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Abstract

The demand for high-quality, immersive experiences in eXtended Reality (XR) en-
vironments has increased significantly, driven by applications in entertainment,
education, healthcare, robotics and industrial design. XR technologies rely heav-
ily on real-time rendering of 3D scenes to create interactive and responsive ex-
periences. However, achieving both visual fidelity and computational efficiency
remains a major challenge, particularly on mobile and wearable devices with
limited resources. Emerging approaches, such as 3D Gaussian Splatting, are
transforming how 3D scenes are visualized in real time. These innovations offer
the potential to enhance user experiences and expand the practical applications
of XR technologies across various domains.

This thesis explores the application of 3D Gaussian Splatting in real-time XR vi-
sualization, proposing an adaptive Level of Detail system to optimize rendering
performance. By dynamically adjusting scene complexity based on user position
and the importance of objects within the scene, this approach seeks to enhance
both visual quality and computational efficiency. Semantic segmentation is lever-
aged to prioritize and allocate resources effectively, ensuring that detailed ren-
dering is focused on key areas while less important regions are simplified. The
integration of these techniques allows for high-quality visualizations that adapt to
real-time requirements, enabling for XR applications that balance computational
constraints with the need for high visual fidelity.
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Introduction

In recent years, the growth of eXtended Reality (XR) applications has transformed how
users interact with digital content. Thanks to the widespread availability of mobile
and wearable devices, these technologies have become increasingly accessible, opening
up new use cases in fields such as entertainment, education, design, and healthcare.
However, creating high-quality immersive experiences requires real-time processing of
complex 3D models that must dynamically adapt to the user’s position and movements.
This presents significant challenges in terms of computational efficiency and visual qual-
ity, especially on resource-constrained devices like headsets and smartphones.

One of the main challenges in real-time visualization for XR environments is balancing
visual fidelity with the constraints of available computational resources. The perceived
image quality by the user depends not only on the ability to render detailed 3D models
but also on the precise synchronization between the user’s movements and the displayed
content. Even a slight misalignment between the user’s movements and the scene visual-
ization can negatively affect the experience. This requires advanced rendering techniques
that maintain high performance without compromising visual quality.

Traditionally, 3D model rendering for XR applications relied on explicit representations
like point clouds, meshes, and voxels, which require significant computational power for
real-time rendering. However, the evolution of neural-based rendering techniques has
led to more efficient and flexible solutions. In this context, approaches such as Neural
Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) are emerging as promising
solutions for representing and visualizing complex 3D scenes. The NeRF method, intro-
duced in 2020, allows the synthesis of 3D scene views from a set of 2D images using a
radiance field learned by a neural network. While NeRF has achieved remarkable results
in terms of visual quality, its implementation is particularly computationally demanding,
making it difficult to apply in XR scenarios where real-time responsiveness is essential.
On the other hand, the 3D Gaussian Splatting method, introduced in 2023, represents a
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1.1. PROPOSED CONTRIBUTION

significant advancement in real-time 3D scene visualization. This approach uses a set of
3D Gaussians distributed in space to represent the scene’s geometry and appearance. The
flexibility of Gaussians allows for continuous and differentiable scene representations,
maintaining a high level of visual detail while reducing computational load compared to
traditional or neural-based methods like NeRF. This makes 3DGS particularly suitable for
XR applications on mobile and wearable devices, where hardware resources are limited.

1.1 Prorosep CONTRIBUTION

This thesis focuses on the application of 3D Gaussian Splatting for real-time visualiza-
tion in XR environments. The main objective is the development of a semantic-based
dynamic rendering framework that optimizes visual quality while addressing the chal-
lenges posed by limited computational resources and bandwidth constraints typical of
mobile and wearable XR devices. By dynamically controlling the level of detail based on
the user’s position and the complexity of semantic classes recognized in the scene, the
system presented in this thesis aims to enhance the user experience in XR scenarios by
reducing the computational burden without sacrificing visual quality.

The thesis is organized as follows. Chapter 2 provides an overview of the theoretical
background on rendering techniques, with a focus on real-time 3D scene rendering in
XR applications, highlighting the key challenges and limitations. Chapter 3 discusses
state-of-the-art rendering methods, specifically focusing on NeRF and 3DGS. In Chapter
4, we analyze the datasets and metrics used for evaluating rendering performance and
visual quality. Chapter 5 presents the proposed method, describing the implementation
of the adaptive LOD system based on 3DGS. Experimental results and performance
evaluations are discussed in Chapter 6. Finally, conclusions and future research directions
are provided in Chapter 7.
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Rendering

Rendering is the computational process of generating a 2D image from a 3D model or
scene description, and plays an important role in computer graphics. It involves the
simulation of light interactions with objects, materials, and surfaces to produce a visual
output. The rendering pipeline typically encompasses stages such as geometric trans-
formations, lighting calculations, texture mapping, and shading, leveraging both central
processing units (CPUs) and graphics processing units (GPUs) for efficiency.

In computer graphics, rendering can be classified into two main categories: offline ren-
dering and real-time rendering. Offline rendering, typically used in applications like film
production, architectural visualization, and high-quality simulations, prioritizes visual
fidelity over speed. This method employs computationally intensive techniques such as
ray tracing, path tracing, and global illumination, allowing for physically accurate light-
ing, shadows, and reflections. Offline rendering can take hours or even days to generate
a single frame, as seen in CGI effects for movies, where realism is paramount. Real-
time rendering is essential for interactive applications like video games, virtual reality,
and simulations, where maintaining high frame rates is fundamental to ensure smooth
user interaction. To achieve this, real-time rendering relies on optimized algorithms
like rasterization, approximate lighting models, and hardware acceleration using GPUs,
sacrificing some visual precision for performance.

15



2.1. GRAPHIC PIPELINE

2.1 GraprHiIC PIPELINE

In the context of computer graphics, the visualization of a virtual environment starts from
a three-dimensional model of the scene to generate one or more views to be displayed on a
two-dimensional image on a screen. The scene can be created from real-world data, such
as photographs or sensor inputs, in this case, the process is known as 3D reconstruction,
and focus on the goal of obtaining a model that is as faithful and realistic as possible.
Alternatively, the model can be generated digitally using modeling software, without
necessarily drawing inspiration from real-world elements.

In the following, we will primarily focus on 3D reconstruction, as it represents the
starting point for acquiring virtual models from real data. However, the discussion of
rendering remains applicable to models obtained through 3D modeling, as the principles
and techniques employed in the rendering pipeline are relevant to both modes of view
synthesis.

3D

virtual 20

Real . scene . screen Final
world _— Scene Reconstruction _ Rendering — Image
data
Geometry — Rasterization
Window-
Model & Camera i (] inni .
transformation Lighting —  Projection Clipping — "ax,;;vr%,;ion T

Object coordinates Camera coordinates Clipping coordinates Device coordinates

Figure 2.1: Overview of the graphic pipeline. Real-world data is first processed through
Scene Reconstruction to create a 3D virtual scene. This scene is then passed to the
Rendering stage, which involves Geometry transformations and Rasterization. Key steps
in this process include model and camera transformations, lighting, projection, clipping,
and viewport transformations, ultimately producing the final rendered image.

2.1.1 3D RECONSTRUCTION

3D reconstruction is the process of automatically or semi-automatically generating a
model from real-world data, with maximum fidelity and realism. Typically, 3D recon-
struction is achieved by traditional algorithms such as photogrammetry, Multi View
Stereo (MVS) and Structure from Motion (5fM) algorithms. In these cases, it involves ex-
tracting the geometric and appearance information from a series of 2D images, typically
captured from different viewpoints. This information is then used to create a 3D model
of the scene. Specifically, Structure from Motion reconstructs the 3D structure of a scene
from a set of overlapping 2D images as input. First, it identifies common features across
these images, such as corners, edges, or specific patterns; then it estimates the position
and orientation (pose) of the camera for each image based on the identified features and
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CHAPTER 2. RENDERING

Figure 2.2: 3D scene reconstruction with Structure from Motion [16]

how they appear from different viewpoints. By having corresponding features in multi-
ple images and the camera poses, it performs triangulation to determine the 3D location
of these features in the scene. Lastly, the StM algorithms use the 3D positioning of these
features to build a 3D model of the scene which can be a point cloud representation or a
more detailed mesh model.

2.1.1.1 SCENE REPRESENTATION
Scene representation encompasses various methodologies for encoding spatial and visual

characteristics of three-dimensional environments.

EXPLICIT SCENE REPRESENTATION  Traditionally, 3D shapes are described using explicit
representations such as depth images, voxel grids, point clouds, or meshes.

(a) Point cloud (b) Voxel (c) Mesh

Figure 2.3: The Stanford Bunny model in three different explicit representation
Depth images capture the distance between the camera and the object at each pixel, en-

coding 3D geometry from a specific viewpoint. Layered depth images expand on this by
incorporating multiple depth maps with color information to depict a scene.

Point clouds (Figure 2.3a) consist of a collection of vertices in 3D space, defined by a
triplet of coordinates (x, y, z). These points collectively describe the geometry of an object

17



2.1. GRAPHIC PIPELINE

or an entire scene and are commonly generated by 3D scanners, such as LIDAR or RGB-D
sensors, from multiple viewpoints.

Volumetric models (Figure 2.3b) are regular data structures that capture the three-
dimensional volume of an object or scene. They serve as an intuitive extension of 2D
images into the third dimension, where individual elements, called voxels, are analogous
to pixels in 2D. Just as a pixel is a subdivision of a 2D space, a voxel represents a discrete
unit within a 3D space. Voxel grids are a common implementation of this concept, where
a regular 3D grid represents the object or scene. These grids can be constructed from
point clouds through voxelization, which groups nearby points into individual voxels.

Boundary representation (B-rep) defines the shape of an object by specifying its bound-
aries through vertices, edges, and faces. The most common B-rep model is the 3D mesh
(Figure 2.3c), a geometric structure extensively used in computer graphics. A 3D mesh
encodes the surface geometry of objects through polygonal faces, typically triangular or
quadrilateral in shape. When a mesh consists of a single type of polygon, such as trian-
gles, it is referred to as a regular mesh. Unlike point clouds, which only provide vertex
locations, meshes also describe the surface geometry, offering more detailed information
about an object’s structure.

IMPLICIT SCENE REPRESENTATION  Implicit scene representations do not store geometry
directly; instead, they use continuous functions to describe it. Since implicit functions
are often not analytically tractable, they are typically approximated by neural networks.
In this context, implicit neural representations, such as neural fields, offer a novel way to
parameterize signals across a wide range of domains.

RADIANCE FIELD A radiance field is a representation of light distribution in a three-
dimensional space, which captures how light interacts with surfaces and materials in the
environment. Mathematically, a radiance field can be described as a function L : R®> —» R*
where L(x, y, z, 0, ¢) maps a point in space (x, y, z), and a direction specified by spherical
coordinates (0, ¢), to a non-negative radiance value. Radiance fields can be represented
in both forms: implicit and explicit.

In an implicit radiance field, the light distribution in a scene is not stored directly but
instead learned through neural networks. The neural network maps spatial coordinates
(x,y,z) and viewing directions (6, ) to color and density values. The radiance at any
point in space is computed on-the-fly by querying the network. This approach enables
continuous and differentiable scene representations, but requires higher computational
power.

Conversely, in an explicit radiance field, the light distribution is stored directly in a

predefined data structure, such as voxel grids or point clouds. Each element within
this structure stores radiance information for its respective location in space. While this

18



CHAPTER 2. RENDERING

method allows for faster access to radiance data, it typically demands more memory and
may offer lower resolution compared to implicit representations. A radiance function in
this context can be written as

Lexplicit(xr Y,z, 0, §0) = DataStructure[(x, Yy, Z)] : f(@, QO)

where the data structure might represent a voxel grid or point cloud.

2.1.1.2 CAMERA MODEL

In the context of 3D reconstruction, accurate camera models and their calibration tech-
niques are essential for capturing and interpreting the spatial relationship between the
real world and its digital representation. Camera models describe how 3D points in the
environment (Xw, Y, Zw, 1) are projected onto a 2D image plane (1, v, w), enabling the
reconstruction of the scene’s geometry. The parameters associated with camera models
can be broadly categorized into intrinsic and extrinsic parameters, both of which are
essential for accurately capturing and reconstructing three-dimensional scenes.

Intrinsic parameters define the internal characteristics of a camera, including focal length
(fx, fy), sensor size, and lens distortion. These parameters determine how a camera
captures light and projects it onto its sensor, influencing the overall quality and accuracy
of the images produced. For instance, the focal length affects the field of view, while lens
distortion can lead to image warping. Accurately calibrating these intrinsic parameters
ensures that the depth information derived from images reflects the true geometry of the
scene.

Extrinsic parameters describe the position (f3x1) and orientation (R3x3) of the camera in
the three-dimensional space relative to the scene being captured. These parameters are
critical for establishing the relationship between multiple images taken from different
viewpoints, as they determine how the camera’s coordinate system aligns with the world
coordinate system. Accurate extrinsic parameters allow for the correct alignment of im-
ages and depth data, enabling the generation of coherent 3D models.

Xw
u 0 c
o | = ch f Cx R3xz  taxa )| Yw 2.1)
s Oixa3 1 )|Zw '
w 0O 0 1 1

2.1.2 RENDERING PIPELINE

The purpose of the rendering pipeline is to systematize the rendering process, ensuring
that all aspects of a scene, from geometry to lighting, are processed in a logical order.

19



2.1. GRAPHIC PIPELINE

This modular approach allows for optimization at each stage, ensuring that even complex
scenes can be rendered. In traditional offline rendering, where quality matters more than
speed, the pipeline enables effects like ray tracing for realistic shadows and reflections.
Real-time rendering pipelines are optimized for speed, using techniques like z-buffering,
back-face culling, and Level Of Detail (LOD) to reduce the computational load without
sacrificing too much visual quality. Though the specific steps may vary depending on
the renderer or game engine being used, the core stages remain similar.

2.1.2.1 GEOMETRY PROCESSING

Initially, objects are defined in model space, which locates them relative to their own coor-
dinate systems. To prepare the scene for display on a 2D screen, the first transformations
occur. The model-to-world transformation moves each object from its local coordinate
space to world space, aligning all objects within a common 3D coordinate system. The
view transformation positions and orients the camera, transforming objects into camera
space based on the camera’s perspective. Then, the projection transformation is applied,
converting 3D coordinates into 2D screen space. This step uses either perspective projec-
tion, where distant objects appear smaller, or orthographic projection, where object size
remains uniform regardless of distance.

Before these transformations are completed, two key optimization techniques are applied
to remove non-visible data, ensuring that only what is necessary is processed. The first
is view frustum culling, which discards entire objects that fall outside the camera’s view
frustum—the truncated pyramid that defines the camera’s visible field in 3D space.
Objects entirely outside this volume are excluded from further processing, while those
partially inside are clipped, improving rendering performance without affecting the
visual result. Following this, back-face culling is employed as an additional optimization.
This technique removes the faces of objects that are oriented away from the camera, as they
are not visible to the user. By discarding these back-facing polygons, the computational
load is further reduced, particularly in scenes with complex geometry.

2.1.2.2 SHADING AND LIGHTING

With the scene properly transformed into 2D coordinates, the next step is the calculation
of light interaction with object surfaces, which determines the final color perceived in
each pixel. This stage, known as lighting and shading, varies depending on the rendering
approach and is generally expressed through the Rendering Equation [22]:

Lo(%, o) = Le(x, o) + / £ (%, @3, o)Li(x, wi)(n - ;) dav 22)
Q

where:

o Ly(x, @) is the outgoing radiance at point x in the direction w,, i.e., the color perceived
by the camera.
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CHAPTER 2. RENDERING

Ambient Diffuse Specular Combined

Figure 2.4: [llumination terms of Phong illumination model

L¢(x, wo) is the emitted radiance, if the surface emits light.

]

]

fr(x, wi, wo) is the Bidirectional Reflectance Distribution Function (BRDF), modeling
how light reflects from direction w; to direction w,.

]

Li(x, wj) is the incoming radiance from direction w;.

o n - wj is the cosine of the angle between the surface normal n and the incoming
direction wj, accounting for how much light strikes the surface.

This equation models both direct illumination (light coming directly from a light source)
and indirect illumination (light that has bounced off other surfaces), offering a compre-
hensive description for the propagation of light in a scene.

In real-time rendering, simplifying assumptions are often made to achieve faster compu-
tations. Local illumination models, such as the Phong illumination model, only consider
direct light sources and ignore indirect light. The Phong model calculates the total outgo-
ing intensity L,(x, w,) at a surface point as the sum of four components: ambient, diffuse,
specular, and emitted light:

Lo(x,wo) =L, +Lg+Ls+L, (2.3)

where L, is the ambient term, representing light scattered uniformly in the environment,
L, is the diffuse reflection, modeling light scattered equally in all directions, calculated
using Lambert’s cosine law, L; is the specular reflection, responsible for highlights and L,
is the emitted light, relevant for surfaces that emit light, such as light sources or emissive
materials. This formulation of the Phong model directly relates to the Rendering Equa-
tion as a simplified case where only direct illumination is considered, and the BRDF f, is
approximated using simple empirical terms.

In contrast, global illumination models solve the full Rendering Equation, including both
direct and indirect light. Techniques such as path tracing simulate light bouncing between
surfaces, accurately capturing effects like reflections, shadows, and color bleeding. In
path tracing, light is traced from the camera through the scene, and the contributions
of multiple bounces are accumulated by solving the Monte Carlo approximation of the
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2.1. GRAPHIC PIPELINE

Rendering Equation. The final radiance is computed as:

N
Lo, o) = 3 O flx, 05, @0)Lilx, @) - @) 24
i=1

where N is the number of sampled light paths.

(a) No illumination (b) Local illumination (c) Global illumination

Figure 2.5: Comparison between different illumination models

2.1.2.3 RASTERIZATION

During rasterization, the geometric primitives (usually triangles) are converted into frag-
ments or pixel data by mapping the 2D projections of 3D objects onto the screen’s pixel
grid. Each fragment’s color is then calculated based on the object’s material properties,
lighting conditions, and shading model. To ensure that only the visible fragments are
rendered, depth testing is applied. A common technique for this is Z-buffering, where
each pixel is associated with a depth value (the distance from the camera). As fragments
are processed, the Z-buffer stores the depth of the closest fragment at each pixel. If a new
fragment is found to be closer than the current one, it replaces the old fragment, ensuring
that only the nearest objects are displayed, while fragments of objects that are behind
others are discarded. This process effectively handles the occlusion of overlapping objects.

In some cases, additional post-processing effects are applied to enhance visual quality.
Techniques like anti-aliasing reduce jagged edges, while bloom adds a glow around
bright objects to simulate overexposure. Other effects like motion blur or depth of field
are added to simulate cinematic qualities. Finally, tone mapping is applied to compress
high dynamic range lighting into a displayable low dynamic range format.

2.1.3 NOVEL VIEW SYNTHESIS

Novel view synthesis (NVS) is a technique that generates new viewpoints of a scene using
alimited number of images. This approach creates immersive experiences, allowing users
to explore perspectives that were not initially captured. By utilizing the geometric and

22



CHAPTER 2. RENDERING
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Figure 2.6: Overview of the rendering process

photometric data embedded in the input images, novel view synthesis reconstructs the
visual appearance of a scene from these fresh angles. In the field of 3D reconstruction,
this technique depends on comprehending the spatial relationships between various
viewpoints. By synthesizing new views from the existing data, it enhances the richness
and depth of scene representation. From the rendering perspective, novel view synthesis
is vital for producing visually compelling images. It employs algorithms that interpolate
and blend data from the input images, ensuring consistency in lighting, texture, and
color with the original scene. Recent advancements in neural networks have further
transformed this field by enabling the learning of complex scene representations.

Input Images Optimize NeRF Render new views
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Figure 2.7: NeRF 3.1 is a method that optimizes a continuous 5D neural radiance field
representation of a scene from a set of input images. Here, the set of 100 input views of the
synthetic Drums scene randomly captured on a surrounding hemisphere is visualized,
and then two novel views rendered from the optimized NeRF representation are shown.

2.2 RENDERING TECHNIQUES

In this section an overview of the main rendering approaches and techniques is presented.
This classification is not strict since in many practical approaches, different methods can
be combined to obtain better results.
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2.2. RENDERING TECHNIQUES

2.2.1 PHYSICALLY BASED RENDERING

Physically Based Rendering (PBR) is a rendering approach aimed at creating realistic
images by accurately simulating how light interacts with surfaces, based on the physical
properties of materials. The primary objective of PBR is to ensure that surfaces respond
consistently to lighting across different scenes and viewpoints, producing photo-realistic
results. It takes into account material properties like color, roughness, and reflectivity,
which influence how light is reflected, refracted, and scattered. Two techniques com-
monly used in PBR are ray casting and ray tracing.

Ray casting is a simpler method that involves casting rays from the camera into the scene
to determine what objects are visible in the final image. Each ray checks for intersections
with objects along its path, determining which object is hit first. Ray casting is computa-
tionally efficient, as it only checks visibility, but doesn’t simulate complex lighting effects
like shadows, reflections, or refractions.

Ray tracing, on the other hand, is more comprehensive. It not only determines visibility
but also simulates how light behaves as it interacts with surfaces. When a ray hits a
surface, secondary rays are cast to calculate reflections, refractions, shadows, and indi-
rect lighting effects. This produces much more realistic images, as it mimics the actual
behavior of light in the real world, but at a higher computational cost.

PBR leverages these techniques to model light behavior in a way that faithfully represents
real-world phenomena. The interplay of light with materials, guided by physics-based
algorithms, allows PBR to deliver scenes with lifelike visual fidelity. This has made
PBR widely used in industries like film, gaming, and virtual reality, where realism and
material authenticity are key.

2.2.2 VOLUME RENDERING

Volumetric representations model objects and scenes not just as surfaces but as volumes
filled with materials or empty space. This allows for a more accurate rendering of
phenomena like fog, smoke, or translucent materials. Ray-marching is a technique used
with volumetric representations to render images by tracing the path of light through a
volume [11]. In this method, rays are cast from the camera through the volume, sampling
data at regular intervals along their paths. At each step, the algorithm accumulates color
and opacity values based on the properties of the volume at that point, resulting in the
final image. This process can create realistic views of volumetric effects by simulating
how light travels through and interacts with semi-transparent materials. NeRF [33]
shares the same spirit of volumetric ray-marching and introduces importance sampling
and positional encoding to improve the quality of synthesized images. While providing
high-quality results, volumetric ray-marching is computationally expensive, motivating
the search for more efficient methods.
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CHAPTER 2. RENDERING

2.2.3 POINT-BASED RENDERING

Point-based rendering is a technique for visualizing 3D scenes using points rather than
traditional polygons. This method is particularly effective for rendering complex, un-
structured, or sparse geometric data. In volumetric rendering, a significant drawback is
the inefficiency caused by sampling points in unoccupied spaces, which contribute little
to the final image. In contrast, point-based methods, which focus on occupied regions
of the scene, offer a more efficient and precise representation by relying on rasterization
rather than stochastic sampling.

Points can be augmented with additional properties like learnable neural descriptors [1]
[38], and rendered efficiently [28] [40], but this approach suffers from issues like holes
in the rendering or aliasing effects. 3D Gaussian Splatting [24] extends this concept by
using anisotropic Gaussians for a more continuous and cohesive representation of the
scene.

2.2.4 NEURAL RENDERING

Neural rendering combines ideas from classical computer graphics and machine learning
to create algorithms for synthesizing images from real-world observations.

While classical computer graphics starts from physics, by modeling for example geome-
try, surface properties and cameras, machine learning comes from a data-drive, statistical
perspective, i.e., learning from actual real world examples to generate new images. By
leveraging large-scale datasets imagery, deep learning models can learn complex map-
pings from input images to novel views or modifications, addressing both the recon-
struction and rendering tasks. Neural rendering incorporates mathematical models of
projection and combines them with learned components to create flexible systems ca-
pable of controlling scene properties such as geometry, illumination, camera viewpoint,
pose, and semantic structure [46].

The applications of neural rendering range from novel view synthesis, semantic photo
manipulation, facial and body reenactment, relighting, free-viewpoint video, to the cre-
ation of photo-realistic avatars for virtual and augmented reality telepresence.

2.2.5 DIFFERENTIABLE RENDERING

Differentiable rendering [23] is a technique that integrates the principles of computer
graphics with machine learning by enabling the gradients of rendering parameters to
be computed and propagated through the rendering process. Traditional rendering
pipelines treat the process of converting a 3D scene into a 2D image as non-differentiable,
meaning that small changes in parameters like geometry, lighting, or camera pose cannot
be easily related to changes in the output image. Differentiable rendering, however, mod-
ifies this pipeline so that these relationships can be calculated through backpropagation,
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enabling optimization tasks where rendering parameters need to be learned from data.
This capability is exploited in applications like inverse rendering, where the goal is to
recover scene properties (such as material, light, or shape) from a 2D image.

Differentiable rendering allows for fine-tuning scene parameters based on how closely
the rendered output matches target images. Techniques like NeRF leverage differentiable
rendering to generate high-quality 3D scenes from 2D images by learning the underlying
volumetric structures of the scene. Furthermore, differentiable rendering plays a role in
training deep learning models for tasks like image synthesis, reconstruction, and even
reinforcement learning, where environmental feedback is rendered and optimized for
through differentiable pipelines. The development of techniques like 3D Gaussian Splat-
ting has further enhanced the efficiency of real-time rendering applications by enabling
the gradients to be computed over the rendering process, thus bridging the gap between
traditional rendering and modern machine learning approaches.
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2.3 REeAL TIME RENDERING

Real-time rendering refers to the process of generating images or animations quickly
enough to allow for interactive and dynamic viewing experiences. This technology is
essential for applications where responsiveness and immersion are critical, such as video
games, Virtual Reality (VR), Augmented Reality (AR), simulations, and interactive visu-
alizations. A key aspect of real-time rendering is achieving a high frame rate (measured
in Frames Per Second, FPS), which ensures smooth visual feedback to the user. Main-
taining a frame rate of at least 30 FPS is generally considered the minimum for a fluid
experience, although 60 FPS or higher is often required in more demanding applications
like VR, where low latency and fast responsiveness are crucial to avoid motion sickness.
The rate of frames per second makes it seem as though the user is walking through a
realistic world rather than interacting with a computer program, and any noticeable drop
in FPS can break the sense of immersion.

The most significant differences between offline and real-time rendering are their speed
and amount of interactivity. Offline rendering refers to the creation of static images or
videos in advance and saving them for further alteration. This method allows for the
synthesis of a highly polished finished product but allows very little interactivity and
typically takes anywhere from minutes to hours to render. Real-time rendering, on the
other hand, must produce frames within milliseconds to achieve interactive performance,
typically targeting under 16.67 milliseconds per frame to grant 60 FPS to the viewer. This
allows the user to create highly interactive, easily manipulated 3D simulations that render
in less than a second.

2.3.1 EXTENDED REALITY

A key application of real-time rendering lies in eXtended Reality (XR), where interactiv-
ity and immersion are paramount. Extended Reality refers to a spectrum of immersive
technologies that blend the real and digital worlds to create interactive and dynamic
environments. These technologies enable real-time interaction with virtual elements, en-
hancing sensory perception and introducing new forms of engagement. XR encompasses
various immersive technologies associated with different types of realities, including VR,
AR, Mixed Reality (MR), with XR often serving as a broad, umbrella term for these tech-
nologies. In fact, the X in XR represents more than just extended, it can be interpreted as
a variable symbolizing future innovations that will fall under this evolving technological
domain. The recent spread of XR applications on mobile and wearable devices has intro-
duced new challenges for designers and developers.
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Figure 2.8: eXtended Reality

2.3.2 PROBLEM STATEMENT

Rendering in extended reality presents significant challenges in terms of computational
efficiency, visual fidelity, and system latency. XR applications require rendering 3D scenes
that adapt instantaneously to the user’s head and body movements, creating an highly
immersive and responsive experience that demands low latency and high frame rates.
This requires accurate alignment of the virtual scene with the user’s real-world position
and orientation, such process demands substantial computational resources, particularly
in stereo rendering for virtual reality, where the scene must be rendered separately for
each eye.

A major issue in real-time XR rendering is balancing visual fidelity with performance
constraints. High-quality rendering with detailed textures, shadows, and lighting effects
is computationally expensive, but reducing these elements reduces the user’s sense of
immersion. Even slight delays or visual inconsistencies, such as frame rate drops or
mismatched head movement tracking, can cause discomfort or "cybersickness." Ensuring
that the rendered scene aligns perfectly with the user’s movements in real-time is critical,
and failing to do so can result in a disorienting experience. Additionally, unlike desktop
computers with powerful GPUs and extensive cooling systems, XR headsets must bal-
ance processing power, heat dissipation, and battery life. These constraints mean that
optimization techniques, such as Level of Detail management, foveated rendering, and
variable rate shading, must be employed to reduce the computational load without sacri-
ficing visual quality. These methods attempt to simplify or reduce detail in less important
areas of the scene, focusing rendering power on areas directly in the user’s field of view,
helping in balance the demands of high-quality visuals with the need for low latency and
high performance.

Various techniques have been employed to adjust the LODs based on user proximity
and interaction [3], [18]. Previous research has focused on adapting cognitive load [10],
predicting user actions to optimize training experiences [49], or minimizing transmitted
information [25], while only a few recent attempts have been made using Deep Neural
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Networks [5], [6]. On the other hand, many techniques use 3D reconstruction technologies
to improve optimized representations of 3D models. Technologies such as Neural Radi-
ance Fields (NeRF) [33] and 3D Gaussian Splatting (3DGS) [24] support the development
of more efficient and immersive XR applications by building implicit representations of
the 3D scene that can be rendered later on demand from a specific point of view to obtain
the desired perspective.

2.3.3 VisuaL QuUALITY ADAPTATION

Visual quality adaptation aims at balancing user experience and hardware constraints,
especially in resource-intensive environments like extended reality. Adaptive rendering
techniques prioritize visual fidelity in areas where the user’s gaze is focused, reducing
the quality in peripheral regions. This allows for high performance while maintaining
the immersive experience fundamental for XR applications.

The problem of quality maximization strategy under bandwidth constraints first ap-
peared in video transmission [36]. Several HTTP Adaptive Streaming (HAS) strategies
propose packet-dropping strategies to tune the transmission stream while minimizing
the quality decrement [43], [45], [21], [35], [50]. Most of these strategies rely on linear
programming solvers on simplified parametric rate and quality models. Later, deep
learning solutions have been investigated to address this problem in the video domain
[13], [31], [12] and allowed the extension to XR applications. 3D scene implicit represen-
tation has opened new possibilities in this field to synthesize and reproduce selectively
3D scene parts with variable LOD. This approach allows for real-time adaptations based
on the user’s focus, ensuring that resources are allocated efficiently without sacrificing
the overall visual quality.

2.3.3.1 Lever oF DETAaIL

Level of Detail is a foundational concept in computer graphics, particularly in real-time
rendering, aimed at improving performance by adjusting the complexity of 3D models
based on their significance in a given scene. LOD techniques work by reducing the geo-
metric complexity of objects, often based on their distance from the viewer, to minimize
the computational load without sacrificing the overall visual fidelity of the scene. For
example, objects further from the viewer are rendered with fewer polygons or vertices,
while those closer are rendered with higher detail. This approach allows for maintaining
high frame rates, especially critical in XR environments where real-time responsiveness
is essential to avoid latency and motion sickness.

The concept of LOD can be traced back to early discussions in computer graphics, such
as [41] work on hierarchical geometric models for visible surface algorithms. Since then,
the technique has evolved significantly, incorporating various approaches such as mesh
decimation, where non-essential elements of a 3D mesh are removed to maintain a budget

29



2.3. REAL TIME RENDERING

f' g é““ﬁﬁ'

Vi
PO

Figure 2.9: The Stanford Bunny model at different LODs, the last one on the right,
visualized with colors, is the model with adaptive LOD, i.e., different level of detail in
different areas of the model based on the complexity of the model in such areas

of faces and vertices while preserving visual quality. More modern methods focus on
optimizing perceptual metrics and addressing challenges in smooth transitions between
different LODs, which is critical to avoid visual artifacts during real-time rendering. In
the context of XR, by dynamically selecting and transitioning between different LODs
based on user movement and scene importance, systems can balance the high demand
for visual fidelity with limited processing power.
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The state of the art in rendering has seen significant advancements with the development
of NeRF [33] and 3D Gaussian Splatting [24], two innovative methods that are revolu-
tionizing how complex 3D scenes are represented and rendered. NeRF, introduced in
2020, utilizes neural networks to synthesize highly detailed 3D scenes by learning a con-
tinuous volumetric scene function from a set of 2D images. By capturing the way light
interacts with objects at each point in space, NeRF can render novel views of a scene
with photorealistic quality, even from sparse input data. Its differentiable nature allows
NeRF to optimize scene parameters through gradient-based methods, making it highly
effective in applications such as view synthesis, 3D reconstruction, and inverse rendering.

Another innovative approach is 3D Gaussian Splatting, proposed in the middle of year
2023. Its introduction represents a fundamental shift in how we approach scene represen-
tation and rendering in computer vision and graphics. Unlike previous method relying
on implicit, coordinate-based models, 3DGS employs millions of learnable 3D Gaussians,
offering an explicit scene representation and a differentiable rendering algorithm. This
explicit nature of 3DGS facilitates real-time rendering capabilities and unprecedented
levels of control and editability. Unlike NeRF, which can be computationally expen-
sive due to its reliance on neural networks, 3DGS provides a more lightweight solution
while preserving differentiability, making it suitable for real-time applications such as XR.

Both NeRF and 3DGS exemplify the shift toward using neural and probabilistic represen-
tations for 3D rendering, which offer significant advantages in terms of flexibility, quality,
and efficiency over traditional methods. These techniques have opened new avenues for
photorealistic rendering, dynamic scene interaction, and scalable solutions for resource-
constrained environments.
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3.1 NEeRF

Neural Radiance Field [33] models are novel view synthesis methods which use vol-
ume rendering with continuous neural scene representation via Multi Layer Perceptrons
(MLPs) to learn the geometry and lighting of a 3D scene.
In its basic form, a NeRF model represents three-dimensional scenes as an implicit radi-
ance field approximated by a neural network. The radiance field describes both the color
and volume density at any point in the scene for any viewing direction. Formally, the
radiance field is modeled as:

F(x,0,¢) = (c,0) (3.1)

whose input is a 3D location x = (x, y,z) and 2D viewing direction (0, ¢), and whose
output is an emitted color ¢ = (7, g, b) represents color and volume density ¢. In practice,
direction is expressed as a 3D Cartesian unit vector d = (dy, dy, d).

This 5D function is approximated by a Multi-Layer Perceptron network
Fe(x,d) — (c,0) (3.2)

and its weights © are optimized to map from each input 5D coordinate to its correspond-
ing volume density and directional emitted color.

To ensure consistency across multiple views, the NeRF model constrains the volume den-
sity o to be independent of the viewing direction, while allowing the color c to vary based
on both the viewing direction and the spatial coordinates. In the original NeRF model,
this is achieved using a two-stage MLP. The first stage processes the spatial coordinates
x and outputs the volume density ¢ along with a high-dimensional feature vector. The
second stage concatenates this feature vector with the viewing direction d and passes it
through an additional MLP to predict the color c.

In general, novel view synthesis with a trained NeRF model involves the following steps.
For each pixel of the synthesized image, camera rays are cast through the scene, and a
set of sampling points is generated along each ray. At each sampling point, the local
color and density are computed using the viewing direction and sampling location with
NeRF’s MLP. The final image is then produced using volume rendering based on these
computed colors and densities.

Given the volume density and color functions for the scene, volume rendering is used to
determine the color C(r) of any camera ray r(t) = o + td, where o is the camera position
and d is the viewing direction:

C(r) = /t ’ T(t)o(r(t))c(r(t), d)dt (3.3)

where o(r(t)) is the volume density and c(r(t), d) is the color at point r(t), while dt
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represents the differential distance traveled along the ray. The accumulated transmittance
T(t), which represents the probability of the ray traveling from t; to t, without being
blocked, is given by:
t2
T(t) =exp o(r(s))ds (3.4)
5]

To generate novel views, camera rays are traced through each pixel of the desired image.
The integral can be computed numerically, and the original implementation used strati-
fied sampling, where the ray is divided into N equally spaced bins, with samples drawn

from each bin. The rendered color C(r) is approximated as:
N i

C(r) = Z a;Tic;, where Ti = exp -

1
Giéi (3.5)
i=1 j=1

Here, 6; is the distance between samples i and i + 1, (0}, ¢;) are the density and color at
the sampling point, and «a; is the transparency at sample point i, computed as o; = 1 -
exp(—0;0;). Finally, the expected depth of the ray can be calculated using the accumulated
transmittance as:

d(r) = /t : T(t) - o(r(t)) - t dt (3.6)

Similarly to (3.5), this can be approximated as

N
D(r)= ) aitiT, 3.7)

i=1

For each pixel, a square error photometric loss is used to optimize the MLP parameters.
Over the entire image, this is given by

L= 11C(r) - Calnl3 (38)

reR

where Cg;(r) is the ground truth color of the training image’s pixel associated to r, and R
is the batch of rays associated to the to-be-synthesizes image. NeRF models often employ
positional encoding to improve fine detail reconstruction in the rendered views.

Despite NeRF’s significant achievements, it still faces limitations, particularly regarding
slow training and rendering speeds. Various follow-up techniques [14] [37] aim to en-
hance rendering quality or accelerate training using methods like hashing [34] or sparse
3D grids [55]. However, these methods still struggle to accurately represent empty spaces
and encounter image quality constraints due to structured grids, which can substantially
slow down rendering performance.
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Figure 3.1: Overview of neural radiance field scene representation and the differentiable
rendering process. Images are synthesized by sampling 5D coordinates (location and
viewing direction) along camera rays (a). These coordinates are then fed into a MLP to
produce color values and volume density (b). Volume rendering techniques are subse-
quently used to composite these values into a final image (c). This rendering function is
differentiable, allowing for the optimization of scene representation by minimizing the
residual error between the synthesized images and the ground truth images (d).

3.1.1 APPLICATIONS AND LIMITATIONS

NeRF has become a popular tool for synthesizing photorealistic 3D scenes from 2D im-
ages. However, some challenges and limitations still remain. One of the major drawbacks
of NeRFis its memory requirements, which can be a significant bottleneck for practical ap-
plications. The high memory consumption of NeRF is due to the need to store the neural
network parameters, which can be challenging for large-scale scenes or high-resolution
images. The computational expense of NeRF is also a limitation, particularly during
training. Evaluating the neural network for each ray in the scene is time-consuming, and
techniques proposed to accelerate the training of NeRF may come at the cost of decreased
performance. Another limitation of NeRF is its inability to handle dynamic scenes or
moving objects. NeRF only learns a single representation of the scene, which needs to
be improved to address changes in the scene over time. Attempts to extend NeRF to
handle dynamic scenes are an active research area. In addition, NeRF is sensitive to the
quality of the input images, as it relies on accurate depth and camera pose estimates,
which may be challenging to obtain in practice, especially for complex scenes. Finally,
NeRF needs more interpretability, as there is a need to understand why particular views
are synthesized correctly or incorrectly. Developing techniques for understanding and
visualizing learned representations of NeRF is an important direction for future research.
Furthermore, NeRF’s slow inference speed, reliance on accurate pose estimation and
multiple views, and limited effectiveness in scenarios with sparse views or poor camera
calibration are additional limitations that must be addressed.
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3.2 3D GAUSSIAN SPLATTING

3D Gaussian Splatting [24] is an approach that models scene geometry using 3D Gaus-
sians instead of relying on traditional point-based or surface-based representations. The
key motivation behind using 3D Gaussians is their ability to represent the scene in a
continuous, differentiable manner that can be optimized for rendering.

Each 3D Gaussian is defined by a position (mean) i € R?, a covariance matrix £ € R3%3,
a color c represented by spherical harmonics for view-dependent appearance and an
opacity @ € R. All the properties are learnable and optimized through back-propagation.
The 3D Gaussian function is defined as follows:

G(x) = e_%(x_lu)TZ_l(x_.“) (39)

where x is a point in 3D space. The covariance matrix X is anisotropic, determining both
the shape and orientation of the Gaussian.

An anisotropic covariance matrix represents an ellipsoidal Gaussian, where the variance
differs along different axes. This leads to a Gaussian that is stretched or compressed in
certain directions, forming an ellipsoid. The shape and orientation of the ellipsoid are
dictated by the eigenvalues and eigenvectors of the covariance matrix. In contrast, an
isotropic covariance matrix represents a spherical Gaussian, meaning that the variance
is the same in all directions. In other words, the Gaussian is perfectly symmetric, and
the spread of the points from the center is uniform along every axis. This occurs when
the covariance matrix is proportional to the identity matrix, indicating no directional
preference in the data distribution. The anisotropy allows the Gaussian to capture more
complex, directionally dependent structures in the data.

For rendering, the 3D Gaussians (ellipsoids) in 3D space are projected into the 2D image
space (ellipses) by transforming the covariance matrix X using the viewing transforma-
tion. This projection process essentially "splatters” each 3D Gaussian onto the image
plane, resulting in a 2D elliptical footprint that can be blended smoothly with other splats
using a blending techniques. This allows for fast rendering since each splat can be ren-
dered independently, making it suitable for real-time applications.

The covariance matrix X is optimized directly in world space, but to ensure physical va-
lidity (i.e., that the matrix remains positive semi-definite), the optimization is performed
on its underlying components. Specifically, the covariance matrix is decomposed into a
scaling matrix S and a rotation matrix R:

Y. = RSSTRT (3.10)

where S controls the anisotropic scaling of the Gaussian (i.e., the size of the ellipsoid in
different directions) and R defines the orientation of the ellipsoid. The scaling is rep-
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resented as a 3D vector s, and the rotation is represented using a quaternion 4. This
representation ensures that during optimization, the covariance matrix remains valid, as
quaternions are normalized to maintain proper rotations. By optimizing these param-
eters, the 3D Gaussians can adapt to the underlying geometry of the scene, capturing
shapes and features in a compact and expressive form. This approach allows for effi-
cient optimization using gradient descent while maintaining the differentiable nature of
the volumetric representation, enabling high-quality novel view synthesis from sparse
inputs.
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Figure 3.2: 3DGS optimization starts with the sparse SfM point cloud and creates a set
of 3D Gaussians. Then the density of this set of Gaussians is optimized and adaptively
controlled. During optimization fast tile-based renderer is used, allowing competitive
training times. Once trained, our renderer allows real-time navigation for a wide variety
of scenes [24].

3.2.1 OPTIMIZATION

In the optimization process, a dense set of 3D Gaussians is iteratively refined to pre-
cisely model the scene’s geometry and appearance for free-viewpoint rendering. This
involves two primary challenges. First, the properties of each Gaussian must be opti-
mized through differentiable rendering to match the textures of the scene. Second, the
number of 3D Gaussians that can represent a given scene well is unknown in advance.
A promising approach is to allow the neural network to automatically learn the density
of these Gaussians. The two procedures are interleaved within the optimization workflow.

As the optimization progresses, the algorithm creates new Gaussians where geometry
is underrepresented and also modifies or removes Gaussians when the geometry is in-
correctly placed. This flexibility ensures that the representation is dynamic and can
accurately adapt to the scene as the optimization evolves. The quality and precision of
the covariance matrices of the Gaussians are important to maintaining a compact repre-
sentation. In large homogeneous regions, for instance, a few large anisotropic Gaussians
can capture the structure effectively, whereas more detailed areas may require a higher
density of smaller Gaussians.
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To achieve this optimization, Stochastic Gradient Descent (SGD) is utilized, leveraging
GPU-accelerated frameworks to ensure computational efficiency. To regulate the opacity
«a of the Gaussians, a sigmoid activation function is employed, which ensures smooth gra-
dients and keeps a within the range [0, 1). Similarly, an exponential activation function
is used for the covariance scale to maintain positive values and smooth optimization. Ini-
tially, the covariance matrix of each Gaussian is estimated as an isotropic Gaussian, with
the axes determined by the average distance to the three nearest points. This initialization
helps establish a reasonable starting point for the optimization of the 3D Gaussians.

The loss function balances ¢; loss, which measures pixel-wise differences between the
rendered and ground truth views, with a D-SSIM term, a differentiated version of Struc-
tural Similarity Index (SSIM) that enhances the structural similarity between the rendered
views and the ground truth views from the training dataset:

{ = (1 - A)fl + Alp_ssim (3.11)

where A is a weighting parameter. An exponential decay learning schedule for the
positions of the Gaussians is followed. This scheduling ensures that the positions of the
Gaussians are progressively refined throughout the optimization.

3.2.2 AparTiVE CONTROL OF (GAUSSIANS

3DGS starts with the initial set of sparse points from SfM. Afterwards, point densification
and pruning are adopted to control the density of 3D Gaussians.

The process iteratively adjusts the Gaussian representation. After an initial optimization
warm-up phase, Gaussians are densified every 100 iterations to refine the scene. Simul-
taneously, Gaussians with very low opacity are culled—those with a below a threshold
are considered effectively transparent and are removed. This approach ensures that only
the Gaussians contributing meaningfully to the scene remain, preventing an unnecessary
increase in complexity.

The method specifically targets two types of regions for densification:

o under-reconstructed areas, where key geometric details are missing,

o over-reconstructed areas, where Gaussians cover too large a region.

Both cases are characterized by high positional gradients in view-space, signaling regions
that the optimization process is attempting to correct. These gradients serve as indicators
of regions where the Gaussians need to be adapted.

For under-reconstructed regions, small Gaussians are duplicated and moved in the di-
rection of the positional gradient to cover new geometry. This cloning process effectively
increases the total volume of Gaussians in these regions, allowing the method to capture
additional scene details. On the other hand, large Gaussians in over-reconstructed areas
are split into two smaller Gaussians, each scaled down by a specific factor. The splitting
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process does not increase the total volume but instead increases the number of Gaussians,
providing a more fine-grained representation in regions of high variance.

Under
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Clone Optimization
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Optimization

Split
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(a) Under-Reconstraction (b) Over-Reconstraction

Figure 3.3: Adaptive Gaussian densification scheme. (a) When small-scale geometry
(black outline) is insufficiently covered, the respective Gaussian are cloned. (b) If small-
scale geometry is represented by one large splat, it is splitted in two [24].

The method also incorporates mechanisms to prevent excessive growth in the number of
Gaussians, which can occur due to optimization issues, such as "floaters" near the input
cameras. These floaters, which are unneeded Gaussians that cluster in areas with high
view-space positional gradients, can lead to unjustified increases in Gaussian density. To
mitigate this, the a value of all Gaussians is periodically reset to a value close to zero
every N = 3000 iterations. This reset allows the optimization process to increase a only
for those Gaussians that are truly necessary, while enabling the removal of any Gaussians
whose a remains below a threshold.

In addition to density control, the method handles the dynamic scaling of Gaussians.
Over the course of optimization, Gaussians may grow or shrink significantly, sometimes
leading to excessive overlap between neighboring Gaussians. To address this, the algo-
rithm removes Gaussians that become too large in world-space or have an overly large
footprint in view-space. This ensures that the total number remains manageable and the
representation stays efficient without resorting to complex space compaction, warping,
or projection strategies often used in other volumetric methods.

3.2.3 RASTERIZATION

Rasterization refers to the process of converting 3D Gaussian splats into a 2D image by
projecting them onto a screen and blending their contributions according to their depth,
size, and transparency. To achieve fast rendering, the rasterization process is divided into
several key steps.

First, the screen is subdivided into tiles (typically 16x16 pixels), allowing parallel pro-
cessing of Gaussians within each tile. This tiling strategy ensures that only the relevant
Gaussians affecting a specific region of the screen are considered, minimizing compu-
tational overhead and enhancing scalability for large scenes. Each Gaussian is culled
against the view frustum and tiles, meaning only those Gaussians whose 3D projection
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intersects the viewable area are processed. This culling ensures that the Gaussians out-
side the camera’s field of view or in positions where they would contribute little to the
final image are discarded early in the pipeline, improving efficiency.

Once the relevant Gaussians are identified, they are sorted based on their depth in view
space. This sorting step is important for accurate a-blending, which is the process of
correctly layering transparent splats in the image according to their distance from the
camera. Sorting the Gaussians by depth ensures that those closer to the camera are
rendered in front of those further away, allowing for a realistic blending of splats where
semi-transparent regions overlap. The sorting is done using a GPU-based Radix sort al-
gorithm, which minimizes the time complexity of handling large numbers of Gaussians
while avoiding the need for per-pixel sorting, a bottleneck in previous approaches.

Once sorted, each tile is processed by a separate thread block. The Gaussians affecting
each tile are loaded into shared memory, where their contributions to each pixel are
computed. For each pixel, the color and opacity a are accumulated by traversing the
sorted list of Gaussians from front to back. The traversal continues until the « value for
the pixel reaches saturation (« = 1), at which point no further Gaussians contribute to the
pixel’s color. For a color at a pixel i , with n indexing the N Gaussians involved in that
pixel, the color C; is calculated as:

N
Ci= Z cna;Tn where T, = H(l - oc;n) (3.12)
n=1 m<n
In this formula, T,, is the contribution from all Gaussians before 7, ¢, is the learned color
of the n-th Gaussian, and a,, is the final opacity, computed using learned opacity a, the
Gaussian’s 2D covariance matrix " € R?2 . The opacity is calculated as:
1

a; =ay-exp(-0,), o0y = EAZ;Z"lAn (3.13)

where A, € R? represents the offset between the pixel center and the center of the 2D
Gaussian. This ensures that each Gaussian’s contribution to the pixel is based on its
distance from the camera, its size, and its proximity to the pixel center.

This approach maximizes parallelism, as multiple pixels can be processed simultaneously
within a tile, and threads can collaboratively handle the data sharing and processing of
Gaussians.

The rasterization process is fully differentiable, meaning it allows the computation of
gradients necessary for optimization. This differentiability is essential for tasks such as
novel view synthesis, where the 3D Gaussians need to be adjusted to minimize a loss
function during training. During the backward pass, the same sorted list of Gaussians
is used to compute the gradients. By traversing the list in reverse order (back-to-front),
the algorithm efficiently computes how each Gaussian contributed to the final opacity
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Figure 3.4: An illustration of the forward process of 3D GS. (a) The splatting step
projects 3D Gaussians into image space. (b) 3D GS divides the image into multiple
non-overlapping patches, i.e., tiles. (c) 3D GS replicates the Gaussians which cover sev-
eral tiles, assigning each copy an identifier, i.e., a tile ID. (d) By rendering the sorted
Gaussians, we can obtain all pixels within the tile. The computational workflows for
pixels and tiles are independent and can be done in parallel. [7]

and color of each pixel. This gradient computation does not require storing a large list of
intermediate values, which would consume excessive memory; instead, the accumulated
opacity is stored during the forward pass, and the necessary coefficients for the gradients
are computed dynamically during the backward traversal.

3.3 OPPORTUNITIES AND LIMITATIONS

3D Gaussian Splatting is an emerging technique in computer graphics and vision, offer-
ing numerous opportunities for efficient rendering and 3D reconstruction. This method
stands out for its ability to use Gaussian distributions to represent volumes and surfaces,
providing significant computational efficiency. However, several limitations and chal-
lenges hinder its broader application. One of the primary issues involves the presence of
floating elements in the 3D rendered space, often arising from background interference
in the images. These elements, known as "floats", compromise the visual fidelity of the
rendering. While opacity thresholds have been proposed to mitigate this issue, more
advanced strategies are needed to anchor these elements to nearby surfaces, improving
spatial coherence and enhancing overall image quality.

Another challenge lies in balancing rendering speed and reconstruction quality. While
3DGS allows for efficient mesh reconstruction, these meshes are often discontinuous. For
instance, opacity-based approaches, such as SuGaR [17], generate 3D Gaussians around
mesh surfaces, but at the cost of rendering quality. Similarly, methods like 2D GS [20]
compress 3D volumes into 2D Gaussian disks, improving reconstruction quality but los-
ing some volumetric information. A promising direction for future research is to improve
the combination of 3DGS with advanced representations, such as signed distance fields
(SDF), to achieve smoother and more continuous surfaces, although this comes at the
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expense of increased reconstruction times.

The integration of advanced lighting decomposition techniques presents another chal-
lenge for 3DGS, as current methods struggle with scenes featuring indistinct boundaries.
This limitation often necessitates the use of object masks during optimization. Due to the
particle-like properties of the point clouds generated by 3DGS, which differ from tradi-
tional surface points, problems arise in accurately reproducing reflections and anisotropic
effects. Incorporating multi-view stereo techniques into the optimization process could
improve geometric accuracy and the realistic rendering of surfaces.

In terms of real-time rendering, progress has been made with methods like Scaffold-GS
[32], which introduces anchor points from a sparse grid to distribute local Gaussians and
improve rendering speed. However, the use of a uniform grid limits the method’s adapt-
ability, indicating the need for adaptive representations, such as octrees, to handle more
complex and detailed scenes. Octree-based representations offer flexibility in dividing
complex regions into smaller grids for detailed processing, but they still require manual
adjustments. Scaling these methods to handle large and complex environments, such as
urban landscapes, will require further advancements.

Another promising research area involves optimizing 3DGS for few-shot 3D scene genera-
tion, but this also presents significant challenges. The success of these techniques heavily
depends on the accuracy of monocular depth estimation models, which can vary consid-
erably across different data domains. Additionally, the reliance on fitting to COLMAP
[39] points introduces a critical dependency on the performance of the underlying sys-
tem, complicating optimization in areas with little texture or complex geometries.

Another important development direction involves integrating 3D Gaussian Splatting
with large foundation models, as recent research has demonstrated. The incorporation of
large-scale language and vision models can enhance 3D scene understanding, improving
not only segmentation but also language-guided generation and manipulation of 3D
scenes. Furthermore, combining 3DGS with other techniques, such as perception models
in autonomous vehicles or large-scale reconstruction models, represents a promising
research direction [7].

3.4 APPLICATIONS

3D Gaussian Splatting is a rapidly evolving field that has opened up new opportunities
across a wide range of applications.
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o Rosortics

o SIMULTANEOUS LocaLizatioN AND MapPpPING (SLAM): Its ability to represent scenes
efficiently and allow fast rendering makes it a suitable choice for robotic systems
that require spatial awareness. For instance, GS-SLAM [54] uses 3DGS to achieve
real-time tracking and mapping, outperforming alternative methods in terms of
speed and efficiency.

o Navicarion: Scene representation based on GS can be used for robotic navigation
tasks, allowing robots to plan paths and navigate complex environments. Its ability
to handle dynamic scenes and deformations makes it suitable for navigation in
real-world scenarios. GaussNav [29], for example, uses 3DGS maps for instance
image navigation, showing its potential to guide robots in complex environments.

o ManrtpuLaTioN: The manipulability of 3DGS makes it valuable for robotic manip-
ulation applications. Robots can interact with objects in a simulated environment
represented using 3DGS, enabling the development and testing of manipulation
algorithms. The possibility of incorporating physical simulations within 3DGS
environments further enhances its suitability for this domain, as demonstrated by
PhysGaussian [53], which uses 3D-GS for physics-based simulation tasks.

o SCENE RECONSTRUCTION

o LARGE-scaLE ScENE AcquisiTion: 3DGS’s ability to handle large datasets and effi-
ciently render complex scenes makes it suitable for large-scale scene reconstruction
tasks. The methods discussed in the sources highlight its use in the reconstruction
of urban environments, where it can generate detailed representations of buildings,
streets, and other urban objects from real-world data.

o Dynamic SceNeE ReconstrucTiON: Advances in 3DGS algorithms have led to its
application in the reconstruction of dynamic scenes involving moving objects or
temporal deformations. Methods like Gaussian-Flow [15] attempt to capture scene
dynamics by approximating the 4D space-time volume, opening up possibilities
for reconstructing complex, dynamic environments.

o SPARSE-VIEW REconsTRUCTION: 3DGS has shown promising results in reconstructing
scenes from sparse views, which is particularly advantageous in scenarios where
dense data acquisition is challenging. By leveraging prior information or employing
deep learning techniques, GS-based methods can generate plausible 3D models
even with limited image input, expanding its applicability to practical scenarios.

o AI-GeneraTED CoNTENT (AIGC)

o TeExT-BASED 3D Asser GENERATION: 3DGS has shown promise in generating 3D assets
from text prompts. Methods like DreamGaussian [44] leverage 3DGS to generate
photorealistic 3D assets from textual descriptions, demonstrating its potential for
tasks like virtual design and animation.

o Nover View SyntHEsis: The real-time rendering capabilities of 3DGS make it well-
suited for novel view synthesis tasks. Given multi-view image inputs, 3DGS can
generate new views of the scene from arbitrary positions, enabling interactive and
immersive experiences in applications like VR and mixed reality.

o SceNE Epiting: 3DGS facilitates efficient scene editing due to its explicit representa-
tion. Objects within the scene can be manipulated, moved, or removed easily, and
new views reflecting the changes can be rendered in real-time, making it valuable
for virtual design tools and content creation.
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Figure 3.5: Typical applications that have been benefited from 3DGS. [7]

Background
Model

o MepicaL ImacinG Researchers have explored the use of 3DGS for the reconstruction
and visualization of endoscopic scenes. Its ability to handle sparse data and manage
deformations makes it suitable for modeling human organs and tissues.

o Aurtonomous Driving 3DGS methods have been applied to autonomous driving, par-
ticularly for tasks like scene reconstruction, pose estimation, and path planning. Its
ability to create dense and precise representations of the environment makes it a
valuable tool for autonomous driving systems.
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Dataset Analysis

4.1 DATASETS

In this thesis, the scenes analyzed are from the Mip-NeRF360 [2] and Deep Blending [19]
datasets. These datasets were also used for the evaluation of 3DGS in [24].

Mip-NERF360 The Mip-NeRF360 dataset [2] is designed for high-quality scene recon-
struction and novel view synthesis, particularly in large-scale, unbounded environments.
This dataset provides comprehensive multi-view images along with accurate camera
poses. The dataset is composed of 9 scenes (5 outdoors and 4 indoors) each containing
a complex central object or area and a detailed background. For each scene, between
100 and 330 images are captured. During capture, camera exposure settings are fixed,
lighting variation minimized, and moving objects avoided, to prevent photometric vari-
ation between images of the same scene. To further limit color harmonization issues,
the outdoor scene are captured when the sky was overcast, making sure that the camera
operator cast soft shadows that minimally affected the illumination in the scene. For the
indoor scenes, large diffuse light sources (e.g., daylight reflecting off white walls) were

used, avoiding any shadows cast onto the scene. Camera poses were estimated using
COLMAP [39].

Deep BLENDING  Deep Blending [19] dataset includes 19 scenes captured with a stereo
camera rig and reconstructed using COLMAP [39] and Reality Capture. The Deep Blend-
ing dataset is specifically designed to facilitate the seamless blending of rendered content
with real-world imagery. The dataset enables the analysis of photorealistic transitions
between objects and their surroundings, ensuring that the blending maintains consis-
tency in lighting, texture, and geometry. Deep Blending is particularly useful for tasks
where rendered objects must be inserted into real scenes or where patches of images from
different sources need to be merged cohesively.
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Dtjohnson Room Playroom

Figure 4.1: Selected scenes, in the top row the outdoor scenes, in the bottom row the
indoor scenes

4.1.1 SELECTED SCENES

The scenes selected for analysis are shown in Figure 4.1. This selection was based on
the similarity of elements in specific scenes. Three outdoor scenes — Bicycle, Stump,
and Garden — were chosen, featuring elements such as grass, plants, sky, and a few
other objects. Additionally, indoor scenes — Drjohnson, Room, and Playroom — were
selected, characterized by furniture items like sofas, chairs, tables, paintings, and various
common and uncommon household objects. These two types of scenes present distinct
challenges and enable a comprehensive and diverse analysis. While the indoor scenes
contain more objects, the outdoor scenes cover larger environments with more complex
spatial structures, whereas the indoor scenes offer a more controlled layout.

Scene Dataset Number of images | Image dimension [pixel]
Bicycle Mip-NeRF360 194 1237 x 822
Garden Mip-NeRF360 185 1297 x 840
Stump Mip-NeRF360 125 1245 x 825

Drjohnson | Deep Blending 263 1332 x 876

Room Mip-NeRF360 311 1557 x 1038

Playroom | Deep Blending 225 1264 x 832

Table 4.1: Selected scenes information
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4.1.2 GAUSSIAN SPLATTING FOR SCENES VISUALIZATION

All scenes were trained using the Gaussian Splatting technique for 30.000 epochs. The
algorithm was configured to save the scene every 1.000 iterations, resulting in 30 point
clouds per scene by the end of the process. This incremental saving approach allowed us
to capture the scene at various stages of the training, providing a comprehensive time-
line of its reconstruction. By doing so, our dataset was effectively expanded, including
intermediate stages of each model with varying levels of refinement.

By examining these different stages, we could assess how the number of splats and the
level of reconstruction detail developed over time, offering insights into the algorithm’s
behavior at different phases of training. In particular, it allowed for the observation of
how fine details and structural accuracy emerged as the training advanced, highlighting
the relationship between the number of iterations and the quality of the final output.

Furthermore, this method facilitated a deeper investigation into how the algorithm re-
sponds to complex geometries and textures within the scene. By visualizing the inter-
mediate point clouds, it became possible to identify key areas where the reconstruction
accuracy significantly improved, as well as regions where progress stagnated or required
additional iterations.

(a) 1000 iterations (b) 5000 iterations

(c) 15000 iterations (d) 30000 iterations

Figure 4.2: Point cloud of splats of bicycle scene after different iterations of 3DGS
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4.2 GAUSSIANS DENsSITY AND DISTRIBUTION ANALYSIS

An initial analysis focused on the number of Gaussians and their density across different
regions of the scene. The number of Gaussians used to represent the scene was monitored
throughout the Gaussian Splatting training process over 30.000 epochs.

Number of Gaussians Over Iterations

nnnnnnnnnnnnnnnnnnnnnnnnn
nnnnnnnn

Figure 4.3: Number of Gaussians as a function of the iteration during the 3DG optimiza-
tion for bicycle scene. As the iterations progress, the number of Gaussians increases in
a stepwise manner, reaching a maximum value after approximately 15.000 iterations.

4.2.1 VOXELIZATION

To gain deeper insight into the spatial distribution of Gaussians, a voxelization approach
was adopted. The point cloud representing the scene was divided into unit-sized voxels
(1 x1x1), and the number of Gaussians contained within each voxel was calculated at
regular intervals during training. Specifically, this analysis was conducted every 1.000
iterations of the 3DGS process, providing snapshots of the evolving Gaussian distribution
throughout the optimization. This tracking allowed for a detailed observation of how the
representation evolved over time, offering insights into the optimization dynamics and
how Gaussians were allocated in different regions of the scene. Understanding the dis-
tribution and density of Gaussians can be useful, as it directly impacts the visual fidelity
and accuracy of the rendered scenes.

Voxelization also revealed areas of the scene that became more densely populated with
Gaussians as the training progressed. Regions with higher Gaussian density typically
corresponded to parts of the scene requiring more detailed representation, such as those
with complex geometry, fine textures, or intricate lighting. These densely populated ar-
eas indicated where the algorithm focused during optimization, highlighting the regions
prioritized for higher fidelity.

48



CHAPTER 4. DATASET ANALYSIS

To enhance visualization and understanding, the point clouds were colored based on
Gaussian density, allowing for clearer identification of denser regions.

(a) 1000 iterations (b) 30 000 iterations

Figure 4.4: Density-based renderings of the point cloud at 1.000 and 30.000 iterations are
shown. The viridis colormap was used to represent density, where yellow indicates
higher density and blue represents lower density. It can be observed that the bicycle and
the bench are the most densely represented objects in the scene, with the grass near them
also exhibiting high density. Additionally, a noticeable shift in density is observed from
the center of the bench toward the lower-right corner.

4.3 QuALITY ASSESSMENT METRICS

In image processing and computer vision, evaluating the visual quality of generated or
reconstructed images is fundamental. Traditional pixel-wise comparisons often fail to
reflect the way humans perceive image quality, leading to the development of more so-
phisticated quality assessment metrics. These metrics aim to provide objective measures
that correlate with human perception, helping to bridge the gap between mathematical
accuracy and perceived visual fidelity. The need for objective metrics stems from the
limitations of subjective assessments, which, while more accurate, are impractical for
large-scale benchmarking and automated systems.

In the scenario of Gaussian Splatting, benchmarking is often based on the use of these
visual quality assessment metrics to evaluate performance. These metrics allow for con-
sistent and reproducible evaluations of image quality, either by comparing with reference
images (full-reference metrics) or assessing image quality independently (no-reference
metrics). The peak signal- to-noise ratio (PSNR), structural similarity index measure
(SSIM), and learned perceptual image patch similarity (LPIPS) are widely utilized in
the Gaussian Splatting literature as the primary metrics for this purpose. Each of these
metrics approaches the problem from a different angle: PSNR focuses on pixel-level ac-
curacy, SSIM incorporates aspects of the human visual system by evaluating structural
content, and LPIPS leverages deep neural networks to assess perceptual similarity. The
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mathematical formulation of theses metrices are defined below.

4.3.1 Prak SigNAL TO NoOISE RATIO

The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the
maximum possible value (power) of a signal and the power of distorting noise that affects
the quality of its representation. Because many signals have a very wide dynamic range,
(ratio between the largest and smallest possible values of a changeable quantity) the
PSNR is usually expressed in terms of the logarithmic decibel scale. The mathematical
definition of the PSNR is as follows:

PSNR(I) = 10log (max(] )2)

4.1

MSE(I) 1)
where max(I) is the maximum possible pixel value in the image (255 for 8-bit integer),
and MSE(I) is the pixel-wise mean squared error calculated on all color channels:
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where f represents the matrix data of the original image, g represents the matrix data
of the degraded image, m represents the numbers of rows of pixels of the images and n
represents the number of columns of pixels of the image.

Ahigher PSNR indicates that the degraded image has been reconstructed more accurately
to match the original image, reflecting the effectiveness of the reconstructive algorithm.
This is achieved by minimizing the mean squared error (MSE) between the images in
relation to the maximum signal value of the original image.

The main limitation of this metric is that it relies strictly on numeric comparison and does
not actually take into account any level of biological factors of the human vision system
such as the SSIM.

4.3.2 STRUCTURAL SIMILARITY INDEX MEASURE

SSIM [51] is a full-reference quality assessment metric that measures the similarity be-
tween a reference x and the assessed y images in terms of their structural content, by
comparing various statistical properties of the images, including means (u, and u,, ),
variances (02 and aﬁ), and the covariance (0,,) between them. The SSIM for a single
patch is given by the following formula:

(zyxﬂy + Cl)(zaxy + CZ)
(u3 + uj + C1)(o% + 05 + C2)

SSIM(x, y) = (4.3)
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This equation quantitatively measures how similar two images are in terms of structure
and texture. The local statistics u and o are calculated within a 11 X 11 circular symmetric
Gaussian weighted window, with weights w; having a standard deviation of 1.5 and
normalized to 1. Additionally, C; = (K1L)? and C, = (K;,L)? are constants that prevent
division by very small variances, ensuring numerical stability in the calculation. Here,
L is the dynamic range of the pixels (255 for 8bit integer), K; = 0.01 and K, = 0.03 are
constants chosen in [51].

SSIM incorporates aspects of the human visual system by comparing images based on
structural information, focusing on luminance, contrast, and structural similarity. It mod-
els how humans perceive image quality by emphasizing the preservation of structural
patterns, which are more significant to human perception than pixel-level differences.
SSIM operates by comparing local patterns of pixel intensities, taking into account visual
phenomena like brightness adaptation and contrast masking, which are key to how the
human eye interprets visual data.

A higher SSIM value indicates a higher similarity between the two images and a better
quality image. SSIM is more sensitive to subtle changes in the image than PSNR, but it is
also more difficult to compute.

4.3.3 LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY

LPIPS [56] is a complete reference quality assessment metric that uses learned convo-
lutional characteristics. Unlike traditional metrics like PSNR and SSIM, which rely on
pixel-level differences, LPIPS focuses on higher-level image structure and visual per-
ception. It extracts deep features from intermediate layers of pre-trained convolutional
neural networks, such as VGG [42] or AlexNet [27], which have been trained on large-
scale image classification tasks.

The perceptual distance between two images is computed as the weighted Euclidean dis-
tance between their deep feature representations, averaged spatially and across different
network layers. The weights used to calculate these distances are learned from datasets
containing human judgments on perceptual similarity, ensuring that LPIPS better aligns
with human vision. This process, known as perceptual calibration, allows LPIPS to adapt
to subtleties in human perception, improving its ability to predict human judgments of
image similarity.

The score is given by a weighted pixel-wise MSE of feature maps over multiple layers.

H W

LPIPS(x, ) = ZH ZZle(xlhw Yin)ll3 (4.4)

=1 w=1

where X1, Yinw represent the features of the reference and assessed images at the pixel at
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coordinates (w, 1), and layer [. W; and H; are the width and height of feature map atlayer /.

LPIPS is the most recent metric and the most sensitive to subtle changes in the image. Itis
able to capture the subtle differences between images that are not captured by traditional
metrics such as PSNR and SSIM. However, it is also the most computationally expensive
metric.
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Proposed method

This project aims to develop an optimized method for real-time rendering of 3D scenes us-
ing Gaussian splatting. The goal is to create an adaptive rendering process that maintains
high-quality visualization across the entire scene while optimizing resource allocation.

Our approach relies on the integration of semantic segmentation, which allows us to
distinguish and prioritize objects based on their relevance ad complexity. By identifying
which areas of the scene require more detailed rendering and which can be simplified
without noticeable quality loss, we can selectively optimize different regions. Addition-
ally, the distance of each object from the viewer serves as a discriminating factor, further
guiding the optimization process. The proposed pipeline combines image-based seman-
tic segmentation, which helps categorize objects; 3D reconstruction, which maps these
segmented objects into the point cloud; and curve fitting, which predicts the optimal
iteration for halting Gaussian splatting while achieving the desired SSIM. The combina-
tion of these methods enables the generation of high-quality, dynamic visualizations that
adapt to the specific requirements of each scene, thus ensuring visual fidelity without
unnecessary computational overhead.

5.1 SEMANTIC SEGMENTATION

Semantic segmentation is a fundamental task in computer vision that involves labeling
each pixel in an image with a predefined class, such as "sky," "road," or "car." The goal
is to classify every pixel, allowing for a detailed understanding of the scene at the pixel
level. Formally, given an input image I of size H X W, a deep learning model, typi-
cally based on Convolutional Neural Networks (CNNSs), is trained to map the image to
a function f that assigns each pixel a probability distribution over the possible seman-
tic classes. The final label for each pixel is determined by selecting the class with the
highest probability. This process can be seen as clustering the image into regions where
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pixels within the same region share the same semantic label. Mathematically, for a set
of N pixels X = {x1,x2, ..., xN}, each pixel x; € R2 is assigned one of k labels from a set

Y = {]/1/ Y2,.00y ]/k}

Semantic segmentation can also be extended beyond two-dimensional images to three-
dimensional data, where the task is to label 3D points instead of pixels.

In this thesis, semantic segmentation is used as an alternative scene analysis method
to the voxelization described in Sec. 4.2.1. Semantic segmentation enables object-level
reasoning, allowing us to assess how 3DGS optimization performs on each object. The
goal is to create scene visualizations with different levels of detail that maintain overall
visual quality while allocating resources more efficiently. To achieve this, semantic
segmentation is applied to the input images (Sec. 5.1.1) used in the scene reconstruction
algorithm to generate 2D masks, which are then projected onto the 3D point cloud using
majority voting to produce a 3D scene segmentation (Sec. 5.1.2).

5.1.1 2D SEMANTIC SEGMENTATION

Semantic segmentation was performed on all input images of the following scenes:
bicycle, garden, stump, room, playroom, and drjohnson. This process produced a
full set of 2D masks, with the goal of generating a mask for each original image, where
semantic labels are assigned to the pixels. To achieve this, two algorithms, SAM [26] and
DeepLab?2 [52], were tested on the bicycle dataset. Based on the results, DeepLab2 was
chosen for the final implementation.

51.1.1 SAM

The Segment Anything Model (SAM) [26] is a general-purpose segmentation model de-
veloped by Meta Al, designed to segment objects within an image without requiring
fine-tuning for specific tasks or datasets. SAM is a prompt-based model, meaning it can
accept different types of inputs — such as points, bounding boxes, or text descriptions —
to guide the segmentation process. This flexibility makes it highly adaptable for various
tasks, ranging from precise object segmentation to broad scene parsing. SAM leverages
a large pre-trained model based on a Vision Transformer (ViT), enabling generalization
across diverse domains and datasets, and handling a wide variety of object categories.

In our experiments, SAM was evaluated on the bicycle dataset to assess its ability to
generate accurate 2D semantic masks. Using SAM’s automatic mask generation without
prompts, more than 90 binary masks were produced per image, requiring manual selec-
tion of relevant masks. Objects such as the bicycle, bench, road, grass, and trees were
selected. While SAM generally performed well, there were instances where it struggled
to distinguish between the bicycle and bench, particularly when the bench was in the
foreground and the bicycle was behind it, leading to their fusion into a single mask.
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Original image ‘bicycle’ mask

‘grass’ mask ‘road’ mask ‘trees’ mask

Figure 5.1: Selected binary masks (white identify the object) generated by SAM for the
first image of bicycle dataset

Masks representing small objects, such as stones, or individual parts of larger objects,
like bicycle wheels, were typically discarded.

Although SAM demonstrated robustness and flexibility, the large number of generated
masks and the complexity of integrating prompts for large-scale processing — particularly
in a context where automation is key — led us to explore other models. Specifically,
we chose DeeplLab2, which offered a more streamlined and consistent approach for
generating 2D masks automatically.

5.1.1.2 DeerLAB2

DeepLab [9] is a series of deep learning architectures designed for semantic segmen-
tation, leveraging atrous convolution (also known as dilated convolution) to enhance
performance. In the original DeepLab model [9], atrous convolution is employed to con-
trol the resolution of features computed by CNN backbones. This approach allows for
an expanded receptive field without increasing the number of parameters, making the
model more efficient. Later versions of DeepLab [8] introduce the ASPP (Atrous Spatial
Pyramid Pooling) module, which enhances the model’s ability to capture multi-scale in-
formation by applying parallel atrous convolutions with different sampling rates.

DeepLab?2 [52] is a TensorFlow library for deep labeling, aiming to provide a state-of-the-
art and easy-to-use TensorFlow codebase for general dense pixel prediction problems in
computer vision. It includes various DeepLab model variants, pretrained checkpoints,
and code for model training and evaluation. In this thesis, DeepLab2 was utilized with
checkpoints pretrained on the COCO dataset [30] to segment all images from the selected
scenes automatically.
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Original image Semantic mask Semantic overlay

(a) bicycle

Original image Semantic mask Semantic overlay

(b) garden

Original image Semantic mask Semantic ovetla:
g 'y

(c) room

Figure 5.2: Mask generated by DeepLab2 for the first image of (a) bicycle scene, (b)
garden scene and (c) room scene
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5.1.2 3D SEMANTIC SEGMENTATION

The 2D semantic segmentation results are projected into 3D space to segment the point
cloud. This process becomes important when we want to synthesize novel views of the
scene. To render a new view, semantic information is required, but since the image is
not available in advance, having the semantic information embedded in the point cloud
allows for the creation of semantic masks by projecting this data onto the 2D plane. Ad-
ditionally, 3D semantic information is important for the final task of halting training at
different iterations for different objects, enabling more efficient resource allocation during
the reconstruction process.

To project 2D semantic masks onto the 3D point cloud and obtain a segmented point
cloud, the process begins by associating each 2D image with its corresponding camera
parameters, including pose (rotation and translation matrices) and intrinsics (focal length
and optical center). These parameters, obtained from COLMAP reconstruction [39], are
used to project each 3D point onto the 2D image plane. For each point in the point
cloud, the projection determines its corresponding pixel in the 2D image, allowing it to
inherit the semantic label assigned to that pixel. Since the same 3D point may be visible
in multiple images from different viewpoints, it can receive different semantic labels
depending on the image from which it is projected. To resolve this, majority voting is
applied: the semantic label that appears most frequently across the projections is assigned
to the 3D point.

5.2 UNITY SETTING

Unity 3D [48] is a versatile real-time development platform, known for its ability to create
immersive 2D, 3D, AR and VR experiences across a wide range of industries. Initially
developed for game design, Unity has expanded its reach to fields offering powerful tools
for real-time visualization, interactive simulations, and more. Its user-friendly interface,
combined with extensive scripting capabilities, allows developers to efficiently prototype
and build high-quality interactive content.

In this work, Unity was utilized as a tool for visualization and extended reality simula-
tions. The scenes were imported into the platform and visualized using the "Gaussian
Splatting for Unity" tool [47]. Unity was also employed to recreate the images used in
model reconstruction by rendering scenes saved at different iterations, providing a means
to evaluate their accuracy.

5.2.1 GAussiAN SPLATTING TooL

The Gaussian Splatting tool for Unity [47] is an experimental implementation designed
to visualize 3D scenes using 3D Gaussian splatting. It provides an efficient approach
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for rendering large Gaussian splat datasets within Unity, leveraging compression and
optimization techniques for improved performance.

The tool allows users to create customized GaussianSplat assets from Gaussian Splat
PLY files, which are point clouds of trained splats. Once the asset is generated, it can
be assigned to a GaussianSplatRenderer script attached to a game object. This script
provides control for debugging and visualizing the data. The tool takes into account game
object transformation matrices, which is useful for models that may require adjustments
such as rotation and mirroring. For instance, models are often rotated by 180 degrees
around the X-axis and mirrored around the Z-axis.

The integration of this tool into Unity provides a robust, high-performance framework
for rendering with 3DGS large point cloud models in Unity, making it suitable for both
real-time applications and static scenes.

5.2.1.1 CaMORPH

Camorph [4] is a Python-based toolkit designed to convert between various camera pa-
rameter representations, with functionality available both as a library and through a
command-line interface. It offers key features such as fast and intuitive conversion be-
tween different camera parameter conventions, seamless management of essential prop-
erties across multiple formats, and automated calculation of intrinsic camera parameter
representations.

In this thesis, Camorph is used to convert the camera parameters generated by COLMAP
during scene reconstruction into Unity’s format. This ensures that the camera viewpoints
in Unity accurately match the real-world perspectives at the time the photographs were
taken.

5.2.2 RENDERING CAPTURES

The goal is to recreate the original photographs of the scenes by rendering the models
saved at different iterations, in order to compute SSIM, PSNR, and LPIPS between these
images and the ground truth. To achieve this, a Unity scene was created for each model
in our dataset, importing the cameras obtained from the conversion with Camorph.
These cameras are correctly set with the intrinsic and extrinsic parameters derived from
the scene reconstruction, ensuring accurate camera calibration. All point clouds saved
during the optimization of 3D Gaussian Splatting were imported as GaussianSplat assets.
For each scene, at each iteration where the model was saved, a script ensures that, upon
launching the application, each camera captures an image of the scene. These images
are saved and later used to compute the relevant metrics. The background of the Unity
cameras is set to black, so in cases where there are "holes" in the model, the black
background is rendered. The resolution of the captured images matches that of the
original images, as specified in Tab. 4.1.
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(c) 10000 iterations

(d) 15000 iterations (e) 20000 iterations (f) 30000 iterations

Figure 5.3: Rendering of bicycle scene in Unity captured by the camera corresponding
to the first original image

5.3 QuaALity METRICS EVALUATION

Visual quality metrics presented in Sec. 4.3 are computed on the captured images, taking
as ground truth the original images of the scenes. Specifically, these metrics are computed
both for the entire images and for semantic-masked images. Before proceeding with the
computation, histogram matching is applied.

5.3.1 HistoGRAM MATCHING

Histogram matching is a technique used to adjust the intensity distribution of an image
so that its histogram matches that of a reference image. This process aligns the pixel
value distribution between two images, making them more visually similar.

In our case, two specific functions were applied to the images captured in Unity for this
purpose. The first function focuses on matching the mean and standard deviation of the
input image I,, where n is the iteration at which the 3DGS was stopped, to those of the
reference image I,y for each color channel (RGB). It adjusts the pixel values of image
I, by shifting and scaling them based on the statistical properties of image I,.f. This
color transfer ensures that the overall appearance of the two images is more consistent,
which is important for reducing visual differences. The second function directly performs
histogram matching. It first calculates the histograms and Cumulative Distribution Func-
tions (CDFs) for both images, then remaps the pixel values of image A to align with the
intensity distribution of image B.
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By applying these two methods, the rendered images are transformed to closely match
the original ones, minimizing discrepancies that could otherwise impact the accuracy of
the SSIM, PSNR, and LPIPS metrics.

Ground truth Caption from Unity STD matching Histogram matching

Figure 5.4: Comparison between different image processing techniques applied to a bicy-
cle scene. On the far left is the Ground Truth, representing the original reference image.
Next is the simulated rendering of the scene in Unity, where noticeable lighting and color
differences can be observed. The third image shows STD Matching, where the Unity cap-
ture has been adjusted using standard deviation matching to better balance brightness
and contrast, bringing it closer to the ground truth. Finally, the last image illustrates His-
togram Matching, where the Unity image has undergone histogram matching to modify
its color distribution and further resemble the ground truth.

5.3.2 IMAGE-BASED QUALITY METRIC

PSNR, SSIM, and LPIPS are initially computed on the entire images by comparing each
image at different iterations with its corresponding original from the dataset. Asexpected,
progressing through iterations results in higher-quality images. However, these metrics
represent average values across the entire image. To allocate resources more efficiently, it
is important to understand how image quality varies across specific regions. To achieve
this, a preliminary approach involves dividing the images into smaller square regions
and computing the metrics for each section separately. This allows us to assess localized
changes in quality, highlighting areas with significant improvements as well as those that
exhibit poorer performance.

5.3.3 SEMANTIC-BASED QUALITY METRIC

Our goal is to achieve a label-based optimization, leveraging scene semantics to identify
objects and evaluate the amount of resources each object requires based on its complexity
and distance. Since we are working at the object level, it makes sense to compute SSIM
and PSNR for individual objects to assess how each one is affected by the progression of
the Gaussian Splatting training. Therefore, the images were masked using the semantic
masks obtained earlier (Sec. 5.1.1.2), and PSNR and SSIM were computed for each mask,
resulting in label-based metrics. In this step, LPIPS was not calculated, as it is not
straightforward to apply this metric to part of images of complex shapes.
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53.3.1 PSNR

PSNR was the first metric analyzed, as 3DGS also provides a PSNR measure of the model
during training. However, when examining PSNR for individual objects, we observed
that this metric does not fully capture the quality of the analyzed scene segments. For
instance, when examining images of the bicycle scene objects at different iterations, it is
evident that in the first 5000 iterations, the grass appears very blurred, while it improves
at higher iterations. Yet, the PSNR curve remains relatively constant, suggesting that
quality does not increase significantly with more iterations. For this reason, we decided
to focus more on SSIM, which provided more representative results.

5.3.3.2 SSIM

SSIM, on the other hand, proved to be a metric that effectively represents the evolution
of object quality as the iterations progress. For each scene, the SSIM values calculated for
the same label across different images were compared to evaluate the quality trend for
that specific object. It was observed that the relationship between 3DGS iterations and
SSIM follows a logarithmic pattern. For each label in each scene, we identified the curve
with the highest average SSIM, as well as the curve representing the overall average SSIM.

The relationship between SSIM and object distance was also investigated to understand
how the distance of an object from the camera affects its visual quality and how this
changes over different iterations. The minimum distance was used for this analysis, cal-
culated as the closest point of the 3D point cloud projected onto the semantic mask. It
was found that SSIM and distance do not have a linear relationship. The SSIM curve,
based on minimum distance, initially tends to decrease and then, after a certain threshold,
begins to increase again, although some noise is present in the data. This trend is more
noticeable for individual objects, whereas for classes that cover larger areas, like trees or
grass, the initial decrease is less evident, and the subsequent growth beyond a certain
distance is more linear. The relationship found is reasonable: when an object is very
close, all its details are visible, and the rendering quality must be higher. As the distance
increases up to a certain point, the object’s resolution remains high, but not all details
are well rendered, even though they are still distinguishable. Beyond this threshold, the
resolution of the object drops, and details become less perceivable, making the visual
quality appear to improve with increasing distance.

The semantic-based iteration-SSIM and distance-SSIM curves form the starting point for
our optimization method.
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5.4 SSIM FITTING

Curve fitting refers to the process of determining a mathematical model that has the best
fit to a series of data. In this process, we are provided with raw data and a function with
unknown coefficients is defined. The goal is to find values for the coefficients such that
the function matches the raw data as well as possible. The simplest case of curve fitting
is linear regression, where data is fit to a straight line.

Our objective is to develop a model that determines, for each object, the iteration at which
the optimization of Gaussian splatting can be stopped while achieving an SSIM equal
to or greater than a specified threshold. To this end, our approach involves fitting the
SSIM curves as a function of iteration and minimum distance. This allows us to optimize
scene visualization by making the best use of available resources. Consequently, we
need to define an objective function that relates SSIM, iteration, and distance through
unknown coefficients. By fitting the SSIM curves, we aim to estimate these coefficient
values, thereby defining a mathematical function capable of predicting, for each class
within the scene, the iteration at which 3D Gaussian Splatting can be halted to meet the
target SSIM.

This process is applied to each scene and for every class recognized within the scenes,
using the same objective function. However, each class has its own set of coefficients.

5.5 EVALUATION METHODOLOGIES

To evaluate the performance of our models obtain from fitting and ensure that the es-
timated iterations lead to high-quality rendering, two types of evaluation tests are per-
formed: the cross-view test and the cross-model test. These tests are designed to measure
both the adaptability and robustness of the model across different views and scenes, en-
suring that our approach not only optimizes rendering within a single scene but also
generalizes well to new scenarios.

5.5.1 Cross-view TEsT: NOVEL VIEW SYNTHESIS

The cross-view test focuses on generating a novel view of the scene by utilizing the model
that has been developed specifically for the classes within that scene. This test allows us
to assess how well the model performs in synthesizing unseen viewpoints while main-
taining the same quality thresholds defined during the optimization process.
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By leveraging the 3D segmentation of the point cloud, we can identify the points that
belong to each class within the scene. This classification enables us to segment the scene
based on class labels, making it possible to extract semantic masks for the novel view.
The scene is then reconstructed by combining objects and features at different iterations,
as determined by their respective minimum distances. This process allows for more ef-
ficient allocation of computational resources by focusing on key areas that require more
iterations for high-quality rendering.

During the rendering process, each class is projected onto the screen, and for each class,
we calculate the minimum distance from the viewpoint to determine the necessary itera-
tion. Given a predefined target SSIM, our model calculates the optimal iteration needed
for each class to meet or exceed the desired quality. This approach helps reduce the
number of points required to represent the scene, optimizing performance while still
preserving a high level of visual fidelity.

Once the new view has been synthesized, the SSIM is evaluated on two levels: first, for
the entire view to check overall image quality, and second, for each semantic mask to
ensure the model accurately predicts quality for individual objects or regions.

5.5.2 (CROSS-MODEL TEST

The cross-model test takes the evaluation one step further by testing the portability and
generalization of the model across different scenes. In this test, the model developed
for a specific class in one scene is applied to the same class in another scene. This al-
lows us to examine whether the learned parameters and iteration values for a class are
general enough to be transferred across different scenes without sacrificing quality. For
instance, if an object like a chair appears in two different scenes, the cross-model test
checks whether the model trained on the chair in scene 1 can be applied to the chair in
scene 2. The goal is to verify if the SSIM curve for the class remains consistent across
scenes, and whether the model can predict the correct iteration to reach the desired SSIM
for the object in the new context.

Our selection of scenes has been designed to facilitate this type of testing, as they were
chosen specifically to contain common objects that can be analyzed across multiple envi-
ronments. By comparing the SSIM values for the same class in both scenes, we validate
whether the model provides consistent iterations for achieving the target SSIM.
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Results

The following sections present the results obtained by applying the methods described
in the previous chapter. For clarity, all results reported here refer to the bicycle scene.

6.1 SEMANTIC SEGMENTION RESULTS

The semantic segmentation of the 194 images from the bicycle scene resulted in the iden-
tification of 17 distinct semantic classes. These classes, along with their corresponding
frequencies across the images, are listed in Tab. 6.1. This table provides the distribution of
data available for each semantic class. A higher occurrence frequency for a class indicates
a richer dataset for that particular element, allowing for more robust and reliable anal-
ysis during the rendering process. Conversely, classes with fewer occurrences present a
challenge for accurate curve fitting and prediction, as they are represented by less data,
leading to more sparse sampling. To maintain statistical reliability, only semantic classes
that appear at least 10 times will be considered for curve fitting and further analysis. In
addition to the frequency of occurrence, the table also reports the presence of these se-
mantic classes in other scenes from our dataset. This information allows for cross-model
testing and transferability of the learned models.

For the bicycle scene in particular, we observe that the most frequently occurring ele-
ments, with over 50% presence in the images, include the bench, bicycle, grass, pavement,
and trees.
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’ Semantic label Frequency (over 194) ‘ Other scenes with same label
Bench 178 garden
Bicycle 107
Building-other-merged 17
Car 22 room, playroom
Chair 1 garden, room, playroom, dr johnson
Dirt-merged 28 garden, stump
Fence 6
Grass-merged 166 garden, stump
House 35 garden
Pavement-merged 101 garden, playroom, drjohnson
Road 13
Rock-merged 2 garden, stump
Roof 10 garden
Sky-other-merged 75 garden, stump
tree-merged 172 garden, stump, room
Wall-brick 16 garden
Window-other 1 garden, room, drjohnson

Table 6.1: Identified semantic classes and corresponding occurrences for bicycle scene

6.2 QuaLity METRICS RESULTS

6.2.1 ImAGE-BASED QuALITY METRIC RESULTS

The block-wise analysis of the images provided initial insights into which metrics are
most significant for our method and validated our hypothesis that different areas of the
image respond differently to 3D Gaussian Splatting (3DGS) optimization. This suggests
that there is potential for targeted optimization, where specific regions can be processed
differently based on their characteristics. In Figure 6.1, the PSNR, SSIM, and LPIPS results
are shown for the first image of the bicycle scene after 1000, 15000, and 30000 iterations
of training.

From the analysis, it is evident that PSNR does not show substantial differences between
the blocks, maintaining fairly uniform values across the image. In contrast, SSIM and
LPIPS highlight a central area that achieves high visual quality early in the optimization
process, whereas the bottom row of blocks struggles to reach comparable results. Looking
at the results over time, there is a clear improvement in quality during the first 15000
iterations, while the difference between 15000 and 30000 iterations is less pronounced.
This indicates that certain portions of the image may not require the full 30000 iterations
to meet the desired visual quality, suggesting that a similar or comparable quality can be
achieved with fewer iterations and, consequently, fewer points.
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Figure 6.1: Comparison of image quality metrics across iterations for different regions
of the scene. The left columns represents PSNR, the central column shows SSIM, and
the right column displays LPIPS, while rows correspond to results at 1000, 15000, and
30000 iterations. Higher PSNR and SSIM values indicate better quality, while lower LPIPS
values represent improved perceptual similarity. The heatmaps show how these metrics
vary spatially across different patches of the scene as the number of iterations increases.

6.2.2 SEMANTIC-BASED QUALITY METRIC RESULTS

Since we aim to develop an object-based approach, we shifted our analysis from image
blocks to semantic classes. This allowed us to compute SSIM and PSNR metrics for each
semantic class across all images and for each saved iteration during the training process.
The results revealed that each object exhibits a slightly different performance curve, sug-
gesting that every object could potentially follow its own mathematical model depending
on its complexity and texture. Additionally, the position of the object within the image
plays a crucial role, as proximity to or distance from the viewer affects the level of detail
captured. Objects closer to the camera may reveal finer details, while those farther away
may exhibit fewer details, influencing the metrics. This indicates the need for an adaptive
model that considers not only the object’s characteristics but also its spatial context within
the scene to optimize rendering effectively.

We obtained two types of results: view-dependent and label-dependent. The view-
dependent results present performance curves for the different semantic classes recog-
nized within a specific view, capturing how each class performs as the view evolves over
iterations. On the other hand, the label-dependent results provide aggregated insights

67



6.2. QUALITY METRICS RESULTS
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Figure 6.2: The visualization of PSNR (left column) and SSIM (right column) metrics at
various stages of iteration—specifically at 1000, 15000, and 30000—is presented through
heatmaps. These heatmaps illustrate the spatial distribution of the metrics across the
semantic classes, utilizing a reversed coolwarm colormap, where blue indicates good
visual quality and red signifies poor quality. PSNR values exhibit similar values across
different classes. In contrast, the SSIM results demonstrate varying performance among
different objects, highlighting the impact of semantic complexity on perceived visual
quality.

by calculating the mean and maximum SSIM values for each semantic class across all
views over the epochs. This dual approach allows us to analyze how individual objects
perform in specific viewpoints, while also providing a broader understanding of each
class’s overall quality across the entire scene.

6.2.2.1 View DePENDENT REsSuLTS

View-dependent results focus on the performance of semantic classes within individ-
ual views, highlighting how the visual quality evolves over iterations for each class as
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the rendering progresses. By analyzing these results, we can observe the behavior of
different objects in the scene under varying perspectives and levels of detail, with the
distance of each object fixed within a single scene. This analysis allows us to identify
which elements benefit most from increased iterations and how object complexity and
positioning influence the overall visual quality.

In Fig. 6.3, the results for four different views are presented. Although objects are posi-
tioned differently from the camera in each view, their SSIM curves exhibit similar trends,
albeit with slight variations in absolute values. As anticipated, PSNR has proven to be
a less descriptive metric for our study. For instance, in views 2 and 3, the object curves
show distinguishable, steady improvements over iterations, whereas in views 1 and 4,
PSNR values remain relatively constant throughout optimization, despite clear visual
differences in the rendered images. Focusing on SSIM, it is evident that SSIM exhibits a
logarithmic relationship with the number of iterations. Specifically, across all plots, the
bicycle class shows a rapid and pronounced increase in SSIM during the first 10.000 iter-
ations, followed by a slower, yet steady rise. This behavior is likely due to the complexity
and detailed nature of the bicycle, which requires more precise rendering early in the
optimization process. Conversely, the grass class consistently shows lower performance
compared to other classes, reflecting its simpler visual features and lesser need for detail
in the optimization process.

The trend of the SSIM is studied as a function of the distance of semantic classes from the
camera in the scene at fixed iteration. Distance is closely related to the view of the scene,
and each photo represents a sample for our analysis. The SSIM trend based on distance,
specifically the minimum distance, was plotted for each object. In this case, the data were
filtered using a median filter with window size of 9 to remove outliers likely caused by
particularly unfavorable viewpoints, which would skew the trend. The Gaussian filter
with sigma set to 2.5 is tested.

As observed, SSIM starts high for very small distances, with some variability due to the
point of view. The trend initially decreases, but after a certain threshold distance, the
SSIM value begins to increase. This behavior is explained by the fact that after a specific
threshold, the object’s resolution decreases, and its details become less distinguishable.
At this point, the object is distant enough to be perceived as high-quality even without
all its details. The 2D display on a screen is a pixel-quantized representation, and as the
object’s distance from the camera increases, the number of pixels representing the object
decreases. After a certain distance, some details are lost due to quantization because the
number of pixels is insufficient to represent the finer details. In these cases, the object
appears small on the screen, and the loss of detail is not perceived as a loss of quality by
the user.
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Figure 6.3: PSNR and SSIM metrics over iterations for different segmentation labels in a
single view. The curves represent the performance of each mask label.
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The relationship between minimum and maximum distances of points for each semantic
class was also analyzed, with SSIM on the x-axis, to evaluate the range of distances
corresponding to a given SSIM value. It can be observed that there is much more variance
in the maximum distances than in the minimum distances. For example, in the case of
grass, it makes sense that the minimum distance is very low, as grass often appears in the
foreground. However, the maximum distance is more strongly influenced by the camera
framing.
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Figure 6.4: SSIM over minimum distance for different labels
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Figure 6.5: Minimum and maximum distances over SSIM values for the semantic class
"grass-merged" at iteration 30,000. The blue line represents the minimum distance, while
the red line shows the maximum distance as SSIM changes. The graph highlights the

variation in spatial distance metrics as SSIM improves, showing the different ranges of
minimum and maximum distances observed across the scene.

6.2.2.2 LABEL DeEPENDENT RESuULTS

The SSIM values for the labels were evaluated without correlating them to a specific
viewpoint. To obtain a more global assessment, the average SSIM value and the maximum
value obtained at each iteration were calculated, considering all the curves derived from
various views for each specific label. Table 6.2 presents the maximum and average SSIM
values for the five classes with highest occurency rate at every 5000 iterations.

Bench Bicycle Grass Pavement Trees

Iter | SSIM | SSIMyuax | SSIM | SSIMyuay | SSIM | SSIMyax | SSIM | SSIMpuax | SSIM | SSIMiax
1000 | 0.504 | 0.678 | 0.511 | 0.690 | 0.357 | 0.637 | 0.512 | 0.721 | 0.414 | 0.648
5000 | 0.598 | 0.765 | 0.602 | 0.757 | 0438 | 0.677 | 0.585 | 0.740 | 0.540 | 0.700
10000 | 0.635 | 0.798 | 0.658 | 0.786 | 0.491 | 0.707 | 0.625 | 0.785 | 0.574 | 0.706
15000 | 0.659 | 0.823 | 0.674 | 0.814 | 0.521 | 0.719 | 0.642 | 0.802 | 0.594 | 0.720
20000 | 0.671 | 0.846 | 0.687 | 0.812 | 0.532 | 0.725 | 0.645 | 0.829 | 0.604 | 0.720
25000 | 0.679 | 0.847 | 0.688 | 0.817 | 0.535 | 0.731 | 0.650 | 0827 | 0.610 | 0.727
30000 | 0.682 | 0.855 | 0.688 | 0.817 | 0.537 | 0.736 | 0.651 | 0.830 | 0.613 | 0.735

Table 6.2: Summary table of mean SSIM (SSIM) and maximum SSIM (SSIM,,4x) values at
various iterations
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Figure 6.7: SSIM over iterations for the semantic labels of bicycle scene. (a) represents
the maximum SSIM achieved for each label, while (b) shows the mean SSIM across the
same labels. Both graphs highlight the performance improvement during training, with
most labels reaching convergence between 10,000 and 20,000 iterations. Differences in
SSIM values across labels reflect the varying complexity of the objects in the scene.

74



CHAPTER 6. RESULTS

6.3 SSIM FITTING RESULTS

In this section, we present a mathematical model that expresses SSIM as a function of
both the number of iterations and the minimum distance from a reference point. To
determine the coefficients of this relationship, we performed a fitting analysis for each
semantic class based on two distinct curves: SSIM as a function of iterations and SSIM as
a function of minimum distance.

Mean SSIM over minimum distance for label “bicycle” Mean SSIM over iteration for label “bicycle”

0.4

Mean SSIM
s 2 g
fK
T—
Mean SSIM

02

0.50 0.0
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Figure 6.8: Mean SSIM as a function of minimum distance and number of iterations for
the "bicycle" label. The left plot shows the variation of SSIM with respect to the minimum
distance, while the right plot depicts the evolution of SSIM over the number of iterations.
These curves will be used for fitting models to capture the relationship between SSIM,
spatial characteristics, and optimization iterations

The relationship between SSIM and the number of iterations is described by a logarithmic
function:

SSIM(i, dyin = cost) = a - log(i) + b (6.1)

where i is the iteration and a is a fitting coefficient that determines the steepness of
the curve, indicating how rapidly SSIM improves as the number of iterations increases.
On the other hand, the relationship between SSIM and the minimum distance d,;, is
modeled using a piecewise function defined as follows:

Cl . 8_71|dm[n_l11|a1 lf dmin < ﬁ

6.2
Cp - e v2ldmin—p2l® if g, . > g e

SSIM(i = cost, dpin) = {
In this piecewise model, C1 and C; are scaling coefficients for the SSIM values, while
y1 and y; control the rate at which SSIM decays as a function of d;i,. The parame-
ters 1 and up represent the reference points for d,,i,, and a1 and a, define the shape of
the decay. The threshold g determines when the function switches between the two parts.

Since our goal is to derive a unified equation for SSIM that incorporates both iteration
and distance, we assume that the distance-related information from Equation (6.1) is
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6.3. SSIM FITTING RESULTS

encapsulated in the coefficient 2. Thus, we integrate the relationship between SSIM and
dmin, as described by Equation (6.2), into a.

a =K, - Cye Vnldmin=tal™ —with  n=1,2 (6.3)

where K, relates the two estimations. After fitting the SSIM vs. d,,;, curve to estimate
the coefficients and the threshold f, we obtain the final fitting function:

Kl . e_)/lldmin_yllal . log(l) +b if dmin < ﬁ

a ‘ (6.4)
K- 8_7/2|dmin_142| z. log(l) +b ifdpyin 2 ﬁ

SSIM(i, din) = {
By fitting this model to the SSIM data for each semantic classes, we capture the underlying
trends that describe how visual quality evolves with respect to both iteration count and
the spatial characteristics of the scene. By setting a target SSIM value and knowing the
camera position from which the scene is viewed, and therefore the distances of objects
from the camera, this model allows us to select the optimal iteration that provides the
appropriate visual quality for each object. The final scene is then composed of all objects,
each rendered at their respective optimal iterations.

Fitting: SSIM over minimum distance for label “bicycle” Fitting: SSIM over iteration for label “bicycle”
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Figure 6.9: Fitting SSIM for label "bicycle" over minimum distance (left) and iteration
count (right). In both cases, the red points represent real data, and the purple line
corresponds to the fitted curve with the described equation. In this case, the coefficients
obtained from the fitting process are C1 : 1.0, y1 : 1.4269, u; : 3.1625, a1 : 2.4362,
C2:0.3426, ) : —0.7355, up : 1.8787, a2 : 0.0606, B : 2.0, a : 0.0342, b : 0.4645.
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Conclusion

This thesis has explored the application of 3D Gaussian Splatting in the context of real-
time visualization for eXtended Reality environments. The objective of the research was
to address the challenges of achieving high visual fidelity and computational efficiency
on devices with limited resources, such as mobile and wearable XR systems. To achieve
this, a semantic-based Level of Detail system was developed and integrated into the ren-
dering process. This system dynamically adapts the complexity of the 3D scene based
on the user’s position and the semantic importance of objects within the environment,
allowing for a more efficient allocation of computational resources while preserving a
high-quality user experience.

The proposed method leverages 3DGS to represent the scene’s geometry and appearance
through a set of spatially distributed Gaussians. The flexibility and differentiability of
this representation offer significant advantages over traditional rendering techniques, en-
abling real-time performance without compromising the richness of the visual output. By
incorporating semantic segmentation, the system prioritizes objects for high-resolution
rendering based on their relevance in the scene, while less important elements are ren-
dered with lower detail. This approach reduces the computational burden, particularly
in regions of the scene that are outside the user’s focus, thereby optimizing the rendering
process.

Semantic segmentation played an important role in guiding the optimization process,
ensuring that key areas were rendered in greater detail without affecting the overall
performance of the system. The findings suggest that this approach can enhance the
responsiveness and immersion of XR applications, making it a promising solution for
real-time visualization on resource-constrained platforms.
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7.1. FUTURE WORKS

7.1 Furure WORKs

The research presented in this thesis highlights the potential of 3D Gaussian Splatting
as a powerful tool for improving the efficiency and quality of real-time rendering in
XR environments. The adaptive LOD system developed in this work provides a novel
way to manage scene complexity based on both user position and semantic importance,
with the goal of ensuring a seamless and immersive experience. While the project is
still in progress, a comprehensive evaluation will be conducted following the described
methodology. Future research could focus on refining the optimization process by in-
corporating additional metrics or leveraging deep learning techniques to predict optimal
iterations. Furthermore, methods such as motion-based prioritization or user attention
tracking could be explored to further improve the system’s adaptability. Expanding
the application of this adaptive 3DGS to more complex and dynamic environments, as
well as testing it on larger or synthetic datasets, could be valuable for evaluating the
model’s generalization capabilities. Finally, these strategies could be integrated into an
XR application to conduct practical tests and assess real-world performance.
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