UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE

Department Of Civil, Environmental and Architectural Engineering

Corso di Laurea Magistrale in Ingegneria Civile

TESI DI LAUREA

DUTTILITÀ E RISPOSTA SISMICA DI UN EDIFICIO A SETTI IN CALCESTRUZZO ARMATO

Relatore: Prof. Ing. ROBERTO SCOTTA Laureanda: SILVIA RAMON

Matricola: 1177787

ANNO ACCADEMICO 2021-2022

SOMMARIO

1. 2. 2.1.	IN DH Co	TRODUZIONE ESCRIZIONE DELL'EDIFICIO ndizioni ambientali	1 2 3
2.2.	Ma	ateriali impiegati	3
2.3.	Ca	richi agenti	4
2.4.	Pia	unta dell'edificio	6
2.4	4.1.	Pianta tipo dal 1° al 6° piano	6
2.4	4.2.	Pianta tipo 7º piano	8
2.4	4.3.	Pianta tipo 8° piano (sottotetto)	9
3. 3.1.	RH Car	EALIZZAZIONE MODELLO FEM	 10 15
3.2.	Spe	ettro di risposta	19
4. 4.1.	AN Ve	NALISI MODALE rifica attendibilità del modello: Taglio alla base	24 27
4.2.	Ve	rifica attendibilità del modello: N sismico	30
4.3.	Sol	llecitazioni setti	31
4.4.	Sol	llecitazioni travi	41
4.5.	Sol	llecitazioni pilastri	44
5. 5.1.	DI Set	MENSIONAMENTO ELEMENTI STRUTTURALI	 47 47
5.1	1.1.	Verifica a pressoflessione: sollecitazioni	50
5.1	1.2.	Verifica a pressoflessione: SETTO ID 1-20	51
5.1	1.3.	Verifica a pressoflessione: SETTO ID 2-19	52
5.1	1.4.	Verifica a pressoflessione: SETTO ID 3-18	53
5.1	1.5.	Verifica a pressoflessione: SETTO ID 4-17	54
5.1	1.6.	Verifica a pressoflessione: SETTO ID 5-16	55
5.1	l.7.	Verifica a pressoflessione: SETTO ID 6-27	56
5.1	1.8.	Verifica a pressoflessione: SETTO ID 7-26	58
5.1	1.9.	Verifica a pressoflessione: SETTO ID 8-25	59
5.1	1.10.	Verifica a pressoflessione: SETTO ID 9-24	60
5.1	l.11.	Verifica a pressoflessione: SETTO ID 10-23	61

5.1.12.	Verifica a pressoflessione: SETTO ID 11-22	
5.1.13.	Verifica a pressoflessione: SETTO ID 12-21	63
5.1.14.	Verifica a pressoflessione: SETTO ID 13	64
5.1.15.	Verifica a pressoflessione: SETTO ID 14	65
5.1.16.	Verifica a pressoflessione: SETTO ID 15	66
5.1.17.	Verifica del rispetto dei dettagli costruttivi	67
5.1.18.	Verifica a taglio: determinazione sollecitazione tagliante	67
5.1.19.	Verifica a taglio-compressione del calcestruzzo dell'anima	68
5.1.20.	Verifica a taglio-trazione dell'armatura dell'anima	69
5.1.21.	Verifica a scorrimento nelle zone dissipative	71
5.1.22.	Dettagli costruttivi per la duttilità	72
5.2. Tra	avi	74
5.2.1.	Verifica a flessione: trave orizzontale 75 x 33 cm	75
5.2.2.	Verifica a flessione: trave verticale 20 x 33 cm	75
5.2.3.	Verifica a flessione: trave verticale 65 x 33 cm	76
5.2.4.	Verifica a flessione: capriata 20 x 45 cm	77
5.2.5.	Verifica a flessione: trave di colmo 24 x 48 cm	77
5.2.6.	Verifica a flessione: tirante 65 x 33 cm	
5.2.7.	Verifica a flessione: capriata 20 x 33 cm	79
5.2.8.	Verifica a flessione: trave in altezza di copertura 20 x 120 cm	79
5.2.9.	Verifica del rispetto dei dettagli costruttivi	80
5.2.10.	Verifica a taglio	81
5.3. Pil	astri	
5.3.1.	Verifica a pressoflessione: pilastro 35 x 40 cm	83
5.3.2.	Verifica a pressoflessione: pilastro 25 x 50 cm	84
5.3.3.	Verifica a pressoflessione: pilastro 25 x 40 cm	85
5.3.4.	Verifica a taglio	86
5.3.5.	Verifica dettagli costruttivi per la duttilità	87
5.3.6.	Verifica di resistenza	
5.4. Set	tti dal 3° al 7°piano	
5.4.1.	Sollecitazioni	90

	5.4.2.	Verifica a pressoflessione	91
	5.4.3.	Verifica a taglio	93
6.	A 6.1. M	NALISI PUSHOVER Iodellazione a plasticità concentrata o diffusa	
	6.2. Ca	aso studio di una mensola incastrata al piede	
	6.2.1.	Analisi Pushover con cerniera plastica concentrata	98
	6.2.2.	Analisi Pushover con modellazione a fibre	
	6.3. A	nalisi Pushover su modello globale	105
	6.3.1.	Inserimento armature negli elementi strutturali	105
	6.3.2.	Impostazioni generali analisi Pushover	
	6.3.3.	Curve di capacità	111
	6.3.4.	Analisi Pushover con edificio localizzato in zona con intensità sismica maggiore	114
	6.3.5.	Evoluzione dello sviluppo delle cerniere plastiche	116
	6.3.6.	Deformata dell'edificio	122
	6.3.7.	Trasformazione del sistema MDOF in SDOF	124
	6.3.8.	Calcolo duttilità	127
7. 8.	C B	ONCLUSIONI IBLIOGRAFIA	128 129

1. INTRODUZIONE

L'obiettivo di questa tesi consiste nel redigere il progetto di un edificio a setti in calcestruzzo armato ubicato nel comune di Jesolo (VE) e di analizzarne rispettivamente risposta sismica e duttilità mediante l'esecuzione di un'analisi statica non lineare o analisi Pushover.

La progettazione è stata eseguita in ottemperanza alle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17/01/2018, prevedendo un comportamento strutturale alle azioni sismiche di tipo dissipativo, dal momento che l'edificio non è dotato di appositi dispositivi d'isolamento e/o dissipativi; tale comportamento presuppone l'accettazione di un danneggiamento strutturale "controllato" per eventi sismici di elevata intensità (Stato Limite di Salvaguardia della Vita) che dia luogo alla formazione di un meccanismo dissipativo, stabile fino allo Stato Limite di Collasso, con l'entrata in campo plastico di alcune membrature e/o collegamenti della struttura, mentre la restante parte permane in campo elastico o sostanzialmente elastico.

Affinché ciò avvenga è necessario che vengano rispettati, per tutti gli elementi strutturali principali, non solo i requisiti di resistenza alle azioni statiche del capitolo 4 delle NTC18 ma anche i dettagli costruttivi e le verifiche di resistenza e duttilità del capitolo 7 inerente alla progettazione per azioni sismiche.

La progettazione è finalizzata per conseguire una media capacità dissipativa della struttura CD "B". Inizialmente la progettazione è stata condotta con il metodo elastico lineare e l'utilizzo del fattore di comportamento q (dipendente dalla tipologia strutturale, dal suo grado di iperstaticità, dai criteri di progettazione adottati e, convenzionalmente, dalle capacità dissipative del materiale). È stata effettuata un'analisi modale, su un modello agli elementi finiti della struttura, per determinare le sollecitazioni sismiche di progetto utili per il dimensionamento degli elementi strutturali allo Stato Limite di Salvaguardia della Vita.

A posteriori è stata eseguita un'analisi statica non lineare al fine di ottenere la curva di capacità forzaspostamento di un punto di controllo, coincidente con il centro di massa dell'ultimo impalcato, che consente di avere una stima del reale comportamento monotono della struttura in campo non lineare e della sua reale capacità dissipativa.

Lo scopo di questa analisi è verificare come il rispetto delle prescrizioni di progetto per strutture dissipative in zona sismica porti, nei casi reali, alla realizzazione di strutture effettivamente dotate di adeguata duttilità e capacità dissipativa.

2. DESCRIZIONE DELL'EDIFICIO

L'edificio oggetto di studio sarà realizzato nel comune di Jesolo (VE) in via Eleonora Duse 9. È un condominio residenziale con struttura portante a setti in calcestruzzo armato, composto da otto piani fuori terra, su ciascuno dei quali si ricaveranno due trilocali di 90 m². L'altezza d'interpiano del primo piano è pari a 3,5 m mentre quella dei restanti sette di 3,2 m per un'altezza complessiva dell'edificio di 25,9 metri. L'ingombro dell'edificio è di 18,33 metri x 13,26 metri per una superficie di 243 metri quadri.

Figura 1. Rendering 3D con vista Nord dell'edificio.

Figura 2. Rendering 3D con vista Sud dell'edificio.

Come si evince dalle Figure 1 e 2, i primi sei piani fuori terra si differenziano dagli ultimi due. I primi sono caratterizzati da due terrazze esterne esposte rispettivamente a Nord e Sud, mentre il settimo piano

è dotato di un'unica terrazza comprendente anche il lato Est o Ovest; dal settimo piano è possibile accedere al sottotetto abitabile, costituito da una copertura a capriata semplice in calcestruzzo armato. Nonostante la diversità tra piani, l'edificio rispetta le caratteristiche di regolarità in pianta e in altezza in aggiunta ai criteri generali di progettazione dei sistemi strutturali, degli impianti e degli elementi di fondazione (§7.2. delle NTC18 [1]).

2.1. Condizioni ambientali

Le condizioni ambientali chimiche e fisiche alle quali la struttura è esposta nell'arco della sua Vita Nominale sono di Classe XC2 per quanto riguarda le opere di fondazione e XC3 per quanto concerne le opere in elevazione. Per far fronte a queste problematiche è necessario assicurare un adeguato copriferro al fine di garantire la corretta trasmissione delle forze di aderenza, la protezione dell'acciaio contro la corrosione e un'adeguata resistenza al fuoco. Sulla base di tali dati e seguendo le indicazioni del §4.4.1 della UNI-EN 1992-1-1:2005 [2] (Eurocodice 2 e documento di comprovata validità) si ottiene un copriferro nominale di 40 mm.

La classe di calcestruzzo che verrà, inoltre, utilizzata è di tipo C30/37 per le elevazioni e C25/30 per le opere di fondazione.

2.2. Materiali impiegati

A seguire si elencano le caratteristiche meccaniche dei materiali utilizzati in fase di progetto:

Calcestruzzo classe C30/37

Resistenza caratteristica cubica a compressione a 28 gg	$R_{ck} = 37 \text{ MPa}$
Resistenza caratteristica cilindrica a compressione a 28 gg	$f_{ck} = 0.83 \cdot R_{ck} = 30.71 \text{ MPa}$
Resistenza cilindrica media	$f_{cm} = f_{ck} + 8 = 38,71 \text{ MPa}$
Resistenza media a trazione	$f_{ctm} = 0.3 \cdot f_{ck}^{\frac{2}{3}} = 2,94 \text{ MPa}$
Coeff. di riduzione di resistenza per i carichi di lunga durata	$\alpha_{\rm cc} = 0.85$

Coeff. parziale di sicurezza del materiale Modulo di elasticità normale (o di Young)

Resistenza a compressione di progetto

Resistenza a trazione di progetto

$$\begin{aligned} \gamma_c &= 1,5\\ E_{cm} &= 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0,3} = 33019 \text{ MPa}\\ f_{cd} &= \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_c} = 17,40 \text{ MPa}\\ f_{ctd} &= \frac{0,7 \cdot f_{ctm}}{\gamma_c} = 1,37 \text{ MPa} \end{aligned}$$

Acciaio per armature longitudinali (B450C)

Tensione caratteristica di snervamento	$f_{\rm yk} = 450 \; { m MPa}$
Tensione caratteristica a rottura	$f_{tk} = 540 \text{ MPa}$
Allungamento totale al carico massimo	$A_{gt} \ge$ 7,5 %
Modulo di elasticità normale (o di Young)	E _c = 210000 MPa
Coeff. parziale di sicurezza del materiale	$\gamma_s = 1,15$
Resistenza di progetto dell'acciaio	$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391,30 \text{ MPa}$

Acciaio per armature trasversali (staffe e ganci: B450A)

Tensione caratteristica di snervamento	$f_{\rm yk} = 450 \; {\rm MPa}$
Tensione caratteristica a rottura	$f_{tk} = 540 \text{ MPa}$
Allungamento totale al carico massimo	$A_{gt} \ge 2,5 \%$
Modulo di elasticità normale (o di Young)	E _c = 210000 MPa
Coeff. parziale di sicurezza del materiale	$\gamma_s = 1,15$
Resistenza di progetto dell'acciaio	$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391,30 \text{ MPa}$

2.3. Carichi agenti

• Peso proprio strutturale G_1

Tutti i solai della struttura hanno un'orditura unidirezionale e sono di tipo uniSOL [3]; essi sono composti da travetti KS posti ad un interasse di 40 cm, elementi di alleggerimento geoSOL in plastica riciclata e un getto di completamento in calcestruzzo. L'utilizzo dell'alleggerimento geoSOL, a differenza del tradizionale laterizio, dà alla struttura spiccate doti di leggerezza senza compromettere le caratteristiche statiche, di isolamento termico e acustico dell'impalcato e riduce i costi globali delle opere provvisionali grazie alla maggior auto-portanza. L'altezza del solaio è di 28 cm + 4 cm di getto di completamento per un peso proprio strutturale pari a $G_1 = 3,5 \frac{kN}{m^2}$

• Peso proprio non strutturale G_2

È stato utilizzato un tradizionale pacchetto di completamento non strutturale per un peso proprio non strutturale $G_2 = 2,5 \frac{kN}{m^2}$.

• Sovraccarichi accidentali Q_k

Le NTC18 al §3.1.4. [1] riportano i valori nominali dei carichi variabili uniformemente distribuiti. Trattandosi di un ambiente ad uso residenziale (Categoria A) i carichi variabili oggetto di interesse sono di entità pari a $Q_k = 2 \frac{kN}{m^2}$ per aree adibite ad attività domestiche e $Q_k = 4 \frac{kN}{m^2}$ per le scale comuni, balconi e ballatoi.

Tab. 5.1.11 - Valori dei Sobraccarichi per le alberse categorie a uso delle costruzioni						
Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]		
	Ambienti ad uso residenziale					
А	Aree per attività domestiche e residenziali; sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi (ad esclusione delle aree soggette ad affollamento), camere di degenza di ospedali	2,00	2,00	1,00		
	Scale comuni, balconi, ballatoi	4,00	4,00	2,00		
	Uffici					
R	Cat. B1 Uffici non aperti al pubblico	2,00	2,00	1,00		
5	Cat. B2 Uffici aperti al pubblico	3,00	2,00	1,00		
	Scale comuni, balconi e ballatoi	4,00	4,00	2,00		

Tab. 3.1.II - Valori dei sovraccarichi per le diverse categorie d'uso delle costruzion

• Carico neve Q_k

Il carico provocato dalla neve sulle coperture è stato valutato mediante la seguente espressione (come da §3.4 delle NTC18 [1]):

$$q_s = q_{sk} \cdot \mu_i \cdot C_E \cdot C_t = 1 \cdot 0.8 \cdot 1 \cdot 1 = 0.8 \frac{kN}{m^2}$$

in cui:

q_{sk} = 1,00 ^{kN}/_{m²} è il valore di riferimento del carico della neve al suolo (il comune di Jesolo, essendo in provincia di Venezia, rientra nella Zona II e presenta un'altitudine a_s = 2 m ≤ 200 m);

Zona II

Zona n				
Arezzo, Ascoli Piceno, Avellino, Bari, Barletta-Andri	a-Trani, Benevento,	Campobasso, Chieti,	Fermo, Ferrara, Firenze, Fog	gia,
Frosinone, Genova, Gorizia, Imperia, Isemia, L'Aqui	ila, La Spezia, Lucca	, Macerata, Mantova,	Massa Carrara, Padova, Peru	gia,
Pescara, Pistoia, Prato, Rieti, Rovigo, Savona, Teramo, T	rieste Venezia Vero	na:		
$q_{rh} = 1.00 \text{ kN/m}^2$	a < 200 m			
disk 1,00 kt s/ ht	a ₅ 2 200 m	[3 4 4]		
$q_{sk} = 0.85 [1 + (a_s/481)^2] kN/m^2$	a. > 200 m	[0.1.1]		

- $\mu_i = 0.8$ è il coefficiente di forma della copertura che dipende dalla forma stessa della copertura, dall'inclinazione sull'orizzontale delle sue parti componenti e dalle condizioni climatiche locali del sito ove sorge la costruzione. In assenza di dati suffragati da opportuna documentazione, i valori nominali del coefficiente di forma μ_i delle coperture ad una o a due falde possono essere ricavati dalla Tabella 3.4.III, essendo α , espresso in gradi sessagesimali, l'angolo formato dalla falda con l'orizzontale (nel caso in esame $\alpha = 30^\circ$ e quindi compreso tra $0^\circ \le \alpha \le 30^\circ$);

Tab. 3.4.II - Valori del coefficiente di forma

Coefficiente di forma	$0^{\circ} \le \alpha \le 30^{\circ}$	$30^\circ < \alpha < 60^\circ$	$\alpha \ge 60^{\circ}$
μ1	0,8	$0,8\cdot\frac{(60-\alpha)}{30}$	0,0

Trattandosi, inoltre, di una copertura a due falde nelle combinazioni di carico di tipo statico si dovranno utilizzare tre condizioni di carico alternative illustrate in Fig. 3.4.3. al §3.4.3.3. delle NTC18 [1].

- $C_E = 1$ è il coefficiente di esposizione che tiene conto delle caratteristiche specifiche dell'area in cui sorge l'opera;
- $C_t = 1$ è il coefficiente termico che tiene conto della riduzione del carico della neve, a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente dipende dalle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio deve essere posto pari all'unità.

2.4. Pianta dell'edificio

2.4.1. Pianta tipo dal 1° al 6° piano

Da una vista in pianta è possibile schematizzare il comportamento dell'edificio come quello di due torri simmetriche comunicanti tra loro mediante il vano scala e il vano ascensore centrale. I setti portanti, di spessore 20 cm, sono stati considerati come singole pareti semplici, disposte in direzione X o Y (vedi Figura 3).

Figura 3. Numerazione setti in pianta.

A seguire si elencano le caratteristiche geometriche dei setti in riferimento alla loro linea media; per una miglior leggibilità e comprensione è stato assegnato a ciascuno di essi un numero:

- SETTO 1 e 20: $L_x = 1,19 m e L_y = 0,20 m per un'area complessiva A_{1-20} = 0,24 m^2$;
- SETTO 2 e 19: $L_x = 0,66 \text{ m} \text{ e} L_y = 0,20 \text{ m} \text{ per un'area complexiva } A_{2-19} = 0,13 \text{ m}^2$;
- SETTO 3 e 18: $L_x = 0,20 m, L_y = 0,55 m e A_{3-18} = 0,11 m^2$;
- SETTO 4 e 17: $L_x = 0,66 m, L_y = 0,20 m e A_{4-17} = 0,13 m^2$;
- SETTO 5 e 16: $L_x = 0,69 m, L_y = 0,20 m e A_{5-16} = 0,14 m^2$;
- SETTO 6 e 27: $L_x = 0,20 m, L_y = 3,13 m e A_{6-27} = 0,63 m^2$;
- SETTO 7 e 26: $L_x = 0,20 m, L_y = 4,54 m e A_{7-26} = 0,91 m^2$;
- SETTO 8 e 25: $L_x = 1,51 m, L_y = 0,20 m e A_{8-25} = 0,30 m^2$;
- SETTO 9 e 24: $L_x = 2,30 m, L_y = 0,20 m e A_{9-24} = 0,46 m^2$;
- SETTO 10 e 23: $L_x = 1,42 m, L_y = 0,20 m e A_{10-23} = 0,28 m^2$;
- SETTO 11 e 22: $L_x = 0,20 m, L_y = 3,36 m e A_{11-22} = 0,67 m^2$;
- SETTO 12 e 21: $L_x = 0,20 m, L_y = 4,00 m e A_{12-21} = 0,80 m^2$;
- SETTO 13: $L_x = 1,70 m, L_y = 0,20 m e A_{13} = 0,34 m^2$;
- SETTO 14: $L_x = 0,20 m, L_y = 2,19 m e A_{14} = 0,44 m^2$;
- SETTO 15: $L_x = 2,75 m, L_y = 0,20 m e A_{15} = 0,55 m^2$;

Le travi orizzontali TOPT 1-2-3-4-5-6, di sezione rettangolare 75 x 33 cm e lunghezza 7,70 metri, sono in spessore di solaio come pure le travi verticali TVPT 1-3-4-6 di sezione 20 x 33 cm e lunghezza 8,10

metri; quest'ultime, essendo parallele all'orditura del solaio, reggono il loro solo peso proprio, mentre le prime citate sorreggono tutti i carichi verticali strutturali e non agenti nel piano di calpestio.

Le travi orizzontali portanti TOPT 2-5 sono sorrette da un pilastro di sezione 35 x 40 cm; vi è inoltre un secondo pilastro di dimensioni 25 x 50 cm che regge le travi verticali TVPT 2-5 di sezione 65 x 33 cm e lunghezza 5 metri confluenti, rispettivamente, nelle travi orizzontali TOPT 2-3 e TOPT 5-6.

Lo schema statico del solaio è a quattro campate con estremi liberi e due appoggi intermedi con luci pari a 1,90 m e 3,20 metri per gli sbalzi e 5,0 m e 3,10 metri per le campate interne.

2.4.2. Pianta tipo 7º piano

Il settimo piano (Figura 4) prevede la non presenza delle quattro coppie di setti 1-12, 10-11, 20-21 e 23-23 per ottenere un'unica terrazza collegante il lato Nord e Sud.

Per chiudere l'edificio nel lato Est e Ovest sono stati realizzati tre setti in falso per lato, due a forma di L e uno a parete semplice le cui dimensioni geometriche risultano essere:

- SETTO A L 28-31: $L_x = 0,86 m \text{ e } L_y = 1,25 m \text{ per un'area complessiva } A_{28-31} = 0,42 m^2$;
- SETTO A L 29-32: $L_x = 1,51 m, L_y = 2,67 m e A_{29-32} = 0,84 m^2$;
- SETTO 30-33: $L_x = 0,20 m, L_y = 1,23 m e A_{30-33} = 0,25 m^2$;

Le travi orizzontali portanti TOPT 2-5, sempre di sezione rettangolare 75 x 33 cm ma con lunghezza di 6 metri sono sorrette da un pilastro di sezione 35 x 40 cm; non c'è il secondo pilastro di dimensioni 25 x 50 cm come pure le travi verticali TVPT 2-5 che reggeva.

Lo schema statico del solaio è a due campate su tre appoggi con luci pari a 5,00 metri e 3,70 metri.

2.4.3. Pianta tipo 8º piano (sottotetto)

Dal settimo piano si accede tramite scala interna al sottotetto (Figura 5).

Figura 5. Pianta sottotetto.

La copertura a doppia falda è realizzata con un sistema a capriata semplice in calcestruzzo armato. I due puntoni compressi esterni della capriata, rivolti verso le terrazze nei lati Est e Ovest, sono costituiti da travi di sezione rettangolare 20 x 45 cm e lunghezza 5 metri, mentre i due puntoni interni hanno sezione 20 x 33 cm. La catena della capriata, soggetta a trazione, è costituita da una sezione in calcestruzzo armato di 65 x 33 cm e lunghezza 8,70 metri; la risultante di compressione che si ottiene dall'intersezione degli assi di puntone e catena è assorbita da una sezione rettangolare 65 x 33 cm con lunghezza 0,80 metri.

Essendo il sottotetto abitabile non è stato realizzato il monaco della copertura e le saette.

Le quattro capriate della copertura sono collegate tra loro da una trave in altezza rettangolare di sezione trasversale 20 x 120 cm e lunghezza complessiva di 14,75 metri.

3. REALIZZAZIONE MODELLO FEM

Per andare ad eseguire sull'edificio un'analisi dinamica lineare è stato realizzato un modello agli elementi finiti, rappresentante l'edificio con l'utilizzo del software Midas Gen. I setti possono essere modellati in Midas con tre metodi diversi:

1- come elementi Wall a quattro nodi i cui nodi rappresentano, rispettivamente, la lunghezza e l'altezza di piano del setto; nella creazione dell'elemento, oltre a dover inserire il tipo di materiale e lo spessore del setto, è possibile scegliere come Sub Type se far sì che il comportamento dell'elemento Wall sia membranale (Membrane) o Shell (Plate); nel primo caso si va a creare un elemento dotato di rigidezza membranale che trasmette sforzi solo nel suo piano, mentre nel secondo caso l'elemento è dotato non solo di una rigidezza membranale ma anche di una flessionale che lo porta a trasmettere sforzi, sia nel piano che fuori piano. Ogni elemento Wall è numerato con un ID; se due o più elementi Wall dello stesso piano sono numerati con lo stesso ID il software li riconosce come un'unica parete (Figura 6).

Figura 6. Creazione di un elemento Wall in Midas Gen.

2- come elementi bidimensionali Plate a quattro nodi; nella creazione dell'elemento va sempre inserito il tipo di materiale e lo spessore del setto; è possibile scegliere come Sub Type se attribuire un comportamento bidimensionale a lastra sottile (Thin) o a spessa (Thick); nel primo caso si applica la Teoria di Kirchhoff in cui non si considerano le deformazioni dovute al taglio perché, a deformazione avvenuta, le generatrici della lastra si mantengono ortogonali al piano medio; nel secondo caso invece si applica la Teoria di Mindlin in cui si considerano sia le deformazioni taglianti che quelle flessionali perché, a deformazione avvenuta, le generatrici della lastra non si mantengono ortogonali al piano medio.

Una modellazione dei setti come elementi Plate sarebbe l'unica che consentirebbe la discretizzazione della mesh del setto; infatti più si va a creare una mesh fitta e più accurati saranno i risultati post analisi (Figura 7).

Figura 7. Creazione di un elemento Plate in Midas Gen.

3- come elemento monodimensionale Beam con Rigid link di collegamento tra l'elemento Beam, posizionato in mezzeria del setto e avente come sezione trasversale la lunghezza e lo spessore del setto, e i quattro nodi esterni rappresentanti la lunghezza e l'altezza di piano del setto. Questo metodo di modellazione offre risultati identici a quelli dell'elemento Wall (Figura 8).

Figura 8. Creazione setti in Midas Gen con Beam e Rigid Link.

Tra i tre tipi di modellazione possibili si è preferito il modello a elementi Wall perché, nonostante la modellazione a Plate sia più attinente alla realtà, risulta più facile determinare le sollecitazioni di Sforzo Normale, Taglio e Momento flettente sui setti. Più difficoltosa è la lettura dei risultati delle sollecitazioni nel modello a Plate perché è necessario andare ad integrare le tensioni, le forze o altri parametri di interesse nelle due dimensioni dell'elemento. Midas permette, attraverso la funzione Cutting Diagram, di eseguire l'integrazione lungo una linea di interesse e di rappresentarla graficamente ma, oltre a generale dei picchi di tensione, qualora la mesh non dovesse risultare accuratamente discretizzata si otterrebbero dei risultati discordanti dalla realtà.

Dovendo, inoltre, svolgere un'analisi statica non lineare risulta più agevole con l'elemento Wall. l'inserimento dell'armatura verticale nei setti, con distinzione tra quella situata in zona confinata e quella in zona non confinata, per la determinazione delle proprietà delle cerniere plastiche.

Il modello agli elementi finiti dell'edificio finale è rappresentato in Figura 9.

Figura 9. Modello agli elementi finiti dell'edificio.

A seguire si descrive nello specifico alcune peculiarità della modellazione. La pianta del primo piano presenta la seguente configurazione (Figura 10).

Figura 10. Primo piano del modello F.E.M.

Tutte le travi ed i pilastri sono stati modellati come elementi monodimensionali General Beam come anche gli elementi della capriata semplice in copertura. Alcune travi in spessore di solaio TOPT 1-3-4-6 risultano essere eccentriche rispetto agli assi dei setti; nello specifico la trave TOPT 1 è eccentrica rispetto al setto ID 1 e ID 5 mentre è centrata nel setto a Z con ID 2-3-4; la trave TOPT 3 è eccentrica rispetto ai setti con ID rispettivamente 16, 17,19 e 20 (Figura 11). Per far sì che i setti assorbano le sollecitazioni indotte nelle travi sono stati introdotti dei Rigid Link colleganti i nodi estremi di piano degli elementi Wall con i nodi della trave aventi la medesima coordinata X; in questo modo si va a creare un collegamento tra trave e setti. I carichi di solaio sono stati inseriti come carichi al metro lineare sulle travi TOPT 1-2-3-4-5-6 (tutte di colore giallo) secondo il principio delle aree d'influenza.

Figura 11. Rigid Link del primo piano.

Del vano scala collegante le due torri simmetriche è stato modellato solamente il pianerottolo di piano come un elemento Plate unico a quattro nodi di spessore 33 cm di solaio e discretizzato mediante un Auto-mesh in elementi rettangolari di circa 24 x 40 cm. Il peso delle rampe e del pianerottolo di metà piano è stato calcolato manualmente ed inserito come carico lineare su un Beam fittizio collocato all'estremità dell'elemento Plate rappresentante il pianerottolo di piano. Si specifica che il Beam fittizio altro non è che un elemento monodirezionale con sezione trasversale esigua (1 x 1 cm) che ha il compito di trasferire il carico da un elemento Beam ad un elemento Plate.

Per la creazione del modello agli elementi finiti si è partiti dando forma ai setti del primo piano; successivamente sono stati creati travi e pilastri e per ultimo il pianerottolo delle scale. In un secondo momento sono stati copiati tutti gli elementi per cinque volte in elevazione (direzione Z) tenendo in considerazione il fatto che il primo piano ha un'altezza d'interpiano di 3,5 metri, mentre gli altri piani di 3,2 metri (Figura 12).

Figura 12. Creazione dei sei piani della struttura.

A seguire sono stati modellati i setti in falso del settimo piano e per ultimo è stata realizzata la copertura a capriata semplice (Figura 13).

Figura 13. Modello completo della struttura.

È necessario definire i piani dell'edificio specificando la presenza o meno del piano rigido. Nel caso oggetto di studio il piano rigido deve essere considerato all'altezza di tutti e sette i piani tranne a quota zero (Figura 14).

Module Name	Story Name	Level(m)	Height(m)	Floor Diaphragm
Base	Roof	22.70	0.00	Consider
Base	7F	19.50	3.20	Consider
Base	6F	16.30	3.20	Consider
Base	5F	13.10	3.20	Consider
Base	4F	9.90	3.20	Consider
Base	3F	6.70	3.20	Consider
Base	2F	3.50	3.20	Consider
Base	1F	0.00	3.50	Do not consider

Figura 14. Definizione dei piani rigidi.

Per quanto concerne le condizioni di vincolo sono stati inseriti alla base degli elementi Wall del primo piano degli incastri che non consentono alcun tipo di spostamento o rotazione nelle tre direzioni X,Y e Z (Figura 15).

Figura 15. Inserimento condizioni di vincolo alla base della struttura.

3.1. Carichi applicati

Prima dell'applicazioni dei carichi sono state definite in Midas tutte le tipologie di carico statico che interessano la struttura. Nello specifico:

- Peso proprio strutturale *G*₁ inserito come Dead Load (D);
- Peso proprio non strutturale G₂ inserito anch'esso come Dead Load (D);
- Carico residenziale Qres inserito come Live load (L);
- Carico accidentale delle scale Q_{scale} inserito come Live Load (L);
- Carico NeveQ_{neve} come Snow Load (S);
- S_x come User Defined Load (USER);
- S_{γ} anch'esso come User Defined Load (USER);

Gli ultimi due casi di carico sono fittizi e servono unicamente per la determinazione del centro di rigidezza dei singoli piani; di conseguenza non saranno inseriti nelle varie combinazioni di carico statiche e dinamiche. Per considerare la forza di gravità si andrà ad attribuire nella sezione Structure Load/Masses un Self Weight come peso proprio strutturale G_1 e indicando nell'asse rappresentante l'altezza la direzione della gravità; nel caso in esame la direzione è lungo l'asse Z e ha componente -1 perché diretta verso il basso (Figura 16).

Figura 16. Inserimento peso proprio degli elementi strutturali.

SOLAI E SBALZI

L'applicazione dei carichi da solaio in Midas può essere effettuata mediante l'utilizzo di Floar Loads (pacchetti di carico in cui si elencano tutti i carichi di interesse in kN/m²) oppure inserendo sulle travi perpendicolari all'orditura del solaio, se monodirezionale, dei carichi lineari con le rispettive aliquote di peso proprio strutturale, non strutturale o accidentale in funzione dell'area di influenza.

Avendo alcune travi in posizione eccentrica rispetto ai setti non è possibile immettere i carichi dei solai mediante Fload Loads, quindi si procede al calcolo delle aree di influenza per l'inserimento dei carichi come metro lineare sulle travi ortogonali all'orditura dei solai. Per una maggiore chiarezza di esposizione le travi sono state numerate come in Figura 17.

Figura 17. Numerazione Travi e aree di influenza.

Per i primi cinque piani i carichi da applicare alle travi sono i seguenti:

Trave TOPT1 e TOPT4:

- Area d'influenza sbalzi: $A_{sb} = 22,25 m^2$ e area d'influenza solaio: $A_{sol} = 14,44 m^2$;
- Carico lineare da applicare come peso proprio strutturale G_1 : $Q_{G_1} = \frac{[G_1 \cdot (A_{sb} + A_{sol})]}{L_{trave}} =$

$$\frac{[3,3\cdot(22,25+14,44)]}{7,70} = \frac{121,07}{7,70} = 15,72 \ \frac{kN}{m};$$

- Carico lineare da applicare come peso proprio non strutturale G_2 : $Q_{G_2} = \frac{[G_2 \cdot (A_{sb} + A_{sol})]}{L_{trave}} = \frac{[2,5 \cdot (22,25+14,44)]}{7,70} = \frac{91,73}{7,70} = 11,91 \frac{kN}{m};$

- Carico lineare da applicare come peso proprio variabile Q_k : $Q_{Q_k} = \frac{[Q_k \cdot A_{sol} + Q_k \cdot A_{sb}]}{L_{trave}} = \frac{[2 \cdot 14,44 + 4 \cdot 22,25]}{7,70} = \frac{117,88}{7,70} = 15,31 \frac{kN}{m};$

Trave TOPT2 e TOPT5:

- Area d'influenza sbalzi: $A_{sb} = 0 m^2$ e area d'influenza solaio: $A_{sol} = 31,26 m^2$;
- Carico lineare da applicare come peso proprio strutturale G_1 : $Q_{G_1} = \frac{[G_1 \cdot (A_{sb} + A_{sol})]}{L_{trave}} = \frac{[3,3 \cdot (0+31,26)]}{7,70} = \frac{103,16}{7,70} = 13,40 \frac{kN}{m};$

- Carico lineare da applicare come peso proprio non strutturale G_2 : $Q_{G_2} = \frac{[G_2 \cdot (A_{sb} + A_{sol})]}{L_{trave}} = \frac{[2,5 \cdot (0+31,26)]}{7,70} = \frac{78,15}{7,70} = 10,15 \frac{kN}{m};$

- Carico lineare da applicare come peso proprio variabile Q_k : $Q_{Q_k} = \frac{[Q_k \cdot A_{sol} + Q_k \cdot A_{sb}]}{L_{trave}} = \frac{[2 \cdot 31, 26 + 4 \cdot 0]}{7, 70} = \frac{62, 52}{7, 70} = 8, 12 \frac{kN}{m};$

Trave TOPT3 e TOPT6:

- Area d'influenza sbalzi: $A_{sb} = 14,82 m^2$ e area d'influenza solaio: $A_{sol} = 19,28 m^2$;
- Carico lineare da applicare come peso proprio strutturale G_1 : $Q_{G_1} = \frac{[G_1 \cdot (A_{sb} + A_{sol})]}{L_{trave}} =$ [3,3·(14,82+19,28)] = 112,53 = 1.4 6.1 ^{kN}.

$$\frac{3,5,(14,82+19,28)]}{7,70} = \frac{112,55}{7,70} = 14,61 \frac{\pi N}{m};$$

- Carico lineare da applicare come peso proprio non strutturale G_2 : $Q_{G_2} = \frac{[G_2 \cdot (A_{sb} + A_{sol})]}{L_{trave}} =$ [2,5·(14,82+19,28)] = ^{85,25} = 11.07 ^{kN}.

$$\frac{2,5\cdot(14,82+19,28)]}{7,70} = \frac{85,25}{7,70} = 11,07 \frac{kN}{m};$$

- Carico lineare da applicare come peso proprio variabile Q_k : $Q_{Q_k} = \frac{[Q_k \cdot A_{sol} + Q_k \cdot A_{sb}]}{L_{trave}} = \frac{[2 \cdot 19, 28 + 4 \cdot 14, 82]}{7,70} = \frac{97, 84}{7,70} = 12,71 \frac{kN}{m};$

Per il sesto piano invece le entità dei carichi cambiano:

Trave TOPT1 e TOPT4:

- Area d'influenza sbalzi: $A_{sb} = 24,49 m^2$ e area d'influenza solaio: $A_{sol} = 11,87 m^2$;
- Carico lineare da applicare come peso proprio strutturale $G_1: Q_{G_1} = \frac{[G_1 \cdot (A_{sb} + A_{sol})]}{L_{trave}} = \frac{[3,3 \cdot (24,49+11,87)]}{7.70} = \frac{119,99}{7.70} = 15,58 \frac{kN}{m};$

- Carico lineare da applicare come peso proprio non strutturale G_2 : $Q_{G_2} = \frac{[G_2 \cdot (A_{sb} + A_{sol})]}{L_{trave}} = \frac{[2,5 \cdot (24,49+11,87)]}{7.70} = \frac{90,90}{7.70} = 11,81 \frac{kN}{m};$

- Carico lineare da applicare come peso proprio variabile Q_k : $Q_{Q_k} = \frac{[Q_k \cdot A_{sol} + Q_k \cdot A_{sb}]}{L_{trave}} = \frac{[2 \cdot 11,87 + 4 \cdot 24,49]}{7,70} = \frac{121,7}{7,70} = 15,81 \frac{kN}{m};$

Trave TOPT2 e TOPT5:

- Area sbalzi: $A_{sb} = 6,96 m^2$ e area solaio: $A_{sol} = 24,50 m^2$;
- Carico lineare da applicare come peso proprio strutturale G_1 : $Q_{G_1} = \frac{[G_1 \cdot (A_{sb} + A_{sol})]}{L_{trave}} =$

$$\frac{[3,3\cdot(6,96+24,50)]}{7,70} = \frac{103,82}{7,70} = 13,48 \frac{kN}{m};$$

- Carico lineare da applicare come peso proprio non strutturale G_2 : $Q_{G_2} = \frac{[G_2 \cdot (A_{sb} + A_{sol})]}{L_{trave}} = \frac{[2,5 \cdot (6,96+24,50)]}{7,70} = \frac{78,65}{7,70} = 10,21 \frac{kN}{m};$
- Carico lineare da applicare come peso proprio variabile Q_k : $Q_{Q_k} = \frac{[Q_k \cdot A_{sol} + Q_k \cdot A_{sb}]}{L_{trave}} = \frac{[2 \cdot 24, 50 + 4 \cdot 6, 96]}{7,70} = \frac{76, 84}{7,70} = 9,98 \frac{kN}{m};$

Trave TOPT3 e TOPT6:

- Area sbalzi: $A_{sb} = 22,33 m^2$ e area solaio: $A_{sol} = 11,32 m^2$;
- Carico lineare da applicare come peso proprio strutturale G_1 : $Q_{G_1} = \frac{[G_1 \cdot (A_{sb} + A_{sol})]}{L_{trans}} =$

$$\frac{[3,3\cdot(22,33+11,32)]}{7,70} = \frac{111,05}{7,70} = 14,42 \ \frac{kN}{m};$$

- Carico lineare da applicare come peso proprio non strutturale G_2 : $Q_{G_2} = \frac{[G_2 \cdot (A_{sb} + A_{sol})]}{L_{trave}} = \frac{[2,5 \cdot (22,33+11,32)]}{7,70} = \frac{84,13}{7,70} = 10,93 \frac{kN}{m};$
- Carico lineare da applicare come peso proprio variabile Q_k : $Q_{Q_k} = \frac{[Q_k \cdot A_{sb} + Q_k \cdot A_{sol}]}{L_{trave}} = \frac{[2 \cdot 11,32 + 4 \cdot 22,33]}{7,70} = \frac{111,96}{7,70} = 14,54 \frac{kN}{m};$

Per ultimo invece la trave del sottotetto TOPT2 e TOPT5 è soggetta a carichi lineari:

- Area sbalzi: $A_{sb} = 0 m^2$ e area solaio: $A_{sol} = 55,35 m^2$;
- Carico lineare da applicare come peso proprio strutturale G_1 : $Q_{G_1} = \frac{[G_1 \cdot (A_{sb} + A_{sol})]}{L_{trave}} = \frac{[3,3 \cdot (0+55,35)]}{6} = \frac{182,66}{6} = 30,44 \frac{kN}{m};$
- Carico lineare da applicare come peso proprio non strutturale G_2 : $Q_{G_2} = \frac{[G_2 \cdot (A_{sb} + A_{sol})]}{L_{trave}} = \frac{[2,5 \cdot (0+55,35)]}{6} = \frac{138,38}{6} = 23,06 \frac{kN}{m};$
- Carico lineare da applicare come peso proprio variabile Q_k : $Q_{Q_k} = \frac{[Q_k \cdot A_{sb} + Q_k \cdot A_{sol}]}{L_{trave}} = \frac{[2 \cdot 0 + 4 \cdot 55, 35]}{6} = \frac{221, 40}{6} = 36,90 \frac{kN}{m};$

• COPERTURA

Anche i pesi propri strutturali, non strutturali e variabili della copertura sono stati inseriti come carichi lineari sulla trave di colmo e sulla trave in altezza in funzione dell'area di influenza di interesse.

La copertura dell'edificio è in legno e ricopre una superficie di $A_{cop} = 147,5 m^2$; l'area d'influenza della trave di colmo è pari a $A_{travecolmo} = \frac{A_{cop}}{2} = \frac{147,5}{2} = 73,75 m^2$,mentre l'area delle due travi in altezza è $A_{travialtezza} = \frac{A_{cop}}{4} = \frac{147,5}{4} = 36,875 m^2$.

I carichi applicati alla trave di colmo risultano:

- Peso proprio strutturale: $Q_{G_1} = \frac{G_1 \cdot A_{travecolmo}}{L_{trave}} = \frac{0.4 \cdot 73.75}{14.75} = 2\frac{kN}{m};$
- Peso proprio non strutturale: $Q_{G_2} = \frac{G_2 \cdot A_{travecolmo}}{L_{trave}} = \frac{1,5 \cdot 73,75}{14,75} = 7,5 \frac{kN}{m};$
- Carico Neve: $Q_{neve} = \frac{Q_k \cdot A_{travecolmo}}{L_{trave}} = \frac{0.8 \cdot 73.75}{14.75} = 4 \frac{kN}{m};$

mentre sulle due travi in altezza i carichi saranno pari alla metà di quelli sopra calcolati.

• SCALE

I carichi delle scale sono stati inseriti sul pianerottolo, modellato a elementi Plate, come Pressure Loads. È stato creato un Pressure Load Type, ovvero un pacchetto di carico, in cui sono state elencate in kN/m^2 le entità di carico permanente non strutturale G_2 e carico variabile Q che interessano la superficie. Non è stato inserito alcun valore come peso proprio strutturale G_1 , dal momento che agli elementi Plate è stato attribuito uno spessore di 33 cm ed è stato specificato il tipo di materiale di cui è costituito, ovvero calcestruzzo.

Per quanto riguarda il carico lineare delle rampe da applicare ai Beam Fittizi è stato calcolato il volume della rampa pari all'area di 3,82 m² per l'altezza di metà gradino di 0,25 m (considerando anche lo spessore del pacchetto non strutturale). Il volume è stato moltiplicato per la densità del calcestruzzo pari a $\gamma_{G1} = 23 \frac{kN}{m^3}$ ottenendo il peso P in kN; quest'ultimo diviso per la lunghezza del Beam fittizio dà il carico per metro lineare da applicare all'elemento. Per quanto concerne il carico accidentale esso è espresso come carico per unità di superficie (4 kN/m²) quindi è sufficiente moltiplicarlo per l'area della rampa e dividerlo per la lunghezza dell'elemento Beam per ottenere il carico al metro lineare.

Al pianerottolo del sesto piano, non essendoci una rampa di scale soprastante, il carico lineare da applicare risulta dimezzato rispetto a quello dei piani sottostanti.

	calcolo al metro lineare scala						cal	colo al met	tro lineare	scala (ultimo	pianerotto	olo)
altezza	A rampa	γ_{G1}	Р	L_{beam}	G1	alt	ezza	A rampa	γ_{G1}	Р	L _{beam}	G ₁
[m]	[m ²]	[kN/m ³]	[kN]	[m]	[kN/m]		[m]	[m ²]	[kN/m ³]	[kN]	[m]	[kN/m]
0.25	3.82	23	21.98	2.75	7.99	C).25	1.91	23	10.99	2.75	4.00
	A rampa	Q _k	Р	L	Q _k			A rampa	Q _k	Р	L	Q _k
	[m ²]	[kN/m ²]	[kN]	[m]	[kN/m]			[m ²]	[kN/m ²]	[kN]	[m]	[kN/m]
	3.82	4	15.29	2.75	5.56			1.91	4	7.64	2.75	2.78

A seguire si riportano i valori dei carichi applicati (Figura 18).

Figura 18. Carichi al metro lineare rampe di scale.

3.2. Spettro di risposta

Per l'esecuzione dell'analisi modale è necessario inserire nel software Midas Gen uno spettro di progetto in accelerazione relativo alla pericolosità sismica di base del sito in cui è ubicato l'edificio.

La normativa vigente (§2.4.3. [1]) valuta le azioni sismiche sulle costruzioni in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicando la vita nominale di progetto V_N per il coefficiente d'uso C_U . Trattandosi di una costruzione con livelli di prestazione ordinari il valore minimo della vita nominale di progetto è pari a 50 anni (Tab. 2.4.I [1]); l'edificio inoltre può essere definito di Classe II (§2.4.2. [1]) visto che il suo uso prevede normali affollamenti e senza funzioni pubbliche o sociali essenziali a cui corrisponde un coefficiente d'uso $C_U = 1$ (Tab. 2.4.II §2.4.3. [1]); il periodo di riferimento V_R per l'azione sismica risulta essere uguale a 50 anni.

Ad ogni stato limite è associata una probabilità di superamento P_{V_R} nel periodo di riferimento V_R ; nel caso in esame gli stati limite di esercizio e ultimo di interesse sono rispettivamente lo Stato Limite di

Danno (a cui corrisponde una $P_{V_R} = 63\%$) e lo Stato Limite di Salvaguardia della Vita (con una $P_{V_R} = 10\%$).

Per la costruzione manuale degli spettri di risposta in accelerazione (§3.2. NTC18 [1]) è necessario conoscere i valori dell'accelerazione massima del sito a_g , il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale F_0 e il valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale T_c^* ottenibili dal software "Spettri di risposta" del Consiglio Superiore dei Lavori Pubblici (Figura 19).

Figura 19. Parametri di pericolosità sismica per il comune di Jesolo (VE).

Per la determinazione del coefficiente di amplificazione stratigrafica S_S e topografica S_T si devono indicare le caratteristiche della superficie topografica. Nel caso del comune di Jesolo il terreno rientra nelle categorie C e T1 (Figura 20) e i coefficienti sopracitati si calcolano mediante le espressioni:

$$1,00 \le S_S = 1,70 - 0,60 \cdot F_0 \cdot \frac{a_g}{g} \le 1,50$$

$$S_{T} = 1,0$$

Categoria	Caratteristiche della superficie topografica						
	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde						
A	di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri-						
	stiche meccaniche più scadenti con spessore massimo pari a 3 m.						
	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi-						
В	stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da						
	valori di velocità equivalente compresi tra 360 m/s e 800 m/s.						
	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi-						
c	stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-						
C	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra						
	180 m/s e 360 m/s.						
	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi-						
D	stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-						
D	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra						
	100 e 180 m/s.						
F	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-						
E	rie C o D, con profondità del substrato non superiore a 30 m.						

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Figura 20. Categorie del sottosuolo [1].

È possibile determinare, inoltre, anche il coefficiente $C_C = 1,05 \cdot (T_C^*)^{-0,33}$ funzione anch'esso della categoria di sottosuolo.

Successivamente si individuano i tre periodi caratteristici T_B , T_C e T_D (corrispondenti rispettivamente all'inizio del tratto dello spettro ad accelerazione, velocità e spostamento costante) utili nella determinazione del tracciato dello spettro.

Resta solamente da determinare il fattore di alterazione dello spettro elastico η pari all'inverso del fattore di comportamento q.

A differenza dello Stato Limite di Danno in cui si utilizza un fattore di comportamento fisso q = 1,5allo Stato Limite di salvaguardia della Vita, è necessario stimare q in funzione della tipologia strutturale, dal suo grado di iperstaticità, dai criteri di progettazione adottati e, convenzionalmente, dalle capacità dissipative del materiale.

Il limite superiore q_{lim} del fattore di comportamento è calcolato al § 7.3.1. [1] tramite l'espressione:

$$q_{lim} = q_0 \cdot K_R$$

in cui:

- q_0 è il valore base del fattore di comportamento allo SLV dipendente dalla Classe di Duttilità, dalla tipologia strutturale e dal rapporto α_u/α_1 tra il valore dell'azione sismica per il quale si verifica la plasticizzazione in un numero di zone dissipative, tale da rendere la struttura un meccanismo, e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione. La struttura in esame rientra nelle costruzioni di calcestruzzo a pareti accoppiate ed è progettata in Classe di Duttilità CD "B"; di conseguenza $q_0 = 3 \cdot \alpha_u/\alpha_1$ (Figura 21).

		Ъ
Tipologia strutturale	CD''A''	CD''B''
Costruzioni di calcestruzzo (§ 7	.4.3.2)	
Strutture a telaio, a pareti accoppiate, miste (v. § 7.4.3.1)	$4,5 \alpha_{o}/\alpha_{1}$	$3,0 \alpha_{u}/\alpha_{1}$
Strutture a pareti non accoppiate (v. § 7.4.3.1)	4,0 α _u /α ₁	3,0
Strutture deformabili torsionalmente (v. § 7.4.3.1)	3,0	2,0
Strutture a pendolo inverso (v. § 7.4.3.1)	2,0	1,5
Strutture a pendolo inverso intelaiate monopiano (v. § 7.4.3.1)	3.5	2.5

Figura 21. Valori massimi del valore di base del fattore di comportamento allo SLV [1].

Il valore di α_u/α_1 risulta uguale a 1,2 per strutture regolari in pianta come enunciato al § 7.4.3.2. delle NTC18 (Figura 22) [1].

b) Strutture a pareti o miste equivalenti a pareti	
 strutture con solo due pareti non accoppiate per direzione orizz 	ontale $\alpha_u / \alpha_1 = 1.0$
- altre strutture a pareti non accoppiate	$\alpha_u/\alpha_1 = 1,1$
 strutture a pareti accoppiate o miste equivalenti a pareti 	$\alpha_0/\alpha_1 = 1,2$

Figura 22. Valori di $\alpha u/\alpha 1$ per strutture regolari in pianta [1].

- $K_R = 1$ per costruzioni regolari in altezza;

Sostituendo i valori trovati si ottiene un $q_{lim} = q_0 \cdot K_R = 3 \cdot 1, 2 \cdot 1 = 3, 6.$

Ora che si hanno tutti i parametri è possibile definire lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico in funzione del periodo proprio di vibrazione T dalle espressioni:

$$0 \le T < T_B \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \cdot \left(1 - \frac{T}{T_B}\right)\right]$$
$$T_B \le T < T_C \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0$$
$$T_C \le T < T_D \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$
$$T_D \le T \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2}\right)$$

ottenendo i seguenti andamenti grafici (Figure 23 e 24)

Figura 23. Spettri di risposta allo SLD e SLV calcolati analiticamente.

Figura 24. Spettri di risposta allo SLD E SLV calcolati mediante il software "Spettri di risposta".

A seguire si riportano i valori di tutti parametri utilizzati nella determinazione degli spettri (Figura 25) e l'inserimento di essi in Midas come Response Spectrum Functions nella sezione dedicata all'inserimento dei carichi dinamici (Figura 26).

					SLD	SLV	
Probabilità di superamento				P _{VR}	0,63	0,10	
Periodo di ritorno				T _R	50	475	[anni]
Acc. orizzo	ontale max	suolo rigido)	ag	0,332	0,725	[g/10]
					0,033	0,072	[g]
Valore ma	ax del fatto	re di amplifi	icazione	Fo	2,515	2,602	[-]
Periodo di	i inizio del t	ratto a v. co	ostante	T*c	0,225	0,382	[s]
Categoria	del sottosu	olo		С			
Categoria	topografic	а		T1			
Coefficier	nte di ampli	ficazione st	ratigrafica	Ss	1,650	1,587	< 1,5
					1,5	1,5	[-]
Coefficier	nte tratto a	velocità co	stante	Cc	1,718	1,442	[-]
Coefficier	nte di ampli	ficazione to	pografica	ST	1	1	[-]
Coefficier	nte di ampli	ficazione		S	1,5	1,5	[-]
Accelerazi	ione orizzoi	ntale		agS	0,050	0,109	[g]
Fattore di	struttura			q	1,5	3,6	[-]
Fattore pe	er ξ=5%			η	0,667	0,278	[-]
				TB	0,13	0,18	[s]
				T _C	0,39	0,55	[s]
				T _D	1,73	1,89	[s]

Figura 25. Parametri utilizzati	per la	costruzione d	degli	spettri d	li risposta.
---------------------------------	--------	---------------	-------	-----------	--------------

Figura 26. Spettri SLD e SLV inseriti in Midas Gen.

4. ANALISI MODALE

Una volta assegnati i carichi statici, gli spettri di progetto e i vari piani rigidi alla struttura è possibile svolgere un'analisi dinamica lineare. Come enunciato al §7.3.3.1. delle NTC18 [1], l'analisi modale consiste nel determinare i modi di vibrare rilevanti della costruzione, calcolarne gli effetti dell'azione sismica e combinare gli effetti.

Nell'analisi modale si deve tener conto dell'eccentricità accidentale del centro di massa; devono essere considerati tutti i modi con massa partecipante significativa, ovvero superiore al 5% e la cui somma risulti superiore all'85%.

Nel caso oggetto di studio sono sufficienti sei modi di vibrare per ottenere una massa partecipante del 91% in direzione X, dell'89% in direzione Y e dell'86% per la rotazione in Z (Figura 27).

Mode	U	X	U	Y	UZ		RX		RY		R	Z
				EIGE	INVAL	JE AN	ALYSI	S				
Mode		Freq	lency		Per	riod	Teler	2200				
No	(rad/	/sec)	(cycle	e/sec)	(se	ec)	Toler	ance				
1		22.2559		3.5421		0.2823	0.0	000e+000				
2		27.6497		4.4006		0.2272	0.0	000e+000				
3		37.9687		6.0429		0.1655	0.0	000e+000				
4		75.2016		11.9687		0.0836	2.4	650e-037				
5		98.4879		15.6748		0.0638	8.6	751e-029				
6		116.9483		18.6129		0.0537	1.1	507e-023				
				MODAL P	ARTICIPAT	TION MAS	SES PRIN	TOUT				
Mode	TRA	N-X	TRA	N-Y	TRA	TRAN-Z ROTN-X		ΓN-X	ROTN-Y		ROTN-Z	
No	MASS(%	SUM(%)	MASS(%	SUM(%)	MASS(%	SUM(%)	MASS(%	SUM(%)	MASS(%	SUM(%)	MASS(%	SUM(%)
1	69.5071	69.5071	0.0110	0.0110	0.0000	0.0000	0.0001	0.0001	0.7870	0.7870	7.2540	7.2540
2	0.0076	69.5147	72.5195	72.5305	0.0033	0.0033	3.9382	3.9383	0.0002	0.7872	0.0003	7.2543
3	8.2169	77.7317	0.0000	72.5305	0.0000	0.0033	0.0002	3.9385	0.2476	1.0347	68.8006	76.0549
4	11.9289	89.6606	0.0051	72.5356	0.0003	0.0036	0.0011	3.9396	1.9086	2.9433	1.6697	77.7245
5	0.0090	89.6695	16.9237	89.4593	0.0885	0.0921	7.6274	11.5670	0.0011	2.9444	0.0009	77.7255
6	1.8357	91.5052	0.0006	89.4599	0.0013	0.0934	0.0031	11.5700	1.8338	4.7782	8.7209	86.4463

Figura 27. Modi di vibrare ottenuti dall'analisi modale.

Il primo modo di vibrare, ricadente nel plateau dello spettro di risposta SLV, ha un periodo proprio T = 0,28 s; è caratterizzato da una massa partecipante prevalente in direzione X (69 %) con presenza di un'aliquota rotazionale in Z (7 %). L'edificio, di conseguenza, subirà una traslazione in direzione X e una leggera torsione attorno all'asse Z, come si può vedere in Figura 28.

Figura 28. Primo modo di vibrare dell'edificio.

Il secondo modo di vibrare, ricadente anch'esso nel plateau dello spettro di risposta SLV, ha un periodo proprio $T = 0,22 \ s$; è caratterizzato invece da una massa partecipante prevalente solo in direzione Y (72 %). L'edificio subirà una sola traslazione in direzione Y, come illustrato in Figura 29.

Figura 29. Secondo modo di vibrare dell'edificio.

Il terzo modo di vibrare ha un periodo proprio T = 0,16 s; al contrario del primo modo di vibrare la massa partecipante rotazionale (del 68 %) è prevalente rispetto a quella traslazionale in direzione X (del 8%). L'edificio avrà di conseguenza un comportamento prevalentemente torcente e traslazionale in direzione X (Figura 30).

Figura 30. Terzo modo di vibrare dell'edificio.

Gli ultimi tre modi di vibrare, nonostante abbiano un periodo T molto basso e presentino masse partecipanti irrisorie, sono pur sempre significativi poiché hanno massa partecipante maggiore del 5%. A seguire si riportano i comportamenti della struttura (Figure 31, 32 e 33).

Figura 31. Quarto modo di vibrare dell'edificio.

4.1. Verifica attendibilità del modello: Taglio alla base

Per far sì che il modello agli elementi finiti sia rappresentativo del reale comportamento dell'edificio è stato confrontato il taglio alla base, ottenuto dall'analisi modale con quello calcolato analiticamente mediante un'analisi statica lineare, come pure le masse totali dell'edificio.

Dall'analisi dinamica lineare si hanno i seguenti valori di sforzo tagliante, nei vari piani, per lo spettro SLV in direzione X e Y (Figura 34):

		Shear	Force	Weight Sum		Story Shear Force Coefficient	
Story	Spectrum	Х	Y	Х	Y	×	v
		(kN)	(kN)	(kN)	(kN)	^	т
7F	SLV_X(RS)	2.0965e+002	4.4110e+000	1.8774e+003	1.8774e+003	0.1117	0.00235
6F	SLV_X(RS)	4.4738e+002	7.9300e+000	4.5220e+003	4.5220e+003	0.09893	0.001754
5F	SLV_X(RS)	6.4047e+002	9.9833e+000	7.2461e+003	7.2461e+003	0.08839	0.001378
4F	SLV_X(RS)	7.9269e+002	1.1656e+001	9.9722e+003	9.9722e+003	0.07949	0.001169
3F	SLV_X(RS)	9.1146e+002	1.3740e+001	1.2698e+004	1.2698e+004	0.07178	0.001082
2F	SLV_X(RS)	9.9283e+002	1.5751e+001	1.5424e+004	1.5424e+004	0.06437	0.001021
1F	SLV_X(RS)	1.0281e+003	1.6759e+001	1.8193e+004	1.8193e+004	0.05651	0.0009212
7F	SLV_Y(RS)	4.4129e+000	2.4641e+002	1.8774e+003	1.8774e+003	0.00235	0.1312
6F	SLV_Y(RS)	8.4152e+000	4.9574e+002	4.5220e+003	4.5220e+003	0.001861	0.1096
5F	SLV_Y(RS)	1.0742e+001	6.8909e+002	7.2461e+003	7.2461e+003	0.001483	0.0951
4F	SLV_Y(RS)	1.2418e+001	8.4070e+002	9.9722e+003	9.9722e+003	0.001245	0.0843
3F	SLV_Y(RS)	1.4199e+001	9.6138e+002	1.2698e+004	1.2698e+004	0.001118	0.07571
2F	SLV_Y(RS)	1.5838e+001	1.0445e+003	1.5424e+004	1.5424e+004	0.001027	0.06771
1F	SLV_Y(RS)	1.6759e+001	1.0810e+003	1.8193e+004	1.8193e+004	0.0009212	0.05942

Figura 34. Forze di taglio di piano numeriche allo SLV.

Per lo spettro $SLV_X(RS)$ il taglio alla base è di $V_{base-x} = 1028,1 kN$ con una massa complessiva totale di W = 18193 kN. Per lo spettro $SLV_Y(RS)$ il taglio alla base invece è di $V_{base-y} = 1081 kN$ con una massa complessiva pari a W = 18193 kN.

Prima di eseguire l'analisi statica lineare si procede al calcolo analitico del periodo proprio di vibrare della struttura; in prima approssimazione è possibile utilizzare la formula della Circolare Esplicativa delle NTC18 [C7.3.2.] [4]:

$$T_1 = C_1 \cdot H^{3/4}$$

in cui H = 25,90 m è l'altezza della costruzione, in metri, dal piano di fondazione e $C_1 = 0,05$ per qualsiasi tipo di struttura. Sostituendo i valori si ha un periodo $T_1 = 0,05 \cdot 25,9^{\frac{3}{4}} = 0,57 s$

Siccome $T_1 = 0,57 \ s < 2,5 \cdot T_c = 1,38 \ s$ e la costruzione è regolare in altezza si può procede con l'analisi. Essa consiste nell'applicazione di forze statiche equivalenti alle forze d'inerzia indotte dall'azione sismica.

L'entità delle forze si ottiene dall'ordinata dello spettro di progetto corrispondente al periodo T_1 e la loro distribuzione sulla struttura segue la forma del modo di vibrare principale nella direzione in esame valutata in modo approssimato.

La forza da applicare a ciascuna massa della costruzione è data dalla formula [7.3.7] delle NTC18 [1]:

$$F_i = F_h \cdot z_i \cdot \frac{W_i}{\sum_j z_j \cdot W_j}$$

dove:

 $F_{h} = \frac{S_{d}(T_{1}) \cdot W \cdot \lambda}{g};$ $F_{i} = \text{forza da applicare alla massa i-esima;}$ $W_{i} \in W_{j} = \text{pesi della massa i e della j;}$

 z_i e z_j = quote delle masse i e j rispetto al piano di fondazione;

 $S_d(T_1) =$ ordinata dello spettro di risposta di progetto;

W = peso complessivo della costruzione;

 $\lambda = 0.85$ se $T_1 < 2.5 \cdot T_C$ e la costruzione ha almeno tre orizzontamenti;

g = accelerazione di gravità.

MASSA 1	° PRIMO		MASSA 2°-3	[°] -4°-5° PIAI
Solai, Sbalzi	1351	kN	Solai, Sbalzi	1351
Setti	916	kN	Setti	875
Travi e pilastri	437	kN	Travi e pilastri	435
G ₁ elementi plate	63	kN	G ₁ elementi plate	63
Q _k elementi plate	10	kN	Q _k elementi plate	10
SOMMA	2776	kN	SOMMA	2733

A seguire si riportano i calcoli analitici dei pesi dei vari piani dell'edificio (Figura 35):

	-				
MASSA	6° PIANO		MA	ASSA COPERTURA	
Solai, Sbalzi	1363	kN	Solai, Sba	Izi 708	kN
Setti	813	kN	Setti	375	kN
Travi e pilastri	418	kN	Travi e pila	stri 505	KN
G ₁ elementi plate	63	kN	Copertur	ra 282	kN
Q _k elementi plate	10	kN	G ₁ elementi	plate 0	kN
SOMMA	2666	kN	Q _k elementi	plate 0	kN
			SOMMA	A 1870	kN

Figura 35. Pesi dei vari piani.

che sommati tra loro danno un peso complessivo della costruzione pari a $W = 18243 \ kN$. Considerando le varie altezze di piano si ottengono le seguenti forze da applicare alle masse dei vari piani (Figura 36):

PIANO	W	Zi	F _h	Fi
	[kN]	[m]	[kN]	[kN]
1	2776	3,5	1218	51
2	2733	6,7		97
3	2733	9,9		143
4	2733	13,1		190
5	2733	16,3		236
6	2666	19,5		276
7	1870	22,7		225
ΣW	18243	22,9		
ΣWizi	229866	[kNm]		

Figura 36. Analisi statica lineare.

Il taglio alla base che si ottiene dall'analisi statica lineare è pari a $V_{base} = F_h = 1218 \, kN$. Confrontandolo con i tagli alla base dell'analisi modale con spettro SLV_X pari a $V_{base-x} = 1028,1 \, kN$ e con spettro SLV_Y pari a $V_{base-y} = 1081 \, kN$ si ha una differenza tra calcolo analitico e numerico di $F_h - V_{base-x} = 190 \ kN \ e \ F_h - V_{base-y} = 137 \ kN$, valori che si ritengono accettabili. Per completezza si riportano le differenze tra calcolo analitico e numerico delle forze di piano da applicare alle rispettive masse e dei pesi dei vari piani (Figure 37 e 38).

	TAGLI: SLV-X				1	AGLI: SLV-	Y
piano	analitico	numerico	differenza	piano	analitico	numerico	differenza
	[kN]	[kN]	[kN]		[kN]	[kN]	[kN]
7°	225,01	209,65	15,36	7°	225,01	246,41	-21,40
6°	500,51	447,38	53,13	6°	500,51	495,74	4,77
5°	736,58	640,47	96,11	5°	736,58	689,09	47,49
4°	926,31	792,69	133,62	4°	926,31	840,70	85,61
3°	1069,69	911,46	158,23	3°	1069,69	961,38	108,31
2°	1166,72	992,83	173,89	2°	1166,72	1044,50	122,22
1°	1218,21	1028,10	190,11	1°	1218,21	1081,00	137,21

Figura 37. Differenze delle forze di piano.

PESI DI PIANO	PIANO
analitico-numerico	
[kN]	[-]
-7	7°
21	6°
9	5°
7	4°
7	3°
7	2°
7	1°
50	TOTALE

Figura 38. Differenze dei pesi dei vari piani.

Una differenza nel calcolo analitico e numerico del peso complessivo della costruzione di 50 kN risulta accettabile rispetto alla quantità complessiva dell'ordine di 18000 kN.

4.2. Verifica attendibilità del modello: N sismico

Un'altra verifica sull'attendibilità consiste nel verificare lo sforzo normale in combinazione sismica (espressione [2.5.5.] al §2.5.3. delle NTC18 [1]) dei setti in cui grava il peso dei solai.

Le reazioni vincolari che si ottengono sui nodi alla base dei setti di interesse sono le seguenti (Figura 39):

REAZIONE SETTI : Comb. N sismico											
SETTO ID	Reaz. 1	Reaz. 2	Reaz. 3	Reaz. 4	Reaz. TOT						
[-]	[kN]	[kN]	[kN]	[kN]	[kN]						
1	191,0	179,9			370,90						
2	157,6	213,7			371,30						
4	253,5	126,4			379,90						
5	73,9	194,2			268,10						
8	239,6	183,4			423,00						
9	113,5	268,2	267,7	121	770,40						
10	216,8	159,8			376,60						

Figura 39. Reazioni sui setti in combinazione sismica.

Per il calcolo analitico è stato sommato al peso proprio del setto di interesse (da cielo a terra) la rispettiva reazione vincolare che si ottiene dallo schema statico a due campate con sbalzi esterni del solaio in combinazione sismica moltiplicata per il numero di piani di interesse.

Le differenze tra le reazioni calcolate analiticamente e quelle numericamente risultano accettabili (Figura 40).

VERIFICA N SISMICO													
ID SETTO	Geometria setto		Peso proprio setto		ANALITICO		Nsismico		NUMERICO				
	Lx	Ly	Н	Р	REAZIONE		(Sol+Sb)	SOMMA	SOMMA	differenza			
	[m]	[m]	[m]	[kN]	[kN]	x n° piani	[kN]	[kN]	[kN]	[kN]			
1	1,19	0,2	19,5	116,03	37,21	5	224,77	340,80	370,90	30,11			
2	0,66	0,2	22,7	74,91	35,64	6	228,71	303,62	371,30	67,68			
4	0,66	0,2	22,7	74,91	35,64	6	228,71	303,62	379,90	76,29			
5	0,69	0,2	22,7	78,32	21,24	6	132,69	211,00	268,10	57,10			
8	1,51	0,2	22,7	171,39	24,57	6	156,36	327,74	423,00	95,26			
9	2,3	0,2	19,5	238,65	89,65	6	555,36	794,01	770,40	23,61			
10	1,42	0,2	19,5	138,45	51,33	5	308,99	447,44	376,60	70,84			

Figura 40. Verifica N sismico.

Il modello agli elementi finiti risulta quindi affidabile. Si può procede, di conseguenza, alla determinazione delle massime sollecitazioni di Sforzo Normale, Taglio e Momento Flettente per il dimensionamento degli elementi strutturali.

4.3. Sollecitazioni setti

Le sollecitazioni statiche e sismiche agenti sui setti sono espresse in riferimento agli assi locali degli elementi Wall (Figura 41).

Figura 41. Disposizione assi locali nei setti.

Come si può vedere dall'immagine soprastante, le forze agenti sull'asse X rappresentano lo sforzo normale agente nel setto, quelle sull'asse Y indicano il taglio fuori dal piano e quelle sull'asse Z il taglio nel piano del setto. Per quanto riguarda le sollecitazioni flettenti, invece il momento attorno l'asse Y

rappresenta il momento flettente lungo l'asse forte del setto, il momento attorno l'asse Z indica quello lungo l'asse debole e, per ultimo, quello attorno l'asse X definisce il momento torcente.

A seguire si illustrano le sollecitazioni agenti sui setti in combinazione SLU e SLV:

Figura 42.Forza assiale Fx: combinazione SLU.

Figura 43. Taglio Fy: combinazione SLU.

Figura 44. Taglio Fz: combinazione SLU.

Figura 45. Momento flettente My: combinazione SLU.

Figura 46. Momento flettente Mz: combinazione SLU.

Figura 47. Forza assiale Fx: inviluppo SLV-X.

Figura 48. Taglio Fy: inviluppo SLV-X.

Figura 49. Taglio Fz: inviluppo SLV-X.

Figura 50. Momento flettente My: inviluppo SLV-X.

Figura 51. Momento flettente Mz: inviluppo SLV-X.

Figura 52. Forza assiale Fx: inviluppo SLV-Y.

Figura 53. Taglio Fy: inviluppo SLV-Y.

Figura 54. Taglio Fz: inviluppo SLV-Y.

Figura 55. Momento flettente My: inviluppo SLV-Y.

Figura 56. Momento flettente Mz: combinazione SLV-Y.

Poiché le sollecitazioni maggiori si verificano alla base dei setti e la struttura è simmetrica, ai fini del dimensionamento degli elementi strutturali, si andrà a considerare il valore massimo che si ha tra due setti tra loro equivalenti. Tutti i valori sono stati raccolti nelle successive tabelle riassuntive.

			Taucila	1. 510120	assiale 17	massiin	o del setti	III comon	Iazioni si	sinicite.			i
					Fx:	Sforzo assia	ale						1
	SE	гті			CBAII S	isma_X				CBAII Si	isma_Y		
SETTO ID	L_1	L ₂	AREA	F _{xx}	SETTO ID	F _{xx}	F _{xx MAX}	SETTO ID	F _{xx}	SETTO ID	F _{xx}	F _{xx MAX}	F _{xx calc}
	[m]	[m]	[m ²]	[kN]		[kN]	[kN]		[kN]		[kN]	[kN]	[kN]
1	1,19	0,20	0,238	614,8	20	629,8	629,8	1	656,0	20	673,8	673,8	673,8
2	0,66	0,20	0,132	334,4	19	349,6	349,6	2	346,5	19	359,5	359,5	359,5
3	0,55	0,20	0,11	323,6	18	338,7	338,7	3	318,8	18	332,4	332,4	338,7
4	0,66	0,20	0,132	452,8	17	473,9	473,9	4	426,2	17	446,0	446,0	473,9
5	0,69	0,20	0,138	362,5	16	352,0	362,5	5	384,5	16	413,5	413,5	413,5
6	3,13	0,20	0,626	1265,0	27	1232,2	1265,0	6	1206,9	27	1350,7	1350,7	1350,7
7	4,54	0,20	0,908	1638,3	26	1636,1	1638,3	7	1424,4	26	1428,3	1428,3	1638,3
8	1,51	0,20	0,302	712,1	25	688,5	712,1	8	698,0	25	682,2	698,0	712,1
9	2,30	0,20	0,46	933,3	24	920,1	933,3	9	994,9	24	985,5	994,9	994,9
10	1,42	0,20	0,284	612,3	23	574,8	612,3	10	638,3	23	607,5	638,3	638,3
11	3,36	0,20	0,672	1206,3	22	1171,1	1206,3	11	1021,7	22	993,1	1021,7	1206,3
12	4,00	0,20	0,8	1515,8	21	1494,9	1515,8	12	1377,0	21	1359,1	1377,0	1515,8
13	1,70	0,20	0,34	615,0			615,0	13	705,6			705,6	705,6
14	2,19	0,20	0,438	879,7			879,7	14	719,0			719,0	879,7
15	2,75	0,20	0,55	791,1			791,1	15	975,0			975,0	975,0

Tabella 1. Sforzo assiale Fx massimo dei setti in combinazioni sismiche.

Tabella 2. Mo	omento f	lettente N	1y massir	no dei se	tti in con	nbinazioni	sismiche

					My: Mo	omento fle	ttente						
	SE	тті			CBAII S	isma_X				CBAII Si	isma_Y		
SETTO ID	L ₁	L ₂	AREA	M _{yy}	SETTO ID	M _{yy}	M _{yy,max}	SETTO ID	M _{yy}	SETTO ID	M _{yy}	M _{yy,max}	M _{yy,calc}
	[m]	[m]	[m ²]	[kNm]		[kNm]	[kN]		[kNm]		[kNm]	[kNm]	[kNm]
1	1,19	0,20	0,238	160,4	20	154,7	160,4	1	110,3	20	101,0	110,3	160,4
2	0,66	0,20	0,132	63,1	19	61,0	63,1	2	36,3	19	32,1	36,3	<mark>63,1</mark>
3	0,55	0,20	0,11	24,9	18	24,7	24,9	3	20,9	18	21,1	21,1	24,9
4	0,66	0,20	0,132	64,6	17	63,4	64,6	4	38,3	17	37,5	38,3	64,6
5	0,69	0,20	0,138	76,0	16	70,2	76,0	5	51,0	16	53,1	53,1	76,0
6	3,13	0,20	0,626	206,2	27	180,7	206,2	6	428,5	27	416,8	428,5	428,5
7	4,54	0,20	0,908	504,4	26	478,5	504,4	7	986,8	26	986,0	986,8	986,8
8	1,51	0,20	0,302	182,5	25	185,3	185,3	8	121,2	25	127,3	127,3	185,3
9	2,30	0,20	0,46	299,2	24	290,9	299,2	9	107,3	24	98,8	107,3	299,2
10	1,42	0,20	0,284	143,5	23	141,1	143,5	10	111,5	23	109,4	111,5	143,5
11	3,36	0,20	0,672	535,7	22	541,1	541,1	11	633,8	22	650,8	650,8	650,8
12	4,00	0,20	0,8	797,7	21	809,8	809,8	12	935,5	21	964,9	964,9	964,9
13	1,70	0,20	0,34	280,3			280,3	13	125,0			125	280,3
14	2,19	0,20	0,438	108,9			108,9	14	191,1			191,1	191,1
15	2,75	0,20	0,55	511,0			511,0	15	189,5			189,5	511,0

Tabella 3. Taglio Fz massimo dei setti in combinazioni sismiche.

						Fz: Taglio V	nel piano						
	SE	TTI			CBAII S	isma_X			C	BAll Sisma_	Y		
SETTO ID	L ₁	L ₂	AREA	Fz	SETTO ID	Fz	F _{zMAX}	SETTO ID	Fz	SETTO ID	Fz	F _{zMAX}	F _{zmax-tot}
	[m]	[m]	[m ²]	[kN]		[kN]	[kN]		[kN]		[kN]	[kN]	[kN]
1	1,19	0,20	0,238	106,3	20	91,7	106,3	1	88,2	20	64,8	88,2	106,3
2	0,66	0,20	0,132	47,8	19	43,1	47,8	2	35,5	19	31,9	35,5	47,8
3	0,55	0,20	0,11	18,0	18	21,6	21,6	3	13,9	18	17,9	17,9	21,6
4	0,66	0,20	0,132	34,8	17	33,8	34,8	4	23,7	17	22,9	23,7	34,8
5	0,69	0,20	0,138	53,1	16	71,8	71,8	5	36,4	16	50,4	50,4	71,8
6	3,13	0,20	0,626	79,6	27	76,9	79,6	6	114,5	27	100,6	114,5	114,5
7	4,54	0,20	0,908	160,0	26	88,5	160,0	7	203,1	26	215,0	215,0	215,0
8	1,51	0,20	0,302	110,1	25	112,2	112,2	8	74,3	25	77,5	77,5	112,2
9	2,30	0,20	0,46	103,3	24	101,6	103,3	9	46,3	24	40,8	46,3	103,3
10	1,42	0,20	0,284	95,3	23	95,8	95,8	10	92	23	92,3	92,3	95,8
11	3,36	0,20	0,672	128,0	22	129,0	129,0	11	166,3	22	189,5	189,5	189,5
12	4,00	0,20	0,8	235,9	21	213,1	235,9	12	227,2	21	209,8	227,2	235,9
13	1,70	0,20	0,34	137,3			137,3	13	73,7			73,7	137,3
14	2,19	0,20	0,438	100,6			100,6	14	72,4			72,4	100,6
15	2,75	0,20	0,55	293,0			293,0	15	103,7			103,7	293,0

TT 1 11 4	T 1'	r ·	1			
Tabella 4	1 20110	EV massimo	i dei sett	in com	h1n9710n	i sismiche
rabena 4.	rugno	r y massimo	uer sett	i in com	omazion	i sisificite.

						Fy: Taglio	o V fuori pia	no					
	SE	TTI			CBAII S	isma_X				CBAll Sisma_	Y		
SETTO ID	L ₁	L ₂	AREA	Fy	SETTO ID	Fy	Fymax	SETTO ID	Fy	SETTO ID	Fy	Fymax	F _{ymax-tot}
	[m]	[m]	[m ²]	[kN]		[kN]	[kN]		[kN]		[kN]	[kN]	[kN]
1	1,19	0,20	0,238	-3,8	20	-3,6	3,8	1	-3,2	20	-3,0	3,2	3,8
2	0,66	0,20	0,132	-0,6	19	-0,6	0,6	2	-0,4	19	-0,5	0,5	0,6
3	0,55	0,20	0,11	-0,6	18	0,5	0,6	3	-0,4	18	0,4	0,4	0,6
4	0,66	0,20	0,132	0,9	17	0,9	0,9	4	0,8	17	0,8	0,8	0,9
5	0,69	0,20	0,138	1,1	16	1,0	1,1	5	1,0	16	1,0	1,0	1,1
6	3,13	0,20	0,626	9,6	27	-11,4	11,4	6	9,6	27	-10,6	10,6	11,4
7	4,54	0,20	0,908	12,4	26	-13,2	13,2	7	12,6	26	-13,0	13,0	13,2
8	1,51	0,20	0,302	-4,9	25	-5,0	5,0	8	-3,9	25	-4,1	4,1	5,0
9	2,30	0,20	0,46	-9,5	24	-9,3	9,5	9	-10,0	24	-9,8	10,0	10,0
10	1,42	0,20	0,284	-4,3	23	-4,2	4,3	10	-3,7	23	-3,6	3,7	4,3
11	3,36	0,20	0,672	-2,7	22	2,7	2,7	11	-2,6	22	2,6	2,6	2,7
12	4,00	0,20	0,8	-29,4	21	29,0	29,4	12	-29,0	21	28,5	29,0	29,4
13	1,70	0,20	0,34	0,3			0,3	13	0,4			0,4	0,4
14	2,19	0,20	0,438	-3,9			3,9	14	-2,5			2,5	3,9
15	2,75	0,20	0,55	0,7			0,7	15	-1,1			1,1	1,1

Ē	Tabena 5. Storzo assiale FX massimo del setti in combinazione statica SL	U
т	Taballa 5. Sforza assiale Ex massimo dei setti in combinazione statica SU	ТI

			17. 510120	Jussiaic			
	SET	ті			SL	.U	
SETTO ID	L ₁	L ₂	AREA	F _{xx}	SETTO ID	F _{xx}	F _{xx MAX}
	[m]	[m]	[m ²]	[kN]		[kN]	[kN]
1	1,19	0,20	0,238	-622,8	20	-657,3	657,3
2	0,66	0,20	0,132	-502,0	19	-520,4	520,4
3	0,55	0,20	0,11	-421,2	18	-441,6	441,6
4	0,66	0,20	0,132	-516,1	17	-547,1	547,1
5	0,69	0,20	0,138	-358,4	16	-434,6	434,6
6	3,13	0,20	0,626	-1438,6	27	-1788,8	1788,8
7	4,54	0,20	0,908	-1941,0	26	-1941,7	1941,7
8	1,51	0,20	0,302	-594,1	25	-570,1	594,1
9	2,30	0,20	0,46	-1212,1	24	-1197,2	1212,1
10	1,42	0,20	0,284	-534,8	23	-488,0	534,8
11	3,36	0,20	0,672	-1282,0	22	-1225,2	1282,0
12	4,00	0,20	0,8	-1870,9	21	-1848,0	1870,9
13	1,70	0,20	0,34	-758,4			758,4
14	2,19	0,20	0,438	-851,1			851,1
15	2,75	0,20	0,55	-1060,9			1060,9

Taballa 6	Tooli Ev.o	Ez mogeimi	dai satti in	apphingtions	station	STIL
Tabella 0.	Tagii ry c	TZ massiim	del setti m	combinazione	statica	SLU.

			[:] y: Taglio V	' fuori piar	10						Fz: Taglio	V nel piano)		
	SE	TTI			SL	U			SE	TTI			SL	U	
SETTO ID	L ₁	L ₂	AREA	Fyy	SETTO ID	F _w	F _{yy MAX}	SETTO ID	L ₁	L ₂	AREA	Fzz	SETTO ID	Fzz	F _{zz MAX}
	[m]	[m]	[m ²]	[kN]		[kN]	[kN]		[m]	[m]	[m ²]	[kN]		[kN]	[kN]
1	1,19	0,20	0,238	-3,9	20	-3,7	3,9	1	1,19	0,20	0,238	-106,5	20	85,7	106,5
2	0,66	0,20	0,132	-0,5	19	-0,5	0,5	2	0,66	0,20	0,132	-34,8	19	28,6	34,8
3	0,55	0,20	0,11	-0,5	18	0,4	0,5	3	0,55	0,20	0,11	-14,9	18	-21,4	21,4
4	0,66	0,20	0,132	1,2	17	1,2	1,2	4	0,66	0,20	0,132	-34,5	17	36,0	36,0
5	0,69	0,20	0,138	1,7	16	1,6	1,7	5	0,69	0,20	0,138	61,8	16	-60,6	61,8
6	3,13	0,20	0,626	15,9	27	-17,0	17,0	6	3,13	0,20	0,626	-47,9	27	-88,6	88,6
7	4,54	0,20	0,908	20,2	26	-20,4	20,4	7	4,54	0,20	0,908	-154,6	26	105,3	154,6
8	1,51	0,20	0,302	-5,9	25	-6,4	6,4	8	1,51	0,20	0,302	79,2	25	-84,8	84,8
9	2,30	0,20	0,46	-12,6	24	-14,0	14,0	9	2,30	0,20	0,46	37,8	24	-47,4	47,4
10	1,42	0,20	0,284	-5,4	23	-5,2	5,4	10	1,42	0,20	0,284	-121,6	23	123,5	123,5
11	3,36	0,20	0,672	-4,1	22	4,1	4,1	11	3,36	0,20	0,672	-108,0	22	-140,0	140,0
12	4,00	0,20	0,8	-45,8	21	45,2	45,8	12	4,00	0,20	0,8	64,5	21	35,4	64,5
13	1,70	0,20	0,34	-0,1			0,1	13	1,70	0,20	0,34	95,9			95,9
14	2,19	0,20	0,438	-2,7			2,7	14	2,19	0,20	0,438	46,2			46,2
15	2,75	0,20	0,55	0,9			0,9	15	2,75	0,20	0,55	-36,0			36,0

Tabella 7. Momenti flettenti My e Mz massimi dei setti in combinazione statica SLU.

	My: Momento flettente SETTI SLU								Ν	/lz: Momer	nto flettent	te			
	SE	TTI			SL	U			SE	TTI			SL	U	
SETTO ID	L ₁	L ₂	AREA	M _{yy}	SETTO ID	Myy	M _{yy MAX}	SETTO ID	L ₁	L ₂	AREA	M _{zz}	SETTO ID	M _{zz}	M _{zz MAX}
	[m]	[m]	[m ²]	[kNm]		[kNm]	[kNm]		[m]	[m]	[m ²]	[kNm]		[kNm]	[kNm]
1	1,19	0,20	0,238	183,6	20	-149,5	183,6	1	1,19	0,20	0,238	6,7	20	6,0	6,7
2	0,66	0,20	0,132	56,8	19	-47,0	56,8	2	0,66	0,20	0,132	0,8	19	0,9	0,9
3	0,55	0,20	0,11	24,4	18	34,6	34,6	3	0,55	0,20	0,11	0,8	18	0,7	0,8
4	0,66	0,20	0,132	55,8	17	-58,7	58,7	4	0,66	0,20	0,132	2,1	17	2,0	2,1
5	0,69	0,20	0,138	-101,5	16	99,9	101,5	5	0,69	0,20	0,138	2,7	16	2,6	2,7
6	3,13	0,20	0,626	-182,2	27	155,6	182,2	6	3,13	0,20	0,626	-32,6	27	33,7	33,7
7	4,54	0,20	0,908	-321,4	26	-299,2	321,4	7	4,54	0,20	0,908	-41,7	26	41,7	41,7
8	1,51	0,20	0,302	127,2	25	142,6	142,6	8	1,51	0,20	0,302	9,6	25	10,4	10,4
9	2,30	0,20	0,46	-61,5	24	79,6	79,6	9	2,30	0,20	0,46	-23,5	24	-23,1	23,5
10	1,42	0,20	0,284	208,7	23	-213,2	213,2	10	1,42	0,20	0,284	8,7	23	8,5	8,7
11	3,36	0,20	0,672	-186,0	22	-240,0	240,0	11	3,36	0,20	0,672	7,9	22	-7,9	7,9
12	4,00	0,20	0,8	-188,5	21	-195,5	195,5	12	4,00	0,20	0,8	81,5	21	49,8	81,5
13	1,70	0,20	0,34	-165,0			165,0	13	1,70	0,20	0,34	0,3			0,3
14	2,19	0,20	0,438	-97,4			97,4	14	2,19	0,20	0,438	4,4			4,4
15	2,75	0,20	0,55	-59,1			59,1	15	2,75	0,20	0,55	1,4			1,4

4.4. Sollecitazioni travi

Non solo per i setti ma anche per travi e pilastri le sollecitazioni statiche e sismiche sono espresse in riferimento agli assi locali degli elementi (Figura 57).

Figura 57. Disposizione assi locali nelle travi.

Le forze agenti sull'asse X rappresentano lo sforzo normale agente nelle travi (pari a zero perché non sono soggette a precompressione o trazione); le forze sull'asse Y e Z, invece indicano gli sforzi taglianti. Per quanto riguarda le sollecitazioni flettenti, il momento attorno l'asse Y rappresenta il momento flettente principale, il momento attorno l'asse Z indica il momento di flessione deviata e, per ultimo, quello attorno l'asse X definisce il momento torcente.

A titolo d'esempio si riportano i diagrammi di momento flettente e taglio della trave centrale in spessore di solaio 75x33cm del primo piano in combinazione SLU (Figure 58 e 59).

Come si poteva prevedere lo sforzo normale agente è nullo, il diagramma di momento flettente ha andamento parabolico mentre quello del taglio è lineare.

Figura 58. Diagramma del momento flettente My in combinazione SLU.

Figura 59. Diagramma dello sforzo tagliante Fz in combinazione SLU.

Le sollecitazioni massime di interesse, utili ai fini del dimensionamento degli elementi strutturali, sono state riassunte nelle tabelle successive:

			Tabella 8	. Sollecita:	zioni mass	sime travi	75x33cm.			
		TRA	VI ORIZZOI	NTALI 75x33	3 cm			SOLLEC	ITAZIONI N	IASSIME
	SLV	√_X	SLV	/_Y		T _{max}	150.25	[kN]		
	My	Fz	My	Fz	My	Fz		M ⁺ _{max}	78.77	[kNm]
	[kNm]	[kN]	[kNm]	[kN]	[kNm]	[kN]		M ⁻ max	-92.89	[kNm]
Cbmin	-90.06	-150.25	-68.61	-116.98	-92.89	138.16				
Cbmax	78.77	139.44	55.96	107.85	62.72					

Tabella 9.	Sollecitazioni n	nassime trav	i 20x33cm.

		TF	AVI VERTIC	SOLLECITAZIONI MASSIME					
	SLV	/_X	SL\	/_Y	SLU		T _{max}	106.41	[kN]
	My	Fz	My	Fz	My	Fz	M ⁺ _{max}	41.16	[kNm]
	[kNm]	[kN]	[kNm]	[kN]	[kNm]	[kN]	M [*] max	-41.34	[kNm]
Cbmin	-34.64	-89.38	-41.34	-106.41	-26.93	100.86			
Cbmax	34.58	84.41	41.16	99.93	16.58				

Tabella	10.	Sollecitazioni	massime	travi	65x33cm.

		Т	RAVI VERTIO	SOLLECITAZIONI MASSIME					
	SLV	/_X	SL\	/_Y	SL	.U	T _{max}	53.78	[kN]
	My	Fz	My	Fz	My	Fz	M ⁺ _{max}	46.84	[kNm]
	[kNm]	[kN]	[kNm]	[kN]	[kNm]	[kN]	M ⁻ max	-60.40	[kNm]
Cbmin	-40.66	-17.4	-41.25	-17.06	-60.4	53.78			
Cbmax	29.93	35.62	5.62 30.34 36.03		46.84				

Tabella 11. Sollecitazioni massime tirante della capriata 65x33cm.

			TIRANTE	65x33cm	SOLLECITAZIONI MASSIME				
	SLV	/_X	SL\	/_Y	S	LU	T _{max}	107.50	[kN]
	My	Fz	My	Fz	My	Fz	M ⁺ _{max}	55.23	[kNm]
	[kNm]	[kN]	[kNm]	[kN]	[kNm]	[kN]	M ⁻ max	-60.79	[kNm]
Cbmin	-45.84	-73.44	-49.70	-76.78	-60.79	-107.50			
Cbmax	35.71	66.81	36.31	70.76	55.23				

Tabella 12. Sollecitazioni massime trave in altezza della copertura 20x120cm.

		TI	RAVE ALTEZ	ZA 20x1200	SOLLECITAZIONI MASSIME				
	SLV	/_X	SLV	/_Y	SI	U	T _{max}	100.74	[kN]
	My	Fz	My	Fz	My	Fz	M ⁺ _{max}	115.89	[kNm]
	[kNm]	[kN]	[kNm]	[kN]	[kNm]	[kN]	M [*] max	-117.39	[kNm]
Cbmin	-117.39	-91.95	-78.10	-69.95	-83.63	87.21			
Cbmax	115.89	100.74	88.57	79.39	63.81				

Tabella 13. Sollecitazioni massime puntone della capriata 20x45cm.

		PUNTONE CAPRIATA 20x45cm						SOLLECITAZIONI MASSIME			PUNTONE CAPRIATA 20x45 cm			
	SLV_X SLV_Y				T _{max}	T _{max} 8.00 [kN]			SLU					
	My	Fz-V	Fx-N	My	Fz	Fx-N		M ⁺ _{max}	2.80	[kNm]	My	Fz-V	Fx-N	
	[kNm]	[kN]	[kN]	[kNm]	[kN]	[kN]		M [*] max	-9.57	[kNm]	[kNm]	[kN]	[kN]	
Cbmin	-7.09	-6.07	-45.79	-6.88	-5.98	-47.4		N _{max}	118.99	[kN]	-9.57	-8.00	118.99	
Cbmax	2.15	5.93	85.54	2.14	5.85	82.41					2.80			

Tabella 14. Sollecitazioni massime puntone della capriata 20x33cm.

	PUNTONE CAPRIATA 20x33cm						SOLLECITAZIONI MASSIME			PUNTONE CAPRIATA 20x33 cm		
		SLV_X SLV_Y		T _{max}	4.84	[kN]		SLU				
	My	Fz-V	Fx-N	My	Fz	Fx-N	M ⁺ max	2.00	[kNm]	My	Fz-V	Fx-N
	[kNm]	[kN]	[kN]	[kNm]	[kN]	[kN]	M ⁻ max	-4.27	[kNm]	[kNm]	[kN]	[kN]
Cbmin	-3.44	-3.77	-30.41	-3.44	-3.71	-20.95	N _{max}	30.41	[kN]	-4.27	4.84	-28.17
Cbmax	1.54	3.78	12.19	1.54	3.72	6.27				2.00		

Tabella 15. Sollecitazioni massime trave di colmo della copertura 24x48cm.

		TRAVE DI COLMO 24x48cm						SOLLECITAZIONI MASSIME			TRAVE	TRAVE DI COLMO 24x48 cm		
	SLV_X SLV_Y			SLV_Y			T _{max} 75.39		[kN]		SLU			
	My	Fz-V	Fx-N	My	Fz	Fx-N		M ⁺ _{max}	43.89	[kNm]	Му	Fz-V	Fx-N	
	[kNm]	[kN]	[kN]	[kNm]	[kN]	[kN]		M [*] max	-89.60	[kNm]	[kNm]	[kN]	[kN]	
Cbmin	-53.92	-45.33	-25.9	-53.92	-45.33	-27.66		N _{max}	87.18	[kN]	-89.60	-75.39	87.18	
Cbmax	26.37	36.84	56.54	26.37	36.72	60.39					43.89			

4.5. Sollecitazioni pilastri

Per determinare le sollecitazioni massime sui pilastri è stato fatto il medesimo procedimento svolto per le travi. Tutti i valori di interesse sono stati inserti nelle successive tabelle riassuntive:

	PILASTRO P1: 35x40cm													
			SLV_X			SLV_Y								
	Fx-N	Fy-V	Fz-V	My	Mz	Fx-N	Fy-V	Fz-V	Му	Mz				
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kN]	[kNm]	[kNm]				
Cbmin	-864.57	-4.96	-34.54	-69.59	-7.37	-866.20	-5.52	-33.55	-68.63	-8.35				
Cbmax	-827.07	-3.85	33.39	71.68	8.51	-822.30	-3.29	32.67	70.36	9.33				

Tabella 16. Sollecitazioni sismiche pilastro 35x40cm

Tabella 17. Sollecitazioni SL	U pilastro 35x40cm
-------------------------------	--------------------

	PILASTRO P1: 35x40cm											
SLU												
Fx-N Fy-V Fz-V My Mz												
[kN]	[kN]	[kN]	[kNm]	[kNm]								
-1364.78	-7.50	-54.60	-111.51	-10.97								
			114.26	13.04								

Tabella 18. Sollecitazioni massime pilastro 35x40cm.

JULLE	CITAZIONI	IVIASSIIVIE
T _{max}	54.60	[kN]
M ⁺ _{max}	114.26	[kNm]
M _{max}	-111.51	[kNm]
N _{max}	1364.78	[kN]

Tabella 19. Sollecitazioni sismiche pilastro 25x50cm.

		PILASTRO P2: 25x50cm										
	SLV_X						SLV_Y					
	Fx-N	Fy-V	Fz-V	My	Mz	Fx-N	Fy-V	Fz-V	My	Mz		
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kN]	[kNm]	[kNm]		
Cbmin	-313.91	-11.33	-3.94	-6.42	-17.31	-309.31	-12.16	-3.50	-5.72	-18.63		
Cbmax	-278.16	-8.14	3.88	6.51	18.95	-282.76	-7.31	3.45	5.78	20.29		

Tabella 20. Sollecitazioni SLU pilastro 25x50cm.

PILASTRO P2: 25x50cm								
SLU								
Fx-N	Fy-V	Fz-V	My	Mz				
[kN]	[kN]	[kN]	[kNm]	[kNm]				
-451.17	-15.79	-4.88	-8.04	-24.07				
			8.11	26.47				

Tabella 21. Sollecitazioni massime pilastro 25x50cm.

SOLLE	SOLLECITAZIONI MASSIME							
T _{max}	15.79	[kN]						
M ⁺ _{max}	26.47	[kNm]						
M _{max}	-24.07	[kNm]						
N _{max}	451.17	[kN]						

Tabella 22. Sollecitazioni sismiche pilastro 25x40cm.

		PILASTRO P3: 25x40cm										
	SLV_X						SLV_Y					
	Fx-N	Fy-V	Fz-V	My	Mz	Fx-N	Fy-V	Fz-V	My	Mz		
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kN]	[kNm]	[kNm]		
Cbmin	-60.14	-9.99	-4.01	-6.73	-13.91	-59.66	-10.51	-3.74	-6.28	-14.67		
Cbmax	-54.45	-8.07	3.93	6.84	18.06	-54.79	-7.56	3.68	6.37	18.95		

	PILASTRO P3: 25x40cm								
SLU									
Fx-N	Fy-V	Fz-V	My	Mz					
[kN]	[kN]	[kN]	[kNm]	[kNm]					
-89.51	-14.84	-5.44	-9.18	-20.58					
			9.27	26.92					

Tabella 24. Sollecitazioni massime pilastro 25x40cm.

SULLECITAZIONI MASSIME								
T _{max}	14.84	[kN]						
M ⁺ ma	ax 26.92	[kNm]						
Mīma	x -20.58	[kNm]						
N _{ma}	x 89.51	[kN]						

Tabella 25. Sollecitazioni sismiche tirante di copertura 65x33cm.

		PILASTRINO COPERTURA: 65x33cm											
	SLV_X						SLV_Y						
	Fx-N	Fy-V	Fz-V	My	Mz	Fx-N	Fy-V	Fz-V	Му	Mz			
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kN]	[kNm]	[kNm]			
Cbmin	-202.99	-22.26	-52.97	-23.82	-15.67	-194.72	-20.70	-45.07	-20.29	-19.02			
Cbmax	102.69	30.51	44.63	23.48	13.13	-122.64	35.36	34.63	16.61	13.51			

Tabella 26. Sollecitazioni SLU tirante di copertura 65x33cm.

P	PILASTRINO COPERTURA: 65x33cm									
	SLU									
Fx-N	Fy-V	Fz-V	My	Mz						
[kN]	[kN]	[kN]	[kNm]	[kNm]						
-268.01	41.51	-50.08	-19.56	-24.09						
			20.50	17.26						

Tabella 27. Sollecitazioni massime tirante di copertura 65x33cm.

SOLLI	SOLLECITAZIONI MASSIME								
T _{max}	52.97	[kN]							
M ⁺ _{max}	23.48	[kNm]							
M [*] max	-24.09	[kNm]							
N _{max}	268.01	[kN]							

5. DIMENSIONAMENTO ELEMENTI STRUTTURALI

Ora che si è a conoscenza di tutte le sollecitazioni statiche e sismiche agenti negli elementi strutturali si può procedere al dimensionamento di ciascun elemento nel rispetto dei requisiti statici allo stato limite ultimo del capitolo §4.1.2.3. e i requisiti di resistenza, duttilità e dettagli costruttivi dei § 7.4.4. e § 7.4.6 delle NTC18 [1].

5.1. Setti

Il § 7.4.4.5. definisce parete un elemento strutturale di supporto per altri elementi che abbia una sezione trasversale rettangolare o ad essa assimilabile, caratterizzata in ciascun tratto da un rapporto tra dimensione massima l_w e dimensione minima b_w in pianta $\frac{l_w}{b_w} > 4$. Le pareti possono avere sezione orizzontale composta da uno (parete semplice) o più (parete composta) segmenti rettangolari (Figura 60). Nel caso in esame si hanno ventisette pareti semplici;

Le pareti si definiscono snelle, se il rapporto $\frac{h_w}{l_w} > 2$, tozze in caso contrario, essendo h_w l'altezza totale della parete misurata a partire dalla sua base.

Figura 60. Sezioni resistenti delle pareti semplici e composte (Fig.7.4.3. NTC18) [1].

L'edificio risulta composto da pareti snelle; in termini geometrici invece quattro pareti presentano un rapporto tra lunghezza e spessore inferiore a quattro (Figura 61).

SETTI							§ 7.4.	.4.5	
SETTO ID	l _w	b _w	h _w	n° piani	AREA	l _w /b _w		h _w /l _w	
	[m]	[m]	[m]	[-]	[m ²]	[-]		[-]	
1	1,19	0,20	19,5	7	0,238	5,95	SETTO	16,39	SNELLA
2	0,66	0,20	22,7		0,132	3,30	NO SETTO	34,39	SNELLA
3	0,55	0,20	22,7		0,110	2,75	NO SETTO	41,27	SNELLA
4	0,66	0,20	22,7		0,132	3,30	NO SETTO	34,39	SNELLA
5	0,69	0,20	22,7		0,138	3,45	NO SETTO	32,90	SNELLA
6	3,13	0,20	22,7		0,626	15,65	SETTO	7,25	SNELLA
7	4,54	0,20	22,7		0,908	22,70	SETTO	5,00	SNELLA
8	1,51	0,20	22,7		0,302	7,55	SETTO	15,03	SNELLA
9	2,30	0,20	22,7		0,460	11,50	SETTO	9,87	SNELLA
10	1,42	0,20	19,5		0,284	7,10	SETTO	13,73	SNELLA
11	3,36	0,20	19,5		0,672	16,80	SETTO	5,80	SNELLA
12	4,00	0,20	19,5		0,800	20,00	SETTO	4,88	SNELLA
13	1,70	0,20	22,7		0,340	8,50	SETTO	13,35	SNELLA
14	2,19	0,20	22,7		0,438	10,95	SETTO	10,37	SNELLA
15	2,75	0,20	22,7		0,550	13,75	SETTO	8,25	SNELLA

Figura 61. Verifica snellezza e geometria delle pareti.

Per le pareti snelle in CD "B" la domanda in termini di momenti flettenti lungo l'altezza della parete (linea c) è ottenuta per traslazione verso l'alto dell'inviluppo del diagramma dei momenti (linea b) derivante dai momenti forniti dall'analisi (linea a); l'inviluppo può essere assunto lineare se la struttura non presenta significative discontinuità in termini di massa, rigidezza, resistenza lungo l'altezza (Figura 62):

STRUTTURE A PARETI

Figura 62. Traslazione del diagramma dei momenti flettenti per strutture a pareti (Fig. 7.4.4. NTC18) [1].

La traslazione deve essere in accordo con l'inclinazione degli elementi compressi nel meccanismo resistente a taglio e può essere assunta pari a h_{cr} (altezza della zona inelastica dissipativa di base) valutata come:

$$h_{cr} = \max (l_w, h_w/6) \text{ purché } h_{cr} \leq \begin{cases} 2 \cdot l_w \\ h_s \text{ per } n \leq 6 \text{ piani} \\ 2 \cdot h_s \text{ per } n \geq 7 \text{ piani} \end{cases}$$

In cui n è il numero di piani della costruzione (otto nel nostro caso) e h_s è l'altezza libera di piano pari a 3,2 metri.

Per tutte le pareti, la domanda in forza normale di compressione non deve eccedere il 40% della capacità massima a compressione della sezione di solo calcestruzzo, in tutte le combinazioni considerate.

Sia la verifica dell'altezza critica che la domanda in forza normale di compressione nella combinazione di carico più gravosa per i setti in esame risultano soddisfatte (Figura 63). Risulta soddisfatta anche la

condizione al §7.4.6.1.4. in cui lo spessore delle pareti, di 20 cm, è maggiore del massimo tra 15 cm e 1/20 dell'altezza libera d'interpiano (16 cm).

			Ę	7.4.4.5				
SETTO ID	l _w	b _w	h _{cr}	hs	cond. h _{cr}	N _{cls}	40% N _{CIs}	I _{Ed} <40%N _c
	[m]	[m]	[m]	[m]	[7.4.13]	[kN]	[kN]	[kN]
1	1,19	0,20	3,25	3,2	VERO	4141,76	1656,70	VERO
2	0,66	0,20	3,78		VERO	2297,11	918,84	VERO
3	0,55	0,20	3,78		VERO	1914,26	765,70	VERO
4	0,66	0,20	3,78		VERO	2297,11	918,84	VERO
5	0,69	0,20	3,78		VERO	2401,52	960,61	VERO
6	3,13	0,20	3,78		VERO	10893,86	4357,54	VERO
7	4,54	0,20	4,54		VERO	15801,32	6320,53	VERO
8	1,51	0,20	3,78		VERO	5255,50	2102,20	VERO
9	2,30	0,20	3,78		VERO	8005,07	3202,03	VERO
10	1,42	0,20	3,25		VERO	4942,26	1976,91	VERO
11	3,36	0,20	3,36		VERO	11694,37	4677,75	VERO
12	4,00	0,20	4,00		VERO	13921,87	5568,75	VERO
13	1,70	0,20	3,78		VERO	5916,79	2366,72	VERO
14	2,19	0,20	3,78		VERO	7622,22	3048,89	VERO
15	2 75	0.20	3 78		VERO	9571 28	3828 51	VERO

Figura 63. Verifica dell'altezza della zona dissipativa her.

Ai fini delle verifiche di duttilità si determina la lunghezza degli elementi di bordo in zona dissipativa e la lunghezza in zona non confinata. La lunghezza dell'elemento di bordo si può porre pari a $l_c \ge \max(0, 2 \cdot l_w; 1, 5 \cdot b_w)$ (Figura 64).

	LUNGHEZZE						
SETTO ID	l _w	b _w	h _w	n° piani	AREA	I _{confinam}	Inonconfinam
	[m]	[m]	[m]	[-]	[m ²]	[m]	[m]
1	1,19	0,20	19,5	7	0,238	0,30	0,59
2	0,66	0,20	22,7		0,132	0,30	0,06
3	0,55	0,20	22,7		0,110	0,30	-0,05
4	0,66	0,20	22,7		0,132	0,30	0,06
5	0,69	0,20	22,7		0,138	0,30	0,09
6	3,13	0,20	22,7		0,626	0,63	1,88
7	4,54	0,20	22,7		0,908	0,91	2,72
8	1,51	0,20	22,7		0,302	0,30	0,91
9	2,30	0,20	22,7		0,460	0,46	1,38
10	1,42	0,20	19,5		0,284	0,30	0,82
11	3,36	0,20	19,5		0,672	0,67	2,02
12	4,00	0,20	19,5		0,800	0,80	2,40
13	1,70	0,20	22,7		0,340	0,34	1,02
14	2,19	0,20	22,7		0,438	0,44	1,31
15	2,75	0,20	22,7		0,550	0,55	1,65

Figura 64. Lunghezze di confinamento e non confinamento.

I dettagli costruttivi per le strutture a comportamento dissipativo, nel caso delle pareti (§7.4.6.2.4. NTC18 [1]), prevedono che nelle parti della parete al di fuori della zona dissipativa vengano seguite le regole del capitolo 4 con un'armatura minima verticale e orizzontale, finalizzata a controllare la fessurazione da taglio, avente rapporto geometrico $\rho = 0,2$ %

Le armature, sia orizzontali che verticali, devono:

- avere un diametro non superiore ad 1/10 dello spessore della parete (e quindi $\phi < \frac{200}{10} = 20 \text{ mm}$);
- essere disposte su entrambe le facce della parete;

- avere un passo non superiore a 30 cm;
- essere collegate con legature (almeno nove legature ogni metro quadrato).

Negli elementi di bordo delle zone dissipative, l'armatura longitudinale e trasversale deve rispettare le prescrizioni fornite per le zone dissipative dei pilastri primari (§7.4.6.2.2. [1]) che possono essere riassunte nei seguenti punti:

- interasse tra le barre non superiore a 25 cm;
- percentuale geometrica di armatura longitudinale $1\% \le \rho \le 4\%$;
- le barre disposte sugli angoli devono essere contenute da staffe in cui la distanza tra due barre vincolate consecutive deve essere non superiore a 20 cm per una Classe di Duttilità CD "B";
- il diametro delle staffe deve essere non inferiore a 6 mm per CD "B";
- il passo delle staffe di contenimento e legature deve essere non superiore alla più piccola delle

seguenti quantità:
$$s < \begin{cases} \frac{1}{2} \cdot L_{minore} = \frac{1}{2} \cdot 20 \ cm = 10 \ cm \\ 17,5 \ cm \ per \ CD \ "B" \rightarrow s = 10 \ cm \\ 8 \cdot \phi_{long} = 8 \cdot 1,6 \ cm = 12,8 \ cm \end{cases} \rightarrow s = 10 \ cm$$

poiché si è deciso di utilizzare per i setti un diametro massimo pari a 16 mm, il passo delle staffe in zona dissipativa sarà pari a 10 cm.

5.1.1. Verifica a pressoflessione: sollecitazioni

Nel rispetto dei requisiti enunciati poc'anzi si procede al dimensionamento delle pareti. Per prima cosa si esegue una verifica a flessione e, a seguire, una a pressoflessione per poi concentrarsi sulle verifiche a taglio e duttilità.

Poiché si esegue una progettazione in capacità, si dovrà far sì che la rottura per pressoflessione dei setti avvenga dopo una rottura per taglio, in maniera tale da scongiurare rotture di tipo fragile, prediligendo rotture duttili.

Le sollecitazioni utilizzate in fase di progetto sono le seguenti (Tabella 28):

SOLLECITAZIONI DI PROGETTO												
	667				SISMICHE		SLU					
	351			Ν	Т	М	Ν	Т	М			
SETTO ID	L ₁	L ₂	AREA	N _{MAX-TOT}	F _{MAX-TOT}	M _{MAX-TOT}	N _{MAX-TOT}	F _{MAX-TOT}	M _{MAX-TOT}			
	[m]	[m]	[m ²]	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]			
1	1,19	0,20	0,238	673,8	106,3	160,4	657,3	106,5	183,6			
2	0,66	0,20	0,132	359,5	47,8	63,1	520,4	34,8	56,8			
3	0,55	0,20	0,110	338,7	21,6	24,9	441,6	21,4	34,6			
4	0,66	0,20	0,132	473,9	34,8	64,6	547,1	36,0	58,7			
5	0,69	0,20	0,138	413,5	71,8	76,0	434,6	61,8	101,5			
6	3,13	0,20	0,626	1350,7	114,5	428,5	1788,8	88,6	182,2			
7	4,54	0,20	0,908	1638,3	215,0	986,8	1941,7	154,6	321,4			
8	1,51	0,20	0,302	712,1	112,2	185,3	594,1	84,8	142,6			
9	2,30	0,20	0,460	994,9	103,3	299,2	1212,1	47,4	79,6			
10	1,42	0,20	0,284	638,3	95,8	143,5	534,8	123,5	213,2			
11	3,36	0,20	0,672	1206,3	189,5	650,8	1282,0	140,0	240,0			
12	4,00	0,20	0,800	1515,8	235,9	964,9	1870,9	64,5	195,5			
13	1,70	0,20	0,340	705,6	137,3	280,3	758,4	95,9	165,0			
14	2,19	0,20	0,438	879,7	100,6	191,1	851,1	46,2	97,4			
15	2,75	0,20	0,550	975,0	293,0	511,0	1060,9	36,0	59,1			

Tabella 28. Sollecitazioni di progetto dei setti.

Per prima cosa è stata svolta una verifica a flessione, considerando la combinazione di carico in cui si ha il massimo momento flettente sollecitante nel setto (non coincidente con quella in cui si ha in massimo sforzo normale); successivamente è stata svolta una verifica a pressoflessione semplice considerando anche la combinazione di carico in cui si verifica il massimo sforzo assiale nella parete ed altre combinazioni significative. Non è stata fatta la verifica a flessione deviata, visto che i momenti flettenti lungo l'asse debole del setto hanno entità molto basse. Per l'esecuzione delle verifiche di resistenza ci si è avvalsi dell'aiuto del programma V.C.A. S.L.U. Dal momento che il setto sarà armato simmetricamente, rispetto ai suoi due assi di simmetria, non è stata fatta distinzione tra i momenti flettenti che tendono le fibre inferiori e superiori.

5.1.2. Verifica a pressoflessione: SETTO ID 1-20

Il setto con ID 1-20 è composto da una parete di lunghezza $l_w = 1,19 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{1-20} = 0,238 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 183,6 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 11 \ cm$ (1% $\leq \rho_{conf} = 1,54\% \leq 4\%$) e in zona non confinata barre di diametro $\phi_{nonconf} = 8 \ mm$ con passo $s_{nonconf} = 16 \ cm$ ($\rho_{nonconf} = 0,26\% \geq \rho_{min} = 0,20\%$) per un totale di 18 barre si ottiene un momento resistente pari a $M_{Rd} = 436,2 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 183,6 \ kNm$ (Figura 65):

Figura 65. Verifica a flessione setto ID 1-20.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 66):

Figura 66. Dominio N-M setto ID 1-20.

5.1.3. Verifica a pressoflessione: SETTO ID 2-19

Il setto con ID 2-19 è composto da una parete di lunghezza $l_w = 0,66 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{2-19} = 0,132 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 63,1 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 11 \ cm$ (1% $\leq \rho_{conf} = 1,54\% \leq 4\%$) e nulla in zona non confinata per un totale di 12 barre si ottiene un momento resistente pari a $M_{Rd} = 191 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 63,1 \ kNm$ (Figura 67):

🥂 Verifica C. File Materia	A. S.L.U li Opzio	File: SETTO ID 2 ni Visualizza	Pro	ogetto S	ez. Rett. S	Sismica	a Norma	tiva: N	NTC 2008	?		×	
🗅 🛩 🖬 🕯	3												
Titolo : SET N* figure ele	TO ID 2- mentari	19 1 Zoc	m		N* strati bi	6 Za	Tipo Sezione ⊙ Rettan.re O Trapezi O a T O Circolare			ezi olare			
N* b	[cm]	h [cm]		N*	As [cm²]	1	d [cm]	^	O Rettangoli O Coord.				
1	20	66		1	3,08		5,5						
				2 3	3,08 3,08		16,5 27,5						
				4	3,08		39,5						
				5 c	3,08	_	50,5	- J					
					3,00		61,5				<u>. </u>		
Soliecitazio S.L.U. N _{Ed} O M O	_	 P.to a Cer Cor 	oppiicazion ntro O prd.[cm]	ie n —) Baric	xN 0 yN 0			•	N 9				
M _{yEd} 0		0		Lato c	alcestruzzo	o - Ac	ciaio sner	vatc	Metodo OS.L.U	di cal J.+	colo OS	.L.U	
	Mate	iali	~	Μ.,	191	k	١m) Met	odo n		
B450C		C30/37	ì۲	XH	d [- Tipo fle:	ssione			
€ su 67 5	er.	E-2 2	- -				. 2		Retta	a i	O Devi	iata	
^f yd 391,3	/00	م م	-17 391,3	N	/mm ⁻ /mm ²				N⁺ rett.	100			
E _{\$} 200 00		ະ	3,5	%	,		alcola Mf	łd	Domini	o M-N			
E _s /E _c 15		^f cc / ^f cd 0,8	?	E _5	11,53	%	,	L	0	cm	Col. m	odello	
ε _{syd} 1.95	7 ‰	σ _{c,adm} 11,	5	d	61,5	cr	n						
σ _{s,adm} 25	N/mm ²	τ _{co} 0,693 τ _{c1} 2,02	33 9) × 1	4,32	x/d C s C),2329),7311			Precor	npresso		

Figura 67. Verifica a flessione setto ID 2-19.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 68):

Figura 68.Dominio N-M setto ID 2-19.

5.1.4. Verifica a pressoflessione: SETTO ID 3-18

Il setto con ID 3-18 è composto da una parete di lunghezza $l_w = 0,55 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{3-18} = 0,11 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 34,6 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 11 \ cm$ (1% $\leq \rho_{conf} = 1,03\% \leq 4\%$) e nulla in zona non confinata per un totale di 12 barre si ottiene un momento resistente pari a $M_{Rd} = 133,9 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 34,6 \ kNm$ (Figura 69):

Warifica C.A. S.I. II. Eiler SETTO ID 2							\sim		
File Materiali Opziopi Visualizza Pro	ogetto Se	r Ratt Sice	nica Normatio	(a) NTC 200	8 2				
	Jyeno Je	2. Nett. 5131	nica Normaci	78. TVIC 200					
Titolo : SETTO ID 3-18		Tipo Sezione							
N* figure elementari 1 Zoom									
N* b [cm] b [cm]	N*	As [cm²]	d [cm]		O Bettangoli O Coord				
1 20 55	1	3,08	4,5			-			
	2	3,08	15,5						
	3	3,08	28,5						
	4	3,08	39,5						
	5	3,08	50,5			T I			
Sollecitazioni	P.to ap	pplicazione l	N			N			
S.L.U. 🗲 Metodo n	⊖ Len	ao O R	aricentro cis			•			
	O Con	rd fem]	xN U						
N _{Ed} U kN	Ŭ		yN 0			<u> </u>			
M _{sEd} 0 0 kNm	- Tipo rot	hura							
M _ 0 0	Lato ca	lcestruzzo -	Acciaio snerva	atc Meto	Metodo di calcolo				
yEd				○ S.	L.U.+	O S.L	U		
Materiali	M	133,9	kN m		O Me	todo n			
B450C C30/37)		_	– Tipo	flessione				
ε _{su} 67.5 s. ε _c 2 2 s.			2		etta	O Devia	ta		
ful 291.3 March 6 3.5	°c	-17				N* rett	100		
	σ	391,3	N/mm *	Calcula	una	Deninia	ым		
^c s 200 000 N/mm ² cd 17	ε _c	3,5	%	Calcula	Mnu	Dominio	m-n		
E _s /E _c 15 f _{cc} / f _{cd} 0,8 ?	8	11,89	‰	L _o O	cm	Col. mo	dello		
ε _{syd} 1,957 ‰ σ _{c,adm} 11,5	d	50,5	cm						
σ _{s,adm} 255 _{N/mm²} τ _{co} 0,6933	× 11	1, 49 x/c	0,2275						
τ _{c1} 2,029)	δ	0,7244	E	Preco	mpresso			

Figura 69. Verifica a flessione setto ID 3-18.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 70):

Figura 70. Dominio N-M setto ID 3-18.

5.1.5. Verifica a pressoflessione: SETTO ID 4-17

Il setto con ID 4-17 è composto da una parete di lunghezza $l_w = 0,66 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{4-17} = 0,132 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 64,6 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 11 \ cm$ $(1\% \le \rho_{conf} = 1,54\% \le 4\%)$ e nulla in zona non confinata per un totale di 12 barre si ottiene un momento resistente pari a $M_{Rd} = 191 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 64,6 \ kNm$ (Figura 71):

Figura 71. Verifica a flessione setto ID 4-17.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 72):

Figura 72. Dominio N-M setto ID 4-17.

5.1.6. Verifica a pressoflessione: SETTO ID 5-16

Il setto con ID 5-16 è composto da una parete di lunghezza $l_w = 0,69 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{5-16} = 0,138 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 101,5 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 12 \ cm$ (1% $\leq \rho_{conf} = 1,54\% \leq 4\%$) e nulla in zona non confinata per un totale di 12 barre si ottiene un momento resistente pari a $M_{Rd} = 201,5 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 101,5 \ kNm$ (Figura 73):

Figura 73. Verifica a flessione setto ID 5-16.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 74):

Figura 74. Dominio N-M setto ID 5-16.

5.1.7. Verifica a pressoflessione: SETTO ID 6-27

Il setto con ID 6-27 è composto da una parete di lunghezza $l_w = 3,13 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{6-27} = 0,626 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 428,5 \ kNm$.

Inserendo in zona confinata dieci barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 14 \ cm$ $(1\% \le \rho_{conf} = 1,23\% \le 4\%)$ e in zona non confinata barre di diametro $\phi_{nonconf} = 8 \ mm$ con passo $s_{nonconf} = 21 \ cm$ ($\rho_{nonconf} = 0,21\% \ge \rho_{min} = 0,20\%$) per un totale di 36 barre si ottiene un momento resistente pari a $M_{Rd} = 2152 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 428,5 \ kNm$ (Figura 75):

Figura 75. Verifica a flessione setto ID 6-27.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 76):

Figura 76. Dominio N-M setto ID 6-27.

5.1.8. Verifica a pressoflessione: SETTO ID 7-26

Il setto con ID 7-26 è composto da una parete di lunghezza $l_w = 4,54 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{7-26} = 0,908 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 986,8 \ kNm$.

Inserendo in zona confinata dodici barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 16 \ cm$ $(1\% \le \rho_{conf} = 1,02\% \le 4\%)$ e in zona non confinata barre di diametro $\phi_{nonconf} = 8 \ mm$ con passo $s_{nonconf} = 23 \ cm$ ($\rho_{nonconf} = 0,20\% \ge \rho_{min} = 0,20\%$) per un totale di 46 barre si ottiene un momento resistente pari a $M_{Rd} = 3908 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 986,8 \ kNm$ (Figura 77):

Figura 77. Verifica a flessione setto ID 7-26.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 78):

Figura 78. Dominio N-M setto ID 7-26.

5.1.9. Verifica a pressoflessione: SETTO ID 8-25

Il setto con ID 8-25 è composto da una parete di lunghezza $l_w = 1,51 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{8-25} = 0,302 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 185,3 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 12 \ cm$ (1% $\leq \rho_{conf} = 1,53\% \leq 4\%$) e in zona non confinata barre di diametro $\phi_{nonconf} = 8 \ mm$ con passo $s_{nonconf} = 19 \ cm$ ($\rho_{nonconf} = 0,22\% \geq \rho_{min} = 0,20\%$) per un totale di 20 barre si ottiene un momento resistente pari a $M_{Rd} = 594,3 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 185,3 \ kNm$ (Figura 79):

Figura 79. Verifica a flessione setto ID 8-25.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 80):

Figura 80. Dominio N-M setto ID 8-25.

5.1.10. Verifica a pressoflessione: SETTO ID 9-24

Il setto con ID 9-24 è composto da una parete di lunghezza $l_w = 2,30 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{9-24} = 0,46 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 299,2 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 16 \ cm$ $(1\% \le \rho_{conf} = 1,00\% \le 4\%)$ e in zona non confinata barre di diametro $\phi_{nonconf} = 8 \ mm$ con passo $s_{nonconf} = 22 \ cm$ ($\rho_{nonconf} = 0,22\% \ge \rho_{min} = 0,20\%$) per un totale di 24 barre si ottiene un momento resistente pari a $M_{Rd} = 1012 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 299,2 \ kNm$ (Figura 81):

Figura 81. Verifica a flessione setto ID 9-24.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 82):

Figura 82. Dominio N-M setto ID 9-24.

5.1.11. Verifica a pressoflessione: SETTO ID 10-23

Il setto con ID 10-23 è composto da una parete di lunghezza $l_w = 1,42 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{10-23} = 0,284 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 213,2 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 12 \ cm$ (1% $\leq \rho_{conf} = 1,54\% \leq 4\%$) e in zona non confinata barre di diametro $\phi_{nonconf} = 8 \ mm$ con passo $s_{nonconf} = 17 \ cm$ ($\rho_{nonconf} = 0,25\% \geq \rho_{min} = 0,20\%$) per un totale di 20 barre si ottiene un momento resistente pari a $M_{Rd} = 555,4 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 213,2 \ kNm$ (Figura 83):

Figura 83. Verifica a flessione setto ID 10-23.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 84):

Figura 84. Dominio N-M setto ID 10-23.

5.1.12. Verifica a pressoflessione: SETTO ID 11-22

Il setto con ID 11-22 è composto da una parete di lunghezza $l_w = 3,36 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{11-22} = 0,672 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 650,8 \ kNm$.

Inserendo in zona confinata dieci barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 14 \ cm$ $(1\% \le \rho_{conf} = 1,15\% \le 4\%)$ e in zona non confinata barre di diametro $\phi_{nonconf} = 8 \ mm$ con passo $s_{nonconf} = 20 \ cm$ ($\rho_{nonconf} = 0,25\% \ge \rho_{min} = 0,20\%$) per un totale di 40 barre si ottiene un momento resistente pari a $M_{Rd} = 2435 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 650,8 \ kNm$ (Figura 85):

Figura 85. Verifica a flessione setto ID 11-22.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 86):

Figura 86. Dominio N-M setto ID 11-22.

5.1.13. Verifica a pressoflessione: SETTO ID 12-21

Il setto con ID 12-21 è composto da una parete di lunghezza $l_w = 4,00 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{12-21} = 0,8 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 964,9 \ kNm$.

Inserendo in zona confinata dodici barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 14 \ cm$ $(1\% \le \rho_{conf} = 1,15\% \le 4\%)$ e in zona non confinata barre di diametro $\phi_{nonconf} = 8 \ mm$ con passo $s_{nonconf} = 23 \ cm$ ($\rho_{nonconf} = 0,21\% \ge \rho_{min} = 0,20\%$) per un totale di 44 barre si ottiene un momento resistente pari a $M_{Rd} = 3348 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 964,9 \ kNm$ (Figura 87):

Figura 87. Verifica a flessione setto ID 12-21.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 88):

Figura 88. Dominio N-M setto ID 12-21.

5.1.14. Verifica a pressoflessione: SETTO ID 13

Il setto con ID 13 è composto da una parete di lunghezza $l_w = 1,70 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{13} = 0.34 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 280,3 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 13 \ cm$ $(1\% \le \rho_{conf} = 1,36\% \le 4\%)$ e in zona non confinata barre di diametro $\phi_{nonconf} = 8 mm$ con passo $s_{nonconf} = 18 \ cm \ (\rho_{nonconf} = 0,25\% \ge \rho_{min} = 0,20\%)$ per un totale di 22 barre si ottiene un momento resistente pari a $M_{Rd} = 704,1 \, kNm$ maggiore di quello sollecitante $M_{Ed} = 280,3 \, kNm$ (Figura 89):

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 90):

Figura 90. Dominio N-M setto ID 13.

5.1.15. Verifica a pressoflessione: SETTO ID 14

Il setto con ID 14 è composto da una parete di lunghezza $l_w = 2,19 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{14} = 0,438 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 191,1 \ kNm$.

Inserendo in zona confinata sei barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 15 \ cm$ $(1\% \le \rho_{conf} = 1,05\% \le 4\%)$ e in zona non confinata barre di diametro $\phi_{nonconf} = 8 \ mm$ con passo $s_{nonconf} = 21 \ cm$ ($\rho_{nonconf} = 0,23\% \ge \rho_{min} = 0,20\%$) per un totale di 24 barre si ottiene un momento resistente pari a $M_{Rd} = 693,8 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 191,1 \ kNm$ (Figura 91):

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 92):

Figura 92. Dominio N-M setto ID 14.

5.1.16. Verifica a pressoflessione: SETTO ID 15

Il setto con ID 15 è composto da una parete di lunghezza $l_w = 2,75 m$ e spessore $b_w = 0,20 m$ per un'area complessiva $A_{15} = 0.55 m^2$.

Il massimo momento flettente agente in esso è pari a: $M_{Ed} = 511 \ kNm$.

Inserendo in zona confinata otto barre totali di diametro $\phi_{conf} = 14 \ mm$ con passo $s_{conf} = 15 \ cm$ $(1\% \le \rho_{conf} = 1,12\% \le 4\%)$ e in zona non confinata barre di diametro $\phi_{nonconf} = 8 mm$ con passo $s_{nonconf} = 21 \ cm \ (\rho_{nonconf} = 0,21\% \ge \rho_{min} = 0,20\%)$ per un totale di 30 barre si ottiene un momento resistente pari a $M_{Rd} = 1547 \ kNm$ maggiore di quello sollecitante $M_{Ed} = 511 \ kNm$ (Figura 93):

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 94):

Figura 94. Dominio N-M setto ID 15.

5.1.17. Verifica del rispetto dei dettagli costruttivi

Nell'immagine sottostante si riporta la quantità di armatura inserita in ciascun setto in zona confinata e non confinata e la verifica del rispetto dei dettagli costruttivi del capitolo §7.4.6.2.4. delle NTC18 (Figura 95) [1].

		VERIFICA	ARMATUR	A ZONA CO	ONFINATA	VERIFICA ARMATURA ZONA NON CONFINATA							
SETTO ID	A _{confinamento}	n° barre	$\varphi_{\text{long-conf}}$	A _{s,conf.}	Pconfinamento	VERIFICA	Anonconf	n° barre	φ _{long-nonconf}	A _{s,nonconf.}	ρ _{nonconf.}	VERIFICA	
	[mm ²]	[-]	[mm]	[mm ²]	[-]		[mm ²]	[-]	[mm]	[mm ²]	[%]	[-]	
1	60000	6	14	923.6282	1.54	/ERIFICATO	118000	6	8	301.5929	0.26	VERIFICATO	
2	60000	6	14	923.6282	1.54	/ERIFICAT	12000	0	8	0	0.00	NONVERIF	
3	60000	4	14	615.7522	1.03	/ERIFICAT	0	0	8	0	0.00	NONVERIF	
4	60000	6	14	923.6282	1.54	/ERIFICAT	12000	0	8	0	0.00	NONVERIF	
5	60000	6	14	923.6282	1.54	/ERIFICAT	18000	0	8	0	0.00	NONVERIF	
6	125200	10	14	1539.38	1.23	/ERIFICATO	375600	16	8	804.2477	0.21	VERIFICATO	
7	181600	12	14	1847.256	1.02	/ERIFICAT	544800	22	8	1105.841	0.20	VERIFICATO	
8	60400	6	14	923.6282	1.53	/ERIFICAT	181200	8	8	402.1239	0.22	VERIFICATO	
9	92000	6	14	923.6282	1.00	/ERIFICAT	276000	12	8	603.1858	0.22	VERIFICATO	
10	60000	6	14	923.6282	1.54	/ERIFICAT	164000	8	8	402.1239	0.25	VERIFICATO	
11	134400	10	14	1539.38	1.15	/ERIFICAT	403200	20	8	1005.31	0.25	VERIFICATO	
12	160000	12	14	1847.256	1.15	/ERIFICAT	480000	20	8	1005.31	0.21	VERIFICATO	
13	68000	6	14	923.6282	1.36	/ERIFICAT	204000	10	8	502.6548	0.25	VERIFICATO	
14	87600	6	14	923.6282	1.05	/ERIFICATO	262800	12	8	603.1858	0.23	VERIFICATO	
15	110000	8	14	1231.504	1.12	/ERIFICAT	330000	14	8	703.7168	0.21	VERIFICATO	

Figura 95. Verifica del rispetto dei dettagli costruttivi nei setti.

5.1.18. Verifica a taglio: determinazione sollecitazione tagliante

Il § 7.4.4.5.1. delle NTC18 [1] afferma che per le pareti bisogna tener conto del possibile incremento delle forze di taglio a seguito della formazione della cerniera plastica alla base della parete. A tal fine, la domanda di taglio di progetto deve essere incrementata del fattore:

- per pareti snelle:
$$1,5 \le q \cdot \sqrt{\left(\frac{\gamma_{Rd}}{q} \cdot \frac{M_{Rd}}{M_{Ed}}\right)^2 + 0,1 \cdot \left(\frac{S_e(T_C)}{S_e(T_1)}\right)^2} \le q$$

- per pareti tozze:
$$\gamma_{Rd} \cdot \frac{M_{Rd}}{M_{Ed}} \leq q$$

dove:

 $\gamma_{Rd} = 1,2$ come da Tabella 7.2.I (§7.2.2.) [1];

 M_{Ed} ed M_{Rd} sono i momenti flettenti di progetto di domanda e di capacità alla base della parte; $T_1 = 0.57 s$ è il periodo fondamentale di vibrazione dell'edificio nella direzione dell'azione sismica; $T_C = 0.55 s$ per lo spettro SLV;

 $S_e(T)$ è l'ordinata dello spettro di risposta elastico corrispondente all'ascissa T.

A seguire si riportano i calcoli svolti per la determinazione del taglio sollecitante incrementato (Tabella 29):

	VERIFICA A TAGLIO [7.4.4.5.1]												
SETTO ID	Υ _{Rd}	T1	Tc	Se(T ₁)	Se(T _c)	M _{Ed}	M _{Rd}	q					V_{Ed}
	[-]	[s]	[s]	[g]	[g]	[kNm]	[kNm]	[-]	increm	1.5 <incr.< td=""><td>incr.<q< td=""><td>incr. Final</td><td>[kN]</td></q<></td></incr.<>	incr. <q< td=""><td>incr. Final</td><td>[kN]</td></q<>	incr. Final	[kN]
1	1.2	0.57	0.55	0.075979	0.078742	160.40	436.2	3.6	1.26	NO VERIF.	VERIF.	1.50	159.45
2	tab.7.2.I					63.10	191		1.24	NO VERIF.	VERIF.	1.50	71.70
3						24.90	133.9		1.20	NO VERIF.	VERIF.	1.50	32.40
4						64.60	191		1.25	NO VERIF.	VERIF.	1.50	52.20
5						76.00	201.5		1.26	NO VERIF.	VERIF.	1.50	107.70
6						428.50	2152		1.20	NO VERIF.	VERIF.	1.50	171.75
7						986.80	3908		1.22	NO VERIF.	VERIF.	1.50	322.50
8						185.30	594.3		1.24	NO VERIF.	VERIF.	1.50	168.30
9						299.20	1012		1.23	NO VERIF.	VERIF.	1.50	154.95
10						143.50	555.4		1.22	NO VERIF.	VERIF.	1.50	143.70
11						650.80	2435		1.22	NO VERIF.	VERIF.	1.50	284.25
12						964.90	3348		1.23	NO VERIF.	VERIF.	1.50	353.85
13						280.30	704.1		1.27	NO VERIF.	VERIF.	1.50	205.95
14						191.10	963.8		1.20	NO VERIF.	VERIF.	1.50	150.90
15						511.00	1547		1.24	NO VERIF.	VERIF.	1.50	439.50

Tabella 29. Taglio sollecitante incrementato per i setti.

Nelle verifiche delle pareti si deve considerare: la possibile rottura a taglio-compressione del calcestruzzo dell'anima, la possibile rottura a taglio-trazione delle armature dell'anima e la possibile rottura per scorrimento nelle zone dissipative.

5.1.19. Verifica a taglio-compressione del calcestruzzo dell'anima

La determinazione della resistenza è condotta in accordo con il § 4.1.2.3.5 [1], assumendo un braccio delle forze interne z pari a $0.8 \cdot l_w$ e un'inclinazione delle diagonali compresse pari a $\theta = 45^{\circ}$. La formula da utilizzare è la seguente:

$$V_{Rcd} = 0.9 \cdot z \cdot b_w \cdot \alpha_c \cdot v \cdot f_{cd} \cdot \frac{(\cot \alpha + \cot \theta)}{(1 + \cot \theta^2)}$$

in cui:

 $\alpha = 90^{\circ}$ è l'angolo d'inclinazione dell'armatura trasversale rispetto all'asse della trave;

 $b_w = 0,2 m$ è lo spessore delle pareti;

 $v \cdot f_{cd} = 0.5 \cdot 17.4 = 8.7 MPa$ è la resistenza di progetto a compressione ridotta del calcestruzzo d'anima.

Poiché la verifica a taglio è condotta alla base della parete ovvero in una zona dissipativa, la resistenza V_{Rcd} va moltiplicata per un fattore riduttivo 0,4.

A seguire si riportano i calcoli svolti (Tabella 30):
		$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $													
SETTO ID	α	θ	cotgα	cotgθ	sinα	φstaffe	z	V _{Rcd}	V _{Rcdcritico}						
	[°]	[°]	[-]	[-]	[-]	[mm]	[m]	[kN]	[kN]						
1	90	45	0.00	1.00	1	8	0.95	828.35	331.34						
2							0.53	459.42	183.77						
3	[rad]	[rad]					0.44	382.85	153.14						
4	1.570796	0.785398					0.53	459.42	183.77						
5							0.55	480.30	192.12						
6							2.50	2178.77	871.51						
7							3.63	3160.26	1264.11						
8							1.21	1051.10	420.44						
9							1.84	1601.01	640.41						
10							1.14	988.45	395.38						
11							2.69	2338.87	935.55						
12							3.20	2784.37	1113.75						
13							1.36	1183.36	473.34						
14							1.75	1524.44	609.78						
15							2.20	1914.26	765.70						

Tabella 30. Verifica a taglio-compressione del calcestruzzo dell'anima

Per tutte le pareti la verifica a taglio-compressione del calcestruzzo d'anima risulta soddisfatta.

5.1.20. Verifica a taglio-trazione dell'armatura dell'anima

Il calcolo dell'armatura d'anima deve tener conto del rapporto di taglio $\alpha_s = \frac{M_{Ed}}{(V_{Ed} \cdot l_w)}$. Per la verifica va considerato, ad ogni piano, il massimo valore di α_s .

Se $\alpha_s \ge 2$ la determinazione della resistenza è condotta in accordo con il § 4.1.2.3.5 [1] assumendo un braccio delle forze interne z pari a $0,8 \cdot l_w$ e un'inclinazione delle diagonali compresse pari a $\theta = 45^\circ$. Nello specifico si utilizzerà la formulazione:

$$V_{Rsd} = 0.9 \cdot z \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$$

in cui:

 $A_{sw} = 201 \ mm^2$ è l'area dell'armatura trasversale;

 $s = 20 \ cm$ è l'interasse tra due armature trasversali consecutive;

 $\alpha = 90^{\circ}$ è l'angolo d'inclinazione dell'armatura trasversale rispetto all'asse della trave;

Se $\alpha_s < 2$ invece si utilizzano le seguenti espressioni:

$$V_{Ed} \le V_{Rd,c} + 0.75 \cdot \rho_h \cdot f_{yd,h} \cdot b_w \cdot \alpha_s \cdot l_w$$
$$\rho_h \cdot f_{yd,h} \cdot b_w \cdot z \le \rho_v \cdot f_{yd,v} \cdot b_w \cdot z + minN_{Ed}$$

in cui:

 ρ_h, ρ_v = sono i rapporti tra l'area della sezione dell'armatura orizzontale o verticale d'anima e l'area della relativa sezione di calcestruzzo;

 $f_{yd,h}$; $f_{yd,v}$ = sono i valori di progetto della resistenza delle armature orizzontali e verticali;

 N_{Ed} = è la forza assiale di progetto (positiva se di compressione);

 $V_{Rd,c}$ = è la resistenza a taglio degli elementi non armati (calcolata in accordo con il §4.1.2.3.5.1. [1]) da assumersi nulla nelle zone dissipative quando N_{Ed} è di trazione. Nello specifico la formula per il calcolo di $V_{Rd,c}$ è la seguente:

$$V_{Rd,c} = max \left\{ \left[0,18 \cdot k \cdot \frac{(100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{3}}}{\gamma_c} + 0,15 \cdot \sigma_{cp} \right] \cdot b_w \cdot d; \left(v_{min} + 0,15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \right\}$$

con:

$$k = 1 + \sqrt{\frac{200}{d}} \le 2;$$

 $v_{min} = 0{,}035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$

 $d = \dot{e}$ l'altezza utile della sezione (in mm);

 $\rho_l = \frac{A_{sl}}{(b_w \cdot d)} = \dot{e}$ il rapporto geometrico di armatura longitudinale tesa ($\leq 0,02$) che si estende per non meno di (l_{bd} + d) oltre la sezione considerata, dove l_{bd} è la lunghezza di ancoraggio; $\sigma_{cp} = \frac{N_{Ed}}{A_c} [MPa]$ è la tensione media di compressione nella sezione;

 $b_w = 200 \ mm$ è la larghezza minima della sezione.

Tutte le pareti risultano soddisfatte a taglio-trazione dell'armatura d'anima (Tabelle 31 e 32).

	rabella 31. Determinazione V Kd, c per 1 setti.													
				VE	RIFICA A T	AGLIO-TRA	ZIONE DEL	l'armatu	RA DELL'A	NIMA (se o	x<2)			
SETTO ID	=M _{Ed} /V _{Ed} *	αs>=2	N _{Ed}	d	k	V _{min}	ρι		Ϋ́c	σ _{cp}	0.2*f _{cd}	V _{Rd,1}	V _{Rd,2}	V _{Rd,c}
	[-]		[kN]	[mm]	[-]	[-]	[-]	[-]	[-]	[N/mm ²]	[N/mm ²]	[kN]	[kN]	[kN]
1	0.85	FALSO	673.80	1135	1.42	0.33	0.0090	0.0090	1.5	2.83	3.4804667	213.46	170.88	213.46
2	1.33	FALSO	359.50	605	1.57	0.38	0.0140	0.0140		2.72		129.53	95.82	129.53
3	1.40	FALSO	338.70	495	1.64	0.41	0.0112	0.0112		3.08		108.91	85.89	108.91
4	1.88	FALSO	473.90	605	1.57	0.38	0.0140	0.0140		3.59		145.26	111.55	145.26
5	1.02	FALSO	413.50	635	1.56	0.38	0.0134	0.0134		3.00		139.20	105.13	139.20
6	0.80	FALSO	1350.70	3075	1.26	0.27	0.0062	0.0062		2.16		446.41	366.76	446.41
7	0.67	FALSO	1638.30	4485	1.21	0.26	0.0053	0.0053		1.80		572.89	474.67	572.89
8	0.73	FALSO	712.10	1455	1.37	0.31	0.0074	0.0074		2.36		238.80	193.51	238.80
9	0.84	FALSO	994.90	2245	1.30	0.29	0.0053	0.0053		2.16		323.27	274.52	323.27
10	0.70	FALSO	638.30	1365	1.38	0.32	0.0079	0.0079		2.25		223.29	178.14	223.29
11	0.68	FALSO	1206.30	3305	1.25	0.27	0.0061	0.0061		1.80		440.14	356.30	440.14
12	0.68	FALSO	1515.80	3945	1.23	0.26	0.0059	0.0059		1.89		528.48	431.77	528.48
13	0.80	FALSO	705.60	1645	1.35	0.30	0.0069	0.0069		2.08		249.84	202.36	249.84
14	0.58	FALSO	879.70	2135	1.31	0.29	0.0056	0.0056		2.01		301.33	252.26	301.33
15	0.42	FALSO	975.00	2695	1.27	0.28	0.0058	0.0058		1.77		357.73	293.38	357.73

Tabella 31. Determinazione VRd,c per i setti.

Tabella 32. Verifica taglio-trazione setti in X per alpha<2.

						VERIFICA A	A TAGLIO-	TRAZIONE DE	LL'ARMATUR	ra dell'an	IMA (se α<2)			
SETTO ID	ϕ_{staffe}	braccia	A _h	S _{staffe}	A _{h,1m}	ρ _h	ρν	f _{yd,h} =f _{yd,v}	V _{Ed}	V _{Rd}	$V_{Rd}/V_{Ed} \ge 1$	ρ _h ·f _{yd} ·b _w ·z	$\rho_v \cdot f_{yd} \cdot b_w \cdot z + minN_{Ed}$	
	[mm]	[-]	[mm ²]	[cm]	[mm ² /m]	[-]	[-]	[N/mm2]	[kN]	[kN]	[-]	[kN]	[kN]	
1	8	4	201.0619	20	1005.31	0.0042	0.0090	391.30	159.45	462.86	2.90	314.71	1346.48	VERIFICATO
2				20	1005.31	0.0076	0.0140		71.70	522.94	7.29	314.71	937.77	VERIFICATO
3				20	1005.31	0.0091	0.0112		32.40	521.17	16.09	314.71	724.21	VERIFICATO
4				20	1005.31	0.0076	0.0140		52.20	698.48	13.38	314.71	1052.17	VERIFICATO
5				20	1005.31	0.0073	0.0134		107.70	440.93	4.09	314.71	991.77	VERIFICATO
6				20	1005.31	0.0016	0.0062		171.75	681.58	3.97	314.71	2566.25	VERIFICATO
7				20	1005.31	0.0011	0.0053		322.50	771.73	2.39	314.71	3141.02	VERIFICATO
8				20	1005.31	0.0033	0.0074		168.30	453.93	2.70	314.71	1416.25	VERIFICATO
9				20	1005.31	0.0022	0.0053		154.95	570.96	3.68	314.71	1761.99	VERIFICATO
10				20	1005.31	0.0035	0.0079		143.70	430.77	3.00	314.71	1342.45	VERIFICATO
11				20	1005.31	0.0015	0.0061		284.25	641.18	2.26	314.71	2484.79	VERIFICATO
12				20	1005.31	0.0013	0.0059		353.85	729.61	2.06	314.71	2987.05	VERIFICATO
13				20	1005.31	0.0030	0.0069		205.95	486.05	2.36	314.71	1441.22	VERIFICATO
14				20	1005.31	0.0023	0.0056		150.90	471.94	3.13	314.71	1646.79	VERIFICATO
15				20	1005.31	0.0018	0.0058		439.50	482.47	1.10	314.71	1966.32	VERIFICATO

5.1.21. Verifica a scorrimento nelle zone dissipative

Sui possibili piani di scorrimento (per esempio le riprese di getto in prossimità delle fondazioni alla base delle pareti) posti all'interno delle zone dissipative deve risultare:

$$V_{Ed} \leq V_{Rd,s}$$

dove $V_{Rd,s}$ è il valore di progetto della resistenza a taglio nei confronti dello scorrimento:

$$V_{Rd,s} = V_{dd} + V_{id} + V_{fd}$$

nella quale:

 $V_{dd} = min \begin{cases} 1,3 \cdot \sum A_{sj} \cdot \sqrt{f_{cd} \cdot f_{yd}} \\ 0,25 \cdot f_{yd} \cdot \sum A_{sj} \end{cases} =$ è il contributo dell'effetto "spinotto" delle armature verticali; $V_{id} = f_{yd} \cdot \sum A_{si} \cdot \cos \phi_i =$ è il contributo delle armature inclinate presenti alla base; $V_{id} = min \left\{ \mu_f \cdot \left[\left(\sum A_{sj} \cdot f_{yd} + N_{Ed} \right) \cdot \xi + \frac{M_{Ed}}{2} \right] =$ è il contributo delle resistenze per ettrite.

$$V_{fd} = \min \left\{ \begin{matrix} \mu_f \cdot \left[\left(\sum A_{sj} \cdot f_{yd} + N_{Ed} \right) \cdot \xi + \frac{\omega_d}{z} \right] = \dot{e} \text{ il contributo della resistenza per attrito} \\ 0,5 \cdot \eta \cdot f_{cd} \cdot \xi \cdot l_w \cdot b_{wo} \end{matrix} \right\}$$

in cui:

$$\eta = 0,60 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0,5263;$$

 $\mu_f = 0,60$ è il coefficiente d'attrito calcestruzzo-calcestruzzo sotto azioni cicliche;

 $\sum A_{sj} = \hat{e}$ la somma delle aree delle barre verticali intersecanti il piano contenente la potenziale superficie di scorrimento;

 $\xi = \dot{e}$ l'altezza della parte compressa della sezione normalizzata all'altezza della sezione;

 $A_{si} = 0 mm^2$ è l'area di ciascuna armatura inclinata che attraversa il piano detto formando con un esso un angolo ϕ_i .

Tutte le verifiche a scorrimento nelle zone dissipative risultano soddisfatte (Tabella 33).

Tabella 33. Verifica a scorrimento nelle zone dissipative dei setti.

		VERIFICA A SCORRIMENTO NELLE ZONE DISSIPATIVE													
SETTO ID	V _{Ed}	ΣAsj	$V_{dd,1}$	V _{dd,2}	V _{dd}	A _{si}	V _{id}	μ	η	ξ	V _{fd,1}	V _{fd,2}	V _{fd}	V _{Rd,s}	VERIFICA
	[kN]	[mm2]	[kN]	[kN]	[kN]	[mm2]	[kN]	[-]	[-]	[-]	[kN]	[kN]	[kN]	[kN]	
1	159.45	2148.85	230.52	210.21	210.21	0	0	0.6	0.526296	0.1497	229.0081	163.1572	163.15723	373.37	VERIFICATO
2	71.70	1847.26	198.17	180.71	180.71					0.2329	169.7441	140.7832	140.78325	321.49	VERIFICATO
3	32.40	1539.38	165.14	150.59	150.59					0.2275	102.8235	114.5992	102.82346	253.42	VERIFICATO
4	52.20	1847.26	198.17	180.71	180.71					0.2329	188.5713	140.7832	140.78325	321.49	VERIFICATO
5	107.70	1847.26	198.17	180.71	180.71					0.2272	194.0495	143.5803	143.58034	324.29	VERIFICATO
6	171.75	3883.01	416.56	379.86	379.86					0.1083	258.8947	310.4634	258.89468	638.75	VERIFICATO
7	322.50	4800.35	514.96	469.60	469.60					0.0962	366.2587	400.0078	366.25871	835.86	VERIFICATO
8	168.30	2249.38	241.31	220.05	220.05					0.1260	207.2288	174.2549	174.25492	394.30	VERIFICATO
9	154.95	2789.73	299.27	272.91	272.91					0.0965	220.1895	203.1948	203.19483	476.10	VERIFICATO
10	143.70	2249.38	241.31	220.05	220.05					0.1342	177.7163	174.5333	174.53335	394.58	VERIFICATO
11	284.25	4084.07	438.12	399.53	399.53					0.1059	318.7614	325.8913	318.7614	718.29	VERIFICATO
12	353.85	4699.82	504.18	459.77	459.77					0.1052	397.2085	385.4014	385.4014	845.17	VERIFICATO
13	205.95	2349.91	252.09	229.88	229.88					0.1195	256.6945	186.0606	186.06058	415.94	VERIFICATO
14	150.90	2450.44	262.87	239.72	239.72					0.0997	161.7043	199.9956	161.70427	401.42	VERIFICATO
15	439.50	3166.73	339.72	309.79	309.79					0.1027	292.3522	258.6668	258.6668	568.46	VERIFICATO

5.1.22. Dettagli costruttivi per la duttilità

Per le zone dissipative di base delle pareti primarie devono essere eseguite le verifiche di duttilità al §7.4.4.5.2. [1]. In alternativa le verifiche possono ritenersi soddisfatte se, per ciascuna zona dissipativa, il rapporto volumetrico di armatura trasversale negli elementi di bordo rispetta le limitazioni seguenti:

$$\alpha \cdot \omega_{wd} \ge 30 \cdot \mu_{\phi} \cdot (v_d + \omega_v) \cdot \varepsilon_{sy,d} \cdot \frac{b_c}{b_0} - 0,035$$

in cui:

 $\omega_{wd} = \frac{vol \, staffe \, conf}{vol \, nucleo \, cls} \cdot \frac{f_{yd}}{f_{cd}} \dot{e} \, il \, rapporto \, meccanico \, dell'armatura trasversale di confinamento all'interno$

della zona dissipativa;

$$\mu_{\phi} = \begin{cases} 1, 2 \cdot (2 \cdot q_0 - 1) & perT_1 \ge T_C \\ 1, 2 \cdot \left(1 + 2(q_0 - 1) \cdot \frac{T_C}{T_1}\right) & perT_1 < T_C \end{cases} = \dot{e} \text{ la domanda in duttilità di curvatura allo SLC};$$

 $v_d = \frac{N_{Ed}}{A_c \cdot f_{cd}} = \dot{e}$ la forza assiale adimensionalizzata di progetto relativa alla combinazione SLV;

 $\omega_v = \rho_v \cdot \frac{f_{yd,v}}{f_{cd}}$ essendo ρ_v e $f_{yd,v}$ il rapporto geometrico e la resistenza a snervamento di progetto dell'armatura verticale al di fuori degli elementi di bordo;

 $\varepsilon_{sv,d} = 0,00186$ è la deformazione di snervamento dell'acciaio;

 $b_c = \dot{e}$ la larghezza minima della sezione trasversale lorda;

 $b_0 = \dot{e}$ la larghezza del nucleo confinato corrispondente a b_c (con riferimento alla linea media delle staffe);

 $\alpha = \alpha_n \cdot \alpha_s$ è il coefficiente di efficacia del confinamento che, per sezioni trasversali rettangolari, si calcola come:

$$\alpha_n = 1 - \sum_n \frac{b_i^2}{(6 \cdot b_0 \cdot h_0)}$$
$$\alpha_n = \left[1 - \frac{s}{2 \cdot b_0}\right] \cdot \left[1 - \frac{s}{2 \cdot h_0}\right]$$

 $h_0 = \dot{e}$ la profondità del nucleo confinato (con riferimento alla linea media delle staffe);

 $h_c = \dot{e}$ la profondità della sezione trasversale lorda.

Tutte le verifiche di duttilità risultano soddisfatte (Tabelle 34, 35 e 36).

	VERIFICHE DI DUTTILITA' (1) §7.4.6.2.4														
SETTO ID	l _w	b _w	h _w	n° piani	A _{setto}	N _{Ed}	v _d	$\mu_{\phi,SLC}$	M_{Ed}/M_{Rd}	q0ridotto	$\mu_{\phi,SLC}$	ε _{sy,d}			
	[mm]	[mm]	[mm]	[-]	[mm ²]	[N]	[-]	[-]	[-]	[-]	[-]				
1	1190	200	3250	7	238000	673800	0.16	7.61	0.37	3.23	6.71	0.00186			
2	660	200	3783		132000	359500	0.16		0.33	3.27	6.80				
3	550	200	3783		110000	338700	0.18		0.19	3.41	7.15				
4	660	200	3783		132000	473900	0.21		0.34	3.26	6.78				
5	690	200	3783		138000	413500	0.17		0.38	3.22	6.68				
6	3130	200	3783		626000	1350700	0.12		0.20	3.40	7.12				
7	4540	200	4540		908000	1638300	0.10		0.25	3.35	6.99				
8	1510	200	3783		302000	712100	0.14		0.31	3.29	6.84				
9	2300	200	3783		460000	994900	0.12		0.30	3.30	6.88				
10	1420	200	3250		284000	638300	0.13		0.26	3.34	6.98				
11	3360	200	3360		672000	1206300	0.10		0.27	3.33	6.95				
12	4000	200	4000		800000	1515800	0.11		0.29	3.31	6.90				
13	1700	200	3783		340000	705600	0.12		0.40	3.20	6.63				
14	2190	200	3783		438000	879700	0.12		0.20	3.40	7.12				
15	2750	200	3783		550000	975000	0.10		0.33	3.27	6.80				

Tabella 34. Verifiche di duttilità alla base dei setti (1).

Tabella 35. Verifiche di duttilità alla base dei setti (2).

SETTO ID	b _c	С	ϕ_{staffe}	ϕ_{long}	b ₀	h _o	S _{dissip}	A _h	L_{staffe}	L _{ganci}				
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm ²]	[mm]	[mm]				
1	200	40	8	14	112	242	100	50.26548	868	192				
2	200			14	112	242			868	192				
3	200			14	112	242			868	0				
4	200			14	112	242			868	192				
5	200			14	112	262			908	192				
6	200			14	112	582			1548	544				
7	200			14	112	822			2028	544				
8	200			14	112	262			908	272				
9	200			14	112	342			1068	272				
10	200			14	112	262			908	272				
11	200			14	112	582			1548	544				
12	200			14	112	722			1828	544				
13	200			14	112	282			948	272				
14	200			14	112	322			1028	272				
15	200			14	112	472			1328	544				

Tabella 36. Verifiche di duttilità alla base dei setti (3).

					VERIFIC	HE DI DUTT	ILITA' (3) §	7.4.6.2.4					
SETTO ID	ρν	ων	I _{conf}	Aconf	V _{nucleo,cls}	V _{staffeconf}	ω_{wd}	α	α _n	α	1°membro	2°membro	VERIFICA
	[-]		[mm]	[mm ²]	[mm³]	[mm ³]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	0.0026	0.0575	300	27104	2710400	53281.41	0.44	0.44	0.60	0.26	0.12	0.11	VERIF
2	0.0000	0.0000	300	27104	2710400	53281.41	0.44	0.44	0.60	0.26	0.12	0.07	VERIF
3	0.0000	0.0000	300	27104	2710400	43630.44	0.36	0.44	0.60	0.26	0.10	0.09	VERIF
4	0.0000	0.0000	300	27104	2710400	53281.41	0.44	0.44	0.60	0.26	0.12	0.10	VERIF
5	0.0000	0.0000	300	29344	2934400	55292.03	0.42	0.45	0.58	0.26	0.11	0.08	VERIF
6	0.0021	0.0481	626	65184	6518400	105155.4	0.36	0.51	0.56	0.28	0.10	0.09	VERIF
7	0.0020	0.0456	908	92064	9206400	129282.8	0.32	0.52	0.60	0.31	0.10	0.07	VERIF
8	0.0022	0.0499	302	29344	2934400	59313.27	0.45	0.45	0.58	0.26	0.12	0.09	VERIF
9	0.0022	0.0491	460	38304	3830400	67355.75	0.40	0.47	0.48	0.23	0.09	0.08	VERIF
10	0.0025	0.0551	300	29344	2934400	59313.27	0.45	0.45	0.79	0.36	0.16	0.09	VERIF
11	0.0025	0.0561	672	65184	6518400	105155.4	0.36	0.51	0.56	0.28	0.10	0.08	VERIF
12	0.0021	0.0471	800	80864	8086400	119229.7	0.33	0.52	0.64	0.33	0.11	0.07	VERIF
13	0.0025	0.0554	340	31584	3158400	61323.89	0.44	0.46	0.56	0.25	0.11	0.08	VERIF
14	0.0023	0.0516	438	36064	3606400	65345.13	0.41	0.47	0.53	0.25	0.10	0.08	VERIF
15	0.0021	0.0480	550	52864	5286400	94096.98	0.40	0.49	0.46	0.23	0.09	0.07	VERIF

5.2. Travi

Per il dimensionamento delle travi si fa riferimento al § 4.1.6.1.1. e § 7.4.6.2.1. indicanti i dettagli costruttivi per verifiche statiche e sismiche [1].

Per la parte statica devono essere rispettate le seguenti limitazioni:

- area dell'armatura longitudinale in zona tesa non deve essere inferiore a: $A_{s,min} = 0.26 \cdot \frac{f_{ctm}}{f_{yk}} \cdot b_t \cdot d;$
- area dell'armatura longitudinale in zona tesa deve essere superiore a: $A_s > 0,0013 \cdot b_t \cdot d$;
- al di fuori delle zone di sovrapposizione l'area di armatura tesa o compressa non deve superare $A_{s,max} = 0.04 \cdot A_c \ (A_c \ e \ l'area \ della \ sezione \ trasversale \ di \ calcestruzzo);$
- il 50% dell'armatura necessaria per il taglio deve essere costituita da staffe;
- l'armatura trasversale deve avere sezione complessiva non inferiore a $A_{st} = 1,5 \cdot b \frac{mm^2}{m}$ (b è lo spessore minimo dell'anima in millimetri);
- devono essere previste un minimo di tre staffe al metro e con passo non superiore a 0,8 volte l'altezza utile della sezione.

Per la parte sismica invece è necessario attenersi ai seguenti requisiti:

- almeno due barre di diametro non inferiore a 14 mm devono essere presenti superiormente e inferiormente per tutta la lunghezza della trave;
- in ogni sezione della trave il rapporto geometrico ρ relativo all'armatura tesa, indipendentemente dal fatto che l'armatura tesa sia quella al lembo superiore della sezione A_s o quella al lembo inferiore della sezione A_i , deve essere compreso entro i seguenti limiti:

$$\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$$

- $\rho_{comp} \ge 0.25 \cdot \rho$ ovunque e nelle zone dissipative $\rho_{comp} \ge 0.50 \cdot \rho$;
- nelle zone dissipative devono essere previste staffe di contenimento. La prima staffa deve distare non più di 5 cm della sezione a filo pilastro; le successive devono essere disposte ad un passo non superiore alla minore tra le grandezze seguenti:

$$s_{dissip} = \begin{cases} 1/4 \cdot H_{utile} \\ 225 \ mm \\ 8 \cdot \phi_{min,long} \\ 24 \cdot \phi_{staffe} \end{cases}$$

 per staffa di contenimento si intende: una staffa rettangolare di diametro minimo 6 mm, con ganci a 135° prolungati alla due estremità per almeno 10 diametri.

Per la definizione delle armature delle travi si fa riferimento alla sezione in campata e in appoggio in cui è presente rispettivamente un momento flettente che tende, rispettivamente, le fibre inferiori e superiori. Per la determinazione del momento flettente resistente ci si è avvalsi del programma V.C.A. S.L.U.

5.2.1. Verifica a flessione: trave orizzontale 75 x 33 cm

La trave in spessore di solaio è soggetta a momenti flettenti sollecitanti pari a:

$$M_{Ed}^+ = 78,77 \ kNm \ e \ M_{Ed}^- = 92,89 \ kNm.$$

Si dispongono nella sezione di campata $6\phi14$ inferiormente e $4\phi14$ superiormente, mentre nella sezione di appoggio $4\phi14$ inferiormente e $6\phi14$ superiormente per un momento resistente $M_{Rd}^{+/-} = 96,33 \ kNm$ (Figura 96).

Figura 96. Verifica a flessione trave in spessore di solaio 75 x 33 cm.

5.2.2. Verifica a flessione: trave verticale 20 x 33 cm

La trave in spessore di solaio è soggetta a momenti flettenti sollecitanti pari a:

$$M_{Ed}^+ = 41,16 \ kNm \ e \ M_{Ed}^- = 41,34 \ kNm.$$

Si dispongono nella sezione di campata $3\phi 16$ inferiormente e $2\phi 16$ superiormente, mentre nella sezione di appoggio $2\phi 16$ inferiormente e $3\phi 16$ superiormente per un momento resistente $M_{Rd}^{+/-} = 56,62 \ kNm$ (Figura 97).

File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2008 ? Image: Sold of the second s	📅 Verifica C.A. S.L.U File:		– 🗆 X
Image: Second secon	File Materiali Opzioni Visualizza	Progetto Sez. Rett. Sismica Normativa:	NTC 2008 ?
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	🗅 🖻 🖶 🍣		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Titolo : TRAVE IN SPESSORE DI SC	DLAIO 20x33cm	Tipo Sezione ③ Rettan.re 〇 Trapezi
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		N strati barre 2	O a T O Circolare
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N* b [cm] h [cm]	N* As [cm ²] d [cm]	O Rettangoli O Loord.
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1 20 33	2 6.03 27.4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			/////cv/////
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sollecitazioni	P.to applicazione N	N
N Coord.[cm] N D N Ed 0 KN 0 KN M Ed 0 KN 0 KN 0 M Ed 0 KN 0 KN 0 KN M Ed 0 KN 0 KN 0 KN M Ed 0 KN 0 KN 0 KN M Ed 0 KN 0 KN 0 KN 0 SL U SL U SL U SL	S.L.U. → Metodo n	⊙ Centro ○ Baricentro cls	
N Ed 0 kN 0 cools, femily yN 0 M sEd 0 kNm 0 kNm Tipo rottura Metado di calcolo 5.L.U.+ S.L.U.+ S.L.U.+ S.L.U.+ S.L.U.+ S.L.U.+ Metado n Materiali Materiali M xRd 56,62 kN m Tipo flessione 0 Deviata 8450C C30/37 c 17 N/mn² 0 Deviata 0 Deviata 6 391,3 N/mn² cu 3,5 % Calcola MRd Dominio M-N 5 200 000 N/mn² fcd 17 5 5 0 Calcola MRd Dominio M-N 5 fcc 15 fcc / fcd 0.8 7 5 10.63 Lo 0 cm Col. modello		N 0	
M Ed 0 kNm Tipo rotura M yEd 0 0 kNm Tipo rotura M yEd 0 0 kNm Tipo rotura M yEd 0 0 kNm Tipo rotura M Ato calcestruzzo - Acciaio snervato 0 S.L.U.+ 0 S.L.U.+ B450C C30/37 k c 17 N/mm ² 0 Metado n 6 67.5 % 6.2 2 % 0 Tipo flessione 0 Retata Deviata g 391.3 N/mm ² cu 3.5 % Calcola MRd Dominio M-N E 200 000 N/mm ² cd 17 E c 3.5 % Calcola MRd Dominio M-N E fcc 15 fcc / fcd 0.8 7 E 10.63 % Lo 0 col Col. modello	N Ed 0 KN	yN 0	
M y∈d 0 Lato calcestruzzo - Acciaio snervati 0 Metodo di calcolo 0 Metodo di calcolo 0 Metodo di 0 S.L U 0 Metodo di 0 Met	M _{xEd} 0 0 kNm		
Materiali Materiali <t< td=""><td>M_{uEd}O O</td><td>Lato calcestruzzo - Acciaio snervato</td><td>- Metodo di calcolo</td></t<>	M _{uEd} O O	Lato calcestruzzo - Acciaio snervato	- Metodo di calcolo
Material M xRd 56,52 KN m Tipo flessione O Retta Deviata 8 450C C30/37 5 5 5 5 7 7 N/mn ² 7 0 Retta Deviata 1/yd 331,3 N/mn ² 5 5 3 31.3 N/mn ² N' rett. 100 E s 200 000 N/mn ² fcc 17 E s 35.5 % Calcola MRd Dominio M-N E s / E c 15 fcc / fcd 0.8 ? E s 10.63 Lo 0 cm Col. modello	yes Maria		O Metodo n
construction	R450C C30/37	*Rd 56,62 KN M	- Tipo flessione
C su b f, 5 % c C 2 Z % oc -17 N/mm ² ^f yd 391,3 N/mm ² cu 3,5 oc 391,3 N/mm ² E s 200 000 N/mm ² fcd 17 E c 3,5 % Calcola MRd Dominio M-N E s / E c 15 f cc / f cd 0.8 ? E s 10,63 % L o 0 cm Col. modello			⊙ Retta O Deviata
'yd 391,3 N/mm² Ecu 3,5 σ 391,3 N/mm² N rett 100 E _s 200 000 N/mm² fcd 17 e 3,5 % Calcola MRd Dominio M-N E _s /F _C 15 fcc / fcd 0.8 ? e 10,63 % Lo 0 cm Col. modello	c _{su} 67,5 % c _{c2} 2	⁶⁰ σ _c -17 N/mm ²	Nt 100
E _s 200 000 N/mm ² ¹ cd 17 ε _c 3,5 ‰ Calcola MHd Dominio M-N E _s /E _c 15 fcc / fcd 0.8 ? ε _s 10.63 ‰ L _o 0 cm Col. modelio	'yd 391,3 N/mm² ² cu 3,5	σ _s 391,3 N/mm ²	N'rett. 100
E _s /E _c 15 f _{cc} /f _{cd} 0.8 ? ε _s 10.63 ‰ L _o 0 cm Col. modello	E _s 200 000 N/mm ² 'cd 17	ε _c 3,5 ‰	Calcola MRd Dominio M-N
	E _s /E _c 15 f _{cc} / f _{cd} 0.8	? ε. 10,63 ‰ L	o 0 cm Col. modello
ε _{syd} 1,957 ‰ σ _{c,adm} 11.5 d 27.4 cm	ε _{syd} 1,957 ‰ σ _{c,adm} 11,5	d 27.4 cm	
σ _{s,adm} 255 N/mm ² τ _{co} 0,6933 x 6 785 x/d 0 2476	σ _{s,adm} 255 N/mm ² τ _{co} 0,6933	× 6 785 ×/d 0 2476	
τ _{c1} 2.029	τ _{c1} 2,029	0 7495	

Figura 97. Verifica a flessione trave in spessore di solaio 20 x 33 cm.

5.2.3. Verifica a flessione: trave verticale 65 x 33 cm

La trave in spessore di solaio è soggetta a momenti flettenti sollecitanti pari a:

$$M_{Ed}^+ = 46,84 \ kNm \ e \ M_{Ed}^- = 60,40 \ kNm.$$

Si dispongono nella sezione di campata 6 ϕ 14 inferiormente e 3 ϕ 14 superiormente, mentre nella sezione di appoggio 3 ϕ 14 inferiormente e 6 ϕ 14 superiormente per un momento resistente $M_{Rd}^{+/-}$ = 94,41 kNm (Figura 98).

Figura 98. Verifica a flessione trave in spessore di solaio 65 x 33 cm.

5.2.4. Verifica a flessione: capriata 20 x 45 cm

La capriata è soggetta a momenti flettenti sollecitanti pari a:

$$M_{Ed}^+ = 2,80 \ kNm \ e \ M_{Ed}^- = 9,57 \ kNm.$$

Tali entità sono irrisorie perché l'elemento è soggetto prevalentemente a compressione, visto che svolge il ruolo di puntone dello schema a capriata semplice.

Si decide di disporre $2\phi 14$ inferiormente e superiormente con l'aggiunta di $2\phi 14$ a metà altezza per un momento resistente $M_{Rd}^{+/-} = 66,4 \ kNm$ (Figura 99).

Figura 99. Verifica a flessione capriata 20 x 45 cm.

5.2.5. Verifica a flessione: trave di colmo 24 x 48 cm

La trave di colmo è soggetta a momenti flettenti sollecitanti pari a:

$$M_{Ed}^+ = 43,89 \ kNm \ e \ M_{Ed}^- = 89,60 \ kNm.$$

Si dispongono nella sezione $3\phi 14$ inferiormente e superiormente con l'aggiunta di $2\phi 14$ a metà altezza per un momento resistente $M_{Rd}^{+/-} = 95,16 \ kNm$ (Figura 100).

Verifica C.A. S.L.U.	- File:					- 0	×
File Materiali Opzi	oni Visualizza Pr	rogetto Sea	z. Rett. Sisn	nica Normat	iva: NTC 2008	?	
n 🚅 🖬 🚳							
Titolo : TRAVE DI I	COLMO 24x48 cm	N	* strati barre	e 3 Zo	om ◯ a T	zione an.re O T O C	rapezi ircolare
N* b[cm]	h [cm]	N*	As [cm²]	d [cm]	O Rett	angoli O C	oord.
1 24	48	1	4,62	5,5]	-	
		2	3,08	24			72
Sollecitazioni S.L.U.	Metodo n	-P.toap ⊙ Cent	plicazione M ro OB	aricentro cls		N	
N _{Ed}	0 kN	O Coor	d.[cm]	×N 0 Ny		•	
M _{xEd} M _{yEd}	0 KNM	Tipo rott Lato cal	ura cestruzzo -	Acciaio snerv	vatc OS.L.	di calcolo J.+ C) S.L.U
B450C Mat	c30/37	M xRd	95,16	kN m	- Tipo fle) Metodo ssione	n
ε _{su} 67,5 ‰	ε _{c2} 2 ‰	σ	-17	N/mm ²	• Hett	a Ou	eviata
^r yd 391,3 N/mm	εε _{cu} 3,5	σ	391,3	N/mm ²		N* r	ett. 100
E _s 200 000 N/mn	n² 'cd 17	8	3,5	‰	Calcola M	d Don	ninio M-N
E _s /E _c 15	fcc / fcd 0,8 ?	E _s	17,72	‱	LoO	cm Col	. modello
ε _{syd} 1,957 ‰	σ _{c,adm} 11,5	d	42,5	cm			
O _{s,adm} 255 N/mn	τ _{c1} 2,029	× 7,1	0 09 x/d 8	0,1649 0,7		Precompres	850

Figura 100. Verifica a flessione trave di colmo 24 x 48 cm.

5.2.6. Verifica a flessione: tirante 65 x 33 cm

Il tirante in copertura è soggetto a momenti flettenti sollecitanti pari a:

$$M_{Ed}^+ = 55,23 \ kNm \ e \ M_{Ed}^- = 60,79 \ kNm.$$

Essendo il tirante soggetto prevalentemente a sforzi di trazione, si decide di disporre 5 ϕ 14 inferiormente e superiormente con l'aggiunta di 2 ϕ 14 a metà altezza per un momento resistente $M_{Rd}^{+/-} = 94,99 \ kNm$ (Figura 101).

Figura 101. Verifica a flessione tirante copertura 65 x 33 cm.

5.2.7. Verifica a flessione: capriata 20 x 33 cm

La capriata è soggetta a momenti flettenti sollecitanti pari a:

$$M_{Ed}^+ = 2,00 \ kNm \ e \ M_{Ed}^- = 4,27 \ kNm.$$

Tali entità sono irrisorie perché l'elemento è soggetto prevalentemente a compressione, visto che svolge il ruolo di puntone dello schema a capriata semplice.

Si decide di disporre $2\phi 14$ inferiormente e superiormente con l'aggiunta di $2\phi 14$ a metà altezza per un momento resistente $M_{Rd}^{+/-} = 44,75 \ kNm$ (Figura 102).

5.2.8. Verifica a flessione: trave in altezza di copertura 20 x 120 cm

La trave in altezza di copertura è soggetta a momenti flettenti sollecitanti pari a:

$$M_{Ed}^+ = 115,89 \ kNm \ e \ M_{Ed}^- = 117,39 \ kNm.$$

Si dispongono nella sezione di campata $4\phi16$ inferiormente e $2\phi16$ superiormente con l'aggiunta di $2\phi8$ come reggistaffa, mentre nella sezione di appoggio $2\phi16$ inferiormente e $4\phi16$ superiormente per un momento resistente $M_{Rd}^{+/-} = 406, 7kNm$ (Figura 103).

📅 Verifica C.A. S.L.U File:		– 🗆 X
File Materiali Opzioni Visualizza Pro	ogetto Sez. Rett. Sismica Normativa: I	NTC 2008 ?
🗅 🖻 🖶 🚔		
Titolo : TIRANTE COPERTURA 20x120	0 cm N* strati barre 6 Zoom	Tipo Sezione ⊙ Rettan.re ○ Trapezi ○ a T ○ Circolare
N* b[cm] h[cm]	N* As [cm²] d [cm] ∧	O Rettangoli O Coord.
1 20 120	2 1,01 35,6	
	3 1,01 59,6	
	4 1,01 82,8	
	5 4,02 112,8	
	6 4,02 114,4	
Sollecitazioni Metodo n N Ed 0 kN M xEd 0 kNm	P. to applicazione N Centro Centro Coord.[cm]	N
M _{vEd} 0	Lato calcestruzzo - Acciaio snervato	
Materiali	M _{xRd} 406,7 kN m	O Metodo n
B450C C30/37		- Tipo flessione
ε _{su} 67,5 ‰ ε _{c2} 2 ‰	σ _c -17 N/mm ²	• Hetta • Deviata
'yd 391,3 N/mm² ² cu 3,5	σ 391,3 N/mm ²	N ⁺ rett. 100
E _s 200 000 N/mm ² ^r cd 17	ε <u>3,5</u> ‰	Calcola MRd Dominio M-N
E _s /E _c 15 f _{cc} / f _{cd} 0,8 ?	ε _s 33,59 ‰ L	0 cm Col. modello
ε _{syd} 1,957 ‰ σ _{c,adm} 11,5	d 114,4 cm	
C _{s,adm} 255 N/mm ² τ _{c0} 0,6933 τ _{c1} 2,029	× 10,79 ×/d 0,09436 8 0,7	

Figura 103. Verifica a flessione trave in altezza di copertura 20 x 120 cm.

5.2.9. Verifica del rispetto dei dettagli costruttivi

A seguire si riporta il resoconto delle quantità di armatura inserite in campata e in appoggio e la verifica del rispetto dei dettagli costruttivi (Figure 104-105-106 e 107).

	Armatura delle travi in CAMPATA															
	b	h	d	A _{s,min}	A _{s,min} >	A _{s,max}	φ	n _{barre}	1	Δ',	n _{barre}	1	A _s	A _{s,TOT}	ρ_{teso}	Pcompr
	[cm]	[cm]	[cm]	[mm ²]	[mm ²]	[mm ²]	[mm]	[-]	[mm ²]	[mm ²]	[-]	[mm ²]	[mm ²]	[mm ²]	[-]	[-]
T-Orizz.	75	33	27.5	350.59	268.13	9900	14	4	4φ14	615.75	6	6ф14	923.63	1539.38	0.0037	0.0025
T-Vertical	20	33	27.5	93.49	71.50	2640	16	2	2φ16	402.12	3	3ф16	603.19	1005.31	0.0091	0.0061
T-Vertical	65	33	27.5	303.84	232.38	8580	14	3	3ф14	461.81	6	6 ф1 4	923.63	1385.44	0.0043	0.0022
Capriata	20	45	39.5	134.29	102.70	3600	14	2	2φ14	307.88	2	2φ14	307.88	615.75	0.0034	0.0034
Trave di co	24	48	42.5	173.38	132.60	4608	14	3	3ф14	461.81	3	3ф14	461.81	923.63	0.0040	0.0040
Tirante	65	33	27.5	303.84	232.38	8580	14	5	5φ14	769.69	5	5φ14	769.69	1539.38	0.0036	0.0036
Capriata	20	33	27.5	93.49	71.50	2640	14	2	2ф14	307.88	2	2φ14	307.88	615.75	0.0047	0.0047
T. Altezza	20	120	114.5	389.26	297.70	9600	16	2	2φ16	402.12	4	4φ16	804.25	1206.37	0.0034	0.0017

Figura 104. Quantità di armatura in campata.

								Verific	a a flessione	VC.A.SLU (I	M+) CAMPA	ATA							
			de	ttagli costru	uttivi §4.1.6.								dettagli	costruttivi	\$7.4.6.2.1.				
M _{Ed}	ϕ_{long}	ϕ_{staffe}	Cnom	d	A _{s,min}	A _{s,min} >	A _{s,max}	M _{Rd} VCA	$\phi_{long} > 14$	A'5	A _s	Pteso	Pcompr	1,4/fyk	_{compr} +3.5/fy	VERI	-ρ	ρ _{compr} >0.25ρ	ρ _{compr} >0.5ρ
[kNm]	[mm]	[mm]	[cm]	[cm]	[mm ²]	[mm ²]	[mm ²]	[kNm]	[mm]	[mm ²]	[mm ²]	[-]	[-]	[-]	[-]	[-]		[-]	[-]
78.77	14	8	5.5	27.5	350.59	268.13	9900	96.33		615.75	923.63	0.0037	0.0025	0.0031	0.0103	VERO	VERO	VERO	VERO
41.16	16		5.6	27.4	93.15	71.24	2640	56.62		402.12	603.19	0.0091	0.0061	0.0031	0.0139	VERO	VERO	VERO	VERO
46.84	14		5.5	27.5	303.84	232.38	8580	94.41		461.81	923.63	0.0043	0.0022	0.0031	0.0099	VERO	VERO	VERO	VERO
2.80	14		5.5	39.5	134.29	102.70	3600	66.44		307.88	307.88	0.0034	0.0034	0.0031	0.0112	VERO	VERO	VERO	VERO
43.89	14		5.5	42.5	173.38	132.60	4608	95.16		461.81	461.81	0.0040	0.0040	0.0031	0.0118	VERO	VERO	VERO	VERO
55.23	14		5.5	27.5	303.84	232.38	8580	94.99		769.69	769.69	0.0036	0.0036	0.0031	0.0114	VERO	VERO	VERO	VERO
2.00	14		5.5	27.5	93.49	71.50	2640	44.75		307.88	307.88	0.0047	0.0047	0.0031	0.0124	VERO	VERO	VERO	VERO
115.89	16		5.6	114.4	388.92	297.44	9600	406.7		402.12	804.25	0.0034	0.0017	0.0031	0.0095	VERO	VERO	VERO	VERO

Figura 105. Verifica del rispetto dei dettagli costruttivi in campata.

							Armatura	delle travi in	APPOGGIO	1						
	b	h	d	A _{s,min}	A _{s,min} >	A _{s,max}	φ	n _{barre}	1	A _s	n _{barre}	4	N's	A _{s,TOT}	ρ_{teso}	Pcompr
	[cm]	[cm]	[cm]	[mm ²]	[mm ²]	[mm ²]	[mm]	[-]	[mm ²]	[mm ²]	[-]	[mm ²]	[mm ²]	[mm ²]	[-]	[-]
T-Orizz.	75	33	27.5	350.59	268.13	9900	14	6	6ф14	923.63	4	4φ14	615.75	1539.38	0.0037	0.0025
T-Vertical	20	33	27.5	93.49	71.50	2640	16	3	3ф16	603.19	2	2φ16	402.12	1005.31	0.0091	0.0061
T-Vertical	65	33	27.5	303.84	232.38	8580	14	6	6φ14	923.63	3	3ф14	461.81	1385.44	0.0043	0.0022
Capriata	20	45	39.5	134.29	102.70	3600	14	2	2φ14	307.88	2	2φ14	307.88	615.75	0.0034	0.0034
Trave di co	24	48	42.5	173.38	132.60	4608	14	3	3ф14	461.81	3	3ф14	461.81	923.63	0.0040	0.0040
Tirante	65	33	27.5	303.84	232.38	8580	14	5	5φ14	769.69	5	5φ14	769.69	1539.38	0.0036	0.0036
Capriata	20	33	27.5	93.49	71.50	2640	14	2	2φ14	307.88	2	2φ14	307.88	615.75	0.0047	0.0047
T. Altezza	20	120	114.5	389.26	297.70	9600	16	4	4ф16	804.25	2	2φ16	402.12	1206.37	0.0034	0.0017

T1	100	0					
Figura	106	()mantità	dı	armatura	1n	anno	$\sigma \sigma 1 \Omega$
i iguiu	100.	Quantina	uı	unnatura		uppo	5510.

								Verifica	a flessione \	/C.A.SLU (N	1-) APPOG	GIO							
			dett	agli costru	ttivi §4.1.6.1.2								dettagli	costruttivi §	7.4.6.2.1.				
M _{Ed}	ϕ_{long}	ϕ_{staffe}	Cnom	d	A _{s,min}	A _{s,min} >	A _{s,max}	M _{Rd} VCA	$\phi_{long} > 14$	A'5	A _s	Pteso	Pcompr	1,4/fyk	_{compr} +3.5/fy	VERIF	-ρ	ρ _{compr} >0.25p	ρ _{compr} >0.5ρ
[kNm]	[mm]	[mm]	[cm]	[cm]	[mm ²]	[mm ²]	[mm ²]	[kNm]	(mm)	[mm ²]	[mm ²]	[-]	[-]	[-]	[-]	[-]		[-]	[-]
-92.89	14	8	5.5	27.5	350.5870934	268.125	9900	96.33		923.63	615.75	0.0037	0.0025	0.0031	0.0103	VERO	VERO	VERO	VERO
-41.34	16		5.6	27.4	93.14992832	71.24	2640	56.62		603.19	402.12	0.0091	0.0061	0.0031	0.0139	VERO	VERO	VERO	VERO
-60.40	14		5.5	27.5	303.8421476	232.375	8580	94.41		923.63	461.81	0.0043	0.0022	0.0031	0.0099	VERO	VERO	VERO	VERO
-9.57	14		5.5	39.5	134.2854806	102.7	3600	66.44		307.88	307.88	0.0034	0.0034	0.0031	0.0112	VERO	VERO	VERO	VERO
-89.60	14		5.5	42.5	173.3812534	132.6	4608	95.16		461.81	461.81	0.0040	0.0040	0.0031	0.0118	VERO	VERO	VERO	VERO
-60.79	14		5.5	27.5	303.8421476	232.375	8580	94.99		769.69	769.69	0.0036	0.0036	0.0031	0.0114	VERO	VERO	VERO	VERO
-4.27	14		5.5	27.5	93.48989156	71.5	2640	44.75		307.88	307.88	0.0047	0.0047	0.0031	0.0124	VERO	VERO	VERO	VERO
-117.39	16		5.6	114.4	388.9179489	297.44	9600	406.7		804.25	402.12	0.0034	0.0017	0.0031	0.0095	VERO	VERO	VERO	VERO

Figura 107. Verifica del rispetto dei dettagli costruttivi in appoggio.

5.2.10. Verifica a taglio

È stata eseguita la verifica a taglio degli elementi strutturali nel rispetto di quanto citato a § 4.1.2.3.5. [1]. È stato utilizzato in zona non dissipativa un passo delle staffe pari a 20 cm per sette degli otto elementi strutturali e 25 cm per la trave in altezza in copertura. In zona dissipativa invece, poiché gli elementi sono prevalentemente in spessore e non in altezza, il passo delle staffe è pari a 5 cm per sei degli otto elementi strutturali e 10 cm per gli altri due. L'estensione della zona dissipativa (lunghezza critica) per una progettazione in CD "B" è pari all'altezza utile dell'elemento strutturale.

Tutte]	le verifiche	e a taglio	risultano	soddisfatte	(Figure)	108-109-110	e 111).
					().

				1						v	ERIFICA A T	AGLIO (ASS	ENZA ARMAT	URE TRASVER	SALI RESISTER	ITI A TAGLIO))						
	dimensioni +	+ copriferro		dettagl	i costruttivi	§4.1.6.		dettagli	costruttiv	§7.4.6.2.1.							§4.1.2.3.5.1.						
b	h	с	d	Ast	Smax	s _{max}	1/4d	CD "B"	8*¢iong	$24^{*}\varphi_{staffe}$	Sdissip	k	ρι	fck	Ye	σφ	Vmin	V _{Rd,1}	V _{Rd,2}	V _{Rd}	V _{Ed}	V _{Rd} >V _{Ed}	
[cm]	[cm]	[cm]	[cm]	[mm ² /m]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[-]	[-]	[MPa]	[-]	[MPa]	[MPa]	[kN]	[kN]	[kN]	[kN]	[-]	
75	33	4	27.5	112.5	33.33333	22	6.88	22.5	11.2	19.2	6.88	1.85	0.0037	31	1.5	0	0.49	103.39	100.89	103.39	150.25	FALSO	
20	33		27.4	30		21.92	6.85	22.5	12.8	19.2	6.85	1.85	0.0091				0.49	37.06	26.84	37.06	106.41	FALSO	
65	33		27.5	97.5	3staffe/m	22	6.88	22.5	11.2	19.2	6.875	1.85	0.0043				0.49	93.98	87.44	93.98	53.78	VERO	
65	33		27.5	97.5		22	6.88	22.5	11.2	19.2	6.875	1.85	0.0036				0.49	88.44	87.44	88.44	107.50	FALSO	
20	120		114.4	30		91.52	28.60	22.5	12.8	19.2	12.8	1.42	0.0034				0.33	84.69	74.94	84.69	100.74	FALSO	
											VERIFIC	A A TAGLIC) (ASSENZA A	RMATURE TRA	SVERSALI RES	SISTENTI A T	AGLIO)						
	dimensioni +	+ copriferro		dettagl	i costruttivi	§4.1.6.		dettagli	costruttiv	i §7.4.6.2.1.							§4.1.2.	3.5.1.					
b	h	с	d	A _{st}	Smax	Smax	1/4d	CD "B"	8*φ _{iong}	$24^{*}\varphi_{staffe}$	Sdissip	k	ρ	fck	Yc	σ _{cp}	σ _{cp,max}	Vmin	V _{Rd,1}	V _{Rd,2}	V _{Rd}	Ved	V _{Rd} >V _{Ed}
[cm]	[cm]	[cm]	[cm]	[mm ² /m]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[cm]	[-]	[-]	[MPa]	[-]	[MPa]	[MPa]	[MPa]	[kN]	[kN]	[kN]	[kN]	[-]
20	45	4	39.5	30	33.33333	31.6	9.875	22.5	11.2	19.2	9.875	1.71	0.0034	31	1.5	1.32	3.48	0.43	51.20	49.98	51.20	8.00	VERO
24	48		42.5	36		34	10.625	22.5	11.2	19.2	10.625	1.69	0.0040			0.76		0.42	67.88	54.89	67.88	75.39	FALSO
20	33		27.5	30		22	6.875	22.5	11.2	19.2	6.875	1.85	0.0047			0.46		0.49	40.61	30.71	40.61	4.84	VERO

Figura 10	8. Verifica	a taglio i	n assenza (di armatura	trasversale.

							VERIFICA	A TAGLIO (C	ON ARM	ATURE TRA	SVERSALI RES	ISTENTI A	TAGLIO)- ZON	A NON DISSIP	ATIVA				
0	dimensioni -	+ copriferro)								§4.1.2.3.5.2								
b	h	с	d	Φ_{staffe}	nbracci	A _{sw}	s	α	ctgα	senα	θ	ctgθ	V _{Rsd}	V _{Rcd}	V _{Rd}	V _{Ed}	V _{Rd} >V _{Ed}		
[cm]	[cm]	[cm]	[cm]	[mm]	[-]	[mm ²]	[cm]	[°]	[-]	[-]	[°]	[-]	[kN]	[kN]	[kN]	[kN]	[-]		
75	33	4	27.5	8	2	100.531	20	90	0	1	45	1	486.81	807.58	486.81	150.25	VERO		
20	33		27.4				20	[rad]			[rad]		485.04	214.57	214.57	106.41	VERO		
65	33		27.5				20	1.570796			0.78539816		486.81	699.90	486.81	53.78	VERO		
65	33		27.5				20						486.81	699.90	486.81	107.50	VERO		
20	120		114.4				25						1620.10	895.87	895.87	100.74	VERO		
								VERIFICA A	TAGLIO (CON ARM	ATURE TRASV	ERSALI RES	SISTENTI A TAG	GLIO)- ZONA N	ION DISSIPAT	IVA			
0	dimensioni +	+ copriferro)								ş	4.1.2.3.5.2	2.						
b	h	с	d	ϕ_{staffe}	nbracci	A _{sw}	s	α	ctgα	sena	θ	ctgθ	σ _{cp}	α	V _{Rsd}	V _{Rcd}	V _{Rd}	V _{Ed}	V _{Rd} >V _{Ed}
[cm]	[cm]	[cm]	[cm]	[mm]	[-]	[mm ²]	[cm]	[°]	[-]	[-]	[°]	[-]	[MPa]	[-]	[kN]	[kN]	[kN]	[kN]	[-]
20	45	4	39.5	8	2	100.531	20	90	0	1	45	1	1.32	1.08	699.24	332.83	332.83	8.00	VERO
24	48		42.5				20	[rad]			[rad]		0.76	1.04	752.34	416.75	416.75	75.39	VERO
20	33		27.5				20	1.570796			0.78539816		0.46	1.03	486.81	221.06	221.06	4.84	VERO

Figura 109. Verifica a taglio con armatura trasversale in zona non dissipativa.

							VERIFIC	A A TAGLIC	(CON ARI	MATURE T	RASVERSALI F	ESISTENTI	A TAGLIO)- Z	DNA DISSIPAT	IVA				
(limensioni +	+ copriferro)								§4.1.2.3.5.2								
b	h	с	d	Φ_{staffe}	nbracci	A _{sw}	s	α	ctgα	senα	θ	ctgθ	V _{Rsd}	V _{Rcd}	V _{Rd}	V _{Ed}	V _{Rd} >V _{Ed}		
[cm]	[cm]	[cm]	[cm]	[mm]	[-]	[mm ²]	[cm]	[°]	[-]	[-]	[°]	[-]	[kN]	[kN]	[kN]	[kN]	[-]		
75	33	4	27.5	8	2	100.531	5	90	0	1	45	1	1947.24	807.58	807.58	150.25	VERO		
20	33		27.4				5	[rad]			[rad]		1940.16	214.57	214.57	106.41	VERO		
65	33		27.5				5	1.570796			0.78539816		1947.24	699.90	699.90	53.78	VERO		
65	33		27.5		5 1947.24 699.90 699.90 107.50 VERO														
20	120		114.4		10 4050.26 895.87 895.87 100.74 VERO														
								VERIFIC	A A TAGLIC	O (CON AR	MATURE TRA	SVERSALI R	RESISTENTI A 1	raglio)- zon	A DISSIPATIVA				
(limensioni -	+ copriferro)								5	4.1.2.3.5.2							
b	h	с	d	ϕ_{staffe}	nbracci	A _{sw}	s	α	ctgα	senα	θ	ctgθ	σ_{cp}	α	V _{Rsd}	V _{Rcd}	V _{Rd}	V _{Ed}	V _{Rd} >V _{Ed}
[cm]	[cm]	[cm]	[cm]	[mm]	[-]	[mm ²]	[cm]	[°]	[-]	[-]	[°]	[-]	[MPa]	[-]	[kN]	[kN]	[kN]	[kN]	[-]
20	45	4	39.5	8	2	100.531	5	90	0	1	45	1	1.32	1.08	2796.94628	332.827	332.83	8.00	VERO
24	48		42.5				10	[rad]			[rad]		0.76	1.04	1504.68629	416.7514	416.75	75.39	VERO
20	33		27.5				5	1.570796			0.78539816		0.46	1.03	1947.241081	221.0558	221.06	4.84	VERO

Figura 110. Verifica a taglio con armatura trasversale in zona dissipativa.

	dimensioni	+ coprifer	°0	LUNGHEZZ	ZA CRITICA
b	h	с	d	L _{cr}	
[cm]	[cm]	[cm]	[cm]	[cm]	
75	33	4	27.5	27.5	CD "B"
20	33		27.5	27.5	
65	33		27.5	27.5	
20	45		39.5	39.5	
24	48		42.5	42.5	
65	33		27.5	27.5	
20	33		27.5	27.5	
20	120		114.5	114.5	

Figura 111. Lunghezza della zona critica in CD "B".

5.3. Pilastri

Per il dimensionamento dei tre pilastri si fa riferimento ai § 4.1.6.1.2., § 7.4.4.2., § 7.4.6.1.2. e § 7.4.6.2.2., indicanti i dettagli costruttivi per verifiche statiche e sismiche [1].

Per la parte statica devono essere rispettate le seguenti limitazioni:

- diametro delle barre maggiore o uguale a 12 mm e interasse minore di 300 mm;
- armatura minima pari a: $A_{s,min} = (\frac{0,10 \cdot N_{Ed}}{f_{yd}})$ e maggiore di 0,003 · A_c ;
- le armature trasversali devono essere poste ad interasse non maggiore di 12 volte il diametro minimo delle barre impiegate per l'armatura longitudinale, con un massimo di 250 mm. Il diametro delle staffe non deve essere minore di 6 mm e di ¼ del diametro massimo delle barre longitudinali;
- al di fuori delle zone di sovrapposizione l'area di armatura non deve superare $A_{s,max} = 0.04 \cdot A_c$ (in cui A_c è l'area della sezione trasversale di calcestruzzo).

Per la parte sismica invece è necessario soddisfare i seguenti requisiti:

- la dimensione minima della sezione trasversale non inferiore a 25 cm;
- la lunghezza della zona dissipativa maggiore tra: altezza della sezione, 1/6 dell'altezza libera del pilastro, 45 cm, altezza libera del pilastro se questa è inferiore a 3 volte l'altezza della sezione;
- l'interasse tra le barre non superiore a 25 cm;
- la percentuale geometrica di armatura longitudinale $1\% \le \rho \le 4\%$;

- le barre disposte sugli angoli devono essere contenute da staffe in cui la distanza tra due barre vincolate consecutive deve essere non superiore a 20 cm per una Classe di Duttilità CD "B";
- il diametro delle staffe deve essere non inferiore a 6 mm per CD "B";
- il passo delle staffe di contenimento e legature deve essere non superiore alla più piccola delle

seguenti quantità:
$$s < \begin{cases} \frac{1}{2} \cdot L_{minore} = \frac{1}{2} \cdot 25 \ cm = 12,5 \ cm \\ 17,5 \ cm \ per \ CD \ "B" \rightarrow s = 10 \ cm \\ 8 \cdot \phi_{long} = 8 \cdot 1,6 \ cm = 12,8 \ cm \end{cases}$$

poiché si è deciso di utilizzare barre longitudinali con un diametro massimo pari a 16 mm il passo delle staffe in zona dissipativa sarà pari a 10 cm.

5.3.1. Verifica a pressoflessione: pilastro 35 x 40 cm

Il pilastro 35 x 40 cm è soggetto ad uno sforzo normale e ad un momento flettente sismico e in combinazione SLU pari a:

$$N_{SLU} = 1364,78 \ kN$$
 $M_{SLU} = 114,26 \ kNm$
 $N_{sism} = 866,20 \ kN$ $M_{sism} = 70,36 \ kN$

Si decide di disporre $3\phi 16$ lungo i 35 cm e $4\phi 16$ lungo i 40 cm per un totale di 10 barre e un'armatura totale $A_{s,TOT} = 2010 \ mm^2$ (rapporto geometrico $\rho = 1,44 \ \%$).

Inserendo l'armatura in V.C.A. SLU si ottiene un momento resistente $M_{Rd} = 123,6 \, kNm$ superiore rispetto ai momenti sollecitanti massimi statici e sismici (Figura 112).

Figura 112. Verifica a flessione pilastro 35 x 40 cm.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 113):

Figura 113. Dominio N-M pilastro 35 x 40 cm.

5.3.2. Verifica a pressoflessione: pilastro 25 x 50 cm

Il pilastro 25 x 50 cm è soggetto ad uno sforzo normale sismico e ad un momento flettente sismico e in combinazione SLU pari a:

$$N_{SLU} = 451,17 \ kN$$
 $M_{SLU} = 26,47 \ kNm$
 $N_{sism} = 313,91 \ kN$ $M_{sism} = 18,95 \ kN$

Si decide di disporre $3\phi 14$ lungo i 25 cm e $4\phi 14$ lungo i 50 cm per un totale di 10 barre e un'armatura totale $A_{s,TOT} = 1539 \ mm^2$ (rapporto geometrico $\rho = 1,23 \ \%$).

Inserendo l'armatura in V.C.A. SLU si ottiene un momento resistente $M_{Rd} = 123,1 \, kNm$ superiore rispetto ai momenti sollecitanti massimi statici e sismici (Figura 114).

Figura 114. Momento resistente pilastro 25 x 50 cm.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 115):

5.3.3. Verifica a pressoflessione: pilastro 25 x 40 cm

Il pilastro 25 x 40 cm è soggetto ad uno sforzo normale e ad un momento flettente sismico e in combinazione SLU pari a:

$$N_{SLU} = 89,51 \ kN$$
 $M_{SLU} = 26,92 \ kNm$
 $N_{sism} = 60,14 \ kN$ $M_{sism} = 18,06 \ kN$

Si decide di disporre $3\phi 14$ lungo i 25 cm e $6\phi 14$ lungo i 40 cm per un totale di 14 barre e un'armatura totale $A_{s,TOT} = 2155 \ mm^2$ (rapporto geometrico $\rho = 2,16$ %).

Inserendo l'armatura in V.C.A. SLU si ottiene un momento resistente $M_{Rd} = 118,6 \ kNm$ superiore rispetto ai momenti sollecitanti massimi statici e sismici (Figura 116).

Figura 116. Momento resistente pilastro 25 x 40 cm.

Anche la verifica a pressoflessione retta risulta soddisfatta, poiché le combinazioni di carico di interesse ricadono all'interno del dominio N-M (Figura 117):

5.3.4. Verifica a taglio

È stata eseguita la verifica a taglio degli elementi strutturali nel rispetto di quanto citato a § 4.1.2.3.5. [1]. È stato utilizzato in zona non dissipativa un passo delle staffe pari a 15 cm e in zona dissipativa un passo di 10 cm.

L'estensione della zona dissipativa (lunghezza critica) per una progettazione in CD "B" è pari alla maggiore tra: altezza della sezione, 1/6 dell'altezza libera del pilastro, 45 cm, altezza libera del pilastro se questa è inferiore a 3 volte l'altezza della sezione. Per tutti e tre i pilastri l'entità maggiore è 1/6 dell'altezza libera del pilastro che è pari a 58 cm.

Tutte le verifiche a taglio risultano soddisfatte (Figure 118-119 e 120).

									VE	RIFICA A TA	GLIO (ASSE	NZA ARMAT	URE TRASVE	RSALI RESISTEN	ITI A TAGLIO)					
	dimensioni +	copriferro				§7.4.	6.2.2.								§4.1.2.3.5.1.					
b	h	с	d	Smax	ϕ_{staffe}		sd	issip		k	ρ	f _{ck}	Υ _c	σ _{cp}	Vmin	V _{Rd,1}	V _{Rd,2}	V _{Rd}	V _{Ed}	V _{Rd} >V _{Ed}
[cm]	[cm]	[cm]	[cm]	[cm]	[mm]	[cm]	[cm]	[cm]	[cm]	[-]	[-]	[MPa]	[-]	[MPa]	[MPa]	[kN]	[kN]	[kN]	[kN]	[-]
35	40	4	36	20	6	17.5	17.5	12.8	12.8	1.75	0.0043	31	1.5	9.75	0.45	246.66	240.60	246.66	54.60	VERO
25	50		46	CD "B"	CD "B"	12.5			12.5	1.66	0.0037			3.61	0.41	113.72	109.94	113.72	15.79	VERO
25	40		36			12.5			12.5	1.75	0.0046			0.90	0.45	57.71	52.33	57.71	14.84	VERO

Figura 118. Verifica a taglio in assenza di armatura trasversale.

							VERIFICA	A TAGLIO (CON ARMA	ATURE TRA	SVERSALI RE	SISTENTI A	TAGLIO) ZON/	A NON DISSIP	ATIVA		
d	limensioni +	copriferro	1								§4.1.2.3.5.2	2.					
b	h	с	d	ϕ_{staffe}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
[cm]	[cm]	[cm]	[cm]	[mm]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
35	40	4	36	8	2	100.531	15	90	0	1	21.8	2.500178	2124.41	340.23	340.23	54.60	VERO
25	50		46				15	[rad]			[rad]		2714.53	310.53	310.53	15.79	VERO
25	40		36				15	1.57			0.38		2124.41	243.02	243.02	14.84	VERO

Figura 119. Verifica a taglio con armatura trasversale in zona non dissipativa.

							VERIFIC	A A TAGLI	O (CON AR	MATURE T	RASVERSALI	RESISTENTI	A TAGLIO) ZO	NA DISSIPATI	VA		
ć	dimensioni +	copriferro									§4.1.2.3.5.	2.					
b	h	с	d	ϕ_{staffe}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $												V _{Rd} >V _{Ed}
[cm]	[cm]	[cm]	[cm]	[mm]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												[-]
35	40	4	36	8	2	100.531	10	90	0	1	21.8	2.500178	3186.62	340.23	340.23	54.60	VERO
25	50		46				10	[rad]			[rad]		4071.79	310.53	310.53	15.79	VERO
25	40		36				10	1 57			0.38		3186 62	243.02	243.02	14.84	VERO

Figura 120. Verifica a taglio con armatura trasversale in zona dissipativa.

5.3.5. Verifica dettagli costruttivi per la duttilità

Per le zone dissipative allo spiccato dei pilastri primari e per le zone terminali di tutti i pilastri secondari devono essere eseguite le verifiche di duttilità al §7.4.4.2.2. [1] In alternativa tali verifiche possono ritenersi soddisfatte se, per ciascuna zona dissipativa, si rispettano le limitazioni seguenti:

$$\alpha \cdot \omega_{wd} \ge 30 \cdot \mu_{\phi} \cdot v_d \cdot \varepsilon_{sy,d} \cdot \frac{b_c}{b_0} - 0,035$$

in cui:

 $\omega_{wd} = \frac{vol \, staffe \, conf}{vol \, nucleo \, cls} \cdot \frac{f_{yd}}{f_{cd}} \dot{e} \, il \, rapporto \, meccanico \, dell'armatura trasversale di confinamento all'interno$

della zona dissipativa;

 $\mu_{\phi} = \begin{cases} 1, 2 \cdot (2 \cdot q_0 - 1) & \text{per } T_1 \ge T_C \\ 1, 2 \cdot \left(1 + 2(q_0 - 1) \cdot \frac{T_C}{T_1}\right) & \text{per } T_1 < T_C \end{cases} = \dot{e} \text{ la domanda in duttilità di curvatura allo SLC;}$ $v_d = \frac{N_{Ed}}{A_c \cdot f_{cd}} = \dot{e} \text{ la forza assiale adimensionalizzata di progetto relativa alla combinazione SLV;}$

 $\varepsilon_{sy,d} = 0,00186$ è la deformazione di snervamento dell'acciaio;

 $b_c = \dot{e}$ la larghezza minima della sezione trasversale lorda;

 $b_0 = \dot{e}$ la larghezza del nucleo confinato corrispondente a b_c (con riferimento alla linea media delle staffe);

 $\alpha = \alpha_n \cdot \alpha_s$ è il coefficiente di efficacia del confinamento che, per sezioni trasversali rettangolari, si calcola come:

$$\alpha_n = 1 - \sum_n \frac{b_i^2}{(6 \cdot b_0 \cdot h_0)}$$
$$\alpha_n = \left[1 - \frac{s}{2 \cdot b_0}\right] \cdot \left[1 - \frac{s}{2 \cdot h_0}\right]$$

 $h_0 =$ è la profondità del nucleo confinato (con riferimento alla linea media delle staffe); $h_c =$ è la profondità della sezione trasversale lorda.

Tutte le verifiche di duttilità risultano soddisfatte (Tabelle 37 e 38).

	Nuova verifica di duttilità (§7.4.6.2.2.) PILASTRO P1 (35X40cm)														
$\mu_{\phi,SLC}$	7.61				b	350	[mm]								
N _{Ed}	866200.00	[N]	Com	b. SLV	h	400	[mm]								
v _d	0.40	[-]			с	40	[mm]								
ε _{sy,d}	0.00186				ϕ_{staffe}	8	[mm]								
b _c	350	[mm]			ϕ_{long}	16	[mm]								
b ₀	262	[mm]			S _{dissip}	100	[mm]								
h _o	312	[mm]			A _{staffe}	50.26548	[mm ²]								
A _{cls} (b ₀ h ₀)	81744	[mm ²]			L _{staffe}	1308	[mm]								
V _{nucleo,cls}	4087200	[mm ³]													
V _{staffeconf}	65747.251	[mm ³]			b _i	120	[mm]								
ω _{wd}	0.36	[-]			b _i	120	[mm]								
α _n	0.77	[-]			b _i	100	[mm]								
α	0.83	[-]			b _i	100	[mm]								
α	0.64	[-]			b _i	88	[mm]								
1°membro	0.23	[-]													
2° membro	0.19	[-]			VERIF	ICATO									

Tabella 37. Verifica di duttilità pilastro 35 x 40 cm.

abella 38.	Tabella di	duttilità j	pilastro 25	x 50 c	m.
					_

		Nuc	va verifica di c	luttilità (§7.4.	6.2.2.) PILAST	RO P2 (25X5	60cm)	
$\mu_{\phi,SLC}$	7.61				b	250	[mm]	
N _{Ed}	313910.00	[N]	Comb	. SLV	h	500	[mm]	
v _d	0.16	[-]			с	40	[mm]	
ε _{sy,d}	0.00186				ϕ_{staffe}	8	[mm]	
b _c	250	[mm]			ϕ_{long}	14	[mm]	
b ₀	162	[mm]			Sdissip	100	[mm]	
h _o	412	[mm]			A _{staffe}	50.26548	[mm ²]	
A _{cls} (b ₀ h ₀)	66744	[mm ²]			L _{staffe}	1308	[mm]	
V _{nucleo,cls}	6674400	[mm ³]						
V _{staffeconf}	65747.2511	[mm ³]			b _i	70	[mm]	
ω _{wd}	0.22	[-]			b _i	70	[mm]	
α	0.70	[-]			b _i	130	[mm]	
α	0.61	[-]			b _i	130	[mm]	
α	0.42	[-]			b _i	130	[mm]	
1°membro	0.09	[-]						
2° membro	0.07	[-]			VERIFIC	CATO		

5.3.6. Verifica di resistenza

Il § 7.4.4.2.1. [1] enuncia che per strutture in CD "B" la domanda a compressione non deve eccedere, rispettivamente, il 65% della capacità massima a compressione della sezione di solo calcestruzzo per tutte le combinazioni considerate. Tale requisito risulta soddisfatto per tutti e tre i pilastri dell'edificio (Tabella 39).

T-1-11-20	V		1		(1)	•
Lanella 19	verifiche d	i resisienza	aei r	masiri (•
1 uo onu 57	, or more a	1 1 COIDCOILLa	aci p	JIIGOUII (

	b	h	Α	N _{Ed,max}	65%N _{max}	VERIFICA
	[cm]	[cm]	[mm ²]	[kN]	[kN]	N _{Ed,max} < N _{max}
Pilastri 1	35	40	140000	1364.78	1583.61	VERIFICATO
Pilastri 2	25	50	125000	451.17	1413.94	VERIFICATO
Pilastri 3	25	40	100000	89.51	1131.15	VERIFICATO

Inoltre, ai fini della progettazione in capacità, per ciascuna direzione e ciascun verso di applicazione delle azioni sismiche, per ogni nodo trave-pilastro (ad eccezione dei nodi in corrispondenza della sommità dei pilastri dell'ultimo orizzontamento), la capacità a flessione complessiva dei pilastri deve

essere maggiore della capacità a flessione complessiva delle travi amplificata del coefficiente γ_{Rd} , in accordo con la formula:

$$\sum M_{c,Rd} \geq \gamma_{Rd} \cdot M_{b,Rd}$$

dove:

 $\gamma_{Rd} = 1,2$

 $M_{c,Rd}$ è la capacità a flessione del pilastro convergente nel nodo, calcolata per i livelli di sollecitazione assiale presenti nelle combinazioni sismiche delle azioni;

 $M_{b,Rd}$ è la capacità a flessione della trave convergente nel nodo.

Nell'espressione soprastante si assume il nodo in equilibrio ed i momenti, sia nei pilastri che nelle travi, tra loro concordi. Nel caso in cui i momenti nel pilastro al di sopra e al di sotto del nodo siano tra loro discordi, al primo membro va posto il momento maggiore in valore assoluto, mentre il minore va sommato ai momenti resistenti delle travi (Figura 121):

Figura 121. Progettazione in capacità dei pilastri (Figura 7.4.2. NTC18) [1].

Inserendo i valori di resistenti progetto le verifiche risultano soddisfatte (Tabella 40).

	d	limensioni +	copriferro	-		, N	/ires pilastri	> Mres tra	vi	
	b	h	С	d	M _{Rd, pilastro}	$\Upsilon_{\rm Rd}$	confluenza	M _{Rd,trave}	ſ _{Rd} ∙MR _{d,trav€}	VERIF.
	[cm]	[cm]	[cm]	[cm]	[kNm]	[-]	[-]	[kNm]	[kNm]	[-]
Pilastri 1	35	40	4	36	123.60	1.2	T.O. 75x33	96.33	115.60	VERIF
Pilastri 2	25	50		46	123.10		T.V. 65X33	94.41	113.29	VERIF
Pilastri 3	25	40		36	118.60		T.V. 65X33	94.41	113.29	VERIF

Tabella 40. Verifiche di resistenza dei pilastri (2).

5.4. Setti dal 3º al 7ºpiano

5.4.1. Sollecitazioni

Poiché in tutti setti dell'edificio l'altezza della zona dissipativa h_{cr} risulta inferiore a quella dei primi due piani dell'edificio (Figura 67), si è deciso di progettare i primi due piani nel rispetto delle verifiche del capitolo 4 e 7 delle NTC18 [1] e i piani superiori nel rispetto delle regole del solo capitolo quattro. Per le verifiche di resistenza sono state prese in considerazione le sollecitazioni alla base del terzo piano, in quanto più gravose rispetto a quelle dei piani soprastanti (Tabelle 41-42 e 43).

		1	abena 41.	DIDIZO us	siule alla c	use del se	tti ui teize	plano in c	ondizion	sistificite.			
			SOLL	ECITAZION	II PER DIME		IENTO SET	TI 3°-7° PIA	NO				
					Fx: SF	ORZO ASS	ALE						
	SET	ті			CBAII Si	isma_X				CBAII S	isma_Y		
SETTO ID	L_1	L ₂	AREA	F _{xx}	SETTO ID	F _{xx}	F _{xx MAX}	SETTO ID	F _{xx}	SETTO ID	F _{xx}	F _{xx MAX}	F _{xx,calc}
	[m]	[m]	[m ²]	[kN]		[kN]	[kN]		[kN]		[kN]	[kN]	[kN]
1	1.19	0.20	0.238	318.3	20	332.9	332.9	1	362.1	20	377.4	377.4	377.4
2	0.66	0.20	0.132	239.1	19	251.9	251.9	2	249.7	19	260.3	260.3	260.3
3	0.55	0.20	0.11	204.9	18	217.6	217.6	3	214.0	18	225.0	225.0	225.0
4	0.66	0.20	0.132	252.2	17	270.2	270.2	4	262.7	17	278.9	278.9	278.9
5	0.69	0.20	0.138	192.5	16	219.3	219.3	5	219.7	16	252.1	252.1	252.1
6	3.13	0.20	0.626	780.2	27	901.0	901.0	6	845.1	27	987.2	987.2	987.2
7	4.54	0.20	0.908	1065.6	26	1062.4	1065.6	7	1049.3	26	1052.0	1052.0	1065.6
8	1.51	0.20	0.302	366.4	25	356.5	366.4	8	400.8	25	393.7	400.8	400.8
9	2.30	0.20	0.46	640.3	24	632.9	640.3	9	679.9	24	675.9	679.9	679.9
10	1.42	0.20	0.284	372.4	23	350.2	372.4	10	364.3	23	344.7	364.3	372.4
11	3.36	0.20	0.672	836.0	22	805.7	836.0	11	764.0	22	740.3	764.0	836.0
12	4.00	0.20	0.8	983.1	21	971.2	983.1	12	984.1	21	971.7	984.1	984.1
13	1.70	0.20	0.34	409.3			409.3	13	472.6			472.6	472.6
14	2.19	0.20	0.438	525.4			525.4	14	539.5			539.5	539.5
15	2.75	0.20	0.55	563.2			563.2	15	659.1			659.1	659.1

Tabella 41. Sforzo assiale alla base dei setti al terzo piano in condizioni sismiche.

Tabella 42. Momento	flettenti alla	base dei	setti al	terzo	piano	in condizio	ni sismiche.
COLLECTA 710		ICIONIAN.	ACAITO C			A A I O	

			SOL	LECITAZIO	NI PER DIIVI	ENSIONAL	VIENTO SET	11 3 -7 PI/	ANU				
					My: MO	MENTO FL	ETTENTE						
	SE	тті			CBAII S	isma_X				CBAII S	isma_Y		
SETTO ID	L ₁	L ₂	AREA	M _{yy}	SETTO ID	M _{yy}	M _{yy,max}	SETTO ID	M _{yy}	SETTO ID	Myy	M _{yy,max}	M _{yy,calc}
	[m]	[m]	[m ²]	[kNm]		[kNm]	[kN]		[kNm]		[kNm]	[kNm]	[kNm]
1	1.19	0.20	0.238	141.6	20	131.1	141.6	1	106.0	20	97.6	106	141.6
2	0.66	0.20	0.132	73.8	19	68.3	73.8	2	48.6	19	44.4	48.6	73.8
3	0.55	0.20	0.11	11.5	18	10.4	11.5	3	9.8	18	9.0	9.8	11.5
4	0.66	0.20	0.132	56.1	17	53.6	56.1	4	35.9	17	34.4	35.9	56.1
5	0.69	0.20	0.138	69.9	16	64.5	69.9	5	53.9	16	51.8	53.9	69.9
6	3.13	0.20	0.626	168.3	27	108.2	168.3	6	251.3	27	196.9	251.3	251.3
7	4.54	0.20	0.908	251.0	26	224.1	251.0	7	530.6	26	513.1	530.6	530.6
8	1.51	0.20	0.302	169.2	25	175.4	175.4	8	113.3	25	120.8	120.8	175.4
9	2.30	0.20	0.46	162.4	24	152.4	162.4	9	73.9	24	67.2	73.9	162.4
10	1.42	0.20	0.284	121.8	23	121.7	121.8	10	109.0	23	109.2	109.2	121.8
11	3.36	0.20	0.672	266.8	22	290.4	290.4	11	344.7	22	371.9	371.9	371.9
12	4.00	0.20	0.8	402.3	21	443.7	443.7	12	429.2	21	476.9	476.9	476.9
13	1.70	0.20	0.34	182.1			182.1	13	103.6			103.6	182.1
14	2.19	0.20	0.438	147.1			147.1	14	121.5			121.5	147.1
15	2.75	0.20	0.55	410.7			410.7	15	150.8			150.8	410.7

SOLLECITAZIONI PER DIMENSIONAMENTO SETTI 3°-7° PIANO													
						Fz: TAGLIC)						
	SE	TTI			CBAII Si	sma_X				CBAII S	isma_Y		
SETTO ID	L_1	L ₂	AREA	F _{zz}	SETTO ID	Fzz	F _{zz MAX}	SETTO ID	F _{zz}	SETTO ID	F _{zz}	F _{zz MAX}	F _{zz,calc}
	[m]	[m]	[m ²]	[kN]		[kN]	[kN]		[kN]		[kN]	[kN]	[kN]
1	1.19	0.20	0.238	106.3	20	91.7	106.3	1	88.2	20	76.6	88.2	106.3
2	0.66	0.20	0.132	47.8	19	43.1	47.8	2	35.5	19	31.9	35.5	47.8
3	0.55	0.20	0.11	18.0	18	21.6	21.6	3	13.9	18	17.9	17.9	21.6
4	0.66	0.20	0.132	34.8	17	33.4	34.8	4	23.7	17	22.9	23.7	34.8
5	0.69	0.20	0.138	53.1	16	71.8	71.8	5	36.3	16	50.4	50.4	71.8
6	3.13	0.20	0.626	79.6	27	76.9	79.6	6	113.8	27	100.6	113.8	113.8
7	4.54	0.20	0.908	160.0	26	135.1	160.0	7	188.0	26	198.8	198.8	198.8
8	1.51	0.20	0.302	105.3	25	108.7	108.7	8	70.5	25	75.2	75.2	108.7
9	2.30	0.20	0.46	99.1	24	94.8	99.1	9	46.3	24	42.5	46.3	99.1
10	1.42	0.20	0.284	95.3	23	95.8	95.8	10	92.0	23	92.3	92.3	95.8
11	3.36	0.20	0.672	124.7	22	129.5	129.5	11	159.7	22	166.0	166.0	166.0
12	4.00	0.20	0.8	210.2	21	189.2	210.2	12	208.0	21	190.8	208.0	210.2
13	1.70	0.20	0.34	110.4			110.4	13	68.4			68.4	110.4
14	2.19	0.20	0.438	91.1			91.1	14	71.2			71.2	91.1
15	2.75	0.20	0.55	238.1			238.1	15	87.8			87.8	238.1

Tabella 43. Sforzo tagliante alla base dei setti al terzo piano in condizioni sismiche.

5.4.2. Verifica a pressoflessione

Utilizzando il medesimo ragionamento, fatto per il dimensionamento dei setti dei primi due piani, si è deciso di inserire le seguenti armature:

SETTO ID 1-20:	$2\ \varphi 14\ /\ 30\ cm\ e\ \varphi 8\ /\ 25\ cm$
SETTO ID 2-19:	2 \phi14 / 18 cm e \phi8 / 20 cm
SETTO ID 3-18:	2 \phi14 / 15 cm e \phi8 / 15 cm
SETTO ID 4-17:	2 \phi14 / 18 cm e \phi8 / 20 cm
SETTO ID 5-16:	2 \phi14 / 19 cm e \phi8 / 21 cm
SETTO ID 6-27:	2 \phi14 / 27 cm e \phi8 / 25 cm
SETTO ID 7-26:	2 \phi14 / 22 cm e \phi8 / 25 cm
SETTO ID 8-25:	2 \phi14 / 20 cm e \phi8 / 25 cm
SETTO ID 9-24:	2 \phi14 / 22 cm e \phi8 / 25 cm
SETTO ID 10-23:	2 \phi14 / 27 cm e \phi8 / 26 cm
SETTO ID 11-22:	2 \phi14 / 26 cm e \phi8 / 25 cm
SETTO ID 12-21:	2 \phi14 / 20 cm e \phi8 / 25 cm
SETTO ID 13:	2 \phi14 / 20 cm e \phi8 / 20 cm
SETTO ID 14:	2 \phi14 / 25 cm e \phi8 / 20 cm
SETTO ID 15:	2 \phi14 / 22 cm e \phi8 / 20 cm

Per tutti i setti le verifiche a pressoflessione retta risultano soddisfatte, poiché le combinazioni di carico di interesse ricadono all'interno dei domini N-M.

🔼 Dominio M-N File

– 🗆 X 🔼 Dominio M-N File
 N
 N
 [N]
 M
 [kNm]

 1
 1065.6
 251.0
 2
 1062.4
 224.1

 3
 1049.3
 530.6
 4
 1052.0
 513.1
 SETTO ID 7: 3º-4º-5-6º PIANO Aggiunge [WNM] -

🔼 Dominio M-N File

- - ×

🔼 Dominio M-N File

🔼 Dominio M-N

- 🗆 🗙

- 🗆 X

🔼 Dominio M-N

92

5.4.3. Verifica a taglio

È stata eseguita la verifica a taglio dei setti nel rispetto di quanto citato a § 4.1.2.3.5. Per tutti gli elementi strutturali sono state considerate staffe di diametro $\phi = 8 mm$ con passo di 20 cm. Tutte le verifiche a taglio risultano soddisfatte (Tabella 44).

		-		·	VE	RIFICA A T	AGLIO (CO	N ARMATL	JRE TRASV	ERSALI RESI	STENTI A TAGL	10)	2				
	§4.1.2.3.5.2.																
SETTO ID	d	ϕ_{staffe}	nbracci	A _{sw}	s	α	ctgα	senα	θ	ctgθ	σср	αc	V _{Rsd}	V _{Rcd}	V _{Rd}	V _{Ed}	V _{Rd} >V _{Ed}
	[mm]	[mm]	[-]	[mm ² /m]	[cm]	[°]	[-]	[-]	[°]	[-]	[N/mm ²]	[-]	[kN]	[kN]	[kN]	[kN]	[-]
1	1135	8	2	100.531	20	90	0	1	21.8	2.500178	1.59	1.09	5023.36	668.80	668.80	106.30	VERIF
2	605				20	[rad]			[rad]		1.97	1.11	2677.65	363.75	363.75	47.80	VERIF
3	495				20	1.57			0.38		2.05	1.12	2190.80	298.74	298.74	21.60	VERIF
4	605				20						2.11	1.12	2677.65	366.40	366.40	34.80	VERIF
5	635				20						1.83	1.10	2810.42	378.93	378.93	71.80	VERIF
6	3075				20						1.58	1.09	13609.53	1811.12	1811.12	113.80	VERIF
7	4485				20						1.17	1.07	19850.00	2585.44	2585.44	198.80	VERIF
8	1455				20						1.33	1.08	6439.63	845.69	845.69	108.70	VERIF
9	2245				20		$0.25 f_{cd}$	$0.5 f_{cd}$	f _{cd}		1.48	1.08	9936.06	1315.37	1315.37	99.10	VERIF
10	1365				20		[N/mm ²]	[N/mm ²]	[N/mm ²]		1.31	1.08	6041.30	792.71	792.71	95.80	VERIF
11	3305				20		4.35	8.70	17.4		1.24	1.07	14627.48	1912.44	1912.44	166.00	VERIF
12	3945				20						1.23	1.07	17460.03	2281.07	2281.07	210.20	VERIF
13	1645				20						1.39	1.08	7280.55	959.33	959.33	110.40	VERIF
14	2135				20						1.23	1.07	9449.22	1234.60	1234.60	91.10	VERIF
15	2695				20						1.20	1.07	11927.70	1555.64	1555.64	238.10	VERIF

Tabella 44. Verifica a taglio con armatura trasversale resistente a taglio.

6. ANALISI PUSHOVER

Ora che tutti gli elementi strutturali sono stati dimensionati, dai risultati ottenuti dall'analisi dinamica lineare, si procede con l'esecuzione di un'analisi statica non lineare sulla struttura.

I metodi di analisi elastici (statici e dinamici) non sono in grado di cogliere il cambiamento nella risposta della struttura che si verifica man mano che i singoli elementi strutturali si comportano in modo duttile; inoltre non si ha nessuna informazione sulla distribuzione della domanda di anelasticità nella struttura. Tali informazioni si ottengono mediante analisi di tipo non lineare, modellando in modo esplicito il comportamento inelastico.

Nell'analisi Pushover (§ 7.3.4.2. NTC18 [1]) si applicano incrementalmente ad un modello della struttura soggetto ai carichi gravitazionali e con comportamento non lineare del materiale, particolari distribuzioni di forze statiche orizzontali, le quali hanno il compito di "spingere" in campo non lineare la struttura fino a portarla al collasso. Tali forze sono scalate in modo da far crescere monotonamente, sia in direzione positiva che negativa e fino al raggiungimento delle condizioni di collasso locale o globale, lo spostamento orizzontale d_c di un punto di controllo coincidente con il centro di massa dell'ultimo livello della costruzione. Il risultato finale dell'analisi è la curva taglio alla base (somma di tutte le forze orizzontali) – spostamento (di un punto ritenuto significativo del comportamento globale). La curva ottenuta andrà successivamente bilinearizzata in modo da valutare:

- i rapporti di sovraresistenza $\frac{\alpha_u}{\alpha_1}$;
- l'effettiva distribuzione della domanda inelastica negli edifici progettati con il fattore di comportamento *q* e individuare delle zone critiche dove è richiesta maggiore duttilità;
- una realistica richiesta di resistenza per gli elementi fragili e di una realistica richiesta di deformazione su elementi che devono avere comportamento duttile.

La Pushover classica si basa sull'ipotesi che sia possibile confrontare la risposta sismica della struttura reale (MDOF: Multi-Degree-of-Freedom) con quella di un oscillatore semplice ad un grado di libertà (SMOF: Single-Degree-of-Freedom). In generale si devono applicare ai baricentri delle masse di ciascun piano almeno due distribuzioni di forze orizzontali:

- una proporzionale alle masse;

- una proporzionale al prodotto delle masse per la deformata del primo modo.

La distribuzione delle forze laterali dovrebbe approssimare la distribuzione delle forze d'inerzia presenti durante il sisma. Le distribuzioni di forze proporzionali al primo modo colgono meglio la risposta dinamica finché la struttura rimane in campo elastico, mentre quando si raggiungono grandi deformazioni la risposta può essere meglio rappresentata da distribuzioni di forze proporzionali alle masse.

6.1. Modellazione a plasticità concentrata o diffusa

Avendo progettato l'edificio secondo il principio di gerarchia delle resistenze, i meccanismi di rottura duttili si manifestano prima di quelli fragili; di conseguenza in un elemento strutturale la rottura per flessione avviene prima di quella per taglio. Così facendo la struttura sarà dotata di una maggiore duttilità e di una notevole capacità di dissipare l'energia trasmessa da un evento sismico, dal momento che la rottura di tipo duttile interessa interi elementi strutturali, mentre quella fragile coinvolge una singola sezione con un accumulo ingente di deformazione.

L'analisi Pushover si basa prevalentemente sulla modellazione delle cerniere plastiche flessionali negli elementi strutturali. La modellazione delle cerniere plastiche può avvenire con due metodologie differenti [5]:

- Modellazione a plasticità concentrata: il funzionamento non lineare della cerniera è rappresentato da una molla non lineare, concentrata in un punto ben definito del modello di calcolo, con funzionamento descritto dal diagramma Momento-Rotazione.
- Modellazione a plasticità diffusa: le sezioni degli elementi sono discretizzate mediante una suddivisione in fibre e quindi la non linearità di comportamento risiede nella definizione dei legami costitutivi dei materiali componenti.

Il modello a plasticità concentrata è, da un punto di vista computazionale, più rapido rispetto a quello a fibre ma, rappresenta alcune criticità:

- la prima sta nella definizione del diagramma Momento-Rotazione caratteristico della cerniera; spesso tale diagramma deriva da una legge Momento-Curvatura per la quale esistono in letteratura diverse funzioni per condizioni usuali, ma che in realtà possono modificarsi significativamente al variare delle geometrie, delle percentuali di armatura e delle tipologie di materiale;
- la seconda riguarda ancora le curve Momento-Rotazione che cambierebbero al variare dello stato di sollecitazione e in particolare in presenza di sforzo;
- la terza riguarda il posizionamento delle cerniere che normalmente sono inserite in corrispondenza delle estremità delle aste convergenti alle intersezioni travi-pilastri travi-setti, quando può frequentemente presentarsi il caso in cui la composizione degli effetti, conseguenti ai carichi gravitazionali ed orizzontali, generi i punti di massima sollecitazione flessionale in campata, dove il modello non prevede possibile formazione di cerniera plastica.

Di fronte a queste criticità il modello a fibre sembra essere il più attendibile; ciò nonostante anche quest'ultimo presenta alcune problematiche: la prima riguarda la possibile presenza di limitazioni alla geometria delle sezioni e alla corrispondente disposizione di armatura che potrebbero non essere generiche, costringendo quindi il progettista a utilizzare sezioni differenti da quelle reali e a svolgere opportune valutazioni di equivalenza; la seconda riguarda il maggiore onere computazionale, decisamente superiore al caso della plasticità concentrata, con conseguenti difficoltà a svolgere ed

eventualmente ripetere molteplici analisi su modelli anche non troppo complessi. Ulteriore problema del modello a fibre è costituito dalla possibile nascita di ingenti sforzi normali negli elementi beam: la parzializzazione della sezione può generare un allungamento della fibra baricentrica che, se impedito, ad esempio da un piano rigido, determina la conseguente inevitabile nascita di sforzo normale per assicurare la congruenza degli spostamenti.

Nel capitolo successivo si spiegheranno nel dettaglio le motivazioni che hanno portato a scegliere una modellazione a plasticità concentrata rispetto ad una modellazione a fibre.

6.2. Caso studio di una mensola incastrata al piede

Sono state testate entrambe le modellazioni in un caso semplice di setto incastrato al piede, soggetto ad un carico assiale e ad una forza orizzontale in direzione X (Figura 122).

Figura 122. Setto oggetto di studio per analisi Pushover.

Il setto, realizzato con una classe di calcestruzzo C30/35, ha una lunghezza di 1,19 m, spessore 0,20 metri e altezza 5 metri. È soggetto ad uno sforzo normale di 850 kN, applicato attraverso due forze concentrate in corrispondenza dei due nodi in sommità dell'elemento Wall per uno sforzo normale adimensionalizzato pari a $v = \frac{N_{Ed}}{A_{setto} \cdot f_{cd}} = \frac{850000}{(1190 \cdot 200) \cdot 17,4} = 0,20.$

Nel setto sono state disposte come armature verticali $2 \phi 14 / 14 \text{ cm} e \phi 8 / 20 \text{ cm}$, mentre come staffatura orizzontale $\phi 8 / 20 \text{ cm}$ (Figura 123).

Figura 123. Disposizione armature nel setto.

Avendo ipotizzato un copriferro nominale di 4 cm, la distanza dalla superficie esterna del setto al centro delle armature verticali sarà pari a: $c = c_{nom} + \phi_{staffe} + \frac{\phi_{long}}{2} = 40 + 8 + \frac{14}{2} = 55 mm.$

Il setto è soggetto anche ad una forza orizzontale di 100 kN in direzione X. La Pushover, infatti, sarà studiata lungo la direzione X e sarà in controllo di spostamento in cui si impone uno spostamento e si va a misurare la forza necessaria per ottenerlo (Figura 128).

Il punto di controllo è il nodo di sinistra in sommità del setto, nodo in cui è applicata anche la forza orizzontale (Figura 124). Il massimo spostamento imposto è di 0,2 metri.

La distribuzione di carico che si deve considerare deriva da un caso di carico statico X in cui è stata inserita la forza orizzontale di 100 kN.

ame: X		Description		
General Control				
Increment Ste	ps (nstep) :	50		
Consider P	-Delta Effect			
Initial Load				
Use Initial	Load Non	inear Analysis f	or Initial Load	
Cumula	tive Reaction / !	Story Shear by I	initial Load	
Increment Meth	d			
O Load Cor	trol	Displa	cement Contro	k
Control Option				
Global				
Max. Tran	slational Displace	ement :	0	m
Master Node				
Node :	147	Direction :	DX	/
Max. Displ	acement :		0.2	m
Analysis Stoppin	g Condition			
I imit Inter-S	tory Deformatio	n Angle :	1/ 10	frad
	Delft of All Mark	and Florence	-/	[i au]
Doft at t	a Center of Elo	or Disphrage (S	tory Center)	
	lated by Avera	or Displacement	of Story	
and Dathans		J- - - - - - - - - -	,	
.oad Pattern	-			
Load Pattern	Static Load C	ases	~	
Load Case	x	~ s	cale Factor :	1
Load		Scale		Add
x		1		Modify
				Delete

Figura 124. Impostazione analisi Pushover in Midas (1).

Per ultimo, l'analisi Pushover incrementerà i carichi sul setto partendo da una condizione iniziare in cui sono applicati i carichi verticali gravitazionali in combinazione sismica. Nel caso in esame, gli unici carichi verticali da applicare sono il peso proprio del setto e lo sforzo normale applicato in esso inseriti nel caso di carico statico PP. Poiché si tratta di un peso proprio strutturale G_1 il fattore di amplificazione sarà pari all'unità (Figura 125).

None		e Displacem	ents		Nonlinear Analysis Option	Failure	
ial Load	01				Max. Number of Subste	ps :	10
Perform Nonlin	near Static Analys	is for Initial	Maximum Iteration		10		
Import Static	Analysis / Constru	uction Stage	Analysis Pesu	lte	Convergence Criteria		
When the bo	undary conditions	are differe	nt between	1105	Displacement Norm		0.001
initial load an	nd pushover load				Force Norm		0.001
When the ele used as an ir	ement forces in the nitial load	e last constr	uction stage a	are	Energy Norm		0.001
ad Case X		~	Scale Fac	tor 1	Analysis Stop		
				Add	Shear Component Yie	ld	
tatic Load Cas	e	Scale		Adu	Beam/Column	Wall	
,		1		Modify	Axial Component Colla	apse/Buckling	
				Delete	Beam/Column	Wall	Truss
				Derete			
				belete	Support Uplifting/Colli	apse : Dz-Dire	ection
Consider 'Ian	ore Elements for N	Analysis	Initial Load'	Decte	Support Uplifting/Colla	apse : Dz-Dire Collaps	e ction
Consider 'Igno	ore Elements for N	NL. Analysis	Initial Load'	Delete	Support Uplifting/Colla	apse : Dz-Dire	e ction
Consider 'Ign hover Hinge D	ore Elements for № Data Option	NL. Analysis	Initial Load'	Delete	Support Uplifting/Colle	apse : Dz-Dire	ection e
Consider 'Ign hover Hinge D	ore Elements for N Data Option Fiber Mode	NL. Analysis el Option	Initial Load'		Support Uplifting/Colls Uplifting Point Spring Support & Elastic	apse : Dz-Dire Collaps : Link : Nonline	e e ear Type
Consider 'Ign hover Hinge D Assign Hinge only for Mor efault Stiffnes Trilinear / Slip	ore Elements for N Data Option Fiber Mode Properties to Me nent-Rotation Bea ss Reduction Ratico Trilinear Type	NL. Analysis el Option mber m/Column o of Skeletor	Initial Load'		Support Uplifting/Colle Uplifting Point Spring Support & Elastic	apse : Dz-Dire	e e ear Type
Consider 'Ign hover Hinge D Assign Hinge only for Mor efault Stiffnes Trilinear / Slip Symmetri	ore Elements for N Data Option Fiber Mode Properties to Me nent-Rotation Bea ss Reduction Ratic Trilinear Type ic	NL. Analysis el Option mber m/Column o of Skeletor (+)	Initial Load'	Refe	Support Uplifting/Colla Uplifting Point Spring Support & Elastic	apse : Dz-Dire Collaps : Link : Nonline	ection e ear Type
Consider 'Igne hover Hinge D Assign Hinge only for Mor efault Stiffnes Trilinear / Slip	ore Elements for N Data Option Fiber Mode Properties to Me nent-Rotation Bea ss Reduction Ratic Trilinear Type ic Alpha 1	L. Analysis el Option mber m/Column o of Skeletor (+) 0.1	Initial Load'	Refe	Point Spring Support & Elastic	apse : Dz-Dire Collaps : Link : Nonline	ection e ear Type
Consider 'Igne hover Hinge D Assign Hinge only for Mor efault Stiffnes Trilinear / Slip Symmetri	ore Elements for N Piber Mode Properties to Me nent-Rotation Bea ss Reduction Ratio Trilinear Type ic Alpha1 Alpha2	NL. Analysis el Option mber m/Column o of Skeletor (+) 0.1 0.05	Initial Load'		Point Spring Support & Elastic	apse : Dz-Dire Collaps : Link : Nonlin buted Hinges : 8: 2004)	ection e ear Type
Consider 'Igni hover Hinge D Assign Hinge only for Mor efault Stiffnes Trilinear / Slip Symmetri Bilinear / Slip I	ore Elements for N Fiber Mode Properties to Me nent-Rotation Bea ss Reduction Ratio Trilinear Type ic Alpha 1 Alpha 2 Bilinear Type	el Option mber m/Column o of Skeletor (+) 0.1 0.05	Initial Load'	Refi	Point Spring Support & Elastic Point Spring Support & Elastic rence Location only for Distrib I-end	apse : Dz-Diro Collaps : Link : Nonlini buted Hinges : 8: 2004)	ection e ear Type
Consider 'Ign hover Hinge D Assign Hinge only for Mor efault Stiffnes Trilinear / Slip Symmetri Bilinear / Slip I	ore Elements for N Pata Option Fiber Mode Properties to Me enent-Rotation Bea ss Reduction Ratio Trilinear Type ic Alpha 1 Alpha 2 Billnear Type ic	el Option mber m/Column o of Skeletor (+) 0.1 0.05 (+)	Initial Load"	Refe Sca Sca	Point Spring Support & Elastic Point Spring Support & Elastic rence Location only for Distrib I-end ~ erence Design Code (Eurocode le Factor for Ultimate Rotation ondary Seismic Elements	apse : Dz-Diro Collaps : Link : Nonlin uuted Hinges : 8: 2004)	ection e ear Type

Figura 125. Impostazioni analisi Pushover in Midas (2).

6.2.1. Analisi Pushover con cerniera plastica concentrata

È stata eseguita un'analisi statica non lineare sul modello a mensola, inserendo una cerniera plastica concentrata in prossimità della base del setto (nodo i-esimo in riferimento all'asse X locale (Figura 126)).

Figura 126. Posizione degli assi locali del setto.

Essa sarà definita da un diagramma Momento-Rotazione e interesserà le componenti di sforzo normale F_x e momento flettente M_y del setto (Figura 127).

Figura 127. Caratteristiche cerniera plastica concentrata.

Le caratteristiche della curva Skeleton saranno calcolate automaticamente dal software poiché sono state inserite in precedenza le armature dell'elemento strutturale. La luce di taglio L_v , ovvero la distanza tra il punto di momento massimo e quello di momento nullo, sarà pari all'altezza del setto.

La curva di Pushover che si ottiene è la seguente (Figura 128):

Figura 128. Curva di Pushover Taglio alla base-spostamento mensola con cerniera concentrata.

Ad eccezione del punto di picco dato da un problema di mancata convergenza della soluzione, la curva di capacità risulta attendibile perché, avendo un'unica cerniera plastica, rispecchia l'andamento del legame forza-deformazione (Figura 127).

Post analisi è possibile controllare i parametri che Midas si è calcolato automaticamente nella definizione di cerniera plastica (Figura 129).

• Auto Calculation User Input • Auto Calculation User Input Properties • Auto • Cass of cross section • Properties					d	- Input Metho				8	out Metho
Properties Properties Properties Properties Class of cross section Class of cross section Properties Properties Class of cross section Properties Properties Auto Class of cross section Properties Properties Class of cross section Properties Properties Class of cross section Properties Prope			ut	O User Inp	Calculation	Auto-		ut	O User Inp	alculation	Auto-
Type Class of cross section Auto Class of cross se						Properties					operties
Symmetric Auto Class1 Class2 Class3 User Defined F/FY D/DY F/FY F/FY D/DY F/FY D/DY F/FY F/FY<		ss section	Class of cross section			Type		Class of cross section			Type
User Defined Primary Curve	Class3	⊙ Class1 ◯ Class2	O Auto O Class1	Asymmetric	tric 💿	⊖ Symme	O Class2 O Class3	O Auto O Class 1	Asymmetric	ric 🕘	Symme
User Defined Image Limitation (DL) Image Limitation (DL)		ve	Primary Curve					Primary Curve			_
F/FY D/DY € 0.2 8 0 0.2 1.01 6 1 1.01 6 1 1.01 6 1 1.01 6 1 1.01 6 1.01 0.02.77986 8 1 1 C 1.001 6 0.2 6 0.2 6 0.2 6 0.2 6 0.2 6 0.2 6 0.2 6 0.2 6 0.2 6 0.2 7.79866 0.2 2.779866 0.2 2.779866 0.2 2.779866 0.2 2.779866 0.2 2.779866 0.2 2.779866 0.2 2.779866 0.2 2.779866 0.2 2.779866 0.2 2.779866 <t< td=""><td></td><td></td><td>1.00</td><td></td><td>Defined</td><td>User</td><th></th><td>1.00</td><td></td><td>lefined</td><td>User</td></t<>			1.00		Defined	User		1.00		lefined	User
€ 0.2 8 0 0.2 -1.01 -C -1.01 -8 -1 -1.01 -8 1 1 -0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 6 0 0.2 7798665 0 0.2 2.7798665 0 0.2 2.7798665 0 0.2 2.7798665 0 0.2 2.7798665 0 0.2 2.7798665 0 0.2 2.7798665 0 0.2 2.7798665 0 <		1	0.75	D/DY	M/MY		T .	0.75	D/DY	F/FY	
0 0.2 -1.01 C -1 -1.01 8 -1 -1.01 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -1.1 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -0 -2.779866 -2.779866 -1 -2.779866 -2.779866 -1.00 -2.779866 -2.779866 -1.00 -2.779866 -2.779866 -1.00 -2.779866 -2.779866 -2.00 -2.00 -2.00 -2.00 -1.00 -2.77986			0.50	-12	-0.2	-		0.50	-8	-0.2	÷
C -1 -1.01 -0.01 -2.779866 B 1 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 B 1 -0.00 -			0.25	-2.779866	-0.2	-0		0.25	-1.01	-0.2	-0
8 -1 -1 A 0 0 B 1 1 C 1001 6 D 0.2 6.00 E 0.2 8 Complance Criteria (+) Complance Criteria (+) Complance Criteria (+) Significant Damage (SD) 4 Med Displacement (Dr) Initial Stiffness Inter Collapse (NC) 6 Inter Collapse (NC) 6 Inter Collapse (NC) 6 Inter Collapse (NC) 1 Total Stiffness 0 Inter Collapse (NC) 6 Inter Collapse (NC) 1	\rightarrow		0.00	-2.779866	-1.001	~	\rightarrow	0.00	-1.01	-1	-C
A 0 0 B 1 1 C 1.001 6 D 0.2 6 E 0.2 6 C 1.001 2.7798655 D 0.2 6 Compliance Criteria (+) Compliance Criteria (+) Compliance Criteria (+) Damage Limitation (DL) 1.25 mpr 1 Sprificant Damage (SD) 4 mpr 1 Net/ Displacement (Dr) Near Collapse (NC) Net/ Displacement (Dr) Initial Saffnees			-0.25	-1	-1	-8		- 0.25	-1	-1	-8
B 1 1 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.75 <td></td> <td></td> <td>-0.50</td> <td>0</td> <td>0</td> <td>A</td> <th></th> <td>-0.50</td> <td>0</td> <td>0</td> <td>A</td>			-0.50	0	0	A		-0.50	0	0	A
C 1.001 6 1.001 6 1.001 2.7798655 1.001 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 2.7798655 0.2 1.22 0.2 1.23 0.2 1.7798655 0.2 1.22 0.2 1.23 0.23 2.20 0.03 2.00 0.02 2.00 0.02 2.00			-0.75	1	1	8		0.75	1	1	8
D 0.2 6 9 Compliance Criteria 0 0.2 2.77938655 Compliance Criteria Ted Strength (Pr) Damage Limitation (DL) 1.25 mpr 1 mpr 1 0 0.2 12 Compliance Criteria (+) (-) Significant Damage (SD) 4 mpr 1 mpr m (+) (-) Damage Limitation (DL) 1.75 mpl 0.75 mpl	600 900 1200	00 -600 -300 000 300 60	100	2.7798665	1.001	c	00 000 200 400 600 800	-100	6	1.001	C
E 0.2 8 Compliance Criteria field Strength (Fr) (+) (-			1	2.7798665	0.2	D		1	6	0.2	D
Intel Strength (FY) (+) (-) (+) (-) (+) (-) (+) (-) 1.25 "DY 1 "DY m (+) (+) (-) 1 "DY 1 540 7643.9999 (A) Significant Damage (SD) 4 "DY 1 "DY m (+) (+) 1 "DY 1 1 Significant Damage (SD) 4 "DY 1 "DY m (+) (+) 1 "DY 1 Near Collapse (NC) 6 "DY 1 "DY m Yield Rotation (DI) Near Collapse (NC) 0.75 "DU 0.7.7 Image Limitation (DY) 1 "DY m Yield Rotation (DI) Near Collapse (NC) 1 "DU 1		Criteria	Compliance Criteria	12	0.2	E		Compliance Criteria	8	0.2	E
(+) (-) Damage Limitation (DL) 1.25 'PO' 1 "D' m (+) (-) Damage Limitation (DL) 1.25 'PO' 1 "D' m 540 7643.9999 kN Significant Damage (SD) 4 "D' 1 "D' m (+) (-) Significant Damage (SD) 0.75 'POU 0.7 Near Collapse (NC) 6 "D' 1 "D' m Yield Rotation (D') Near Collapse (NC) 0.75 'POU 0.7 Liter Defined Initial Stiffness User Defined Initial Stiffness Initial Stiffness	(•)	(+)			oth (Mr)	Yield Stree	(+) (-)			oth (FY)	rield Strer
540 7643.9999 6V Significant Damage (SD) 4 ************************************	1 "DY (rac	station (DL)	Damage Limitation (DL)		()	(+)	1.25 "DY 1 "DY m	Damage Limitation (DL)		0	(+)
Near Collapse (NC) 6 **DY m Yield Rotation (DY) Near Collapse (NC) 1 **DU 1 Initial Saffwass Initial	0.75 "DU [rac	Damage (SD) 0.75 "DU	Significant Damage (SD)	339 k/v*m	39 299.09	299.093	4 "DY 1 "DY m	Significant Damage (SD)	999 kN	7643.9	540
The Department (J/) The Most of (J/)	1 "DU (rac	se (NC) 1 "DU	Near Collapse (NC)		tion (Data	Vield Date	6 "DY 1 "DY m	Near Collapse (NC)		comment (The	Viald Dired
		ess	Initial Stiffness		adoud	Line 1		Initial Stiffness	·	afred	Dileer I
		Offita Offita Offita		(a) (a)			0.2614	OFFIA OFFIA	(4) (A) OELA OSEI		
W 0.019223 0.004996 - Oliver (a) 0 0 0 0000 000000 00073822 6wd Oliver (a) 40515.399 (a) 40515.399	309	(a) 40515.309 (a) 40515.7	(a) Liter (a) 40515.3	073822 50	73822 0.0	DV 0.0	() 0 100		048906	*/ 09223 0.0	~ 0.0
	111 11	College Colleg	Officers Collinson	205216 60	0.5216 0.0	01 0.0		O There are the			
Dasse Sermess : DAL Do Douborno [Pag] Desne Sermess :		verinese :	Coasic Striness :	[rad]	0.0	0.0	л.	Bastic Stiffness : EA/L			

Figura 129. Caratteristiche della cerniera plastica concentrata del setto.

Come da previsioni la massima forza a compressione e a trazione risulta pari a:

$$F_{y}^{-} = f_{ck} \cdot A_{cls} + (f_{yk} - f_{ck}) \cdot A_{acc}$$
$$F_{y}^{+} = f_{yk} \cdot A_{acc}$$

mentre per il calcolo della rotazione a snervamento e ultima, il software utilizza le formulazioni presenti nella Circolare Esplicativa relativa al capitolo 8, inerente alle costruzioni esistenti (C8.7.3.2 e C8.7.2.3.4) (Figura 130) [4]:

$$\theta_{y} = \phi_{y} \frac{L_{v}}{3} + 0,002 \left(1 - 0,125 \frac{L_{v}}{h}\right) + 0,13 \phi_{y} \frac{d_{b} f_{y}}{\sqrt{f_{c}}}$$
$$\theta_{u} = \frac{1}{\gamma_{el}} 0,016 \cdot (0,3^{v}) \left[\frac{\max(0,01;\omega')}{\max(0,01;\omega)} f_{c}\right]^{0.225} \left(\frac{L_{v}}{h}\right)^{0,35} 25^{\left(\alpha \rho_{u} \frac{f_{yv}}{f_{c}}\right)} (1,25^{100 \rho_{d}})$$

Figura 130. Rotazione a snervamento e ultima per pareti.

Le rotazioni numeriche risultano essere uguali a quelle analitiche (Figura 131).

		CALC	OLO ROTA	ZIONE A SN	IERVAMEN	ІТО Өу											
φ _y	Lv	H _{setto}	db	f _{yk,acciaio}	f _{ck,cls}	$\theta_{y,analitica}$	θ _{y,numerica}	differenza									
[rad]	[mm]	[mm]	[mm]	[Mpa]	[Mpa]	[rad]	[rad]	[rad]									
3.9E-06	5000	1190	8	450	30	0.0078	0.0074	0.0004									
							CALC	OLO ROTAZ	IONE ULTI	MA θu							
Y _{el}	N _{Ed}	B _{setto}	H _{setto}	f _{ck,cls}	v	ω	ω'	L _v	b,	h _o	Sh	α	Ρd	ρ _{sx}	$\theta_{u,analitica}$	$\theta_{u,numerica}$	differenza
[-]	[N]	[mm]	[mm]	[Mpa]	[-]	[-]	[-]	[mm]	[mm]	[mm]	[mm]	[-]	[-]	[-]	[rad]	[rad]	[rad]
1.5	850000	200	1190	30	0.119	0.0189	0.0189	5000	106	1096	200	0.126677	0	0.0025	0.0205	0.0205	0.0000

Figura 131. Confronto analitico e numerico della rotazione a snervamento e ultima.

6.2.2. Analisi Pushover con modellazione a fibre

È stata svolta anche una Pushover sul setto con modellazione a fibre. La geometria del setto, le forze in gioco e le impostazioni generali dell'analisi rimangono le medesime a quelle del setto con plasticità concentrata alla base.

In una modellazione a fibre è necessario definire, per prima cosa, le proprietà inelastiche del materiale. Nel caso in esame vanno inserite le proprietà dell'acciaio, del calcestruzzo non confinato e del calcestruzzo non confinato. Per il calcestruzzo B450C si è optato per un modello isteretico di tipo bilineare, mentre per il calcestruzzo il modello di Kent & Park (Figure 132-133 e 134).

Figura 132. Modello isteretico dell'acciaio B450C.

Figura 133. Modello isteretico del calcestruzzo non confinato.

Figura 134. Modello isteretico del calcestruzzo confinato.

Una volta definite le proprietà inelastiche del materiale è possibile definire le fibre della sezione e inserirci le armature presenti (Figura 135).

Figura 135. Modellazione a fibre.

Inelastic	Material Propert	ty	
Type 1	B450C	\sim	
Type 2	Cls conf	\sim	
Type 3	Cls non conf	\sim	

Nella creazione delle fibre si parte creando un Offset di dimensione pari al copriferro nominale di 4 centimetri a cui si attribuisce la proprietà inelastica del calcestruzzo non confinato.

Volendo creare fibre quadrate di 5 cm, la sezione è stata suddivisa lungo Z in 24 parti e lungo Y in 4 parti.

Successivamente si passa alla parte rettangolare interna all'Offset in cui si va ad assegnare la suddivisione in fibre e la proprietà inelastica del calcestruzzo confinato.

Per ultimo si inserisce ogni singola barra introducendo, per ognuna di esse, le coordinate Y e Z in relazione agli assi baricentrici e la proprietà inelastica dell'acciaio.

Ora che la sezione a fibre è stata creata si passa alla definizione delle proprietà della cerniera a plasticità diffusa (Figura 136).

lement Type			Material Type		Wall Type		
Ream/Colum	m (in Wall			ocaced)	Truit Type		
	General Lir	sk.	Steel / SPC	(filled)	Membrane		
 Point Spring 	Support		Masonry	○ Plate			
Definition				Hinge Ty	pe		
O Moment - R	otation <mark>(</mark> M-Theta)			Skola	top (CPR WALL)		
O Moment - C	urvature (M-Phi Lumpe	ed)		Skele	LOFI (CRB WALL)		
Conside	r Hinge Length	Integration Poi	nt	Fiber	(MCPM WALL)		
Moment - C	urvature (M-Phi Distrib	uted)					
Axial-Moment Ir	teraction Type		Fiber Section				
None	O P-M Interacti	ion	O Auto Generation User Defined				
O P-M-M in Sta	atus Determination		Thickness :	1:0.2	\sim		
			Fiber Name -	SETTO ID 1			
Axial-Shear Inte	eraction Type of RC						
None	O P-Q Interacti	on	Out-or-plane Nonlinearity of Piber Wall				
Component Pro	perties						
Component	No. of Section	Skele	ton Curve				
Fx Fx	3	Trilinear Type		\sim	Properties		
Fy	1	Trilinear Type		\sim	Properties		
Fz	1	Trilinear Type		\sim	Properties		
Mx	3	Trilinear Type		\sim	Properties		
🖂 Му	3	Trilinear Type		~	Properties		
Mz	3	Trilinear Type		\sim	Properties		
		-P		Manager Danage			

Figura 136. Caratteristiche cerniera a plasticità diffusa.

Il setto è stato modellato come un elemento Wall in calcestruzzo armato a comportamento membranale. Una modellazione a plasticità diffusa prevede l'utilizzo di una curva Momento-Curvatura (M-Phi Distributed) in cui non si considera l'interazione Sforzo Normale – Momento e che interesserà le componenti di sforzo normale F_x e momento flettente M_y del setto.

Le caratteristiche della curva Skeleton saranno calcolate automaticamente dal software, poiché sono state inserite in precedenza le armature e le fibre dell'elemento strutturale.

La curva di Pushover che si ottiene è la seguente (Figura 137):

Figura 137. Curva di Pushover Taglio alla base-spostamento mensola con modello a fibre.

La curva con il modello a fibre ha gli stessi valori di taglio alla base della modellazione a plasticità concentrata e presenta un andamento più realistico che più si avvicina all'andamento teorico di una mensola incastrata al piede, soggetta ad una forza orizzontale via via crescente in sommità (Figura 138).

Figura 138. Confronto curve di capacità con modellazione a plasticità concentrata e diffusa.

Post analisi è possibile controllare i parametri che Midas si è calcolato automaticamente nella definizione di cerniera plastica (Figure 139).

Figura 139. Caratteristiche della cerniera plastica modellazione a fibre.

I parametri calcolati risultano essere i medesimi del modello a mensola a plasticità concentrata. Ciò nonostante, la modellazione a fibre si riferisce alla normativa americana e il software Midas non riesce a convertire, post analisi, la curva di capacità MDOF in una curva SDOF e di calcolarne la duttilità. Per questo motivo si è preferito eseguire nell'edificio in esame un'analisi statica non lineare a plasticità concentrata che, oltre a fare riferimento all'Eurocodice e alle NTC18, consente di fare alcune considerazioni post analisi.

6.3. Analisi Pushover su modello globale

6.3.1. Inserimento armature negli elementi strutturali

Sulla base di quanto espresso nel paragrafo precedente si procede ad impostare l'analisi statica non lineare sul modello globale della struttura (Figura 140).

Figura 140. Modello globale della struttura.

Per prima cosa si inserisce l'armatura in tutti gli elementi strutturali. A titolo di esempio si riportano le disposizioni delle barre sulla trave orizzontale in spessore di solaio di sezione 75 x 33 cm (Figura 141), sul pilastro di dimensioni 35 x 40 cm (Figura 142) e sul setto con ID 1 (Figura 143 e Figura 144).

Figura 141. Disposizione barre in un elemento Beam.

Figura 142. Disposizioni barre in un elemento Column.

Nell'elemento Beam è possibile inserire armatura diversa per la parte iniziale (i-end), centrale (Center) e finale di esso (j-end). L'icona Top fa riferimento all'armatura superiore, mentre Bot a quella inferiore.

Nella parte iniziale e finale dell'elemento si è in prossimità dell'appoggio quindi si inseriranno superiormente $6\phi14$ e inferiormente $4\phi14$, mentre nella parte centrale di campata l'armatura sarà invertita. Come armatura trasversale (Stirrups) di inseriscono staffe $\phi8$ a due bracci con passo 50 mm nella parte i-end e j-end (perché si è in zona dissipativa), mentre nella parte centrale di campata il passo è di 200 mm.

Nell'elemento Column l'introduzione dell'armatura è più semplice rispetto ad un Beam perché non vi è la possibilità di differenziare l'armatura longitudinale lungo l'altezza del pilastro; è possibile fare una diversificazione solo nelle direzioni Y e Z che si riferiscono agli assi locali della sezione. Il pilastro 35 x 40 cm è armato con dieci barre totali aventi diametro ϕ 16 disposte in tre file e staffato nella parte iniziale e finale (i-j end) da ϕ 8 a due bracci in direzione Y e Z con passo 100 mm mentre nella parte centrale la staffatura mantiene le stesse caratteristiche di quella posta alle estremità ma con passo di 200 mm.

Figura 143. Disposizione barre in un elemento Wall (1).

Figura 144. Disposizioni barre in un elemento Wall (2).

Nell'inserimento delle armature nell'elemento Wall è possibile fare una diversificazione delle armature nei vari piani degli elementi dotati dello stesso ID. Nel caso dell'edificio in esame è stata fatta una distinzione tra l'armatura dei setti che vanno dal primo al secondo piano (in corrispondenza dell'altezza critica h_{cr}) e quelli dal terzo piano in poi. Nel caso del setto con ID 1 sono state inserite, per i primi due piani, nella zona terminale (indicante la zona confinata di 0,3 metri) 6 ϕ 14 con passo 110 mm, mentre nella zona non confinata ϕ 8 con passo 160 mm. Come armatura orizzontale si hanno staffe ϕ 8 con passo 100 mm.

Dal terzo piano in poi, invece, sono state inseriti $2\phi 14$ esterni con passo 300 mm e a seguire $\phi 8$ con passo 250 mm. Come armatura orizzontale si opta per staffe $\phi 8$ con passo 200 mm.

Una volta inserite tutte le armature negli elementi strutturali è possibile iniziare ad impostare le condizioni generali dell'analisi statica non lineare.

6.3.2. Impostazioni generali analisi Pushover

Come fatto per il caso della mensola incastrata alla base si vanno a definire le impostazioni generali che andranno a controllare l'analisi. La Pushover si avvierà partendo da una condizione iniziare in cui sono applicati i carichi verticali gravitazionali all'edificio in combinazione sismica. Nel caso in esame i carichi di interesse sono il peso proprio strutturale e non strutturale G_1 e G_2 con fattore di scala pari all'unità e il carico accidentale residenziale e delle scale con fattore di scale 0,3 (Figura 145).

ecometric Nor					
CONCUTANT	nlinearity Type			Nonlinear Analysis Option	
None	OLarg	e Displaceme	ents	Permit Convergence Failure	
nitial Load				Max. Number of Substeps :	10
Perform Nr	onlinear Static Analys	is for Initial I	oad	Maximum Iteration	10 ≑
	un and a date Analys			Convergence Criteria	
Import Static Analysis / Construction Stage Analysis Results When the boundary conditions are different between ititiel and end end end end end end end end end e				Displacement Norm	0.001
 When the element forces in the last construction stage are used as an initial load 				Energy Norm	0.001
oad Case	SY	~	Scale Eactor	Analysis Stop	
	24			Shear Component Yield	
Static Load (Case	Scale	A	dd Beam/Column Wall	
peso proprio	strutturale	1	Mo	dify Axial Component Collapse/Buckl	ina
p.p. non stru	utturale	1		Beam/Column Wall	Truss
Qscale		0.3	De	lete	11033
Qresidenzial	e	0.3		Support Uplifting/Collapse : Dz-I	Direction
Consider 'I	Ignore Elements for M	IL. Analysis	initial Load'	Conc	ibac
ushover Hind	e Data Option				
ushover Hing	e Data Option Fiber Mode	el Option		Point Spring Support & Elastic Link : Nor	linear Type
Assign Hing Assign Hin only for N Default Stiff	Pata Option Fiber Mode Inge Properties to Me Moment-Rotation Bea fness Reduction Ratio Slip Trilinear Type	el Option mber m/Column of Skeleton	Curve	Point Spring Support & Elastic Link : Nor	linear Type
Ushover Hing Assign Hin only for N Default Stiff Trilinear / Symm	Pata Option Fiber Mode Inge Properties to Me Moment-Rotation Bea finess Reduction Ratic Slip Trilinear Type Metric	el Option mber m/Column of Skeleton (+)	Curve	Point Spring Support & Elastic Link : Nor Reference Location only for Distributed Hing	ilinear Type
Ushover Hing Assign Hin only for N Default Stiff Trilinear / Symm	Pata Option Fiber Mode inge Properties to Me doment-Rotation Baai finess Reduction Ratio Slip Trilinear Type etric Alpha 1	el Option mber m/Column of Skeleton (+) 0.1	Curve (-)	Point Spring Support & Elastic Link : Nor Reference Location only for Distributed Hing I-end	ilinear Type
Ushover Hing Assign Hii only for N Default Stiff Trilinear /: Symm	e Data Option Fiber Mode Moment-Rotation Bea finess Reduction Ratic Silp Trilinear Type etric Alpha 1 Alpha 2	el Option mber m/Column of Skeleton (+) 0.1 0.05	Curve (-) 0.1 0.05	Point Spring Support & Elastic Link : Nor Reference Location only for Distributed Hing I-end	alinear Type
Ushover Hing Assign Hii only for N Default Stiff Trilinear / Symm Bilinear / S	ye Data Option Fiber Mode Moment-Rotation Bea Moment-Rotation Bea Moment-Rotation Ratic Silp Trilinear Type Jilp Bilinear Type	el Option mber m/Column of Skeleton (+) 0.1 0.05	Curve (·) 0.1 0.05	Point Spring Support & Elastic Link : Nor Reference Location only for Distributed Hing I-end Reference Design Code (Eurocode 8: 2004) Scale Factor for Ultimate Rotation	es
ushover Hing Assign Hin only for N Default Stiff Trilinear / S Symm Bilinear / S Symm	ye Data Option Fiber Modi Inge Properties to Me Voment-Rotation Bea hess Reduction Ratio Silp Trilinear Type letric Alpha 1 Alpha 2 silp Bilinear Type letric	el Option mber m/Column of Skeleton (+) 0.1 0.05 (+)	Curve (·) 0.1 0.05 (·)	Point Spring Support & Elastic Link : Nor Reference Location only for Distributed Hing I-end Reference Design Code (Eurocode 8: 2004) Scale Factor for Ultimate Rotation Secondary Seismic Elements	es
ushover Hing Assign Hii only for N Default Stiff Trilinear / : Symm Bilinear / S	ye Data Option Fiber Modi Inge Properties to Me Moment - Rotation Bea Inses Reduction Ratic Slip Trilinear Type letric Alpha1 Alpha1	el Option mber m/Column of Skeleton (+) 0.1 0.05 (+) 0.05	Curve (·) 0.1 0.05 (·) 0.05	Point Spring Support & Elastic Link : Nor Reference Location only for Distributed Hing I-end Reference Design Code (Eurocode 8: 2004) Scale Factor for Ultimate Rotation Secondary Seismic Elements Calc. Yield Surface of Beam considering Ba	es

Figura 145. Impostazioni analisi Pushover in Midas.

Successivamente si impostano i casi di carico per l'analisi non lineare che saranno quattro: il primo proporzionale al primo modo di vibrare in X, il secondo proporzionale al primo modo di vibrare in Y, il terzo e il quarto caso in X e Y proporzionali alle masse (Figure 146-147-148 e 149):

Made M		1	and a star		
me : Mode_X Description	ion :	Name	: Mode_Y	Description :	1
neral Control		Gene	ral Control		
crement Steps (nstep) : 150		In	crement Steps (nstep) :	150	
Consider P-Delta Effect			Consider P-Delta Effect		
11					
Zilco Initial Load Nonlinear Analys	sis for Initial Load	Initia	Load Non	inear Analysis for 1	Initial Load
Cumulative Reaction / Story Shear I	by Initial Load		Cumulative Reaction / S	tory Shear by Init	tial Load
	-,			,	
Load Control O Dis	splacement Control		Load Control	Displacent	ment Control
tral Ontion		Cont	rol Ontion		
lohal		06	obal		
May Translational Displacements	0	0.0	Max Translational Displace	ment -	0
Max. In ansiauonal Displacement.	0		nator Nede	andre -	0
Node Dista			Node : 0540	Disasting	
Node : 3548 Direction :	DX V		100e : 3548	Direction :	
Max. Displacement :	0.03 m		Max. Displacement :		0.02 m
lysis Stopping Condition		Anal	sis Stopping Condition		
Limit Inter-Story Deformation Angle	1/ 10 [rad]		imit Inter-Story Deformation	n Angle :	1/ 10 [rad]
Maximum Drift of All Vertical Elements				cal Elements	
Drift at the Centre of Floor Dia	m (Stary Center)		Drift at the Center of Elec	or Dianbrann (Ster	ry Center)
Unit at the Center of Floor Diaphragn	m (story Center)	L	Drift at the Center of Floo	n Diaphragm (Stor	(Center)
Unit calculated by Average Displacem	ment of Story		_ unit calculated by Average	ge Displacement of	story
d Pattern		Load	Pattern		
ad Pattern Mode Shape	\sim	Loa	Pattern Mode Shape		~
da 1	Scale Easter 1	Mar	2	Cent	e Factor 1
re 🔺 💌	Scale Pactor ?	Mot		SCar	
ad Scale	Add	La	ad s	Scale	Add
oder1 1		M	de:2	1	24.26.
Ne.1 1	Modify				Modity
	Delete				Delete
		× Add/Me	odify Pushover Load Case		
e : Uniform_X Description heral Control norement Steps (nstep) : 150 Concident D. Dubus Effect	ion : [X Add/M Name	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : [Conside D Data Effort	Description :	
ne : Uniform_X Descriptioneral Control Increment Steps (nstep) : 150 Consider P-Delta Effect	ion :	X Add/M Name	ndify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect	Description :	
e : Uniform_X Description neral Control increment Steps (nstep) : 150 Consider P-Delta Effect	ion :	X Add/Mi	dify Pushover Load Case Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Load	Description :	
e : Uniform_X Descriptioneral Control norement Steps (nstep) : 150 Consider P-Delta Effect ial Load Use Initial Load Nonlinear Analysis Community Reserver (from Control	ion :	X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Noni	Description :	[]
e : Uniform_X Descripti eral Control consider P-Delta Effect al Load Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear b	ion :	X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Nonl ☐ Cumulative Reaction / S	Description : 150 near Analysis for I itory Shear by Init	Initial Load
:: Uniform_X Description crail Control crail Control consider P-Delta Effect al Load Use Initial Load Nonlinear Analysi Comulative Reaction / Story Shear b ement Method	ion :	X Add/Mi	dify Pushover Load Case : Uniform_Y rail Control rement Steps (nstep) : Consider P-Delta Effect Use Initial Load Use Initial Load Noni Cumulative Reaction / S ment Method Dirard Control	Description : 150 near Analysis for 1 itory Shear by Init	Initial Load
:: Uniform_X Description real Control coment Steps (nstep) : 150 Consider P-Delta Effect al Load Use Initial Load Nonlinear Analysis Cumulative Reaction / Story Shear Le ement Method Class Control Disg	ion :	X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : (Consider P-Delta Effect Load Use Initial Load Nonli Cumulative Reaction / S ment Method)Load Control	Description : 150 near Analysis for 1 itory Shear by Init @ Displacen	Initial Load ial Load nent Control
: Uniform_X Descripti ral Control coment Steps (ristep) : [150 Consider P-Delta Effect Use Initial Load Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear b ement Method Load Control @ Dia rol Option	ion : [X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : (Consider P-Delta Effect Use Initial Load Use Initial Load Monit © Cumulative Reaction / S ment Method Load Control ol Option	Description : 150 near Analysis for 1 itory Shear by Init © Displacen	Initial Load Sal Load
: Uniform_X Descripti ral Control coment Steps (ristep) : 150] Consider P-Delta Effect il Load] Use Initial Load Nonlinear Analysi [] Cumulative Reaction / Story Shear L ement Method] Load Control @ Dig rol Option lobal	ion : [X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : (Consider P-Delta Effect Load Use Initial Load Nonil @ Cumulative Reaction / S ment Method Load Control ol Option obal	Description : 150 near Analysis for 1 itory Shear by Init © Displacen	Initial Load initial Load nent Control
:: Uniform_X Descripti eral Control coment Steps (nstep) : 150 Consider P-Delta Effect al Load Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear L ement Method Load Control	ion : I iis for Initial Load by Initial Load splacement Control	X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Uoad Use Initial Load Noni Cumulative Reaction / S ment Method DLoad Control ol Option obal Max. Translational Displace	Description : 150 near Analysis for 1 tory Shear by Init Displacen ment :	Initial Load al Load nent Control
: Uniform X Descripti ral Control coment Steps (nstep) : 150] Consider P-Delta Effect Use Initial Load Nonlinear Analysi Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear b ement Method _ Load Control @ Disp lobal Max. Translational Displacement : laster Node	ion : [X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : (Consider P-Delta Effect Use Initial Load Use Initial Load Due Initial Load Due Initial Load Due Initial Load Due Initial Control O Option Oobal Max. Translational Displace ster Node	Description : 150 near Analysis for 1 itory Shear by Init © Displacen ment :	Initial Load Sal Load ment Control
: Uniform_X Descripti ral Control crement Steps (ristep) : [150 [Consider P-Delta Effect Use Initial Load Nonlinear Analysi Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear b ment Method Cuad Control @ Dia rol Option lobal Max. Translational Displacement : laster Node Isopacement :	ion : [X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Nonil Cumulative Reaction / S ment Method Dotad Control ol Option obal Max. Translational Displace aster Node Ster Node S548	Description : 150 near Analysis for 1 itory Shear by Init Oisplacen ment : Direction :	Initial Load Initial Load
: Uniform_X Descripti ral Control 	ion : I sis for Initial Load by Initial Load splacement Control 0 m : DX v 0.03 m	X Add/M Name In In In In In In In In In In In In In	dify Pushover Load Case : Uniform_Y rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Nonl Cumulative Reaction / S ment Method Load Control ol Option obal Max. Translational Displace aster Node Node : 3548 Node : 3548	Description : 150 near Analysis for 1 tory Shear by Init © Displacen ment : Direction :	Initial Load al Load ment Control
: Uniform_X Descripti ral Control 	ion : [X Add/M Name In In Initia Inform Cont Cont	dify Pushover Load Case : Uniform_Y rement Steps (nstep) : Consider P-Delta Effect Consider P-Delta Effect Use Initial Load Noni Cundative Reaction / S ment Method DLoad Control ol Option obal Max. Translational Displace aster Node Node : 3548 Max. Displacement :	Description : 150 near Analysis for 1 tory Shear by Init © Displacen ment : Direction :	Initial Load al Load nent Control 0 m DY v 0.02 m
: Uniform_X Descripti ral Control : Interment Steps (nstep) : 150 Consider P-Delta Effect : Load Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear L ment Method) Load Control : Control : Displacement : sster Node Node : 3548 Direction : max. Displacement : sis Stopping Condition	ion : [X Add/Mi	dify Pushover Load Case : Uniform_Y rai Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Noni Cumulative Reaction / S ment Method Doad Control Ool Option obal Max. Translational Displace aster Node Node : 3548 Max. Displacement : sis Stopping Condition	Description : 150 near Analysis for 1 itory Shear by Init © Displacen ment : Direction :	Initial Load ial Load ment Control 0 m DY v 0.02 m
: Uniform X Descripti ral Control : Ital Control Consider P-Delta Effect : Ital Use Initial Load Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear L ment Method Coad Control Disad Control Max. Translational Displacement : sister Node Node : 3548 Direction : max. Displacement : sis Stopping Condition imit Inter-Story Deformation Angle :	ion : [X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : (Consider P-Delta Effect Load Use Initial Load Nonil @ Cumulative Reaction / S ment Method Load Control ol Option obal Max. Translational Displace aster Node Node : 3548 Max. Displacement : sis Stopping Condition init Inter-Story Deformation	Description : 150 near Analysis for 1 itory Shear by Init © Displacen ment : Direction : h Angle :	[Initial Load Sal Load ment Control 0 m 0.02 m 1/ 10 [rad]
: Uniform_X Descripti ral Control Constrol Consider P-Delta Effect Load Use Initial Load Nonlinear Analysis Cumulative Reaction / Story Shear L ment Method Data Control @ Dia obbal Max. Translational Displacement : sater Node Node : <u>S548</u> Direction : Max. Displacement : sis Stopping Condition mit Inter-Story Deformation Angle : Maximum Drift of All Vertical Elements	ion : [X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Nonil Cumulative Reaction / S ment Method Load Control ol Option obal Max. Displacement : sis Stopping Condition mit Inter-Story Deformation Assimum Drift of All Vertif	Description : 150 near Analysis for 1 itory Shear by Init © Displacen ment : Direction : Angle : cal Elements	Initial Load ial Load ment Control 0 m DY v 0.02 m 1/ 10 [rad]
: Uniform_X Descripti ral Control consider P-Delta Effect Consider P-Delta Effect Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear b ment Method D Load Control () Displacement : aster Node Node : 3548 Direction : Max. Translational Displacement : aster Node Node : 3548 Direction : Max. Displacement : ast Stopping Condition mit Inter-Story Deformation Angle : Maximum Drift of Al Vertical Elements Dirft at the Center of Floor Disphraom	ion : [X Add/Mi	dify Pushover Load Case : Uniform_Y al Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Nonl @ Cumulative Reaction / S ment Method Load Control ol Option obal Max. Translational Displace aster Node Node : 3548 Max. Displacement : sis Stopping Condition mit Inter-Story Deformation @ Maximu Drift of Al Verb] Orf, at the Center of Fior	Description : 150 near Analysis for 1 tory Shear by Init © Displacen ment : Direction : n Angle : cal Elements or Displaregm (Stor	Initial Load ial Load nent Control 0 m DY w 1/ 10 int ial [rad]
: Uniform_X Descripti ral Control Transmot Steps (nstep) : 150 Consider P-Delta Effect Load Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear L ment Method Dioad Control © Dig ol Option obal Max. Translational Displacement : aster Node Node : 3548 Direction : Max. Displacement : mit Inter-Story Deformation Angle : Max. Displacement of Filor Diaphrage Drift at the Center of Filor Diaphrage Drift at the Center of Filor Diaphrage	ion : []	X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : (Consider P-Delta Effect Use Initial Load Use Initial Load Use Initial Load Doad Control O Option Od Option Od Option Max. Translational Displace ster Node Node : 3548 Max. Displacement : sis Stopping Condition Max. Displacement : Dish tate-Caster of Floa Don't actuated by Averagi	Description : 150 near Analysis for 1 itory Shear by Init © Displacen ment : Direction : n Angle : cal Elements or Disphacem (Stor p Displacement of	[nitial Load ial Load ial Load nent Control 0 m DY v (0.02 m 1 / 10 [rad] ry Center) Fstory
: Uniform X Descripti ral Control : Control Consider P-Delta Effect : Load : Load : Load : Load : Cumulative Reaction / Story Shear b ment Method : Load Control : Load Control : Load Control : Load : Load	ion : [X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Noni Cumulative Reaction / S ment Method Load Control ol Option obal Max. Translational Displace aster Node : 3548 Max. Displacement : sis Stopping Condition init Inter-Story Deformation Maximum Drift of All Verb Orift at the Center of Fio Orift at Localated by Averag Pattern	Description : 150 near Analysis for 1 itory Shear by Init © Displacen ment : Direction : n Angle : cal Elements or Displacement of Displacement of cal Sciences (Stor ge Displacement of cal Sciences (Stor cal Scie	Initial Load tial Load tial Load DY w m 0.02 m 1 / 10 [rad] ry Center) f Story
: Uniform_X Description: ral Control Terrement Steps (nstep) : 150 Consider P-Delta Effect Ison Control Contro Control Contr	ion : [X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Nonil Cumulative Reaction / S ment Method Load Control ol Option obal Max. Displacement : sis Stopping Condition mit Inter-Story Deformation CMaximum Drift of All Verti Drift at the Center of Floo Drift acidulated by Averag Pattern	Description : 150 near Analysis for 1 tory Shear by Init © Displacen ment : Direction : Direction : Angle : cal Elements or Displacement of Displacement of	Initial Load Initial Load Ial Load ment Control 0 m DY v m 1/ I0 [rad] ry Center) f Story
: Uniform_X Descripti ral Control created Steps (ristep) : 150]Consider P-Delta Effect Load]Use Initial Load Nonlinear Analysi [Cumulative Reaction / Story Shear L ment Method]Load Control () Displacement : aster Node Node : 3548 Direction : Max. Displacement : ysis Stopping Condition imit Inter-Story Deformation Angle : [Maximum Drift of Al Vertical Elements]Drift calculated by Average Displacem Pattern d Pattern Uniform Acceleration	ion : [X Add/M	dify Pushover Load Case : Uniform_Y rement Steps (nstep) : Consider P-Delta Effect Consider P-Delta Effect Load Use Initial Load Nonl Control Control Option Obal Max. Translational Displace aster Node Step Node : 3548 Max. Displacement : sis Stopping Condition mit Inter-Story Deformation Dirif at the Center of Floo Dirif calculated by Averag Pattern Uniform Acce	Description : 150 near Analysis for 1 tory Shear by Init © Displacen ment : Direction : n Angle : cal Elements or Displacement of leration	Initial Load ial Load ment Control 0 m DY v 0.02 m 1/ 10 [rad] fstory
: Uniform_X Descripti ral Control created Service (nstep) : 150]Consider P-Delta Effect]Load]Use Initial Load Nonlinear Analysi [Cumulative Reaction / Story Shear L ment Method]Load Control	ion : []	X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : (Consider P-Delta Effect Use Initial Load Use Initial Load Use Initial Load Doad Control O Option Od Option Od Option Max. Translational Displace ster Node Node : 3548 Max. Displacement : sis Stopping Condition init Inter-Story Deformation Dinft adculated by Average Pattern Uniform Acce ction DY	Description : 150 near Analysis for 1 itory Shear by Init Displacent ment : Direction : n Angle : cal Elements yr Diaphragm (Stor pe Displacement of leration V Scale	Initial Load ial Load nent Control DY v m 1/ 10 [rad] ry Center) f Story e Factor : 1
: Uniform_X Description all Control consider P-Delta Effect Load Use Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear L ment Method Load Control O Doad Control O Doad Control O Doad Nox. Translational Displacement : aster Node Node: <u>3548</u> Direction : dMax. Displacement : diss Stopping Condition Max. Displacement : dMax.mu Drift of All Vertical Elements Drift calculated by Average Displacem Pattern IPattern IPattern DX DX V	ion : [X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : (Consider P-Delta Effect Load Use Initial Load Noni Cumulative Reaction / S ment Method Load Control Ol Option obal Max. Translational Displace aster Node Node : 3548 Max. Displacement : sis Stopping Condition mit Inter-Story Deformation Dinit calculated by Averag Pattern Uniform Acce toon DY	Description : 150 near Analysis for 1 itory Shear by Init © Displacen ment : Direction : n Angle : cal Elements or Displacement of legation e Displacement of legation Scale	Initial Load ial Load ial Load ment Control 0 m 0 m 1/ 10 [rad] ry Center) f Story e Factor : 1
: Uniform_X Description: ral Control	ion : [X Add/Mi	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Nonil Cumulative Reaction / S ment Method Dodd Control ol Option obal Max. Displacement : sis Stopping Condition init Inter-Story Deformation Onft at the Center of Floo Drift at the Center of	Description : 150 near Analysis for 1 itory Shear by Init Displacen ment : Direction : Angle : cal Elements or Displacement of Leration Company (Stor pe Displacement of Leration Scale	Initial Load Initial Load al Load ment Control 0 m DY v 0.02 m 1 / 10 [rad] ry Center) f story e Factor : 1 Add
: Uniform_X Description: ral Control Terment Steps (nstep) : 150 Consider P-Delta Effect Ison (Steps (nstep) : 150 Consider P-Delta Effect Ison (Stery Shear Linear Analysis Comulative Reaction / Story Shear Linear Analysis Stopping Condition Ison Angle : Maximum Drift of All Vertical Elements Conft at the Center of Floor Daphragm Drift calculated by Average Displacem Pattern Inform Acceleration Iton DX ad Scale 1	ion : [X Add/M	dify Pushover Load Case : Uniform_Y rement Steps (nstep) : Consider P-Delta Effect Consider P-Delta Effect Load Use Initial Load Nonl Cumulative Reaction / S ment Method Load Control ol Option obal Max. Translational Displace aster Node Step Node : Stopping Condition mit Inter-Story Deformation Dirft calculated by Averag Pattern Steam Pattern Uniform Acce tion DY ad State Stopping State Stopping State Sta	Description : 150 near Analysis for 1 tory Shear by Init © Displacen ment : Direction : n Angle : cal Elements or Displacement of leration Scale L	Initial Load Initial Load Ial Load ment Control 0 m DY v 0.02 m 1/ I0 [rad] ry Center) f Story v e Factor : 1 Add Modify
Uniform_X Descripti al Control Consider P-Delta Effect Consider P-Delta Effect Load Jse Initial Load Nonlinear Analysi Cumulative Reaction / Story Shear b ent Method ILoad Control	ion : [X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : (Consider P-Delta Effect Use Initial Load Nonii Use Initial Load Nonii Could Entital Load Nonii Could Control Ol Option Obal Max. Translational Displace ster Node Node : 3548 Max. Displacement : sis Stopping Condition min Inter-Story Deformation Onft calculated by Average Pattern Uniform Acces ction DY ad S	Description : 150 near Analysis for 1 itory Shear by Init Displacent ment : Direction : Angle : cal Elements or Diaphragm (Stor pe Displacement of leration Scale tal Scale	Initial Load Initial Load Ial Load Initial Load Initial Load Ial Load Initial Load Ial Load Initial Load Ial Load Initial Load Ial Load
Uniform X Description Uniform Acceleration Uniform Acceleration Uniform Acceleration Uniform Acceleration Uniform Acceleration Uniform Acceleration I Inter-Inter I I I I I I I I I I I I I I I I I I I	ion : [X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Noni Cumulative Reaction / S ment Method Load Control ol Option obal Max. Translational Displace aster Node Node : 3548 Max. Displacement : sis Stopping Condition init Inter-Story Deformation On The Control of Al Verbi Onft at the Center of Fio Onft at the Center	Description : 150 Incar Analysis for 1 itory Shear by Init © Displacen ment : Direction : Angle : cal Elements or Displacement of leration Scale L	Initial Load isal Load isal Load ment Control 0 m 0 m 1 / 10 [rad] 7 y Center) 7 story e Factor : 1 Add Modify Delete
Uniform X Descripti Control Description ment Steps (nstep) : [150] insider P-Delta Effect ad the Initial Load Nonlinear Analys] Cumulative Reaction / Story Shear E nt Method bad Control ® Displacement : er Node de : 3548 Direction : ix. Displacement : Stopping Condition : Inter-Story Deformation Angle : taximum Drif of All Vertical Elements wift at the Center of Floor Diaphragm inft calculated by Average Displacem tern n DX Scale 1	ion : [X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Nonil @ Cumulative Reaction / S ment Method Doltion obal Max. Translational Displace aster Node	Description : 150 Incar Analysis for 1 itory Shear by Init © Displacen ment : Direction : Direction : Angle : cal Elements or Displacement of leration Scale cale	Initial Load Initial Load Ial Load ment Control 0 m DY v m 1/ 10 [rad] ry Center) f Story e Factor : 1 Add Modfy Delete coal
Control Control control consider P-Delta Effect coad se Initial Load Control coad se Initial Load Nonlinear Analys Comulative Reaction / Story Shear L ant Method Load Control © Disp Coption al iax. Translational Displacement : ter Node code : 3548 Direction : iax. Displacement : a Stopping Condition it Inter-Story Deformation Angle : Maximum Orift of All Vertical Elements Drift at the Center of Floor Disphrage Drift calculated by Average Displacem sttern vattern DX Scale 1 OK	ion : [iii for Initial Load by Initial Load placement Control 0 m : DX v 0.03 m 1/ 10 [rad] s m (Story Center) ment of Story Scale Factor : 1 Add Modify Delete Cancel Apply	X Add/M	dify Pushover Load Case : Uniform_Y ral Control rement Steps (nstep) : Consider P-Delta Effect Load Use Initial Load Nonil Cumulative Reaction / S ment Method Load Control ol Option obal Max. Translational Displace aster Node : §548 Node : §548 Node : §548 Node : §548 Node : Quarter I isis Stopping Condition mit Inter-Story Deformation Onft calculated by Averag Pattern Uniform Acce tion DY ad S	Description : 150 near Analysis for 1 tory Shear by Init © Displacen ment : Direction : a Angle : cal Elements or Displacement of leration Scale L Cal	Initial Load Initial Load Ial Load Inent Control 0 m DY v 0.02 m 1/ I0 [rad] ry Center) f Story v F Add Modify Delete ncel Apply

Il numero di step che l'analisi andrà ad eseguire per arrivare al raggiungimento dello spostamento ultimo del punto di controllo dell'edificio è stato fissato a 150. Il punto di controllo a cui si fa riferimento nell'analisi è il nodo 3548, posto in prossimità del centro di massa del sesto piano dell'edificio (Figura 150).

Figura 150. Punto di controllo per analisi Pushover.

L'ottavo piano, coincidente con il sottotetto, si mantiene in campo elastico volendo evitare la plasticizzazione della copertura a capriata.

Arrivati a questo punto è necessario definire tutte le cerniere plastiche, seguendo il seguente criterio (Tabella 45):

	Tabella	a 45. Definizione de	elle cerniere	plastiche per travi,	pilastri e setti.	
Element Type	Definition	Hinge Type		Component	Hinge Location	Properties
Beam	Moment-	Skeleton	Model	My	I&J-end	Auto-calculation
	Rotation	(EC8)				
		× ,				
Column	Moment-	Skeleton	Model	F _x , M _y e M _z	I&J-end	Auto-calculation
	Rotation	(EC8)				
W-11 19	Manad	<u>Claster</u>	M - 1-1	E M - M	101 1	A
wall 1° plano	Moment-	Skeleton	Model	$\mathbf{F}_{\mathbf{X}}$, $\mathbf{M}_{\mathbf{y}} \in \mathbf{M}_{\mathbf{Z}}$	1&J-end	Auto-calculation
	Rotation	(EC8)				
Wall 2° piano	Moment-	Skeleton	Model	F_x , $M_y e M_z$	J-end	Auto-calculation
	Rotation	(EC8)				
W/ 11 20 C0 '		C1 1 4	N 1 1		т 1	
wall 3°-6° piano	Moment-	Skeleton	Model	F_x , $M_y e M_z$	J-end	Auto-calculation
	Rotation	(EC8)				
		· · ·				

Una volta definite tutte le cerniere plastiche è possibile assegnarle ai rispettivi elementi strutturali e lanciare l'analisi Pushover. Per una questione di maggior visibilità si riportano nell'immagine sottostante le cerniere plastiche inserite in travi, pilastri e setti del primo piano (Figura 151).

Figura 151. Assegnazione delle cerniere plastiche al primo piano.

Se la cerniera plastica è inserita si crea al centro dell'elemento un'icona circolare suddivisa in sei spicchi che rappresentano le componenti F_x , F_y , F_z , M_x , M_y , M_z . Il numero di spicchi colorati fa riferimento al numero di componenti non lineari inserite nell'elemento. Di conseguenza le travi avranno uno spicchio colorato su sei (riferito al momento flettente M_y), mentre setti e pilastri ne avranno tre su sei (riferite allo sforzo normale F_x e ai momenti flettenti M_y e M_z).

6.3.3. Curve di capacità

I grafici che si ottengono al termine dell'analisi rappresentano le curve di capacità per le quattro distribuzioni di carico assegnate.

A seguire si illustreranno per ogni distribuzione di carico analizzata la curva di capacità dell'edificio in relazione al Taglio alla Base [kN] - spostamento del punto di controllo [m] e il confronto tra la curva di capacità e lo spettro di domanda elastico allo Stato Limite di salvaguardia della Vita di Jesolo in relazione all'accelerazione e allo spostamento spettrale S_a e S_d .

• Analisi PO proporzionale al primo modo di vibrare in X (Figure 152 e 153)

Figura 154. Curva di capacità (Mode Y).

Figura 155. Curva di capacità e spettro di domanda SLV (ModeY).

Figura 156. Curva di capacità (Uniform X).

Capacity Spectrum vs. Demand Spectrum

Figura 157. Curva di capacità e spettro di domanda SLV (Uniform X).

La curva di capacità proporzionale al primo modo di vibrare in X è stata condotta fino a un taglio alla base complessivo di 6000 kN per uno spostamento ultimo del punto di controllo di 0,03 metri; messa in relazione con lo spettro elastico SLV (di colore verde) si nota che la curva di capacità va oltre lo spettro SLV elastico. Di conseguenza la struttura presenta un comportamento pressoché elastico e non si può parlare di duttilità.

La curva di capacità proporzionale al primo modo di vibrare in Y evidenzia un taglio alla base complessivo di 9500 kN (maggiore di quello per il modo in X) per uno spostamento ultimo di 0,02 metri. Questa differenza risulta attendibile dal momento che l'edificio presenta un numero maggiore di setti disposti lungo la direzione Y rispetto alla X e quindi ha una maggiore rigidezza. Se in direzione X la struttura presentava un comportamento pressoché elastico a maggior ragione lo avrà in direzione Y. La curva di capacità proporzionale alle masse in X mostra un taglio alla base di 7500 kN per uno spostamento ultimo di 0,03 metri. In riferimento allo spettro di domanda SLV, anche in questo caso, la struttura si comporta elasticamente. Il medesimo ragionamento vale anche per la curva di capacità proporzionale alle masse in Y con taglio alla base complessivo di 13000 kN per uno spostamento di 0,02 metri.

Alla luce di quanto espresso sulle curve di capacità si può affermare che, pur avendo progettato gli elementi strutturali dell'edificio nel rispetto dei requisiti minimi di armatura, la struttura rimane in campo elastico in relazione alle forze sismiche del comune di Jesolo. Di conseguenza, non essendoci lo sviluppo delle cerniere plastiche, la struttura non ha requisiti di duttilità da rispettare.

6.3.4. Analisi Pushover con edificio localizzato in zona con intensità sismica maggiore

Al fine di verificare le reali capacità di duttilità dell'edificio e l'evoluzione della formazione delle cerniere plastiche si è deciso di assoggettarlo ad azione sismica maggiore di quella che ci si può attendere a Jesolo e tale da portare la struttura in campo plastico avanzato con cerniere plastiche completamente sviluppate.

Di conseguenza è necessario trovare uno spettro elastico SLV di un sito posto in una zona sismica, differente e maggiore rispetto a quella di Jesolo, che superi in accelerazione il valore di $S_a = 0,72 g$. Il territorio italiano è suddiviso in quattro zone sismiche [6]:

- ZONA 1: sismicità alta $\rightarrow PGA > 0,25 g$;
- ZONA 2: sismicità medio-alta $\rightarrow 0,15g < PGA \le 0,25g$;
- ZONA 3: sismicità medio-bassa $\rightarrow 0,05g < PGA \le 0,15g;$
- ZONA 4: sismicità bassa $\rightarrow PGA \leq 0,05 g$;

Con deliberazione della Giunta Regionale numero 244 del 9 marzo 2021 [7] il comune di Jesolo è passato dalla zona sismica 4 alla zona sismica 3 [8]; pertanto si andranno a cercare siti ricadenti in zona sismica alta o medio-alta. Rimanendo sempre all'interno della regione Veneto, si è deciso di calcolare gli spettri elastici SLV per i comuni di Treviso [9] e Belluno [10], ricadenti in zona sismica 2 e 1, mantenendo la stessa categoria topografica e del sottosuolo (C e T1).

Gli spettri presentano il seguente andamento (Figura 160):

Figura 160. Spettri di risposta elastici allo SLV dei comuni di Treviso e Belluno.

Considerando che il valore massimo di accelerazione raggiunto nelle curve di capacità è pari a $S_a = 0,72 \ g$ si opta per l'inserimento dello spettro elastico del comune di Belluno con accelerazione nel plateau pari a $S_a = 0,76 \ g > 0,72 \ g$. Per completezza sono stati definiti anche gli spettri SLO e SLD per far sì che Midas faccia automaticamente le verifiche di domanda e capacità richieste da normativa per quegli stati limite.

Come si può vedere dalle immagini sottostanti la curva di capacità è, in tutti e quattro i casi di carico, al di sotto dello spettro di domanda allo SLV e le verifiche SLO e SLD risultano tutte soddisfatte.

Target	Displacement	t		
	Demand	Capacity	Step	Remark
SLO	0.008398	0.0201	42	ОК
SLD	0.007541	0.03	38	OK
SLV	0.0345	-	146	-
SLC	0.0345	-	146	-

Figura 162. Verifiche SLO e SLD.

Figura 161. Curva di capacità e spettro di domanda SLV (Mode_X).

Analisi PO proporzionale al primo modo di vibrare in Y (Figure 163 e 164) •

Figura 163. Curva di capacità e spettro di domanda SLV (Mode_Y).

Target	Displacement			
	Demand	Capacity	Step	Remark
SLO	0.004422	0.01407	32	ОК
SLD	0.003971	0.021	28	ОК
SLV	0.01701	-	110	-
SLC	0.01701	-	110	-

Figura 164. Verifiche SLO e SLD.

<u>Analisi PO proporzionale alle masse in X (Figure 165 e 166)</u>

Target Displacement Demand Capacity Step Remark SLO 0.007864 0.02484 22 ОК SLD 0.007062 0.03708 20 ОК SLV 0.0312 76 0.0312 76 SLC

Figura 166. Verifiche SLO e SLD.

Figura 165. Curva di capacità e spettro di domanda SLV (Uniform X).

Figura 167. Curva di capacità e spettro di domanda SLV (Uniform Y).

6.3.5. Evoluzione dello sviluppo delle cerniere plastiche

A seguire si illustrano le evoluzioni dello sviluppo delle cerniere plastiche nell'edificio man mano che l'analisi raggiunge lo spostamento ultimo assegnato. Le cerniere plastiche assumeranno rispettivamente due colorazioni: blu e azzurro; il blu corrisponde ad una cerniera plastica in fase elastica, mentre l'azzurro denota che è avvenuto il completo processo di plasticizzazione della sezione dell'elemento, con il raggiungimento e il superamento del momento di snervamento.

In tutti e quattro i casi di carico si parte da uno Step 1 (coincidente con l'applicazione dei carichi verticali in combinazione sismica) in cui tutte le cerniere plastiche sono di colore blu.

Se la progettazione in capacità è stata eseguita correttamente vale il principio di gerarchia delle resistenze; ci si aspetta perciò, come evoluzione del danneggiamento strutturale, che la plasticizzazione delle travi a flessione avvenga prima di quella di setti e pilastri a pressoflessione. Inoltre, prima che si

rarget Displacement						
	Demand	Capacity	Step	Remark		
SLO	0.004834	0.01742	28	OK		
SLD	0.004341	0.026	25	ОК		
SLV	0.01748	-	97	-		
SLC	0.01748	-	97	-		

Figura 168. Verifiche SLO e SLD.

arrivi alla formazione di un cinematismo, sarebbe auspicabile che si siano formate la maggior parte di cerniere plastiche possibili.

In tutti e quattro i casi di carico queste caratteristiche sono rispettate.

• <u>Analisi PO proporzionale al primo modo di vibrare in X (Figure 169 - 170 - 171 e 172)</u>

Figura 169. Pushover Mode_X: Step 1 (Spostamento punto di controllo = 0 m).

Figura 170. Pushover Mode_X: Step 50 (Spostamento punto di controllo = 0,01 m).

Figura 171. Pushover Mode_X: Step 100 (Spostamento punto di controllo = 0,02 m).

Figura 172. Pushover Mode_X: Step 150 (Spostamento punto di controllo = 0,03 m).

• Analisi PO proporzionale al primo modo di vibrare in Y (Figure 173 - 174 e 175)

Figura 173. Pushover Mode_Y: Step 50 (Spostamento punto di controllo = 0,007 m).

Figura 174. Pushover Mode_Y: Step 100 (Spostamento punto di controllo = 0,014 m).

Figura 175. Pushover Mode_Y: Step 150 (Spostamento punto di controllo = 0,021 m).

• Analisi PO proporzionale alle masse in X (Figure 176 - 177 e 178)

Figura 176. Pushover Uniform X: Step 50 (Spostamento punto di controllo = 0,018 m).

Figura 177. Pushover Uniform X: Step 100 (Spostamento punto di controllo = 0,036 m).

Figura 178. Pushover Uniform X: Step 150 (Spostamento punto di controllo = 0,054 m).

• Analisi PO proporzionale alle masse in Y (Figure 179 - 180 e 181)

Figura 179. Pushover Uniform Y: Step 50 (Spostamento punto di controllo = 0,008 m).

Figura 180. Pushover Uniform Y: Step 100 (Spostamento punto di controllo = 0,017 m).

6.3.6. Deformata dell'edificio

• Analisi PO proporzionale al primo modo di vibrare in X (Figure 182 e 183)

Figura 183. Contour spostamento DX parte retrostante dell'edificio.

• Analisi PO proporzionale al primo modo di vibrare in Y (Figure 184 e 185)

Figura 184. Contour spostamento DY lato Ovest dell'edificio.

Figura 185. Contour spostamento DY lato Est dell'edificio.

• Analisi PO proporzionale alle masse in X (Figure 186 e 187)

midas Gen POST-PROCESSOR DISPLACEMENT X-DIRECTION 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 SCALEFACTOR= 3.9076E+001 PO: UNIFORM_X STEP:150 S.F:4.015 MAX : 4644 MIN : 1 FILE: 16 UNIT: m DATE: 02/16/2022 VIEW-DIRECTION X: 0.000 ł

Figura 186. Contour spostamento DX parte frontale dell'edificio.

• Analisi PO proporzionale alle masse in Y (Figure 188 e 189)

Figura 188. Contour spostamento DY lato Ovest dell'edificio

Figura 189. Contour spostamento DY lato Est dell'edificio.

6.3.7. Trasformazione del sistema MDOF in SDOF

Per calcolare la duttilità della struttura è necessario associare al sistema strutturale reale un sistema strutturale equivalente ad un grado di libertà (Figura 190).

Figura 190. Sistema ad un grado di libertà e bilinearizzazione della curva di capacità [Fig. C7.3.1 Circolare] [4].

La forza F^* e lo spostamento d^* del sistema SDOF sono legati alle corrispondenti grandezze F_b e d_c del sistema reale MDOF dalle relazioni:

$$F^* = \frac{F_b}{\Gamma} \qquad \qquad d^* = \frac{d_c}{\Gamma}$$

dove:

 F_b = Forza di taglio alla base del sistema MDOF;

 d_c = Spostamento del nodo di controllo del sistema MDOF;

 Γ = "Fattore di partecipazione modale" definito dalla relazione: $\Gamma = \frac{\varphi^T \cdot M \cdot \tau}{\varphi^T \cdot M \cdot \varphi} = \frac{m^*}{\sum m_i \cdot \varphi_i^2}$

Una volta convertita la curva di capacità MDOF in una curva SDOF è necessario bilinearizzarla in una curva elastica perfettamente plastica. L'intersezione del ramo elastico e del ramo plastico fornisce il punto di snervamento che, a sua volta, determina la forza di snervamento F_y^* e lo spostamento di snervamento d_y^* (Figura 194).

Figura 191. Bilinearizzazione curva di capacità SDOF (Figura B.1 Eurocodice 8) [11].

Come enunciato nell'appendice B dell'Eurocodice 8 [11], la forza di snervamento F_y^* , che rappresenta anche la resistenza ultima del sistema idealizzato, è uguale alla forza di taglio alla base in corrispondenza della formazione del meccanismo plastico. La rigidezza iniziale del sistema idealizzato è determinata in modo tale che le aree sotto le curve forza – deformazione reale e idealizzata siano uguali (Figura 191). Su questa ipotesi, lo spostamento a snervamento del sistema SDOF d_y^* è dato da:

$$d_y^* = 2 \cdot \left(d_m^* - \frac{E_m^*}{F_y^*} \right)$$

in cui E_m^* è l'energia di deformazione reale fino alla formazione del meccanismo plastico.

Il software Midas calcola automaticamente il fattore di partecipazione modale come pure la massa del sistema SDOF, il suo periodo proprio e la forza di snervamento F_{ν}^{*} (Tabella 46).

Tabella 46. Fattori di conversione MDOF e SDOF.							
MODE_X	$m^* = 1102,98$	Γ = 1,2294	$F_{y}^{*} = 4383,33$	$T^* = 0,35$			
MODE_Y	$m^* = 1077,15$	Γ = 1,2262	$F_y^* = 7130,81$	$T^* = 0,25$			
UNIFORM_X	$m^* = 1855,34$	Γ = 1,000	$F_y^* = 7190,19$	$T^* = 0,38$			
UNIFORM_Y	$m^* = 1855,34$	$\Gamma = 1,000$	$F_y^* = 13051,4$	$T^* = 0,29$			

Sulla base dei dati a disposizione si procede alla determinazione dello spostamento massimo atteso del punto di controllo del sistema SDOF per poi convertirlo in MDOF.

Lo spostamento obiettivo della struttura con periodo T^* e comportamento elastico illimitato è dato da:

$$d_{et}^* = S_e(T^*) \cdot \left[\frac{T^*}{2 \cdot \pi}\right]^2$$

in cui $S_e(T^*)$ è lo spettro di risposta elastico di accelerazione al periodo T^* .

Nei casi in esame si ha (Tabella 47):

MODE_X	$T^* = 0,35 s$	$S_e(T^*) = 0,7634g$	$d_{et}^* = 0,0237 m$
MODE_Y	$T^* = 0,25 \ s$	$S_e(T^*) = 0,7634g$	$d_{et}^* = 0,0125 m$
UNIFORM_X	$T^* = 0,38 s$	$S_e(T^*) = 0,7634g$	$d_{et}^* = 0,0273 m$
UNIFORM_Y	$T^* = 0,29 s$	$S_e(T^*) = 0,7634g$	$d_{et}^* = 0,0168 m$

Tabella 47. Calcolo dello spostamento obiettivo per i quattro casi di carico.

Per la determinazione dello spostamento obiettivo d_t^* , poiché in tutti e quattro i casi di carico il periodo proprio del sistema ad un grado di libertà T^* è minore del periodo $T_C(SLV) = 0,50 s$, si seguono le formulazioni per le strutture nell'intervallo breve-periodo (Figura 192):

• se $\frac{F_y^*}{m^*} \ge S_e(T^*)$ la risposta è elastica e allora $d_t^* = d_{et}^*$

• se
$$\frac{F_y^*}{m^*} < S_e(T^*)$$
 la risposta è non lineare e allora $d_t^* = \frac{d_{et}^*}{q_u} \cdot \left(1 + (q_u - 1) \cdot \frac{T_c}{T^*}\right) \ge d_{et}^*$

dove: $q_u = \frac{S_e(T^*) \cdot m^*}{F_y^*}$ è il rapporto tra l'accelerazione nella struttura con comportamento elastico illimitato $S_e(T^*)$ e nella struttura con resistenza limitata $\frac{F_y^*}{m^*}$.

Figura 192. Intervallo di breve periodo (Figura B.2 EC8) [11].

In tutti e quattro i casi $\frac{F_y^*}{m^*} < S_e(T^*)$, la risposta è non lineare e si segue il criterio di uguaglianza dell'energia in cui si ha l'uniformità tra l'area sottesa dalla curva forza-spostamento del sistema anelastico e quella sottesa del sistema elastico.

Sostituendo i valori trovati si ottengono i seguenti spostamenti obiettivo (Tabella 48):

		te spestamente coreta	
MODE_X	$\frac{F_y^*}{m^*} = 0,405g < S_e(T^*)$	<i>q_u</i> = 1,88	$d_t^* = 0,028m > d_{et}^*$
MODE_Y	$\frac{F_y^*}{m^*} = 0,674g < S_e(T^*)$	<i>q_u</i> = 1,13	$d_t^* = 0,013m > d_{et}^*$
UNIFORM_X	$\frac{F_y^*}{m^*} = 0,395g < S_e(T^*)$	<i>q_u</i> = 1,93	$d_t^* = 0,031m > d_{et}^*$
UNIFORM_Y	$\frac{F_y^*}{m^*} = 0,717g < S_e(T^*)$	<i>q_u</i> = 1,06	$d_t^* = 0,017m > d_{et}^*$

Tabella 48. Determinazione dello spostamento obiettivo SDOF.

A questo punto è possibile determinare la domanda sismica globale nel sistema a molti gradi di libertà tramite la trasformazione dello spostamento obiettivo indotto al sistema equivalente SDOF (Tabella 49).

Tabella 49. Determinazione spostamento obiettivo MDOF.						
MODE_X	$d_t^* = 0,028m$	Γ = 1,2294	$d_c = d_t^* \cdot \Gamma = 0,034 m$			
MODE_Y	$d_t^* = 0,013m$	Γ = 1,2262	$d_c = d_t^* \cdot \Gamma = 0,016 m$			
UNIFORM_X	$d_t^* = 0,031m$	$\Gamma = 1,000$	$d_c = d_t^* \cdot \Gamma = 0,031 m$			
UNIFORM_Y	$d_t^* = 0,017m$	$\Gamma = 1,000$	$d_c = d_t^* \cdot \Gamma = 0,017 m$			

In corrispondenza dello spostamento obiettivo MDOF si valutano le richieste di prestazione per la struttura. Ciò viene fatto tramite una nuova analisi statica non lineare, con la quale si spinge la struttura fino al raggiungimento dello spostamento d_c nel punto di controllo della struttura. Non a caso gli

spostamenti massimi inseriti nei vari casi di carico per la Pushover corrispondono ai valori sopra calcolati.

6.3.8. Calcolo duttilità

La duttilità dell'edificio si quantifica tramite il rapporto tra lo spostamento ultimo e quello di snervamento (Tabella 50).

Riferendosi al sistema SDOF lo spostamento ultimo corrisponde allo spostamento d_t^* , mentre per il calcolo dello spostamento di snervamento d_y^* si inverte la formula del periodo proprio:

$$T^* = 2 \cdot \pi \sqrt{\frac{m^* \cdot d_y^*}{F_y^*}} \to d_y^* = \frac{F_y^*}{m^*} \cdot \left(\frac{T^*}{2 \cdot \pi}\right)^2$$

	Tabella 50.	Calcolo domanda di duti	inta e fattore di comportamento.	
MODE_X	$d_t^* = 0,028m$	$d_y^* = 0,012 m$	$\mu = \frac{d_t^*}{d_y^*} = \frac{0,028}{0,012} = 2,33$	$q = \frac{S_e(T^*)}{(\frac{F_y^*}{m^*})} = 1,88$
MODE_Y	$d_t^* = 0,013m$	$d_y^* = 0,011 m$	$\mu = \frac{d_t^*}{d_y^*} = \frac{0,013}{0,011} = 1,18$	$q = \frac{S_e(T^*)}{(\frac{F_y}{m^*})} = 1,13$
UNIFORM_X	$d_t^* = 0,031m$	$d_y^* = 0,014 m$	$\mu = \frac{d_t^*}{d_y^*} = \frac{0,031}{0,014} = 2,21$	$q = \frac{S_e(T^*)}{(\frac{F_y}{m^*})} = 1,93$
UNIFORM_Y	$d_t^* = 0,017m$	$d_y^* = 0,015 m$	$\mu = \frac{d_t^*}{d_y^*} = \frac{0,017}{0,015} = 1,13$	$q = \frac{S_e(T^*)}{(\frac{F_y}{m^*})} = 1,06$

Tabella 50. Calcolo domanda di duttilità e fattore di comportamento

In tutti e quattro i casi la domanda di duttilità μ risulta maggiore del fattore di comportamento q.

7. CONCLUSIONI

È stato redatto il progetto di un edificio a setti in calcestruzzo armato, ubicato nel comune di Jesolo (VE), assumendo che abbia un comportamento sismico di tipo dissipativo e con una classe di duttilità CD "B".

Per il dimensionamento degli elementi strutturali è stata svolta un'analisi modale, su un modello agli elementi finiti, utilizzando uno spettro di progetto SLV in cui il fattore di comportamento *q* è stato posto uguale a 3,6 nel rispetto dei requisiti enunciati al § 7 delle NTC18 [1]. I setti dei primi due piani, ricadenti nell'altezza critica, presentano in zona confinata e non confinata un rapporto di armatura minimo richiesto da normativa; i setti dal terzo piano in su non presentano armatura confinata, ma sono stati dimensionati anch'essi con un'armatura minima. Setti, travi e pilastri soddisfano, sia i requisiti del § 4 inerente alle costruzioni civili e industriali che del § 7, dedicato alla progettazione per azioni sismiche. È stata svolta un'analisi statica non lineare per il calcolo esplicito del fattore di comportamento *q*. Sono stati analizzati quattro casi di carico: il primo proporzionale al primo modo di vibrare in X, il secondo proporzionale al primo modo di vibrare in Y, il terzo e il quarto caso in X e Y proporzionali alle masse. Dalle curve di capacità ottenute si deduce che l'edificio, pur essendo progettato per assumere un comportamento dissipativo, si comporta in maniera elastica in riferimento allo spettro elastico di domanda SLV del comune di Jesolo.

Non potendo così calcolare l'effettiva duttilità della struttura è stato scelto uno spettro elastico SLV di un comune ricadente in una zona sismica maggiore: Jesolo è in zona sismica 3 perciò è stato scelto il comune di Belluno con zona sismica 1, mantenendo la stessa categoria topografica e del sottosuolo.

Cambiando sito la curva di capacità si colloca al di sotto dello spettro elastico di progetto e può essere bilinearizzata convertendo il sistema globale della struttura (MDOF) con un oscillatore semplice equivalente (SDOF).

Per i quattro casi di carico la duttilità μ risulta inferiore rispetto al fattore di comportamento q calcolato implicitamente in fase di progetto, ma maggiore rispetto a quello calcolato esplicitamente nell'analisi Pushover.

8. BIBLIOGRAFIA

- [1] D.M. 17/01/2018 "Aggiornamento delle Norme tecniche per le costruzioni" (pag. 3 5 6 19 20 21 24 28 30 47 48 49 50 67 68 69 72 74 81 82 86 87 88 89 90 94 128);
- [2] UNI EN 1992-1-1:2005: "Eurocode 2 Design of concrete structures Part 1-1: General rules and rules for buildings" (pag. 3);
- [3] <u>https://www.zanrosso.com/sistema-unisol/</u> (pag. 4);
- [4] Circolare 21/01/2019: "Istruzioni per l'applicazione dell'Aggiornamento delle Norme tecniche per

le costruzioni di cui al D.M. 17/01/2018" (pag. 28 – 101 – 124);

- [5] <u>https://www.edilizianamirial.it/analisi-pushover/</u> (pag. 95);
- [6] <u>http://zonesismiche.mi.ingv.it/</u> (pag. 114);
- [7] Deliberazione della Giunta Regionale nº 244 del 09 Marzo 2021 (pag. 114);
- [8] <u>https://www.tuttitalia.it/veneto/57-jesolo/rischio-sismico/</u> (pag. 114);
- [9] https://www.tuttitalia.it/veneto/94-treviso/rischio-sismico/ (pag. 114);
- [10] <u>https://www.tuttitalia.it/veneto/31-belluno/rischio-sismico/</u> (pag. 114);
- [11] UNI EN 1998-1:2005 Eurocodice 8: Progettazione delle strutture per la resistenza sismica (pag.

124 – 126).