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Introduction

The aim of this thesis is the derivation of black hole microstates through the calculation of string
amplitudes.

Black holes have always been fascinating and interesting from many points of view, for both
astronomical and theoretical reasons. The idea of black holes appears when one studies simple
solutions of Einstein’s equations of motion in general relativity. One can easily predict the
existence of solutions with an event horizon. The simplicity of such solutions and the properties
related to the event horizon make the study of black holes a fundamental way to inspect the key
features of a theory of gravitation.

The analysis of black holes in general relativity reveals interesting –and sometimes surprising–
properties; first of all, a number of uniqueness theorems shows that there are not many different
possibilities for a black hole geometry. It turns out that a black hole is completely determined by
a finite set of quantities, called charges; by this name we refer to quantities like mass, angular
momentum, electric and magnetic charge. If we think at a black hole as coming from the
gravitational collapse of a sufficient quantity of matter, we can say that the creation of an event
horizon has the effect of soften all the particular characteristics of the starting situation, and to
keep track only of some general features.

On the other hand, there are other interesting properties: black holes in general relativity
satisfy a number of laws that resembles the laws of thermodynamics. In particular it seems
possible to associate to black holes a temperature and an entropy, depending only on the event
horizon and not on what lies in its interior. The entropy of a black hole is proportional to the
area of the event horizon; the analogous of the second law of thermodynamics states that the
area of the event horizon of an isolated black hole cannot decrease through physical processes.
The thermodynamic interpretation is not restricted to an analogy in the three laws; the inter-
pretation of the area as entropy, for example, has a more fundamental origin. In fact, it has
been shown that black holes must be interpreted as real thermodynamic objects. A key process
is the radiation emission: it has been shown by Hawking ([1]) that this radiation is completely
thermalised; it depends only on the temperature of the black hole, which is a local property at
the horizon.

Uniqueness theorems and thermodynamic properties are somehow conflictual, and produce a
number of puzzles and paradoxes whose solution is completely non-trivial. The most famous
is, with no doubt, the black hole information paradox, which is closely related to the thermali-
sation of the emitted radiation. The paradox emerges when considering the formation and the
following evaporation of a black hole. The formation of the event horizon keeps track only of
few charges; on the other hand the evaporation produces a radiation which is dependent only on
the temperature, which is a quantity related only to the horizon. It seems that the information
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Introduction

about the particular initial state is lost after the creation and evaporation of the black hole ([2]).
A related problem is the microscopical interpretation of the entropy; we could ask if it is possible
to relate it to the number of microstates of a black hole. However, the existence of uniqueness
theorems implies that there are not enough possible geometries.

It is natural to think that these problems will find a solution only in the framework of a
quantum gravity theory. It is clear that the classical description of black holes given by general
relativity is incomplete, and that all the paradoxes will find a solution, once a complete quantum
description will be found.

There are essentially two ways in which we can think to solve the information paradox. One
may think that the Hawking’s calculation for the spectrum of the radiation emitted from a black
hole would receive quantum corrections: we expect these corrections to be of order lP

rH
, where

lP is the Planck length and rH is the radius of the event horizon. Alternatively, it is possible
that even the classical description of black holes in general relativity has to be changed; the
actual microstate geometries would differ from the classical solution up to the horizon scale,
invalidating the assumptions of the Hawking’s calculation.

Unfortunately we do not know what the right theory of quantum gravity is; anyway string
theory is the only complete and consistent attempt in this direction. A black hole in string
theory is a bound state of strings and multidimensional objects, called branes. The number
of possible vibrational modes of strings and branes is responsible for the existence of a large
number of states corresponding to the same classical solution (which is a supergravity solution).
Strominger and Vafa have shown ([3]) that there is a perfect matching between the microscopic
count of states and the entropy calculated looking only at the properties of the event horizon of
the classical solution.

This is with no doubt a great success of string theory, but leads to more questions: how
do the geometries of these microstates look like? How do these microstates help to solve the
information paradox? Many attempts have been made in order to find an answer to these
important questions, but they are still open problems.

The explicit form of some microstates have been calculated, starting from simple cases which,
to be precise, are not black holes. A real black hole, in fact, must be characterized by at least
three charges. Solutions with only one or two different charges, instead, have a vanishing horizon
area. Anyway from these systems one can learn features that are valid also in the black hole case.
It has been shown by Mathur ([4]), in the two charges case, that the microstates can be different
from the corresponding classical solution at scales comparable with the event horizon. If this is
true the classical picture of black holes is replaced by a description in which quantum gravity
effects are not confined around the singularity, but extend up to the horizon. The information
of the system is not constrained to lie at the center of the hole, but it is spread in all the interior
of the horizon. The region between the singularity and the horizon is no more made up by
empty space, but has a more complicated description; we say that it is a fuzzball. The role of
the classical solution is to represent a statistical average of all the actual quantum microstates.
If this is true also for black hole microstates (i.e. in the three-charge case), we can see that the
information paradox can vanish. the derivation of the thermalisation properties of the emitted
radiation, in fact, was based on the assumption that the information and the quantum effects
are located in a small size region around the singularity.

The derivation of microstates, or more precisely of their large distance behaviour, is possible
in string theory through the calculation of the amplitude of the emission of a graviton from
the bound state of branes corresponding to the hole. This procedure has been applied to many
systems, but a complete characterization and classification of the microstates of black holes is
still lacking. The goal of this thesis is to summarize which progresses have been made in this
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direction, and to make an explicit derivation of a new type of microstate. In the two-charge
case, this method will not reveal anything new: a complete characterization of the microstates
of this system is already known. Anyway, we will understand exactly which is the microscopical
interpretation of each microstate. On the other hand, the three-charge black hole is a much more
complicated system; there is not a systematic way to characterize its microstates. Therefore the
calculation of string amplitudes is one of the few methods to obtain some of the microstates (at
least their large distance behaviour).

In chapter 1 we recall how black holes arise in general relativity; then we describe the uniqueness
theorems and the thermodynamic laws. In chapter 2 we see how black holes are described in
supergravity theories; for this reason we introduce briefly the key concept of supersymmetry
and supergravity, and make the explicit derivation of a black hole solution in five dimension,
the Strominger–Vafa black hole. In chapter 3 we introduce string theory, and we see why it
is a consistent theory of quantum gravity. In chapter 4 we explain what is the microscopical
description of black holes and sketch the explicit count of the microstates of the Strominger–Vafa
black hole. In chapter 5 we explain how we can find the explicit form of a microstate through
the calculation of a string amplitude: we review the progresses made in this direction in the last
15 years. In the end, in chapter 6 we do the explicit derivation of a new type of microstate of
the Strominger–Vafa black hole, and compare it to a known supergravity solution.
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Chapter 1

Black holes in general relativity

1.1 Black holes in four dimensions

1.1.1 The Schwarzschild solution

The action that describes Einstein’s general relativity is the so-called Einstein–Hilbert action. It
involves the Ricci scalar R, which is derived from the Rienmann tensor through R = gµνRµν . The
action should be a Lorentz scalar invariant under diffeomorphisms, involving second derivatives
of the metric. In fact it is

IE = IM +
1

16πG

∫
d4x

√
g(x)R , (1.1)

where IM represents the action of all fields different from the metric. The corresponding equation
of motion are the Einstein field equation; they are a set of 10 non-linear, coupled differential
equations:

Rµν −
1

2
gµνR = 8πGTµν , (1.2)

where the energy-momentum tensor Tµν is defined by:

Tµν = − 2√
g(x)

δIM
δgµν(x)

. (1.3)

The purpose of solving Einstein equation seems to be quite difficult. The easiest particular
solution to such a set of equations is known since 1916, when Karl Schwarzschild discovered it.
It describes a spherically symmetric vacuum spacetime; in vacuum (Tµν = 0) the 10 equations
become quite simpler:

Rµν = 0 . (1.4)

It turns out that an isotropic metric in vacuum, must also be static (this result is known as
Birkhoff’s theorem). The resulting metric is therefore unique (it depends only on the parameter
M) and reads (see for example [5]):

ds2 = −
(

1− 2MG

r

)
dt2 +

(
1− 2MG

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (1.5)

We will see later that M can be interpreted as a mass. This solution is a good approximation
for the spacetime outside a massive object, such as a star. We see that the metric becomes
divergent at r = 0 and r = rs := 2GM (Schwarzschild radius): normally this radius is quite
small with respect to the dimension of the object generating the Schwarzschild solution, and so
it lies in the interior of the object. But the Schwarzschild solution make sense only in vacuum:
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1. Black holes in general relativity

this means that the divergence does not bother us, because the Schwarzschild geometry does
not represent the interior of a massive object.

A very massive and compact object can have a Schwarzschild radius bigger than its dimen-
sion. Such an object is called a black hole. In this case the locus of points lying at r = rs is
called event horizon. The divergence of the metric at the event horizon is not physical, but it
is only due to the particular choice of coordinates we have done. Rather than looking at the
metric components, we could detect a physical singularity when the curvature becomes infinite.
What this exactly means is hard to say, but we can check that the scalar quantity

RµνρσRµνρσ =
12G2M2

r6
(1.6)

diverges only at the point r = 0 ([6]). One can explicitly see that the event horizon does
not represent a true singularity, looking at the metric in the so-called Eddington–Finkelstein
coordinates:

v = t+ r∗ = t+ r + 2GM ln
∣∣∣ r

2GM
− 1
∣∣∣ . (1.7)

The metric (1.5) becomes:

ds2 = −
(

1− 2GM

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2) . (1.8)

The event horizon is again at r = 2GM , but now the metric coefficient becomes divergent only
at r = 0.

1.1.2 Event horizons, Killing horizons and surface gravity

There is a precise way to characterise symmetries of a metric: they are given by the existence of
Killing vectors. The Schwarzschild metric possesses three (spacelike) Killing vectors correspond-
ing to the spherical symmetry, and a (timelike) Killing vector corresponding to the invariance
under time translation. A metric is stationary if it has a timelike Killing vector at infinity; fur-
thermore a metric is static, if it posses a timelike Killing vector (at infinity) which is orthogonal
to a family of hypersurfaces. In the case of the Schwarzschild metric the timelike Killing vector
field ζ = ∂

∂t is orthogonal to all the hypersurfaces t = const: thus the metric (1.5) is indeed
static, not only stationary.

An event horizon is, roughly speaking, a surface that divides a spacetime into an exterior
part which can not be affected by events happening in the interior part. For a spherically
symmetric spacetime it coincide with the surface where r switches from being a spacelike to a
timelike coordinate; we take this as a definition for event horizon. For the Schwarzschild metric
the event horizon coincide with the surface where grr = 0. In fact:(

∂

∂r

)µ
= (0, 1, 0, 0) ⇔

∣∣∣∣ ∂∂r
∣∣∣∣2 = −grr = −(grr)−1 . (1.9)

We thus see that the surface r = rs is indeed an event horizon.
There is another important concept of horizon in general relativity: the Killing horizon.

A Killing horizon is a null hypersurface, to which a Killing vector field is normal. For the
Schwarzschild metric, the Killing horizon corresponding to the vanishing of the norm of ∂

∂t is
again the surface r = rs. In fact:

ζµ =

(
∂

∂t

)µ
= (1, 0, 0, 0) ⇔ |ζ|2 = −gtt =

(
1− 2MG

r

)
. (1.10)
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1.1. Black holes in four dimensions

There is an important quantity associated to the Killing horizon of a stationary black hole, the
surface gravity. It is a measure of the acceleration experienced by a test particle close to the
horizon. For a stationary black hole there exist a Killing vector field χµ normal to the horizon.
A possible definition for the surface gravity κ is ([8])

κ2 = Dµ|χ|Dµ|χ| = ∂µ|χ|∂µ|χ| , (1.11)

where ∂µ|χ| is calculated at the horizon. In the case of the Schwarzschild metric, we can take
χµ = ζµ = (1, 0, 0, 0). Thus:

|χ| =
√
−χµχµ =

√
−gtt =

√
1− 2GM

r
. (1.12)

We can now calculate:

∂µ|χ|∂µ|χ| = grr(∂r|χ|)2 =

(
1− 2GM

r

)(
1

2|χ|
2GM

r2

)2

=
G2M2

r4
. (1.13)

Calculating this quantity at the Killing horizon r = 2GM we obtain:

κ =
GM

4G2M2
=

1

4GM
. (1.14)

We will later see that this quantity can be related to the temperature of the black hole.

1.1.3 The Reissner–Nordstrøm metric

The Schwarzschild solution is the simplest solution of the Einstein equations. We now turn to
the analysis of another solution, corresponding to a charged black hole. Such a solution should
exist, because in principle nothing prevents us from adding some charge to an object generating
a Schwarzschild metric. Anyway we expect the resulting solution to be stationary and static.
The key difference is that a charge produce a non-zero energy-momentum tensor. This means
that the solution we are looking for is not a vacuum solution. We know that

Tµν =
1

4π

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
. (1.15)

We restrict to the case of only electric charge (a magnetic contribution gives rise to similar
results), which means that the only non-zero contribution to Fµν is Ftr = −Frt = −Q

r2 . We
should solve Einstein’s equations (1.2), which are now coupled to Maxwell’s equations:

gµνDµFνρ = 0 , D[µFνρ] = 0 . (1.16)

We state here only the final result, the so called Reissner–Nordstrøm metric ([6]):

ds2 = −∆dt2 + ∆−1dr2 + r2
(
dθ2 + sin2 θdφ2

)
, where ∆ = 1− 2GM

r
+
GQ2

r2
. (1.17)

We see that the solution is quite similar to the Schwarzschild one, and reduces to it in the limit
Q → 0: the only difference is an additional term in the expression of gtt (and grr). There are
two surfaces where the metric coefficient grr becomes singular, corresponding to the vanishing
of ∆:

r± = GM ±
√
G2M2 −GQ2 . (1.18)
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1. Black holes in general relativity

In the following we will ignore the case GM2 < Q2: this geometry would have the singularity
at r = 0 not hidden by an event horizon. This would be in contrast with the cosmic censorship
conjecture, which states that we do not observe in nature any naked singularity. Anyway this
situation (GM2 < Q2) sounds unreasonable, because it would roughly correspond to an object
with the contribution to the energy coming from the charge bigger than the total energy. Let
us look at the case GM2 > Q2. Now we have two interesting concentric surfaces, which are
both event horizons. A particle coming from infinity, and passing through r+, must continue
decreasing its distance from the center; in fact r is a timelike coordinate in the region between
the two horizons. At r < r− a particle could start going away from the origin, because r is
again a spacelike coordinate. When it arrives again in the region between the two horizons, this
particle must keep increasing r, until it reaches r+. The particle must then exit the outer event
horizon, emerging in an outside region which is actually different from the starting region; from
this point of view of the Reissner–Nordstrøm hole behave as a white hole. In the limit Q → 0
we have that the inner event horizon reduces to a point (r− → 0) and r+ → 2GM ; we thus
recover the structure of the Schwarzschild black hole.

There is a particular case, when GM2 = Q2. In this situation there is just one event horizon
(r+ coincide with r−), and the coordinate r is never timelike. The resulting black hole is called
extremal. Thanks to their simplicity, extremal black holes are useful for thought experiments
(even if they seem to be quite non-physical): we will use them in the following.

We observe also that r = r± are both Killing horizons, where the norm of the Killing vector
ζ = ∂

∂t vanishes. We are mostly interested in the properties of the external event horizon r = r+

because it is the only “accessible” from the exterior. The surface gravity is given by:

χµ =

(
∂

∂t

)µ
= (1, 0, 0, 0) ⇔ |χ|2 = −gtt = ∆ ,

∂r|χ| = ∂r
√

∆ =
1

2
√

∆
· 2
(
GM

r2
− GQ2

r3

)
,

κ2 = grr(∂r|χ|)2 =

(
GM

r2
+

− GQ2

r3
+

)
=
G2M2 −GQ2

r4
+

.

(1.19)

We see that the surface gravity can be written as κ = r+−r−
2r2

+
; from this expression it is straight-

forward to verify that it reduces to the surface gravity of a Schwarzschild black hole in the limit
r+ → rs = 2GM, r− → 0. We also observe that the extremal black hole is characterised by
κ = 0.

In the extremal case, it is useful to express the metric using a change of coordinates ([7]):
let r0 be the position of the two coinciding event horizon, and let us define r′ = r − r0. In this
new coordinates the event horizon is at r′ = 0 and the metric reads:

ds2
ext = −H(r′)−2dt2 +H(r′)2(dr′2 + r′2dΩ2) where H(r′) =

(
1 +

r0

r′

)
. (1.20)

These new coordinates (t, r′, θ, φ) are called isotropic: the reason is that in these coordinates
the metric shows explicitly an SO(3) symmetry. We will see later, when we will deal with black
holes in supergravity, that the presence of this symmetry in the extremal case can be seen as
the presence of a supersymmetry.

1.1.4 The Kerr metric

It is much more difficult to derive a solution corresponding to a rotating black hole, even if we
restrict to the vacuum case. We look for a stationary solution, but not static. The resulting
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1.1. Black holes in four dimensions

metric was discovered by Kerr only in 1963, and reads ([6]):

ds2 = −dt2 +
ρ2

∆
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdφ2 +

2GMr

ρ2
(a sin2 θdφ− dt)2 , (1.21)

where
∆(r) = r2 − 2GMr + a2 and ρ2(r, θ) = r2 + a2 cos2 θ . (1.22)

The parameter a is a measure of the rotation of the black hole; in the limit a → 0 the metric
(1.21) reduces to the Schwarzschild metric (1.5). We note also that in the limit M → 0, (1.21)
reduces to flat spacetime, even if not in ordinary polar coordinates, but in ellipsoidal coordinates.
This means that surfaces at r = const are not spheres, but ellipsoids. The curvature singularity
corresponds now to ρ = 0, and not r = 0. We remember that r = 0 is not a point in space, but
a disk. The condition ρ = 0 is equivalent to r = 0, θ = π

2 , which corresponds to a ring at the
edge of the disk: the curvature singularity is not confined to a single point, but spread over a
ring.
The metric coefficients are independent from both t and φ: thus we have two manifest Killing
vectors, that we call ζµ = ∂

∂t = (1, 0, 0, 0) and ηµ = ∂
∂φ = (0, 0, 0, 1). ζµ expresses the stationarity

of the solution; the fact that gtφ 6= 0 implies that ζµ is not orthogonal to the hypersurfaces
t = const. It turns out that there is not any hypersurface orthogonal to ζµ, which means that
the Kerr metric is non-static. The fact that ηµ is a Killing vector expresses the axial symmetry
of the metric, where the axis of symmetry is the axis of rotation of the black hole.

As for the Reissner–Nordstrøm metric, the Kerr metric possesses two event horizons, given
by the vanishing of ∆:

r± = GM ±
√
G2M2 − a2 . (1.23)

As before we exclude the case which would lead to a naked singularity (G2M2 < a2), and
concentrate on the case G2M2 > a2; the extremal black hole, given by G2M2 = a2, is just a
particular case of the latter. The two event horizons behave exactly like the event horizons of
the Reissner–Nordstrøm black hole, and a test particle would follow similar geodesics.
The key feature that characterises a Kerr black hole is the fact that there is a Killing horizon
which do not coincide with any of the two event horizon. This is given by the vanishing of the
norm of the Killing vector ζµ:

ζµζµ = gtt = −1 +
2GMr

ρ2
= − 1

ρ2
(∆− a2 sin2 θ) . (1.24)

We see that this norm does not vanish at the event horizons (where ∆ = 0). The norm actually
vanishes at two surfaces, given by

r1,2 = GM ±
√
G2M2 − a2 cos2 θ . (1.25)

The surface r = r2 lies entirely inside the inner event horizon: we do not consider it. The surface
r = r1, on the other end, lies outside the outer event horizon (and touches it at the poles, where
θ = 0, π). A consequence of this fact is that there exist a region between r1 and r+, called
ergosphere, where a test particle would inevitably keep moving in the direction of the rotation
of the black hole. The situation is shown in picture 1.1.

This feature of the Kerr black hole has important consequences: the fact that ζµ is spacelike
in the ergosphere means that the energy of a particle E = −ζµpµ can be negative. We can
then imagine a process by which we can extract energy from the hole; this is known as Penrose
process. We start from a composite object outside the Killing horizon with momentum given by

9



1. Black holes in general relativity

Figure 1.1: Horizons of a Kerr black hole.

pµ0 = pµ1 + pµ2 , and energy E0 = E1 +E2. Let us suppose that this object enters the ergosphere,
and here separates into its two parts. It is possible that the part (2) has energy E2 < 0 and
move toward the black hole finally entering its event horizon, and that the part (1) (with positive
energy E1 > E0) follows a geodesic going again outside the ergosphere. Obviously this process
does not violate energy conservation: the object (2) must move in a direction opposite to the
rotation of the hole; the gain in mass due to the presence of the object (2) is opposed by a
reduction of the angular momentum of the hole. The nett result is a decrease of the total energy
of the black hole.
It is worth noting that even the outer horizon is a Killing horizon. This can be seen defining a
Killing vector χµ in the following way:

χµ = ζµ + ΩHη
µ . (1.26)

This vector is null at the outer horizon, provided that the value of ΩH is ΩH = a
r2
++a2 . This

value can be interpreted as the angular velocity of the black hole evaluated at the horizon.

We could calculate the the surface gravity at the horizon of the Kerr black hole, in the same
way we have done for the Schwarzschild or Reissner–Nordstrøm black holes. The calculation
would be much more complicated: we only state that the result is the following:

κ =

√
G2M2 − a2

2GM(GM +
√
G2M2 − a2)

. (1.27)

We see that in the limit a → 0 we recover the surface gravity of the Schwarzschild black hole,
while in the extremal limit G2M2 = a2 the surface gravity vanishes. This is a common feature
with the Reissner–Norstrøm extremal black hole.

1.2 Charges of a black hole

The goal of this section is to find practical rules in order to derive interesting quantities charac-
terizing a black hole, starting from its geometry. We take into account black holes in a spacetime
of generic dimension (D ≥ 4). This is because in the following we will be interested also in higher
dimensional black holes.

10



1.2. Charges of a black hole

1.2.1 Mass and angular momentum

Starting from the generalisation of the Einstein–Hilbert action (1.1) for a generic dimension D,

IE =
1

16πG

∫
dDx

√
g(x)R , (1.28)

we derive the Einstein field equations, which look the same for any dimension D. In order to
define quantities like mass and angular momentum, we suppose that our solution can be written
as

gµν = ηµν + hµν , (1.29)

where hµν is the perturbation from flat spacetime. The metric is normally chosen to be in the
so-called harmonic gauge, i.e.:

∂νh
µν − 1

2
∂µhαα = 0 , (1.30)

where the indices are raised and lowered with the flat metric η. With this assumption, Einstein
equations become, at the first linear order,

∇2hµν = −16πG

(
Tµν −

1

D − 2
Tαα

)
=: −16πGTµν , (1.31)

where ∇2 is the D-dimensional Laplacian. The solution to such equation is known to be

hµν(x) =
16πG

(D − 3)AD−2

∫
Tµν(y)

|x− y|D−3
dDy . (1.32)

Here AD−2 represents the area of a unit sphere of dimension D − 2. The trace of the energy-
momentum tensor is dominated by the energy density, so we can approximate: Tαα ' −T00. We
now recall that the mass (or total energy) of the system is defined by

M =

∫
dDxT00(x) . (1.33)

We always assume that we are considering the system in its rest frame, i.e.∫
dDxT0i(x) = 0 . (1.34)

In order to define the angular momentum, we suppose that the origin of the coordinates coincide
with the center of mass of the system; thus the angular momentum is given by

Jµν =

∫
dDx (xµTν0 − xνTµ0) . (1.35)

Using also the conservation of the energy-momentum tensor we can derive the following expres-
sions:

J0i = 0 ,

Jij = 2

∫
dDx (xiTj0 − xνTµ0) .

(1.36)

11



1. Black holes in general relativity

One should now expand the solution (1.32) in the region r = |x| � |y|, and using the definitions
of mass and angular momentum one can compare this quantities with the metric coefficients.
We write here the final expressions ([9]):

h00 '
16πG

(D − 2)AD−2

M

rD−3
,

hij '
16πG

(D − 2)(D − 3)AD−2

M

rD−3
δij ,

h0i ' −
8πG

AD−2

xkJki
rD−1

.

(1.37)

The Schwarzschild and Reissner–Nordstrøm solutions (in dimension D = 4) do not satisfy the
harmonic gauge condition (1.30). Anyway, we can express the two solutions in harmonic gauge
by means of a shift of the coordinates r; this implies that we can safely use (1.37) in order to
derive the mass and the angular momentum. In both cases the parameter M appearing in the
solution is indeed the mass, and the angular momentum vanishes. In the case of the Kerr metric,
we have again that the mass coincide with M , and the angular momentum is J = |Jxy| = Ma.

1.2.2 Electric Charge

The action for a Maxwell field in D dimensions reads:

I = −1

4

∫
dDx

√
g(x)FµνFµν . (1.38)

The electric charge Q is completely defined by Fµν through:

F0i = −Q xi

rD−1
. (1.39)

This is the generalisation to a generic dimension of the formula we have used to derive the
Reissner–Nordstrøm metric. The presence of an electric charge Q gives a non-trivial contribution
to the energy-momentum tensor Tµν , and thus influences the metric. It is a general feature that
contributions coming from the charge are of higher order in r−1 than those coming from the
mass; this can be seen, for example, from the metric (1.17).

1.2.3 Uniqueness theorems

In section (1.1) we have seen that every isotropic solution of the Einstein equations in vacuum
must be static, and thus it must be the Schwarzschild metric. This means that every isotropic
vacuum solution is completely determined by a single parameter M . This is an example of a
family of uniqueness theorems, that state that there is only a very limited family of stationary,
asymptotically flat black hole solution to the Einstein equations ([10]).

The Schwarzschild metric is the only static vacuum solution, while the Kerr metric is the only
stationary vacuum solution. If we add an electric charge Q, the Reissner–Nordstrøm metric is
the unique static solution, while a suitable generalisation of the Kerr metric (the Kerr-Newman
metric) is the unique stationary solution. We can also consider the presence of magnetic charges;
the resulting metrics are completely similar to the ones with electric charge.

Summing up, we can say that a stationary black hole can be completely determined by a finite
set of quantities (mass, angular momentum, electric and magnetic charges): in the following we
refer to these quantities with the common name charges.
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1.3. Black hole thermodynamics

1.3 Black hole thermodynamics

During the study of the Kerr geometry we have learned that energy can not only be absorbed
by a black hole; it is possible to have processes where a black hole acts as an intermediary,
exchanging energy with other objects. From this trivial observation we may be led to think
whether it is possible to consider a black hole as a thermodynamic object. In this section we
will examine if we can define a temperature for a black hole, and if there exist some laws which
may be considered as the analogous of the thermodynamic laws.

1.3.1 Black hole temperature

In order to define a temperature for black holes, we now schematically review the key features
of a finite temperature field theory. Let us suppose to have a theory with Lagrangian L in a 4
dimensional spacetime (the extension to higher dimensions is straightforward). If |φa〉 is a basis
for the Hilbert space of our field theory, the partition function Z is given by

Z = Tr(e−βH) =

∫
dφa 〈φa|e−βH |φa〉 . (1.40)

Here H is the Hamiltonian of our theory, and β is related to the temperature by β = 1
kBT

. Let
us remember that the following Green’s function can be expressed via a path integral:

〈φa|e−
iHt
~ |φb〉 =

∫ φ(t,x)=φb(x)

φ(0,x)=φa(x)
[dφ] e−

i
~
∫ t
0 dt
′ ∫ d3xL . (1.41)

Defining now τ = it we have:

〈φa|e−
iHt
~ |φb〉 = 〈φa|e−

τH
~ |φb〉 =

∫ φ(−iτ,x)=φb(x)

φ(0,x)=φa(x)
[dφ] e−

1
~
∫ τ
0 dτ ′

∫
d3xL . (1.42)

We can now rewrite the partition function as

Z =

∫
dφa 〈φa|e−βH |φa〉 =

∫
dφa

∫ φ(−iβ~,x)=φa(x)

φ(0,x)=φa(x)
[dφ] e−

1
~
∫ β~
0 dτ

∫
d3xL

=

∫
φ(0,x)=φ(−iβ~,x)

[dφ] e−
∫ β
0 dτ

∫
d3xL =

∫
φ(0,x)=φ(−iβ~,x)

[dφ] e−i
∫−iβ
0 dt

∫
d3xL .

(1.43)

We see that the partition function at temperature T is simply the path integral over configu-
rations with euclidean time τ = it periodic with period β~. We can thus argue that we should
associate a temperature T = 1

kBβ
to a solution with a periodic imaginary time with period β~.

We now want to inspect whether we can assign a certain temperature to the simple black
hole solutions we know. Let us start with the Schwarzschild geometry (1.5), and perform the
change of variable τ = it. The resulting metric is

ds2 =

(
1− 2MG

r

)
dτ2 +

(
1− 2MG

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (1.44)

From this expression one can not easily say if this solution has some periodicity in τ . In order
to make it manifest, we expand around r = rs, introducing the parameter ε = r − 2GM . We
make this because we want to inspect the geometry barely outside the black hole horizon, which

13



1. Black holes in general relativity

should be the region that characterises all black hole properties. Assuming ε small and positive,
and taking only leading order terms, we obtain

ds2 ' ε

2GM
dτ2 +

2GM

ε
dr2 + r2

sdΩ2 =
ε

2GM
dτ2 +

2GM

ε
dε2 + r2

sdΩ2 , (1.45)

where we have expressed the trivial angular part as dΩ2 = dθ2 + sin2 θdφ2. We now perform a
further change of variable, defining ρ =

√
2ε. Thus:

ds2 ' ρ2

4GM
dτ2 + 4GMdρ2 + r2dΩ2 = 4GM

(
dρ2 +

ρ2

16G2M2
dτ2

)
+ r2dΩ2 . (1.46)

Remembering that a euclidean space in 2 dimensions can be expressed in polar coordinates by
the metric ds2 = dr2 + r2dφ2 with the period φ being 2π, we easily see that we must assign to τ
the periodicity 2π · 4GM = 8πGM in order to make the space smooth at r = rs. We then state
that to a Schwarzschild black hole with mass M can be associated a temperature

T =
~

8πkBGM
. (1.47)

We now turn to the Reissner–Nordstrøm black hole. Using the euclidean time, and remembering
the expression for r±, we can write the metric (1.17) as

ds2 =
(r − r+)(r − r−)

r2
dτ2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ2 . (1.48)

We consider the geometry outside the outer event horizon, and expand it using the parameter
ε = r − r+. Keeping only leading order terms we get

ds2 ' (r+ − r−)ε

r2
+

dτ2 +
r2

+

(r+ − r−)ε
dε2 + r2

+dΩ2 . (1.49)

We see that the expression has the same structure as the Schwarzschild metric, with the substi-

tution 1
2GM →

r−−r−
r2
+

: we can then conclude that τ has periodicity 4π · r2
+

r+−r− . Finally we find

that to a Reissner–Nordstrøm black hole is associated a temperature

T =
~(r+ − r−)

4πkBGr2
+

=
2~
√
M2 −Q2

4πkBGr2
+

. (1.50)

We can make two simple observation: firstly, as expected, the temperature reduces to the
Schwarzschild temperature in the limit Q→ 0. Furthermore we can observe the temperature of
the extremal black hole vanishes.

We can now observe an interesting fact: it seems that there is a proportionality between
temperature and surface gravity, i.e.: T = ~κ

2πkB
. It turns out that this is true even for the Kerr

black hole. This correspondence leads to the following properties (which we will not prove, but
sound reasonable thanks to what we know):

• although κ is defined locally on the Killing horizon, it is constant (this is true for static and
axisymmetric black holes). This means that the temperature of a black hole is constant
over the horizon;

• the surface gravity (and hence the temperature) of a black hole is always non-negative,
and vanishes only in the extremal limit.
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1.3. Black hole thermodynamics

The first of these two properties sounds similar to the zeroth law of thermodynamics, which
states that the temperature is uniform in a system in thermal equilibrium. This is a good
confirmation of the validity of our definition of temperature for a black hole.

It may seem a bit unclear what is the physical meaning of this derivation. Anyway there is
another way to calculate the temperature of a black hole, and it takes into account quantum
effects near the horizon. One can argue that the creation of pairs of particle in the proximity
of the horizon gives rise to an emission of radiation from the hole; Hawking ([1]) has shown
that this radiation is completely thermalised. In the simple cases we have taken into account,
this Hawking temperature coincides exactly with the one we have derived. We thus see that
the temperature of a black hole, which is the temperature of the emitted radiation, is a local
property on the horizon; this observation will be important in the following.

1.3.2 First law of black hole thermodynamics

In this section we will derive the form of the so-called first law of black hole thermodynamics.
We will see that there is an evident analogy with the first law of thermodynamics. Furthermore,
using our previous definition of temperature of a black hole, we will be able to identify a quantity
playing the role of entropy. We will follow the procedure in [11] and [13].

We are going to derive the first law in a very general framework. Let us simply assume that
we have a gravity theory in D dimensions, deriving from a diffeomorphisms invariant Lagrangian
L. For practical reasons we do not deal directly with the scalar density L, but with its Hodge-
dual D-form L = ∗L; in the same way other quantities will appear in their dualised version,
as differential forms. Let us suppose that the Lagrangian locally depends on the metric gµν
and possibly on other dynamical fields; we denote all the fields, including the metric, with φ.
Performing a first order variation of the fields (φ→ φ+ δφ) we get

δL = Eδφ+ dΘ(φ, δφ) , (1.51)

where summation over the fields and indices contractions are understood. Integration over the
spacetime yields to the equation of motion E = 0, while the (D − 1)-form Θ is the boundary
term, which is locally constructed from the fields and their first order variation. It should be
noted that, thanks to the diffeomorphisms invariance, Θ is determined only up to the addition
of a closed form.

We can now perform a further variation of the fields, and then define the symplectic current
Ω (which is a (D − 1)-form) in the following way:

Ω(φ, δ1φ, δ2φ) = δ1[Θ(φ, δ2φ)]− δ2[Θ(φ, δ1φ)] . (1.52)

Diffeomorphisms invariance implies that also Ω is defined up to a closed (D− 1)-form. Let now
ξµ be an arbitrary vector field, from which we can construct the field variations δ̂φ = Lξφ. We

remember that the Lie derivative of a generic form Λ can be written as δ̂Λ = ξ · dΛ + d(ξ ·Λ),
where the product ξ· denotes the contraction with the first index of the form. We can apply
this formula and calculate the variation of the Lagrangian form:

δ̂L = LξL = d(ξ · L) . (1.53)

We see that ξ defines an infinitesimal diffeomorphism that leaves invariant L up to a closed form:
thus the action remains invariant, and we can say that this diffeomorphism is a local symmetry.
We can then define a Noether current (D − 1)-form, associated to this local symmetry, as

j = Θ(φ,Lξφ)− ξ · L . (1.54)
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1. Black holes in general relativity

This is indeed a Noether current, in the sense that it is conserved whenever the equation (E = 0)
of motion are satisfied. In fact:

dj = dΘ(φ,Lξφ)− d(ξ · L) = LξL−ELξφ− LξL = −ELξφ . (1.55)

Let us call Q the Noether charge (D−2)-form which can be locally constructed out of the fields
φ and the vector ξ and such that, when the equation of motion are satisfied, obeys

dQ = j . (1.56)

Again, Q is uniquely defined up to a local closed (D−2)-form. What is uniquely determined by
the relation (1.56), by the way, is the integral of Q over a closed surface Σ of dimension D − 2.
Let us now consider the first order variation of equation (1.54):

δj = δΘ(φ,Lξφ)− ξ · δL = δΘ(φ,Lξφ)− ξ · [Eδφ]− ξ · dΘ(φ, δφ) . (1.57)

We now evaluate this expression on the equations of motion, and use again the definition of Lie
derivative; thus we get

δj = δΘ(φ,Lξφ)− LξΘ(φ, δφ) + d[ξ ·Θ(φ, δφ)] . (1.58)

Looking at the definition of the symplectic current, we can recognise that

δj = Ω(φ, δφ,Lξφ) + d[ξ ·Θ(φ, δφ)] . (1.59)

The next step is to integrate this last equation over a Cauchy surface C. The key observation
is that the symplectic current is related to the variation of the Hamiltonian H corresponding to
the evolution generated by ξ. In particular, Hamilton’s equations of motion are equivalent to
(see [12])

δHξ =

∫
C

Ω(φ, δφ,Lξφ) , (1.60)

which can now be written as

δHξ = δ

∫
C

j−
∫
C
d(ξ ·Θ) . (1.61)

If we now assume that the equations of motion are satisfied, we can express the Noether current
in terms of the Noether charge:

δHξ =

∫
C
d(δQ[ξ]− ξ ·Θ) . (1.62)

What is the meaning of the Hamiltonian Hξ? It turns out that in an asymptotically flat space-
time it is natural to associate the surface contribution to the Hamiltonian from infinity with the
conserved quantity associated with the vector field ξ. For example, the canonical energy E and
the canonical momentum J are associated respectively with the time translation vector ζ and
a rotation vector η. These definitions of energy and angular momentum are quite standard in
general relativity; even if it is not obvious how to prove that they coincide with the definition
we have made in section (1.2.1), one can at least verify that they give the same result in some
particular cases. This is indeed true from the black hole solutions we have encountered up to
now.

Let us specialise equation (1.62) to the two cases ξ = ζ and ξ = η:

δE =

∫
∞

(δQ[ζ]− ζ ·Θ) ,

δJ = −
∫
∞
δQ[η] .

(1.63)
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1.3. Black hole thermodynamics

The minus sign in the second expression is just a matter of convention: it depends on the
definition of the sign of the angular momentum. In the same equation we have not written
any term like η · Θ, because the vector η is assumed to be tangent to the sphere at infinity;
this means that the contribution to the integral of such a term would vanish. Furthermore we
suppose that it exists a (D − 1)-form B such that δ

∫
∞ t ·B =

∫
∞ t ·Θ. We can thus write

E =

∫
∞

(Q[ζ]− ζ ·B) ,

J = −
∫
∞

Q[η] .

(1.64)

We now want to specialise to a Killing vector field, and in particular a Killing vector field with
vanishing norm on a Killing horizon Σ. We have in mind the three particular black holes we
have studied, and so we define ξ as

ξµ = ζµ + ΩHη
µ , (1.65)

where Ω is the angular velocity of the horizon. In principle a black hole in higher dimensions
could rotate not only in one direction, and so in the product ΩHη

µ should be understood the
presence of a sum over all the possible rotational directions.

Being ξ a Killing vector field, we have that Lξφ = 0 for every field φ. This means that the
symplectic current vanishes, and then

δj = d[ξ ·Θ(φ, δφ)] , (1.66)

or, when evaluated on the equations of motion,

d(δQ)− d[ξ ·Θ(φ, δφ)] = 0 . (1.67)

Let us now integrate this latter expression over an asymptotically flat Cauchy surface with
interior boundary on the Killing horizon Σ; equation (1.67) becomes∫

Σ
δQ[ξ]− ξ ·Θ =

∫
∞
δQ[ξ]− ξ ·Θ . (1.68)

The right hand side can be expressed in terms of energy and angular momentum. In the left
hand side, the fact that ξ has vanishing norm on the horizon Σ means that the term ξ ·Θ does
not give any contribution. The final result is:

δ

∫
Σ

Q[ξ] = δE − ΩHδJ (1.69)

This is the so-called first law of black hole thermodynamics; anyway, we can go further and
extract some more informations. An important fact is that, at least if we consider general
relativity with the Einstein–Hilbert Lagrangian, Q[ξ] depends only on ξµ and its antisymmetrised
first covariant derivatives D[µξν]; furthermore the dependence on these derivatives is linear.
These derivatives can be expressed in terms of the bi-normal tensor εµν to the surface Σ, because
the definition of surface gravity (1.11) is equivalent to

D[µξν] = κεµν . (1.70)

However εµν does not depend on ξ: it is an object inherently related only to the surface Σ.
Hence, defining Q̃ as Q = κQ̃, we have that it is completely independent on ξ when evaluated
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1. Black holes in general relativity

on the surface Σ. This because the Killing vector is null on the horizon, and the dependence
on the covariant derivatives reduces to a dependence only on the bi-normal tensor. With this
definition, the first law of black hole thermodynamics becomes

κ δ

∫
Σ

Q̃ = δE − ΩHδJ . (1.71)

It is worth noting that if we allow the electric charge Q to be variable, the first law has another
term, i.e.

κ δ

∫
Σ

Q̃ = δE − ΩHδJ − ΦeδQ , (1.72)

where Φe can be interpreted as electrostatic potential.
Recalling the definition of temperature given above, we can write

T
2πkB
~

δ

∫
Σ

Q̃ = TδS = δE − ΩHδJ − ΦeδQ . (1.73)

Here we have defined what should be interpreted as the entropy of the black hole. A key
observation is that this entropy depends only on local quantities defined on the horizon of the
black hole.

1.3.3 Entropy and second law of black hole thermodynamics

Our derivation of the first law of black hole thermodynamics naturally led to a candidate for the
entropy of a black hole. We have seen that it depends only on the horizon Σ. Let us now see
what this entropy exactly is in the case of the Einstein–Hilbert Lagrangian in four dimensions.
The Lagrangian (in its dual form) is

Lµνρσ =
1

16πG
εµνρσR . (1.74)

One can derive the boundary term Θ with a quite tedious calculation; here we only state the
result:

Θβγδ(g, δg) =
1

16πG
εµβγδg

µσgαν(Dνδgασ −Dσδgαν) . (1.75)

Let us now recall that, given a vector field ξ, the Lie derivative of the metric is given by

Lξgµν = Dµξν +Dνξµ . (1.76)

One can now calculate the Noether current associated with this vector field, which is

jβγδ =
1

8πG
εµβγδ

[
Dα(D[αξµ]) +

(
Rµν − 1

2
gµνR

)
ξν

]
. (1.77)

When calculated over the equations of motion (that are the Einstein field equations) the second
term vanishes. Hence it is straightforward to recognise that we can take as Noether charge the
following expression:

Qβγ = − 1

16πG
εβγµνD

µξν . (1.78)

We see that Q indeed depends only linearly on the first derivatives of the vector field ξ. We can
now calculate what our candidate entropy is:

S =
2πkB
~κ

∫
Σ

Q = − kB
8~G

∫
Σ
εβγµνε

µν =
AkB
4~G

, (1.79)
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where A is the area of the event horizon Σ. This entropy is known as Bekenstein–Hawking
entropy ; it is just, up to numerical factors, the area of the event horizon of the black hole.

A natural question arises: is there an analogous statement to the second law of thermo-
dynamics? It should say that the area of the horizon of a black hole can not decrease during
physical processes. This statement (called area theorem) was not proven in absolute generality;
under certain conditions, by the way, it was proven that the cosmic censorship conjecture implies
that the area of an event horizon cannot be decreasing ([10]).

The interpretation of the area of a black hole as entropy is not only restricted to a formal
analogy between the laws of thermodynamics; one can derive the entropy of a black hole in
analogy with the entropy of a thermodynamic system. We can calculate the partition function
Z of the theory via a path integral, and then derive the entropy from Z; this method has the
advantage to have a more clear physical meaning. In the path integral one usually considers
only the contribution of the classical solution, which is the classical black hole metric of a given
system. Using the partition function, as we have done in section (1.3.1), one can derive the
thermodynamic potentials. Once these are known, one can derive the entropy of a black hole:
the result agrees exactly with (1.79) (see [14]).

We can finally say that the laws of black hole thermodynamics are not only identities formally
similar to the law of standard thermodynamics; the fact that quantities like temperature and
entropy can be derived from the partition function of the quantum gravity theory, means that
thermodynamic properties can be associated to a black hole. The following step is to investigate
whether or not a microscopic interpretation for these thermodynamic laws is possible. This is a
completely non trivial purpose, and it will drive us throughout this work.

1.4 The black hole information paradox

There are some serious problems which compromise our interpretation of black holes as true ther-
modynamic objects. A first observation is that the Bekenstein–Hawking entropy is proportional
to the area of the black hole; we would have expected that the entropy was an extensive quantity,
then proportional to a volume, rather than an area. This fact opens interesting perspectives
involving holography.

Another serious puzzle arises from Hawking’s calculation of the radiation coming out from
a black hole ([1]): he has shown that this radiation is completely thermalised, i.e. its spectrum
depends only on the temperature (and possibly other charges) associated to the black hole. A
direct consequence is that information is lost during the process of formation and evaporation of
a black hole. This is simply because there are many possible configuration which can lead to a
black hole with the same charges: but the evaporation of the black hole is sensible only to these
charges, and does not keep track of all the information related to the matter which has formed
the black hole. This apparent loss of information is in contrast with the unitary evolution of
quantum mechanics; a true quantum theory of gravity should solve this puzzle, known as black
hole information paradox.

The information loss should be just an trickery due to the semi-classical nature of the cal-
culation of the radiation spectrum; many attempts have been done, trying to identify where
semi-classical arguments fail. Different solutions have been proposed, each one with its own
virtues and vices; let us now briefly see which are the ideas:

• information is stored in a Planck-sized remnant;

• information is stored in a baby universe;
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1. Black holes in general relativity

• information suddenly escapes from the black hole at the end of the evaporation;

• information actually flows slowly out of the black hole during evaporation, due to small
correction to the semi-classical calculation;

• the classical picture of black holes is drastically modified at the horizon scale, resulting in
the disappearance of the information paradox.

Let us concentrate in particular in the two last possibilities. It could be possible that the solution
to the information paradox lies in the quantum corrections to the Hawking’s calculation: in this
case we would expect these corrections to be of order lP /rH , where lP is the Planck scale and
rH is the radius of the horizon of the black hole (this means that these corrections are typically
very small). An alternative is to think that even the classical description of black holes must be
modified up to the horizon scale, resulting in correction to the Hawking’s calculation of order 1.
We will investigate this possibility in the following. We refer to [2] for an extended discussion
on the information paradox.

Another problem, related to the information paradox, is the following: the interpretation
of the area of a black hole as entropy naturally leads to the problem of identifying what are
the microstates responsible for this entropy. It seems that there is not a satisfying answer to
this problem, because of uniqueness theorems. We know that all different black holes geometry
are parametrised by a finite family of charges. It seems that we have no way to have such a
number of different microstates that could generate a finite entropy. Also this problem should
be solved by a quantum theory of gravity; in the following we will learn how it is possible to find
suitable black hole microstates in the framework of what is the better candidate to be a theory
of quantum gravity: string theory. First of all, however, it is necessary to study supergravity,
which is the (classical) low energy limit of string theory.
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Chapter 2

Black holes in supergravity

There are at least three reasons to deal with supergravity theories. The first reason is that
supergravity is an extension of general relativity (in four or more dimensions) that naturally
implements a theory which is invariant under diffeomorphisms. The second reason is that if
supersymmetry is indeed realised in nature, it would be very obvious to think that it would also
apply in the context of gravity. Third, but not less important, supergravity theories turn out to
be the low energy limit of superstring theories. This gives to supergravity a more fundamental
interpretation; if string theory is indeed the real quantum theory of gravity, then the correct
gravity theory describing our world will be a supergravity theory, if supersymmetry is not broken
at high energy scales. In this chapter we will briefly sketch the key features of supergravity in
four and more dimensions, and we will try to understand which are the generalisations of black
holes in supergravity.

The study of black holes in supergravity is a key passage toward the analysis of black holes in
string theory. This is because we will always need to compare a string solution with its classical
limit, which will be a supergravity solution. In this chapter we will also derive the explicit
form of a supergravity black hole; in the following we will also try to understand which are the
microstates of this hole.

2.1 Basic features of supergravity

An extended review of supergravity is far beyond the purposes of this work. Here we derive only
some basic properties. We refer to a complete reference such as [16] for details.

Supergravity arises from making a global supersymmetry local. A global supersymmetry
transformation relates bosons and fermions to each other; we can schematically write the trans-
formation rules, following [15], as

δεB = ε̄F , δεF = εγµ∂µB , (2.1)

where ε is the infinitesimal parameter characterizing the supersymmetry transformation carrying
a spinor index and γµ are matrices satisfying the Clifford algebra. The commutator of two of
such transformations for a bosonic field is given by

[δε1 , δε2 ]B ∝ (ε̄1γ
µε2)∂µB . (2.2)

Making this symmetry local, means to promote the parameter ε to depend on the spacetime
coordinate x; thus the commutator of two local supersymmetry transformations reads:

[δε1 , δε2 ]B ∝ (ε̄1γ
µε2)(x)∂µB . (2.3)
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2. Black holes in supergravity

The fact that the result has this form (i.e. the derivative of the field B times a function of x)
means that it can be interpreted as an infinitesimal diffeomorphism; hence we have found that
a theory which is invariant under local supersymmetry, must also be invariant under diffeomor-
phisms (which means that the spacetime metric must be considered as a dynamical object).
But this is exactly what characterises general relativity; in fact the Einstein theory of gravity
is the simplest diffeomorphisms invariant theory, even if other higher order corrections to the
Einstein–Hilbert Lagrangian are possible.

The simplest supergravity theory in four dimension (N = 1, D = 4 supergravity) predicts the
presence of a doublet formed by the graviton gµν and its fermionic super-partner, the gravitino
ψαµ (here and in the following we will denote a spacetime index with µ, ν, etc... and a spinor
index with α, β, etc...).

The necessity of the presence of the gravitino can be related to the general way one constructs
a local theory, starting from the global one. In the case of an ordinary gauge theory, one must
define a covariant derivative with the use of vector fields in order to make the Lagrangian
invariant under the local transformation. For example, a scalar theory with Lagrangian

L =
1

2
∂µφ(x)∂µφ̄(x) (2.4)

has an U(1) global symmetry corresponding to the transformation

φ(x)→ eiΛφ(x) . (2.5)

If we make the symmetry local, promoting the parameter Λ to depend on the spacetime coordi-
nate x, the Lagrangian (2.4) would no more be invariant. If we want to construct a Lagrangian
invariant under this new local symmetry we must substitute the ordinary derivative with the
covariant derivative Dµ = ∂µ− iAµ(x). Here we have introduced a vector field Aµ transforming
as

Aµ(x)→ Aµ(x) + ∂µΛ(x) . (2.6)

Obviously, the Lagrangian should also be completed with a kinetic term for the new vector field.
In the case of a supersymmetry transformation, the role of the parameter Λ is played by the

spinor parameter εα. We then expect the new field appearing in the covariant derivative to be
a spin-3

2 field ψαµ , the gravitino.
For practical reasons, when dealing with spinors in curved spacetime it is useful to reformulate

the theory in the vielbein formalism. Let us define a coordinate system which is inertial at the
point x0 (yA(x0;x)); the vielbein is defined by

e A
µ (x0) :=

∂yA(x0;x)

∂xµ

∣∣∣∣
x=x0

. (2.7)

The choice of the locally inertial frame is unique up to a Lorentz transformation, under which
the vielbein transforms as

e A
µ = e B

µ Λ A
B . (2.8)

With this object we can write the metric of the curved spacetime gµν in terms of the flat metric
ηab, through

gµν(x) = e A
µ (x)e B

ν (x)ηAB . (2.9)

We want to define a suitable covariant derivative, which should be the generalisation of both
the covariant derivative of gauge theories and the one of general relativity. Its relevant part is

D̃µ = ∂µ +
1

2
ω AB
µ MAB , (2.10)
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2.2. Supergravity in various dimensions

where MAB are the antisymmetric generators of the Lorentz transformations. The new term
is needed for invariance under local Lorentz transformations, and involves the so-called spin

connection ω AB
µ = ω

[AB]
µ . If one wants to derive the expression of the total covariant derivative

Dµ when applied to a tensor, one must add to the expression D̃µ all the necessary terms involving
the affine connection, in the very same way one does in general relativity. In order to determine
the spin connection one has to impose the vielbein postulate; it is the analogous of the statement
that in general relativity the metric is covariantly constant, i.e.

Dµgνρ = ∂µgνρ − Γσµνgσρ − Γσµρgνσ . (2.11)

The vielbein postulate requires that the vielbein is covariantly constant, i.e.

0 = Dµe
A
ν = D̃µe

A
ν − Γλµνe

A
λ = ∂µe

A
ν + ω A

µ Be
B
ν − Γλµνe

A
λ . (2.12)

Antisymmetrizing this equation, and writing it with the use of forms, we get

deA + ωAB ∧ eB = 0 . (2.13)

2.2 Supergravity in various dimensions

There are essentially two parameters characterizing a supersymmetry theory: the dimension of
the spacetime D, and the number of supersymmetries N . One usually divides the fields of the
theory into multiplets, which are formed by fields related each other by supersymmetry transfor-
mations. We are obviously interested in the supergravity multiplet containing a spin-2 particle,
which we will interpret as the graviton. We notice that if a multiplet contains a particle with
spin greater than 2, we should consider it non-physical. Given this constraint, one can see that
the possible supersymmetry (and supergravity) theories are not many. In D = 4, for example,
the most common theories have N = 1, 2, 4, 8. The field content of the graviton multiplet in all
these examples is represented in table 2.1 (see for example [15]).

Elicity: −2 −3
2 −1 −1

2 0 1
2 1 3

2 2

N = 1
1 1

1 1

N = 2
1 2 1

1 2 1

N = 4
1 4 6 4 1

1 4 6 4 1

N = 8 1 8 28 56 70 56 28 8 1

Table 2.1: Graviton multiplet field content in D = 4.

We see that the number of particles is always 2N , eventually multiplied by 2 because of CPT
invariance. N = 1 is called minimal supersymmetry; it is the consistent theory (in D = 4) with
the smallest possible number of supersymmetries. On the other end, N = 8 is called maximal
supersymmetry; in fact N > 8 would imply the presence of particles with spin greater than 2,
and so it would not be a physical theory.

We now want to extend the analysis of supersymmetry and supergravity theories to higher
dimensional spacetime. There are several motivation that drive us to consider supergravity in
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2. Black holes in supergravity

D > 4. On the one hand supergravity in D = 4 naturally arises as dimensional reduction of
higher dimensional theories; on the other hand supergravity in D = 10 can be seen as the low
energy limit of superstring theory. The extension is trivial if one considers only bosonic fields;
in order to deal also with fermions, one should first study spinor representations in dimension
greater than 4. What really matters to us here, is just what is the dimension of the irreducible
spinor representation in D dimension. The first step is to identify the representation of the
Clifford algebra in D dimension, i.e. the generalisation of the γ matrices satisfying

{γA, γB} = 2ηAB . (2.14)

Let us parametrise the dimension D as

D = 2k + 2 if D is even ,

D = 2k + 3 if D is odd .
(2.15)

It turns out that there is always a representation for the γ matrices; the corresponding spinors
transform under a representation with (complex) dimension 2k+1, and are called Dirac spinors.
This representation, however, is not always irreducible: in even dimension it is possible to define
the matrix γ̄ = ikγ0γ1 . . . γD−1, which generalise the γ5 in 4 dimensions. The Clifford algebra
implies that γ̄ satisfies

{γ̄, γA} = 0 , γ̄2 = −1l, . (2.16)

Thanks to these two properties, the Dirac spinor representation can be decomposed into two
irreducible parts by virtue of the projectors

P± =
1

2
(1l± iγ̄) . (2.17)

The two resulting representations have (complex) dimension 2k, and the corresponding elements
are called Weyl spinor. Up to now we have considered only complex spinors: one may ask
whether it exists a way to define real spinors. There are two ways to impose reality conditions,
and the resulting spinors are called respectively Majorana and pseudo-Majorana spinors. We
do not see explicitly how this can be done, but only state that it is not always possible to
impose these conditions: it depends on the dimension D of the spacetime (it is possible only if
D ≡ 0, 1, 2, 3, 4 mod 8). This fact allows to have a representation with half the (real) dimension.
Finally one may further ask if, in even dimension, these reality condition are compatible with the
split into Weyl spinors: if this is so, the resulting irreducible representation has real dimension
2k, and its elements are called Majorana–Weyl spinors.
In table 2.2 we summarise all the possible spinor representation in a D dimensional spacetime,
and write the real dimension of the irreducible representation dR (see for example [17]).

D 2 3 4 5 6 7 8 9 10 11
k 0 0 1 1 2 2 3 3 4 4

Weyl X X X X X
(pseudo-)Majorana X X X X X X X

Majorana–Weyl X X
dR 1 2 4 8 8 16 16 16 16 32

Table 2.2: Possible types of spinors in D dimensions.
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2.3. Supergravity in 11 and 10 dimensions

We have stopped our table at D = 11, and this is not by chance. The reason is that one
may view supergravity theories in D = 4 as the dimensional reduction of supergravity theories
in greater dimension; but this process does not change the total (real) degrees of freedom of the
theory. We have seen that the maximal supergravity theory in D = 4 corresponds to N = 8;
hence the total number of supercharges is 4·8 = 32. This theory can be viewed as the dimensional
reduction of a supergravity theory in a spacetime of dimension at most 11, because theories in
D > 11 have dR greater than 32. Thus the supergravity in 11 dimensions plays a significant
role: it can be seen as one of the most fundamental theories, since many other theories in lower
dimensions can be derive from this one.

The massless field content of the 11D supergravity can be derived easily. We know that we
have a total number of 256 degrees of freedom, just like N = 8 supergravity in 4 dimensions:
due to supersymmetry, these are divided into 128 fermions and 128 bosons. Our goal is to
identify representations of the little group of massless particles in 11 dimension (i.e. SO(9))
with the appropriate degrees of freedom. The bosonic 128 can be divided into the following two
irreducible representations:

• a symmetric traceless field gµν (dg = 9·10
2 = 45);

• a completely antisymmetric 3-form Aµνρ (dA =
(

9
3

)
= 84).

On the other hand, there is a fermionic irreducible 128 representation of SO(9), and thus the
(massless) fermionic content of the 11 dimensional supergravity is given only by

• a γ-traceless vector spinor ψαµ (dψ = 128).

This theory is not only more fundamental, but also much simpler than other supergravity theories
in lower dimension, because its field content is very simple. This is the reason why it is often
useful to work with this theory and then, if necessary, to obtain physical results via dimensional
reduction.

Another important role is played by the supergravity theories in 10 dimension, which corre-
spond to the low energy limit of superstring theories. Differently from D = 11, there is more
than one possibility in D = 10, because the real dimension of the irreducible spinor represen-
tation is 16. The minimal supergravity in D = 10 is called Type I. On the other hand, there
are two possible maximal supergravity theories, which are called Type IIA and Type IIB and
are slightly different in their field content. It turns out that only Type IIA can be obtained via
dimensional reduction starting from the 11 dimensional supergravity.

2.3 Supergravity in 11 and 10 dimensions

When dealing with a supersymmetric theory, one often writes only the bosonic part of the
Lagrangian, the fermionic one being completely fixed by supersymmetry. In the case of the 11D
dimensional supergravity, we have to write a Lagrangian for the metric g and the 3-form A. The
metric part should be the generalisation of the Einstein–Hilbert Lagrangian, while the kinetic
term for the 3-form should be the generalisation of the −1

4F
µνFµν corresponding to a vector

field. The correct action is (using the conventions of [17])

S11 =
1

2κ2

∫
d11x
√
−g
(
R− 1

2
|F (4)|2

)
− 1

12κ2

∫
A(3) ∧ F (4) ∧ F (4) , (2.18)

where we have defined the 4-form field strength F (4) = dA(3). The last term is called Chern–
Simons term, and it is required by supersymmetry; in spite of its explicit appearance it is
gauge-invariant.
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2. Black holes in supergravity

2.3.1 Dimensional reduction

The fields and the action for Type IIA superstring theory can be derived via dimensional re-
duction; this is obtained compactifying the coordinate x10 over a circle. Let us call y ≡ x10,
while all the other coordinates will have an analogous significance also in 10 dimension; we then
parametrise the metric and the 3-form as

ds2
11 = e2σ(dy + C(1)

µ dxµ)2 + ds2
10 ,

A(3) = B(2) ∧ dy + C(3) .
(2.19)

We then see that the bosonic field content of Type IIA supergravity is given by:

• the metric gµν , with µ, ν = 0, 1, . . . , 9;

• the scalar field σ or, equivalently, the dilaton Φ ≡ 3
2σ;

• the 2-form B(2);

• the forms C(1) and C(3).

The first three fields are called NSNS (Neveu–Schwarz Neveu–Schwarz) fields, while the forms
C(n) (with n = 1, 3) are called RR (Ramond Ramond) fields. These names derive from the
interpretation of this theory as the low energy limit of superstring theory. We can now write
down the action, directly deriving it from (2.18):

SIIA =
1

2κ2
10

∫
d10x
√
−g10

(
eσR10 −

1

2
e3σ|F (2)|2

)
+

− 1

4κ2
10

∫
d10x
√
−g10

(
e−σ|H(3)|2 + eσ|F̂ (4)|2

)
− 1

4κ2
10

∫
B(2) ∧ F (4) ∧ F (4) .

(2.20)

Here we have defined the field strengths F (2) = dC(1), H(3) = dB(2), F (4) = dC(3) and F̂ (4) =
dC(3) − C(1) ∧ F (3). The dilaton Φ is related to the string theory coupling constant by

gs = eΦ∞ , (2.21)

where Φ∞ is the value of the dilaton at spatial infinity. We can observe that in the strong
coupling limit we have σ → ∞, which means that we can describe Type IIA theory as a 11
dimensional theory, the M theory. We say that the strong coupling limit of Type IIA is M
theory.

An important observation is that the metric part of the action has not the correct form of
an higher dimensional Einstein–Hilbert action; this is due to the particular frame in which we
have written the action. If we want to derive physical results, we have to write the action in the
so-called Einstein frame, i.e the frame in which the part of the Lagrangian involving the metric
takes the form

√
−gR. In order to do so, one has to mix the metric and the scalar field in the

following way:

(gE)µν = e
σ
4 (g10)µν = e

Φ
6 (g10)µν . (2.22)

There is another useful frame, the string frame, which is the frame one uses when getting the
action of Type IIA as low energy limit of superstring theory. It is related to the others by

(gE)µν = e−
Φ
2 (gs)µν . (2.23)
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2.3. Supergravity in 11 and 10 dimensions

The metric part of the action can be written in this three frames as

Sg =
1

2κ2
10

∫
d10x
√
−g10e

σR10 =
1

2κ2
10

∫
d10x
√
−gERE =

1

2κ2
10

∫
d10x
√
−gse−2ΦRs . (2.24)

It is useful to write down explicitly how the action (2.20) reads in string frame:

SIIA = SNSNS + SRR + SCS , (2.25)

where we have divided the action into the three parts corresponding to the NSNS and RR fields,
and the last Chern–Simons term. The explicit expressions are

SNSNS =
1

2κ2
10

∫
d10x
√
−gse−2Φ

(
Rs + 4∂µΦ∂µΦ− 1

2
|H(3)|2

)
,

SRR = − 1

4κ2
10

∫
d10x
√
−gs

(
|F (2)|2 + |F̂ (4)|2

)
,

SCS = − 1

4κ2
10

∫
B(2) ∧ F (4) ∧ F (4) .

(2.26)

2.3.2 T-duality

We have said that in 10 dimension there is another consistent supergravity theory (Type IIB)
with 32 supercharges, which cannot be derived from an 11 dimensional theory via dimensional
reduction. Anyway, this theory can be related to Type IIA supergravity, thanks to the presence
of a duality between the fields of the two theories; this is the so-called T-duality. This duality
can be derived by the properties of superstrings; in fact both theories are the low energy limit of
respectively Type IIA and IIB superstring theory. The T-duality depends on a chosen compact
direction y: starting from Type IIA one can derive the fields of the Type IIB theory parametrizing
(in string frame):

ds2 = gyy(dy +Aµdx
µ)2 + ĝµνdx

µdxν ,

B(2) = Bµydx
µ ∧ (dy +Aνdx

ν) + B̂(2) ,

C(p) = C(p−1)
y ∧ (dy +Aµdx

µ) + Ĉ(p) .

(2.27)

The fields of the corresponding type IIB theory are the following ones:

ds′2 = g−1
yy (dy +Bµydx

µ)2 + ĝµνdx
µdxν ,

e2Φ′ = g−1
yy e

2Φ ,

B′(2) = Aµdx
µ ∧ dy + B̂(2) ,

C ′(p) = Ĉ(p−1) ∧ (dy +Bµydx
µ) + C(p)

y .

(2.28)

We then see that the field content is very similar to that of Type IIA. The NSNS sector has the
same type of fields (metric, dilaton and B fields). The RR sector is again made up by p-forms,
but now p takes only even values (0, 2, 4), differently from Type IIA. One can also derive the
action, starting from the Type IIA one in string frame (equations (2.25) and (2.26)); the result
is ([17])

SIIB = SNSNS + SR + SCS , (2.29)

27



2. Black holes in supergravity

where

SNSNS =
1

2κ2
10

∫
d10x
√
−gse−2Φ

(
Rs + 4∂µΦ∂µΦ− 1

2
|H(3)|2

)
,

SRR = − 1

4κ2
10

∫
d10x
√
−gs

(
|F (1)|2 + |F̂ (3)|2 +

1

2
|F̂ (5)|2

)
,

SCS = − 1

4κ2
10

∫
C(4) ∧H(3) ∧ F (3) .

(2.30)

Here we have defined the field strengths F (p+1) = dC(p) (for p = 0, 2, 4), H(3) = dB(2), F̂ (3) =
F (3) − C(0) ∧ H(3) and finally F̂ (5) = F (5) − 1

2C
(2) ∧ H(3) + 1

2B
(2) ∧ F (3). The action is very

similar to the corresponding one of Type IIA: the existence of this duality can be interpreted
as the fact that the two theories are, in some sense, different points of view in the framework of
the same theory.

2.3.3 S-duality

There is another important duality, that relates two different Type IIB theories. It is useful to
use this duality in order to obtain another solution starting from a solution of the equation of
motion of Type IIB supergravity, but it is also important for investigating the strong coupling
limit of Type IIB. Roughly speaking, this duality interchanges the role of the two 2-forms B(2)

and C(2), and changes the sign of the dilaton. The complete set of transformations is given by

Φ′ = −Φ ,

g′µν = e−Φgµν ,

B′(2) = C(2) ,

C ′(2) = −B(2) .

(2.31)

The other fields (C(0) and C(4)) remain unchanged. Changing the sign of the dilaton has the
effect of inverting the coupling constant:

g′s =
1

gs
. (2.32)

From this relation we can relate two Type IIB theories, one with small coupling and one with
big coupling. We thus see that the strong coupling limit of Type IIB is again a Type IIB theory.

2.4 Branes and charges

We have seen that supergravity theories in 10 dimensions (both Type IIA and IIB) are charac-
terised by the presence of the 2-form B and other p-forms C(p); in Type IIA p is odd, while it
is even in Type IIB. In this section we will see how these forms can be interpreted as the fields
that give electric and magnetic charges to some multidimensional objects, called branes.

We start reviewing briefly how a vector field (or 1-form) A(1) can give electric and magnetic
charge to a particle (which is a 0-dimensional object) in 4 dimensions. In standard electrody-

namics the interaction term of the Lagrangian, connecting the field A
(1)
µ with a particle of charge

q with trajectory xµ(λ) is

Lint = q

∫
A(1)
µ

dxµ

dλ
dλ = q

∫
γ
A(1) , (2.33)
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2.4. Branes and charges

where γ represents the world line of the particle, and the last integration in the above formula
is the standard integration of an n-form over a n dimensional domain (in this case n = 1). The
electric and magnetic charges can be calculated out of the field strength F (2) = dA(1) and its
hodge dual F̃ (2) = ?F (2), through some integrals over a 2-sphere S2, defined by t and r constant
in polar coordinates. The exact definitions for the electric (Qe) and magnetic (Qm) charges are

Qe =

∫
S2

?F (2) =

∫
S2

F̃ (2) , Qm =

∫
S2

F (2) =

∫
S2

?F̃ (2) . (2.34)

The multidimensional generalisation of these charges derives from the generalisation of the
interaction Lagrangian (2.33), which is (for a p-form field C(p))

Lint = µp

∫
γp

A(p) , (2.35)

where µp is called charge density. Here γp is a p dimensional domain, which we can interpret as
the world volume of a p−1 dimensional object, i.e. the “trajectory” this object describes as time
passes. This object is called brane, and it is the natural generalisation of the concept of particle
(a particle can be seen as a 0-brane). Starting from C(p) we can construct the field strength
F (p+1) = dC(p) and its hodge dual F̃ (D−p−1) = ?F (p+1). Thus each p-form couples electrically to
a (p−1)-brane, while it couples magnetically to another type of brane, with dimension D−p−3,
the values of the charges being:

Qe =

∫
SD−p−1

?F (D−p−1) (electric charge of a (p− 1)-brane) ,

Qm =

∫
Sp+1

F (p+1) (magnetic charge of a (D − p− 3)-brane) .

(2.36)

For example, in 11 dimensions the field A(3) gives electric charge to a 2-brane and magnetic
charge to a 5-brane; they are called respectively M 2 and M 5 branes (here M stays for M -
theory).

In table 2.3 we schematically write all the branes coupled to the fields we have encountered
up to now.

11D supergravity
Fields A(3)

Electric coupling M 2
Magnetic coupling M 5

10D Type IIA
Fields B(2) C(1) C(3)

Electric coupling F1 D0 D2
Magnetic coupling NS5 D6 D4

10D Type IIB
Fields B(2) C(0) C(2) C(4)

Electric coupling F1 7 D1 D3
Magnetic coupling NS5 7 D5 D3

Table 2.3: Electric and magnetic couplings in 11 and 10 dimensional supergravity.

In 10 dimensional Type IIA supergravity C(1) couples (electrically) to a D0 brane and
(magnetically) to a D6 brane; C(3) couples to a D2 and a D4 brane (D stays for Dirichlet).
Also B(2) couples to a 1 dimensional and a 5 dimensional brane; the standard terminology is
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2. Black holes in supergravity

quite different in this case, as one calls them respectively F1 (also called fundamental string)
and NS5. The reason for these different names will become clear dealing with string theory; the
distinction between F1, NS5 and Dp branes will have a physical meaning.

In Type IIB supergravity, the new fields are C(2), which couples to a D1 and a D5 brane,
and C(4), which couples both electrically and magnetically to a D3 brane. The field C(0) is a
Lorentz scalar, and so it cannot produce charges on a brane. We note that a S-duality would
change the role of D1 and F1 branes, as well as the role of D5 and NS5.

2.5 Solutions generation: some examples

In this section we will derive some non trivial solutions of the supergravity equations of motion,
in 11 and 10 dimension. We focus here on a particular type of solutions, called BPS (Bogomolny-
Prasad-Sommerfeld); they are purely bosonic solutions, where all the fermionic fields are not
present, and they are invariant under some of the supersymmetries characterizing the theory.
There are two methods that can be used in order to derive such solutions. The first and more
direct one, although not solving directly the equations of motion, uses the symmetry that these
solutions must have, in particular supersymmetry. The second method, which is more indirect,
starting from a trivial solution derives other solutions by means of T and S dualities.

2.5.1 Direct method

The first solution we are looking for is that corresponding to a M 2 brane in 11 dimensional
supergravity. We know that such solution should exist, because the 3-form A(3) naturally couples
to this type of brane. We want this brane to extend over the directions xi (i = 1, 2) and to be
perpendicular to the directions xa (a = 3, . . . , 10). Let us start from the following ansatz:

ds2 = Z(r)(−dt2 + dxidxi) + Y (r)dxadxa

A(3) = X(r)dt ∧ dx1 ∧ dx2

ψαµ = 0

(2.37)

Here we have assumed that the solution would depend only on the 3 functions X, Y and Z,
and that these function would depend only on the radial coordinate r =

√
(xa)2, where we have

understood a sum over a from 3 to 10. This ansatz sounds reasonable; we will now see that
a solution of this form is really allowed in 11 dimensional supergravity. We want this solution
to be invariant under supersymmetry transformations; we will not derive their exact form, but
only state that they are the following (using the vielbein formalism):

δe A
µ = ε̄γAψµ ,

δAµνρ = −3ε̄γ[µνψρ] ,

δψµ = Dµε+
1

288

(
γ νρστ
µ Fνρστ − 8γνρσFµνρσ

)
ε ,

(2.38)

where, for simplicity, we have understood all spinor indices, and the flat index A runs from 0 to
10. A γ with more than one index must be intended as the antisymmetric product of γ matrices;
for example γνρσ = γ[νγργσ]. The field strength F = dA has only few non-trivial components,
that are

Fa12t = ∂aX(r) . (2.39)
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The fact that our solution has a vanishing gravitino, implies that δe A
µ and δAµνρ automatically

vanish. Thus we must only check that also the variation of the gravitino is zero. We remember
that the covariant derivative is defined in terms of the spin connection (see equation (2.10)):

Dµε = ∂µε+
1

2
ω AB
µ MAB = ∂µε+

1

4
ω AB
µ γAB , (2.40)

where we have identified the generators MAB with 1
2γAB. Our goal is to derive the spin-

connection, and we do this using the vielbein postulate (2.13). We interpret the vielbeins
as 1-forms eA; their explicit form can be easily derived from the ansatz (2.37):

et =
√
Z(r)dt , ei =

√
Z(r)dxi , ea =

√
Y (r)dxa . (2.41)

One can easily derive the expression of the spin connection components, using the vielbein
postulate. The result is:

ωab =
1√
Y
∂b
√
Y dxa − 1√

Y
∂a
√
Y dxb , ωia =

1√
Y
∂a
√
Zdxi , ωta = − 1√

Y
∂a
√
Zdt . (2.42)

Here we have written only the flat indices of the spin connection: this is because we see this
components as 1-form. We now have to impose that the variation of the gravitino vanishes. Let
us do it explicitly for the index µ = 1:

0 = ∂1ε+
1

4
(ω1)ABγ

ABε+
1

288

(
4!γ â1̂2̂t̂

1̂
Fa12t −

8

288
3!γ2̂ât̂F12at

)
ε , (2.43)

where hatted indices of the gamma matrices should be intended as curved indices: one should
express all in terms of gamma matrices with flat indices, by means of the appropriate vielbein.
The first and the third term trivially vanish, and so we are left with

0 =

(
1

2
√
Y
∂a
√
Zγ1a − 1

6
√
Y
Z−1∂aXγ

2at

)
ε . (2.44)

Multiplying this expression with γ1a and using the Clifford algebra we arrive at

1

3Z
∂aXγ

012ε = ∂a
√
Zε . (2.45)

This is a sort of projection equation for the spinor ε: in fact we have that (γ012)2 = 1l. Thus
it must be γ012ε = ±ε: these two possibilities are both possible, and correspond to a brane and
its anti-brane. Here we choose the + sign, and the equation reduces to

X(r) = Z(r)
3
2 . (2.46)

Solving the same equation for µ = a one gets a link between the functions Y and X, in particular:

X(r) = Y (r)−3 . (2.47)

This is all what we can say just using the supersymmetry. In order to go further, we cannot
avoid solving an equation of motion, which we choose to be the equation of motion of the form
A. It is simply the generalisation of Maxwell’s equations in 4 dimensional electrodynamics, i.e.

d ? F = 0 . (2.48)
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The correct definition for the Hodge dual of F is

(?F )µ1...µ7 =
√
−gε µ8...µ11

µ1...µ7
Fµ8...µ11 . (2.49)

Thus we get ?F = X−2∂aXdx
a1 ∧ · · · ∧ dxa7 , with a1 . . . a7 6= a. The equation of motion is then

equivalent to the Laplace equation for X−1:

∂a∂aX
−1 = 0, . (2.50)

The solution of this equation is an harmonic function in 8 dimensions. We thus write X−1 =
1 + Q

r6 , where the adding constant is fixed requiring that the metric is flat at infinity. The
constant Q is precisely the electric charge corresponding to the M 2 brane. We rewrite here the
complete solution we have found:

ds2 = X(r)
2
3 (−dt2 + dxidxi) +X(r)−

1
3dxadxa

A(3) = X(r)dt ∧ dx1 ∧ dx2

ψαµ = 0

, X(r) =

(
1 +

Q

r6

)−1

. (2.51)

The fact that the metric and the A field depend on one single function X(r) is due to the
presence of supersymmetry. However, as we have seen for black holes in general relativity, the
metric coefficients are related to the mass of the object generating that solution. Having a
single function that determines the metric and the 3-form means that there is a precise relation
between the mass and the charge of our solution. This properties, related to BPS solutions, is
the analogous of the equality between mass and charge characterizing extremal black holes in
general relativity: in fact these solutions are the correct generalisations of extremal solutions in
general relativity. One can see it also from the form of the extremal Reissner–Nordstrøm black
hole written in (1.20).

Once we have this M 2 solution, it is quite simple to derive suitable solutions of Type IIA
supergravity via dimensional reduction. There are two ways to do so, compactifying a coordinate
xi or a coordinate xa. Let us first choose y = x1 and apply the rules of equation (2.19); we find
the following solution (where we have made a slight change of notation, and we have already
turned to the string frame):

ds2 = Z(r)−1(−dt2 + dx2dx2) + dxadxa

eΦ = Z(r)−
1
2

B(2) = −Z(r)−1dt ∧ dx2

C(p) = 0 (p = 1, 3)

, Z(r) = 1 +
Q

r6
. (2.52)

This solution corresponds to a F1 fundamental string parallel to the x2 direction, as can be seen
from table 2.3. Obviously this is a Type IIA solution, because it was obtained via dimensional
reduction. Obtaining this solution was straightforward, in that our M 2 brane was parallel to
the x1 direction; therefore the brane was invariant under translations along x1. If we now want
to do the same for a direction perpendicular to the M 2 brane, say x3, we get some difficulties,
because we have one single M 2 brane located at x3 = 0. The problem can be solved noting that
the Laplace equation is linear, and so we can safely take a superposition of branes at different
locations as a correct supersymmetric solution. Physically speaking, this is allowed because
of the equality of mass and charge, that balances the attracting gravitational force and the
repulsive gauge force between parallel branes. Suppose that we make a superposition of many
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branes, each one at position x3
i = yi and with charge Q; then the X function of equation (2.51)

satisfies

X(r)−1 = 1 +Q
∑
i

1

|~x− ~xi|6
. (2.53)

Defining r′ =
10∑
a=4

(xa)2, and letting the branes be continuously distributed along x3, we have

X(r)−1 = 1 +Q

∫ ∞
−∞

dy

[r′2 + (x3 − y)2]3
= 1 +

Q′

r′5
, (2.54)

where Q′ is proportional to Q (it is not important the right proportionality coefficient). Thus
the solution corresponding to an infinite superposition of M 2 branes is formally identical to
(2.51), with the function X(r)−1 replaced by (2.54).

We can now safely make a dimensional reduction along the x3 direction. The result is a
solution corresponding to a D2 brane parallel to the directions x1 and x2 which, when expressed
in string frame, reads:

ds2 = Z(r)
1
2 (−dt2 + (dx1)2 + (dx2)2) + Z(r)

1
2 (dxa)2

eΦ = Z(r)
1
4

B(2) = 0 = C(1)

C(3) = Z(r)−1dt ∧ dx1 ∧ dx2

, Z(r) = 1 +
Q

r5
. (2.55)

Here r is the radial direction in the 7 dimensional space orthogonal to the brane. Starting from
these solutions for the F1 and the D2 brane, we can use T and S dualities in order to find other
supergravity solutions in 10 dimensions. For example we can find the solution for a Type IIB
fundamental string, making a T duality along, say, x3. The result is formally identical to (2.52).
Now one can make an S duality, thus obtaining a Type IIB D1 solution, and so on.

2.5.2 Indirect method

As anticipated, there is another method that can be used to derive the same supergravity
solutions. One starts from a well known, almost trivial solution, and applies symmetries and
dualities to construct the desired brane solutions. Let us now see an example. Our starting
point is the 10 dimensional geometry

ds2 = −
(

1− 2M

r6

)
dt2 +

(
1− 2M

r6

)−1

(dxa)2 + dy2 (a = 1, . . . , 8)

Φ = 0

B(2) = 0 = C(p)

(2.56)

This solution is the generalisation of the Schwarzschild solution (where we have set G = 1) along
the first 9 direction, and flat along the direction x9 = y; thus it is for sure a solution of the
Einstein equations in vacuum, and then a supergravity solution if all gauge fields vanish. This
solution can be seen both in Einstein or in string frame, because the dilaton vanishes; it can
also be seen both as a Type IIA or IIB solution, because all the gauge fields are trivial. The
next step is to make a boost along the y direction:

y → (chα)y + (shα)t , t→ (chα)t+ (shα)y . (2.57)
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2. Black holes in supergravity

This procedure gives another supergravity solution, because the supergravity action is Lorentz
invariant. Notice however that when y is a compact direction this is a non-globally defined
change of coordinates. This is the reason why we are actually constructing a different physical
solution, and not rewriting the same solution in a different set of coordinates. The metric (2.56)
becomes

ds2 = dy2

(
1 +

2M

r6
sh2α

)
+dt2

(
−1 +

2M

r6
ch2α

)
+ 2(chαshα)

2M

r6
dydt+

(
1− 2M

r6

)−1

(dxa)2 .

(2.58)
This solution corresponds to a wave carrying momentum. The boost has the effect of adding a
charge to the solution; in this case the charge is precisely the momentum of the wave P. If we
now make a T duality along the y direction, we can get another solution with one charge; thus
we rewrite the metric as

ds2 =

(
1 +

2M

r6
sh2α

)(
dy +

2Mchαshα/r6

1 + 2Msh2α/r6
dt

)2

+

+

(
1 +

2M

r6
sh2α

)−1(
−1 +

2M

r6

)
dt2 +

(
1− 2M

r6

)−1

(dxa)2

. (2.59)

We are now ready to apply the formula (2.28), and we arrive at

ds2 =

(
1 +

2M

r6
sh2α

)−1 [
dy2 +

(
−1 +

2M

r6

)
dt2
]

+

(
1− 2M

r6

)−1

(dxa)2

e2Φ =

(
1 +

2M

r6
sh2α

)−1

B(2) =
2Mchαshα/r6

1 + 2Msh2α/r6
dt ∧ dy

C(p) = 0

(2.60)

This solution sound a bit strange, when compared with the ones we have obtained using the first
method. This is because it is not a BPS solution. In order to get such a solution, one must take
the so-called BPS limit, which consists on M → 0 and α → ∞, while the combination Me2α

remains constant, precisely
Me2α = 2Q . (2.61)

The BPS limit of the previous solution is then

ds2 =

(
1 +

Q

r6

)−1

(−dt2 + dy2) + (dxa)2

e2Φ =

(
1 +

Q

r6

)− 1
2

B(2) =
Q/r6

1 +Q/r6
dt ∧ dy =

[
1−

(
1 +

Q

r6

)−1
]
dt ∧ dy

C(p) = 0

(2.62)

We notice that it coincide almost exactly with the solution of the fundamental string F1 along
the y direction (cfr. equation (2.52)). The only difference is a constant shift in the expression of
the B field. This should not worry us: in fact this constant difference is not physical, because
the field strength is the same in both cases. The derivation of other solutions can be done using
T and S dualities, as explained before.

34



2.6. The Strominger–Vafa black hole

2.6 The Strominger–Vafa black hole

All the geometries we have encountered up to now have a singularity at r = 0; notice that the
singularity is not confined at one single point, but it is spread over the brane. One may think
that these objects are black holes, but it turns out that they actually have a vanishing horizon
area. Therefore it is impossible to interpret these solutions as black holes with thermodynamic
properties, as we made in the previous chapter; in fact, assuming the validity of the relation
between area and entropy, the entropy of such solutions would be zero. We can solve this
problem considering solutions representing different types of branes in equilibrium with each
other. In some cases it is possible to have a bound state of branes of different dimension, but
not every possibility produces a supergravity solution.

We have seen that the solutions for M 2, F1 and D2 depend on a single charge Q. Making
bound states with more types of brane leads to solutions depending on more than one charge.
Moreover each different type of brane halves the number of supersymmetries of the solution;
while the solutions of the previous section were 1

2 -BPS, in this section we consider a three-
charges, 1

8 -BPS solution. Doing so we will find that it has a non-vanishing horizon area, and
can be safely considered as a black hole, the Strominger–Vafa black hole.

2.6.1 Derivation of the solution

During the derivation of this solution we will not solve the supersymmetry conditions, but we
will follow the indirect method described in the previous section. The starting point is a 10
dimensional spacetime with topology R1,4 × S1 × T 4. Let us call (t, xi) the coordinates of the
R1,4, y the coordinate of the circle S1 and za the coordinates of the torus T 4. This particular
choice of the spacetime allows us to easily make a dimensional reduction of the final solution;
the black hole we will find can also be interpreted as a black hole in 5 dimensions. Let us now
follow the derivation step by step.

• Let us start with a solution which is the analogous of the Schwarzschild one in the R1,4

directions, i.e.

ds2 = −
(

1− 2M

r2

)
dt2 +

(
1− 2M

r2

)−1

dr2 + r2dΩ2
3 + dy2 +

∑
a

(dza)2 . (2.63)

Here we have set G = 1 and r2 = (x1)2 + . . . (x4)2. Furthermore we have used polar
coordinates instead of the cartesian coordinates xi:

x1 = r sin θ cosφ , x2 = r sin θ sinφ , x3 = r cos θ cosψ , x4 = r cos θ sinψ , (2.64)

where θ ∈ [0, π2 ] and φ, ψ ∈ [0, 2π]. The angular part of the metric is then

dΩ2
3 = dθ2 + sin2 θdφ2 + cos2 θdψ2 . (2.65)

Here and in the following, fields like Φ, B(2) and C(p) should be considered as trivial, when
not written explicitly.

• The second step is to perform a boost (with parameter α) along the y direction. The
calculation is very similar to that one we have made in the previous section, and the result
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is

ds2 =

(
1 +

2M

r2
sh2α

)(
dy +

2Mchαshα/r2

1 + 2Msh2α/r2
dt

)2

+

+

(
1 +

2M

r2
sh2α

)−1(
−1 +

2M

r2

)
dt2 +

(
1− 2M

r2

)−1

dr2 + r2dΩ2
3 +

∑
a

(dza)2 .

(2.66)

With this step we have introduced the first of the 3 charges characterizing the final solution.
We are left with a solution of Type IIA supergravity describing not a brane, but a wave
with momentum along the y direction; we name it Py.

• Let us now perform a T duality along the y direction. The result will be a solution of Type
IIB supergravity describing a fundamental string; we denote it as F1y. For simplicity let
us use the definition

Sα =

(
1 +

2M

r2
sh2α

)
. (2.67)

The solution for the fundamental string is given by
ds2 =S−1

α

[
dy2 +

(
−1 +

2M

r2

)
dt2
]

+

(
1− 2M

r2

)−1

dr2 + r2dΩ2
3 +

∑
a

(dza)2

e2Φ = S−1
α

B(2) =
2M

r2
chαshαS−1

α dt ∧ dy
(2.68)

• The next step is to introduce the second charge, and we do so making another boost along
y; let the parameter of this new boost be β. We are then left with a solution describing a
string carrying momentum, denoted by the F1y-Py:

ds2 =S−1
α Sβ

(
dy +

2Mchβshβ/r2

1 + 2Msh2β/r2
dt

)2

+ S−1
α S−1

β

(
−1 +

2M

r2

)
dt2+

+

(
1− 2M

r2

)−1

dr2 + r2dΩ2
3 +

∑
a

(dza)2

e2Φ = S−1
α

B(2) =
2M

r2
chαshαS−1

α dt ∧ dy

(2.69)

Here Sβ is defined in the very same way as Sα was.

• We now want to change perspective, applying an S duality. The resulting solution will be
denoted by D1y-Py; it describes a D1 brane along the y direction carrying momentum.
The solution is

ds2 =S
− 1

2
α Sβ

(
dy +

2Mchβshβ/r2

1 + 2Msh2β/r2
dt

)2

+ S
− 1

2
α S−1

β

(
−1 +

2M

r2

)
dt2+

+ S
1
2
α

[(
1− 2M

r2

)−1

dr2 + r2dΩ2
3 +

∑
a

(dza)2

]
e2Φ = Sα

C(2) = −2M

r2
chαshαS−1

α dt ∧ dy

(2.70)
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• The next step is to arrive at a solution describing a D5 brane instead of the D1. This can
be done applying four T dualities, along the four directions of the torus T 4. The result is
again a solution of Type IIB supergravity, which reads:

ds2 =S
− 1

2
α Sβ

(
dy +

2Mchβshβ/r2

1 + 2Msh2β/r2
dt

)2

+ S
− 1

2
α S−1

β

(
−1 +

2M

r2

)
dt2+

+ S
1
2
α

[(
1− 2M

r2

)−1

dr2 + r2dΩ2
3

]
+ S

− 1
2

α

∑
a

(dza)2

e2Φ = S−1
α

C(6) = −2M

r2
chαshαS−1

α dt ∧ dy ∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4

(2.71)

We notice that the solution is given in terms of the 6-form: the standard form describing
a D5 brane is instead a 2-form, dual of the 6-form. The exact relation is given by

dC(6) = ?dC(2) . (2.72)

The calculation is a bit complicated, and we will do it only when we will take the extremal
limit. Let us now simply observe that the 2-form will have non zero component only along
the angular coordinates φ and ψ. Thus we write:

C(2) = f(r, α, β)dφ ∧ dψ . (2.73)

• Let us now turn to a description of a NS5 brane with momentum, performing an S duality.
The result is a bit simpler, and reads:

ds2 =Sβ

(
dy +

2Mchβshβ/r2

1 + 2Msh2β/r2
dt

)2

+ S−1
β

(
−1 +

2M

r2

)
dt2+

+ Sα

[(
1− 2M

r2

)−1

dr2 + r2dΩ2
3

]
+
∑
a

(dza)2

e2Φ = Sα

B(2) = f(r, α, β)dφ ∧ dψ

(2.74)

• A T duality along y allows us to have a solution describing two types of branes in equilib-
rium. We are left with a Type IIA solution, which we call NS5y1234-F1y:
ds2 = S−1

β dy2 + S−1
β

(
−1 +

2M

r2

)
dt2 + Sα

[(
1− 2M

r2

)−1

dr2 + r2dΩ2
3

]
+
∑

a(dz
a)2

e2Φ = SαS
−1
β

B(2) = f(r, α, β)dφ ∧ dψ +
2Mchβshβ/r2

1 + 2Msh2β/r2
dt ∧ dy

(2.75)

• We now want to perform an S duality in order to have a solution describing the bound
state of a D1 and a D5 brane. But the current one is a Type IIA solution, so we must
first move to a Type IIB description. We do so making a T duality; we choose a particular
direction along the torus, say z1. Notice that this will not change the explicit form of the
metric and the other fields, because gz1z1 = 1. Anyway we have to remember that z1 will
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be a privileged direction. After making this T duality we can perform the S duality and
arrive to the solution D5y1234-D1y:

ds2 =S
− 1

2
α S

− 1
2

β dy2 + S
− 1

2
α S

− 1
2

β

(
−1 +

2M

r2

)
dt2+

+ S
1
2
αS

1
2
β

[(
1− 2M

r2

)−1

dr2 + r2dΩ2
3

]
+ S

− 1
2

α S
1
2
β

∑
a

(dza)2

e2Φ = S−1
α Sβ

C(2) = −f(r, α, β)dφ ∧ dψ − 2Mchβshβ/r2

1 + 2Msh2β/r2
dt ∧ dy

(2.76)

• We are now ready for the last step, where we introduce the third charge. We do it again
by performing a boost along the y direction, with parameter γ. Therefore we arrive to
a solution describing the bound state of two type of branes with momentum, that we
indicate as D1-D5-P. The final solution is

ds2 =S
− 1

2
α S

− 1
2

β

(
dy +

2Mchγshγ/r2

1 + 2Msh2γ/r2
dt

)2

+

+ S
1
2
αS

1
2
β

[(
1− 2M

r2

)−1

dr2 + r2dΩ2
3

]
+ S

− 1
2

α S
1
2
β

∑
a

(dza)2

e2Φ = S−1
α Sβ

C(2) = −f(r, α, β)dφ ∧ dψ − 2Mchβshβ/r2

1 + 2Msh2β/r2
dt ∧ dy

(2.77)

We are interested in the extremal limit of this solution; let us now make the limit M → 0,
α, β, γ →∞ where

Me2α = 2Q5 , Me2β = 2Q1 , Me2γ = 2QP . (2.78)

It is necessary to make this limit only at the end; in fact a boost acts trivially on a BPS solution,
so we cannot make the limit before, separately for α, β and γ. The final result for our solution
is the following:

ds2 = Z
− 1

2
1 Z

− 1
2

5

(
−dt2 + dy2 +K(dt+ dy)2

)
+ Z

1
2
1 Z

1
2
5

(
dr2 + r2dΩ2

3

)
+ Z

1
2
1 Z
− 1

2
5

∑
a

(dza)2

e2Φ = Z1Z
−1
5

C(2) = −Q5 sin2 θdφ ∧ dψ + (1− Z−1
2 )dt ∧ dy

(2.79)
where we have defined the function Z1,5 and K as

Z1,5 = 1 +
Q1,5

r2
, K = ZP − 1 =

QP
r2

(2.80)

The suffix 1 or 5 stands for D1 or D5 brane; in fact the charge Q5 is related to the boost with
parameter α, that we have used to “construct” the D5 brane.

2.6.2 Properties of the black hole

We want to derive physical properties of this black hole, in particular its entropy. This is possible
only in the Einstein frame of the metric, and not in the string frame (2.79). In Einstein frame
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2.6. The Strominger–Vafa black hole

the metric is given by

ds2 = Z
− 3

4
1 Z

− 1
4

5

(
−dt2 + dy2 +K(dt+ dy)2

)
+Z

1
4
1 Z

3
4
5

(
dr2 + r2dΩ2

3

)
+Z

1
4
1 Z
− 1

4
5

∑
a

(dza)2 . (2.81)

The formula of the Bekenstein–Hawking entropy is valid not only in four but also in higher
dimensions. One should consider that the Newton constant G (which appear in the Einstein–
Hilbert Lagrangian) depends on the dimension of the spacetime. Let us now calculate the
entropy of the Strominger–Vafa black hole both in 10 and in 5 dimensions, and compare the two
results. In 10 dimensions the volume element depends on the determinant of the metric. We
have √

−g = r3 sin θ cos θ
√
Z1Z5ZP . (2.82)

The event horizon is located at r = 0 and its area is given by

A10 = V5

∫ 2π

0
dφ

∫ 2π

0
dψ

∫ π
2

0
dθ sin θ cos θ

√
Q1Q5QP = 2π2V5

√
Q1Q5QP , (2.83)

where V5 is the volume of the compactified S1 × T 4. Therefore the entropy of the black hole is
symmetric in the three charges and, setting ~ = kB = 1, reads:

S =
A10

4G10
=
V5π

2
√
Q1Q5QP

2G10
. (2.84)

The fact that the area (and also the entropy) is finite crucially depends on the number of charges
of the solution; notice that with only two charges, the volume element would have vanished at
the event horizon r = 0. The calculation of the entropy is possible also in 5 dimension; one must
firstly calculate the form of the 5 dimensional metric derived from (2.81). It is not sufficient to
cancel the terms related to the S1 or the T 4; one should also multiply for suitable coefficients,
so that the 5 dimensional action takes the right form of an Einstein–Hilbert action. In doing so
one finds also the relation between the Newton constant in different dimension, i.e.

G10 = V5G5 . (2.85)

We do not follow each step explicitly, but we write only the final form of the metric in 5
dimensions, which is symmetric in the three charges:

ds2 = −(Z1Z5ZP )−
2
3dt2 + (Z1Z5ZP )

1
3 (dr2 + r2dΩ2

3) . (2.86)

The event horizon of this geometry is located at r = 0, and its area is given by

A5 =

∫ 2π

0
dφ

∫ 2π

0
dψ

∫ π
2

0
dθ sin θ cos θ

√
Q1Q5QP = 2π2

√
Q1Q5QP . (2.87)

The only difference with the 10 dimensional area consists in the volume V5; this is exactly
balanced by the relation between G10 and G5. Thus the entropy (which is a physical quantity)
is the same when calculated in 10 or 5 dimension, as should be expected:

S =
A5

4G5
=
π2
√
Q1Q5QP
2G5

=
A10

4G10
. (2.88)

If one wants also to calculate the mass associated to this geometry, one should expand the g00

component of the metric in 5 dimension, i.e.

g00 = −(Z1Z5ZP )−
2
3 ' −1 +

2

3

Q1 +Q5 +QP
r2

. (2.89)
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A comparison with the formula given in the previous chapter shows that there is a precise
relation between the mass and the charges of this solution:

M =
Q1 +Q5 +QP

4πG
. (2.90)

It turns out that is mass is actually the smallest one compatible with these three charges: the
Strominger–Vafa black hole is indeed extremal.

Let us now make a little observation on the construction of black holes in supergravity. We
have seen that a solution with an event horizon with non-vanishing area exists if one considers
three charges, i.e. a bound state of different types of branes. But we should remember that a
solution with an event horizon represent a true black hole only when its mass is big enough to
have the event horizon external to the object (notice that the horizon is at r = 0 only in this
particular coordinate system). Equation (2.90) tells us that the mass is related to the charges: a
big mass means a big value for the charges. Therefore wee see that a black hole is characterised
by large values of its charges: this is possible if one considers the superposition of many branes,
each one parallel to others of the same type. In conclusion, a black hole in supergravity can be
constructed as a bound state of many branes, divided into a few sets of parallel branes of the
same type.

In the following we will study in more details this black hole, which can naturally be seen
as a five dimensional black hole. The construction of a black hole in four dimensions is also
possible, but requires the presence of at least four charges. In the rest of the thesis we will try
to derive some microstate geometries of the Strominger–Vafa black hole; the same goal would
be more difficult in the case of a solution with four charges.

In order to understand how to deal with the microstate of a given supergravity solution,
we need a theory of quantum gravity. String theory provides a consistent theory, and we are
going to investigate how black holes arise in this theory. First of all, however, we need a brief
introduction to the key concepts and results of string theory.
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Chapter 3

A brief introduction to string theory

String theory is one of the most promising theory of quantum gravity. Therefore one should
expect that a microscopic interpretation of the thermodynamic properties of black holes is
possible thanks to this theory. Our final goal is to understand how a black hole arises in string
theory, and to count (and identify) the microstates of a given black hole. In this chapter we
briefly describe what string theory is, and the fundamental properties that we will need in the
following. Some reviews on these arguments can be found, for example, in [17], [18], [19] and
[20].

3.1 Bosonic string theory

The concept of string as a fundamental object is a natural generalisation of the concept of
particle. While a particle is a pointlike object, the string (as suggested by its name) is a one di-
mensional object. The action of the free string theory is therefore just the obvious generalisation
of that of a free particle. We remember that the latter (in D dimension) is given by

S = −m
∫
ds = −m

∫
dτ

√
−dX

µ

dτ

dXν

dτ
ηµν (µ, ν = 0, . . . , D − 1) , (3.1)

where s is the proper time, while τ is a generic function parametrizing the worldline of the
particle. This action has a problem: the presence of the square root makes the quantisation
of this theory complicated. This can be solved by means of another action, which involves an
auxiliary field e:

S′ =
1

2

∫
dτ
(
e−1Ẋ2 − em2

)
where Ẋ2 =

dXµ

dτ

dXν

dτ
ηµν . (3.2)

This action gives the same equation of motion for the field Xµ as the action (3.1), when the
auxiliary e is integrated away. Notice that this action does not have any problematic square
root, and fits also for massless particles. We can also interpret the new field as some sort of (one
dimensional) metric on the worldline; defining e =

√
−g, the action (3.2) becomes

S′ = −1

2

∫
dτ
√
−g
(
g−1Ẋ2 −m2

)
. (3.3)

We can now turn to the generalisation of these actions in the case of string theory.
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3. A brief introduction to string theory

3.1.1 The Nambu–Goto action

We promote the field Xµ to depend not only on the time τ , but also on the coordinate σ
parametrizing the string. As time passes the string describes a two dimensional surface, the
so-called worldsheet; let us parametrise it via the coordinates σ0 = τ and σ1 = σ. On the
other hand, the space where the string lives is called the target space, and it is a D dimensional
manifold with metric ηµν . The most natural generalisation of the action (3.1) is the so-called
Nambu–Goto action, which reads (see [18])

SNG = −T
2

∫
d2σ
√
−dethab , (3.4)

where a, b = 1, 2 and hab is the induced metric on the worldsheet given by

hab = ∂aX
µ∂bX

νηµν . (3.5)

The quantity T is the tension of the string, and it is the generalisation of the mass for a particle.
It is conventionally related to another constant, the universal Regge slope α′, through

T =
1

2πα′
. (3.6)

We see that while the action (3.1) for a point particle was proportional to the length
∫
ds,

the Nambu–Goto action is proportional to the area of the worldsheet. This action has the
same problem of the corresponding one for a particle: the presence of the square root makes
the quantisation more difficult. Anyway we can derive the classical properties of string theory
from this action; it is important to identify which are the symmetries of (3.4). First of all, we
have Poincaré invariance of the spacetime: this symmetry does not depend on the worldsheet
coordinates σa. Furthermore we have reparametrisation invariance of the coordinates σa; this
reflects the fact that the worldsheet coordinates do not have physical meaning.

3.1.2 The Polyakov action

The problem of the square root in the Nambu–Goto action can be solved in a similar fashion as
one does with the point particle. We introduce an additional field, the worldsheet metric gab,
together with its inverse gab. We can then write the so-called Polyakov action, which is ([18])

SP = −T
2

∫
d2σ
√
−ggab∂aXµ∂bX

νηµν , (3.7)

where g = det gab. This action is equivalent to the Nambu–Goto one, in the sense that the
equations of motion for Xµ are the same in the two cases, when one uses the equation of
motion for the metric gab deriving from the Polyakov action. We notice that (3.7) has the
same symmetries of (3.4): the reparametrisation invariance can be seen as the diffeomorphisms
invariance on the worldsheet. Furthermore, the Polyakov action has an additional symmetry,
called Weyl invariance. A Weyl transformation corresponds to a “dilatation” of the metric
coefficients dependent on the worldsheet point, and reads:

Xµ(σ)→ Xµ(σ) , gab(σ)→ Ω2(σ)gab(σ) . (3.8)

An important fact is that one can use these symmetries in order to fix three degrees of freedom;
typically one goes in the so-called conformal gauge, which corresponds to the choice of a flat
metric on the worldsheet: gab = ηab = diag(−1, 1).
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3.2. Open strings and D-branes

Using this fact on can simply derive the equation of motion for the field Xµ, which reads:

∂a∂aX
µ = 0 (3.9)

where the worldsheet index a is raised and lowered by means of the metric g (in the same way
we raise and lower spacetime indices µ, ν, . . . using the metric η). We have to remember that
even in the harmonic gauge we have to impose the equations of motion for the metric gab, which
should now be considered as constraints. Remembering that the energy-momentum tensor is
given by the variation of the action with respect to the metric, we see that these constraints are
nothing but

Tab = ∂aX
µ∂aXµ −

1

2
gabg

cd∂cX
µ∂dXµ = 0 . (3.10)

A closer analysis shows that these constraints have an important interpretation: the physical
degrees of freedom describe only transverse oscillations of the string.

The Weyl invariance of the Polyakov action implies that string theory is a two dimensional
conformal field theory on the worldsheet; this fact is important, in that the study of such a
theory is really simplified by the presence of the conformal symmetry.

3.2 Open strings and D-branes

The actions given in the previous section describe the local properties of the fundamental string;
it is also important to look at global features. We have essentially two types of strings, closed
and open.

3.2.1 Closed and open strings

A closed string is parametrised by a coordinate σ in a compact domain, which is conventionally
chosen to be [0, 2π]. An open string has instead two non-coinciding ends. One usually choose
to parametrise the string using the coordinate σ ∈ [0, π]. In figure 3.1 we can schematically see
the worldsheet of a closed and an open string, parametrised by σ and the time τ :

Figure 3.1: Closed (left) and open (right) string worldsheet.

In the open string case the derivation of the equation of motion requires appropriate boundary
conditions; let us see it starting from the Polyakov action written in the harmonic gauge:

S = −T
2

∫
d2σ∂aX

µ∂aXµ . (3.11)
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3. A brief introduction to string theory

We consider an open string evolving from some configuration at the initial time τi, to some other
configuration at time τf : the variation of the action is then

δS = −T
∫ τf

τi

dτ

∫ π

o
∂aX

µ∂aδXµ = T

∫ τf

τi

dτ

∫ π

o
∂a∂aX

µδXµ + total derivative . (3.12)

We have two terms involving total derivatives with respect to the coordinates τ and σ respec-
tively:

T

[∫ π

0
dσ∂τX

µδXµ

]τ=τf

τ=τi

− T
[∫ τf

τi

dτ∂σX
µδXµ

]σ=π

σ=0

. (3.13)

The first term is of the kind one always gets when dealing with the least action principle; the
second one is non trivial, and its vanishing gives rise to the requirement

∂σX
µδXµ = 0 at σ = 0, π (3.14)

There are essentially two ways in order to satisfy this relation:

• Neumann boundary conditions: ∂σX
µ = 0 at σ = 0, π.

We do not have any restriction on the position of the ends of the string; hence they can
move freely. It turns out that both ends move with the speed of light.

• Dirichlet boundary conditions: δXµ = 0 at σ = 0, π.
This means that the endpoints of the string lie at some fixed position in space (Xµ = cµ).

3.2.2 Boundary conditions and D-branes

It is also possible to consider mixed boundary conditions, i.e. Neumann conditions for µ = 0, . . . p
and Dirichlet conditions along the other directions (µ = p+ 1, . . . , D − 1). These conditions fix
the end of the string to lie on a p+1 dimensional hypersurface in spacetime (notice that we have
always Neumann condition on µ = 0). Such an hypersurface is conventionally called Dp-brane,
where D stands for Dirichlet and p indicates the spatial dimensions of the brane. The situation
is represented in figure 3.2.

Figure 3.2: An open string with endpoints on a Dp-brane .

The two ends of the brane can lie on the same brane, or on two different branes; their dimension
could also be different.

We then see that a theory of open strings naturally has to deal with D-branes. It turns out
that branes should be considered as dynamical objects, in the same way as fundamental strings.
The right action for a D-brane is the higher dimensional generalisation of the Nambu–Goto
action, i.e.

DDp = −Tp
∫
dp+1ξ

√
−det γ . (3.15)
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3.3. String theory spectrum

where Tp is the tension of the brane, ξa (a = 0, . . . , p) are the coordinates of the worldvolume
of the brane, and γab is the pullback of the spacetime metric:

γab =
∂Xµ

∂ξa
∂Xν

∂ξb
ηµν . (3.16)

Anyway strings play a more fundamental role than branes; in fact only strings are characterized
by the conformal invariance of the action. This symmetry plays a fundamental role, because
it makes the theory much simpler. The consequence is that the spectrum of string theory is a
discrete spectrum, and can be derived quite easily.

3.3 String theory spectrum

We are studying string theory because it is a consistent theory of quantum gravity; therefore
we are interested not only in the classical theory of strings, as described by the Nambu–Goto
(or Polyakov) action. We must turn to the quantisation of the theory. The starting point is
to express the classical fields in terms of their Fourier modes. It is useful to introduce the
coordinates σ±:

σ± = τ ± σ = σ0 ± σ1 . (3.17)

The equations of motion (3.9) read simply ∂+∂−X
µ = 0. In the case of closed strings the most

general solution of these equation is

Xµ(τ, σ) = Xµ
L(σ+) +Xµ

R(σ−) , (3.18)

where Xµ
L and Xµ

R are arbitrary functions, subjected to the constraint (3.10) and to the period-
icity condition

Xµ(τ, σ) = Xµ(τ, σ + 2π) . (3.19)

The most general periodic solution is conventionally expanded in Fourier modes in the following
way:

Xµ
L(σ+) =

1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n 6=0

1

n
α̃µne

−inσ+
,

Xµ
R(σ−) =

1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n 6=0

1

n
αµne

−inσ− .

(3.20)

It is also useful to define the zero modes as

αµ0 = α̃µ0 =

√
α′

2
pµ . (3.21)

One can then see that the constraints (3.10) can be written as

Ln = L̃n = 0 n ∈ Z . (3.22)

The quantities Ln and L̃n are the oscillator modes of the constraints. They are nothing but the
oscillator modes of the energy-momentum tensor, the explicit expression of which is

Ln =
1

2

∑
m∈Z

αµn−mα
ν
mηµν . (3.23)
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3. A brief introduction to string theory

The expression for L̃n is the same, with the modes α̃µn instead of αµn. The constraints arising
from L0 and L̃0 are simply connected to the square of the spacetime momentum pµ, which is
nothing else than the rest mass of a particle. These two constraints are named level matching
conditions, and read:

M2 =
4

α′

∑
n>0

αµ−nα
ν
nηµν =

4

α′

∑
n>0

α̃µ−nα̃
ν
nηµν . (3.24)

The quantisation of the theory starts from the observation that the modes αn and α̃n (for every
µ) can be promoted, up to some normalisation, to be annihilation (for n > 0) and creation (for
n < 0) operators. One effect is that (3.24) receive an additional contribution coming from the
normal ordering of these operators; the true level matching conditions are

M2 =
4

α′

(
−1 +

∑
n>0

αµ−nα
ν
nηµν

)
=

4

α′

(
−1 +

∑
n>0

α̃µ−nα̃
ν
nηµν

)
. (3.25)

The space of quantum states can be constructed as a Fock space, starting from the family of
vacuum states |0; p〉, defined byα

µ
n|0; p〉 = α̃µn|0; p〉 = 0 (n > 0)√

2

α′
αµ0 |0; p〉 =

√
2

α′
α̃µ0 |0; p〉 = pµ|0; p〉

(3.26)

We notice that we have a vacuum state for each possible momentum vector pµ. The construction
of the Fock space continues applying the creation operators to these vacuum states. Anyway
this is not the end of the story, because one must also impose the validity of the constraints.
There are two ways in order to do so: one is to solve the constraints in the classical theory, and
then quantise; this is called lightcone quantisation. The other is to first quantise the theory, and
then solve the constraint at the quantum level; it is called covariant quantisation.

We do not follow explicitly any of these two approaches, but only notice that the constraint
has the effect of eliminating two possible directions of oscillations (only transverse fluctuation
are possible). A remarkable result of the quantisation is that a consistent quantum theory of
strings is possible only if the dimension D of the spacetime is D = 26. Furthermore, the vacuum
state turns out to be a tachyon, i.e. it is characterised by M2 < 0. The presence of this tachyon
is indeed a problem of this (bosonic) string theory; we will see later that it can be solved turning
to superstring theory, i.e. introducing fermions on the worldsheet.

The first exited states are obtained applying one right-moving and one left-moving oscillator:

α̃i−1α
j
−1|0; p〉 with i, j = 1, . . . , 24 . (3.27)

Here we have renamed the oscillators in such a way that the transverse oscillations are associated
to the indices i and j. These states are characterised byM2 = 0 and can be associated to massless
fields in spacetime; in fact they can be decomposed in representations of the little group SO(24)
in the following way:

• a symmetric traceless field gij(X), which we interpret as the metric;

• an antisymmetric fields Bij(X), called Kalb–Ramond field;

• a scalar field Φ(X), the dilaton.
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We see that the massless field content of the theory reproduces some of the fields we encountered
in the study of supergravity in 10 dimensions. Anyway we do not have either any field analogous
to the gauge forms C(p), or any fermionic field.

One can also consider more than one excitation, thus getting massive fields; we do not
consider them here. We notice however that their mass must be comparable to the Planck mass,
and thus it is natural to think that they would not contribute to any process characterised by
“normal” energy, i.e. very smaller than the Planck scale.

In the case of open strings there are some differences both in the classical theory and in the
quantisation. The resulting spectrum, anyway, can be derived in a similar way. Open strings
are characterized by only one set of oscillators: this means that the massless spectrum of the
theory will be constituted by a particle with the properties of a photon. However, it should be
noticed that even a theory of open strings requires the presence of gravity, because it naturally
describes also closed string, coming from the interaction of open ones.

3.4 String theory as conformal field theory

In this section we look in more detail at the conformal symmetry characterizing the Polyakov
action. We will introduce some notations and state some results that will be useful in the
following.

3.4.1 Conformal group and algebra

A conformal (or Weyl) transformation produces a scaling of the metric, dependent on the world-
sheet point:

gab(σ)→ Ω2(σ)gab(σ) . (3.28)

Roughly speaking, such a transformation has the effect of deforming in an arbitrary way (pre-
serving the angles) the worldsheet; an example is shown in figure 3.3.

Figure 3.3: An example of a Weyl transformation.

In order to study a bit closer the properties of a 2 dimensional conformal field theory, it is useful
to deal with an Euclidean worldsheet, the coordinate of which are (σ1, σ2) = (σ, iτ). One usually
defines also the complex coordinates

z = σ1 + iσ2 , z̄ = σ1 − iσ2 . (3.29)

Conformal invariance in 2 dimension allows us to work always with flat metric; this means that
we can fix a gauge in such a way that the worldsheet metric is

ds2 = −dτ2 + dσ2 = (dσ1)2 + (dσ2)2 = dzdz̄ . (3.30)
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3. A brief introduction to string theory

In complex coordinates conformal transformations of flat space are very simple, and correspond
to any holomorphic change of coordinates, i.e.

z → z′ = f(z) , z̄ → z̄′ = f̄(z̄) , (3.31)

where the functions f(z) and f̄(z̄) are arbitrary. We see that the set of these transformations
has the structure of a group, the so-called conformal group. The corresponding algebra is
characterised by an infinite set of generators, which are conventionally defined as

ln = −zn+1∂z , l̄n = −z̄n+1∂z̄ . (3.32)

One can easily see that these generators satisfy the following commutation relations:

[lm, ln] = (m− n)lm+n , [l̄m, l̄n] = (m− n)l̄m+n , [l̄m, ln] = 0 . (3.33)

The generators ln and l̄n define two identical independent subalgebras, each of one is called
Witt algebra. When these generators are promoted to quantum operators, it turns out that the
commutation relations must be modified in the following way:

[lm, ln] = (m− n)lm+n +
c

12
(m3 −m)δm+n , (3.34)

and similarly for the generators l̄m. This algebra is called Virasoro algebra; the new term is
called central extension, and c is the central charge of the theory. This name reflects the fact
that c commutes with all the generators lm and l̄m. Another important subalgebra is the one
generated by l0 and l±1; the corresponding group is called restricted conformal group, which is
isomorphic to SL(2,C). The transformations of this group can be parametrised by

z → az + b

cz + d
, where a, b, c, d ∈ C , ad− bc = 1 . (3.35)

This group contains translations and scaling transformations as special cases. An analogous
subgroup can be defined for transformations of the antiholomorphic variable z̄.

3.4.2 Primary fields

An important object in conformal field theory is the energy-momentum tensor Tab, which is
defined as

Tab = − 4π
√
g

∂S

∂gab
, (3.36)

where the coefficient 4π is a matter of convention. A conformal transformation is characterised
by a variation of the metric of the form δgab = εgab. Imposing that the action is invariant under
such a transformation implies that

0 = δS =

∫
d2σ

∂S

∂gab
δgab = − 1

4π

∫
d2σ
√
gεT aa , (3.37)

which means that the energy-momentum tensor is traceless. When expressed in complex coor-
dinates, this properties is equivalent to Tzz̄ = Tz̄z = 0. On the other hand, the conservation
equation ∂aTab = 0 implies that

∂z̄Tzz = ∂zTz̄z̄ = 0 . (3.38)
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This means that the energy-momentum tensor is completely determined only by an holomorphic
and an antiholomorphic function:

Tzz(z, z̄) ≡ T (z) , Tz̄z̄(z, z̄) ≡ T̄ (z̄) . (3.39)

The energy-momentum tensor is an example of field; a conformal field theory is characterised by
an infinite set of fields. This set contains also derivatives of other fields. Among this set we can
define the class of quasi-primary fields, that transform under restricted conformal transformation
as

Φ(z, z̄)→
(
∂z′

∂z

)h(∂z̄′
∂z̄

)h̄
Φ(z′, z̄′) . (3.40)

h and h̄ are not the conjugate of each other; they are real valued numbers, called conformal
weights. One can see that the energy-momentum tensor is a quasi primary field: in particular
T (z) has conformal weights (h, h̄) = (2, 0), while T̄ (z̄) has conformal weights (0, 2).

There are also the so-called primary fields, which transform as in (3.40) for all conformal
transformations, not only the restricted ones. It turns out that T (z) and T̄ (z̄) are not primary
fields. Quasi-primary and in particular primary fields are the building blocks of any conformal
field theory; the concept and transformation rules of primary fields can be seen as analogous to
those of tensors.

Looking at the Polyakov action (3.7), one can show that Xµ is not primary. Anyway, if we
express the theory in complex coordinates, we can see that ∂zX

µ and ∂z̄X
µ are primary fields

with conformal weights (1, 0) and (0, 1) respectively. Other primary fields deriving from the
bosonic string theory are the vertex operators

Va(z, z̄) =: eiaµX
µ(z,z̄) : , (3.41)

where : : indicates the normal ordered product. Such operators are primary with conformal
weights (a

2

2 ,
a2

2 ), and are useful in the calculation of Green functions and amplitudes. In many
applications one often has to calculate correlators of fields like

〈O1(z)O2(w) . . . 〉 . (3.42)

Fortunately products (and hence correlators) of primary and quasi-primary fields are greatly
simplified by the presence of the conformal symmetry. For example, the two point function is
completely determined only by the conformal weights of the two quasi-primary fields h1 and h2:

〈O1(z)O2(w)〉 =
d1,2 δh1,h2

(z − w)h1+h2
, (3.43)

where d1,2 is a constant factor, depending on the normalization of the fields. Notice that the
correlator is non-vanishing only if the conformal weights of the two fields are equal. Even the
form of other correlators is greatly simplified by the conformal symmetry; we remand to [18]
and [19] for details.

3.4.3 The ghost system

The conformal symmetry implies also that a completely consistent theory at quantum level
requires the presence of ghosts. This is completely analogous to the ghosts appearing when
dealing with theories characterized by gauge symmetries. In the case of bosonic string theory
one has to add a term to the action of the form:

Sgh =
1

2π

∫
d2σ
√
gbabD

acb , (3.44)
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where Da is the covariant derivative coming from the metric g. When expressed in conformal
gauge and in complex coordinates, this action reads

Sgh =
1

2π

∫
d2z(b∂̄c+ b̄∂c̄) . (3.45)

The equations of motion deriving from Sgh imply that b and c are holomorphic fields, while b̄
and c̄ are antiholomorphic. The ghosts satisfy anticommuting relations and are characterized
by conformal weights hb = (2, 0) and hc = (−1, 0).

The presence of ghosts is not only a matter of formality, but it has important physical
consequences. In particular they are important for the correct calculation of string amplitudes.
We will see it in the following.

3.5 Interactions and amplitudes

Once we have identified how particles arise from strings, we would also like to understand how
the theory describes interactions. The simplest case is the following: we consider two closed
strings which enter in contact, interact, and then exit again the interaction region as isolated
closed strings. A diagram corresponding to this process is shown in figure 3.4.

Figure 3.4: The tree-level diagram describing the four-point scattering of closed strings (left) and a
conformally equivalent diagram (right).

We can use the conformal invariance of the theory in order to deform our diagram, obtaining
a simpler equivalent description. The final result in our case is a sphere with four punctures,
corresponding to the four initial or final states. We thus see that the contribution of an exter-
nal state reduces to an insertion of a local operator on the sphere. This properties is deeply
related to the conformal invariance of the theory, and gives rise to the so-called state-operator
correspondence. In the case of bosonic string theory, it turns out that these local operators are
related to the vertex operators defined in (3.41), with the quantity aµ being the momentum of
the outgoing string. Schematically the m-point amplitude is given by a path integral of the form

A(m)(p1, . . . , pm) ∝
∫
DX e−S

m∏
i=1

W (pi) , (3.46)

where the operators W (pi) are given by

W (pi) ∝
∫
d2zVpi(z, z̄) . (3.47)
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We see that we integrate over all possible position of the punctures on the sphere. However, the
invariance under the restricted conformal group SL(2,C) implies that we can fix the position of
three of the punctures on the sphere, while we have to integrate over all the possible position of
the other punctures.

Figure 3.4 shows the tree level contribution to the four points amplitude: the same physical
process has contributions coming from a worldsheet with more complicated topologies. It turns
out that one has to sum over all possible different topologies, which are typically determined
by the genus of the surface. The first contributions to the four points amplitudes are given in
figure 3.5.

Figure 3.5: Diagrams describing the four-point scattering of closed strings (up) and their conformally
equivalent diagrams (down).

The analogous of the loop expansion in quantum field theory is this expansion over all types of
topology, which is weighted by powers of the coupling constant gs.

If one wants to calculate an amplitude corresponding to a process involving open strings, the
situation is slightly different. An open string stretches between two branes: the worldsheet cor-
responding to a tree-level scattering is conformally equivalent to a disk, where suitable boundary
conditions must be imposed at the contour. The interaction with another open strings can be
encoded in the insertion of a suitable vertex operator at the boundary. It is also possible to
consider the interaction of an open and a closed string: in this case the situation is described
by a disk with an insertion of a vertex operator in the interior of the disk. This is the situation
in which we are going to interest in the following.

3.6 Superstring theories

The theory we have analysed up to now involves only the bosonic fields Xµ on the worldsheet;
for this reason it is called bosonic string theory. We have seen that it gives rise to a quantum
massless spectrum which consists only on bosonic fields on the spacetime: the metric, the
Kalb–Ramond field and the dilaton. We have also seen that this theory is problematic, due to
the presence of the tachyon. Furthermore a connection with supergravity is not possible: we
have no fermions in the theory, and also the dimension of spacetime (26) is inconsistent with
a supergravity theory. On the other hand, the massless spectrum of the bosonic string theory
does not have either any fermionic field, or any gauge form field. For these reasons we turn to
the analysis of the superstring theory (in particular Type II).
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3. A brief introduction to string theory

The starting point is to introduce fermionic fields at the level of the worldsheet: we will see
that this fact will solve the problems explained above. We would like to have supersymmetry
even at the level of the worldsheet, thus we introduce D spinors ψµ (along with their conjugate
ψ̄µ). An appropriate action for the fermions is the following one ([22]):

Sψ =
i

4πα′

∫
d2σ
√
−gψ̄µγa∂aψµ . (3.48)

where γa are the gamma matrices in two dimensions. A closer analysis of the action would
show that one must impose periodic or antiperiodic boundary conditions for the combinations
ψµ± = ψ0±ψ1. Periodic conditions give rise to the so called R sector, while antiperiodic conditions
correspond to the NS sector :

ψµ±(σ + 2π) =

{
ψµ±(σ) (R sector)

−ψµ±(σ) (NS sector)
(3.49)

We have in total four combinations, because one can choose different types of boundary condi-
tions on ψµ+ and ψµ−. Using the point of view of conformal field theory, one can see that ψµ and
ψ̄µ are primary operators with conformal dimension (1

2 , 0) and (0, 1
2) respectively.

A further step is to combine bosons (Xµ) and fermions (ψµ) in the same theory, with an
action that should be supersymmetric: the resulting theory is Type II superstring, the action of
which is

SII =
1

2πα′

∫ √
−g
[
gab∂aX

µ∂bXµ +
i

2
ψ̄µγa∂aψµ +

i

2

(
χaγ

bγaψµ
)(

∂bXµ −
i

4
χbψµ

)]
.

(3.50)
Here χa is the supersymmetric partner of the worldsheet metric gab, the gravitino. This action
is invariant under a supersymmetry transformation that involves Xµ and ψµ, which we indicate
as (1,0). There is also invariance under a supersymmetry involving Xµ and ψ̄µ, which we call
(0,1). In summary, we say that our theory has (1,1) supersymmetry.

This theory, as the bosonic field theory, possesses reparametrisation and conformal invari-
ance. One can use them in order to fix some degrees of freedom, in the very same way we have
done introducing the conformal gauge for the Polyakov action. An useful choice is to impose a
gauge in which

gab = ηab and χa = 0 . (3.51)

This choice is called superconformal gauge. One should also remember that the equations of
motion of these degrees of freedom must be imposed; we are then left with the constraints:

Tab = 0 and Ga = 0 (3.52)

where Tab is the energy-momentum tensor, while Ga is its supersymmetric partner, called super-
current. The expressions for these fields in superconformal gauge, using complex coordinates,
are the following ones:

T (z) = − 1

4α′
∂Xµ∂Xµ −

1

2
ψµ∂ψµ , G(z) = iψµ∂Xµ , (3.53)

and similarly for the antiholomorphic components T̄ (z̄) and Ḡ(z̄).
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3.6. Superstring theories

3.6.1 The superstring spectrum

The quantisation of the theory is conceptually identical to the bosonic case; we have to deal
both with bosonic and fermionc oscillators, and impose the constraints corresponding to the
vanishing of Tab and Ga. An important feature is that the consistency of the theory requires the
dimension of the spacetime to be 10. The derivation of the spectrum of the theory is similar
to the case of the bosonic string, but consistency reasons drive to take a further restriction of
the Fock space, using the so-called GSO projection. Roughly speaking, physical states are only
those constructed applying an odd number of fermionic creation operators to a vacuum state. A
first consequence is that we are left with no tachyon in the spectrum; the first physical excited
states correspond to massless particles on the spacetime. Let us see which is the field content
of the massless spectrum, dividing it in the four sectors corresponding to the different ways one
can choose the boundary conditions.

• NS-NS sector: the massles spectrum is identical to that of the bosonic field theory (now in
10 dimensions), i.e. it consists on the scalar dilaton Φ, the Kalb–Ramond antysymmetric
field Bµν , and the symmetric traceless graviton gµν .

• NS-R sector: the spectrum consists on two fermionic fields, the dilatino and the gravitino
(they are the supersymmetric partner of the dilaton and the graviton respectively).

• R-NS sector: the spectrum is identical to the NS-R sector

• R-R sector: in this sector we have again bosonic fields but it is important the way one
makes the GSO projection. There are two ways to do so, and then we are left with two
different possible theories, called Type IIA and IIB superstring theories. In Type IIA we
have a 1-form and a 3-form, while in Type IIB we have a 0-form, a 2-form and a self-dual
4-form.

We see that the field content of Type II theories exactly reproduces the Type II supergravity
theories we have encountered in the previous chapter; this is an important result of superstring
theory. This correspondence between superstring and supergravity is not limited to the massless
spectrum of the theory; one can show that the supergravity actions can be derived from the
superstring action, taking an appropriate low energy limit (see [17] for details).

3.6.2 The superghost system

The conformal symmetry of the theory implies also the presence of a second ghost system,
related to the fermions ψµ and ψ̄µ. While the ghosts of the bosonic string theory b and c were
anticommuting, these new ghosts, which we call β and γ, commute. The action of this ghost
system is completely analogous to (3.54):

S′gh =
1

2π

∫
d2z(β∂̄γ + β̄∂γ̄) . (3.54)

The conformal weights, however, are different:

hβ =
3

2
and hγ = −1

2
. (3.55)

For practical applications, such as the calculation of string amplitudes, it is useful to parametrize
these ghosts in terms of other fields, using the so-called bosonisation. We thus introduce new
fields, φ and χ, such that

β = e−φeξ∂ξ and γ = e−ξeφ . (3.56)
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With the use of these new fields, the expressions for the vertex operators become simpler; we
will use them explicitly in the following. For further details on the ghost systems and their
bosonisation, we remand to [21].

What we have described in this chapter is, with no doubt, a brief and incomplete introduc-
tion to string theory; we have just introduced the concepts and results which will be needed in
the following. In the next chapter we will use string theory in order to understand the micro-
scopic nature of black holes: how does a black hole arise in string theory and what is its relation
with the corresponding “classical” supergravity solution.

54



Chapter 4

Making black holes in string theory

In the previous chapter we have introduced some notions of string theory; we are now ready
to understand what is a black hole from the point of view of this theory. We are going to
see whether this theory can find an answer to the puzzles we have described in chapter 1, in
particular the information paradox.

In chapter 2 we have seen how a black hole can be constructed in supergravity, taking suitable
bound states of branes. The terminology for branes we have introduced can now be interpreted
in the language of string theory. The F1-brane is the fundamental string; it should be considered
as the fundamental object of the theory. Dp-branes (with p generic) are D-branes; this means
that they can be considered as dynamical objects, and also be interpreted as surfaces where the
endpoints of fundamental open strings lie. The NS5-brane, on the other hand, is not a D-brane;
hence it should be considered as a fundamentally different object. It is actually the magnetic
dual of the fundamental string: it is a solitonic object of the theory. One can think at the
NS5-brane as the analogous of a magnetic monopole.

We have derived many supergravity solutions corresponding to bound states of branes, even
if not all of them were black holes. It is natural to think that these solutions are also superstring
solutions (at least in the low energy limit), but there could be a problem. The fact that we
can find such a solution does not mean that the corresponding singularity is allowed in string
theory. We have to be sure of the existence of a suitable microscopic source generating the
solution. This fact becomes clear when we look in more detail at some particular examples. In
the following we will consider only solutions with topology R1,4 × S1 × T 4, because this is the
topology of the Strominger–Vafa black hole solution, in which we are ultimately interested.

4.1 The single-charge solution

The first kind of solution involves only one charge; let us start from the solution corresponding to
a fundamental string F1. Let us take a Type IIA solution, where we compactify the y direction
along the circle S1. The explicit form of the solution was derived in (2.52). We remember here
only the expression of the metric (in string frame):

ds2 = Z(r)−1(−dt2 + dy2) + dxidxi + dzadza , Z(r) = 1 +
Q

r2
, (4.1)

where i, a = 1, . . . , 4. Notice that we have a different power of r in the function Z, due to the
compactification of the torus T 4. The singularity of this solution is located at r = 0, but the
area of the horizon vanishes. From the point of view of string theory, this sounds reasonable:
we can think that the source is a string wrapped (possibly more than once) around the circle
S1. The tension of the string causes it to shrink; thus the string collapse at the position r = 0,
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which is consistent with the metric (4.1). The vanishing of the area, and consequently of the
entropy, of this solution is consistent with the microscopic count of state we can made. In fact a
single string, when thought in superstring theory, is in an oscillator ground state: its degeneracy
coincide with the number of the zero modes of this theory. If we sum all the degrees of freedom,
we obtain 128 bosonic and 128 fermionic states; thus, from a microscopic point of view, we would
have an entropy Smicro = ln(256). However, this entropy does not increase with the winding
number n1: in the macroscopic limit (n1 →∞) we must associate a null entropy to this system.
This result agrees with the vanishing of the area of this solution.

One can also look at this solution from another perspective, writing it in another duality
frame. An S-duality allows us to derive a solution corresponding to a D1-brane. The corre-
sponding metric in string frame is

ds2 = Z(r)−
1
2 (−dt2 + dy2) + Z(r)

1
2 (dxidxi + dzadza) , Z(r) = 1 +

Q

r2
. (4.2)

The singularity is again located at r = 0; this is consistent with the fact that the brane wraps
around the circle S1, and its tension causes it to shrink. From a fundamental point of view we
can think at this system as an open string stretched between the D1-brane. Hence the geometry
comes from a disk amplitude with boundary conditions relative to a D1-brane; we will calculate
explicitly this amplitude in the next chapter.

Another equivalent picture for this system is obtained applying a T duality for each compact
direction of the torus T 4. In such a way we derive a solution corresponding to a D5-brane. The
metric of such solution is, in string frame,

ds2 = Z(r)−
1
2 (−dt2 + dy2) + Z(r)

1
2 (dxidxi) + Z(r)−

1
2 (dzadza) , Z(r) = 1 +

Q

r2
. (4.3)

We will calculate explicitly the corresponding string amplitude in the following.

4.2 The two-charge solution

The second type of solution involves a bound states of two charges. A solution of this kind
corresponds for example to a fundamental string F1 carrying momentum. The metric can be
read from (2.69), when the extremal limit is taken; the result is the following:

ds2 = Z(r)−1(−dt2 + dy2 +K(r)(dt+ dy)2) + dxidxi + dzadza ,

Z(r) = 1 +
Q1

r2
, K(r) =

QP
r2

.
(4.4)

Again the singularity is located at r = 0, and the area of the horizon vanishes. If we think at
the source of this solution as a string carrying momentum, we immediately see that it can not
be confined at the origin. In fact we have seen that only transverse vibrations of a string are
allowed; therefore a string carrying momentum must bend away from its central axis. We must
conclude that the singularity of this solution is not allowed in string theory, because there is
not any source that can produce it. We may ask what kind of solution produces a fundamental
string with momentum, i.e. with a non trivial profile; the resulting metric is known, and reads
in string frame([22]):

ds2 = Z−1(−dt2 + dy2 +K(dt+ dy)2 + 2Aidx
i(dt+ dy)) + dxidxi + dzadza , (4.5)
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where the functions Z, K, and Ai have the following expressions:

Z(~x, y, t) = 1+
Q1

|~x− ~f(t+ y)|2
, K(~x, y, t) =

Q1| ~̇f(t+ y)|2

|~x− ~f(t+ y)|2
,

Ai(~x, y, t) = − Q1ḟi(t+ y)

|~x− ~f(t+ y)|2
.

(4.6)

The functions fi represent the components of the profile of the string, which is not confined at
r = 0. The dependence of the profile on the combination t+y is a consequence of supersymmetry:
the solution could depend on t+ y or t− y, but not on both. The choice of using t+ y is just a
matter of convention. The metric is singular along the curve xi = fi(t+y): this curve represents
the position of the string.

The macroscopic solution is obtained adding more than one of such solutions, corresponding
to more strands of the same string winding along the circle. The metric looks the same, while
the functions Z, K, and Ai involves sum of different terms like the ones written in equation
(4.5). If we sum a great number of such strands, we can approximate the sum with an integral;
the resulting functions are then

Z(~x, t) = 1 +
Q1

L

∫ L

0

dv

|~x− ~f(t+ y)|2
, K(~x, t) =

Q1

L

∫ L

0

dv | ~̇f(t+ y)|2

|~x− ~f(t+ y)|2
,

Ai(~x, t) = −Q1

L

∫ L

0

dv ḟi(t+ y)

|~x− ~f(t+ y)|2
.

(4.7)

We can use dualities in order to obtain analogous actual solution in other frames. Applying an
S duality, for example, one obtains a D1-P solution. Performing also T dualities we can derive
also a D5-P solution. In these cases the functions fi represent the profile of the D-branes: we
can think on an open string with endpoints on these branes. Now the branes are not located at
r = 0, but extend in the non-compact direction xi.

Using also T dualities, we can derive the solution corresponding to a D1-D5 bound state,
where the D1 wraps around the S1, while the D5 wraps around the S1 and the torus T 4. In
this case the two branes do not carry momentum; hence their tension causes them to collapse
to the origin r = 0. Therefore in this case the functions fi do not have the interpretation of
profile of the branes. The explicit derivation of the geometry can be made following the same
passages we used when we derived the supergravity solution for the Strominger–Vafa black hole;
schematically they are

(D5− P )
S−→ (NS5− P )

Ty−→ (NS5−NS1)
Tz1−→ (NS5−NS1)

S−→ (D5−D1) . (4.8)

Notice that the presence of a T duality along y requires a smearing along this direction. The
starting point must be a solution independent on y; we must use the function Z, K and Ai as
in (4.7), where the dependence on y is integrated away. The calculation is pretty long; we only
state that the resulting metric is the following:

ds2 = (Z1Z5)−
1
2 [−(dt−Aidxi)2 + (dy +Bidx

i)2] + (Z1Z5)
1
2 (dxidxi) +

(
Z1

Z5

) 1
2

(dzadza) . (4.9)
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The functions Z1, Z5, Ai and Bi are given by

Z1(~x, v) = 1 +
Q

L

∫ L

0

dv| ~̇f(v)|2

|~x− ~f(v)|2
, Z5(~x, v) = 1 +

Q

L

∫ L

0

dv

|~x− ~f(v)|2
,

Ai(~x, v) = −Q
L

∫ L

0

dv ḟi(v)

|~x− ~f(v)|2
, dB = − ?4 dA ,

(4.10)

where ?4 is the Hodge dual operator in the non-compact directions x1, . . . , x4.

An important particularity of this duality frame is the fact that the geometry is completely
smooth. The singularities at xi = fi(t+ y) can be cancelled by a change of coordinates.

4.2.1 Counting the microstates

The next question is how to count the number of microstates of this system, and find whether
it gives rise to a vanishing entropy, as expected on account of the vanishing area of the horizon.
We make this count thinking at a free string, i.e. in the limit where the coupling constant gs is
very small. However, this count makes sense, because for BPS bound states it is independent on
the value of gs. Therefore the result we are going to find is valid also in the “black hole limit”,
where gs is big. We are going to calculate the number of microstates in the F1-P duality frame;
the result is the same in all the other equivalent duality frames.

Let us take a long string winding n1 times around S1, and with nP units of momentum. Let
us assume that the circle has radius R: hence the total length of the string is LT = 2πRn1. The
total momentum of the string is

P =
nP
R

=
2πn1nP
LT

. (4.11)

We know that to each excitation of the Fourier mode k is associated a momentum

pk =
2πk

LT
. (4.12)

We can think at the total momentum being distributed among the transverse directions of
vibration. Let us suppose that we have mi units of the Fourier mode ki; comparing (4.11) and
(4.12) we can write ∑

i

miki = n1nP . (4.13)

This means that the degeneracy of the system is given by the number of partitions of n1nP .
One can show that this partition is roughly given by e

√
n1nP . One should also consider that this

momentum is partitioned among the 8 bosonic and 8 fermionic vibration modes. Remembering
that the partition functions of a boson and a fermion with energy ek are given by

ZBk =
∞∑

mk=0

e−βmkek =
1

1− e−βek
, ZBk =

1∑
mk=0

e−βmkek = 1 + e−βek , (4.14)

one can see that a fermionic degrees of freedom count as half a bosonic one. In fact, summing
over k and approximating the sum with an integral we get

logZB = log

(∑
k

ZBk

)
' 2 logZF = 2 log

(∑
k

ZFk

)
. (4.15)
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Taking into account all the proportionality factors, the final result (see [22]) gives a non-vanishing
entropy:

Smicro = 2π
√

2
√
n1nP . (4.16)

We notice here an interesting puzzle: the microscopic count of states does not reproduce the
Bekestein–Hawking entropy derived from the classical solution (4.4). We have to remember
that the latter has not an allowed singularity in string theory, even if it is a solution of the low
energy supergravity equation of motion away from r = 0. We should think at this solution as
a statistical ensemble describing only the common behaviour, far from the source, of the actual
microstates of the system. The fact that such solution has vanishing horizon area is due to
the higher order (in the curvature) terms in the supergravity action; the Bekenstein–Hawking
entropy, in fact, was proven in the approximation where the action is the Einstein–Hilbert one.
When also higher powers of R are taken into account, one gets the right matching with the
microscopic count of states.

4.3 The three-charge black hole solution

We have already seen that the construction of a real black hole requires the presence of a bound
state with three charges. We have derived, in the previous chapter, the solution corresponding
to the D1-D5-P bound state (equation (2.79)). We remember here only the metric (in string
frame), which reads:

ds2 = Z
− 1

2
1 Z

− 1
2

5

(
−dt2 + dy2 +K(dt+ dy)2

)
+Z

1
2
1 Z

1
2
5

(
dr2 + r2dΩ2

3

)
+Z

1
2
1 Z
− 1

2
5

∑
a

(dza)2 , (4.17)

where the functions Z1, Z5 and K are related to the three charges by

Z1,5 = 1 +
Q1,5

r2
, K = ZP − 1 =

QP
r2

. (4.18)

This solution represents a physical black hole, because the area of the horizon does not vanish;
we have already calculated its value, and derived the Bekenstein–Hawking entropy

SBek =
V5π

2
√
Q1Q5QP

2G10
=
π2
√
Q1Q5QP
2G5

. (4.19)

A calculation of the total number of microstates is possible in an analogous way as we did in the
two-charge case. Adding a charge means that one should now find the number of partitions of
n1n5nP ; the resulting entropy is then proportional to

√
n1n5nP . The three numbers are related

to the three macroscopic charges Q1,5 and QP ; when all the proportionality factors are taken
into account, one finds a perfect matching between the entropy calculated in this way and the
Bekenstein–Hawking one (see for example [22]). This is a remarkable and fundamental result,
which supports the validity of string theory as a quantum gravity theory.

Differently from the two-charge solution, in this case we expect such an agreement. In
fact, the three-charge solution is indeed a black hole; the problem of the vanishing Bekenstein–
Hawking entropy does not affect the three-charge solution. While the two-charge classical solu-
tion (4.4) fails to reproduce the number of microstates, the black hole classical solution (4.17)
succeed in doing this. The non-vanishing area of the horizon, corresponding to a non-zero en-
tropy, encodes the information about the degeneracy of the solution. In this case the higher
order corrections to the Einstein–Hilbert action are not necessary for a correct matching with
the microscopic count of states.
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4. Making black holes in string theory

Finding correct expressions for actual string theory solutions, corresponding to microstates
of this system, can be made. The situation is obviously more complicated than the two-charge
system; we postpone the analysis of possible microstates of the three-charge system to the next
chapters. We can however make some important considerations. We expect the microstate
geometry to have no horizon; otherwise, to this horizon it would be associated an entropy, in
contrast to the fact that we are considering a microstate. A geometry with horizon is necessarily
a classical solution, a “statistical ensemble” of all the actual microstate solution of the system.

4.4 The fuzzball proposal

We have seen that string theory allows us to find solutions corresponding to microstates of
a system, in particular microstates of a black hole. The natural question is whether these
microstates can solve the problems explained in the end of chapter 1. In particular we may
ask if we can find a satisfying answer to the black hole information paradox. The problem is
a non-trivial one, and its solution is controversial. There is a conjecture, the so-called fuzzball
proposal, that tries to explain where the derivation of the spectrum of the Hawking radiation
fails.

We describe here briefly the key features of this conjecture. Reviews of these concepts
can be found in [4] or [22]. The basic idea is the following: not only the number of microstates
matches exactly with the Bekenstein–Hawking entropy, but the explicit form of these microstates
is responsible for the solution of the information paradox. The reason is that the differences
between two different microstates, and between a microstate and the classical solution, are
spread over an extended region, with dimension comparable with the size of the horizon. This
means that the creation of particle pairs near the horizon is influenced by the precise form of
the microstate we are considering; therefore the emitted radiation must retain in some way
the information relative to each microstate. Hawking’s calculation was based on the assumption
that the microstate were not distinguishable near the horizon: if this is not true, the information
paradox could vanish.

The idea underlying this concept of fuzzball can be understood looking at the two-charge
solution D1-D5. We have seen that the microstates are horizonless solutions characterised by
the functions fi; each solution has the same behaviour at infinity, but they are different in the
region near the center of the hole at r = 0. While the latter had a singularity at the origin, the
actual microstate solutions do not have any singularity, but they end with some sort of smooth
“cap”. The situation is explained in figure 4.1.

Figure 4.1: Schematic representation of the classical solution F1-P (left) and some of its actual mi-
crostates (right).

It can be shown that the typical dimension of these caps grows with the charges Q1 and QP .
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4.4. The fuzzball proposal

The size of the horizon of the black hole represents the size under which the differences between
microstates become sensible; this is the reason why the horizon would encode in some way
informations about the microstates.

We stress here that even if the fuzzball proposal is a tantalizing and promising solution to
the black hole information paradox, it is not entirely accepted. One problem is the extension of
the concept from the two-charge system (which is relatively simple) to the three-charge black
hole. Another problem is that the nature of the Strominger–Vafa black hole microstates is not
completely understood. In particular it is has not been proved yet that all the microstates of
this black hole can indeed be represented by horizonless smooth solutions. It is also not clear if
all these microstates will differ from the classical solution at horizon scales. Work has yet to be
made in order to understand whether this conjecture works or fails.

In the following we will try to understand how to derive the geometry of microstates from
string theory amplitudes. Firstly we will start from the simple single-charge system, but the
final goal is to arrive to the derivation of microstates of the three-charge black hole.

In two-charge system (and also in the single-charge one) the derivation of the geometries from
string amplitude will not reveal anything new; the classification of the microstates has already
been made by means of solutions such as (4.5). Anyway it is a non-trivial check to verify
that the microscopical interpretation given by strings gives the right supergravity solution we
expect. The situation become more complicated in the three-charge case. Here we do not have
a systematic way to classify all the microstates of a given classical solution; the calculation of
the string amplitudes is one of the few methods that can be used to investigate the nature of
the microstates of this system.
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Chapter 5

Geometry of D-brane bound states
from string amplitudes

We have seen that it is possible to identify the geometries corresponding to the microstates of a
given classical solution, at least for the two-charge system. In this chapter we are particularly
interested in solutions expressed in duality frames involving bound states of D-brane. This is
because D-branes can be considered as surfaces where the endpoints of an open string lie. We
can use this picture to derive the metric from amplitudes that describe emission of closed strings
from D-branes. We think at the D-branes as the surfaces where the endpoints of an open string
lie. The interaction of a closed string with this open one is the process we are interested in. The
situation is schematically represented in figure 5.1.

Figure 5.1: Diagram representing an open-closed string interaction (left) and its conformal equivalent
(right).

It is clear that such a diagram can be conformally deformed into a disk with a puncture in its
interior; to this puncture is associated a closed string vertex operator, of the same kind one
gets when dealing with closed-closed string interactions. The amplitude will also depend on the
particular branes on which the open string ends; their contribution will be encoded in suitable
boundary condition at the border of the disk.

In this chapter we will explain how to calculate such amplitudes, and compare the results
with known supergravity solutions. We start with the single-charge solution, but the final goal
is to arrive to the three-charge black hole. In this chapter we review known results, while in
the next we will turn to a calculation of another type of amplitude, which will give a new
microstate of the Strominger–Vafa black hole. All the example we treat are solutions with
topology R1,4×S1×T 4. We will restrict for simplicity only on the bosonic fields relative to the
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5. Geometry of D-brane bound states from string amplitudes

NS -NS sector: the graviton gµν , the dilaton Φ and the Kalb–Ramond field Bµν .
An important observation is that our procedure for calculating the disk amplitude will au-

tomatically give the metric in Einstein frame, where the dilaton and the metric are correctly
separated; in order to make a comparison with the corresponding supergravity solution, we will
have to express the latter in Einstein frame. The disk amplitude will not give the complete
metric gµν , but its deviation from the flat metric, i.e. hµν = gµν − ηµν . Furthermore, if one
wants to recover the complete metric, one should sum over an infinite number of configuration,
with arbitrary number of borders: figure 5.1 represents only the tree-level contribution to the
process.

5.1 The single-charge solution

5.1.1 The D1 solution

Let us start with the simplest case: the single-charge solution. We are interested in the solution
expressed in the D1 duality frame, in such a way that we can compute the outgoing fields via
a disk amplitude. We have seen that the classical solution was an allowed one in string theory,
so we expect the disk amplitude to reproduce it. From a supergravity point of view, the D1
solution can be obtained from the F1 one using an S duality. The metric has already been
calculated in (4.2); we write here also the other NS -NS fields:

ds2 = Z(r)−
1
2 (−dt2 + dy2) + Z(r)

1
2 (dxidxi + dzadza)

e2Φ = Z(r)

B(2) = 0

, Z(r) = 1 +
Q

r2
. (5.1)

In order to express the metric in Einstein frame we have to remember that (gE)µν = e−
Φ
2 (gs)µν .

The D1 metric is then

ds2
E = Z(r)−

3
4 (−dt2 + dy2) + Z(r)

1
4 (dxidxi + dzadza) . (5.2)

We are going to calculate the tree-level amplitude corresponding to this system; this means that
we will not derive the complete solution, but only the leading terms. The topology expansions
is equivalent to an expansion of the solution at small charges and large distance r; in fact the
charge is proportional to the number of D-branes, which is in turn proportional to the number
of boundaries of the diagram. For dimensional reasons, the topology expansion is then an
expansion with parameter Q

r2 . Therefore we have to compare the tree-level string amplitude
result with the first term of the expansion of the solution (with the metric written in Einstein
frame). Such an expansion can be derived easily, and leads to

htt = −hyy '
3

4

Q

r2
, hii = haa '

1

4

Q

r2
, Φ ' 1

2

Q

r2
, Bµν = 0 . (5.3)

In order to calculate the disk amplitude, we have to understand how the presence of the D-brane
reflects into suitable boundary condition on the disk. In the previous chapter we have defined
a D-brane as a surface along which one has Neumann boundary conditions for an open string,
while in the other directions one has Dirichlet boundary conditions. Expressed in imaginary
coordinates, these conditions are the following:

∂Xµ = ∂̄Xµ Neumann boundary conditions, along the brane,

∂Xµ = −∂̄Xµ Dirichelet boundary conditions, perpendicular to the brane,
(5.4)
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5.1. The single-charge solution

where we have defined ∂ = ∂z and ∂̄ = ∂z̄. When dealing with superstring theory, it is also
important to understand the boundary conditions relative to the spinor fields. In order to derive
it, it is sufficient to notice that the action is supersymmetric; a supersymmetry transformation
relates ψµ with ∂Xµ and ψ̄µ with ∂̄Xµ. This means that the boundary conditions can be
expressed as follows:

ψµ = ψ̄µ Neumann boundary conditions, along the brane,

ψµ = −ψ̄µ Dirichelet boundary conditions, perpendicular to the brane.
(5.5)

To be precise, this is true for the NS sector, while in the R sector we would have an extra
minus sing. It is convenient to write equation (5.5) in matrix notation as ψ̄µ = Rµνψν ; the
matrix R encodes all the useful informations about the boundary conditions, and hence all the
informations about the D-brane characterizing the system. In the case of the D1-brane, the
matrix R is simply given by

(RD1)•• =


1 0 0 0
0 1 0 0
0 0 -1l 0
0 0 0 -1l

 . (5.6)

Here we intend the coordinate of the spacetime to be in the following order: (t, y, xi, za).
The second ingredient needed for the calculation of the string amplitude is the vertex ope-

rator, that we call W ; we deal here with the vertex operator in the NS -NS sector. There are
some technicalities concerning the right choice of this vertex operator. First of all one should
look for a superstring vertex operator; furthermore there are several equivalent pictures in which
a given superstring vertex operator can be written. Anyway the insertion of a vertex operator
into a disk amplitude gives vanishing result, unless it saturates the superghost charge of the
system. One can then show that the vertex operator must be taken in the (-2) picture. We do
not derive the explicit expression, and remand to a detailed reference ([21]). We can take our
vertex operator as

WNSNS = c(z)c̄(z̄)Gµνψµ(z)e−φ(z)ψ̄ν(z̄)e−φ̄(z̄)eikµX
µ
, (5.7)

where c and c̄ are the ghosts related to the bosons Xµ, while φ and φ̄ are those appearing in
the bosonised form of the superghosts β and γ. The vector kµ is the momentum of the outgoing
field; we always take ka to be zero, because the za directions are compactified on the torus T 4.
The fact that the supergravity solution depends only on the coordinates xi implies that we have
to integrate our string amplitude over the coordinates t and y or, alternatively, u and v. The
term eik·X will contribute only through the zero modes u0 and v0; thus we will have a term like

A ∝
∫
du0e

ikuu0 ∝ δ(ku) . (5.8)

The same is valid for v. We see that the independence of the solution on u and v reflects on the
vanishing of the corresponding components of the momentum ku and kv.
Gµν is a sort of polarisation tensor, and can be decomposed into three parts, corresponding

to the dilaton, the metric and the Kalb–Ramond field. The decomposition is determined by the
following relations (see [23]):

G(Φ)
µν =

1

2
√

2
(ηµν − kµlν − kν lµ) , kµl

µ = 1 , lµl
µ = 0 ,

G(h)
µν = G(h)

νµ , G(h)
µν η

µν = 0 = G(h)
µν k

µ

G(B)
µν = −G(B)

νµ .

(5.9)
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5. Geometry of D-brane bound states from string amplitudes

In the following we will always assume that even the vector lµ has non-vanishing components
only along the xi directions.

We are now ready for the explicit calculation of the amplitude, which reads

ANSNS =

∫
dzdz̄

Vgauge
〈WNSNS(z, z̄)〉 , (5.10)

where z and z̄ should be intended as independent variable, and Vgauge takes into account the
invariance under reparametrisation and Weyl transformations. For our purpose it is not impor-
tant to keep all the multiplicative factors. That is the reason why we can avoid the calculation
of all the correlators of the fields: they will give terms depending on the integration variables,
which give constant factors when the integral is taken. All these factors can be calculated with
an explicit study of the conformal field theories of the bosonic, fermionic and ghost systems;
we will not do it for simplicity, and restrict to the analysis of the spacetime structure of the
amplitude. First of all, the contribution of the ghosts will give just constant factors. Regarding
the contribution of 〈eikµXµ〉 = 〈eikiXi〉, only the zero modes of X can contribute. Assuming that
the brane is located at r = 0, we then see that this term is simply 1. For the fermionic fields,
we can write

〈ψµψ̄ν〉 = 〈ψµRνλψλ〉 ∝ Rνληµλ . (5.11)

Summing up, and avoiding the constant multiplicative factors, we get the following expression
for the amplitude:

ANSNS ∝ GµνRνληµλ = GµνRµν . (5.12)

We see from the last expression that it is useful to calculate the matrix of boundary conditions
R with both indices up, where the second index is raised using the flat metric. This matrix is
simply given by

(RD1)•• =


-1 0 0 0
0 1 0 0
0 0 -1l 0
0 0 0 -1l

 . (5.13)

The next step is to distinguish from this amplitude the contribution relative to the various fields.
We immediately notice that the Kalb–Ramond field will not receive any contribution from this
amplitude, because the matrix R is symmetric. The amplitude given by the dilaton is

A(Φ) = G(Φ)
µν Rµν ∝

1

2
√

2
(ηµν − kµlν − kν lµ)Rµν =

1

2
√

2
(−6 + 2kil

i) = −
√

2 . (5.14)

From this amplitude one gets a prediction for the Fourier transform of the dilaton, using the
formula

Φ(k) =
1√
2
A(Φ) ∝ −1 . (5.15)

The factor
√

2 can be derived if one studies in detail the relative normalisation between the
dilaton and the graviton. In order to derive the contributions to the metric one has to subtract
properly the contribution coming from the dilaton. The expression for hµν(k) should satisfy an

orthogonality condition like hµνG(Φ)
µν = 0. The contribution of the dilaton must be proportional

to the flat metric ηµν ; therefore the right expression must the following (see [23]):

hµν(k) = Rµν −
R · G(Φ)

η · G(Φ)
ηµν . (5.16)
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5.1. The single-charge solution

We can easily calculate

η · G(Φ) =
1

2
√

2
(10− 2kil

i) = 2
√

2 . (5.17)

We then arrive to the final expression for the deviation from the metric

hµν ∝ Rµν +
1

2
ηµν , (5.18)

which leads to the following expressions:

htt(k) = −hyy(k) ∝ −3

2
, hii(k) = haa(k) ∝ −1

2
. (5.19)

We are left with the metric coefficient in the momentum space; we have to take the Fourier
transform, in order to get the corresponding expression in the coordinate space. This operation
depends on the number of non-compact directions of the solution: in our case the correct
expression for a generic tensor field aµ1...µn is given by

aµ1...µn(x) =

∫
d4k

(2π)4

(
− i

k2

)
aµ1...µn(k)e−ik·x (5.20)

Notice that there is the insertion of a free propagator which, in 4 dimensions and in the so-called
de Donder gauge, is proportional to k−2. Remembering that∫

d4k

(2π)4

e−ik·x

k2
= − 1

4π2

1

r2
, (5.21)

we can write down the final expressions for the fields derived from the disk amplitude:

htt = −hyy ' −
3

2

Q′

r2
, hii = haa ' −

1

2

Q′

r2
, Φ ' −Q

′

r2
, Bµν = 0 , (5.22)

where we have indicated with Q′ the overall multiplicative constant. We use the symbol '
because we should remember that our amplitude is a tree-level process, and gives only the
first term of the expansion of the fields at long distances (or at small charge). If one wants
a better approximation, one has to add the loop contributions. A comparison with equation
(5.3) shows that our calculation correctly reproduces the leading term of the expansion of the
supergravity solution, provided that we identify Q = −2Q′. Notice that it is very important
that our calculation succeeds in reproducing the relative proportionality factors between all the
metric coefficients and the dilaton.

5.1.2 The D5 solution

Another test is to verify if this method correctly reproduces the supergravity solution of a D5-
brane, wrapped around the S1 and the T 4. From a supergravity point of view it can be derived
from the D1 solution applying a T duality along each of the za directions. The result (in string
frame) is the following:

ds2 = Z(r)−
1
2 (−dt2 + dy2) + Z(r)

1
2 (dxidxi) + Z(r)−

1
2 (dzadza)

e2Φ = Z(r)−1

B(2) = 0

, Z(r) = 1 +
Q

r2
. (5.23)
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5. Geometry of D-brane bound states from string amplitudes

The metric in Einstein frame reads

ds2 = Z(r)−
1
4 (−dt2 + dy2) + Z(r)

3
4 (dxidxi) + Z(r)−

1
4 (dzadza) . (5.24)

The long distance (or small charge) behaviour can be easily calculated, and gives

htt = −hyy '
1

4

Q

r2
, hii '

3

4

Q

r2
, haa ' −

1

4

Q

r2
, Φ ' −1

2

Q

r2
, Bµν = 0 . (5.25)

Looking at the string amplitude, the only difference is the matrix of Boundary conditions. Along
the T 4 we have to change from Dirichlet to Neumann boundary conditions: the matrix R takes
the form

(RD5)•• =


1 0 0 0
0 1 0 0
0 0 -1l 0
0 0 0 1l

 , (RD5)•• =


-1 0 0 0
0 1 0 0
0 0 -1l 0
0 0 0 1l

 . (5.26)

The difference reflects on the fact that now A(Φ) changes sign; this means that our prediction
for the dilaton is

Φ(k) =
1√
2
A(Φ) ∝ 1 , (5.27)

and that the metric coefficients are given by

hµν(k) = Rµν −
R · G(Φ)

η · G(Φ)
ηµν ∝ Rµν −

1

2
ηµν . (5.28)

The final expressions for the metric coefficients and the dilaton are

htt = −hyy ' −
1

2

Q′

r2
, hii ' −

3

2

Q′

r2
, haa '

1

2

Q′

r2
, Φ ' Q′

r2
. (5.29)

We can see that these coefficients coincide exactly with the ones in (5.25); the only requirement
is again the identification Q = −2Q′.

5.2 The two-charge solution

Let us now consider some more complicated supergravity solutions, involving two charges. This
step is very important in order to arrive to the analysis of the three-charge black hole.

5.2.1 The D1-P solution

The first duality frame we consider is D1-P. This differs from the D1 solution because the
brane is not fixed in space, but has a non trivial profile, due to the presence of momentum.
The profile of the brane is transverse to it; let us also assume that it is non-trivial only along
the non-compact directions xi. The profile can be described by a set of functions fi(t + y);
the dependence on t + y is due to the fact that the momentum produces waves on the brane
travelling with the speed of light. An analogous treatment is possible considering functions of
t− y. We remember that a dependence on t+ y and t− y separately is not possible, because we
are considering BPS states. The D1-P solution is known, and can be derived from the F1-P
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5.2. The two-charge solution

using an S duality. The result, expressed in terms of the lightcone coordinates v = t + y and
u = t− y is the following:

ds2 = Z−
1
2dv(−du+Kdv + 2Aidx

i) + Z
1
2 (dxidxi + dzadza)

e2Φ = Z

B(2) = 0

, (5.30)

where

Z(~x, v) = 1 +
Q

|~x− ~f(v)|2
, K(~x, v) =

Q|ḟ(v)|2

|~x− ~f(v)|2
, Ai(~x, v) = − Qḟi(v)

|~x− ~f(v)|2
. (5.31)

We consider here a single strand of the brane; if one wants the solution for more strands, it is
sufficient to superpose many single-strand solutions. Written in Einstein frame, the metric is
the following:

ds2 = Z−
3
4dv(−du+Kdv + 2Aidx

i) + Z
1
4 (dxidxi + dzadza) . (5.32)

In this case an expansion at small Q is different from an expansion at large r; In fact we have
another dimensional quantity, which is the profile fi. The correct expansion is then an expansion
of parameter Q

|xi−fi|2 One finds the following coefficients for the deviation from the metric and

the other NS -NS fields:

hvv '
Q|ḟ |2

|~x− ~f |2
, hvu '

3

8

Q

|~x− ~f |2
, hvi ' −

Qḟi

|~x− ~f |2
, hii = haa '

1

4

Q

|~x− ~f |2

Φ ' 1

2

Q

|~x− ~f |2
, Bµν = 0 .

(5.33)

If we want to calculate the string amplitude, we have to consider that the matrix of boundary
conditions changes; this is due to the fact that the boundary (i.e. the surface of the brane) is
not fixed in space. A derivation of the correct expression for the matrix R is possible, but we
write here only the result (see [24]):

(RD1f )•• =


1 0 0 0

4|ḟ(v)|2 1 −4ḟi(v) 0

2ḟi(v) 0 −1l 0
0 0 0 −1l

 ,

(RD1f )•• =


−2|ḟ(v)|2 −1

2 2ḟi(v) 0
−1

2 0 0 0

2ḟi(v) 0 −1l 0
0 0 0 −1l

 .

(5.34)

The order of the coordinates in which the matrices are written is (v, u, xi, za). We can notice
that this matrix satisfy an important consistency condition: the border of the disk is the locus
of points where z = z̄. We also expect the energy momentum tensor to satisfy T̄ = T at the
boundary. We then have to check whether the boundary conditions on ψµ and Xµ are such that
T = T̄ , where we take the expression of (3.53) for the energy momentum tensor. When a non
trivial profile of the brane is present, the boundary conditions are

ψ̄µ = Rµνψν , ∂̄Xµ = Rµν∂Xν − 8α′δµu f̈jψ
jψv . (5.35)
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5. Geometry of D-brane bound states from string amplitudes

Using these expressions one can verify that the matrix (5.34) satisfies the condition T̄ = T at
the boundary.

The calculation of the amplitude has another new ingredient; the term 〈eik·X〉 gives a con-
tribution eik·f , coming from the zero mode of X. Hence the amplitude reads

ANSNS ∝ GµνRµνeik·f . (5.36)

The part of the amplitude corresponding to the dilaton is A(Φ) ∝ −
√

2eik·f (and hence Φ(k) ∝
−eik·f ), while the deviation from the metric is derived from

hµν(k) = eik·f

(
Rµν −

R · G(Φ)

η · G(Φ)
ηµν

)
∝ eik·f

(
Rµν +

1

2
ηµν

)
. (5.37)

Finally one has to take a Fourier transform, in order to get the result in coordinate space. It is
useful to notice that we always have an integral of the form

∫
d4k

(2π)4

e−ik·(x−f)

k2
= − 1

4π2

1

|~x− ~f |2
. (5.38)

The final result of the calculation is given by the following expressions, where we introduce an
overall multiplicative constant Q′:

hvv ' −2
Q′|ḟ |2

|~x− ~f |2
, hvu ' −

3

4

Q′

|~x− ~f |2
, hvi ' 2

Q′ḟi

|~x− ~f |2
, hii = haa ' −

1

2

Q′

|~x− ~f |2

Φ ' − Q′

|~x− ~f |2
, Bµν = 0 .

(5.39)

We notice that there is a perfect matching with (5.33), provided that Q = −2Q′.

If one wants to derive the macroscopic solution from string amplitude, one should add by
hand the solution corresponding to different strands of the brane. Notice that the solution for
a single strand has explicit dependence on the coordinate v; it should be argued that for this
reason we should have considered a momentum with kv 6= 0. This is indeed true, but we can
notice that the momentum appears in the amplitude only through the term eik·X ; therefore,
allowing for a kv 6= 0 would not have changed our result.

5.2.2 The D5-P solution

A completely analogous treatment can be made for the D5-P case. The supergravity solution
can be obtained applying four T dualities along the za directions. The result is the following:


ds2 = Z−

1
2dv(−du+Kdv + 2Aidx

i) + Z
1
2 (dxidxi) + Z−

1
2 (dzadza)

e2Φ = Z−1

B(2) = 0

, (5.40)
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where the functions Z, K and Ai are identical to those appearing in the D1-P solution. Re-
garding the matrix of boundary conditions R, it is simply given by

(RD5f )•• =


1 0 0 0

4|ḟ(v)|2 1 −4ḟi(v) 0

2ḟi(v) 0 −1l 0
0 0 0 1l

 ,

(RD5f )•• =


−2|ḟ(v)|2 −1

2 2ḟi(v) 0
−1

2 0 0 0

2ḟi(v) 0 −1l 0
0 0 0 1l

 .

(5.41)

The only difference with respect to RD1f is a sign along the directions of the torus. It can be
checked that also this matrix satisfy the consistency condition T̄ = T at the boundary of the
disk. The calculation proceeds as before; we write directly the result for the coefficients hµν , Φ
and Bµν , which is

hvv ' −2
Q′|ḟ |2

|~x− ~f |2
, hvu ' −

1

4

Q′

|~x− ~f |2
, hvi ' 2

Q′ḟi

|~x− ~f |2
,

hii ' −
3

2

Q′

|~x− ~f |2
, haa '

1

2

Q′

|~x− ~f |2
, Φ ' −1

2

Q

|~x− ~f |2
, Bµν = 0 .

(5.42)

Again we have a perfect matching with the small charge behaviour of the supergravity fields
(with the metric expressed in Einstein frame), provided that Q = −2Q′.

5.2.3 The D1-D5 solution

The two-charge system has another interesting duality frame: we can consider the bound state
of two different types of brane, in particular D1 (wrapped along S1) and D5 (wrapped along S1

and T 4). The microstate metric was derived in (4.9). Her we need also the other NS -NS fields,
which are the following ones (see [22] and [25]):

ds2 = (Z1Z5)−
1
2 [−(dt−Aidxi)2 + (dy +Bidx

i)2] + (Z1Z5)
1
2 (dxidxi) +

(
Z1

Z5

) 1
2

(dzadza)

e2Φ =
Z1

Z5

B(2) = 0

(5.43)
The functions Z1, Z5, Ai and Bi are given by

Z1(~x, v) = 1 +
Q

L

∫ L

0

dv| ~̇f(v)|2

|~x− ~f(v)|2
, Z5(~x, v) = 1 +

Q

L

∫ L

0

dv

|~x− ~f(v)|2
,

Ai(~x, v) = −Q
L

∫ L

0

dv ḟi(v)

|~x− ~f(v)|2
, dB = − ?4 dA ,

(5.44)

where ?4 is the Hodge dual operator in the non-compact directions x1, . . . , x4. Notice that the
dependence on v has been integrated away: this is because we had to perform a smearing along
the y direction in order to apply the T duality needed to arrive to this solution.
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5. Geometry of D-brane bound states from string amplitudes

The functions fi(v) do not have the interpretation of profile of the brane; in fact the latter
do not carry momentum, and hence they lie at a fixed position (in particular at r = 0). When
expressed in Einstein frame the metric reads

ds2 = (Z1)−
3
4 (Z5)−

1
4 [−(dt−Aidxi)2 + (dy +Bidx

i)2] + (Z1)
1
2 (Z5)

3
2 (dxidxi) +

(
Z1

Z5

) 1
4

(dzadza)

(5.45)
It turns out that this time the suitable expansion of the metric is that with parameter Q

r2 ; in
fact, the quantities f i(v) do not have here a true physical meaning. It is useful to notice that
at long distances we can approximate the expressions:

Q

L

∫ L

0

dv

|~x− ~f(v)|2
' Q

r2
,

Q

L

∫ L

0

dvḟi(v)

|~x− ~f(v)|2
' Q

L

∫ L

0
dvḟi(v)

(
1

r2
+ 2

x · f
r4

)
=

2Q

L

∫ L

0
dvḟi(v)

(
x · f
r4

)
.

(5.46)

In order to simplify the calculations, we define the quantities

f̂ij =
1

L

∫ L

0
dv ḟifj = −f̂ji , F̂ =

1

L

∫ L

0
dv |ḟ(v)|2 ; (5.47)

notice that they depend only on the functions fi(v), but are independent on v. We then perform
an expansion at long distances; we obtain that:

Z1 ' 1 +
QF̂

r2
, Z5 ' 1 +

Q

r2
, Ai ' −2Qf̂ij

xj

r4
, A ' −2Qf̂i

xi

r4
. (5.48)

The expression for the dual Bi is

Bi ' −Qε kl
ij f̂kl

xj

r4
. (5.49)

Using these expressions we can finally derive the expansion of the metric and the dilaton at long
distances. The result is:

htt =− hyy '
1

4

Q

r2
(3F̂ + 1) , hii '

1

4

Q

r2
(F̂ + 3) , haa '

1

4

Q

r2
(F̂ − 1) ,

hti ' −2
Q

r4
f̂ijx

j , hyi ' −
Q

r4
ε kl
ij f̂klx

j , Φ ' 1

2

Q

r2
(F̂ − 1) .

(5.50)

The D1-D5 solution seems to be complicated; notice however that the metric coefficients we
have found depend only on the quantities Q, F̂ and f̂ij . Our goal is to reproduce the behaviour
of the metric using the method of calculating a disk amplitude.

Having a bound state of two different types of brane means that an open string has three
possibilities: the endpoints can lie both on the D1, both on the D5, or in different branes. We
have to calculate all these three different contributions, and to sum them at the end. The first
two possibilities correspond simply to a single charge system; we can draw the two diagrams we
have to calculate, denoting differently the two types of brane (figure 5.2).

These diagrams have already been calculated when dealing with single-charge solutions. We
rewrite here the result they give, indicating with two different symbols Q1 and Q5 the charges
of the two branes. Equations (5.3) and (5.25) give

htt ' −hyy =
1

4

3Q1 +Q5

r2
, hii '

1

4

Q1 + 3Q5

r2
, haa '

1

4

Q1 −Q5

r2
, Φ ' 1

2

Q1 −Q5

r2
(5.51)
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5.2. The two-charge solution

Figure 5.2: The first two contributions to the amplitude of a D1-D5 system.

We immediately see that these terms correspond exactly to the ones we derived in (5.50), when
we make the identifications

QF̂ = Q1 Q = Q5 ; (5.52)

we are allowed to do this, because Q and F̂ are independent of each other, as should be expected
for the charges of two independent branes Q1 and Q5.

We now have to add the contribution of a disk amplitude with mixed boundary conditions,
i.e. corresponding to an open string with one end on the D1-brane and the other on the D5-
brane. This contribution is what makes this system different from a trivial superposition of the
single charge solutions, but a real bound state. From an operative point of view, we have to
insert two new twisted vertex operators Vµ and Vµ̄ on the boundary, which allow for a change of
boundary condition. Schematically the situation is represented in figure 5.3.

Figure 5.3: The simplest contribution to the amplitude of a D1-D5 system with mixed boundary condi-
tions.

The expressions for these two additional vertex operator is (we use the same conventions of [25]
and [26])

Vµ = µAe−
φ
2 SA∆ , Vµ̄ = µ̄Ae−

φ
2 SA∆ . (5.53)

Here µA and µ̄A are spinors with definite chirality, say positive. They are also matrices with
respectively n1 × n5 and n5 × n1 components: they take into account all the possible branes on
which the endpoints of the string can lie. These matrices are usually indicated with the name
Chan–Paton factors. The field φ is related to the superghost system, while ∆ is the bosonic twist
operator, which changes the boundary conditions for the bosonic fields. SA are the SO(1, 5)
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5. Geometry of D-brane bound states from string amplitudes

spin fields: they are fields related to the fermions ψa and ψ̄a (where a takes the values t, y and
i = 1, . . . , 4). Their precise definition is related to the bosonisation of the spinors; one usually
defines the complex spinors

Ψ1 = ψt + iψy , Ψ2 = ψ1 + iψ2 , Ψ3 = ψ3 + iψ4

Ψ̄1 = ψt − iψy , Ψ̄2 = ψ1 − iψ2 , Ψ̄3 = ψ3 − iψ4 .
(5.54)

The bosonisation is made introducing three bosons hI such that ΨI = eihI and Ψ̄I = e−ihI . The
spin fields are then defined in the following way:

SA = S~εA = e
i
2
εIAhI , (5.55)

where the vector ~εA is given by:

~εA = {(−−−), (−+ +), (+−+), (+ +−)} . (5.56)

The other possible combinations of + and − are not considered; in fact SA is contracted with
µA in the twisted vertex operator. Thus the total number of possibilities (8) must be reduced
by a factor 2.

We do not enter in further details explaining why the twisted vertex operators take this
form; a complete analysis is beyond the purpose of this thesis. We only give the necessary rules
needed to compute the amplitude. The latter will be given by

ANSNS =

∫
dzdz̄dz1dz2

Vgauge
〈Vµ(z1)WNSNS(z, z̄)Vµ̄(z2)〉 , (5.57)

where z1 and z2 have to be chosen on the boundary, and so they are real coordinates (z̄1,2 = z1,2).
The insertion of the twisted operators has a side effect: both Vµ and Vµ̄ carry −1

2 superghost
charge. This means that the vertex operator W has to be taken in a picture such that it has −1
superghost charge. There is more than one way to write down a suitable operator of this type;
we choose an expression that will simplify the calculation:

WNSNS = Gµν
(
∂Xµ − i

2
kρψ

ρψµ
)
ei
k
2
·X

∣∣∣∣∣
z

ψ̄νe−φ̄ei
k
2
·X̄

∣∣∣∣∣
z̄

. (5.58)

Ignoring the normalisation factors, the interesting part of the amplitude is

ANSNS ∝ Gµν µ̄AµBkσ
∫
dzdz̄dz1dz2〈SA(z1)ψσ(z)ψµ(z)ψ̄ν(z̄)SB(z2)〉 . (5.59)

Notice that the possible contraction 〈∂Xµei
k
2
·X〉 ∝ kµ does not contribute, because of the

transversality condition Gµνkµ = 0. The product of the two Chan–Paton factors can be de-
composed in a basis constituted by products of gamma matrices (those corresponding to the
SO(1, 5)) as follows

µ̄AµB = vµ(CΓµ)[AB] +
1

3!
vαβγ(CΓαβγ)(AB) , (5.60)

where C is the charge conjugation matrix, and the Greek indices take the values t, y and
i = 1, . . . , 4. The fact that µ̄A and µB have definite chirality implies that terms with an even
number of gamma matrices are absent, and that vµνρ is a self-dual 3-form. In the following we
will ignore the contribution of the 1-form vµ, and we will consider only the component of vµνρ
with one index along the t, y directions, and the other two along the R4. With these assumptions
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5.2. The two-charge solution

we will be able to reproduce the coefficients (5.50); other possibilities give rise to different classes
of microstates of the system D1-D5 (see [25] for an example). The self-duality of vµνρ gives the
following expression:

vyij =
1

2
ε kl
ij vtkl . (5.61)

We have also to impose boundary condition for the spinor field ψ̄. We thus obtain

〈SA(z1)ψσψµ|zψ̄ν(z̄)SB(z2)〉 = Rνλ〈SA(z1)ψσψµ|zψν(z̄)SB(z2)〉 ∝ Rνλ(ΓσµλC−1)AB . (5.62)

An awkward problem for the calculation is the choice of the matrix of boundary conditions.
Should we use the one corresponding to a D1-brane, or to a D5? It is an important consistency
check to verify that both matrices give the same amplitude. Let us use, say, RD1 as defined in
(5.6). We are now ready for the explicit calculation of the disk amplitude:

A ∝ GµνRνλvαβγkσ(ΓσµλC−1)AB(CΓαβγ)(AB) =

= GµνRνλvαβγkσTr[ΓσµλΓαβγ ] ∝ GµνR ρ
ν k

σvµρσ .
(5.63)

Such an amplitude does not give any further contribution to the dilaton. In fact:

A(Φ) ∝ (ηµν − kµkν − kνkµ)R ρ
ν k

σvµρσ = kσvµρσ(Rµρ − kµlνR ρ
ν − lµkνR ρ

ν ) . (5.64)

The first two terms vanish automatically, due to the total antisymmetry of vµρσ and the sym-
metry of Rµρ. The third term is again zero because:

kνR ρ
ν = kiR ρ

i ∝ k
ρ . (5.65)

This amplitude will only give contributions to the metric and, possibly, the Kalb–Ramond field.
Remembering that the non-vanishing component of R ρ

ν are

R t
t = R y

y = 1 , R j
i = −δji , R b

a = −δba , (5.66)

we obtain the following expression:

A ∝ kj [GtiR k
i vtkj + GyiR k

i vykj + GitR t
t vitj + GiyR y

y viyj ] =

= kj [vtij(−Gti − Git) + vyij(−Gyi − Giy)] .
(5.67)

Notice that the matrix RD5 would have given the same amplitude, as should be expected for
consistency. This amplitude involves only the symmetric part of Gµν ; this means that it gives
no contribution to the B field. It is useful to define the two tensor ĥ and b̂ int the following way:

Gµν = ĥµν +
1√
2
b̂µν . (5.68)

Therefore the amplitude becomes simply

A ∝ −2kj [ĥtivtij + ĥyivyij ] . (5.69)

It turns out that the correct Fourier modes of the metric and Kalb–Ramond field are given by

hµν(k) =
1

2

δA
δĥµν

(µ < ν) , hµµ(k) =
1

2

δA
δĥµµ

, Bµν(k) =
δA
δb̂µν

(µ < ν) , (5.70)
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where the index µ in hµµ is not summed. In our case we get the following two contributions:

hti(k) ∝ −kjvtij , hyi(k) ∝ −kjvyij = −1

2
kjε kl

ij vtkl . (5.71)

For the first time we encounter a dependence on the momentum k. In order to make the Fourier
transform and get the expressions in coordinate space, we remember the integral∫

d4k

(2π)4

(
− i

k2

)
kje−ik·x = − ∂

∂xj

∫
d4k

(2π)4

1

k2
e−ik·x = − 1

2π2

xj

r4
. (5.72)

Calling Q′ an overall proportionality constant we get the following predictions:

hti = −Q
′

r4
vtijx

j , hyi = − Q′

2r4
ε kl
ij vtklx

j . (5.73)

We can see that an exact matching with the expansion of the supergravity geometry (5.50) is
possible, if we make the identification

Qf̂ij =
1

2
Q′vtij . (5.74)

This identification is consistent, because both f̂ij and vtij are arbitrary, subjected only to the
antisymmetry condition in the indices i and j.

5.3 The three-charge black hole solution

We are now ready for the analysis of some microstates of the three-charge Strominger–Vafa
black hole. The classical supergravity solution in the D1-D5-P duality frame has been derived
in equation (2.79); we rewrite it here for convenience (only the NS -NS fields):

ds2 = Z
− 1

2
1 Z

− 1
2

5

(
−dt2 + dy2 +K(dt+ dy)2

)
+ Z

1
2
1 Z

1
2
5

(
dr2 + r2dΩ2

3

)
+ Z

1
2
1 Z
− 1

2
5

∑
a

(dza)2

e2Φ = Z1Z
−1
5

B(2) = 0

(5.75)
The functions Z1, Z5 and K are related to the three charges by the relations

Z1,5(r) = 1 +
Q1,5

r2
, K(r) =

QP
r2

. (5.76)

We expect that this time we have more possibilities to construct a microstate, due to the presence
of one more charge. From a microscopic point of view, we have to imagine a bound state of D1
and D5 branes carrying momentum, i.e. not localised in space, but having with a non trivial
profile. We have to use the ingredients we have learned in the study of the two charges system,
both in the D1-P (or D5-P) and D1-D5 frame.

In this section we analyse the direct generalisation of the microstate we have studied when
dealing with the D1-D5 solution. We consider the branes having a profile along R4, i.e. along
the non-compact directions. In chapter 6 we will turn to a different kind of microstate of the
Strominger–Vafa black hole, involving a profile along the compact directions of the torus T 4.

76



5.3. The three-charge black hole solution

5.3.1 The D1-D5-P solution with profile along R4

As we did with the D1-D5 bound state, we have to sum the three contributions coming from
the diagrams represented in figure 5.2 and 5.3; the only difference is the non-trivial profile of
the brane, which reflects in a different matrix R for the boundary conditions. The contributions
coming from the first two diagrams are simply the sum of the geometries corresponding to a
D1-P and a D5-P microstate. Let us concentrate on the new contributions, coming from the
third diagram. We can safely say that the amplitude looks like the case without momentum,
with an extra eik·f factor coming from the term 〈eik·X〉:

A ∝ GµνR ρ
ν k

σvµρσe
ik·f . (5.77)

It is useful to work with the lightcone coordinates v = t + y and u = t − y; the matrices of
boundary conditions are the following (they can be derived from (5.34) and (5.41))

(RD1f ) •• =


1 4|ḟ(v)|2 2ḟi(v) 0
0 1 0 0

0 −4ḟi(v) −1l 0
0 0 0 −1l

 , (5.78)

(RD5f ) •• =


1 4|ḟ(v)|2 2ḟi(v) 0
0 1 0 0

0 −4ḟi(v) −1l 0
0 0 0 1l

 . (5.79)

Again, the order of the coordinate is (v, u, xi, za). It turns out that both matrices give the same
result when inserted in the amplitude, provided that the branes have the same profile fi(v). The
situation of branes with different profiles seems to be more complicated: we neglect this case
here. Furthermore we can see that the amplitude gives no further contribution to the dilaton.

Thanks to the fact that the matrix R has explicit dependence on v, we expect to derive
a solution which is dependent on v, as we found in the D1-P or D5-P case. For consistency
we must allow the momentum k to have a non vanishing component kv, or equivalently ku.
However, when an integration over v is taken, the contribution coming from the presence of kv
will vanish. Let us do the explicit calculation:

A ∝eik·fkl[GvµR j
µ vvjl + GuµR j

µ vujl + GjµR v
µ vjvl + GjµR u

µ vjul] + eik·fkuGiµR j
µ viju =

=eik·fkl[(GvµR j
µ − GjµR v

µ )vvjl + (GuµR j
µ − GjµR u

µ )vujl] + eik·fkuGiµR j
µ viju =

=eik·fkl[−(Gvj + Gjv)vvjl − (Guj + Gju)vujl − 4|ḟ |2Gjvvujl + 4ḟiGjivujl+
+ 2ḟ jGuvvujl + 2ḟ jGvvvvjl] + eik·fku[−Gijviju + 2ḟ jGivviju] .

(5.80)

Notice that this amplitude will produce non-trivial contributions to the Kalb–Ramond field. In
fact, using the definitions of ĥµν and b̂µν , we can write

A(h) ∝ eik·fkl
[
− 2ĥvjvvjl − 2ĥujvujl − 4|ḟ |2ĥjvvujl + 4

∑
i<j

ĥij(vuilḟj + vujlḟi)+

+ 2ĥuvvuilḟ
i + 2ĥvvvvjlḟ

j

]
+ eik·fku[2ḟ j ĥvi] ,

(5.81)

A(B) ∝ eik·f k
l

√
2

[
− 4|ḟ |2b̂jvvujl + 4

∑
i<j

b̂ij(vuilḟj − vujlḟi) + 2b̂uvvuilḟ
i

]
+

+eik·f
[
−
√

2
∑
i<j

b̂ijviju −
√

2ḟ j b̂viviju

]
.

(5.82)
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Notice that we have written in the amplitude ĥij and b̂ij only with i < j; in fact these are
the independent coefficients, the other being determined by the symmetry (or antisymmetry)
conditions. From this amplitude we can derive the expressions for the Fourier modes of the
metric and the Kalb–Ramond field, using

hµν(k) =
1

2

δA
δĥµν

(µ < ν) , hµµ(k) =
1

2

δA
δĥµµ

, Bµν(k) =
δA
δb̂µν

(µ < ν) . (5.83)

The resulting coefficients hµν(k) and Bµν(k) are

hvv(k) ∝ 2klvvilḟ
ieik·f , hvu ∝ klvuilḟ ieik·f ,

hvi(k) ∝ (−klvvil − 2|ḟ |2klvuil)eik·f + ḟ jkuvijue
ik·f ,

hui(k) ∝ −klvuileik·f , hij(k) ∝ 2kl(vuilḟj + vujlḟi)e
ik·f ,

Bvu(k) ∝ −
√

2klvuilḟ
ieik·f , Bvi(k) ∝ 2

√
2klvuil|ḟ |2eik·f −

√
2ḟ jkuvijue

ik·f ,

Bij(k) ∝ 2
√

2kl(vuilḟj − vujlḟi)eik·f −
√

2kuvijue
ik·f .

(5.84)

We should also remember that the duality condition (5.61) when written in lightcone coordinates
reads

vvij =
1

2
ε kl
ij vvkl , vuij = −1

2
ε kl
ij vukl . (5.85)

When we take the Fourier transform, the dependence kleik·f becomes a factor proportional to
(xl − f l(v))|~x− ~f(v)|−4. But we have also the presence of terms with ku, appearing in hvi, Bvi
and Bij . Remembering that ηuv = ηvu = −2 we have

ku = ηuvkv = −2kv . (5.86)

It is also possible to relate kv to the components of the momentum ki. This is because all
the coefficients of the metric and the B field will depend on v only through the combination
xi − f i(v). When a Fourier transform is taken, this fact reflects in the following relation (see
[24]):

kv = −ḟ i(v)ki . (5.87)

When we sum this contributions with those coming from the diagrams with only one type of
boundary, we expect to obtain the long distance behaviour of a supergravity solution.

Contrary to the two-charge system, there is not a systematic way to construct all the super-
gravity solutions representing the microstates. This is because using dualities we can not reach
a simpler configuration, as the F1-P was for the two-charges case. This means that our predic-
tions coming from the string amplitude cannot be directly compared with a known supergravity
solution. Here we see the importance of the calculation of the string amplitude corresponding
to this microstate.

We can anyway check the consistency of our prediction, i.e. verify that is satisfies the super-
gravity equations of motion, which are Einstein’s equations of motion and the supersymmetry
relations. Obviously we can do this only in a first order approximation, because we have a pre-
diction only for the large distance behaviour of our fields. This procedure has also the problem
that all bosonic fields are needed, not only those of the NS -NS sector, but also the R-R ones.
In [26] this has been done; here we do not go further in the investigation of this microstate and
refer to [26] for a complete analysis.
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Chapter 6

A new microstate of the
Strominger–Vafa black hole

In this chapter we consider another type of microstate of the three-charge Strominger–Vafa black
hole; the calculation of the corresponding amplitude has not been made yet. We work again in
the duality frame D1-D5-P, but this time with different assumptions on the setup of the source.

The idea is to see whether we can reproduce a known supergravity solution, derived in [27],
which break the symmetry of the torus T 4. This solution is a good candidate to be a microstate
of the Strominger–Vafa black hole. We are interested to understand whether this is indeed the
case, trying to understand its microscopical interpretation. A natural guess is that this source
comes from a bound state of branes with profile along a direction of the torus (let it be z1).
To be precise, it is not possible for the D5-brane to have a non trivial profile along z1; in fact
the brane is wrapped around the torus, and its physical oscillations can only manifest in the
orthogonal space (the non compact R4). It turns out that such a “profile” along the torus has
to be interpreted as a gauge field propagating on the brane ([24]).

In this chapter we start from the analysis of the supergravity solution, and then we make
the calculation of the string disk amplitude. At the end we compare the two results and check
whether there is a correspondence or not.

6.1 Analysis and expansion of the supergravity solution

There are several methods that allow us to derive new supersymmetric solution starting from a
known one; this is what was made in [27]. The deformation of a D1-D5 background provides a
method to introduce one more charges in the solution. We thus expect the result to be a possible
microstate of the Strominger–Vafa black hole. In the following we assume that Q1 = Q5 = Q: we
thus expect the dilaton to vanish. In fact the supersymmetric solution we consider has vanishing
dilaton and Kalb–Ramond field. Adapting the solution to our conventions, the microstate of
[27] reads

ds2 = − 1

H
[du+A] [dv +B] +Hf

[
dr2

r2 + a2
+ dθ2

]
+H

[
r2c2

θdψ
2 + (r2 + a2)s2

θdφ
2
]

+ dzadza ,

(6.1)
where

A =
aQ

f
{s2
θdφ+ c2

θdψ}+ Φ(~x, v)dz1, B =
aQ

f
{s2
θdφ− c2

θdψ}, f = r2 + a2c2
θ, H = 1 +

Q

f
.

(6.2)
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The solution is actually supersymmetric if Φ(~x, v) takes the form

Φ(~x, v) =

∞∑
n=−∞

cne
−in v

Ry

(
r2

r2 + a2

) |n|
2

, (6.3)

where Ry is the radius of the circle S1 and the coefficients cn satisfy (cn)∗ = c−n. This solution
is written in a set of coordinates that resembles the polar coordinates of R4. The latter are given
by:

x1 = r̃ cos θ̃ cosψ , x2 = r̃ cos θ̃ sinψ , x3 = r̃ sin θ̃ cosφ , x4 = r̃ sin θ̃ sinφ . (6.4)

The coordinates r and θ are related to r̃ and θ̃ by the relations

r2 cos2 θ = r̃2 cos2 θ̃ , (r2 + a2) sin2 θ = r̃2 sin2 θ̃ . (6.5)

Notice however that the two set of coordinates coincide at infinity, where r2 � a2. Furthermore
we have introduced the notation c2

θ = cos2 θ, s2
θ = sin2 θ.

Our goal is to expand this geometry at large distances (r → 0); in fact this will be the
appropriate expansion in order to compare the result with the string amplitude. As one goes to
infinity Φ approaches a regular function, that we call g(v). In the large distance limit we have
r2 + a2 ' r2, and the metric becomes:

ds2 ' −(du+ g(v)dz1)dv +
[
dr2 + r2dθ2 + r2c2

θdψ
2 + r2s2

θdφ
2
]

+ dzadza . (6.6)

From this expression we see again that, in the large distance limit, we can safely treat r, θ, φ and
ψ as polar coordinates. This metric is flat, although not written in the “standard” coordinates.
In order to remove the extra term −g(v)dz1du we perform the following diffeomorphism:

z′1 = z1 −
1

2

∫
g(v)dv, u′ = λ

[
u+

1

4

∫
g(v)2dv

]
, v′ =

v

λ
. (6.7)

There is a subtlety here: y is a compact coordinate, i.e. we have the identification y ≈ y+2πRy.
We must require that the coordinate t′ satisfies t′(y = 0) = t′(y = 2πRy). This fixes the value
of λ to:

λ−2 = 1− 1

8πRy

∫ 2πRy

0
g2(v)dv . (6.8)

The resulting metric at infinity is now given by:

ds2 ' −du′dv′ + dxidxi + dz′1dz
′
1 + dz2dz2 + dz3dz3 + dz4dz4 , (6.9)

which is the standard form for a flat metric expressed in lightcone coordinates. In order to find
a correct expansion comparable with the result of the string amplitude, we must first apply the
same diffeomorphism to the complete metric (6.1). Let us define Ā as

Ā = A− Φ(~x, v)dz1 =
aQ

f
{s2
θdφ+ c2

θdψ} . (6.10)

The metric after the diffeomorphism reads

ds2 =− 1

H

[
du

λ
− λ

4
g2dv + Ā+ Φdz1 +

λ

2
Φgdv

]
[λdv +B] +Hf

[
dr2

r2 + a2
+ dθ2

]
+H

[
r2c2

θdψ
2 + (r2 + a2)s2

θdφ
2
]

+ dzadza + λgdz1dv +
λ2

4
g2dv2 .

(6.11)
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This is the complete solution expressed in standard coordinates, i.e. such that the metric at
infinity approaches the flat metric written in standard form. We then perform an expansion of
this metric at large r: remember that the function Φ(~x, v) approaches the function g(v). The
resulting coefficients are:

gvv = − 1

H

(
−λ

2

4
g2 +

λ2

2
Φg

)
+
λ2g2

4
' (1−H−1)

λ2g2

4
' λ2g2 Q

4r2
,

gvu =
1

2

(
− 1

H

)
' −1

2
+

Q

2r2
,

gvz1 =
1

2

(
− 1

H
Φλ+ gλ

)
' 1

2
λg(1−H−1) ' λg Q

2r2
,

gij = Hδij ' δij +
Q

r2
δij ,

gab = δab ,

(6.12)

gvφ =
1

2

(
− 1

H

)(
−λ

4
g2 +

λ

2
Φg + λ

)
aQ

f
s2
θ ' −λ

aQ

2r2
s2
θ

(
g2

4
+ 1

)
,

gvψ =
1

2

(
− 1

H

)(
−λ

4
g2 − λ

2
Φg + λ

)
aQ

f
c2
θ ' −λ

aQ

2r2
c2
θ

(
−g

2

4
+ 1

)
,

guφ =
1

2

(
− 1

H

)
1

λ

aQ

f
s2
θ ' −

1

λ

aQ

2r2
s2
θ ,

guψ =
1

2

(
1

H

)
1

λ

aQ

f
c2
θ '

1

λ

aQ

2r2
c2
θ ,

gφz1 =
1

2

(
− 1

H

)
Φ
aQ

f
s2
θ ' −g

aQ

2r2
s2
θ ,

gψz1 =
1

2

(
1

H

)
Φ
aQ

f
c2
θ ' g

aQ

2r2
c2
θ .

(6.13)

Here we have divided the coefficients in two groups: those with no index along the R4 and those
with one index equal to one of the two angles φ and ψ. All the coefficients that are not explicitly
written, are intended to be zero. We remember again that the other NS -NS fields (Φ and Bµν)
of this solution vanish.

We are now ready for the calculation of the string disk amplitude, and then for the comparison
of the two results. Notice that the coefficient in (6.12) and (6.13) have explicit dependence on v
(through the function g = g(v)); we expect to derive the same dependence from the calculation
of the string amplitude.

6.2 Calculation of the string disk amplitude

The situation is completely analogous to the case we have studied in last chapter; the only
difference is the profile function f(v). We guess that we can derive our solution using a function
that is non-vanishing only along the direction z1. We have to sum three contribution, because
the open string can have:

1. both ends on a D1-brane

2. both ends on a D5-brane

3. one end on a D1-brane and the other on a D5-brane
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6. A new microstate of the Strominger–Vafa black hole

Let us analyse all these three contributions separately. We work with lightcone coordinates, and
use a generic profile function fa(v) with components along the torus. At the end we will restrict
to a profile only along z1. We remember that the flat metric written in lightcone coordinates
reads

ηµν =


0 −1

2 0 0
−1

2 0 0 0
0 0 1l 0
0 0 0 1l

 , ηµν =


0 −2 0 0
−2 0 0 0
0 0 1l 0
0 0 0 1l

 . (6.14)

The coordinates are always intended in the order (v, u, xi, za).

6.2.1 Open string with both ends on a D1-brane

What we have to do is to calculate the amplitude corresponding to a closed string emitted from
an open one stretching between D-1 branes carrying momentum. The key ingredient, as always,
is the matrix of boundary conditions R. When dealing with a D1-brane, the direction of the
torus are perpendicular to the brane itself, as the non-compact directions xi are. We thus expect
the matrix R to be completely analogous to (5.34), i.e.

(RD1)•• =


−2|ḟ |2 −1

2 0 2ḟa

−1
2 0 0 0

0 0 −1l 0

2ḟa 0 0 −1l

 , (RD1) •• =


1 4|ḟ |2 0 2ḟa

0 1 0 0
0 0 −1l 0

0 −4ḟa 0 −1l

 . (6.15)

The supergravity solution depends on xi and v; thus we take the momentum k having compo-
nents kµ = (kv, 0, ki, 0), or equivalently kµ = (0, ku, ki, 0). Anyway, looking at the fact that we
assume f i(v) = 0 together with (5.87) implies that we have

kv = 0⇐⇒ ku = 0 . (6.16)

The calculation goes in the very same way as in the case of a profile along R4; the only difference
is the matrix of boundary conditions, and the term 〈eik·X〉 which gives a trivial contribution,
due to the fact that the brane is located at r = 0 along the non-compact directions. Therefore
we have the following amplitude (in the NSNS sector):

A ∝ GµνRµν . (6.17)

Notice that the symmetry of Rµν implies that we do not have any contribution to the Kalb–
Ramond field. On the other hand we have a contribution to the dilaton, which is

A(Φ) ∝ Gµν(Φ)Rµν =
1

2
√

2
(ηµν − kµlν − kν lµ)Rµν = −

√
2 . (6.18)

From this amplitude we can derive a prediction for the dilaton. In particular

Φ(k) =
1√
2
A(Φ) ∝ −1 . (6.19)

We then have to subtract properly the contribution of the dilaton, in order to obtain the coeffi-
cients of the metric. The result is

hµν(k) ∝ Rµν −
Gφ · R
Gφ · η

ηµν = Rµν +
1

2
ηµν . (6.20)
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6.2. Calculation of the string disk amplitude

Therefore we obtain the following coefficients for hµν(k):

hvv(k) ∝ −2|ḟ(v)|2 , hvu(k) ∝ −3

4
, hva(k) ∝ 2ḟa(v) , hii(k) = haa(k) ∝ −1

2
. (6.21)

The coefficients are not dependent on k; performing the Fourier transform, and calling Q′1 an
overall multiplicative factor, we get the following (first order) predictions:

hvv ' −2|ḟ(v)|2Q
′
1

r2
, hvu ' −

3

4

Q′1
r2

, hva ' 2ḟa(v)
Q′1
r2

, hii = haa ' −
1

2

Q′1
r2

. (6.22)

We make the same Fourier transform for the dilaton, obtaining

Φ ' −Q
′
1

r2
. (6.23)

6.2.2 Open string with both ends on a D5-brane

Let us now consider what happens when the open string has both the endpoints on a D5-brane.
In this case the function fa(v) does not have the interpretation of the profile of the brane,
because the latter wraps around the torus. Anyway it make sense to consider the analogous of
the matrix (6.15), which can be obtained using T-dualities. The result is ([24]):

(RD5)•• =


−2|ḟ |2 −1

2 0 −2ḟa

−1
2 0 0 0

0 0 −1l 0

2ḟa 0 0 1l

 , (RD5) •• =


1 4|ḟ |2 0 −2ḟa

0 1 0 0
0 0 −1l 0

0 −4ḟa 0 1l

 . (6.24)

It can be checked that also this matrix satisfies T̄ = T at the boundary. If one compares this
expression with the one given in [24], one notice that there is the difference of the sign of the
profile fa(v). Obviously there is nothing physical in this change of sign. Anyway (6.24) is the
correct sign if we have to compare a D1-brane and a D5-brane. This fact will be very important
when dealing with the amplitude with mixed boundary condition. The fact that (6.15) and
(6.24) are consistent with each other can be seen from the calculation of the monodromy matrix
(see [26]), defined as Mµ

ν = (R−1
D5RD1)µ ν . Making the calculation one see that the result is

Mµ
ν = diag(1, 1, 1l,−1l), which is the came result one can obtain from the other system studied

in the previous chapter. This monodromy matrix make the worldsheet very simpler; one can say
that in this case the D1 and D5 branes has the same “profile”. A change of sign in (6.24) would
have produced a non-diagonal monodromy matrix, and a much more complicated situation.

The form of the amplitude is the same of the case with the D1-brane. We can see that the
contribution of the dilaton is

A(Φ) ∝ Gµν(Φ)Rµν =
1

2
√

2
(ηµν − kµlν − kν lµ)Rµν =

√
2 . (6.25)

Notice that the matrixRµν is not symmetric: this means the amplitude gives rise to a non-trivial
prediction for the Kalb–Ramond field. The correct normalisation is given by

hµν(k) ∝ Rµν −
Gφ · R
Gφ · η

ηµν = Rµν −
1

2
ηµν , Bµν(k) ∝ 1

2
(Rµν −Rνµ) . (6.26)

Performing the Fourier expansion, and calling Q′5 the overall constant, we get the following (first
order) predictions for hµν and Bµν :

hvv ' −2|ḟ(v)|2Q
′
5

r2
, hvu ' −

1

4

Q′5
r2

, hii ' −
3

2

Q′5
r2

, haa ' −
1

2

Q′5
r2

, (6.27)
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Bva ' −2ḟa(v)
Q′5
r2

. (6.28)

We can do the same for the dilaton, and we obtain

Φ ' Q′5
r2

. (6.29)

6.2.3 Open string with ends on different types of brane

The third process we have to consider is that involving mixed boundary conditions. In this
case we have to insert two twisted vertex operators at the boundary of the disk, and to choose
the open string vertex operator with a −1 superghost charge. The situation is very similar
to the other D1-D5-P microstate we have studied in the previous chapter. The calculation of
the amplitude goes in the same way as in the case of profile along R4, and one arrives to the
following NSNS amplitude:

A ∝ kσGµνR ρ
ν vµρσ , (6.30)

where we have that 〈eik·X〉 gives here a contribution equal to 1. The product of the two Chan–
Paton factors µ̄ and µ involves the self-dual form vµνρ; from now on we assume that only the
following components are non-vanishing:

vv12 = vv34 , vu12 = −vu34 , (6.31)

where the equalities follow from the self-duality conditions (5.85). Thus the amplitude reads

A ∝ kl(GvµR i
µ − GiµR v

µ )vvil + kl(GuµR i
µ − GiµR u

µ )vuil . (6.32)

Using the explicit expression for the matrix R we have that

GvµR i
µ = −Gvi , GiµR v

µ = Giv , GuµR i
µ = −Gui ,

GiµR u
µ = 4|ḟ |2Giv + Giu − 4ḟaGia .

(6.33)

Notice that if we use RD5 instead of RD1 we get exactly the same result. This is an important
consistency check, and supports our choice of the sign of fa(v) in equation (6.24). Substituting
into (6.32) we get:

A ∝ kl(−Gvi − Giv)vvil + kl(−Gui − Giu − 4|ḟ |2Giv + 4ḟaGia)vuil . (6.34)

We use the fact that Gµν = ĥµν + 1√
2
b̂µν and express the amplitude in terms only of the

independent components (µ < ν):

A ∝ ĥvi(−2klvvil − 4kl|ḟ |2vuil) + ĥui(−2klvuil) + ĥia(4klḟavuil)+

+ b̂vi
(

2
√

2kl|ḟ |2vuil
)

+ b̂ia
(

2
√

2klḟavuil

)
.

(6.35)

From this last equation we can derive first order predictions for hµν(k) and Bµν(k). We also
reduce to the case fa = (f, 0, 0, 0); the result is

hvi(k) ∝ −klvvil − 2klḟ2vuil , hui(k) ∝ −klvuil , hiz1(k) ∝ 2klḟvuil ,

Bvi(k) ∝ 2
√

2klḟ2vuil , Biz1(k) ∝ 2
√

2klḟvuil .
(6.36)

Making the Fourier transform, the dependence on kl become a dependence on xl

r4 . calling K an
overall constant we arrive at the following coefficients:

hvi ' −Kvvil
xl

r4
− 2Kḟ2vuil

xl

r4
, hui ' −Kvuil

xl

r4
, hiz1 ' 2Kḟvuil

xl

r4
, (6.37)

Bvi ' 2
√

2Kḟ2vuil
xl

r4
, Biz1 ' 2

√
2Kḟvuil

xl

r4
. (6.38)
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6.3 Comparison between the supergravity geometry and the
string amplitude

At the beginning of the chapter, we said that our goal was to compare the string amplitude
with the supergravity solution of [27]. We immediately see that this will not be possible: the
supergravity solution has vanishing Kalb–Ramond field, while our amplitude predicts Bµν 6=
0. Anyway, this fact simply means that the supergravity solution does not have the simple
microscopic interpretation we have thought.

Nevertheless, n this section we inspect how far we can go in the comparison of the expansion of
the supergravity solution with the prediction deriving from the string disk amplitude. First of all
we have to sum the terms in (6.22) with the similar ones calculated in (6.27). We have to impose
that the charges of the two types of brane are equal; let us then assume that Q′1 = Q′5 = Q′.
Specialising to the case where fa = (f, 0, 0, 0) we obtain

hvv ' −4ḟ2(v)
Q′

r2
, hvu ' −

Q′

r2
, hvz1 ' 2ḟ(v)

Q′

r2
, hij ' −2

Q′

r2
δij , haa ' 0 . (6.39)

To get the prediction for the dilaton we have to sum (6.23) and (6.29):

Φ ' −Q
′
1 +Q′5
r2

= 0 . (6.40)

The Kalb–Ramond field receives contributions only from (6.28); we rewrite it here for conve-
nience:

Bvz1 ' −2ḟ(v)
Q′5
r2

. (6.41)

We immediately see that we have a match for the prediction Φ ' 0. Let us now turn to the
comparison of the metric coefficients (6.39) and (6.12); let us do it step by step: We immediately
see that we have a perfect agreement regarding the coefficient hab ' 0.
Let us turn to the coefficient huv: we have to compare hvu = −Q′

r2 with hvu = Q
2r2 . The two

agree if we impose
Q = −2Q′ . (6.42)

With this identification the agreement between hij = −2Q
′

r2 δij and hij = Q
r2 δij is guaranteed.

We now turn to the comparison of the coefficient hvz1 . From the string amplitude (6.39) we get

hvz1 = 2ḟ Q
′

r2 = −ḟ Q
r2 . Comparing to (6.12) we have to impose the relation:

ḟ(v) = −1

2
λg(v) . (6.43)

The last term hvv should be completely determined now. In fact from the string amplitude we got
hvv = −4ḟ2Q′

r2 . Using the identifications (6.42) and (6.43) this should be equal to hvv = 2ḟ2 Q
r2 =

λ2g2 Q
2r2 . Now we see a problem: we have a factor 2 of difference with the supersymmetric

solution (6.12). This problem is probably related to the fact that our string amplitude predicts
a non-vanishing Kalb–Ramond field ((6.41)), while the supersymmetric geometry has Bµν = 0.

The comparison of the other metric coefficient (6.37) and (6.13) requires a change of coor-
dinates in the R4 directions. We use the convention of (6.4). We notice however that we have
other non-vanishing predictions for the Kalb–Ramond field, given in equation (6.38). In order
to make the comparison of the metric, let us start from the simpler coefficient, i.e. hui. Our
goal is to derive hur, huθ, huφ and huψ. The first one is (thanks to the fact that hui = gui)

hur = hui
dxi

dr
= hui

xi

r
' −Kxixl vuil

r5
= 0 , (6.44)
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where we use the fact that vuil = −vuli. For the second one we notice that

dx1,2

dθ
= −x1,2 tan θ

dx3,4

dθ
= x3,4 cot θ . (6.45)

Using also the assumption (6.31), we get

huθ = hui
dxi

dθ
= tan θ(−x1hu1 − x2hu2) + cot θ(x3hu3 + x4hu4) '

' K tan θ
(
x1x2 vu12

r4
+ x2x1 vu21

r4

)
−K cot θ

(
x3x4 vu34

r4
+ x4x3 vu43

r4

)
= 0 .

(6.46)

We see that the string amplitude correctly predicts hur = 0 = huθ, in agreement with the
supersymmetric solution. Let us now turn to the calculation of huφ, using the fact that

dx1,2

dφ
= 0

dx3

dφ
= −x4 dx4

dφ
= x3 , (6.47)

we arrive at the following result:

huφ = hui
dxi

dφ
= −x4hu3 + x3hu4 = K(x4)2 vu34

r4
−K(x3)2 vu43

r4
= K

vu34

r2
s2
θ . (6.48)

In an analogous way we find also that

huψ = hui
dxi

dφ
= −x2hu1 + x1hu2 = K(x2)2 vu12

r4
−K(x1)2 vu21

r4
= K

vu12

r2
c2
θ . (6.49)

Using also vu12 = −vu34 we see that the result actually agrees with (6.13), provided that:

Kvu34 = −aQ
2λ

. (6.50)

We now turn to the analysis of the hiz1 terms. From (6.37) we see that hiz1 = −2ḟhui. Using
the identification (6.43) we should have hiz1 = λghui. This is indeed the case, as we can see
looking at (6.13). The last terms are hvi. From (6.37) we see that hvi has two contribution, one
proportional to xlvuil and one to xlvvil. We can use the same analysis we made for hui, and
conclude that hvr ' 0 ' hvθ. Using the identifications (6.43) and (6.50) we get

hvφ = K
vv34

r2
s2
θ − λ

aQ

4r2
g2s2

θ , hvψ = K
vv12

r2
c2
θ + λ

aQ

4r2
g2c2

θ . (6.51)

We now remember that vv12 = vv34; looking at the first term (the one not proportional to g2),
we can make it agree with (6.13) if we impose

Kvv34 = −λaQ
2

. (6.52)

We see that we have again a factor 2 of difference in the terms proportional to g2.
Let us now draw the conclusions from what we have found in this chapter. We tried to find

the microscopical origin of the supersymmetric solution (6.1); anyway, we found that the string
amplitude we have calculated fails to reproduce completely the solution. We can find a match
between many metric coefficients, but not all; we have found some factors 2 of difference. This
problem is related to the incongruence we have found for the Kalb–Ramond field; it is possible
that the two solution are somehow related to each other, even if they are not exactly the same.
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In fact, changing the gauge fields of a supersymmetric solution induces some changes in the
metric, if one wants to get another supersymmetric solution.

It is natural to think that in order to obtain (6.1) one has to take a more complicated
worldsheet setup: probably a “fine-tuning” of the microscopic situation is needed to make the
Kalb–Ramond field vanish.

One could continue the analysis checking whether the predictions coming from the string
amplitude satisfy the supersymmetry equation of motion at first order (as should be expected
for consistency): in order to do so, however, one needs also the R-R bosonic fields. One could
also try to deform in some way the solution (6.1), in such a way to derive a supersymmetric
solution with a non trivial Kalb–Ramond field. We think that such a deformation could be
responsible for all the mismatches we have described.
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Conclusions

In this work we presented the derivation of black hole microstates through the calculation of
string amplitudes.

We have described the properties of black holes in general relativity, the uniqueness theorems
and the thermodynamic properties. These two facts give rise to non-trivial puzzles, such as the
information paradox and the nature of the microstates responsible for the macroscopical entropy
of a black hole.

We have then turned to the study of black holes in supergravity, in particular in 11 and
10 dimensions; one has to consider suitable bound states of different types of branes, possibly
carrying momentum. Furthermore we have explained why a real black hole with non vanishing
horizon area needs the presence of at least three charges. In particular we have investigated the
properties of the Strominger–Vafa black hole, which is a three-charge system in a 5-dimensional
spacetime, and can be considered (in 10 dimensions) as the bound state of D1 and D5 branes
carrying momentum.

In order to give a microscopical interpretation to the properties of black holes, and to solve
the related problems, one has to turn to a quantum gravity theory. String theory provides such
a theory, and we turned to a brief study of its fundamental properties. It is then possible to
understand which sources can produce a solution with singularity, and to count all the possi-
ble microstates related to the same classical solution. We have seen how this count correctly
reproduces the entropy of the Strominger–Vafa black hole ([3]); furthermore we have described
a proposed solution to the information problem, the so-called fuzzball conjecture ([22]).

We have analysed the derivation of the microstate geometries from string amplitudes. The
idea comes from the interpretation of D-branes as surfaces where the endpoints of open strings
lie. These open strings can couple to closed ones, whose massless excitations describe the metric
and other supergravity fields. By computing the amplitude corresponding to this process one
can derive (at least in the large distance limit) the supergravity solution corresponding to the
bound states of D-branes. We expect this solution to describe a microstate of the corresponding
black hole.

We have reviewed the single-charge and the two-charge systems; we found that there is a
perfect matching between the amplitude predictions and some particular known supergravity so-
lutions. We have done the calculation only for a restricted set of bosonic fields, those appearing
in the NS -NS superstring sector. The analysis of the other fields has been made in the litera-
ture ([23], [24], [25]), resulting again in a perfect matching with the corresponding supergravity
solution. In the case of the three-charge black hole the situation is more complicated, and a
complete characterization of the microstates is still lacking. For this reason, the calculation of
string amplitudes provides one of the few methods to derive the supergravity solution describing
the microstates (at least in the large distance limit). We have done this for a particular mi-
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crostate; the complete analysis of this solution, and the proof that it is indeed supersymmetric
can be found in [26].

The new contribution of this thesis was the calculation of the amplitude of a string configu-
ration which should reproduce a different type of microstate of the Strominger–Vafa black hole.
The goal was to compare the amplitude prediction with a known supergravity solution, obtained
in [27], which is a candidate to be a microstates of the black hole. This calculation, however,
shows a non perfect matching between the amplitude predictions and the supergravity solution;
the reason is probably that we get a different microstate of the same black hole. What should be
done now, is to extend the calculation of the amplitude for all the other bosonic fields, belonging
to the R-R superstring sector; one can also compare these fields with the corresponding ones in
[27]. A non-trivial check is the verification that our solution coming from the string amplitude
is supersymmetric; in order to do so, one should verify that our first order predictions satisfy
the supersymmetry equations at first order. For this purpose all bosonic fields are needed.

This result shows that it is not clear the connection between string configurations and su-
persymmetric solutions. Given the supergravity solution, we have done the simplest possible
ansatz for the corresponding worldsheet setup; however, we have seen that simple configurations
on the worldsheet do not correspond to simple supergravity solution. We think that a suitable
“fine-tuning” of the microscopic configuration is needed in order to get the desired supergra-
vity solution, and make some supergravity fields (like the B field) vanish. More investigation
is necessary to arrive to a complete understanding of the microscopical intepretation of black
holes.

There are several ways one could complete and generalize the work described in this thesis.
First of all it would be interesting to analyse more string configurations and derive the corre-
sponding supersymmetric solutions, in order to have a complete description of the microstates
of a given classical solution, in particular black holes. Progresses have been done in the case of
the Strominger–Vafa black hole. It would also be interesting to deal with the four-charge black
holes in four dimensions.
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