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Introduction

The muon anomalous magnetic moment aµ = (gµ − 2)/2 is one of the most precisely

measured quantity, as one of the most precisely calculable in the Standard Model. For the

last twenty years, the experimental measurements have been pointing to a significant

difference from the theoretical prediction. The latest measurements from FNAL g-2

experiment, that confirmed the previous ones from BNL, shows a discrepancy with the

SM prediction of 4.2σ. In order to solve this situation and understand if it could lead to

new physics, both the theoretical and experimental uncertainties on the values have to

be reduced. On the experimental side, FNAL g-2 and a new experiment at J-Park are

trying to achieve higher precision, whereas the main contribute to the theoretical error is

due to the calculation of the hadronic contribute of aµ. With its experimental proposal,

the MUonE experiments is trying to calculate ahadµ with an innovative and independent

method, based on the calculation of a dispersive integral with a space-like approach.

To perform this calculation, the MUonE experiment will exploit experimental data on

the shape of the cross section of the elastic process µe −→ µe. High energy muons from

the CERN M2 beam line will interact with the electrons of Beryllum targets inserted in

a modular tracking system. A final electromagnetic calorimetr of PbWO4 scintillating

crystals is placed downstream the detector. As for today, the main analysis for the

extrapolation of the hadronic contribution is performed thanks to information from the

tracking system, but an alternative could be represented by the calorimeter.

In this thesis the role of the calorimeter is investigated and its performances are evaluated

through software simulations and with the analysis of data from the first test beam at

CERN. After a detailed introduction of the theoretical framework in the first chapter,

and the description of MUonE proposal and experimental apparatus in chapter 2, the

Fast Simulation software tool is introduced in the third chapter, including the new

features implemented in the latest Fast Simulation version used for this analysis. The

main goal of the simulation exercise is to study the performances of the calorimeter in
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Chapter 0. Introduction ii

terms of energy resolution and energy reconstruction, Particle identification and event

selection. At the end of chapter 4, a a preliminary evaluation of the contribution of the

calorimeter to the determination of the Mandelstam variable t is performed.

The final chapter is dedicated to the description and analysis of the calorimeter Test

Beam of July 2022, I was lucky enough to participate. A first prototype of the calorimeter

was tested in a one-week of data taking Test Beam at the T9 beam line of SPS at CERN.

The description of the apparatus and DAQ is presented and also the results from a

preliminary analysis on the electronic noise are reported.
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Chapter 1

Introduction to the Muon

Anomalous Magnetic Moment

1.1 The magnetic moment and its anomaly

The subject of this thesis is in the study of the muon magnetic moment and it’s anomaly.

To deeply understand the importance of this observable and its role on testing the

Standard Model of particle physics, it is necessary to retrace the mains steps that led

to its definition. In classical mechanic, an electric charge e with a mass m carries a

magnetic dipole moment defined as

µ⃗L =
( e

2m

)
L⃗ (1.1)

where L⃗ = mr⃗ × v⃗ is the orbital angular momentum. When the particle is in presence

of a magnetic field B⃗, the magnetic moment tends to align to the field, therefore the

particle experience a mechanical torque

M⃗ = µ⃗× B⃗ (1.2)

With the discovery of the spin, another magnetic moment was defined: the instrinsic

magnetic moment. In this definition, the orbital angular momentum L⃗ is replaced by the

spin S⃗ and the intrinsic magnetic moment is usually defined in terms of Bohr magneton

µB

µ⃗s = −g
( e

2m

)
S⃗ = −gµB

ℏ
S⃗ (1.3)

1
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µB =
eℏ
2m

(1.4)

Also in this case, a particle’s spin tends to twist to align with a magnetic field. This effect

becomes dramatically macroscopic when electron spins twist together in a ferromagnet.

The Dirac equation predicts fermion magnetic moments to be precisely two in units of

Bohr magnetons [1]. That means that the dimensionless giromagnetic ratio g needs to

assume the value 2. This theoretical prediction was supported by many experimental

measurement until, after twenty years, it was showed that the electron’s magnetic mo-

ment exceeded the value of 2 by a small quantity. The experiment was performed by

Kusch and Foley and the values for the electron anomalous magnetic moment was found

to be [2]:

gthe = 2 · 1.001161 (1.5)

gexpe = 2 · (1.001119± 0.00005) (1.6)

This discrepancy together with the existence of another anomaly, the Lambda Shift,

motivated a huge theoretical effort that gave birth to the QED thanks to which Schwinger

predicted the so called anomaly. In fact in QED the anomaly is explained with lowest-

order radiative correction to the Dirac moment and it quantifies the discrepancy between

the actual value of g and the value of 2. The electron anomalous magnetic moment has

been theoretically calculated to tenth order in quantum electrodynamics (QED) and

experimentally confirmed to about two parts in 1010. The muon anomalous magnetic

moment is also very precisely measured and the expected value is

aSMµ = 116591810(43)× 10−11[3] (1.7)

thath differs from the electronic one due to the different masses. However, the experi-

mental value, that will be described in detail in the next sections, is in tension with the

one predicted by the Standard Model. This discrepancy has provided a enduring hint

for new physics. The only way to solve this inconsistency is to try and the reduce the

experimental error and at the same time increase the theoretical accuracy.

Figure 1.1: Schwinger’s lowest order QED contribution to the anomalous magnetic moment
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1.2 Theoretical description of the muon anomaly

The muon is considered a heavier and unstable version of the electron. In the Standard

Model it is classified as a lepton, a particle with half integer spin. There are three

generations of leptons divided into doublets.

Le =

(
νe

e−

)
L

Lµ =

(
νµ

µ−

)
L

Lτ =

(
ντ

τ−

)
L

, (1.8)

The muon has a mass of 0.105GeV/c2 and a lifetime of 2.2µs. Its anomaly is a more

sensitive probe for new physics than its lighter version, the electron, but it is also more

affected by weak and strong interactions. In fact, as pointed out by Berestetskii et al

in 1956 [4], the anomalous magnetic moment is modified by quantum fluctuations of

heavier particles, as described by the formula

δal
al

∝
(
ml

M

)2

(1.9)

Accordingly to this relation, while the electron represents a stringent test for QED, in

the case of the muon, the sensitivity of deviation from pure QED is enhanced of a factor

m2
µ/m

2
e ∼ 43000. For the same reason the τ lepton should represent an even better

candidate for the research of new physics. Unfortunately, its short lifetime of about

290 fs makes it very difficult to measure aτ with the required precision with the current

technologies. Instead, the muon longer lifetime allows accurate measurements of its

different characteristics, including the magnetic moment.

1.2.1 Muon g-2 in the Standard Model

In the Standard Model, the muon anomaly can be expressed as a sum of the pure QED

term and the contributes of electroweak and strong interactions, as described by the

formula:

aSMµ = aQED
µ + aEW

µ + ahadµ (1.10)

While the electromagnetic and weak contributions can be calculated precisely with per-

turbative expansion, the evaluation of the hadronic contribution must rely on experi-

mental data or on lattice QCD calculations, as explained in the next sections. The most
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recent calculation for the Standard Model value is:

aSMµ = 116591810(43)× 10−11 [3] (1.11)

where the greatest source of uncertainty comes from the the hadronic contribution.

The most important hadronic contributions are the Leading Order Hadronic Vacuum

Polarization term, that relies on experimental data, and the Light-by-Light contribute.

Figure 1.2: Feynmann diagrams of the main contributes to amu

QED contribution

For the electron ae, that is the most precisely measured quantity in the SM, the pure

QED contribution is the dominant one. Dealing with the muon, the higher mass must be

taken into account. In fact, there are mass dependent terms that are therefore enhanced.

In particular we can write the QED contribution to amu as the sum of three terms:

aQED
µ = A1 +A2(mµ/me) +A2(mµ/mτ ) +A3(mµ/me,mµ/mτ ) (1.12)

Here the mass dependence is in evidence. While the first term is common for the three

leptons, the other two are suppressed in the case of the electron and they account for

internal loop diagrams as shown in fig.1.3 [5].

It is also possible to write aQED
µ expanding the coefficients Aj in perturbation series of

the fine structure α, thus obtaining with the latest calculations at five loops [3]:

aQED
µ (α(Cs)) = 116584718.931(7)(17)(6)(100)(23)× 10−11 (1.13)

aQED
µ (α(ae)) = 116584718.842(7)(17)(6)(100)(28)× 10−11 (1.14)

In the two calculations, the fine structure constant has been extracted from the mea-

surement of the Cesium atom or by the electron anomalous magnetic moment ae. In
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both cases, the main uncertainties arise from the τ -lepton mass, the eight/tenth/twelfth

order QED estimates and the fine structure constant α.

Figure 1.3: Second order QED diagrams that contributes to the muon anomaly.

Electroweak contribution

The electroweak contribution collects all the loop involving W±, Z or Higgs bosons (the

leading order diagrams are shown in the fig1.4).Therefore it is suppressed by a factor

∼
( mµ

mW

)2
and it is the least significant of all the contributions. The current calculations,

including two loops and leading order three loops, gives the value [6]

aEW
µ = 153.6(1.0)× 10−11 (1.15)

Figure 1.4: The leading weak contributions to aµ.
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The hadronic contribution

The hadronic contributions are divided into the hadronic vacuum polarization (HVP), at

leading order (LO) and next to leading order (NLO), and the light-by-light contributios,

which are summmed to give

ahadµ = aLO,HV P
µ + aNLO,HV P

µ + aHLbL
µ . (1.16)

Hadronic contributions cannot be determined by perturbation theory due to the non-

perturbative nature of QCD at low energies. Therefore other methods must be used. As

of today, all the three terms are determined by means of dispersion relation from cross

section of experimental data, and will be described more in details in the next section.

1.2.2 Hadronic Vacuum Polarization

This is the dominant hadronic contribution. The hadronic vacuum polarization is in-

serted in the internal photon line of the leading one loop muon vertex diagram in fig.1.5.

Figure 1.5: Leading order hadronic vacuum polarization diagram

Today, the main evaluation of aHV P
µ comes from a time-like data based approach, that

uses dispersion relation exploiting measurements of cross section of e+e− −→ had. Lately,

also lattice QCD (LQCD) has demonstrated important progress in the evaluation of this

contribution, but its precision is not competitive yet. In the next paragraphs, these two

methods will be analyzed and the latest results reported.

Time-like approach

The diagram representing the leading order hadronic vacuum polarization correspond to

a dispersion integral [5]
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aµ =
α

π

∫ ∞

0

ds

π
ImΠ

′had
γ (s)

K(s)

s
(1.17)

K(s) =

∫ 1

0
dx

x2(1− x)

x2 + (1− x)s/m2
µ

(1.18)

where K(s) is the well know kernel function as a function of the time-like squared

momentum transfer s = q2 > 0. The imaginary part of the self-energy function ImΠ
′had
γ

is determined via the optical theorem (displayed in fig.1.6) by the total cross section of

hadron production in electron-positron annihilation:

ImΠ
′had
γ (s) =

σ(e+e− −→ γ∗ −→ hadrons)

4πα/s
=
α

3
R(s) (1.19)

R(s) is the hadronic R-ratio, that is the ratio between the hadronic cross section and

the cross section σ(e+e− −→ µ+µ−). Substituting R(s) in eq.1.18, the dispersion relation

at leading order becomes

aHV P
µ =

α2

3π2

∫ ∞

m2
τ

ds

s
R(s)K(s) (1.20)

Figure 1.6: Schematic representation of the optical theorem

This methodology is based on the general principles of causality and unitarity, which

imply respectively analyticity of quantum field theory and, as already mentioned, the

validity of the optical theorem. But since at high energies, thanks to the asymptotic

freedom, QCD becomes perturbative, the common strategy is to divide the energy scale

and to use experimental data up to a certain energy Ecut and then perform perturbative

calculations. Therefore the final dispersion relation can be written as:

aHad
µ =

(αmµ

3π

)(∫ E2
cut

4m2
τ

ds

s2
Rdata(s)K(s) +

∫ ∞

E2
cut

ds

s2
RpQCD(s)K(s)

)
(1.21)
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In the recent review [3] several measurements of aHV P
µ from data collected by different

experiments are listed. For example, fig.1.7 compares results from different experiment

measuring the cross section in the π+π− channel, while fig.1.8 compares the final evalu-

ation from the inclusive cross section e+e− −→ hadrons. The discrepancies between the

different results are strongly affecting the precision of the combined cross section used

in the dispersive integral. Moreover, in the low energy region R(s) is highly fluctuating

due to the presence of hadronic resonances. The presence of ρ and ω resonance is the

raeson for the largest contribution to the error on aHLO
µ .

Figure 1.7: Comparison of evaluations of aHLO determined from pion cross section data.

Figure 1.8: Comparison of evaluations of aHO determined from hadrons cross section data.
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The final value for the hadronic LO and NLO vacuum polarization contribution from

the combination of all these experiments [3] are:

aHV PLO
µ = 6931(40)× 10−11 (1.22)

aHV P,NLO
µ = −98.3(7)× 10−11 (1.23)

Lattice QCD calculation

An alternative determination of aHV P
µ can be provided by lattice QCD. Significant pro-

gresses have been made in the last few years in lattice QCD calculations of the LO

part of the muon anomalous magnetic moment, aHV P
µ (LO). Recently, the BMW col-

laboration presented the first lattice QCD calculation of aHV P
µ (LO) with an impressive

sub-percent (0.8%) relative accuracy [7]. This remarkable result weakens the longstand-

ing discrepancy between the muon g-2 SM prediction and the experimentally measured

value. However, this result shows a tension with the timelike data-driven determinations

of aHV P
µ (LO). The lattice QCD value is 2.2σ higher than the Muon g-2 Theory Initiative

data-driven one.

Figure 1.9: Latest lattice results from BMW collaboration in 2021
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1.2.3 Hadronic Light-by-Light

The hadronic light-by-light process is the second largest source of uncertainty on the

muon anomaly, even though its contribution is smaller. In fact, the HLbL contribution to

the muon g-2 is suppressed by an extra power of the fine-structure constant α compared

to HVP and indeed is about two orders of magnitude smaller: hence it does not need

to be determined to the same level of accuracy. To meet the precision goal of the

ongoing Fermilab experiment it suffices to know the HLbL contribution with about 10%

relative accuracy. Unlike its QED counterpart, this contribution cannot be calculated

in perturbation theory, and thus one should rely on either lattice QCD or data-driven

evaluations, similarly to how it is done for the HVP contribution.

Figure 1.10: Feynman diagram of the hadronic light-by-light contribution.

Model based, past evaluations of HLbL before 2009 were summarized and combined with

some new estimates in [8] and in the review by Jegerlehner and Nyffeler [9]:

aHLBL
µ (Glasgowconsensus) = 105(26)× 10−11 (1.24)

aHLBL
µ (Jegerlehner −Nyffeler) = 116(39)× 10−11 (1.25)

They are consistent with each other and are actually largely based on the same model

calculations, but the estimates fall short of the present accuracy goal. Of even greater

concern is the question of ”model dependence” of these values and their uncertainties.

Recently a new data-driven approach has been developed, based on a dispersive relation,

providing a model-independent description of HLBL scattering which allowed a sizeable

reduction of the uncertainty. The current estimates reported in [10] are:

aHLBL
µ = 92(19)× 10−11 (1.26)

aHLBL,NLO
µ = 2(1)× 10−11 (1.27)
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1.3 Experimental measurements of aµ

The measurement of aµ has become more and more precise thanks to three experimen-

tal campaigns at CERN and and the more recent experiment of Brookheaven (BNL

E821). The latest results for the muon anomaly comes from the experiment Muon g-2

at Fermilab National Accelerator Laboratory (FNAL) [11], that confirmed the previous

measurements of BNL. The FNAl measurement, published the 7 April 2021, increased

the experimental precision up to (0.46 ppm) and found a value for the muon anomaly of

aµ(FNAL) = 116592040(54)× 10−11. (1.28)

After combination with previous measurements of both µ+ and µ−, the new experimental

average

aµ(Exp) = 116592061(41)× 10−11(0.35ppm) (1.29)

increases the tension between experiment and theory by 4.2 standard deviations.

Figure 1.11: Comparison of theory and experiments for the muon anomaly. Figure from [12]

The experimental method for measuring the muon anomalous magnetic moment exploits

the muon spin precession in presence of a uniform magnetic field. The frequency of

precession is a consequence of the interaction between muons intrinsic magnetic moment

and the magnetic field B⃗. When polarized muons are injected in the storage ring, the spin

precession frequency ωs is different from the cyclotron frequency ωc. The two frequencies

are defined as:
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ω⃗s = −gqB⃗
2m

− (1− γ)
qB⃗

γm
, ω⃗c = − qB⃗

γm
(1.30)

The anomalous precession frequency ωa is determined from the difference

ω⃗a = ω⃗s − ω⃗c = −
(
g − 2

2

)
qB⃗

m
= −aµ

qB⃗

m
(1.31)

Since the muons are injected in storage rings, also the presence of the Electric field

from electric quadrupoles, used to provide vertical focusing, must be taken into account.

In the presence of both magnetic and electric fields, the expression for the anomalous

precession becomes

ω⃗a = − q

m

[
aµB⃗ −

(
aµ − 1

γ2 − 1

)
β⃗ × B⃗

c

]
. (1.32)

The coefficient β⃗ × E⃗ disappears at a certain value of the momentum called ”magic

momentum” that is pmagic ≃ 3.09 GeV/c. therefore, tuning the particles energy at

exactly this value allows a precise measurement of aµ from the values of ω⃗a and B⃗.

The new FNAL experiment exploits the same concepts of the BNL one, but benefits

of some improvements. The polarized muons, produced by parity-violating pion de-

cay, are injected into the 1.45 T superconducting storage ring, same as BNL, but 2.5

times more uniform. Here the muon spin precession is measured exploiting the relation

between muon spin and decay positron direction. High energy positrons are emitted

preferentially in the same direction as the muon spin, so that the modulation due to the

spin precession results in a modulation of the number of positrons above a fixed energy

threshold observed in the calorimeters.

N(t) = N0e
−t/τ ′ [1 +Acos(ωat+ ϕ] (1.33)

where N0 is the total population at time t=0 and τ ′ = γτ = 64.4µs for FNAL, and τ

is the muon lifetime. In fig.1.12, the divergence between the muon momentum and spin

in a magnetic field in the case of g > 2 is shown. To detect the inward spiraling decay

electrons, FNAL uses 24 calorimeters, each containing a 9 × 6 array of PbF2 crystals

read by SiPMs.
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(a) (b)

Figure 1.12: Apparatus

The insert in fig.1.13 shows the number of events recorded in the calorimeters along time,

which clearly manifest a sinusoidal behaviour, whose dominant frequency is extracted

by a fourier analysis shown in the main figure panel.

To determine aµ, ωa is divided by the measure of the average magnetic field seen by the

muons ωp, that is measured very precisely using a pulsed-proton NMR probe. Therefore

the muon anomaly is given by:

aµ =
ωa

ωL − ωa
=

ωa/ωp

ωL/ωp − ωa/ωp
=

R

λ−R
(1.34)

where ωLis the Larmor precession frequency of the muon and λ = 3.18334539(10) [13]

is the muon-to-proton magnetic moment ratio. The value of R is determined by the

experiment and so the muon anomaly is then extracted.

In fig.1.11 is visible how the theory and the experiments are still differing by numerous

standard deviations. From the experimental side, to better understand the situation,

higher precision should be achieved. This is the goal of FNAL g-2 experiment and of a

new experiment at J-PARC [14], which will exploit a different experimental method to

measure the muon anomalous magnetic moment.

Instead of running at the magic energy, to avoid the complication coming from the

focusing electric field, the Japanese experiment will employ an ultra-cold muon beam.

In this way the transverse momentum dispersion in significantly smaller and the beam

can circulate in the storage ring without the focusing field. Such an ultra-cold beam

can be produced from an ultra-cold muon source, where cold muons are produced from
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Figure 1.13: Fourier transform of the distribution of positron vs time of FNAL experiment.

the resonant laser-ionization of muonium (Mu). Since there is no electric field, any

momentum can be ”magic” momentum, and so even lower momentum can be used, thus

reducing the size of the experimental apparatus. Having a single piece magnet allows a

precise control of the magnetic field uniformity and allows for higher precision.

Figure 1.14: Layout of the experimental apparatus for the J-PARC g-2 experiment



Chapter 2

The MUonE experiment

The MUonE experiment aims to make and independent and very precise measurement

of the leading order hadronic vacuum polarization contribute to the muon anomalous

magnetic moment, in the space-like region [15]. To calculate this contribution, MUonE

has to measure the hadronic part of the running of the electromagnetic constant, by the

scattering of high energy muons on atomic electrons of a Beryllium target through the

elastic process µe −→ µe. The differential cross section of this process, measured as a

function of the squared momentum transfer in the space-like domain, t = q2 < 0, provide

direct sensitivity to aHLO
µ . This space-like approach is meant to reduce the uncertainty

on the aHV P
µ since, in this case, the dispersive integral won’t be affected by the hadronic

resonances in the low energy region.

2.1 Space-like hadronic vacuum polarization

In the time-like approach, the HLO contribution to the muon anomalous magnetic factor

is given by the dispersive integral described by the equation (1.17). If we exchange the

x and s integration in this equation, we can obtain the space-like dispersive integral [16]

aHLO
µ =

α

π

∫ 1

0
dx(x− 1)Π̄had[t(x)] (2.1)

where

Π̄had(t) = Πhad(t)−Πhad(0) = ReΠ̄(t) + ImΠ̄(t) (2.2)

15
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and

t(x) =
x2m2

µ

x− 1
< 0 (2.3)

is a space-like squared four-momentum.

The effective fine-structure constant, at squared momentum transfer q2, can be defined

as

α(q2) =
α

1−∆α(q2)
(2.4)

where

∆α(q2) = −ReΠ̄(q2) (2.5)

For negative q2, like in the space-like region, ImΠ̄(q2) = 0. Therefore, the equation (2.1)

can be rewritten as

aHLO
µ =

α

π

∫ 1

0
dx(x− 1)∆αhad[t(x)] (2.6)

The hadronic shift, ∆αhad[t(x)], can’t be calculated from perturbation theory as it in-

volves QCD contributions at low-energy scales. Anyway, it can be defined at LO starting

from the effective coupling

α(t) =
α(0)

1−∆α(t)
(2.7)

where α(0) is the fine structure constant and ∆α(t) is the total shift

∆α(t) = ∆αlep(t) + ∆αhad(t) (2.8)

The hadronic contribution ∆αhad(t) can be extracted by subtracting the purely leptonic

part ∆αlep(t) from ∆α(t). The purely leptonic part can be calculated very precisely in

QED. The final result then is:

∆αhad(t) = 1−∆αlep(t)−
α(0)

α(t)
. (2.9)

This relationship is not true anymore at higher order, thus resulting in the need for a more

complex expression that must be implemented in Monte Carlo simulations. While the
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calculation’s precision of the time-like integral was affected by the hadronic resonances,

in the case of the master integral in the space like region of equation (2.6), the integrand

is a smooth function as shown in fig. 2.1. Therefore, the computation of the integral is

simplified. Furthermore, the running of alpha in the region of interest can be measured

by a single scattering experiment, reducing the uncertainties due to handling data from

different experiments. Up to date there are very few measurements of the running of α

in the space-like region. The most precise one was obtained from OPAL experiment at

LEP from small Bhabha scattering [17]. Based on this method [16], also the MUonE

experiment wants to measure the hadronic running of α(t)from µe −→ µe elastic scattering

at low energies, allowing a completely independent estimation of aHLO
µ .

Figure 2.1: On the left, leptonic and hadronic contribution to the running of αQED as a function
of x. On the right, the integrand (1− x)∆αhad[t(x)] as a function of x and t.

2.2 Experimental Proposal

MUonE aims at measuring the hadronic part of the running of the electromagnetic

coupling constant, in the spacelike region, by the scattering of high energy muons on

atomic electrons on a low-Z target through the elastic process µe −→ µe [18]. MUonE

will exploit the 150 GeV muon beam available at the CERN M2 beamline, scattering on

atomic electrons of a fixed Beryllium target. The high energy of the muons beam allows

the inspection of almost all the region of the integrand function seen in fig.2.1.

The MUonE experimental proposal is appealing for different reasons. First of all, the

differential cross section of the involved process is measured as a function of the squared

momentum t = q2 < 0, and it provides sensitivity to the leading order hadronic contri-
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bution to the muon anomaly. The dependence on the running of the coupling constant

is described by the following relationship:

dσ

dt
=
dσ0
dt

∣∣∣∣α(t)α(0)

∣∣∣∣2 (2.10)

where dσ0/dt is the effective Born cross section. Moreover, the kinematic of the elastic

scattering is well known and determined by angular observable. In fact, the angles of

scattered electrons and muons are correlated, as will be described more in details in the

next sections. In the fixed target µe −→ µe scattering is also possible to relate the value

of t to the scattered electron energy according to the relation:

t = (piµ − pfµ)
2 = (pie − pfe )

2 = 2m2
e − 2meE

f
e (2.11)

Finally, the boosted kinematics of the elastic scattering guarantees the containment of

all events in a single homogeneous detector, since the angular deflection stays in a 50

mrad interval.

2.2.1 Precision requested for the measurements

The main challenge of MUonE proposal is to achieve the precision of 10−2 on αhad, that

implies obtaining the precision of 10−5 on the shape of the differential cross section,

which in order implies knowledge of the systematic uncertainties with about 10 ppm

precision. The main contributions to the systematic effects can be divided into two

categories: the experimental and the theoretical uncertainties.

• Experimental systematic uncertainties The requirements on the experimen-

tal side are: i) uniformity of the efficiency over all the q2 range; ii) the correct

alignment of the tracking stations and the inside elements; iii) correct description

of the effect of multiple coulomb scattering, which breaks the muon electron an-

gular correlation; iv) knowledge of the detector resolution to properly control the

shape of the cross section.

• Theoretical systematic uncertainties In order to correctly extract ∆α the

Monte Carlo code for the process should be accurate to the Next to Next to Leading

(NNLO) level of radiative corrections. The contributions included in the Monte

Carlo event generator will be fully described in section 3.
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2.2.2 Extraction of the hadronic contribution

As previously stated, when higher order corrections are duly taken into account, the

dependence of the cross section on the running of the coupling costant becomes more

complicated. In any case the hadronic contribution is determined from the ratio Rhad(t)

between the observed cross section and the theoretical prediction evaluated for α(t)

corresponding only to the leptonic running [19].

In the simplest case, at LO, this ratio is simply proportional to

RLO
had =

(
1− ∆αhad(t)

1−∆αlep(t)

)−2

≃ 1 + 2
∆αhad(t)

1−∆αlep(t)
(2.12)

At NLO the dependence is more complex and a Monte Carlo simulation is needed. The

extraction of the hadronic contribution is then performed by a template fit method,

which uses a parametrization for the hadronic contribution. The used parametrization

is physically inspired to the one-loop QED calculation of vacuum polarisation induced

by a lepton pair in the space-like region [18]:

∆αhad(t) = k

{
− 5

9
− 4M

3t
+

(
4M2

3t2
+
M

3t
− 1

6

)
2√

1− 4M
t

log

∣∣∣∣∣1−
√
1− 4M

t

1 +
√

1− 4M
t

∣∣∣∣∣
}

(2.13)

From the experimental side, the counting ratio can be define as a function of the exper-

imental cross section, with respect to the MC simulated data

RLO
had =

dσdata(∆αhad(t) ̸= 0)/dt

dσMC(∆αhad(t) = 0)/dt
=
dNdata(∆αhad(t) ̸= 0)/dt

dNMC(∆αhad(t) = 0)/dt
(2.14)

The observable used for the analysis are the inclusive distributions of the muon and

electron scattering angles, and also the two-dimensional distribution of the two. The

analysis workflow can be summarized in the next points:

1. Construction of a detector with a good data quality in terms of event selection and

rejection of background.

2. Redundant measurement of observables (scattering angles, electron energy) related

to t.
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3. Count of the number of signal events as a function of the momentum transfer t.

4. Extraction of the hadronic contribution to the running of α starting from the ration

previously described, using the template fit method.

5. Computation of the dispersive integral in eq. (2.6) to get aHLO
µ .

To reach the required precision, MUonE has to collect a final statistic of

Ntot = L ·σµe ∼ 3.7× 1012 (2.15)

that translates into 2 years of data taking with a energy of the beam of 150GeV , with

a rate of ∼ 1.3× 107muons/s, with a Be target of thickness d= 60 cm, guaranteeing an

integrated luminosity of 1.5× 107nb−1.

2.3 The elastic scattering process

Since the experimental proposal exploits the cross section of muon on electron elastic

scattering, a deep knowledge of the process is needed. In fact, a proper selection of these

events from the radiative background is crucial for the MUonE analysis. The event

selection is supposed to be performed primarly by the tracking system [20], that will

exploit the elastic relationship between the scattering angles. Anyway, event selection

by mean of calorimetric measurements is also possible and is investigated in this thesis.

Figure 2.2: Representation of the elastic scattering µ −→ e in the Laboratory frame

Before describing the useful properties of the elastic scattering, on which the experiment

is based, it is important to study its kinematics. Schematically, the process is represented

by

µ±(p1)e
−(p2) −→ µ±(p3)e

−(p4) (2.16)

where p1 and p3 are respectively the four momenta of the ingoing and outgoing muon,
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and p2 and p4 the four momenta of the electron. At LO the interaction is mediated

by photon in t-channel, carrying the transfered momentum t. The representation of

the process in the laboratory frame is shown in fig.2.2. In this reference frame the four

momenta are the folowing:

p1 = (Eµ, pµ, 0, 0)

p2 = (me, 0, 0, 0)

p3 = (E
′
µ, p

′
µcosθµ, p

′
µsinθµ, 0)

p4 = (Ee, p
′
ecosθe, p

′
esinθe, 0)

(2.17)

Moreover, since it is a fixed target experiment, the electron is initially at rest, thus the

Mandelstam variables in the laboratory frame write as:

s = (p1 + p2)
2 = (p3 + p4)

2 = m2
µ +m2

e + 2meeEµ

t = (p1 − p3)
2 = (p2 − p4)

2 = 2m2
e − 2meE

′
e

s+ t+ u = 2m2
µ + 2m2

e

(2.18)

For elastic scattering events, the squared transfer momentum is computable from the

measurements of the energy of the scattered electron. The energy of the scattered

electron is measured in the calorimeter, but also it is related to the scattering angle, once

the energy of the muon beam is known. In fact, from the four momentum conservation,

Ee is defined as:

Ee = me
1 + r2cos2θe
1− r2cos2θe

, r =

√
E2

µ −m2
µ

Eµ +me
(2.19)

The maximum energy of the electron occurs for θe = 0 and it corresponds to Emax ≃
139.8 GeV for the selected beam energy. While the scattered electron energy runs in

the interval [0, Emax], the momentum transfer ranges in the negative interval [tmin, 0].

The limit value tmin is defined as tmin = −λ(s,m2
µ,m

2
e)/s and it is equal to −0.14289

GeV 2 for a muon beam of 150 GeV. The value of tmin corresponds to xmax = 0.93212,

meaning that a muon beam of this energy allows the inspection of more than the 87% of

the integrating region of the dispersive integral in eq. (2.6), from witch aHLO
µ is obtained.

The elastic relationship between the scattering angles of muons and electrons can also

be obtained by the conservation of four momenta. It relates the angles in the laboratory
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frame and can be defined as:

tanθµ =
2tanθe

(1 + γ2tan2θe)(1 + gµ∗)− 2
(2.20)

where

gµ∗ =
β

βµ∗
=
Eµme +m2

µ

Eµme +m2
e

(2.21)

and βµ∗ is the muon velocity in the CMS. The elasticity curve, described by this relation,

is shown in fig.2.3, and it represent the main experimental signature for elastic events,

together with the requirement of planarity. On the other hand, the event selection based

on elastic requirements on the angles is limited by the angular resolution of the tracking

system, leading to a ambiguity in the association of the angles to the scattered particles.

This ambiguity will be better described in section 4.2, and will be resolved by PID using

calorimetric informations.

Figure 2.3: Elastic relationship between the muon and electron scattering angle at the muon
beam momentum of 150 GeV



Chapter 2. The MUonE experiment 23

2.4 Experimental Set Up

The features of MUonE experimental apparatus are constrained by the request on the

final precision needed in the measurement. Since the goal of the experiment is to precisely

measure the shape of the differential cross section of the elastic process, a modular setup

has been chosen in order to minimize the effect of the Multiple Coulomb Scattering.

This way, the muon beam of 150 GeV from the CERN M2 beamline will impinge on

a total Be target thickness of 60 cm, required to collected the necessary statistics, but

sliced into 40 different layers, to minimize the MCS and recover the necessary resolution

of the tracking system. As shown in fig.2.4, the final apparatus will then comprehend:

1. 150 GeV muon beam.

2. 40 identical tracking stations, each of them equipped with a 15 mm Beryllium (Be)

target and three couple of Silicon (Si) sensors.

3. an Electromagnetic Calorimeter (ECAL) made by an array of PbWO4 scintillating

crystals, read by Avalanche Photo Diodes (APDs).

Figure 2.4: MUone experimental apparatus

2.4.1 Tracking system

The tracking system is crucial for the achievement of MUonE proposal, since it has to

measure the muon and electron scattering angles. The efficiency of the detector must be

uniform in all the q2 range of interest, corresponding to an electron energy greater than 1

GeV. Giving that the energy of the muon beam is 150 GeV, the total angular acceptance

of the detector must cover scattering angles of at maximum 30 mrad. Therefore, an active

area of 10× 10 cm2 for the tracking module is sufficient to contain all the kinematics of

the events.

A Silicon detector based tracking system represents an ideal choice for MUonE since it

guarantees: high spatial precision, compactness to allow modularity, high rate sustain-

ability, high uniformity and efficiency and easy integration in the trigger system.
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Figure 2.5: A single tracking station with the Si sensors and the Be target.

Tracking stations and alignment

The layout for the single tracking station is reported in fig.2.5. Each station will be

one meter long, so the total length of the tracking system will be of 40 m, for the final

apparatus. Up to today just two stations are completed and fully equipped and they

will be tested, together with the ECAL, in a dedicated test beam in October 2022. Each

tracking station is composed by the following elements:

1. a carbon fiber supporting structure

2. a target holder, whit the 15 mm thick Be target.

3. 6 Pt2S Silicon modules, organized in three couples.

4. Read out electronics for the Si sensors.

The first and the last couple of sensors are oriented in the (x,y) plane, while the inter-

mediate couple is rotated of 45° in order to remove the degeneracy of the tracks. To

optimize the hit resolution, the tilt of the (x,y) modules is being considered. This would

maximize shower sharing in adjacent strips.

To determine the mean energy of the beam, the only way is to relay on the kinematic

of the scattering, meaning that the precision on the energy measurement is related to

the angular resolution. The angular resolution is then related to the spatial resolution

of the alignment of the sensors inside the tracking station. In conclusion, to have the

required precision of 2 × 10−5 on the energy of the incoming beam, having a 1m long

station, a precision of 1µm is needed on the alignment of the sensors. Such request is

very challenging. The solution that MUonE is adapting is to perform the alignment of

the single tracking station by mean of Holographic Interferometry. The scheme for the

proposed Holographic Alignment Module (HAM) is represented in fig. 2.6(b). The goal

of this system is to monitor the relative distance between two tracking planes. The group
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(a)

(b)

Figure 2.6: Schematic representation of a tracking station (a), Scheme for the Holographic
Alignment Module (b).

of Trieste is already implementing the system to be ready for the test run of October

2022, and they plan to test it in the first tracking station. This system should be able

to reach a precision of 0.25 µm that is much beyond the required precision of MUonE.

Silicon sensors

The sensors chosen for the MUonE tracking system are the 2S Silicon strip sensors

developed for the CMS Tracker upgrade [21]. The relevant characteristics for the choice

of the Si sensors were the sensors active area, the single hit resolution, the material

amount and the front-end response time and maximum readout rate. The CMS 2S

modules feature 2 micro strip sensors per module (5 × 10 cm2), covering a final area

of 10 × 10 cm2, with a strip pitch of 90 µm. The number of strips for each sensor is

1016 and they are read by 8 ASIC chips (254 channels per chip). The total amount of

material for each sensor cover a thickness of 320 µm. They are being assembled by the

Perugia assembly group and already six of them are ready for the test run of October.

The read out rate required for MUonE is 40 Mhz. The two sensors are mounted together,

with a gap of 1.8 mm, and are read by common front-end CBC ASICs to correlate the

hits from the two sensors. This will also allow trigger purposes.
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(a) (b)

Figure 2.7: Exploded view of a 2S module of the tracking system(a). Lateral view of the 2S
module and the read out board (b).

2.4.2 The Electromagnetic Calorimeter

The forward Electromagnetic calorimeter (ECAL), covering all the detector acceptance,

is an essential part of the experiment both for particle identification and event selection.

In fact, a calorimetric measurement of the position of the electromagnetic shower could

resolve the uncertainty on the discrimination of muons and electrons due to the finite

angular resolution. At the same time, the measurement of the energy of the electromag-

netic shower could also give information on the elasticity of each event, helping in the

discrimination of signal events from backgrounds. Finally, the calorimetric measurement

of the electron energy provides an alternative determination of the value of t. All these

features of the ECAL will be investigated in detail in the next sections.

The proposed calorimeter for MUonE is homogeneous and will be composed by Lead

Tungstate (PbWO4) scintillating crystals, already in use in the CMS Ecal. It will be

placed downstream, after the tracking stations. To cover the angular acceptance of the

detector, the final calorimeter should have a surface of 1m × 1m. The first version of

this subdetector, that is the one that has been tested in the test beam of July 2022, and

will be used in the test run of October 2022, is composed by an array of 5× 5 crystals,

covering a total surface of 14× 14 cm2.
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(a) (b)

Figure 2.8: Photo of the 5× 5 array of crystals in the supporting structure (a). Schematic view
of the surface of the calorimeter (b).
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Chapter 3

Fast Simulation and event

generation

The Fast Simulation code for the MUonE experiment is a parametric simulation that

describes the effects of the detector on the particle characteristics (energy, momentum,

position...). The need for a Fast and parametric simulations comes from the high com-

putational challenge represented by the huge statistic needed for the precision required

by MUonE. A preliminary simulation is crucial to have rapid feedback in this phase of

development of the detector. The final analysis will then be performed with a complete

simulation based on GEANT, that will also be used to tune the parameters of the Fast

Simulation.

The Fast Simulation has already been used for the analysis of MUonE letter of intent

[18] and its updates [20]. But is also has been used for studies of sistematics, and for the

study of the setup for the test run of 2022 [22]. The new version of the code, updated to

account for NNLO radiative corrections, has been used for the first time in this thesis

work. The new code is also updated for the ”embedded” use of MESMER MC event

generator, meaning that while before the simulation was used only for the analysis of

pre-generated sets of events, now the generation is part of the code itself and it is possible

to run the (FORTRAN) generator and the (C++) fast simulation and analysis in the

same process. The first part of this thesis was than dedicated to the update of the Fast

Simulation in order to make the analysis part interact with the new NNLO events. In

fact, the presence of more than one radiated photon was not foreseen in the old version,

therefore parts of the code needed to be modified. More details on the structure of the

29
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Fast Simulation will be presented in the next paragraphs.

3.1 The MESMER event generator

MESMER (Muon Electron Scattering with Multiple Electromagnetic Radiation) is a

Monte Carlo event generator for high-precision simulation of muon-electron scattering

at low energies, developed for the MUonE experiment.

On top of the leading order µ±e− −→ µ±e− the code includes:

1. NLO QED corrections, meaning events up to one extra virtual or real photon [23];

2. NNLO QED corrections, describing up to two extra virtual or real photons [24];

3. leptonic pair production and extra NNLO virtual leptonic corrections [25];

4. emission of a pion via µ±e− −→ µ±e−π0, with the pion decaying in to gammas [26].

While the last two corrections are included in the code but not public yet, the NLO

were already included in all the analysis made with the Fast Sim previous to this thesis.

The NNLO corrections instead have been used for the first time in this thesis and are

described more in detail in this section.

3.1.1 NNLO corrections

The complete set of NNLO QED corrections along the electron line entering the process

µ±e− −→ µ±e− consists of three parts with contributions due to virtual and real photons:

• virtual two loop corrections - diagrams of the type 1a and the irriducible 1b-1d.

• one-loop corrections to single photon emission given by diagrams as in 2a-2b.

• double bremsstrahlung process µ±e− −→ µ±e− + γγ given by contributions as in

2c-2d.

All the above contributions are infrared-divergent quantities. The IR divergences are

regularized by means of a small photon mass and a slicing photon energy parameter to

separate soft from hard real radiation [24]. The total contribution up to NNLO accuracy

implemented in the MESMER MC generator can be summarized by the formula:

dσNNLO = dσα
0
+ dσα

1
+ dσα

2
(3.1)
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where the dσα
0
describes the tree level contributions and dσα

1
the NLO contributions.

Figure 3.1: Virtual QED corrections to the electron line. One-loop correction (diagram 1a);
sample topologies for the two-loop corrections (diagrams 1b-1d).

Figure 3.2: Sample diagrams for the one-loop QED corrections to single photon emission (dia-
grams 2a-2b); sample diagrams for the double bremsstrahlung process (diagrams 2c-2d).

The final MUonE analysis, for the calculation of the hadronic contribution to the muon

anomaly, will include all these new contributions. The analysis presented in the MUonE

letter of intent that pointed out the feasibility of the experiment proposal have then to

be counter-checked including these corrections. Anyway, a phenomenological study of

the different observable used in the analysis [24], points out that the size of the NNLO

corrections, with respect to the LO differential cross-sections, is at the level of a few

10−4 for several regions of phase space in the presence of acceptance cuts only, leaving

some corners of phase space where the corrections can grow up to the per cent level.

Hence, the results from the LOI analysis are not expected to change. As a first step

towards the complete inclusion of NNLO corrections in the MUonE experiment analysis,

one of the activity of this thesis work consisted in the reproduction of previous studies,

to check whether the presence of NNLO correction in the generated sample of events

had some impact on the final results. The complete process is described in details in the

next sections.
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3.1.2 Photons energy distribution

The main practical difference related to the inclusion of NNLO radiative corrections in

the MC generator is the possibility of having up to two real photons in the final state of

the simulation. The emission of one or more photons spoils the two body kinematics and

the calorimeter can be used to discard these background events, as will be shown in the

next sections. However, the emission of the photons is collinear to the electron direction.

Therefore, the purely calorimetric measurement of the variable t is not perturbed by the

final state radiation. From the MC sample of data is possible to investigate how many

photons are expected in the final state of the collected events. The number of events

with 0,1 or 2 emitted photons, for events including only NLO corrections and also NNLO

corrections, are displayed in the graphs of fig. 3.3. The percentage of the different final

states, for different photon energy thresholds, are also shown in table 3.1.

(a)

(b)

Figure 3.3: Number of events with 0,1 or 2 real photons in the final state for NLO events (a),
and NNLO events (b).
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0 photons 1 photon 2 photons

NLO all 53.3% 46.5% -

NNLO

all 59.4% 30.6% 10.0%

Eγ > 1MeV 59.4% 28.1% 8.9%

Eγ > 10MeV 59.4% 24.9% 7.6%

Eγ > 100MeV 59.4% 19.2% 5.6%

Table 3.1: Distribution of the final states, with different photon energy thresholds.

It is interesting to notice that the emitted photons have a low energy, very few of them

have an energy higher than 100 MeV. Also, in the events with one or more photons, the

electron energy distribution is shifted towards lower energies closer to zero, since part of

the energy is transferred to the photons. In fig. 3.4, the total energy distribution of the

electron is divided into the three contributions. The bulk of electrons with low energy

is represented by the final states with one or two photons, while the electron energy for

elastic events has a peak around 1 GeV.

Figure 3.4: Virtual QED corrections to the electron line. One-loop correction (diagram 1a);
sample topologies for the two-loop corrections (diagrams 1b-1d).
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3.2 The Fast Simulation of the Test Run appa-

ratus

The Fast Simulation developed for MUonE is a parametric simulation needed for pre-

liminary analysis due to the large amount of statistic required. In fact, a parametric

simulation reduce the power consumption and the amount of time necessary to analyse a

large sample of data. As stated before, the new version of the simulation is configured to

run together with the MESMER MC event generator, so it is possible to divide the full

package into a first generation phase plus the description of the detector, including the

propagation of the particle along the detector, and a final analysis of the data. This final

analysis than can be compared with the experimental data. The MC event generator

was described in the previous subsection. In the next pages, the layout of the detector

description inside the code is provided.

Figure 3.5: Graphical layout of the Test Run experimental apparatus from [22].

The version of the code used in this thesis work, describes the MUonE experimental

apparatus foreseen for the Test Run of October 2022 and was developed by E. Spedicato

in her master thesis work ”Fast simulation of the MUonE 2021 Test Run setup” [22].

The Test Run, rescheduled for October 2022, will see for the first time two tracking

stations and the electromagnetic calorimeter (5× 5 crystals array) working together. In

the fast simulation the following characteristics of the setup are included:

• Beam spot and divergence of the muon beam.

• Multiple Coulomb Scattering of electrons and muon with the Beryllium targets

and the Silicon layers of the sensors.

• Parameterization of the electromagnetic showers generated by electrons and pho-
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tons inside the ECAL.

The code was updated to work with in the ”embedded” mode, together with the MES-

MER generator, and also slightly modified to account for the higher numbers of photons.

3.2.1 Beam Spot and Divergence

The MUonE experiment will employ the upgraded M2 muon beam available at the CERN

SPS [27]. The muon beam has an energy of Eµ = 150GeV , with a beam spread of the

order of 3%. The cross section of the beam in the plane perpendicular to its motion,

beam spot, is characterized by the parameters σx = 26 mm and σy = 27 mm [18]. The

dimension of the beam has been taken into account in the simulation and the generated

muons have been assigned a random coordinate, according to a Gaussiang distribution:

xR → Gauss(0, σx)

yR → Gauss(0, σy).
(3.2)

The beam also has an angular divergences of σx′ = 0.27mrad on the XZ plane and

σy′ = 0.27mrad. The divergence was also taken into account in the simulation of the

incoming beam by mean of Gaussian distribution in the initial angles θx and θy.

θx → Gauss(0, σx′)

θy → Gauss(0, σy′)
(3.3)

Figure 3.6: Virtual QED
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The kinematical properties of the incoming muon beams impact also on the properties

of the outgoing particles in the final state. In fact, due to the angular divergence,

the direction of the incoming muon beam is no more aligned with the z-axis but it is

rotated in agreement with the divergence of the beam. Therefore also the momenta

of all the outgoing particles, from the interaction with the target, have to be rotated

by consequence. As a first step, the incoming muon momentum is modified the new

components are calculated according to:


P ′
z =

√
|P⃗in|

1+tan2(θx)+tan2(θy)

P ′
x = P ′

z tan(θx)

P ′
y = P ′

z tan(θy)

(3.4)

The new vector still has the same absolute value, it is only rotated. Then the final

momenta of the outgoing particles are rotated using a rotation matrix R:

R = Rx′Ry =

 cos ψ 0 sin ψ

− sin φ sin ψ cos φ sin φ cos ψ

− cos φ sin ψ − sin φ cos φ cos ψ

 . (3.5)

where the two angles are defined by the components of the incoming muon momenta:

ψ = arctan
(P ′

x

P ′
z

)
(3.6)

φ = arctan
( P ′

x√
P ′2
x + P ′2

z

)
(3.7)

After being rotated, the outgoing particles are propagated through all the remaining

layers of the tracking stations until they impinge on the surface of the electromagnetic

calorimeter. The interaction with the detector layers also have an impact on the tra-

jectories, both on the incoming muon, before the scattering in the target, and on the

outgoing particles. This phenomenon is called Multiple Coulomb Scattering (MCS).

3.2.2 MCS and particles propagation

Charged particles traversing a material are deflected by many small-angle scatterings

with the atoms of the medium. The net scattering and displacement distributions are
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Gaussian according to the central limit theorem and are well-represented by the theory

of Moliére [28]. In MUonE experiment, the incoming muons have to pass through several

Silicon layers, and sometimes also Be layers, before interacting with the electrons in one

of the targets. Therefore, the MCS with all these layers has to be taken into account.

The modularity of the detector helps reducing the probability of multiple scattering,

but only with simulations it is possible to quantify the effect on the trajectories of the

particles. In the simulation from [22], no energy loss effect due to radiative processes, like

Bremmsstrahlung have been considered, hence the particles conserve the energy along

their path. Also, the photons were considered as propagating in straight lines, as the

pair production process in the tracking stations is not yet implemented.

Figure 3.7: Virtual QED

Each time a muon or an electron traverses a target or a silicon layer, in the simulation

the i-th exit angles are generated following a Gaussian distribution [29]:

θiXZ → Gauss( θi−1
XZ , θ0),

θiY Z → Gauss( θi−1
Y Z , θ0).

(3.8)

where

θ0 =
13.6

E (MeV )

√
d

X0

[
1 + 0.038 · ln

d

X0

]
(3.9)

The parameter of the Gaussian distribution depends on the thickness d and on the

radiation lenght Xo of the material, and on the energy E of the incoming particle.

Also the exit coordinates are redefined applying a Gaussian smearing on the entrance
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coordinates as described by:

xiout → Gauss(xiin,
1√
3
d θ0),

yiout → Gauss(yiin,
1√
3
d θ0),

(3.10)

After the propagation through the tracking stations, keeping into account the effect

of MCS and the initial beam spot size and divergence, the transversal profile of the

coordinates of the outgoing muons and electrons, at the surface of the electromagnetic

calorimeter, are as shown in fig. 3.8.

(a) (b)

Figure 3.8: Impact coordinates of the outgoing muons (a) and electrons (b) on the surface of the
calorimeter. The coordinates origin (0,0) corresponds to the center of the calorimeter surface.

3.2.3 Electromagnetic shower parametrization

In the last part of the Fast Sim, also the interaction of the outgoing particles with the

electromagnetic calorimeter is described. While the outgoing muons cross the ECAL,

releasing only a small fraction of their energy inside the crystals, electrons and photons

are absorbed by the medium. Electromagnetic calorimeters are specifically designed to

measure the energy of particles exploiting the process of electromagnetic showers. When

an electron or a photon enters in the calorimeter they start interacting with the medium

and lose energy. For energy lower than ∼ 10MeV electrons lose energy by ionization

and thermal excitation of the atoms of the material and photons interact via Compton

scattering and photoeletric effect . When the energy increases, the main source of energy

loss for electrons is Bremmstrahlung, while photons produce mainly electron-positron

pairs. As a consequence of these processes electrons and photons in the calorimeter
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produce secondary photons or electron-positron pairs. The secondary particle in turn

produce other particles giving rise to a cascade (shower) of particles. A schematic view

of the shower development is displayed in the fig. 3.9. The energy of the particles is

progressively degraded until it is not sufficient anymore to produce new particles and

it is mainly dissipated through ionization and excitation. This low energy threshold is

called critical energy Ec.

Figure 3.9: Virtual QED

The critical energy depends on the atomic number of the absorbent material and on its

radiation length as follows:

EC = 2.66

(
X0

Z

A

)1.1

(3.11)

The radiation length of a material represents the path after which the energy of the

electron is reduced by a factor 1/e. Photons do not lose energy but convert into electron

positron pairs: the probability for a photon to survive 7
9X0 path is equal to 1/e. The

radiation length is approximated by:

1

X0
=

4αNAZ(Z + 1)r2e ln(183Z
−1/3)

A
(3.12)

where NA is the number of Avogadro and X0 is measured in g/cm2. In the Fast Simula-

tion developed in [22], the shower has been modeled with the GFLASH parameterization

by G. Grindhammer and S. Peters in [30][31]. This method was already use for the

shower parameterization in the Fast Simulation of the CMS experiment electromagnetic

calorimeter as described in [32]. The CMS ECAL is made of the same crystals of MUonE

and it has a similar readout electronics.

In the GFLASH parameterization, the spatial energy distribution of the shower is divided
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into three probability density functions (PDF):

dE(r⃗) = Ef(t)dtf(r)drf(ϕ)dϕ (3.13)

where E is the energy of the impacting particle in units of Ec. The three PDFs represent

the three contributes to the spatial shower development.

• f(t) represents the longitudinal profile of the shower as a function of t, shower

depth in units of Xo.

• f(r) represents the lateral profile as a function of r, the radial distance in units of

the Moliére radius RM .

• f(ϕ) is the azimuthal distribution, assumed uniform.

All the material dependent parameters have been summarized in the next table. These

values are in common for CMS and MUonE electromagnetic calorimeters since the ma-

terial is the same, PbWO4, and also the lenght of the crystals is the same, l = 22 cm =

24, 7X0.

ρ = 8.28 g/cm3 X0 = 7.37 g/cm2 = 0.89 cm

Aeff = 170.87 EC = 8.74 MeV

Zeff = 68.36 RM = 2.19 cm

Longitudinal parameterization The mean longitudinal profile of a shower is de-

scribed by a gamma distribution:

f(t) =

〈
1

E

dE(t)

dt

〉
=

(βt)α−1βe−βt

Γ(α)
(3.14)

The longitudinal position of the shower maximum is T = (α − 1)/β. In calorimeters

with thickness ≃ 25X0, the shower longitudinal leakage beyond the end of the active

detector is much less than 1% up to incident electron energies of ∼ 300GeV . In case of

MUonE ECAL, the length of the active detector is ∼ 24, 7X0, so the expected leakage

is about 1% of the total energy of the particle.

Radial parameterization The radial parameterization runs in function of r that is

the radial distance in units of the Moliére radius RM . The Moliére radius is defined as

RM = X0
21.2 MeV

EC
(3.15)
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and it expresses the transversal size of the shower. The 90% of the shower is contained

within a radius of RM . The transversal section of MUonE crystals is of 2.85× 2.85 cm2,

that is comparable to the Moliére radius of PbWO4 material.

The radial distribution is defined by two components, as shown in the formula:

f(r) =
1

E

dE(t, r)

dr
=

= p
2rR2

C

(r2 +R2
C)

2
+ (1− p)

2rR2
T

(r2 +R2
T )

2
,

(3.16)

Here RC (RT ) is the median of the core (tail) component and p is a probability giving

the relative weight of the core component.

RC(τ) = z1 + z2τ

RT (τ) = k1
(
exp

[
k3(τ − k2)

]
+ exp

[
k4(τ − k2)

])
p(τ) = p1 · exp

(
p2 − τ

p3
− exp

[
p2 − τ

p3

]) (3.17)

More details on the shower parametrization and the code description can be found at [22].

Whit the addition of NNLO corrections, so with the possibility of having two photons, the

shower parameterization does not change. In principle, up to three different showers will

develop in the detector and are duly represented in the simulation: it should be noted,

however, that the photons are collinear with the electron so that, in the reconstruction

phase, the three showers are summed up in a single measurement, which determines then

the energy of the electron before radiation in vacuum.
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Chapter 4

The Electromagnetic calorimeter

The primary goal of this thesis work is to study the calorimeter performances both with

simulation and from the experimental side, studying the data from a dedicated test

beam. The aim is to investigate the role of the calorimeter for the MUonE experiment

in the achievement of different tasks as Particle Identification and selection of elastics

events. In addition, the potential for an alternative determination of t from the energy

deposit in the calorimeter will be inspected, allowing a comparison with the results from

the tracking system.

Figure 4.1: Schematic view of the crystals array. Only events in which the electron where
impinging in one of the nine central crystals were chosen for the analysis.

43
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4.1 Response of the ECAL

The measurement of energy with an electromagnetic calorimeter is based on the principle

that the energy released in the detector material by the charged particles of the shower,

mainly through ionization and excitation, is proportional to the energy of the incident

particle [33]. To show that a measurement of the signal produced by the charged tracks

of the cascade provides a measurement of the original particle energy E0, it is useful to

define the total track length of the shower T0.

T0(g/cm
2) ∝ X0

E0

ϵ
(4.1)

The term E0/ϵ indicates the number of particles in the shower and ϵ is a material

dependent parameter. In the case of MUonE homogeneous calorimeter, the measurement

is performed by collecting the light produced by the scintillating crystals. The intrinsic

resolution of an ideal calorimeter, without considering instrumental effects, is mainly

due to the fluctuations on the number of particles in the shower. Since the shower

development is a stochastic process, the intrinsic resolution is given by[33]:

σ(E) ∝
√
T0 (4.2)

Therefore the dependence of the fractional energy resolution is the following:

σ(E)

E
∝ 1√

T0
∝ 1√

E0
(4.3)

The actual energy resolution of a realistic calorimeter is deteriorated by other contribu-

tions and can be written in a more general way as:

σ(E)

E
=

a√
E

⊕ b

E
⊕ c (4.4)

The energy resolution is described by three terms in quadratic sum. The first term

is called ”stochastic term”, and is the one mentioned above depending on the shower

fluctuations and on the efficiency of photoelectron collection in the photosensors. The

second term is the ”noise term” due to the electronic noise of the readout chain. The last

term is the ”constant term” due to detector non-uniformities, shower leakage, knowledge

of calibration constants, etc. More details on the nature of these three term are given in

[33].
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The study the energy resolution of the calorimeter has bben performed by simulating an

electron beam of different energies impinging on the surface of the ECAL. The chosen

energies are Etrue = 0.25, 0.5, 1, 2, 2.5, 5, 10, 25, 50, 75, 100, 120 GeV. Only events in

which the electron impinged in one of the nine central crystals of the calorimeter were

chosen, as shown in fig. 4.1. The reason for this particular choice derived from a previous

study of [22], were it was established that the mean energy reconstructed in an array of

3× 3 crystals, around the seed crystal, was ∼ 95%. Excluding from the analysis events

impacting on the frame of the calorimeter guarantees that the analysis is not spoiled

by events not completely reconstructed . In the future also these frame events could be

recovered by means of specific algorithms or machine learning techniques.

Figure 4.2: Example of energy distribution inside the nine crystal for a electron beam of 75 GeV

Fig. 4.2 shows the energy distribution in all the 3 cells, for the sample with Etrue =

75 GeV. The electrons were impacting on the ECAL surface with different angular

directions, not only along the z-axis. From the graph it is visible how the main fraction

of the energy is deposited inside the seed cell (in red), while in the corner cells the energy

deposited is less than 1 GeV. For each event of the sample the energy reconstructed by

the calorimeter was defined as Ereco(3 × 3) and it is the sum of the energy deposited

in the 9 cells array. The distributions of Ereco(3 × 3) for the various energies Etrue are

reported in fig. 4.3.
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Figure 4.3: Energy reconstructed inside the 3× 3 array of crystal for all the studied energies.
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It should be noted that the electronic noise is not yet implemented in the Fast Sim. In a

reaslistic situation a more complex approach should be implemented in the reconstruc-

tion of low-energy showers, which are contained ina smaller array and are much more

affected by the effect of noise: at this stage of the analysis, however, a simpler approach,

the same at all energies, has been preferred.

0 2 4 6 8 10 12Real Energy (GeV)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

R
ec

o 
E

/R
ea

l E

Reconstructed energy vs real energy

0 2 4 6 8 10 12

Real Energy (GeV)

0.6−
0.5−
0.4−
0.3−
0.2−
0.1−

0

D
iff

Differences

(a)

20 40 60 80 100 120Real Energy (GeV)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

R
ec

o 
E

/R
ea

l E

Reconstructed energy vs real energy

20 40 60 80 100 120

Real Energy (GeV)
0.6−
0.4−
0.2−

0
0.2

D
iff

Differences

(b)

Figure 4.4: Distribution of the mean fraction Ereco(3 × 3)/Etrue in the energy range 0-12 GeV
(a) and 8-120 GeV (b)

Figure 4.5: Distribution of the mean fraction Ereco(3× 3)/Etrue for the different set of studied
energies.

From the peak values of Ereco(3× 3) with respect to the Etrue it is possible to evaluate

the mean energy reconstructed inside the array of cells. The ratio Ereco(3× 3)/Etrue is

reported in fig. 4.5. The plot shows that the algorithm is not stable for very low energies
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meaning that, going towards lower energies, the energy reconstructed is decreasingly less

than the true energy. While for Etrue > 10 GeV the mean energy fraction is stabilized

around a value
Ereco(3× 3)

Etrue
= 95, 7% (4.5)

This value confirmed the precedent value found in [22]. In all the analysis done with the

Fast Sim, the energy reconstructed in the calorimeter is always calculated as Ereco(3×3).

Therefore, while analysing the data, the value of the energy from calorimetric information

must be corrected accounting for the remaining 5% that is lost outside the array of

crystals. From the RMS of the energy distribution in fig.4.3, that are fitted with a Crystal

Ball function, it is possible to extrapolate the energy resolution of the calorimeter. As

stated before, the energy resolution is composed by three terms. The second term is the

”noise” term and it depends on the electronic noise of the readout chain. In the Fast

Simulation the effect of the readout chain is not implemented. Therefore the noise term

of the resolution is not simulated. For this reason, when fitting the ratio σ(E)/E only

the stochastic and the constant terms are inserted in the fitting function. The values for

the a and c coefficients are shown in fig.4.6

Figure 4.6: Calorimeter resolution as a function of E.

4.2 Particle Identification

The final computation of aHLO
µ is based on the use of muon and electron angular dis-

tributions to perform the template fit, hence it is crucial to perform a precise particle
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identification (PID) not to add any further systematic effect. Muons can be distinguished

from electrons using solely the angular information [18], with the exception of a limited

ambiguity region where θµ ∼ θe, which is determined by the the angular resolution of the

tracking system. As stated before, the muon and electron scattering angles are connected

by the elasticity condition defined by equation (2.20). The capacity of discriminate pre-

cisely between muons and electrons by means of the elasticity relation, depends on the

angular information, and therefore is dominated by the angular resolution. This de-

pendence is clearly visible in the fig.4.7 where different scenarios are depicted, with the

angular resolutions varying from 0.02 mrad to 0.1 mrad. As expected, the width of the

ambiguity region increases with degraded resolution.

Figure 4.7: Distribution of the two measured scattering angles, qle f t versus qright in mrad, for
events simulated with ideal angular resolution (only multiple scattering from the target included,
top left panel), angular resolution of 0.02 mrad (top right panel), 0.06 mrad (bottom left panel)
and 0.1 mrad (bottom right panel), respectively. In blue are the points corresponding to the
correct particle identification, in green the wrong identification [18]

The addition of calorimetric information is useful to remove the ambiguity region. In

fact, from the energy deposited in each crystal it is possible to extrapolate the position

of impact on the calorimeter surface of the electron,identified by the shower centroid. In

the definition from [34] the centroid coordinates are calculated by a weighted sum of the

energies Ei released in the single crystals:
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x =

∑
iwixi∑
iwi

, wi = max

{
0,

[
W0 + ln

(
Ei

ET

)]}
, (4.6)

The index i runs inside the 3× 3 crystals of the considered array. ET is the total energy

released in the nine crystals and W0 = 4.0 is an adimensional parameter. When θµ ∼ θe,

the elasticity condition does not give information whether the particle detected is a muon

or an electron because due to the angular resolution the particles are interchangeable.

But even though the scattering angles are similar, the actual impact position on the

calorimeter surface of the electron may be far from the impact position of the muon.

In fact, the scattering angles are defined with respect to the direction of the incoming

muon, that is close to the direction of the z-axis. The particles on the other hand,

travels at least one meter after the scattering so the distance between the particles in

the transverse plane increases. Combining the angular information with the centroid

position of the shower, the electron can be distinguished from the muon. This method

works only if the effective distance between the impact position of the muon and the

position of the electron is large enough not to be ambiguous too.

In this section, a study on the inter-particle distance is presented. The distance d

between the two impact points is defined as the distance between the shower centroid

coordinates in the transverse plane, as defined before, and the (x,y) position of impact

simulated muon extrapolated to the calorimeter surface.

d =
√
(xC − xµ)2 + (yC − yµ)2 (4.7)

The analysis discriminates between muons interacting in the first of the two stations, the

furthest from the calorimeter, and muons that scatter in the second target. In fig.4.8,

the distribution of the variable d is shown as a function of the following observables:

• mandelstam variable t;

• energy deposited inside the calorimeter Ereco(3× 3), calibrated to the missing 5%;

• electron scattering angle θe;

Also two acceptance cut were applied on the analyzed events, to ensure that all the

particles in the generate events reach the fiducial surface of the calorimeter, namely that

all the electrons of the selected events impact on one of the nine core crystals of the

calorimeter. The fiducial cut on the beam is imposed requiring that the impact point of

the incoming muon from the center of the target is distant rµ < 1.7cm. In addition, in
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order to increase the efficiency at large scattering angles, a threshold is applied to the

reconstructed cluster energy to be Ereco(3× 3) > 1 GeV [22].

From these general distribution, the difference between the events from target 1 and the

ones from target 2 is already visible. The distance of flight for the scattered particles

from target one is almost twice the distance from the second target. Therefore, also the

distance between the impact point on the calorimeter’s surface is greater.

(a) (b)

Figure 4.8: Distribution of the variable d as a function of the mandelstam variable t, the energy
of the electron E and the electron scattering angles, for muons interacting in target 2 (a) and
muons interacting in target 1 (b).
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The addition of the calorimetric information is crucial inside the ambiguity region, where

θµ ∼ θe. The maximum foreseen angular resolution is about 0.06 mrad. The distribution

of the distance d is plotted also as a function of the angular difference itself, in fig.4.9,

after selecting only events where the difference ∆θ = θe − θµ < |3mrad|. As expected,

there are more events in the positive region of ∆θ since for the kinematic of the process,

the electron is scattered to greater angles than the muon. Moreover, in all the range of

∆θ the distance d between the impact positions is stabilized around d ∼ 0.4 cm for the

events from target 2, and d ∼ 1 cm for the events from the first target.

(a) (b)

Figure 4.9: Distribution of the variable d as a function of the difference ∆θ = θe − θµ.

This is valid also for event where ∆θ = θe − θµ < |0.3mrad|, so when the difference is

smaller than the angular resolution. This is visible in the projections plotted in fig.4.10

(a-b), where even with low statistic the spatial distribution is clear. The two different

peaks are visible also in the projection of events with an electron energy restricted to

the range 70 < Ee < 80 GeV, in fig. 4.11. This is an interesting range since at Ee = 75

GeV there is the peak of the integrand of equation (2.6). These plots corroborate the

idea of using calorimetric information to distinguish between muons from electrons. In

fact, the main distance between the impact points is of the order of half of centimeter,

more than enough to guarantee the correct identification.
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(a) (b)

Figure 4.10: Projection of the distance d for events from target 2 (a) and events from target 1
(b) with a value of ∆θ = θe − θµ < |0.3mrad|.

Figure 4.11: Projection of the distance d for events from both targets inside the electron energy
range 70 < Ee < 80 GeV.

4.3 Event Selection

The event reconstruction in the MUonE tracker exploits the two-body kinematics to

allow the extraction of t from the emission angles of the two scattered leptons. The
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emission of one or more photons in radiative events spoils the kinematic bounds, resulting

in a biased determination of t (see also below). As shown below, the calorimeter allows

the selection of genuine two-body events. An algorithm for the event selection based on

calorimetric cuts is described in[22], and it has been tested up to NLO events generated

by the Fast Simulation. In this thesis, the same algorithm has been tested for NNLO

events.

This algorithm exploits the relation (2.19) between the electron energy E’e and its angle

θe which is valid only for two-body diffusion in order to reject radiative events. The

three cuts applied to the total generated sample are the following:

1. Acceptance cuts: same as the ones applied for the PID. They are needed to

maintain the events inside the fiducial surface of the detector and to level the

detector acceptance. They be summarized as follows

rµ < 1.7 cm , Ereco(3× 3) > 1GeV (4.8)

2. Cut on the energy fraction: electrons from elastic events are expected to have

an energy equal to Eth
el (θe) as described by eq.2.19. When compared with the

effective energy reconstructed by the calorimeter, if the ratio between the two

values differs from the mean reconstructed energy in the 3 × 3 crystal array the

event is not an elastic event. The cut on the energy is the following:

∆E(θe) =
Ereco(3× 3)

Eth
el (θe)

− 0.957 < 4σ(Eth
el (θe)) (4.9)

where σ(Eth
el (θe)) is RMS of the energy resolution function [22].

3. Cut on the shower centroid: the shower centroid is calculated starting from the

energy released in each crystal of the calorimeter. However, also photons release

energy inside the calorimeter, meaning that the presence of one or more photons

will shift the shower centroid away from the actual impact position of the electron.

Therefore, applying a cut on the difference between the reconstructed track of the

electron and the shower centroid removes radiative events. The applied cut is:

|R⃗| = |r⃗C − r⃗track| < 4RMS(Ereco(3× 3)) (4.10)

This selection is effective in rejecting radiative events, as shown in Fig.4.12 and 4.13,

which compare the electron and muon scattering angles at NLO and NNLO before (blue
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curve) and after (green) applying the cuts to the MC truth of events witouth radiation

(black). The green curve well overlaps to the black one for theta¡25 mrad; In the plots

in fig.4.12-4.13, the electrons and muons angles and energy are shown. The MC truths

at LO have been compared with the full set of events before and after applying the cuts.

Even starting from NNLO events, the distribution after the selection (the green curve)

follows very well the original LO distribution, both for angles and for energies. This is

a further proof that the effects of NNLO corrections on the final state observable are

almost undetectable.

Figure 4.12: MC truth distributions of electrons energy (top) and scattering angle (bottom)
before the calorimetric selection (in blue) for NLO and NNLO events. The effect of the selection
is shown by the green histograms. The black histograms show the LO prediction.

Apart from recovering the original MC truth, selecting only elastic events allows also

to recover the elasticity condition. The elasticity condition describes an characteristic

curve in the (θµ, θe) plane as shown in fig.2.3. A similar curve is also defined by the

condition on the energy in the (Ee, θe) plane. In the following plots, the correlations of

(Ee, θe) and (θµ, θe) are shown, both for NLO event and for NNLO events. In the top

lines all the generated events that are impinging on the second target are displayed and

a conspicuous background is present. The second line represents the events after the

acceptance cuts and the in third line only the events after applying all the final cuts are

shown.
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Figure 4.13: MC truth distributions of muons energy (top) and scattering angle (bottom) before
the calorimetric selection (in blue) for NLO and NNLO events. The effect of the selection is
shown by the green histograms. The black histograms show the LO prediction.

The low muon angle region is populated by low energy electrons, discarded by the cut

on the energy Ereco(3 × 3) > 1GeV . This events are strongly affected by experimental

perturbations and are not interesting for the final analysis of MUonE. Some of these

electrons are radiating soft photons, hence they have a lower angle than the predicted

one. Another fraction of the background is given by electrons deviated by Multiple

Coulomb Scattering and impacting with a lower angle than the initial one. Also in this

case, the analysis performed with NNLO events confirms the previous results at NLO.
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Figure 4.14: Correlation between the reconstructed calorimeter energy E3×3 and the electron
scattering angle, before the selection (top line), after the acceptance cuts (second line) and avter
the final selection (bottom line).
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Figure 4.15: Correlation between the muon and electron scattering angles, before the selection
(top line), after the acceptance cuts (second line) and after the final selection (bottom line).
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4.4 Reconstruction of the momentum transfer t

The analysis technique carried on by the MUonE experiment is based on the extraction

of the hadronic contribution thanks to a template fit method described in [20]. The

parameterization used in the fit method for the hadronic contribution is depending on

the Mandelstam variable t as shown in eq. 2.13. As of today, the template fit has been

performed using the angular distributions of the electrons and muons scattering angles

but in principle it could be performed also using directly the distribution of t. With this

aim in mind, in this section various strategy to estimate the value of t event by event

have been analyzed and compared to see which one presents the better resolution.

The differential unpolarized cross section of the studied process, at LO in QED, is

reported in fig.4.16, and the dependence on the transfer momentum is described by the

formula [23]:

dσ0
dt

=
4πα2

0

t2λ(s,m2
µ,m

2
e)

[
(s−m2

µ −m2
e)

2 + st+
t2

2

]
(4.11)

Figure 4.16: Differential cross section of the µe elastic scattering at LO, as a function of the
momentum transfer t.

The variable t can be reconstructed using only calorimetric information since, as seen in

section 2, in case of elastic events, it can be defined as:

t = 2m2
e − 2meE

′
e (4.12)
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where the energy of the scattered electron E
′
e is directly measured inside the calorimeter.

At the same time, in case of elastic events, once the energy of the incoming muon beam is

known, the energy of the outgoing electron can be calculated also starting from angular

information using the following formulas:

β =

√
1− (mµ/Eµ)2

1 +me/Eµ
(4.13)

z = βcos(θe) (4.14)

E
′
e =

1 + z2

1− z2
me (4.15)

Therefore, a second method of extraction of the variable t is here also studied, using the

angular information of the exit angle of the electron measured by the tracking system. In

the following analysis, the distribution of the Mandelstam variable t measured with the

calorimeter and with the tracking system have been studied and compared with the MC

truth distributions. The formula used to compute the value of t from the lepton angles

are correct only in case of elastic events, therefore in the analysis different scenarios have

been simulated with and without applying the cuts for the elastic events selection. On

the contrary, even in case of radiative events, the measurement of t with the calorimeter

is expected to be correct since also the energy transferred to the photons is then absorbed

by the crystals and therefore measured. In the analysis the energy reconstructed inside

the calorimeter has been corrected for the 5% of the energy that is lost outside the 3× 3

array of crystals.

In fig.4.17 and 4.18, the MC truth distributions for the variable t are shown, compared

with the distributions obtained with the calorimeter and the tracking stations. As ex-

pected, in fig. 4.17 (a), where no cuts were applied, the calorimeter distribution follows

well the MC truth while the tracking t is shifted towards the lowest values. In this

sample of events also the radiative events are included. It should be noted that, even

at this very early stage, the calorimetric measurements well reproduces the theoretical

expectation, even without all the requirements which need to be applied when using the

tracker information.

After applying the cuts for selecting the elastic events, also the distribution obtained

with the tracking system well represents the MC truth, fig.4.18.

The resolution of the calorimetric measurement is then compared to that of the tracker
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(a) (b)

Figure 4.17: Comparison between t MC truth distribution with t from calibrated ecal and from
tracking system, without applying any cuts (a), and after the acceptance cuts.

Figure 4.18: Comparison between t MC truth distribution with t from calibrated ecal and from
tracking system after the final cuts.

at the three stages of the analysis. The plots (a) - (f) of fig.4.19 show the value of the

difference ∆t = tmeas − ttrue, in case of t measured by the calorimeter (left column)

or by the tracking system (right column), as a function of ttrue, before any selection

(top), after the acceptance requirements (center), after all the requirements (bottom).

Already from these plots is visible that applying the cuts the difference in t reduces

and it stabilize around zero. The differences between the calorimetric measure and the

tracking one is visible from the projection of the resolution ∆t, in different intervals of
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Distribution of the alue of the difference ∆t = tmeas − ttrue as a function of the
value of alue of the difference ttrue.

the variable ttrue. In all the three cases, with and without the cuts, the RMS of the

calorimetric distribution is smaller than the one of the the tracking system.

This first result on the resolution suggest that further studies on the application of a

calorimetric measurement for the final extraction of the hadronic contribution should be

done. The next step could be perform the template fit with the distribution of t instead

of the angular one and compare the fit parameters results.
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(a)

(b)

Figure 4.20: Distribution of the difference tmeas − ttrue for different intervals of ttrue measured
by the calorimeter (red) and with the tracking system (green).
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(a)

(b)

Figure 4.21: Distribution of the difference tmeas − ttrue for different intervals of ttrue measured
by the calorimeter (red) and with the tracking system (green), after the acceptance cuts.
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(a)

(b)

Figure 4.22: Distribution of the difference tmeas − ttrue for different intervals of ttrue measured
by the calorimeter (red) and with the tracking system (green), after the final cuts.
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Chapter 5

Calorimeter test beam

In this final section, a preliminary analysis on the calorimeter Test Beam of July 2022 is

presented. This was the first test of the small-size calorimeter (5 × 5 array of crystals)

with a particle beam. The test was performed in the T09 beam line of SPS in the East

Area of CERN. The T09 beam provides different kinds of particles hence it was possible

to test the calorimeter with electrons and minimum ionizing particles (MIPS) as muons.

The calorimeter was also tested with a laser system sent to the calorimeter through

optical fibers. In the seven days of data taking, several sets of data were recorded, with

different configurations of the apparatus. A preliminary analysis performed on a subset

of data, collected in a stable configuration, is discussed in the following. For the future,

a more detailed analysis of all the data is necessary.

5.1 ECAL test beam setup

The main goal of the Test Beam of July 2022 was to test for the first time the experimen-

tal setup, including the new data acquisition system (DAQ), and take runs of data, with

beam of particles with tunable energy known with a ±3% precision, to perform a first

calibration and study the overall performance of the calorimeter. The total experimental

apparatus of the test included:

• Particle beam from the T09 beam line of SPS at CERN;

• A set of Cherenkov counters which allowed the selection of the desired particle

species;

67



Chapter 5. Calorimeter test beam 68

• A set of tracking chambers which could allow tracking each particle with a sub-mm

precision (which was however not used);

• Homogeneous e.m. calorimeter composed by an array of 5×5 scintillating crystals

of PbWO4 mounted in a carbon fiber alveolar box and read by APDs;

• Electronic read out system and a computer dedicated to the DAQ;

• Laser system connected via scintillating fibers;

A brief description of each single component of the apparatus is given in the following

paragraphs. During the test beam few adjustments were made in terms of mechanics

and electronics to perform real-time improvements. In the following section, along with

the data, the most relevant changes of the technical configuration of the apparatus are

described.

Figure 5.1: Final assembled calorimeter placed in the experimental area along the trajectory of
the beam (red line on the floor).

T09 beam line

The T09 beamline is situated in the renovated East Area of CERN and started its op-

eration in 2021. The final T09 beam originates from a 24 GeV/c proton beam of the

PS accelerator that impinges on the North target and produces a variety of particles.
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Among these available particles there are electrons, positrons, muons, pions, kaons and

(anti)protons. The T09 beam line, used for the experiment is therefore a mixed hadron

and electron beam and can transport either positively or negatively charged particles

with momenta between 0.1 GeV and 16 GeV. The beam line has a multi-target config-

uration. By changing the material target it is possible to change the composition of the

final beam. For the MUonE test beam, electrons and muons were exploited up to an

energy of 10 GeV. The beam can also be used in a focused mode, with a beam size of 4

mm and 1-2 mrad of divergence, or in a parallel mode, with a beam size of 12 mm and

a divergence of 0.2-0,5 mrad. The maximal rate of paarticles is 106 particles/spill but it

drops to 104 particles/spill for energies lower than 1 GeV. The spill duration is of about

2.4 sec and there are typically 1-2 spills per minute. The beam was controlled from an

interface placed in the control room.

Figure 5.2: View of the inside of the calorimeter. The APDS and the optical fibers are inserted
in the orange support and placed close to the calorimeter surface.

Calorimeter, mechanical support and APDs

The main structure of the calorimeter is composed by 25 scintillating crystals, inserted

in a carbon fiber box and read by 25 HAMAMATSU APDs. The characteristics of the

scintillating crystals are already been described in section 2. The temperature of the

calorimeter was regulated by a fluid circuit inserted in a metal box. The temperature

was also monitored thanks to sensors placed in contact with the internal surface of the

calorimeter. Each crystal was read by a single APDs with an active area of mm, kept in

position by a plastic container, as shown in fig. The APD is not in direct contact with

the ECAL surface and no optical grease was applied. The calorimeter and the APDs

had already been tested in the lab at Legnaro with test pulses.
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(a) (b)

Figure 5.3: Scintillating crystals inserted in the carbon fiber structure along with one APD (a).
Support structure with APDs (b).

Read out chain

The readout chain of the Test Beam is composed by two Front End Board (FEB), shown

in fig 5.4, each board can read at maximum 16 channels, 32 in total, so the 25 channels of

the calorimeter were divided into two groups. A schematic view of the geometrical order

of the crystals an of the FEB order, namely the corresponding channel inside the board,

is shown in fig.5.7. Then the two boards were connected to the FC7 fw board, developed

by Imperial College and modified by the Collegues in Bologna. Different versions of the

firmware were tested during the data taking to try and improve the data acquisition in

real time.

Figure 5.4: View of the two front end boards (on the left) cable connected to the FC7 board (on
the right).
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Laser system

The used laser was the NPL45C laser with an output of 2.9 mW at 50 kHz and an

energy of 58 nJ/pulse. The Laser was sent to the crystals through scintillating fibers,

one for each crystals, inserted in the same support of the APDs but in a different hole

(fig.). The laser pulses were collected in the same run of the beam signals, in the period

of time between two spills.

Figure 5.5: Internal view of the laser system (black box) connected to an oscilloscope for pre-
liminary testing.

5.2 Data samples and setup configuration

Not all the data from the test beam have been analysed in this thesis. The selected runs

come from the last days of data taking where the experimental setup and firmware was

stabilized. In particular, changes were made on the firmware for the DAQ, on the values

of the High Voltages of the APDs and on the temperature of the whole system. The

firmware was changed to be more efficient in the event collection, so as to record more

events for each beam spill. The High Voltages of the APDs were increased to increase

the gain since the visible signal was very small and the temperature was modified thanks

to the cooling system but then the program fro the monitoring of the temperature broke

so, for each run, only the nominal temperature is here indicated.

Fig. 5.6 shows two examples of the event display that was visible almost real-time in the

control room. All the signals from the 25 crystals are shown, ordered geometrically from

1 (upper left) to 25 (bottom right). The left graph is showing an example of beam event

where the electron shower was shared by at least four crystals and the four different

peaks are visible on the upper right portion of the figure. The right graph instead is
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showing a typical laser event where the laser pulse is injected in all the 25 crystals

simultaneously. The beam events and the laser events were collected in the same run

because the laser was sent to the calorimeter in the period of time during two spills of

the beam. However, many more beam signals were collected in one spill than the ones

collected when the laser was on so the number of beam events in one run is much higher

than the number of lasers.
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Figure 5.6: Graphic view of a beam event (a) and laser event (b) as seen in the control room.
The large plots on the bottom show the sum of the signals collected in the 25 counters.

Figure 5.7: Scheme of the calorimeter crystals order. on the top line is written the number
corresponding to the geometrical order and on the bottom line the corresponding feb channel.
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When analysing the data, the geometrical order of the crystals helps having a clear view

of the structure of the calorimeter, but the order of the channels inside the FEBs is more

important. In fact this is the order used inside the firmware to acquire the data and it

helps revealing systematic effects due to the electronics readout. Fig.5.7 shows a front

view of the calorimeter where also the number of the feb channel corresponding to each

crystal is indicated. The different colors correspond to the two different boards. Inside

the boards the channels were amplified in group of fours.

The next table summarises the APDs configuration, namely the correspondence between

crystal, feb channel and bias voltages. The voltage Vb,0 corresponds to the nominal one

given by HAMAMATSU that was used in the first part of the test beam. However,

with this voltages the gain was very little, probably also due to other factors reducing

the light collection. Therefore after few days the voltages were increased to a value Vb,1

equal for all the APDs, in order to have a bigger signal.

APD FEB Crystal Vb,0 Vb,1

(V ) (V )

AA5654 1 4 381.2 405

AA5647 2 5 377.7 405

AA5668 3 9 384.6 405

AA5665 4 10 381.6 405

AA5666 5 13 380.6 405

AA5651 6 14 382.0 405

AA5648 7 15 379.9 405

AA5657 8 18 381.6 405

AA5662 9 19 382.4 405

AA5652 10 20 383.8 405

AA5659 11 23 381.8 405

AA5660 12 24 380.8 405

AA5646 13 25 380.0 405

APD FEB Crystal Vb,0 Vb,1

(V ) (V )

AA5658 21 22 383.6 405

AA5661 22 21 383.2 405

AA5663 23 17 383.6 405

AA5664 24 16 373.5 405

AA5653 25 12 382.4 405

AA5655 26 11 382.2 405

AA5667 27 8 381.4 405

AA5650 28 7 380.6 405

AA5670 29 6 379.7 405

AA5649 30 3 380.6 405

AA5669 31 2 383.2 405

AA5656 32 1 381.8 405

Table 5.1: APDs bias voltages and channel numbers.

The analysed runs of data are reported in table 5.1 together with the information on

the energy and temperature selected. The used beam configuration was parallel mode

so the beam spot was about 12 mm and the APDs voltages were already switched to
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the higher value. The analysis focuses on the calculation of the electronic noise present

in every single channel and shared by many channels. The goal is to investigate the

presence of coherent noise, that was already noticed during the Test Beam, and if found,

try to understand the possible source.

N° Energy (GeV) Temperature (C°) Vb Collection day Beam mode

1 4 20 405 V 25/07 Parallel

2 5 20 405 V 26/07 Parallel

3 6 20 405 V 25/07 Parallel

Table 5.2: Analysed data set with run configurations.

5.3 Noise analysis

As stated in section 4, the second contribution to the energy resolution of the calorimeter

comes from the electronic noise of the readout chain and depends on the features of the

readout circuit. The noise contribution to the energy resolution increases with decreasing

energy of the incident particles, therefore is important to reduce it as much as possible.

Speaking of one single readout channel, the equivalent noise C1 is given by the sum of

two terms:

• an intrinsic contribution to the single channel, C1,in;

• a coherent term, shared with the other channels, C1,c;

By definition these two terms are independent, hence they sum quadratically as:

C2
1 = C1,in

2 + C1,c
2 (5.1)

In the test beam events, the signal from the incident particles was shared between

different crystals, as shown in fig. 5.6 (a). In this scenario, the coherent component of

the noise has a high impact on the measurement since increases linearly with the number

of the involved channels. In fact, the noise of a signal spread to N different channels,

CN , has the same behaviour of the single channel noise, and can be defined as:

C2
N = CN,in

2 + CN,c
2 (5.2)
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The intrinsic part is defined as the quadratic sum of the intrinsic noise of the single

channels, that are independent from each others. On the contrary, the coherent terms

are correlated and they sum linearly.

C2
N,in =

n∑
i=1

Ci,in
2 = NCi,in

2 (5.3)

CN,c =
n∑

i=1

Ci,c = NCi,c (5.4)

Finally, the total noise on N channels can be written as:

CN = C1,in

√
N

[
1 +N

(
C1,c

C1,in

)2 ]1/2
(5.5)

As said before, the coherent noise has a strong impact on measurements that involve

several channels simultaneously because it increases linearly with N. To understand the

effective contribution of the coherent noise it is possible to calculate the parameter k

k =

(
C1,c

C1,in

)2

(5.6)

that represents the fraction between the coherent part over the intrinsic one, in a single

channel i. The parameter k can be calculated from the measurement of the ratio RN

RN =
CN√
NC1

=

[
1 + kN

1

(1 + k)

]1/2
(5.7)

If case of k=0, no coherent noise, the expected value for the ratio RN is the unity. The

ratio increase with the increase of the coherent term. In this analysis, the noise of the

single channels was firstly evaluated. Then the contribute of the coherent noise was

extrapolated for the two Front End Boards (FEB), in which the 25 readout channels

were grouped.

5.3.1 Single channel noise

All the plots in this section come from the study of the 4 GeV data sample. The results

obtained for the other energies are reported at the end. In the calculation of the single

channel noise an event-by-event approach was used. The noise was extrapolated from a

fit in the part of the recorded waveform where no signal was present. The beam events
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were analysed separately from the laser events, but the same process has been followed

for both. Starting from a typical event, as the one shown in fig. 5.6, for each channel

the first 60 bins of the waveform were selected (fig. 5.8) and inserted in a histogram that

was then interpolated with a Gaussian function to compute the mean and the RMS (fig.

5.9). The mean of this distribution represents the mean value of the baseline while the

RMS represents the fluctuations, namely the noise, both expressed in ADC counts.

(a) (b)

Figure 5.8: Single channel waveform of a beam event (a) and of a laser event (b).

(a) (b)

Figure 5.9: Fit on the first 60 bins of one single channel for a beam event (a) and for a laser
event (b).

The fit was performed event-by-event, extracting each time the mean value and the

RMS per each channel. These values were then collected in final histograms, one with

the means one and one for the RMS, both for signal events and laser events. The final

histograms for one single channel are shown in fig. 5.10. The mean values of all the

events of the baseline and of the RMS, for each channel, are shown in fig.5.11.

The right plot in fig. 5.11 shows that the value of the baseline is quite stable along the
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(a)

(b)

Figure 5.10: Fit on final parameter distributions (mean,RMS) obtained via the event-by-event
analysis.

channels but is lower for the laser events than for the beam events. The mean value

of the 25 channel is reported in table 5.3. In the analysis the mean was calculated af-

ter subtracting the waveform pedestal, that was calculated event by event. This step

shouldn’t create a systematic difference between laser and beam events but this phe-

nomenon should be further investigated. On the contrary, looking at the various RMS,

the value is not constant along all the channels. The geometrical order in this case is

misleading. In fact, the right graph in figure 5.11, is showing a peculiar trend, almost
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(a) (b)

Figure 5.11: Final values of the baseline and RMS for the different channels, geometrically
ordered.

sinusoidal not easily understandable. Instead, in fig. 5.12, the crystals are ordered by

the feb number and divided in the two front end board. Here it is clear how all the

crystals of the second front end board (on the right) have a higher noise. The mean

values for the two boards are reported in table 5.3. The mean RMS value for all the 25

channels is 3 ADC counts. From a rough calibration this value can be converted to 40

MeV of noise per channel. This results is not bad for a first terst of the calorimeter but

it can be improved and it is important to understand how much of it is not intrinsic but

comes from an external source that could be removed.

Figure 5.12: Final values of the RMS for the different channels, ordered by feb number and
fivided in the two boards.

The results of analysis on the other two data samples are consistent with the results
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from the 4 GeV set of events. All the results are reported in table 5.3. No effect related

to the collected energy is observed.

MEAN RMS RMS FEB 1 RMS FEB 2

(ADC) (ADC) (ADC) (ADC)

4 GeV
beam 0.18 3.02 2.90 3.14

laser -0.71 2.94 2.82 3.06

5 GeV
beam 0.17 3.01 2.95 3.13

laser -0.69 2.94 2.85 3.06

6 GeV
beam 0.16 3.01 2.89 3.13

laser -0.69 2.93 2.83 3.03

Table 5.3: Final values of the mean baseline and RMS for the different data sets averaged on all
the channels and on the channels from on single board.

5.3.2 Coherent noise

The coherent noise spreads to different channels that can somehow ”talk” to each other.

In this case, since the 25 channels are read by two different boards, the coherent noise

might affect differently the channels from the FEB 1 than the others from FEB 2.

Therefore the two boards were studied separately. The same approach event-by-event

was used also for the study of the coherent noise, but instead of taking the firs 60 bins

of one single channel, all the channels of one board were summed, obtaining the final

waveform shown in fig. 5.13 (a). Two histograms were then filled with the 60 summed

bins from the two boards. These histograms are visible in fig. 5.14. Also in this case from

the histograms the mean value of the baseline and the RMS were extrapolated through

a Gaussian fit. After performing the fit for each event, the fit parameter values were

inserted into final histograms: one histogram containing the mean and one containing

the RMS for each FEB, both for laser and for signal events. In case of both mean and

RMS, the distributions of the second front end board (left column of fig. 5.18 and 5.19)

are wider than the ones of the first board. The values of the mean baseline and of the

final RMS for the two boards are reported graphically in fig.5.15. As expected from the

results of the single channel analysis, the baseline of the sum of the channels for the

laser events is lower than the one from the beam events. Regarding the RMS, the total

noise of the second board is much higher than the one of the first board, even though

the second board has 12 channels while the first one has 13 channels.
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(a) (b)

Figure 5.13: Graphic view of the sum of the first 60 bin of one board (a) and the example of a
beam event (b) where the coloured borders indicates the two boards.

(a) (b)

Figure 5.14: Single event fit on the sum of the first 60 bins of the two boards.

To quantify the contribution to the total noise of the coherent term, for each channel

the ratio RN , defined in the previous section, has been calculated. The expected value

of the ratio in case of null contribution of the coherent term of the noise is 1. The more

this ratio exceeds the unity the more coherent noise is present. From the values of the

ratio it is possible to calculate the value of the parameter k defined as the squared ration

of the coherent term over the intrinsic one. The values for each channel of the ratio RN

and of the coefficient k are reported graphically in in fig. 5.16 and 5.17, while the mean

values of k for the two boards are reported in the table 5.4.

From the value of k it is possible to calculate the two components of the noise Cin and

Cc. The results of the calculations are reported together with the values of k in table 5.4.

The values of the coherent component are comparable to the ones of the intrinsic term. It
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(a) (b)

Figure 5.15: Final values of the mean baseline (a) and RMS (b) for the sum of the channels of
the two boards.

Figure 5.16: Value of the ratio RN for all the channels

Figure 5.17: Values of the parameter k for all the channels.
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means that removing the source of coherent noise it is possible to reduce significantly the

final noise of a single channel, that implies reducing even more the noise on a measure

spread on different channels, since the coherent noise sums linearly. The value of k

doesn’t show a particular trend related to the change of energy of the beam. On the

other hand, the coherent noise of the second front end board is much higher than the

in the first one. A further analysis on the correlation between the channels is needed

in order to understand whether there are few channels cross-talking that are influencing

the others or if the source of noise is common to all the channels.

Energy k C1 Cin Cc

(ADC) (ADC) (ADC)

4 GeV

FEB 1
beam 0.34 2.90 2.50 1.47

laser 0.38 2.82 2.40 1.48

FEB 2
beam 0.96 3.14 2.50 2.21

laser 1.13 3.06 2.10 2.23

5 GeV

FEB 1
beam 0.39 2.95 2.50 1.56

laser 0.44 2.85 2.38 1.57

FEB 2
beam 1.01 3.13 2.21 2.22

laser 1.04 3.06 2.13 2.17

6 GeV

FEB 1
beam 0.34 2.89 2.50 1.46

laser 0.36 2.83 2.42 1.46

FEB 2
beam 1.05 3.13 2.20 2.24

laser 1.35 3.03 1.98 2.30

Table 5.4: Values of k, Cin and Cc for the different data sets.
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(a)

(b)

Figure 5.18: Histograms containing all the values of the mean obtained in the event-by-event
analysis for the two boards. Top line represents the beam events and bottom line the laser events.
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(a)

(b)

Figure 5.19: Histograms containing all the values of the RMS obtained in the event-by-event
analysis for the two boards. Top line represents the beam events and bottom line the laser
events.



Conclusions

In this thesis the role of the calorimeter in the MUonE experiment has been investigated

through the use of MC simulations and also a first analysis on the calorimeter Test Beam

of July 2022 has been performed. Regarding the study of the calorimeter performances

with simulations, the Fast Sim simulation tool has been updated including NNLO radia-

tive corrections provided by the new version of the MESMER MC event simulator. The

response of the calorimeter has been confirmed even in presence of up to real photons in

the final state of the process. The mean fraction of energy deposited in an array of 3×3

crystals is comparable with the one obtained in [22] in case of NLO events. Also the en-

ergy resolution of the calorimeter has been estimated, without considering the electronic

noise term, not included in the simulation. As for the role of the calorimeter inside

the experimental program of MUonE experiment, this thesis confirms capital role of the

calorimeter as a support of the tracking system but also as a standalone resource for the

data analysis. In fact, it has been demonstrated that the calorimetric information on the

position of the outgoing electron can resolve the ambiguity on the particle identification

due to the tracking system angular resolution. The algorithm for the selection of the

elastic events proves to works and to remove radiative events also at NNLO. Moreover,

the software analysis on the reconstruction of the Mandelstam variable t proves that the

measure with the calorimeter has a better resolution than the one obtained by the track-

ing system. This is an important result and will be further investigated by performing

the final template fit analysis using the distribution of t from calorimetric information

rather then the angular distributions.

Finally, the results of data analysis of the Test Beam reported in the last section of this

thesis shows that, in this configuration, the calorimeter has on average 3 ADC counts of

noise per channel, but a consistent part of this noise has a coherent source and is shared

between the channels. The future studies should focus on finding the source of coherent

noise and find a way to remove it. Overall, the calorimeter performance in the Test
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Beam was positive and it represents an important step towards its future contribution

to the MUonE experiment.
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