say where the signal is stronger an where it is weaker, and therefore locate

the source. Unfortunately, the RSSI measurements depend not only on the distance,

but also on the noise introduced at the received and the changing channel conditions.

In fact, the usage of the RSSI as an indicator for locating devices has been very con-

troversial in the scientific community.

Some authors have shown that the RSSI can be used in real situations to perform an

estimation of the relative positions between the transmitting and the receiving devices.

For example, in [25], authors have presented a RSSI-based framework for estimating

the relative position of mobile robots in an unknown environment. Gaussian Processes

(GPs) are used to fit the experimental data while local gradient ascent is used to guide

the exploration of the unknown area. In [26], authors use a basic k-nearest signal space

neighbour matching algorithm for location estimation, applying the algorithm in a real

experiment and presenting some results for the achieved precision, showing that under

some conditions the estimation can be quite accurate. Finally, the accuracy of RSSI-

based ranging can be increased by averaging RSSI samples collected on different RF

channels, as shown in [27].

On the contrary, in [28], authors concluded that RSSI is a poor distance estimator

when the nodes are inside a building, since reflection, scattering and other physical

properties have a too strong impact on the RSSI measurement. Lot of work has been

done by several authors to develop models that can capture the behaviour of the noisy

RSSI, but each environment presents different features that are difficult to be captured

and generalized by a single model. It is therefore not easy to predict beforehand if

an RSSI-based location estimation can be performed in our scenario, which has some

peculiarities that make it different from what can be found in the scientific literature.

14
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In particular

• The UAV is forced to move forward to generate the necessary lift to fly, and there-

fore it cannot stand in the same position to collect multiple RSSI measurements

from the same spot.

• The UAV flies at a relatively high speed, thus the received signal undergoes a non

negligible Doppler shift that affects the measured RSSI. However, we assume the

source to be in an open-area, so the signal propagates in Line-of-Sight conditions.

• The source is assumed to be not cooperative, i.e., the generation and emission of

the probe packets are agnostic of the localization agent.

Under those conditions, is it possible to use the RSSI to estimate the location of the

source? In particular, this question boils down to see if there is a correlation between

the RSSI and the distance between the monitor and the Wi-Fi device. If such relation

exists, it can be used to estimate the location. We describe here the first experiment

designed to answer this preliminary question. The source to be located is a Sony Vaio

Pro 13 Ultrabook, and the Wi-Fi monitor is carried by the eBee UAV designed by

SenseFly, previously described in Section 2.1.

At this very preliminary stage, we assume the source to be transmitting PRFs at a

constant rate over time. Forging and transmitting artificial PRFs can be challenging,

although some libraries as Scapy and Libcrafter could provide support for such process.

However, we noticed that each time a Wi-Fi interface is activated under Ubuntu 14.04,

some PRFs are generated to scan for the available networks. Therefore, we designed

a simple application that turns on the Wi-Fi interface, waits for the PRFs to be sent,

switches off the interface and repeats the operation again. Using this simple approach,

the notebook will emit PRFs at an almost constant rate. Those packets are then

received by the WLAN Fritz! USB card onboard the UAV, the RSSI is extracted from

the radiotap header and recorded together with the instantaneous position provided

by the onboard GPS. In this experiment, the position of the source is known by the

UAV, so for each received packet the RSSI can easily be associated with the distance

between the target and the UAV. In particular, let hu denote the height of the UAV

with respect to the the take-off position, as measured from the GPS, and hs be the

height of the source with respect to the same reference altitude. Then ∆h = hu − hs.
If we denote with (λu, ϕu), (λs, ϕs) the longitude and the latitude of the UAV and the

source, respectively, the distance can be computed as

d =

√
dist

(
(λu, ϕu), (λs, ϕs)

)2
+ ∆h2, (2.1)
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where dist
(
a, b
)

is the distance between the two coordinates computed using the harve-

sine formula (see equation (9.1b) in Section 9.1).

2.3.1 Experiment design

To collect RSSI measurements from a wide range of distances, the plane is instructed

to fly at a constant altitude following a circular path of radius r, with the source

positioned to lie on the ground projection of this circular trajectory. Figure 2.6a shows

the designed flight path that allows us to collect packets with distances in the range

d ∈
[
∆h,
√

∆h2 + 4r2
]
.

(a) Flight path.
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(b) Scatter plot of the raw data.

Fig. 2.6: Preliminary experiment.

Figure 2.6b shows the scatter plot of the raw dataset, composed of 1800 RSSI

samples obtained with r = 250 m and ∆h = 20 m.

A clear and strong inverse relation between the distance and the RSSI can be ob-

served, although the measurements are corrupted by some noise. When the distance

between the monitor and the target is reduced, the RSSI reflects the increase in the

strength of the received signal, thus showing that in our scenario, the RSSI has the po-

tential to be used as a metric for location estimation. We can also observe that packets

can be received by the monitor onboard the UAV even at relatively high distances. In

particular, some packets are received even when the UAV is furthest away from the

source, at d = 500 m. However, the packets reception rate at different distances is not

constant. Figure 2.7a shows the spatial distribution of the received packets over the

circular ring, where the two axis represents the distance in meters between the source

and the UAV (the source is positioned on the origin of such system). As we can see, the

majority of packets are captured when the monitor is close to the source. In fact, while
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for short distances we are able to capture almost all packets, the amount of received

packets drops quickly as the UAV moves away.

(a) Spatial distribution of the captured
packets during the mission.
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(b) k-points Nearest-Neighbour fitting.

Fig. 2.7: RSSI measurements obtained during the preliminary mission.

2.3.2 Nearest neighbour technique

The scatter plot in Figure 2.6b shows a correlation between the distance and the mea-

sured RSSI. If we were to fit the empirical data, to obtain an analytic model that given

the distance predicts the RSSI, averaging would probably be the first and easiest thing

to do. We will describe in Chapter 4 more refined techniques to learn such relation,

but we could now think of reducing the noise by averaging all the measures that ex-

hibit a similar distance. This corresponds to applying a k-points Nearest-Neighbour

method [29], where the observations that are close in the input space are averaged to

obtain the estimation. Formally, the estimation of the RSSI at distance d is computed

as

RSSI(d) =
1

k

( ∑
RSSIi∈N(d)

RSSIi

)
, (2.2)

where N(d) is the neighbourhood of d, defined by the k closest points to d in the dataset.

Figure 2.7b shows the results of this basic technique on the data we collected, where the

blue curve is the pointwise averaged RSSI using the k-points nearest-neighbour method

plus and minus the standard deviation, for a value of k = 80. The curve confirms the

inverse relation between the RSSI and the distance.

With the results of this preliminary analysis we can now move to more refined

techniques for handling the noisy measurements and perform the localization of the
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Wi-Fi node, as discussed in the next chapters.
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Chapter 3

System model

In this chapter we provide the formal statement of the problem and its formulation as

a maximization problem.

3.1 Mathematical formulation

In this work, our goal is to localize multiple Wi-Fi devices in a given rectangular search

area X ⊂ IR2. Let us say that we have M devices whose fixed positions are denoted

by x∗i ∈ X , where i = 1, 2, . . . ,M . We emphasize that, in our scenario where X could

potentially be vast, it is crucial to develop an algorithm that is capable of collecting

measurements where they really matter. Otherwise we may end up trying to perform

an exhaustive scan of X , that is not feasible given the constraints in terms of the UAV’s

flight autonomy. For the sake of simplicity, in the following we consider the case of a

single device, i.e., M = 1. Chapter 6 provides the extension to multiple devices.

We can formally think of measuring the RSSI at a certain location x ∈ X as drawing

a sample from a random variable Y : IR2 → IR. More precisely, the measurement yi at

location x depends on the distance between the UAV and the device (as shown in the

preliminary analysis), on the environment (buildings, vegetation, weather conditions),

on the channel (fading and shadowing) and on the noise introduced at the receiver.

In any case, we can think the measurement to be composed of two parts: the first

that depends only on the distance (that is where the information we are looking for is

hidden) plus some kind of noise, that accounts for everything mentioned before.

This drives us to formulate the problem as a supervised-regression problem, where

we are required to learn the input-output mapping from empirical continuous data. In

particular, the i-th RSSI measurement yi taken at location x with a single target in
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position x∗ can be written as

yi = f
(
x|x∗

)
+ εi (3.1)

where f(x|x∗) is a function (to be estimated) that maps each location x into the

corresponding expected RSSI value measured from a transmitter in x∗. The term εi is

the noise that accounts for the changing environment, the fluctuations on the channel,

and the noise introduced at the receiver. Since the position of the target is fixed and

does not change over time, we will omit x∗ from the notation, so that f(x|x∗) = f(x)

from now on.

In this framework, f(x) can be seen as a black-box function to be estimated from

the noisy response yi obtained at corresponding location xi. We will model the noise

ε ∼ N (0, σ2n) as an i.i.d. zero-mean Gaussian random variable with variance σ2n, inde-

pendent of the location.

A crucial assumption, that will allow us to reduce the localization problem to a

simple maximization problem, is that f(x) exists and is a monotonic decreasing function

of the distance, so that

f(d1) > f(d2)⇔ d1 < d2. (3.2)

The monotonic decreasing assumption is justified by the well-known Friis transmission

equation. Such equation relates the power received by an antenna (Pr) with the distance

d from the transmitting antenna and with the transmit power Pt. In particular we have

Pr ∝ Pt − β · log(d), (3.3)

where β is a parameter that depends on the medium and it is clear that Pr(d) is a

monotonic decreasing function of the distance. In fact, f(x) should model the received

power at a certain distance, so we can expect it to be similar in shape to (3.3), and to

inherit its decreasing monotonicity. However, the free-space propagation model does

not account for a number of non-idealities that are common in a real environment,

where lot of reflections are involved. Therefore we should ensure not to tighten the

shape of the function f(x) too much to this model. Furthermore, different weather

conditions and different environments may lead to very different model parameters, so

that using a static model may be a very short-sighted and unsatisfactory strategy.

Consider now l received packets. The measured RSSIs values are stored in the

vector yl = [y1, y2, . . . , yl] ∈ IRl, while the corresponding locations are stored in the

matrix Xl = [x1, x2, . . . , xl] ∈ IRl×2. The vectors yl and Xl together form the input

training dataset, denoted as Dl = {yl,Xl}.
How to efficiently and robustly estimate the function f(x) given Dl is the subject
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of Chapter 4, where we propose the well-known Gaussian Processes (GPs) as a tool

to solve the regression problem. For the time being, assuming the function f(x) to be

available, and since f(x) decreases as the distance between the source and the receiver

increases, we can estimate the location of the source as

x̂i = arg max
x∈X

f(x). (3.4)

Once estimated the location x̂i, we can either stop the localization process and

return x̂i as an estimate of the device location, or ask for more measurements to perform

a more refined localization. In the latter case, the question is where to collect those new

measurements. Chapter 5 will answer this question, and we will propose a well-known

machine learning technique to decide which point to sampled next.

As a final remark, it is important to point out that standard non-machine learning

techniques will yield poor results in this scenario. For example, since we assumed zero-

mean noise, one could think of collecting several measurements in the same location, and

average them to obtain f(x). Then, one would run a standard numerical-optimization

method such as stochastic-approximation gradient-descent to find the location of the

maximum of f(x). Unfortunately, this approach is not suitable under our assumptions.

In fact, measurements are received asynchronously and at unpredictable time, because,

on the one hand, the source is assumed to be non-collaborative and transmits packets

at random instants. On the other hand not all the transmitted packets are correctly

received. Therefore it is challenging to collect enough packets in the same position, and

perform a good estimation without wasting a lot of precious time.
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Chapter 4

The regression problem

In the previous chapter we formulated our localization problem as a regression problem,

where the observed inputs and outputs were related by an unknown function f as for

(3.1). How to estimate such function, starting from partial and noisy observations, is

the subject of this chapter.

4.1 Introduction

Generally speaking, regression solves the problem of learning input-output mapping

from empirical continuous data. In particular, in supervised regression, we observe

some inputs xi and some corresponding outputs yi, and we assume that yi = f(xi)

for an unknown function f . Given a set of potentially noisy observations, we want

to predict the value measured at a new candidate-location1 x∗ that we have not yet

visited. To this end, we need to estimate y∗ = f(x∗). This requires us to move from

a finite set of observed values to a general regression function f that makes prediction

for all possible input values.

To solve this problem two different approaches can be used. In the first one we only

consider a particular class of functions, for example those linear with the inputs. All

the functions belonging to such class will depend on a set of parameters, that can be

estimated minimizing a certain loss function. The obvious drawback of this method is

that, if the function does not model the data in a proper way, the prediction will be very

poor. Furthermore, if the function becomes too complex, more parameters need to be

estimated, and this could result in a poor reusability of the model. In fact one may be

tempted to increase the flexibility of the approach by enriching the class of functions,

1Not to be confused with the real location of the device that we indicated as x∗.
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but this approach may generate overfitting problems, thus loosing the capability of the

model to generalize the prediction beyond the training set.

The second approach consists in giving a prior probability to every possible function,

where higher probability is given to functions that we consider to be more likely. For

example, we could say that peeky functions are more likely than smooth functions, or

that our regression function is likely to be continuous with zero-mean. Clearly, the set

of possible functions is uncountable and infinite, so we need to properly explain how

we can compute such probabilities in a finite time. Furthermore we need to say how

to mathematically describe functions, i.e., how to translate the adjectives ”smooth” or

”peeky” into a mathematical quantity. In this work we will use this second approach,

and to derive this prior probabilities over functions we will use Gaussian Processes

(GPs), that are introduced. Detailed information on GPs can be found in [2].

4.2 Mathematical formulation of Gaussian Processes

A GP, in the context of supervised regression, defines a prior distribution over all the

possible regression functions. Once some data is observed, this prior can be converted

into a posterior distribution [30] to perform the prediction for any new candidate lo-

cation. It is often useful to think of a GP as similar to a function, that instead of

returning a scalar value for an arbitrary input value x∗, returns the mean and the

variance of a normal distribution that models the likelihood of all the possible values

of f at x∗ [3]. We use GP regression since it is robust, well known and it can learn

and model non-linear relations as the one between the RSSI and the distance from the

device.

More formally, a GP is a collection of random variables, any finite number of which

have a joint Gaussian distribution [2]. If the prior on the regression function is a GP,

then we write

f(x) ∼ GP
(
m(x), κ(x,x′)

)
(4.1)

where m(x) = E[f(x)] is the mean and κ(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))T ] is

the kernel or covariance function.

Since the prior on the regression function is a GP, such prior contains all the func-

tions with mean m(x) and covariance between points that follows κ(x,x′). In other

words, all the functions that belong to the GP prior are different, but share the same

mean and the same covariance function (that somehow reflects in the smoothness of

the function).
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4.2.1 Noise-free regression

We consider to begin with the simpler noise-free problem, where we collect l observa-

tions into the vector yl and the corresponding l locations in the matrix Xl ∈ IRl×2.

Under the noise-free assumption we have

yi = f(xi), i = 1, 2, . . . , l. (4.2)

Then, given some candidate-locations contained in the matrix X∗ ∈ IRn∗×2 we want to

predict the function outputs in such locations, denoted here as y∗ ∈ IRn∗ . By definition

of GP, the joint distribution of the training outputs yl and the test outputs y∗ is

Gaussian, i.e.

[
yl

y∗

]
∼ N

([
µ

µ∗

]
,

[
K K∗

KT
∗ K∗∗

])
(4.3)

where µ = m(X), µ∗ = m(X∗), kij = κ(xi,xj), K = κ(Xl,Xl) ∈ IRl×l, K∗ =

κ(Xl,X∗) ∈ IRl×n∗ and K∗∗ = κ(X∗,X∗) ∈ IRn∗×n∗ .

To get the posterior distribution over all the possible functions, i.e., the prediction

at the candidate-locations X∗, we restrict the prior to contain only those functions that

agree with the observed data points yl. We can intuitively think of this operation as

drawing functions from the prior rejecting the ones that disagree with the observations.

In probabilistic terms, this operation corresponds to conditioning the joint distribution

on the observations (see Section 9.3). Denoting withR(y∗|X∗,Xl,yl) such a conditional

distribution, we hence have

R(y∗|X∗,Xl,yl) = N (µ̂, Σ̂), (4.4)

where

µ̂ = m(X∗) + KT
∗K−1(yl −m(X)), (4.5a)

Σ̂ = K∗∗ −KT
∗K−1K∗. (4.5b)

The outcome of the prediction is therefore a vector of jointly Gaussian random

variables, where the mean of each variable is contained in the vector µ̂, while the

correlation between each pair of variables is described by Σ̂. This means that, for each

point x∗,i ∈ X∗, the result of the prediction is a Gaussian random variable with mean

µ̂i and variance Σ̂i,i.
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A pictorial example of the posterior probability derivation is shown in Figure 4.1.

More specifically, Figure 4.1a shows three functions drawn at random from the prior,

while Figure 4.1b shows three functions drawn from the posterior, i.e., the prior con-

ditioned on the 5 observations. It is interesting to note that, under the noise free

assumption, GP acts as an interpolator, i.e., if we ask the prediction for a value xi that

has already been seen, GP returns yi with no uncertainty. In both plots the shaded

area represents the pointwise mean plus and minus twice the standard deviation (95%

confidence interval).

(a) Prior distribution (b) Posterior distribution

Fig. 4.1: Example of functions’ drawing from the prior and posterior distribution [2].

4.2.2 Noisy regression

In a typical scenario we have only access to a noisy version of the measurements,

yi = f(xi) + εi. If we assume the noise to be modeled as a Gaussian independent

identically distributed i.i.d. random variable, εi ∼ N (0, σ2n), the conditional covariance

of the observations given the location vector Xl is given by

cov(yl|Xl) = K + σ2nI = Ky, (4.6)

where I is the identity matrix of size l × l. Equation (4.4) still holds, but the mean

vector and covariance matrix that account for the noise are computed as

µ̂ = m(X∗) + KT
∗K−1y (yl −m(X)), (4.7a)

Σ̂ = K∗∗ −KT
∗K−1y K∗. (4.7b)
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It is common, though not necessary, to consider GPs as a zero mean functions.

Note that this is not a drastic limitation, since the mean of the posterior process is not

confined to be zero. We will follow this approach considering a zero-mean prior, leaving

the use of explicit basis functions as mean functions for future developments.

4.2.3 Kernel function description

So far, the kernel function κ(x,x′) has not explicitly been defined, although the predic-

tive performance of GP depends mostly on the chosen kernel [30]. The kernel function

κ(x,x′) is a mathematical model that describes the correlation exhibited from different

observations taken at locations x and x′.

Several different functions can be used, but the Squared Exponential (SE) kernel,

shown below, is probably the most widely employed. If we consider x,x′ ∈ IRD, the

multidimensional SE kernel has the form

κSE(x,x′) = σ2f exp
(
− (x− x′)TM(x− x′)

)
, (4.8)

where, assuming the kernel to be isotropic, M ∈ IRD×D = l−2 · I. In our case, since

x,x′ ∈ IR2, equation (4.8) reduces to

κSE(x,x′) = σ2f exp

(
− ‖x− x′‖

l2

)
. (4.9)

The SE kernel depends on two different parameters that need to be properly esti-

mated to obtain a good prediction. The characteristic horizontal length scale, l, defines

the scale at which correlation between points can be observed. On the one hand, when

l→ 0 points will be almost uncorrelated also if they are very close one another, and the

resulting function will peeky and bumpy, i.e., similar to what is shown in Figure 4.2a.

On the other hand, if l� 1, points will exhibit a strong correlation also if they are far

away, and the function will look smoother, as in Figure 4.2b.

4.2.4 Hyperparameters estimation

To compute the posterior distribution, three parameters need to be estimated, namely

θ = {σf , l, σn}. We chose to perform such optimization offline, relying on a dataset

acquired in an initial experiment. Such dataset is composed of m RSSI measurements

y = [y1, y2, . . . , ym] collected at corresponding locations X = [x1,x2, . . .xm].

We recall that for a multivariate Gaussian distribution with mean vector m and
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(a) Small length scale l. (b) Large length scale l.

Fig. 4.2: Effect of the characteristic length scale l on the GP predicted function with
SE kernel [2].

covariance matrix Σ, the joint probability density function is given by

p(x) = (2π)n/2|Σ|−1/2 · exp

(
− 1

2

(
x−m

)T
Σ−1

(
x−m

))
. (4.10)

The vector of hyperparameters θ is estimated using a Bayesian approach that maximizes

the marginal log-likelihood, defined as

p(y|X,θ) =

∫
f
p(y|f ,X,θ)p(f |X,θ)df (4.11)

where f is the prior Gaussian vector that has been marginalized out. According to the

covariance model expressed in (4.9), and having assumed a zero mean prior, we can

express the PDF of f |X,θ as

log p(f |X,θ) = −1

2

(
fTK−1f + log |K|+ n log(2π)

)
. (4.12)

Similarly, having assumed the noise affecting the RSSI measurements to be i.i.d. with

variance σ2n, we can write the PDF of y|f ,X,θ as

log p(y|f ,X,θ) = −1

2

(
‖y − f‖
σ2n

+ log(nσ2n) + n log(2π)

)
. (4.13)

Equation (4.11) can now be rewritten using (4.12) and (4.13) and is finally given by [2]
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log p(y|X,θ) = −1

2

(
yTK−1y y + log |Ky|+ n log(2π)

)
. (4.14)

Three terms come into play in equation (4.14):

1. The first term, yTK−1y y, is a data fit term: the better the model fits the data,

the smaller this value will be, and the likelihood will consequently improve (note

the minus sign in front of the expression).

2. The second term, log |Ky|, accounts for the model complexity: if the model is

richer, the matrix will be almost diagonal and the term will increase, thus de-

creasing the likelihood [2]. Simple models are instead encouraged by this term,

thus encouraging GP not to overfit the data (see Section 4.2.5 for more details on

overfitting)

3. The third term, n log(2π), is just a normalization factor.

Equation (4.14), given the observations y measured at corresponding locations X,

only depends on θ, which can now be estimated as

θ̂ = arg max
θ

(
log p(y|X,θ)

)
. (4.15)

To perform such maximization, we could use a grid search approach, where we define,

for each θi a set of values, and we compute the log likelihood for each tuplet of values

that lies in the Cartesian product of the sets. We can then choose as the optimum

hyperparameters the vector that maximizes (4.14). Due to the curse of dimensionality,

the required number of evaluations grows exponentially with respect to the number of

parameters. Given d hyperparameters (for us d = 3) and assuming a set with p points

along each parameter’s covariate, the number of evaluations required is

n = pd, (4.16)

which can rapidly become infeasible. Furthermore, once the optimization is complete,

grid search does not naturally allow for adding new evaluations. New evaluations would

require to either redefine the grid and lose the past evaluations, or fill the gaps from

the previous grid and typically lose the regular structure of the grid.

On the other hand, we can choose a more efficient gradient ascent approach that
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requires to derive the gradient of (4.14) with respect to θ. Using the properties

∂

∂θ
K−1 = −K−1

(
∂K

∂θ

)
K−1, (4.17a)

∂

∂θ
log |K| = tr

(
K−1

∂K

∂θ

)
, (4.17b)

the derivative of (4.14) with respect to θi can be expressed as

∂

∂θi
log p(y|X,θ) =

1

2
· tr

(
(ααT −K−1y )

∂

∂θi
K−1y

)
, (4.18)

where α = K−1y y and tr(A) is the trace of the matrix A. Using the SE kernel, we can

easily compute the partial derivative of Ky with respect to each hyperparameter. In

particular

∂Ky

∂σf 2
= 2σf


1 exp

(
−‖x1−x2‖2

θ22

)
... exp

(
−‖x1−xn‖2

θ22

)
exp

(
−‖x2−x1‖2

θ22

)
1 ... exp

(
−‖x2−xn‖2

θ22

)
... ... ... ...

 , (4.19)

and deriving with respect to the length scale we obtain

∂Ky

∂l2
=

2σ2f
l3


1 exp

(
−‖x1−x2‖2

θ22

)
... exp

(
−‖x1−xn‖2

θ22

)
exp

(
−‖x2−x1‖2

θ22

)
1 ... exp

(
−‖x2−xn‖2

θ22

)
... ... ... ...

 ·U, (4.20)

where the symbol · represents the inner product between matrices, and

U =

 0 ‖x1 − x2‖2 ... ‖x1 − xn‖2

‖x2 − x1‖2 0 ... ‖x2 − xn‖2

... ... ... ...

 . (4.21)

We are now able, using gradient ascent or Newton methods, to find the value of the

hyperparameters θ∗ that maximizes the marginal log likelihood expressed in (4.11).

4.2.5 A cross-validation approach to prevent overfitting

According to the maximization process described in the previous section, we may be

temped to use all the data in our possession to find the optimal value for the hyper-
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Fig. 4.3: Example of correct fitting (left) and overfitting (right).

parameters. Using this strategy, however, we may overfit the data, i.e., our statistical

model may describe random errors or noise instead of the underlying relationship be-

tween variables.

Figure 4.3 visually exemplifies such problem. In the example we draw some samples

from the function y = x2 adding a small amount of Gaussian noise. On the left side we

plot the real function y = x2 and the samples that have been used to find the optimum

values of the hyperparameters. The right side of the pictures shows an example of

overfitting. The inferred function fits perfectly the observed data, but it is modelling

the noise instead of the underlying relation between the variables. If we now ask the

model to perform predictions for new points using such regression function, it will yield

poor results. A model that has been overfitted will generally have poor predictive

performance, as it can magnify minor fluctuations in the data.

To avoid overfitting, we find the optimal hyperparameters using a subset of the

available data T ⊂ D, and we then measure the prediction error on the remaining

test set D \ T . This approach is called cross-validation, and its aim is to ensure that

the parameters that maximize the likelihood also yield a small prediction error. We

describe here how the hyperparameters were estimated in our work and how we ensured

that data was not overfit.

We equally and randomly divided the m available observations in two parts: a

training set T , |T | = m/2 and a test set D \ T . We now define the three sets L =

{l1, l2, . . . , lp}, S = {σ1, σ2, . . . , σp} and Q = {q1, q2, . . . , qp}. We assume each set to

contain p possible values for each hyperparameter: l ∈ L, σf ∈ S and σn ∈ Q. For

each triplet {l, σf , σn} in the Cartesian product L × S × Q, using the training set T ,

we compute the marginal log likelihood according to (4.14). Then, using the data

contained in the test set D, we compute the test error using the Mean Squared Error
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(MSE) i.e.,

MSE(θ) =
1

|D|

|D|∑
i=1

(yi(xi)− ŷi)2 (4.22)

where ŷi is the estimation given by the GP at location xi. If the triplet θ that maximizes

the likelihood corresponds to a small MSE, than we know that we are not overfitting

the data.

The outcome of such process for our observations is shown in Figure 4.4, where

for graphical convenience the hyperparameter σ2n has been fixed. From Figure 4.4

we observe that choosing l = e−1.6 ' 0.20 and σf = e1.2 ' 3.32 we are able to

maximize the log likelihood while keeping the corresponding MSE low. That choice of

hyperparameters is therefore reasonable and acceptable having used (4.14) as objective

function to be maximized, and according to the available observations, overfitting is

not occurring.
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Fig. 4.4: Marginal log-likelihood and MSE for different values of the hyperparameters
(l, σf ). The white circle in both plots denotes the maximum value of the likelihood.

4.2.6 Numerical issues and an example of application

As shown in equations (4.7a) and (4.7b), the derivation of the posterior distribution

using a GP depends on the computation of K−1y . For reasons of numerical stability, it is

discouraged to directly invert the matrix Ky. We can instead exploit the fact that Ky

is a covariance matrix, therefore symmetric and positive definite to factorize it using

the Cholesky decomposition. The matrix Ky can be decomposed into a product of a

lower triangular matrix L and its transposed,

Ky = LLT , (4.23)
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where L is called the Cholesky factor. This is particularly useful when we are asked to

solve linear systems in the form x = K−1y b⇔ Kyx = b, because we can first solve the

triangular system Ly = b by forward substitution for y. Then we solve the triangular

system LTx = z by backward substitution (see Section 9.2 for the details). Both those

operations require n2/2 operations, while the Cholesky decomposition takes time n3/6.

We will denote this procedure with the notation x = LT \ (L \b). Using this approach

equations (4.7a) and (4.7b) can be rewritten as

µ̂ = m(X∗) + K∗
[
LT \

(
L \ (yl −m(X)

)]
, (4.24a)

U = L \K∗, (4.24b)

Σ̂ = K∗∗ −UTU. (4.24c)

where the mean vector and covariance matrix are computed without explicitly inverting

Ky.

It is also important to observe that, using (4.24c), we are actually computing the

entire covariance matrix, thus getting more information than what we usually need. In

particular, the cross correlation between all the variables is not of particular interest

for us. The important information resides is the variance σ2
∗, that could in principle be

obtained extracting the diagonal entries from Σ̂. This approach, correct in principle,

leads to very high computational complexity, especially for the computation of the

matrix product UTU, that requires O(n · n2∗) operations. To implement the algorithm

in a more efficient way, using the SE kernel, we can reduce the computation of the

variance to

σ2∗,i = σ2f −
n∑
j=1

U(j, i)2, i = 1, 2, ..., n∗, (4.25)

thus saving both memory and time.

To conclude the chapter, we present here a very short toy example of prediction

using a GP. We draw 400 samples from the function f(x) = 10 − 10 log(‖x‖ + 0.1),

f : IR2 → IR, that are shown in the left-hand side of Figure 4.5. Then we add some

Gaussian noise, with variance σ2n = 9 (the noisy measurements are shown in the central

part of the Figure). Finally, after the hyperparameters estimation using a grid search

approach, we perform the prediction using a GP. The estimated mean value for the

function, µ̂ according to (4.24a), is shown in the right-hand side of Figure 4.5.
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Fig. 4.5: Example of bidimensional prediction using GP.
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Chapter 5

Bayesian Optimization

5.1 Motivation and Introduction

In the previous chapter we introduced Gaussian Processes, a regression tool that can

be used to learn the input-output relation between variables starting from some noisy

observations. The solution of the regression problem, using a GP, is a Gaussian random

variable for each candidate location x∗. Such random variable describes the likelihood

of each possible value for the function f at location x∗.

According to (3.4), to estimate the location of the source, once the regression prob-

lem has been solved, one simply needs to find the argument that maximizes µ̂(x). Such

location clearly changes when new observations are available, according to (4.7a) that

depends on yl. In a nutshell, the RSSI yl+1 measured from a new packet at location

xl+1 changes our prediction and consequently our estimation of the source’s location.

The question now is whether or not there is a specific way to collect RSSIs in particular

locations so that we can localize the source in a faster and more precise way. Consider

m measurements [y1, y2, . . . , ym] collected at corresponding locations [x1,x2, . . . ,xm].

Using this dataset, we can compute the posterior distribution and correspondingly es-

timate the source location. Since the UAV with the onboard monitor is free to move

to any location, we now need to decide the position xm+1 where the drone is sent to

collect the next measurement ym+1. How to choose such xm+1 in order to improve the

accuracy of our estimation and guarantee a fast convergence is the subject of the next

sections. At this stage it is important to observe that the variance of the posterior

distribution reflects our confidence in the estimation for f(x). If the variance is small,

then our estimation is expected to be precise. On the contrary, a high variance generally

associated with high uncertainty in the prediction. In the next sections we will see how
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such uncertainty measure can be used to speed up the localization process and to make

it more precise, i.e., how it can be used to determine xm+1. Using such uncertainty

for making the localization process efficient can be considered the main contribution of

this work.

5.2 Localization using Bayesian Optimization

Bayesian Optimization (BO) is a robust, reliable, well-known machine learning tech-

nique that tries to efficiently maximize a function that is costly to evaluate. A detailed

explanation of BO can be found in [3].

Generally speaking, if the objective is to determine the shape of f(x), the uncer-

tainty of the posterior distribution can guide the sampling process. Following this

intuition, more samples should be collected from areas of high uncertainty to reduce

the variance and improve the accuracy of the prediction. However, the sampling pro-

cess can be made more efficient if our attention is focused on the localization of the

maximum of f(x). In fact, the peak of f(x) is likely observed in correspondence of

the actual location of the source device, and therefore achieving a good precision in the

estimation of the maximum is crucial for an accurate prediction of the source’s position.

A lot of scientific literature has been devoted to the general problem of maximizing

a non linear function over a compact set. Usually, the function is assumed to be convex

or at least cheap to evaluate. Bayesian optimization is instead a strategy for finding

the extrema of functions that are expensive to evaluate [3]. For us, measuring the RSSI

at a location x is costly since the UAV needs to physically move there and wait until a

new packet is received, and this is expensive in terms of both time and energy.

Recently, Bayesian optimization appeared in numerous applications as a solution for

the efficient maximization of black box functions as f(x). In [31], authors used Bayesian

optimization to perform the estimation of a set of parameters for maximizing the speed

of a Sony robot. In [32], instead, Bayesian optimization is used to learn a policy for

simulated driving tasks. In [33] the authors use Bayesian optimization to select a set of

sensors in a dynamic system. The objective is to find a set that reduces the MSE of the

predictions made by the sensor network. Gaussian processes and Bayesian optimization

are jointly used in [34] to solve a difficult optimization problem - finding weights in a

neural network controller - using an order of magnitude fewer samples than reported

elsewhere. Those few examples show that Bayesian optimization can become a very

useful technique to restrain the cost of a function estimation.
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5.3 The acquisition function

For notation simplicity, in this chapter we will restrict ourselves to the localization of

a single device. An extension to multiple devices is discussed later. Let us recall that

yl denotes the vector that contains l received measurements, while xl is the current

position of the UAV. Note that l ∈ N is increased by one unit each time a new packet

is received. To sample efficiently, Bayesian optimization uses an acquisition function

β(x) to determine the next point xl+1 to be sampled, where

xl+1 = arg max
x∈X

β(x |yl,Xl). (5.1)

The function β(·) should act as a reward function and represents a trade-off between

the following two competing goals:

1. Exploration: it should encourage sampling of areas of high uncertainty where

the maximum could potentially be in spite of the fact that the current estimation

of f(x) is low.

2. Exploitation: it should encourage the sampling of zones that previous measure-

ments have indicated as potential global maximum.

To understand the acquisition function trade off, we can consider the analogy with

the well known multi-armed bandit problem, where a gambler stands in front of a row

of slot machines and has to decide in which order to play them and how many times

to play each machine. When played, each machine provides a random reward from a

distribution specific to that machine. The objective of the gambler is to maximize the

sum of rewards earned through a sequence of lever pulls [35]. Similarly to that problem,

we have a set of points and we can choose to sample the function in one of those points.

What we need to decide is whether to stick with good machines that we know better

(i.e., points with high mean and low variance, exploitation) or explore others machines

hoping to get a better reward (i.e., points with high variance, exploration).

Figure 5.1 shows a typical run of Bayesian optimization on a simple one-dimensional

toy problem. At the beginning, the dataset counts l = 6 observations. The black

line is the mean predicted value for the function, while the grey shaded area is the

pointwise mean plus and minus two times the standard deviation of the prediction.

We can observe some areas of higher uncertainty (around x = 6), and other zones

where the variance is small (x ≤ 1). The acquisition function β(x) is computed for

each x ∈ X and the next point to be sampled is the argument that maximizes β(x). A
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Fig. 5.1: Toy example of a Bayesian optimization process.

possible example of such function is shown in the lower plot for each step (purple shaded

function). The new sample is then collected and added to the dataset, a new estimation

is performed and the whole procedure is repeated again. The general algorithm for

Bayesian optimization is shown in Algorithm 1.

Algorithm 1 Bayesian Active Learning

1: Update the prediction computing the mean and the variance for each x ∈ X
2: Choose xl+1 = arg maxx∈X β(x |yl,Xl)
3: Sample the function at xl+1, i.e., collect yl+1 = f(xn+1)
4: Augment the dataset yl+1 = yl ∪ {yl+1}; Xl+1 = Xl ∪ {xl+1}
5: l = l + 1 and go to step 1.

As one can easily argue, two are the things that lie at the core of Bayesian opti-

mization.

1. How we estimate the function given some observation, and in particular its mean
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and variance at different candidate-locations. To address this, we use GPs, that

have been described in the previous chapter. Note that we use GPs in this frame-

work, although other methods such as neural networks can also be used with

Bayesian optimization [36].

2. How we choose the function β(·), which decides the next point to be sampled

based on the current estimation. On the one hand, if β(·) pushes too much

toward exploration we may end up having a non precise estimation. On the other

hand, if we focus our attention only on the current estimated maximum, i.e., we

care more about exploitation, we may end up not recognizing the real peak of the

function that may be hidden in areas of high uncertainty.

We show now different approaches for choosing the acquisition function β(·).

5.3.1 Improvement based acquisition function

Let µ+ = max
x∈Xl

[
µ̂(x)

]
, where we recall that, according to (4.7a), µ̂(x) is the posterior

mean as computed from the GP. The first and easiest acquisition function aims at

maximizing the probability of improvement over µ+. The probability of improvement

itself can be used as an acquisition function and is expressed for each point x ∈ X as

PI(x|yl,Xl) = P (f(x) ≥ µ+) = Φ

(
µ̂(x)− µ+

σ̂(x)

)
x ∈ X , (5.2)

where Φ(·) is the Cumulative Distribution Function (CDF) of the Gaussian distribution

with zero mean and unit variance. Figure 5.2 shows an example of such computation

for a toy function.

The intuitive drawback of such approach is that it is purely exploitative: points

that have a high probability of yielding an infinitesimal improvement will be always

preferred to points that could give an higher gain with a lower probability. Therefore,

if the initial estimation of the function is not enough refined, the algorithm may force

the UAV to collect packets from a small area while leaving completely unexplored some

other zones that may contain the real peak of the function. To avoid that, we can add

the parameter ξ ≥ 0 and modify (5.2) into the Modified Probability of Improvement

(MPI) acquisition function, defined as

MPI(x|yl,Xl) = P
(
f(x) ≥ (µ+ + ξ)

)
= Φ

(
µ̂(x)− µ+ − ξ

σ̂(x)

)
x ∈ X . (5.3)
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Fig. 5.2: Visual example of PI based acquisition function computation [3].

The idea is to use such parameter to encourage the algorithm choosing points that

yield an improvement greater than ξ. Therefore, tuning ξ, we can explicitly force the

algorithm to explore (ξ � 1) or to refine the position of the maximum (ξ � 1). As

suggested in [3], the basic idea is to start with a high value of ξ and explore the whole

environment, lowering ξ at each step thus progressively pushing the algorithm toward

”exploitation” in order to refine the position of the maximum.

5.3.2 Expected Improvement acquisition function

We consider now a different acquisition function that not only takes into account the

probability of improvement, but also the magnitude of the improvement that a point

could potentially yield. The idea is to pick a new point xl+1 that minimizes the expected

deviation from the true maximum of the mean function, i.e.

xl+1 = argmin
x∈X

[
E
(
‖µ̂l+1(x)− µ∗‖

∣∣yl,Xl

)]
(5.4)

= argmin
x∈X

∫
‖µ̂l+1(x)− µ∗‖ · p(µ̂l+1|yl,Xl)dµ̂l+1 (5.5)

40



CHAPTER 5. BAYESIAN OPTIMIZATION

where µ∗ = max
x∈X

[
f(x)

]
is the true maximum of the function. However, due to the

computational efforts required to compute (5.5), we can use a simpler approach that

consists in maximizing the expected improvement with respect to µ+. We define the

improvement function as

I(x) = max{0, µ̂(x)− µ+}, (5.6)

i.e., I(x) is set to zero if the predicted mean in x does not exceed µ+, and is set to

µ̂(x)− µ+ otherwise. In other words, I(x) > 0 only for that points that could yield an

improvement over µ+. Then, the new point to be sampled can be obtained maximizing

the expected value of the improvement function, that combines somehow the magnitude

of the improvement with its probability. If we assume the prediction to be distributed

according to a Guassian distribution, then the likelihood of the improvement can be

computed as

LI(x) =
1√

2πσ̂(x)
exp

(
−
(
x− µ+ − I(x)

)2
2σ̂(x)2

)
, (5.7)

and the corresponding expected value, to be maximized, can be obtained solving the

integral

EI(x) =

∫ I=+∞

I=0
LI(x) · I(x)dI. (5.8)

The integral can be evaluated analytically using the following equations

EI(x) =

(µ̂(x)− µ+)Φ(Z) + σ̂(x)φ(Z), if σ̂(x) > 0;

0, if σ̂(x) = 0;
(5.9)

where φ(·) is the Probability Density Function (PDF) of the zero mean unit variance

Gaussian distribution, and

Z =
µ̂(x)− µ+

σ̂(x)
. (5.10)

Finally, it may be useful to control explicitly the trade off between exploration and

exploitation. To do that, similarly to what done with the probability of improvement,

we can add a parameter ξ ≥ 0 that balances the two competing objectives. Equation

(5.9) can be rewritten to incorporate such parameter as

MEI(x) =

(µ̂(x)− µ+ − ξ)Φ(Z ′) + σ̂(x)φ(Z ′), if σ̂(x) > 0;

0, if σ̂(x) = 0;
(5.11)
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where

Z ′ =
µ̂(x)− µ+ − ξ

σ̂(x)
. (5.12)

5.3.3 Example of application

Figure 5.3 shows the estimation of a one-dimensional function u(x) guided by the two

described acquisition functions: probability of improvement and expected improvement.

The function to be estimated is

u(x) =
3

4
· e(x−2)2 + e

(x−6)2

4 , (5.13)

which has a local maximum in x = 2 and a global maximum in x = 6. The first and

third rows of Figure 5.3 show the real function u(x) (red dashed line) and the pointwise

predicted mean (solid black like) plus and minus the standard deviation (gray filled

area), using a GP. The second and fourth rows show the acquisition functions that

guide the sampling process, computed respectively using (5.2) and (5.9).

Both algorithms have been initialized with a single sample (x1 = 2, y1 = u(x) ' 0.7)

but quickly follow different sampling trajectories. On the one hand, the PI acqui-

sition function ignores zones of high variance and keeps collecting samples that are

close to the local peak in x = 2. Eventually the sampling procedure is too much

exploitation-oriented and fails in identifying the real maximum. This highlights the

huge vulnerability of the PI guided approach: if a local maximum is found at the be-

ginning, the algorithm encourages to sample close to the peak and fails in identifying

the real maximum. On the contrary, EI automatically balances between exploration

and exploitation, and quickly manages to identify the real peak in x = 6.
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Fig. 5.3: Comparison between probability of improvement and expected improvement
for a one-dimensional problem. The underlying objective function is shown with red-
dashed line, while the solid black line is the predicted mean. The grey shaded area
shows the 95% confidence interval.
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Chapter 6

The localization algorithm

In the previous chapters, we described the mathematical tools that are needed to solve

the localization problem formulated as a maximization process. In this chapter, we

combine such tools into the final localization algorithm that is here described and

explained. We also introduce the multi-target extension of the algorithm that allows

for a quick and efficient localization of multiple devices.

6.1 Single-target algorithm

The basic localization algorithm for a single target is shown in Algorithm 2, and the

main steps are described below.

6.1.1 Quick scan

In the initialization phase the UAV flies with a predetermined trajectory over the search

area X . Starting from the closest corner, it reaches the opposite corner bouncing from

one edge to the other ninit times. Fig. 6.1 shows the trajectory followed by the drone

for ninit = 2 (red plot) and ninit = 3 (blue plot), where the search area is delimited

with a black dashed line. The goal of this phase is to collect an initial number of

measurements in order to start the Bayesian optimization algorithm. The average

duration of this phase, assuming a square search area with edge L meters long, is

t̄init =
(
L/v̄

)
(1 + n2init)

1/2, where v̄ is the average speed (m/s) of the UAV. In our

experiments, v̄ ' 13 m/s, L = 1 km and ninit = 3, so t̄init ' 5 minutes.
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Algorithm 2 Localization algorithm for single Wi-Fi device

Require: Search region X , stopping threshold δ, number of candidate locations n∗.
1: repeat
2: Do a quick scan of the search area to get initial measurements y1, . . . , ym from

corresponding locations x1, . . . ,xm as described in Section 6.1.1.
3: until m = 0
4: Set l = m and initialize yl = [y1, . . . , ym], Xl = [x1, . . . ,xm].
5: repeat

6: Randomly choose a set X
(l)
∗ consisting of n∗ candidate-locations.

7: Add previous packets locations Xl to the set X
(l)
∗ .

8: Compute the predictive mean µ̂(x) and variance σ̂2(x) for all x ∈ X
(l)
∗ .

9: Compute current estimate of location: x̂(l) = arg max
x∈X(l)

∗
µ̂(x).

10: Choose xl+1 = arg max
x∈X (l)

∗
EI(x |yl,Xl).

11: Go to xl+1.
12: If a new packet is received before Tmax seconds, then yl+1 = yl ∪ yl+1, otherwise

yl+1 = yl ∪ {−85}. Xl+1 = Xl ∪ xl+1

13: Compute average interdistance α(l).
14: Set l← l + 1
15: until α(l) < δ

6.1.2 Choosing the candidate-locations X∗

The cardinality of the set X
(l)
∗ , namely n∗, has a twofold consequence on the algorithm.

On the one hand, n∗ determines the computational complexity of the algorithm, so we

would like to keep n∗ as small as possible. On the other hand, the estimated target

position will be a point of X
(l)
∗ , so lowering n∗ corresponds to increasing the granularity

error. How to choose the locations in such set is therefore crucial in our problem.

The Gumstix computer used in the experiments is able to perform the prediction in a

reasonable time for a fixed number n∗ = 400 of locations. If we draw at random n∗

locations from a uniformly spaced grid over X (see Figure 6.2a), this would result in a

high granularity error. The same holds if we consider a 2D-uniform distribution that

covers the whole search area X
To generate the set X

(l)
∗ we use instead a rejection sampling approach. If a packet

has been received in a certain location, this means that the source must be located

within a range of dmax meters. Exploiting this fact, let x̃ denote a location drawn at

random from a 2D-uniform distribution that covers the whole area X . If the distance

between x̃ and all the locations of the other received packets is smaller than dmax, x̃ is

added to X
(l)
∗ , otherwise it is rejected. This operation is repeated until X

(l)
∗ contains

n∗ points.
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Fig. 6.1: Trajectory followed by the plane during the initial phase for ninit = {2, 3}.

At the very beginning of the algorithm, when no packets are available,no samples

are rejected and n∗ locations are chosen randomly from X . Each time a new packet

is received, the rejection area grows and the acceptance region shrinks down together

with the granularity error. Even when a few observations are available, as Figure 6.2c

shows, the n∗ samples are very clustered around the source.
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(a) Bidimensional mesh
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(b) Uniform random drawing
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(c) Rejection sampling

Fig. 6.2: Rejection sampling approach for building X∗.

As a final observation, we note that step 7 of the algorithm requires to add to X
(l)
∗

the locations of the acquired packets Xl. This means that the prediction is performed

not only for the candidate locations obtained using the method described so far, but

also for each location where a packet has been received. This is necessary because the
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computation of the acquisition function requires µ+ = max
x∈Xl

[
µ̂(x)

]
, that in turn requires

µ̂(x), ∀x ∈ Xl.

6.1.3 Collecting a new sample

Once the UAV reaches the location xl+1 as suggested from the acquisition function, it

in supposed to collect the new sample yl+1, that is then added to the dataset. There is

the possibility that the UAV flies to a point where packets cannot be received. In such

case, the posterior distribution and the outcome of the Bayesian Optimization would be

always the same, and the UAV would be held in the same location trying to sample the

function where no measurement can be performed. To avoid that, the drone waits up

to Tmax seconds to collect a new packet. If the monitor does not receive any packet in

such time interval, the value yl+1 = −85 is added to the dataset. This is the minimum

RSSI value, and this discourage the UAV from coming back in the future in the same

position.

6.1.4 The stopping rule

The last thing to be formally defined in the algorithm is a stopping rule, i.e., a termina-

tion condition. The Wi-Fi device is considered to be correctly located if its estimated

location remains stable for q successive iterations. Formally, the algorithm terminates

if

α(l) =
1

q

l∑
i=l−q

‖x̂(i) − x̂(i−1)‖ ≤ δ, (6.1)

with δ (meters) suitable threshold. Intuitively, a small δ corresponds to an higher accu-

racy in the localization. Chapter 7 shows the formal relation between the localization

error and the threshold δ for the stopping rule.

6.2 Multi-target algorithm: the sequential approach

The sequential extension of the algorithm described in the previous section is quite

straightforward. In particular, after having located the first target, we repeat the

Bayesian driven search for each other target, while the initialization phase is performed

only once at the beginning. It is important to observe that during the localization of the

first target, the monitor can potentially collect packets coming from any other target.

Therefore the algorithm has an advantage when the estimation of the second target

starts, because the dataset is already rich. This can potentially speed-up the localization
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of any successive target. The sequential version of the multi-target algorithm is shown

in Figure 6.3.

Define a list of MAC 
addresses to be found.

Pop a new user 
from the list

Did we receive any 
packet from this device?

N
Do a quick scan of

the search area 

Y

Generate the prediction grid 
Xg using the ellipse approach

Extract Xl  from the log file, 
and generate 

X*=Xg U unique(Xl)

Compute using GP the 
mean and the variance 

of the regression 
function

Using EI find the next 
point xl+1 to be sampled 

and go there

Ta is the arrival time 
at the point xl+1 

Has any packet
Being received?

| T - Ta |> Tmax?

N

N

Sleep for 1 second.

yl+1 =-85

Y

α(l)< δ  

Y

N

Y

Is the list 
empty?

NY
Go home, the 
mission is over

Log the prediction, the 
estimated position and 

the error to a file. 
Compute µ+

Fig. 6.3: Flowchart of the sequential multi-target localization algorithm.
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Algorithm 3 Parallel localization algorithm for multiple Wi-Fi devices

Require: Search region X , stopping threshold δ, number of locations n∗, number of
devices M .

1: repeat
2: Do a quick scan of the search area to get initial measurements y1, . . . , ym from

corresponding locations x1, . . . ,xm as described in Section 6.1.1.
3: until m = 0
4: Set l = m and initialize yl = [y1, . . . , ym], Xl = [x1, . . . ,xm]. Create the empty set

of found targets F = ∅.
5: repeat

6: Randomly choose a set X
(l)
∗ consisting of n∗ candidate-locations.

7: Add previous packets locations Xl to the set X
(l)
∗ .

8: Compute the predictive mean µ̂i(x) and variance σ̂2i (x), ∀x ∈ X
(l)
∗ , ∀ i 6∈ F

9: Compute current estimate of location: x̂
(l)
i = arg max

x∈X(l)
∗

µ̂i(x), ∀ i 6∈ F

10: Compute average interdistance α
(l)
i , ∀ i 6∈ F

11: If α
(l)
i < δ then F = F ∪ {i}

12: Define µ̃(x) = max
i 6∈F

(µ̂i(x)) and σ̃2(x) = max
i 6∈F

(σ̂2i (x)), ∀x ∈ X
(l)
∗ .

13: Go to xl+1 = arg max
x∈X (l)

∗
EI(x |yl,Xl) using µ̃(x) and σ̃2 as objective func-

tion.
14: Set l← l + 1.
15: until |F| < M

6.3 Multi-target algorithm: the parallel approach

We consider here a possible extension of the Bayesian Optimizator for multiple

devices. The idea is to design a specific solution for the multi-target problem capable

of performing better with respect to the simple sequential approach. Our proposed

solution, here described, is the summarized in Algorithm 3.

In a nutshell, the Bayesian Optimizator flies the plane to collect measurements that

can be useful for all the M devices, not just for a single one. In particular, instead

of using the objective function of a single device at time, we combine such functions

together to give a single aggregate objective function to be maximized.

However, Bayesian optimization is designed to identify just a single global maximum

of a certain objective function, and this limitation need to be properly addressed to

allow the localization of heterogeneous devices. Three 1D toy functions are shown

in Figure 6.4, and we can think of them as representing the received power from 3

different devices at different locations x, where the transmitting devices use a different

electric power. How to aggregate the three functions together to give a single objective
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Fig. 6.4: Toy example for deriving the general objective function in the parallel local-
ization algorithm.

function is an open choice, but we used the pointwise max operator in order not to loose

or smooth down the peaks, that are crucial for a precise estimation. The pointwise

maximum of the three functions is shown with the green dots. If we use such function

to guide the sampling, the expected improvement will push the sampling around x = 4,

where the global maximum is, thus leaving unexplored the other two peaks. Therefore,

this method would give a high precision for devices with high transmission power, and

poor performance for those with low transmission power. To solve this problem, once

each device has been located, we remove its objective function from the max operator.

In other words, the global function is the pointwise maximum of all the acquisition

functions of devices not yet located. The remainder of the algorithm remains basically

the same. We just point out that the posterior distribution is derived independently for

each device, and then the posteriors are combined together to give the single objective

function.
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Chapter 7

Results

7.1 Introductive results

In this section we present some of the results obtained during the preliminary analysis,

that was carried out before implementing the algorithm. Such results give some insights

we used to design and develop the algorithm, and justify some of the design choices we

made.
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Fig. 7.1: Histogram of the vendors that manufactured the Wi-Fi cards of the observed
unique devices.

During one experiment we flew the UAV for around 40 minutes in a confined one-
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square kilometer area, recording all the received PRFs. During such period of time, we

received around 16000 packets (' 7 packets/second) coming from 1800 individual MAC

addresses, i.e., 1800 single devices. The first 3 bytes of the MAC address are used to

identify the manufacturer of the card, so we can associate each one of the 1800 device

to the corresponding vendor. Figure 7.1 shows the resulting histogram of the vendors.

Excluding the unlabeled traffic, we see that around 65% of the devices’ Wi-Fi cards

are manufactured by Apple, Intel or Samsung. All those companies are very active and

involved in developing mobile devices, so the traffic we observed is likely to come from

a laptop or a smartphone. The remaining part of the traffic is divided among other

smaller manufacturers, that get less than 5% each.
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Fig. 7.2: RSSI measured during an exhaustive scan of a bidimensional region. The
source is a ultrabook Sony Vaio Pro 13 that lies on the black cross, and is programmed
to transmit PRF at the highest possible frequency.

Figure 7.2 shows the RSSI measured during an exhaustive scan of a bidimensional

search region. The source, an ultrabook Sony Vaio Pro 13, lies on the black cross and

is programmed to transmit PRFs at the highest possible rate. The color and the size

of the bubbles on Figure 7.2 depends on the measured RSSI: the highest the RSSI, the

largest and hottest the bubble. We observe in Figure 7.2 that the distribution of the

bubbles is asymmetric with respect to the source, and that not all the biggest bubbles

lie over the cross. This shows the relevance of the noise in our problem: big bubbles
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can be observed even at relatively high distances from the source. We can also observe

that in the bottom-right corner just a few measurements are available, while in the

opposite upper-left corner more packets have been received. Once more, this shows

how strongly the environment impacts the measurements. In fact, not all the points,

even if they are at the same distance, have the same probability of successful packet

reception. The same observations are represented in Figure 7.3, where the measured

RSSI is shown as a function of the distance (blue crosses). In the same figure, we also

plot the RSSI measured from a Samsung Galaxy Nexus smartphone (red dots).
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Fig. 7.3: RSSI as a function of the distance for two devices: a laptop (blue) and a
smartphone (red).

It is interesting to observe not only the huge amount of noise that affects the mea-

surements, but also that the smartphone behaves differently from the laptop. In fact,

on average, the RSSI measurements are generally lower for the smartphone, probably

because the energy-constrained phone allocates less energy to the Wi-Fi card. This

fact reinforces the need for a flexible approach capable of adapting to different devices

with different behavior. Such flexibility, in our approach, is achieved using Gaussian

Processes that can easily adapt to different conditions.
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7.2 A real experiment

In this section we present the results of a real experiment we conducted to test the

single-target algorithm. The device to be located is the smartphone Samsung Galaxy

Nexus, where no particular applications have been installed. We just prevent it from

going to stand by, thus simulating a normal use of the phone. The search area has an

edge of L = 1000 meters, and the initial mission has been configured so that the UAV

goes through 2 points before reaching the opposite corner of the search area. Figure 7.4

shows the trajectory followed by the UAV during the localization process.

Fig. 7.4: Trajectory followed by the UAV during the single-target localization process.

The green dotted lines show the path followed by the UAV during the preliminary

mission that ends after 5 minutes at the point denoted with (d), with l = 7 packets.

Using such observations, the posterior distribution is derived, as shown in the first

row of Figures 7.5 and 7.6. Using the prediction, the UAV estimates the location of

the phone, denoted with the blue star (1), and guided by the Expected Improvement

function it decides where to move next (red (1)). The UAV then follows the path drawn

using the red line. At the first step of the algorithm, the point where the UAV moves (1)

corresponds with the estimated location of the phone (1), i.e., with the current global
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maximum of the mean posterior (exploitative approach). The same holds for the second

and third steps. However, we observe that at the fourth step the point where the UAV

samples (4) and the estimated location of the phone (4) are different, thus meaning

that the algorithm encourages the exploration. The same holds for the the fifth step.

After the sixth step, the maximum of the mean function, and the maximum of the EI

function coincide again, thus meaning that the algorithm is back to the exploitative

approach. Figures 7.5 and 7.6 show the evolution of the posterior distribution for some

steps of the algorithm. For both figures, the first column shows the posterior mean,

the second column shows the posterior standard deviation while the third shows the

acquisition function, i.e., the EI function based on the current posterior distribution.

It is interesting to observe how the peak of the mean function emerges step-after-step.

At the first step, the posterior distribution is flat and blurry, no clear maximum can

be observed and the uncertainty is high almost everywhere. When we move down row

by row, i.e., we follow the evolution of the algorithm step-by-step, we observe that

the peak starts to emerge in the mean function, and that the standard deviation at

the peak location is considerably diminished. Even at the last iteration the standard

deviation at certain locations remains high, but the mean value in such locations is low

enough to ensure that the real peak is not hidden there. It is also interesting to observe

how the EI function evolves. At the beginning, we can observe a wide region with high

values of EI. All those points, since the uncertainty is high, can potentially yield a huge

improvement of the mean function. As we get more samples, the hot region of the EI

tends to shrink in size, and eventually becomes a single narrow peak around the source

location, as shown in the last row of Figure 7.6.
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Fig. 7.5: Posterior distribution at successive steps of the algorithm. The first column
shows the posterior mean, the central column shows the variance, the third column
shows the EI function. The cross marks the real location of the phone, while the white
dots is the estimated position at step l.
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Fig. 7.6: Posterior mean (first column), posterior std. dev (central column) and EI
function (third column) at successive steps of the algorithm.
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The stopping rule

In Chapter 6 we described the stopping rule of the localization algorithm. We consider

the source to be correctly located if

α(l) =
1

q

l∑
i=l−q

‖x̂(i) − x̂(i−1)‖ ≤ δ, (7.1)

with δ suitable threshold. In our experiment, we considered δ = 5 meters and q = 5.

Figure 7.7 shows the evolution of α(l) and of prediction error ε(l) for successive iterations

of the algorithm. We emphasize that the algorithm can only make use of α(l) to decide

whether to stop or to continue sampling. Figure 7.7 shows a close correspondence

between the evolution of the error ε(l) and α(l): the two curves overlap almost perfectly.

This confirms that by observing the evolution of α(l) we can understand if our estimation

is precise or not. In the Section 7.4 we will present other results to validate the use of

(7.1) as a stopping rule.
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Fig. 7.7: Evolution of the prediction error ε(l) and of the stability of the prediction α(l)

at successive iterations of the algorithm.
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7.3 A Graphic User Interface to monitor the progress of

the mission

Since the UAV is completely autonomous during the localization process, there is in

principle no need to develop any particular software to control it from the ground. We

used the proprietary eMotion application to manage the landing and to give the control

of the UAV to the Gumstix computer. However, to follow the progress of the mission,

we developed a Graphic User Interface (GUI) that shows the received packets and the

estimated locations of the device. Using the Google Maps API [37] and the Javascript

programming language, we developed a dynamic webpage that periodically fetches the

data from the UAV and displays it over the map.

Fig. 7.8: GUI to monitor the progress of the localization algorithm.

The blue and orange circles show the locations of received packets, and clicking

over them we can see when the packet has been received and the measured RSSI. The

estimated location of the source at each step of the algorithm is shown with a green

circle, while the last estimation, i.e., the one that should be more accurate, is shown with

a red big circle. By clicking over a green or red circle we can see the corresponding step

of the algorithm. The page is automatically refreshed, so that when new measurements

are available they are immediately displayed over the map.

61



CHAPTER 7. RESULTS

7.4 The MATLAB simulator

Field experiments are expensive and require the involvement of people, transportation,

and costly equipment. Furthermore, providing some reliability measures can require

hundreds of experiments. This called for the development of a suitable environment

to emulate the behavior of the UAV during a localization mission. Such MATLAB

emulator is illustrated in this section, and is designed to emulate as closely as possible

a real flight. The design choices of the simulator are here briefly summarized:

• The search area is a square with L meters side. Each target is randomly positioned

in the search area with uniform probability.

• The targets broadcast PRFs independently one another. The i-th target broad-

casts the j-th PRF at time ti,j = ti,0 + j ·∆T + εi,j , where ∆T is the PRFs inter-

transmission time; t0,i is an initial random time offset uniformly distributed be-

tween 0 and ∆T (i.e., ti,0 ∼ U(0,∆T ) i.i.d. ∀i) and εi,j is a random time offset rep-

resenting the jitter in the PRF transmission. The random variables εi,j are i.i.d.,

with uniform distribution between −εmax and εmax, i.e., εi,j ∼ U(−εmax, εmax).

• The plane flies at constant speed (v m/s) and altitude (h meters).

To obtain realistic results it is crucial to implement a trusty RSSI measurement

mechanism. To this end, we built a synthetic model of the channel using the dataset

of real observations shown in Figure 7.3. We consider N bins that cover the range

[0, R = 600] meters, each one of size r meters, so that N = R/r. We denote with

ρi =
[
i · r, (i+ 1) · r

)
, i = 0, 1, . . . , N − 1 the interval of distances of length r meters. To

build the model of the channel, we first derive one empirical CDF (ECDF) for each of

the N bins, considering only the measurements that have corresponding distance d ∈ ρi.
We denote such ECDF as ri(u), with i = 0, 1, . . . , N − 1 and u ∈ Z RSSI. Figure 7.9

shows an example of such ECDF for four different bins, with R = 600, r = 20. Then,

an RSSI sample at distance d∗ is generated from rj(u), with j : d∗ ∈ ρj .

Testing the stopping rule

The first simulation is conducted to evaluate the impact of the stopping-rule’s thresh-

old δ on the performance of the localization algorithm. The main parameters of the

simulation are summarized in Figure 7.10.

62



CHAPTER 7. RESULTS

−85 −80 −75 −70 −65 −60 −55 −50
0

0.2

0.4

0.6

0.8

1

RSSI [dBm]

P
(y

<
R

S
S

I)

 

 

d ∈  [40,60)
d ∈  [140,160)
d ∈  [280,300)
d ∈  [500,520)

Fig. 7.9: ECDF of the RSSI for four different bins ρ.

Parameter Value

∆T 20 s

εmax 0.5 s

Rmax 450 m

v 13 m/s

h 40 m

ninit 3

n∗ 350

q 5

Fig. 7.10: Simulation’s param-
eters.

A single target is randomly positioned inside the

search area and the UAV runs the single-target algo-

rithm to locate it. When the stopping condition is

satisfied, (i.e., the algorithm ends) we record the du-

ration of the mission and the error made by the al-

gorithm when estimating the target’s position. Fig-

ure 7.11a shows the ECDF of the error obtained from

several independent repetitions of the experiment for

different values of the threshold δ. The ECDF of the

localization time is shown in Figure 7.11b for the same

set of values of δ. We observe that, when δ is smaller,

i.e., the stopping rule is tighter, the localization error

decreases. However, the time required to locate the

target increases. Therefore δ should be chosen according to the specific application as

a suitable trade-off between accuracy and quickness. We identify δ = 10 as a reasonable

value for the threshold, as it gives an error that is smaller than 30 meters in 99% of

the cases while keeping the searching time always under 40 minutes, thus allowing the

localization of the target with a single flight.

Sequential approach for multiple devices

In the second scenario, N = 15 targets are randomly positioned in the search area

and the sequential approach is used to locate them. We denote with τi the mean time

spent for locating the i-th target. Formally, assuming that the targets are numbered
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Fig. 7.11: Localization error and time for different values of δ

according with the order in which they are located, if ti is the time at which target i is

located, then

τi =

E[ti], i = 1

E[ti − ti−1], i > 1.
(7.2)

As discussed in Chapter 6, we expect τi to decrease as i increases, because the algorithm

can benefit from the PFRs detected during the localization of the previous targets. The

behavior of τi as a function of the target’s index is shown by the blue curve of Figure

7.12, where the expectation has been replaced by the mean of averaging over several

different independent repetitions. In agreement with what we expected, τi decreases

from the initial value τ1 ' 20 minutes and settles to τlim ' 6 minutes, thus confirming

that collecting packets of other targets is useful to reduce the localization time. From

Figure 7.12, we also observe that τi does not tend to zero. In fact, the time required

to localize i targets using the sequential approach with i� 1 can be approximated as

ti ' i · τlim. This gives us an insight: even if several packets are available when the

algorithm starts, to perform an accurate localization of the target the plane must fly

close to the source for a certain time in order to collect packets with high RSSI.

We also considered a clustered scenarios, where the targets are clustered and lie in

a circular area of radius Rc. Figure 7.12 shows τi for Rc ∈ {50, 200, 400}. In this case,

we can observe that τi decreases drastically as the radius of the cluster, Rc, decreases.

This is because while the UAV locates the device i, it also collects packets that are

close to the other devices, therefore not affected by lot of noise and extremely useful

for the estimation.
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Fig. 7.12: Average time dedicated to the localization of a user for randomly positioned
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Parallel approach for multiple devices

We show here the results of the parallel approach for the multi-target localization

problem. We asked the algorithm to locate N = {5, 10, 15} targets randomly positioned

in the search area, keeping the same stopping rule as before (i.e., δ = 10, nδ = 5).

Figure 7.13a shows that the time required to locate the targets is drastically reduced

with respect to the sequential localization. Interestingly, the time required to locate 15

targets is just slightly greater than the time needed to locate 5 targets. Simulations

results show also that the parallel-approach, with the same stopping rule, is more likely

to make a bigger estimation error. This effect is clear from Figure 7.13b, that shows

the ECDF of the localization error obtained using the parallel approach (solid red line)

against the sequential approach (dashed black line). We see that, using the parallel

approach, we obtain an error that is on average 10 meters greater. This is the price we

have to pay to use a global objective function that drives the Bayesian optimization.

In order to perform a fair comparison with the sequential algorithm, we reduced

the value of δ to 1 meter. In this manner, the parallel approach yields an error with

the same distribution of the sequential algorithm (see blue curve in Figure 7.13b). The

corresponding time slightly increases, as Figure 7.13a shows, but is still smaller than

for the sequential approach, thus confirming the benefit given by the parallel algorithm

instead of the sequential one. As a final remark we highlight that, from a computational

point of view, the parallel approach is very demanding, since the prediction must be

performed independently for each target at each iteration of the algorithm.
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Chapter 8

Conclusions and Future Work

In this work, we designed and tested a localization algorithm for UAVs that makes use

of the RSSI to estimate the position of a Wi-Fi device. Since we assumed the source to

be uncooperative, we can think of using the algorithm for several different applications.

In Chapter 1 we mentioned some of them, but the flexibility of the approach open the

way to new unexpected applications. Some suggestions for the future works can also

be found in the next section.

After having carried out a first rough feasibility analysis, we formulated the prob-

lem as a maximization problem. We decided to use Bayesian Optimization to estimate

the maximum of a function that is costly to evaluate, and such approach proved very

useful to solve the problem quickly and efficiently. In fact, using the Expected Improve-

ment acquisition function, we achieved an automatic trade off between exploration and

exploitation, showing that the algorithm can collect useful RSSI measurements and

achieve a good precision even with few observations. We built this model on top of a

solid understructure: Gaussian Processes, which are powerful, flexible and well-known.

We designed the localization algorithm and implemented it on the UAV, performing

some tests in a real environment. We showed how the algorithm behaves in normal

conditions and proved that, even with uncooperative devices, we can achieve a very

good precision when localizing the target. To provide some reliability measures, we

designed a MATLAB simulator that has been also very useful to show the benefits of a

parallel approach over the sequential one. Implementing such parallel algorithm inside

the UAV is the next step of our course of actions.
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8.1 Future work

8.1.1 Uncooperative source

In this work, we assumed the source to be uncooperative, i.e., to have no software

onboard and to have no particular connection with the UAV. Even under such assump-

tion, we showed how the RSSI can be used to perform the localization with a reasonable

precision. Keeping the same approach, we could potentially achieve an improvement of

the performance by

• Multiple antennas. Increasing the number of antennas at the receiver side

could help increasing the number of observations, thus mitigating the effects of

the noise.

• Directive antennas. Instead of using simple omnidirectional antennas, it is

possible to use patch antennas or directive antennas that could give additional

information on the direction the signal comes from.

• Multiple UAVs. It may be interesting to investigate the results that could be

obtained using multiple cooperative UAVs at the same time. The UAVs could

use some cooperating technique to share the data and equally split the workload

to localize the sources in a quicker way. This approach can be useful especially

for vast search areas.

• Different regression solver. In our approach we used Gaussian Processes

because they are flexible and well-known. More refined techniques, such as neural

networks could potentially give benefits to the estimation process.

A different way to tackle the uncooperative problem would be to install a Software

Defined Radio (SDR) platform onboard the UAV, such as the one described in [38],

that gives us access to the signal at the physical layer. Since the platform is especially

designed to work with high frequencies, we can estimate very precisely the arrival time

of a packet. Then, using two or more UAVs equipped with such SDR platform, we could

estimate the location of the source by evaluating the difference on the arrival time of

the same packet. The precision of this approach depends of course on the chosen SDR

platform. Using the datasheet provided in [38], the time resolution τ of the board can

be computed as the inverse of the maximum clock,

τ =
1

ν
' 1

4
10−9 ' 250 pS. (8.1)
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In the ideal scenario, assuming free space Line-of-Sight propagation, the electromagnetic

signal in τ seconds covers a distance of

d ' τ · (3 · 108) ' 10 cm, (8.2)

thus showing that the accuracy that could potentially be achieved is very high. However,

real experiments are needed to evaluate the impact of reflections and multipath on the

estimation.

8.1.2 Cooperative source

When we assume the target to be cooperative with the localizing agent, the approach

and the focus change. The RSSI-based estimation can still be performed, but we can

potentially have access to information that the target is now willing to share. If we first

perform a rough estimation of the target location, than the UAV can move closer to

the Wi-Fi device to ensure a better connection quality. When the UAV is close to the

device, it can announce its presence to the target device, and this can open different

scenarios:

• If the device does not have the proper application, the drone could provide it.

In fact, the smartphone will see the drone as a Wi-Fi hotspot, so it will be able

to connect and, if needed, download the application. Then, after the application

has been installed, a secure and reliable connection between the UAV and the

smartphone can be established.

• The application, which can have access among other things to the GPS sensor,

can transmit to the UAV all the available information at the phone side. The UAV

can make use of such information to improve the accuracy of the localization.

• The UAV could also transmit to the smartphone messages from the rescue teams.

It could also act as a relay to forward messages and requests to the ground station

where rescue teams coordinate the operations. Interestingly, in [13] authors have

shown that a VoIP call can take place between two nodes on the ground using the

UAVs as relays. However, if there is no single or multihop communication with

the ground station, the UAV can temporary store messages and other information

coming from the device (videos, pictures, recordings) and transmit them to the

ground node when the connection becomes available again.

Finally, ultra-wideband (UWB) signals provide accurate positioning capabilities, at

a relatively low cost. In principle, the UWB platform estimates the distance between

69



CHAPTER 8. CONCLUSIONS

the modules measuring the average Round Trip Time of consecutive impulses. If we

assume the target to be equipped with a UWB module, than we can estimate its

location with high precision. Nonetheless, usually UWB modules are designed for

indoor environments and for short range. Therefore, to employ such technology to our

problem, we still need a preliminary RSSI-based localization, and once we are close

enough to the source we can refine the estimation using the dedicated module.
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Appendix

9.1 Distance computation

This subsection briefly describes how the distance between two points can be com-

puted given their coordinates. We define as (λ1, ϕ1), (λ2, ϕ2) the longitudes and the

latitudes of the two points respectively, while R is the earth’s radius. We assume here

that the latitude and the longitude are expressed in radiants. Since we deal mostly

with relatively small distances, we can ignore the ellipsoidal effects and assume earth

to be spherical. We use the haversine formula to calculate the great-circle distance

between two points, also because it remains particularly well-conditioned for numerical

computation even at small distances, so that

a = sin2(∆ϕ/2) + cos(ϕ1) cos(ϕ2) sin2(∆λ/2), (9.1a)

d = 2R · atan2(
√
a,
√

1− a), (9.1b)

where ∆ϕ = ϕ2 − ϕ1, ∆λ = λ2 − λ1, R = 6371009 meters and atan2(·, ·) ∈ [−π, π] is

the four quadrant inverse tangent. The inverse procedure can be particularly useful if

we want to specify the center of the research area and its edge expressed in meters. It

is therefore necessary to convert a distance expressed in meters into the corresponding

range in geographical coordinated. We consider in general a point (λ1, ϕ1) and we

want to compute the coordinates of the point (λ2, ϕ2) such that the distance along the

longitude axis is h meters and the distance along the latitude axis is v meters. This

translates directly into the problem of determining ∆ϕ = ϕ2 − ϕ1 and ∆λ = λ2 − λ1.

αh = tan2

(
h

2R

)
, αv = tan2

(
v

2R

)
; (9.2)
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ah =
αh

1 + αh
, av =

αv
1 + αv

; (9.3)

∆ϕ = 2 · asin

(√
ah

cos2(λ1)

)
, ∆λ = 2 · asin

(√
av
)
. (9.4)

9.2 Forward and Backward substitution

We describe here an efficient technique for solving a system of linear equations when

the the coefficient matrix A is decomposed using the Cholesky method. In particular,

suppose that A ∈ IRn×n is the matrix of the coefficients, B ∈ IRn×h is the matrix of

the constant known values, while X ∈ IRn×h is the matrix of the unknown values to be

determined. The three matrices satisfy the following relation

AX = B. (9.5)

We consider the Cholesky decomposition of the matrix A into A = LLT , where L ∈
IRn×n is the lower-triangular Cholesky factor. The original (9.5) can be rewritten as

AX = (LLT )X = L(LTX) = B. (9.6)

Now, since the matrices L and B are known, we can solve the system and obtain

Y = LTX. Then, since Y and LT are known, we can finally obtain X. The original

problem therefore decomposed into two easier steps:

1. Solving for (LTX) from L(LTX) = B.

2. Solving for X from Y = LTX.

The advantage is that, given the triangular structure of the matrix L, the computation

can be performed very efficiently. In fact, consider first the forward substitution to solve

LY = B, (9.7)

that can be expanded as
l11 0 ... 0

l21 l22 ... 0
...

...
...

...

ln1 ln2 ... lnn



y11 y12 ... y1h

y21 y22 ... y2h
...

...
...

...

yn1 yn2 .... ynh

 =


b11 b12 ... b1h

b21 b22 ... b2h
...

...
...

...

bn1 bn2 .... bnh

 . (9.8)
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We can solve one column of the matrix Y at time, thus obtaining the following formu-

lation that is valid for each columns:

b1 = l11 · y1
b2 = l21 · y1 + l22 · y2
...

bn = ln1 · y1 + ln2 · y2 + ...+ lnn · yn

(9.9)

The formulation shows that, from the first equation, we can immediately obtain y1,

then plug the value into the second obtaining y2 and so on. In conclusion,

yi =
1

lii

[
bi −

i−1∑
j=1

li,jyj

]
. (9.10)

Once we have solved the first step, we can apply a similar approach to solve for X from

Y = UX, by backward substitution. The resolvent equation is

xi =
1

lii

[
yi −

n∑
k=i+1

lk,ixk

]
. (9.11)

9.3 Marginalization of Gaussian vectors

Let x and y be two jointly Gaussian random vectors[
x

y

]
∼ N

([
µx

µy

]
,

[
A C

CT B

])
. (9.12)

Then the conditional distribution of x given y are

p(x|y) ∼ N
(
µx + CB−1(y − µy),A−CB−1CT

)
(9.13)

73



CHAPTER 9. APPENDIX

74



Bibliography

[1] E. Perahia and R. Stacey, Next Generation Wireless LANs: 802.11n and 802.11ac.

New York, NY, USA: Cambridge University Press, 2nd ed., 2013.

[2] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.

The MIT Press, 2006.

[3] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimiza-

tion of Expensive Cost Functions, with Application to Active User Modeling and

Hierarchical Reinforcement Learning,” CoRR, vol. abs/1012.2599, 2010.

[4] “Amazon ”Prime Air” Webpage.” http://www.amazon.com/b?node=8037720011.

Accessed: 2015-03-27.

[5] A. Symington, S. Waharte, S. Julier, and N. Trigoni, “Probabilistic target detec-

tion by camera-equipped UAVs,” in Robotics and Automation (ICRA), 2010 IEEE

International Conference on, pp. 4076–4081, May 2010.

[6] Z. Sun, P. Wang, M. C. Vuran, M. Al-Rodhaan, A. Al-Dhelaan, and I. F. Akyildiz,

“Bordersense: Border patrol through advanced wireless sensor networks.,” Ad Hoc

Networks, vol. 9, no. 3, pp. 468–477, 2011.

[7] T. Furukawa, F. Bourgault, B. Lavis, and H. F. Durrant-Whyte, “Recursive

Bayesian search-and-tracking using coordinated UAVs for lost targets,” in Robotics

and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Confer-

ence on, pp. 2521–2526, IEEE, 2006.

[8] “senseFly home webpage.” https://www.sensefly.com. Accessed: 2015-03-27.

[9] S. d’Oleire Oltmanns, I. Marzolff, K. D. Peter, and J. B. Ries, “Unmanned Aerial

Vehicle (UAV) for monitoring soil erosion in Morocco,” Remote Sensing, vol. 4,

no. 11, pp. 3390–3416, 2012.

75



BIBLIOGRAPHY

[10] G. P. Jones, The feasibility of using Small Unmanned Aerial Vehicles for wildlife

research. PhD thesis, University of Florida, 2003.
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