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Abstract

One of the most time-consuming parts of the simulation of underwater networks

is the realistic simulation of underwater sound propagation. Some well-known

software tools used for networks simulations to date employ ray tracing to sim-

ulate sound propagation. This gives rise to high computational complexity, and

may require very long time to complete a simulation. In this thesis we present a

faster tool able to simulate an underwater sound channel. The software is based

on ray tracing and is based on the CUDA architecture, the general-purpose par-

allel computing architecture that uses the parallel computing engine in NVIDIA

GPUs to efficiently solve complex computational problems. Following the CUDA

programming model guideline, a ray tracer has been developed where the trajec-

tory computation is performed in a CUDA-enabled parallel way, obtaining a ray

tracer implementation that completes faster than the widely use single-thread

Bellhop software.
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Sommario

Una delle parti più dispendiose sotto l’aspetto del tempo impiegato nella simu-

lazione di reti subacquee è la simulazione della propagazione sonora. Alcuni dei

più noti software di settore per svolgere le simulazioni utilizzano il metodo di ray

tracing. L’elevata complessità computazionale può far si che le simulazioni ne-

cessitino di molto tempo per essere effettuate. In questa si presenta un software

in grado di velocizzare tali simulazioni. Il programma, coadiuvato dalla potenza

di calcolo offerta dall’architettura parallela CUDA, implementa un ray tracer in

grado di calcolare le traiettorie in modo parallelo. Ciò ha permesso di ottenere

un simulatore con prestazioni decisamente migliori rispetto al ben noto software

ad implementazione classica Bellhop.
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Introduction

This thesis presents the parallel implementation of a ray tracer algorithm for

the simulation of underwater sound propagation. Ray tracing is a widely used

procedure that allows to solve the propagation equations for a wave on a inho-

mogeneous medium. In ray tracing, the problem is approached by simulating the

propagation of narrow beams called rays, where trajectory is pointwise orthogo-

nal to the wave front.

The propagation of a ray is completely independent of the propagation of each

other rays, hence the method can take advantages of an implementation on a par-

allel architecture, substantially improving the the performance of the algorithm.

The parallel architecture we chose for the tracer implementation is the modern

NVIDIA CUDA architecture, a general-purpose parallel computing architecture

with a new parallel programming model and instruction set that uses the paral-

lel compute engine in NVIDIA GPUs to solve complex computational problems

efficiently.

Following the CUDA programing model guideline, it has been developed a ray

tracer on which the trajectory computation in made in a parallel way. The

parallelization takes place both across the rays and inside every ray. By this

design, the tracer takes advantage from the hardware acceleration offered by

CUDA throughout the execution.

The developed software has been compared with the exiting serial program Bell-

hop on different systems, both entry-level and high-end architectures.

The results show that the benefit achieved using the parallel approach is signif-

icant: the simulation times reached by the CUDA implementation are several

time smaller than those obtained with the Bellhop.
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The network simulations performed using the CUDA implementation of the ray

tracer would achieve a significant speedup, in turn.
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Chapter 1

The CUDA Architecture

This part summarize the key aspects of the CUDA architecture. It is based on

[2, 3, 5, 8], where the contents of this part are treated in more detail.

1.1 Introduction

1.1.1 From Graphics Processing To General-Purpose Par-

allel Computing

Today’s demand for realtime, high-definition 3D graphics, has forced graphic card

vendors into a continuous run for increasing devices performance. The modern

programmable Graphic Processor Units (GPUs) have evolved into highly parallel,

multi threaded processors with huge computational power and very high memory

bandwidth, as illustrated in 1.1 and 1.2.
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Figure 1.1: CPUs and GPUs performance growth on the last ten-years period

Figure 1.2: CPUs and GPUs performance growth on the last ten-years period

The reason behind the discrepancy in the theoretical number of floating-point

operations per second observed between the CPU and the GPU (in figure 1.1 is

that the GPU is specialized for the intensive, highly parallel computation that

graphics rendering requires, and is therefore designed such that more transistors

are devoted to data processing rather than data caching and flow control, as
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schematically illustrated by figure 1.3.

More specifically, the GPU is especially designed to address as efficiently as pos-

sible problems that can be configured as data parallel computations. The same

program is executed on many data elements in parallel, with high arithmetic in-

tensity. Because the same program is executed for each data element, there is

no requirement for sophisticated flow control techniques. Moreover, because it is

executed on many data elements and has high arithmetic intensity, the memory

access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many

applications that process large data sets can use a data-parallel programming

model to speed up the computations.

As for instance in 3-D rendering, large sets of pixels and vertices are mapped

to parallel threads, similarly image and media processing applications (such as

post-processing of rendered images, video encoding and decoding, image scal-

ing, stereo vision, and pattern recognition) can map image blocks and pixels to

parallel processing threads. In fact, many algorithms outside the field of image

rendering and processing are accelerated by data-parallel processing, from general

signal processing or physics simulation to computational finance or computational

biology.

Figure 1.3: Differences between CPU and GPU architecture
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1.1.2 A General Purpose Parallel Computing Architec-

ture Named CUDA

In November 2006, NVIDIA corporation has introduced a new architecture named

CUDA. It is essentially a general-purpose parallel computing architecture with

a new parallel programming model and instruction set that uses the parallel

compute engine in NVIDIA GPUs to solve complex computational problems more

efficiently that with a CPU.

CUDA comes with a software development kit that allows programmers to use

C/C++ as a high-level programming language. Other languages or application

programming interfaces are also supported, such as CUDA FORTRAN, OpenCL,

and DirectCompute.

1.1.3 A scalable Programming Model

The advent of multi-core CPUs and many-core GPUs means that mainstream

processor chips can be handled as a parallel system from all points of view. Fur-

thermore, their parallelism continues to scale with Moore’s law, and so does their

performance.

The challenge the developer have to face is to build application software that

transparently scales its parallelism to leverage on the increasing number of pro-

cessor cores, as much as 3-D graphics applications transparently scale their par-

allelism to many-core GPUs with a widely varying number of cores.

The CUDA parallel programming model is designed to overcome this challenge, by

maintaining a low learning curve for programmers already familiar with standard

programming languages such as C/C++ or FORTRAN.

One of the programmers goals is to partition the problem into coarse sub-problems

that can be solved independently in parallel by blocks of threads, and each sub-

problem into finer pieces that can be solved cooperatively in parallel by all threads

within each block.

This decomposition preserves language expressivity by allowing threads to coop-
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erate when solving each sub-problem, and at the same time it enables automatic

scalability. Each block of threads can be scheduled on any of the available pro-

cessor cores, in any order, concurrently or sequentially, so that a compiled CUDA

program can be run on any number of processor cores as illustrated by Figure

1.4, where only the runtime system needs to know the physical processor count.

This scalable programming model allows the CUDA architecture to span a wide

market range by simply scaling the number of processors and memory partitions:

from the high-performance GeForce GPUs and professional Quadro and Tesla

computing products to a variety of inexpensive, mainstream GeForce GPUs. Us-

ing the recent Tegra architecture,the mobile devices could also benefit from this

approach in the future.

Figure 1.4: A multithreaded program is partitioned into blocks of threads that

can be run independent of each other, so that a GPU with more cores will auto-

matically execute the program in less time than a GPU with fewer cores
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1.2 Heterogeneous Computing

CUDA programming involves running code on two different platforms concur-

rently: a host system with one or more CPUs and one or more CUDA-enabled

NVIDIA GPU devices. NVIDIA GPUs are generally associated only with graphic

devices, however they are also powerful arithmetic engines, capable of running

thousands of lightweight threads in parallel. This capability makes them handy

to compute a parallel algorithm. However, the device is based on a distinctly

different design than the host system, and it is important to understand those

differences and how they influence the performance of CUDA applications, in

order to use CUDA at its best.

1.2.1 Host vs. Device

In the following list the primary differences are described between the host and

the CUDA device.

Threading Resources

Execution pipelines on host systems can support a limited number of con-

current threads. For example, high-end servers can have four hex-core

processors, and can therefore run 24 threads concurrently (or 48, if Hy-

perThreading is supported.). For comparison, the smallest executable unit

of parallelism on a CUDA device comprises 32 threads (termed a warp of

threads). Nowadays NVIDIA GPUs can support up to 1536 active threads

concurrently per many-core processor. This means that on a GPUs with 16

processor there can be more than 24,000 active threads alive at the same

time.

Threads

Threads on a CPU are generally heavyweight entities. The operating system

must swap threads on and off CPU execution channels to provide multi-

threading capability. Context switches (when two threads are swapped) are

typically slow and expensive. By comparison, GPU threads are extremely

lightweight. In a typical system, thousands of threads are queued up (in

9



warps of 32 threads each). If the GPU must wait on one warp of threads,

it simply begins executing work on another. Because separate registers are

allocated to all active threads, no swapping of registers or other state need

occur when switching among GPU threads. These resources are allocated

to each thread until its execution is completed. In summary, CPU cores are

designed to minimize latency for one or two threads at a time each, whereas

GPUs are designed to handle a large number of concurrent, lightweight

threads in order to maximize throughput.

It is useful to point out that the program flow control system, on a CPU,

is much more sophisticated than in a GPU. This, sometimes, can be a big

limitation, as we will see later.

RAM

The host system and the device each have their own distinct attached phys-

ical memory. The host and device memory communicate through the PCI

Express (PCIe) bus. The items in the host memory can be moved to the

device memory and using back the PCIe bus.

These above are the primary hardware differences between CPU hosts and GPU

devices with respect to parallel programming. The applications written with

these differences in mind can treat the host and device together as an integrated,

heterogeneous system where each processing unit is employed to do the kind of

work it does best: sequential work on the host, and parallel work on the device.

1.2.2 What runs on a CUDA enabled device

The following issues should be considered when determining what parts of an

application should run on a CUDA-enabled device and what parts should not:

• The GPU device is designed to address parallel computations, that can

involve numerous data elements simultaneously. This typically involves

arithmetic operations on large data sets (such as matrices) where the same

operation can be performed on thousands, if not millions, of elements at the

same time. This is a requirement for good performance on CUDA: the soft-
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ware must use a large number (generally thousands, or tens of thousands)

of concurrent threads.

The support for running numerous threads in parallel derives from the

CUDA architecture’s use of a lightweight threading model, as described

above.

• In order to achieve the best performance, there should be some coherence in

memory access by adjacent threads running on the device. Certain memory

access patterns enable the hardware to coalesce groups of reads or writes

of multiple data items into one operation. Data that cannot be laid out so

as to enable coalescing, or that does not have enough locality to use the

global memory cache or on the texture cache effectively, will tend to see

minor speedups when used in CUDA computations.

• To use CUDA, the data values required by the calculations must transferred

from the host to the device using the PCI Express (PCIe) bus, and then

back to the host. These transfers are costly in terms of performance and

their occurance should be minimum. The following two rules of thumb help

to evaluate whether CUDA devices are properly used:

– The complexity of operations should justify the cost of mov-

ing data to and from the device

Code that transfers data for brief use by a small number of threads

will exhibit little or no performance benefit. The ideal scenario is one

in which many threads perform a substantial amount of work.

For example it is useful to analyze the case of a sum of matrices. In

this case, transferring two matrices from the host to the device and

then transferring the results back to the host will not achieve a large

performance benefit.

The issue here is the number of operations performed per data ele-

ment transferred. For the preceding procedure, assuming matrices of

size N × N , there are N2 operations (additions) and 3N2 elements

transferred, so the ratio of operations to elements transferred is 1:3 or

O(1).
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Performance benefits can be more readily achieved when this ratio is

higher. For example, the multiplication of the same matrices requires

N3 operations (multiply-add), so the ratio of the number of operations

to the number of elements transferred is O(N), hence the larger the

matrix the greater the performance benefit. The types of operations

are an additional factor to take into account, as additions have different

complexity profiles than, for example, trigonometric functions.

To summarize, it is important to include the overhead of transferring

data to and from the device in order to determine if operations should

be performed on the host or on the device.

– Data should be kept on the device as long as possible.

The number of data transfers should be minimized. The programs that

run multiple kernels, ( program functions executed by CUDA, they

will be described deeply in 1.4 ) on the same data should favor leaving

the data on the device between kernel calls, rather than transferring

intermediate results to the host and then sending them back to the

device for subsequent calculations. In the previous example, if the two

matrices had already been added on the device as a result of some

previous calculation, or if the results of the addition are required in

some subsequent calculation, the matrix addition should be performed

on the device. This approach should be used even if one of the steps

in a sequence of calculations could be performed faster on the host.

Even a relatively slow kernel may be advantageous if it avoids one or

more PCIe transfers.

1.2.3 Scaling

In our case the term how well a program scales refer to the amount of benefit

that it will achieve by increasing the size of the computation.

By understanding how an application can scale is useful to identify bounds that

lead us to choose the parallelization strategy best suited for a specific problem.

The benefit an application will achieve by running on CUDA depends entirely on

the extent to which it can be parallelized. The code that cannot be sufficiently
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parallelized should be run on the host. That because the cost of supplementary

memory transactions needed by a CUDA kernel could overcome benefits.

Strong Scaling

Strong scaling measures how the time to complete a computation decreases as

more processors are added to a system for a fixed overall problem size.

An application that exhibits a linear scaling has a speedup proportional to the

number of processors added into the system.

Strong scaling is usually equated with Amdahl’s Law. Amdahl’s Law specifies

the upper bound of the speedup which an application can get by parallelizing

part of its code. Essentially the maximum speedup S that a program can reach

is:

S =
1

(1− P ) + P
N

where

• P is the fraction of the total serial execution time spent by the part of the

code that can be parallelized .

• N is is the number of processors available to run the part of code parallelized.

Hence, the larger N is i.e. the greater the number of available processors, the

smaller the fraction P
N

becomes. When N is sufficiently large, the fraction above

tends to zero:

lim
N→∞

1

(1− P )− P
N

=
1

(1− P )
= S

For instance, if three quarters of some code can be parallelized, the maximum

speedup, that can be achieved is

Smax =
1

1− 3
4

= 4

In practical cases, most applications do not exhibit a perfect linear strong scaling.

Anyway, the key message of this section is that the larger the parallelized portion

13



of code is, the greater speedup the parallel code exhibits.

Conversely, if P is a small number (meaning that the application is not sufficiently

parallelizable) increasing the number of processors N does little to improve perfor-

mance. Hence, to get the largest speedup for a fixed problem size it is necessary

to spend same initial effort on increasing P, maximizing the amount of code that

can be parallelized.

Weak Scaling

Weak scaling is a measure of how the time to complete a computational changes

as more processors are added to a system with a fixed problem size per processor;

i.e. , both the overall problem size and the number of processors increase.

Weak scaling is often equated with Gustafson’s Law, which states that, in prac-

tice, the problem size scales with the number of processors. Because of this, the

maximum speedup of a program will be:

S = N + (1− P )(1−N)

where, as for the strong scaling

• P is the fraction of the total serial execution time spent by the part of code

that can be parallelized.

• N is the number of processors available to run the parallel parts of code.

1.2.4 Understanding scaling

To understand which kind of scaling is most applicable to an application is an

important part the programmer should take into account in order to estimate

speedup.

Having understood the application profile, the developer should understand how

the problem size would change if the computational performance change and then

apply either Amdahl’s or Gustafson’s Law to determine an upper bound for the

speedup

14



1.2.5 Getting the right answer

Obtaining the right answer is clearly the principal goal of any computation.

On parallel systems, usually, it is possible to run into challenges typically not

found in traditional serial-oriented programming. These include threading is-

sues, unexpected values due to the way floating-point values are computed, and

challenges arising from differences in the way CPU and GPU processors operate.

Numerical Accuracy

A key aspect of correctness verification for parallel modifications to any exist-

ing program is to establish some mechanism whereby previous reference outputs

obtained from representative inputs can be compared to the results of parallel

computations.

After each change is made, one should ensure that the results match. Some will

expect bitwise identical results, which is not always possible, especially where

floating-point arithmetic is involved.

In general the major problems arise when floating-point computations are in-

volved.

A typical issue is represented by the mixed use of double and single precision

floating point values. Because of their different precision, the results are affected

by rounding and thus they have to be analyzed considering a certain tolerance.

Another frequent issue (very simple to understand but not trivial at all) regards

the fact that floating-point math is not associative. Each floating-point arith-

metic operation involves a certain amount of rounding. Consequently, the order

in which arithmetic operations are performed is important. If A, B, and C are

floating-point values, (A+B) +C is not guaranteed to equal A+ (B +C) ( and

in general it is not) as it is in symbolic math.

When the computation is made parallel, it potentially change the order of opera-

tions and therefore, the parallel results might not match the serial computation.

This limitation is not specific of CUDA, but an inherent issue of parallel compu-

tation on floating-point values.
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1.3 Hardware Implementation

The CUDA architecture is built around a scalable array of multithreaded Stream-

ing Multiprocessors (SMs).

When a CUDA program on the host CPU invokes a kernel grid, the blocks of the

grid are enumerated and distributed to multiprocessors with available execution

capacity as previously shown in figure 1.4.

The threads of a thread block are executed concurrently on one multiprocessor,

and multiple thread blocks can be executed concurrently on one multiprocessor.

As thread blocks terminate, new blocks are launched on the vacated multiproces-

sors.

A multiprocessor is designed to execute hundreds of threads concurrently. To

manage such a large number of threads, it employs a unique architecture called

SIMT (Single-Instruction, Multiple-Thread) that is described in Section 1.3.1.

1.3.1 Single-Instruction Multiple-Thread Architecture

The SM creates, manages, schedules, and executes threads in groups of 32 parallel

threads called warps.

The threads composing a warp start together at the same program address, but

they have their own instruction address counter and register state and are there-

fore free to branch and execute independently.

When a multiprocessor is given one or more thread blocks to execute, it partitions

them into warps that get scheduled by a warp scheduler for execution. The way

a block is partitioned into warps is always the same; each warp contains threads

of consecutive, increasing thread IDs.

A warp executes one common instruction at a time, so full efficiency is achieved

when all 32 threads of a warp agree on their execution path. If the threads of a

warp diverge via a data-dependent conditional branch, the warp serially executes

each branch path taken, disabling threads that are not on that path, and when

all paths complete, the threads converge back to the same execution path.
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Branch divergence occurs only within a warp; different warps execute indepen-

dently regardless of whether they are executing common or disjoint code paths.

The execution context (program counters, registers, etc) for each warp processed

by a multiprocessor is maintained on-chip during the entire lifetime of the warp.

Therefore, switching from one execution context to another has no cost, and at

every instruction issuing time, a warp scheduler selects a warp whose threads are

ready to execute their next instruction (the active threads of the warp) and issues

the instruction to those threads.

In particular, each multiprocessor has a set of 32-bit registers that are partitioned

among the warps, and a parallel data cache or shared memory that is partitioned

among the thread blocks (This will be explained in more depth later in sections

1.6.3 and 1.6.4).

Should be clear that the number of blocks and warps that can reside and be pro-

cessed together on the multiprocessor for a given kernel depends on the amount

of registers and shared memory used by the kernel and on the number of registers

and shared memory available on the multiprocessor. There are also a maximum

number of resident blocks and a maximum number of resident warps per multi-

processor. These limits, as well as the amount of registers and shared memory

available on the multiprocessor, derive from the compute capability of the device.

If there is not enough shared memory available per multiprocessor to process at

least one block, the kernel will fail to launch.

The total number of warps Wblock in a block is as follows:

Wblock = d T

Wsize

e

where d· e is the ceiling operator and

• T is number of threads per block

• Wsize is the size of a warp, in all current devices is 32

The total number of registers Rblock for a block is as follows:

17



• For device of computing capabilities class 1.x

Rblock = ceil (ceil (Wblock, Gw) ∗Wsize ∗Rk, GT )

• For device of computing capabilities class 2.x

Rblock = ceil (Rk ∗Wsize, GT ) ∗Wblock

where

• Gw = the warp allocation granularity, equal to 2

• Rk = the number of registers used by the kernel

• GT = the thread allocation granularity. Its value is:

– 256 for devices of computing capability 1.0 and 1.1,

– 512 for devices of computing capability 1.2 and 1.3,

– 64 for devices of computing capability 2.x.

The total amount of shared memory Sblock in bytes allocated for a block is as

follows:

Sblock = ceil (Sk, GS)

where

• Sk = the amount of shared memory used by the kernel in bytes

• GS = the shared memory allocation granularity, which is equal to

– 512 for devices of compute capability 1.x

– 128 for devices of compute capability 2.x.
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Figure 1.5: Threads with divergent branches are serialized

1.3.2 Control Flow

The CUDA architecture implements a very simple control flow policy in order to

save resources for computation as much as possible. As a consequence, divergent

code paths in a single warp are managed in the simplest way, i.e. , the different

execution paths are serialized. When all threads have completed their divergent

path, they converge back to the same common execution path.(see figure 1.10)

A code with bad management of the warp work flow could significantly affect the

instructions throughput and, as a consequence, the overall program performance.

For example, the worst situation that could be happening is when control flow

depends on thread ID. If that happens, all thread are serialized, and no benefit

is achieved because of the parallel approach.

In conclusion, trying to avoid as much as possible different execution paths within

the same warp should be a high priority in the programmer’s mind.
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1.4 The Kernels

The programming language CUDA C extends the worldwide known C language.

The CUDA C allow the programmer to define special C/C++ functions called

kernel. Such functions are executed N times in parallel by N different CUDA

threads, implementing an antipodal approach compared to the standard C, or in

general with respect to the most common programming languages.

A kernel is define using the global declaration specifier and by specifying the

number of CUDA threads that execute that kernel.

Any kernel call needs a well specified execution configuration on the form <<<

Dg,Db,Ns, s >>> defining:

Dg: The dimension and size of a grid. Dg is of type dim3, a built-in vector type

nothing more that an integer vector of dimension three.

Dg.x ∗Dg.y ∗Dg.z equals the number of threads block launched.

Db: The dimension and size of each block. As above the Db parameter is of

type dim3, representing a programmer friendly way to index threads per

block.

Ns: Ns is of type size t and specifies the number of bytes in shared memory that

is dynamically allocated per block for this call in addition to the statically

allocated memory; this dynamically allocated memory is used by any of the

variables declared as an external array. Ns is an optional argument which

defaults to 0.

s: S is of type cudaStream and specifies the associated stream; S is an optional

argument which defaults to 0.

As an example, a function declared as

1 global void function( float ∗ input)

must be called with a code like this

1 function<<<Dg,Db,Ns>>>(float∗ input);
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1.5 The Threads

1.5.1 Definition

In Computer Science, a thread is the smallest part of processing that can be

scheduled by an operating system. Different processes can not share resources

and memory between them.

Threads, on the contrary, can share resources and memory, making it possible

to realize a multi-thread system over a single processor, thereby emulating a

multi-processor system.

On a real multi-processor architecture (including multi-core architectures) the

scheduler executes physically in parallel each thread on a core.

Multi-threaded programs operate faster on computer systems that have multiple

CPUs, CPUs with multiple cores, or across a cluster of machines.

1.5.2 CUDA Threads

Every CUDA-enabled graphic card has a tens of stream processors. Every stream

processor can manage thousands of threads, making GPU the straightforward

choice for massive parallel computation. As an instance a classic desktop appli-

cation uses, in general, 1-2 threads instead of that an CUDA application can use

5000-8000 threads.

To manage thousands of threads, an efficient approach is needed.

To accomplish this task, NVIDIA provides a 3-component vector called Threa-

dIdx, which can be identified using one-dimensional, two-dimensional or three-

dimensional thread index, forming a one-dimension, two-dimension or three-

dimension thread block. This provides a natural way to invoke computation

across the elements in a domain such as a vector, matrix, or volume.

The index of a thread and its ID relate to each other in a straightforward way.

For a one-dimensional block, they are the same. For a two-dimensional block of

size (Dx,Dy), the thread ID of a thread of index (x, y) is (x+y ∗Dx) and finally,

for a three-dimensional block of size (Dx,Dy,Dz), the thread ID of a thread of
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index (x, y, z) is (x+ y ∗Dx+ z ∗Dx ∗Dy).

There is a limit to the number of threads per block, since all threads of a block are

expected to reside on the same processor core and they necessary have to share

the limited memory resources of that core. On current GPUs, a thread block

may contain up to 1536 threads. However, a kernel can be executed by multiple

equally-shaped thread blocks, so that the total number of threads is equal to the

number of threads per block times the number of blocks. Considering that on

a GPU there are 32 stream processors, and each stream processor manage one

block (see figure 1.4), GPUs can handle almost 50000 active threads at the same

time.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional

grid of thread blocks as illustrated by figure 3.10 . The number of thread blocks

in a grid is usually dictated by the size of the data being processed or the number

of processors in the system, which it can greatly exceed.

Thread blocks must be execute independently: It must be possible to execute

them in any order, in parallel or serially.

This independence requirement allows thread blocks to be scheduled in any order

across any number of cores as illustrated by figure 1.4, enabling programmers to

write code that scales with the number of cores.

Threads within a block can cooperate by sharing data through some shared mem-

ory and by synchronizing their execution to coordinate memory accesses

1.6 Memory Hierarchy

1.6.1 Memory Bandwidth

Bandwidth, the rate at which data can be moved from or to a memory location,

is one of most important parameters to understand the performance of an hard-

ware/software architecture.

This also applies to a CUDA kernel, therefore, it is important to define a standard

way to calculate the Bandwidth value.
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Figure 1.6: Grid of Thread Blocks
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A useful approach is to calculate the theoretical Bandwidth and the effective

Bandwidth. When the latter is much lower than the former, code design or

implementation details are likely to reduce the bandwidth and doing it should be

a primary goal.

Theoretical Bandwidth Calculation

Theoretical bandwidth could be easily computed from device hardware specifica-

tions as follows.

TBw =
(Mck ∗ Iwd ∗Dr)

109

[
GB

sec

]
where

• Mck = Device memory clock rate in Hz

• Iwd = The number of the Byte that the device interface can convey concur-

rently

• Dr = Device memory data rate

• 109 in order to get GByte/s

For instance the NVIDIA Tesla M2090 hardware specifications are as follows:

• Mck = 1.85 GHz = 1.85 ∗ 109 Hz

• Iwd = 384 bits = 48 Bytes

• Dr = 2

therefore

(1.85 ∗ 109 ∗ 48 ∗ 2)/109 = 177.6
GB

sec

Note that, alternatively one can use 10243 instead of 109 as a global divisor. It is

important to be coherent when calculating Theoretical and Effective Bandwidth

so that the comparison can be done.
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It is also useful to calculate the peak of the theoretical bandwidth between the

host and the device memory.

For actual systems where video cards are connected to motherboards through

PCIe x16 Gen2 the peak is 8 GB/s. Hence, comparing it to the almost 178 GB/s

reached by the Tesla device, it is important to minimize data transfer between

host and device as much as possible, even though that means running kernels on

the GPU that do not demonstrate any speedup compared to running them on

the host CPU.

Effective Bandwidth Calculation

The Effective bandwidth can be computed by timing specific program activity

and by knowing how many data are moved by it.

To do so, the expression used is:

EBw =
Br +Bw

109
· 1

time

where

• Br is the number of bytes the program reads

• Bw is the number of bytes the program writes

• time = time spent by memory transfer

A visual profiler provided by NVIDIA provides the Requested Global Load Through-

put and Requested Global Store Throughput values that indicate the global mem-

ory throughput requested by the kernel, and therefore correspond to the effective

bandwidth obtained by the calculation shown above.

1.6.2 Device Memory Spaces

A CUDA architecture has multiple memory spaces where each thread can access

data during kernel execution. Every memory space has a particular scope, making

its data visible to some threads, and hiding it to others.
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Figure 1.7: Memory spaces in a CUDA architecture
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The types of CUDA memory are:

Memory Location on/off chip Cached Access Scope Lifetime

Register On n/a R/W 1 thread Thread

Local Off depends R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off depends R/W All threads+host Host+Device

Constant Off Yes R All threads+host Host+Device

Texture Off Yes R All threads+host Host+Device

1.6.3 Registers

Registers are a type of memory physically allocated in the multiprocessor chip as

shown in figure 1.7. Registers guarantee a very fast access time and a very high

data transfer bandwidth. On the other hand, their size is limited (and small),

varying from 8 KB to 128 KB depending on the device.

Furthermore, registers have to be shared between all threads in a block.

Special care should be reserved by the programmer to the total amount of regis-

ters used in the kernel.

If the registers required by all threads exceed the limit imposed by the architec-

ture, the exceeding ones are “paged” into the device memory (see 1.6.6). This

scenario is called register pressure.

As explained in more depth later in section ??, global memory has a considerably

higher access latency and lower bandwidth. Hence, its performance is typically

quite slower than the registers.

Optionally, in order to prevent register pressure, a programmer can set a compiler

option setting the maximum number of registers each tread can use to some fixed

value, using the option:

−maxrregcount = N N = max register number allowed

Of course nothing is for free, hence that option has to be used carefully.

Registers have a local scope. it means that they aren’t shared by threads and

there is no way for a thread to access the registers define outside itself.
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1.6.4 Shared Memory

Shared memory is a space of memory a step higher in the ’sharing’ hierarchy, in

fact it can be used ’simultaneously’ by all threads in a blocks. Shared memory is

essential in case data have to be shared between threads.

As well as registers, shared memory is on-chip, hence, the shared memory space

is much faster than the global memory space and therefore its use to be preferred

as much as possible.

To achieve high bandwidth, shared memory is divided into equally-sized memory

modules, called banks, which can be accessed simultaneously. Any memory read

or write request made of N addresses that fall in N distinct memory banks can

therefore be serviced simultaneously, yielding an overall bandwidth that is N

times as high as the bandwidth of a single module.

However, if two addresses of a memory request fall in the same memory bank,

there is a bank conflict and the access has to be serialized. The hardware splits a

memory request with bank conflicts into as many separate conflict-free requests

as necessary, decreasing throughput by a factor equal to the number of separate

memory requests. If the number of separate memory requests is N, the initial

memory request is said to cause N-way bank conflicts.

In order to achieve the maximum performance, it is therefore important to un-

derstand how memory addresses map to memory banks in order to schedule the

memory requests so as to minimize bank conflicts. In recent devices, shared

memory has 32 banks that are organized such that successive 32-bit words are

assigned to successive banks.

It should be notes that a bank conflict only occurs if two or more threads access

any bytes within different 32-bit words belonging to the same bank. If two or

more threads access any bytes within the same 32-bit word, there is no bank

conflict between these thread:

For read accesses, the word is broadcast to the requesting threads (only for 2.x

capability devices);

For write accesses, each byte is written by only one of the threads (which thread

performs the write is undefined).
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An example is illustrated by figures 1.8 and 1.9

Shared memory size depends to architecture and is 16 KB per multiprocessor in

case of a device with compute capability of 1.x and three times more for newest

devices with compute capabilities 2.x .

Figure 1.8: left: no bank conflict center: 2-way bank conflict right: no bank

conflict
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Figure 1.9: left: no bank conflict center: no bank conflict right: no bank conflict

1.6.5 Global Memory

Global memory resides in off-chip GDDR5 (in the newest devices) device memory.

Being off-chip, the memory is fairly slower then registers and shared memory

because of the memory transactions needed.

When a warp (group of 32 threads) executes an instruction that accesses global

memory, it coalesces the memory accesses of the threads within the warp into

one or more of these memory transactions depending on the size of the word

accessed by each thread, and the distribution of the memory addresses across the
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threads. In general, the more transactions are necessary, the more unused words

are transferred in addition to the words accessed by the threads, reducing the

instruction throughput accordingly.

For example, if a 32-byte memory transaction is generated for each thread’s 4-

byte access, the throughput is divided by 8. In light of the above, ensuring that

global memory transactions are properly coalesced should be a priority.

How many transactions are really necessary and how throughput varies depends

on the compute capability of the device in use on the system. For devices of

compute capability 1.0 and 1.1, the requirements on the global memory access

pattern that the threads have to undergo to get any coalescing are very strict.

In more detail, for such computing capabilities, a memory access is coalesced if

and only if:

• each thread of an half warp access a contiguous memory area of 64-, 128-,

256-byte.

• the address of the first byte of the memory region accessed must be a

multiple of the memory area size.

• The N-th thread must be access the N-th block of the memory size. In

other words, no cross accesses are allowed.

For devices of higher computing capabilities, the requirements are much more re-

laxed. For devices of computing capability 2.x, since global memory transactions

are cached, the requirements can be easily summarized.

• the concurrent access of global memory by threads is coalesced into a num-

ber of memory transactions equal to the number of cache lines necessary to

serve all threads of a warp.

By Default, in the devices that support caching, the size of a line L1 cache is

128-byte, whereas 32-byte is memory size of cache of second level. To maximize

global memory throughput, it is therefore important to maximize coalescing by:

• Using data types that meet the size and alignment requirements
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• Padding data in some cases, for example, when accessing a two-dimensional

array

• Following the most optimal access patterns (see section 1.6.5)

Access Pattern

Global memory accesses are cached. A cache line has a size of 128 bytes, and

maps to a 128-byte aligned segment in device memory. Memory accesses that

are cached in both L1 and L2 are serviced with 128-byte memory transactions,

whereas memory accesses that are cached in L2 only are serviced with 32-byte

memory transactions.

Hence, caching in L2 only can reduce over-fetch, for example, in the case of

scattered memory accesses.

If the size of the words accessed by each thread is more than 4 bytes, a mem-

ory request by a warp is first split into separate 128-byte L1 cache transactions

requests that are issued independently:

• Two memory requests, one for each half-warp, if the size is 8 bytes

• Four memory requests, one for each quarter-warp, if the size is 16 bytes

Each memory request is then broken down into cache line requests that are issued

independently. A cache line request is serviced at the throughput of L1 or L2

cache in case of a cache hit, or at the throughput of device memory, otherwise.

More than one transaction is needed even thought the size of the global memory

block accessed is equal to the cache line size but is misaligned as shown figure

1.14.

However, such a situation is not so dramatic, because if the next warp accesses

memory addresses that are contiguous to the previous ones, some threads will

be serviced by cache without global memory transaction. Hence only one global

memory fetch is necessary.

In conclusion the programmer has to pay particular attention when he work with
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massive global memory access. If a good access patter is not chosen, making the

global memory access not coalescent, the performance can literally drop off.

For instance consider a very simple experiment:

A kernel that reads a float, increments it and writes it back.

The data processed are 3 millions of float for a total of 12 MByte. Averaging

times over 10000 runs the results are below:

• 3494µs in case of pattern making accesses not coalescent.

• 356µs in case of coalescent access pattern

Stride Access

As exposed in Section 1.6.5, the caches of devices with computing capabilities 2.x

are very useful to get near to maximum global memory transactions bandwidth.

A complete different situation may arise if a non-unit stride access pattern as put

to use.

That is not unusual. One should bear in mind that such a pattern happens quite

every time we manage multidimensional arrays. For this reason, the programmer

should ensure that as much as possible of the data in each line fetched is actually

used.

To better illustrate the effects of strided access it is useful to propose a simple

case with a stride of two (see figure 1.10).

As can be seen in picture above a stride of two leads to a load of two L1 cache

lines per warp (on cache-enable devices). Such a situation results in a 50 % of

load/store efficiency because of half of transferred elements are unused, wasting

bandwidth.

As the stride increases the Bandwidth decreases as shown in figure 1.11.

In light of what explained in this section, it should be clear that a not sharp

access patter can represent a very large performance.
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Figure 1.10: Threads accessing global memory with stride of two

Size and Alignment Requirement

To achieve the highest bandwidth possible, it is necessary to pay attention to the

size and alignment of the global memory data too.

Global memory instructions support reading or writing words of size equal to

1,2,4,8, or 16 bytes. Any access to data residing in the global memory compiles

to a single global memory instruction if and only if the size of the data type is 1,

2, 4, 8, or 16 bytes and the data are aligned.

If this size and alignment requirement is not fulfilled, the access compiles to mul-

tiple instructions with interleaved access patterns that prevent these instructions

from fully coalescing. It is therefore recommended to use types that meet this

requirement for data that resides in global memory.

The alignment requirement is automatically fulfilled for the built-in types like

float2 or float4. For structures, the size and alignment requirements can be

enforced by the compiler using the alignment specifiers

1 align (8)

or

1 align (16)
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Figure 1.11: Effective Bandwidth in a multidimensional arrays copy making stride

variable

1.6.6 Local Memory

The Local memory get its name because its scope is limited to the kernel and

not because of its location. In fact, local memory is an off chip memory and has

the same access cost that global memory. In other words the term local does not

imply faster access.

Local memory is used to store automatic variables that overcome the size of

the available register memory. This is done automatically by the nvcc compiler.

Unfortunately, there is no way to check if a specific variable is assigned to registers

memory or to local memory. All we can do is to know local memory is used by

the kernel. If compiler is set conveniently with the

−− ptxas− options = −v

option it shows the amount of local memory used by kernel (lmem).

1.6.7 Texture Memory

The Texture memory is a read-only memory space that is cached. Therefore, a

texture cache costs one device memory read only on a cache miss, otherwise, it
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Figure 1.12: Example of Global Memory Accesses by a Warp of 4-Byte Word per

Thread, and Associated Memory Transactions Based on Compute Capability:

Case aligned

Figure 1.13: Examples of Global Memory Accesses by a Warp of 4-Byte Word

per Thread, and Associated Memory Transactions Based on Compute Capability:

Case with cross memory accesses

just cost one read from the texture cache. The texture cache is optimized for 2-D

spatial locality (see figure 1.15), hence the threads of the same warp that need to

access adjacent texture cache memory will achieve the best performance.

In certain cases, like image processing, using device memory through texture

fetching can be an advantageous alternative.

1.6.8 Constant Memory

The Constant memory, as its self-explanatory name suggests, is a read only mem-

ory.
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Figure 1.14: Examples of Global Memory Accesses by a Warp of 4-Byte Word

per Thread, and Associated Memory Transactions Based on Compute Capability:

Case misaligned

The Constant memory has to be set by host before kernel runs. Its usefulness is

that it is a cached memory(also in devices where global memory isn’t cached) ,

so as a result, a read operation from it require one device memory transaction if

the requested data is not in the cache, otherwise it just costs one read from the

constant cache.

For all threads of an half warp, a reading operation from the constant cache is as

fast as a reading operation from register as long as all threads access the same

constant cache address. If some thread accesses different cache addresses the calls

are serialized, so that the cost scales linearly with number of different addresses

read by threads of an half warp.

1.7 More Practical Aspects

CUDA C provides a simple way to write programs for CUDA-enabled devices for

users familiar with the C programming language.

It consists of a minimal set of extensions to the C language and a runtime library.

They allow programmers to define a kernel as a C function, and to use some new

syntax to specify the grid and block sizes each time the function is called. Any

source file that contains some of these extensions must be compiled with nvcc.
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Figure 1.15: Optimized Texture pattern

The runtime CUDA programming provides C functions that are executed on

the host to allocate and deallocate device memory, transfer data between host

memory and device memory, manage systems with multiple devices, etc.

The runtime environment is built on top of a lower-level C API, the CUDA driver

API, which is also accessible by the application.

1.7.1 The compiler: NVCC

Kernels can be written using the CUDA instruction set architecture, called PTX,

which is described in the PTX reference manual.

It is however usually more effective to use a high-level programming language such

as C. In both cases, kernels must be compiled into binary code by the provided

compiler called nvcc.

Nvcc is a compiler driver that simplifies the process of compiling C or PTX code:

It simply divide the source code into host code and device code. The host code is
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directly compiled by the classic C/C++ compiler installed on the system, whereas

the device code is compiled by nvcc.
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Chapter 2

Ocean Acoustics

2.1 The Undersea Environment

In order to study the behavior of the sound propagating in the seawater, the

knowledge of the environment surrounding the propagation is needed.

Unfortunately, the ocean’s undersea environment is a very complex environment.

It depends on various elements such as the kind of bottom (shape and material),

depth, temperature of water and air, weather conditions and many other.

Since our goal is to speedup the computation of the sound propagation’s trajec-

tory, it become necessary to simplify the huge number of variables involved, while

keeping the results correct as possible.

To a rough degree of approximation, the ocean can be seen as a very large slab

waveguide.

Slab waveguides are well known structures in the electromagnetic and photonics,

from these fields we know that, the knowledge of the refraction index is essential

in order to understand properties of waveguides.

In the ocean, the refraction index is not known directly, hence, it is useful to work

with the speed of sound, which can be obtained easier.

Generally, the sound speed depends on density and compressibility, hence, it de-

pends on static pressure, temperature and water salinity. A good approximation
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of the speed of sound deriving from what we know of these parameters, is [6]:

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + (1.34− 0.01T )(S − 35) + 0.016z

where

• T is the temperature of water expressed in degrees Celsius.

• S is the salinity in part per thousand.

• z is the depth in meters.

The formula above relates the c parameter to all water parameters and its name

is sound speed profile (SSP).

It is easy to guess that the weather above the surface, as well as its daily and

seasonal changes, influence the sound speed profile.

Currents, winds, ocean storms and other weather events produce a mixing on

near-surface water layers, giving rise to the so-called mixed layer, where the tem-

perature is approximatively constant.

The depth of the mixed layer is not constant, but it is related to the strength of

the weather events. The stronger the weather events are, the deeper the mixed

zone becomes.

Below the mixed layer there is a region called thermocline, where the water

temperature is not affected by weather conditions, but only by increasing depth.

Therefore, sound speed profile decreases down to a minimum value, if the water

is sufficiently depth.

Below the thermocline, there is a zone called deep isothermal layer.

On the deep isothermal layer the depth is sufficiently high to make temperature

insensitive from depth changing. Therefore, into this zone the sound speed profile

increases due to increasing pressure.

A different phenomenon is observed if we are analyzing a sound speed profile in

polar latitude. In fact, the extreme coldness of the air makes water coldest near

the surface, hence no mixed layer and thermocline exist.

An example of schematic sound speed profile in several cases is shown in figure

2.1
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Figure 2.1: Generic sound speed profile

In figure 2.1 it is pointed out the deep sound channel axis which is referred to

the depth between the deep isothermal region and the mixed layer where the SSP

reach a minimum value, and this is the place where the sound tends to bend

towards it.

An example of a realistic scenario is depicted in figure 2.2

The ocean environment varies both in space and in time. Image 2.3 shows an

example of temperature data recorded in the Norwegian sea using a towed ther-

mistors chain.

Although the data was collected in a 2-week period in June, it exhibits clear

differences.

Figure 2.3a and 2.3c show a clear example of what said.

In general, all considerations made above have an effect on the sound propagation.

They produce both attenuation and acoustics fluctuations.
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Figure 2.2: Sound speed contours taken from the North and South Atlantic out

on longitude of 30.50 °W

2.2 Sound propagation in the ocean

In order to study the propagation of the sound on the seawater, one approach is

to use the ray tracing method.

In physics, ray tracing is a method for calculating the path of waves or particles

through a system with regions of varying propagation velocity, absorption char-

acteristics, and reflecting surfaces.

Ray tracing works by assuming that the particle or wave can be modeled as a

large number of very narrow beams, i.e. rays, and that there exists some distance,

possibly very small, over which such a ray is locally straight.

The ray tracer will advance the ray over this distance, and it will employ the

local derivative of the sound speed to calculate the new direction of the ray. The

process is repeated until a complete path is generated.

The process is repeated with as many rays as are necessary. Every ray differs

to the other by its launching angle, i.e. the angle that the first linear piece of

trajectory has with respect to the horizon.

To apply the ray tracing method to the ocean issue, the knowledge of the sound

speed profile is required. Using the Snell’s law, it is possible to relate the ray

angle with the local value of sound speed.

cos θ

c
= constant

Snell’s law points out that rays tend to bend heading towards a zone with lover

sound speed.
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Figure 2.3: Temperature profile as a function of depth and range section taken in

the Norwegian sea using a towed thermistor array.

An example of which type of path a sound propagation can follow is shown in

figure 2.4.

The arctic scenario has been separately described because of its different nature.

More details follow:

path A

At polar latitudes, the presence of ice on top of the seawater is typical.

This produces a common sound speed profile pattern in which the minimum

sound speed, is observed on the surface of the water. Therefore, every ray

despite the launching angle, will bend toward the surface. A typical polar

path is a continuous surface bouncing path.

path B

In a more general environment (not polar) a propagation pattern similar to

the polar one can still take place. If a source is close enough to the surface,

and its launching angle is small, the way in which ray travels is by bouncing

repeatedly on water-air interface.

path C
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Figure 2.4: Schematic representation of various types of sound propagation paths

in the ocean

Under certain conditions a ray can propagate following the deep sound

channel axis, creating an deep sound channel never interacting with seabed

or surface. This type of path is typical of long-range transmissions, because

the absence of interactions with the boundaries of the water column allow

the ray to conserve its power after long distances.

path D and E

A ray that leaves the source with a sufficiently steeper angle is no longer

bounded within the deep sound channel, and will interact with the bound-

aries while it propagates.

path F

The Last path considered here is a common example of what happens in

a shallow water environment. In such a situation a deep channel does not

exist so a ray will very likely interact with the water-column boundaries.

Note that Snell’s law foresees the presence of a refracted ray under certain con-

ditions. In the ocean environment, these conditions are always true, thus a fully

refracted rays can be present. This at every interaction with the surface or the

bottom, part of the ray energy is lost.

Summarizing, the higher the number of interactions, the shorter the range a ray

can cover.
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Figure 2.5: Geometry for surface image solution

Exists a classification of rays focused on the type of interactions. The classification

distinguishes between four types of rays:

Refracted-Refracted (RR)

Rays only propagating through refracted path and never interacting with

the surface or the bottom.

Refracted Surface-Reflected (RSR)

Rays only bouncing off the sea surface

Refracted Bottom-Reflected (RBR)

Rays only bouncing off the seabed

Surface-Reflected Bottom-Reflected (SRBR)

Rays reflected off both the sea surface and the seafloor
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2.2.1 Deep water propagation

The most interesting deep water propagation feature is the possibility to cover a

very long range. This depends on a particular conformation of the sound speed

profile which reduces bottom interactions to a minimum. Hence, the ray paths

are either refracted refracted or refracted surface-reflected.

Lloyd-Mirror pattern

In a deep water condition a typical sound field pattern is the Lloyd-Mirror pattern,

an acoustic interference pattern produced by a point source near a perfectly

reflecting sea surface.

Figure 2.5 shows how the pressure field at a fixed point P depends on both a

direct ray R1 and a reflected ray R2. The field can be written simply as the

complex sum of the two rays

p(r, z) =
eikR1

R1

− eikR2

R2

where

k =
2π

λ

is the acoustic wavenumber, which depends on the wavelength λ, and

R1 =
√
r2 + (z − zs)2 R2 =

√
r2 + (z + zs)2

are the distances traveled by the two rays.

Under the assumption that R� zs, R1 and R2 can be simplified as

R1 ' R− zs sin θ R2 ' R + zs sin θ

and as a consequence an approximated form of the complex sound field is

p(r, z) ' 1

R

[
eik(R−zs sin θ) − eik(R+zs sin θ)

]
=
eikR

R

[
e−ikzs sin θ) − eikzs sin θ)

]
= −2i

R
sin (kzs sin θ) eikR
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hence the amplitude of the sound field is

|p(r, z)| = 2

R
| sin(kzs sin θ)|

that shows a pattern with local maxima and minima, unlike a classical monoton-

ically decreasing trend of a point source in free space ( |p| ∼ 1/R ) .

After some straightforward algebra, it can be shown that the number of the local

maximum ( minimum ) values are

M = int

[
2zs
λ

+ 0.5

]

where λ is the wavelength.

Using a far-field approximation, the pressure amplitude becomes

|p| ' kzszr
r2

showing that decay becomes monotonic in the far-field, equivalent to a transmis-

sion loss of

TL = 40 log r

Figure 2.6 depicts a transmission loss computed taking care of the Lloyd-Mirror

pattern influence.

It shows a typical oscillatory pattern with M peaks in the near-field propagation

regime, and a monotonically decreasing pattern in the far-field propagation. Note

that the strong field decay caused by the L-M pattern is entirely an interference

effect. Such an approximation is very useful to take into account that the Lloyd-

Mirror pattern yields results close to the exact propagation pattern when we no

estimate o the complex pressure phase is available.
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Figure 2.6: Lloyd-Mirror pattern transmission loss

Deep water propagation

As stated before, the transmissions in deep water, under certain conditions, can

cover very long ranges.

The first particular (and very interesting) propagation regime is the so called con-

vergence zone propagation. This type of propagation, shown in figure 2.7, form a

downward beam, which after being refracted, resurfaces creating a zone of high

sound intensity.

This phenomena is periodic in range and permits, if a receiver is put on a conver-

gence zone, to get the signal power benefiting from the focusing of all the rays.

It can be seen looking at the transmission loss showed in figure 2.8. Studies in

the early 1960s reported experimental data of transmissions covering more than

700 km.

On the other hand, convergence zone propagation only occurs in the presence

of a water depth exceeding about 3500 m in the Atlantic and 2000 m in the

Mediterranean.
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Figure 2.7: Convergence zone propagation

Figure 2.8: Convergence zone propagation transmission loss
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Figure 2.9: Deep sound channel propagation in the Norwegian sea

Another deep-water propagation regime is the propagation in the deep sound

channel (Figure 2.9).

This sound channel allows propagating rays to never interact with boundaries

(RR path).

In other words, power radiated by a source propagates without encountering

reflection losses. A necessary condition for the existence of deep channel prop-

agation patterns is that the sound speed axis is below the surface of the ocean.

Additionally, the portion of the source trapped in the “waveguide” is directly

proportional to the aperture of the ray angles propagating. It can be determin-

istically found by as

θmax = arccos(
c0
cmax

)

Generally, this source aperture is between ±10°and ±15°: Like convergence zone

propagation, deep water propagation can travel over distances of thousands of

kilometers.

The last deep water propagation introduced is the Surface-Duct propagation.

In specific climatic situations, the temperature profile exhibits a regular isother-

mal profile. This layer is maintained isothermal by the mixing effect induced by

surface winds. Windier regions have a mixed layer’s depth that can be around

200-300 m below sea surface, whereas a more calm zone features shallower mixed
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layers, around 25-30 meters of depth.

Therefore, the presence of a mixed layer acts as a waveguide trapping a portion

of power emitted inside it. An example is given in figure 2.10. In this figure

shows the occurrence of a shadow zone. This phenomenon takes place because

steeper rays can not be held inside a surface duct, but propagate through a deep

water refracting path. As what happens in a dielectric waveguide, the guiding

Figure 2.10: Sound Duct Propagation

effect is related with the frequency of the source. There exists a cutoff frequency.

The rays propagating at lower frequencies can not be guided by the duct, and

propagate following other paths.

For an isothermal layer the cutoff frequency can be computed as:

f0 '
1500

0.008D3/2

where D represents the depth of the mixed layer in meters.

It has to be pointed out that surface duct propagation leads strong to interact

with the surface, hence the quality of such a transmission is strongly related with

the sea surface conditions.

53



2.2.2 Arctic Propagation

Because of the ice on the sea surface, the propagation in the arctic environment

assumes a typical pattern as in figure 2.11.

The two-segment linear sound speed profile characteristic of polar latitude, pro-

duces a very strong surface duct that contains most of the energy emitted. Only

steep rays can escape and propagate by deep refracting path. Arctic propagation

is known to degrade rapidly with increasing frequency above 30 Hz.

Moreover, it has been proved that propagation functions poorly at a frequency

below 10 Hz. The optimal propagation frequency is:

fopt =
c0

4zs sin θc

where

• c0 is the sound speed at the source location

• zs is the source depth

• θz is the critical grazing angle, i.e. the launching angle that produces a no

bottom interacting ray that just grazes the seabed.

An example, for the situation showed in figure 2.11 the optimal frequency is

fopt = 12 Hz.

2.2.3 Shallow Water Propagation

One of the main features of shallow water propagation is that it takes place

mostly via bottom interacting paths: the most typical path are refracted-bottom

reflected, or surface-reflected bottom-reflected.

Typical shallow water environments are found for water depths up to 200 m. A

common shallow water propagation pattern is showed in figure 2.12.

It can be noticed that every propagating ray interacts many time with the bound-

aries, mainly with the seabed. Since the seafloor is a lossy boundary, the prop-

agation losses in shallow water are dominated by bottom reflection losses at low

and intermediate frequencies, and scattering losses at higher frequencies.
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Figure 2.11: Arctic Propagation

Figure 2.12: Shallow water propagation

Because of the high number of sea bottom interactions, the transmission loss is

extremely dependent on the location. The graph in figure 2.13 shows experimental

data collected in various world locations.

It shows a large collection of transmission loss measurement along a 100 km path,

caused by different bottom conformations, that cause transmission loss variability

at a fixed transmission frequency.

Figure 2.14 displays how different locations exhibit completely different frequency

losses.
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Figure 2.13: Transmission loss variability in shallow water conditions over a path

of 100 km
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Figure 2.14: Contoured propagation losses versus frequency and range in a 60 m

depth Barents sea (top) and 90 m depth English channel(bottom)

2.3 Sound attenuation in sea water

Before delving into the details of a volume seawater attenuation, it is useful to

give a brief introduction of the attenuation of a plane wave travels in free space.

Plane wave attenuation α is a Neper/meters value that encloses all information

about wave attenuation. It is related to the wave amplitude by the differential

equation

dA

dx
= −αA −→ A = A0e

−αx

where A0 represents the amplitude of the wave at distance x = 0.

Often, the attenuation value is more conveniently given in dB
m

or dB
km

.
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The conversion can be easily computed as follows:

Loss = −20 log
A

A0

= α′x ' 8.686αx

hence

α′ = 8.686α

[
dB

m

]
or

α′ = 8686α

[
dB

km

]
After these preliminary remarks, we focus on a real scenario.

When sound propagates in the ocean, its power is continuously scattered and ab-

sorbed. These two phenomena are not easy to separate, thus their contributions

are grouped into a single frequency depending function.

A first approximation of the attenuation value α′ can be expressed through

Thorp’s formula [9]:

α′(f) ' 3.3 ∗ 10−3︸ ︷︷ ︸
correction term

+
0.11f 2

1 + f 2︸ ︷︷ ︸
B(OH)3 relaxation

+
44f 2

4100 + f 2︸ ︷︷ ︸
MgSO4 relaxation

+ 3.0 ∗ 10−4f 2︸ ︷︷ ︸
pure water interaction

[
dB

km

]

A more accurate formula for the prediction of α′, depending also on the tem-

perature T, the water density D and the pH, has been proposed by Ainslie and

McColm [1] and is:

α′(f, T,D, pH) = 0.106
f1f

2

f 2
1 + f 2

e
pH−8
0.56 + . . . L99 Boric acid relaxation

+ 0.52

(
1 +

T

43

)(
5

35

)
f2f

2

f 2
2 + f 2

e−
D
6 + . . . L99 Magnesium sulfate relaxation

+ 0.00049f 2e−(T/27+D/17) L99 Pure water interaction

where

f1 = 0.78
√

5/35eT/26 and f2 = 42eT/17

Both formulas are based on the same concept that attenuation exhibits a behavior

related to the presence of salts melted in the sea water: as sound waves interact

with the molecules of these salts, part of the sound energy is transferred to the

molecules in the form of heat, producing the macroscopic sound attenuation ob-

served.

The frequency dependence of α′ related with chemical interactions are showed in

figure 2.15
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Figure 2.15: Frequency ranges where different processes of attenuation in sea

water take place
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2.4 Bottom Interaction

When we want to study what happens to a propagating ray when it interacts

with the seafloor it is necessary to deal some preliminary considerations.

First of all, it is required to decide which seabed model to adopt. The ocean

bottom is often modeled as fluids.

This means that the bottom supports only compressional waves. Such an ap-

proximation is appropriate if the seafloor is made of a sufficiently thick layer of

sediments. If this is not true, that is, if sound interacts directly with the base-

ment, the bottom of the ocean has to be modeled as an elastic body, which means

it supports both compressional and shear waves.

In reality the seabed is a viscoelastic body, meaning that it is also lossy.Accurately

modeling bottom interactions is the key to properly predict the propagation of

sound, especially when many interactions with the boundaries take place.

A geoacoustic model is generally chosen as a model of the real seafloor.

On the other hand, the full geoacoustic model is complicated as it depends on

many parameters such as the compressional wave speed, the shear wave speed,

the compressional wave attenuation and so on.

In order to get an overview on what happens when sound interacts with the

bottom, we can analyze the model discussed above, which models bottom as

fluid.

We can consider reflection at an interface separating two homogeneous fluid media

with density ρi and speed of sound ci. We can write the acoustic pressure as

pi = exp(ik1(x cos θ1 + z sin θ1)) (2.1)

pr = R exp(ik1(x cos θ1 − z sin θ1)) (2.2)

pt = T exp(ik2(x cos θ1 + z sin θ2)) (2.3)

By imposing the continuity of pressure, we get

1 +R = T exp(i(k2 cos θ2 − k1 cos θ1)x)
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which yields Snell’s law of refraction

k1 cos θ1 = k2 cos θ2

and

R =

ρ2c2
sin θ2
− ρ1c1

sin θ1
ρ2c2
sin θ2

+ ρ1c1
sin θ1

T =

2ρ2c2
sin θ2

ρ2c2
sin θ2

+ ρ1c1
sin θ1

From the above expressions, it can be derived that there exists a critical angle

below which total reflection occurs ( |R| = 1 and |I| = 0). The critical angle

is found to be:

θc = arccos

(
c1
c2

)
In the general case of a real lossy bottom, R is complex, with amplitude lower

than one, which means that it causes both loss and phase shift.

However, the reflection loss for a subcritical incident angle is still much smaller

than for a supercritical angle.

Opposite to perfect reflection, there exist an angle where all energy is transferred

into the bottom layer. It’s called intromission angle and is equal to [4]

θ0 = arctan

√
1− (c2/c1)2

((ρ2c2)/(ρ1c1))2 − 1

If the seabed is muddy, it can affect propagation.

Many other, more accurate models exist as presented in [4].

Made this overview, the way the above concepts are applied in the ray tracing

algorithm will be explained in the next of this thesis.
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Chapter 3

Implementation Of A Ray Tracer

for Underwater Sound

Propagation Modeling Using

CUDA

3.1 Introductory material

The sound propagation in the ocean, is mathematically described by a set of

equations collectively referred to as the wave equations.

The wave equations form the foundation over which several models have been

developed [4].

Five models are typically used to describe the sound propagation:

• fast field program model

• normal mode model

• ray model

• parabolic equation model

• finite difference model
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The work presented in the following is focused on a fast algorithm to solve the

wave equations based on the Ray Model approach.

The ray model method was widely used in the middle of the twentieth century

and is still considered a good trade-off between the computational complexity

required to find a solution to the wave equations and the accuracy of the solution

found. While other methods for solving the wave equations have been developed

to date their computational requirements are much greater than those of the ray

model [4]. We will focus on the latter in what follows.

Moreover, its numerical implementation shows many possibilities of improvement

upon which it has been decided to investigate.

3.1.1 A Brief Mathematical Introduction

The study of sound propagation starts from the Helmholtz equation in Cartesian

coordinates.

∇2p+
ω2

c2(x)
p = −δ(x− x0) (3.1)

where

• p(x) is the complex value of sound pressure

• ω is the angular frequency of the source

• c2(x) is the speed of sound at the coordinates x = (x, y, z)

• δ(· ) is the Dirac delta function

In order to get some equations describing the ray path, we look for a particular

solution of the Helmholtz equation written in the form

p(x) = eiωτ(x)
∞∑
j=0

Aj(x)

(iω)j

This form of the Helmholtz equation is known in the literature as the ray series.

By differentiating this solution twice and by substituting it into the Helmholtz
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equation (3.1) we get

eiωτ(x)

[
(−ω2|∇τ |2 + iω∇2τ)

∞∑
j=0

Aj
(iω)j

+ 2iω∇τ
∞∑
j=0

∇Aj
(iω)j

+
∞∑
j=0

∇2Aj
(iω)j

]
+

ω2

c2(x)
p = −δ(x−x0)

After some algebra, it can be seen that this form of the Helmholtz equation can

be parted into sub-equations as follows
O(ω2) : |∇τ |2 = 1

c2(x)

O(ω) : 2∇τ · ∇ A0 + (∇2τ)A0 = 0

O(ω1−j), j = 1, 2, · · · : 2∇τ · ∇ Aj + (∇2τ)Aj = −∇2Aj−1

The O(ω2) equation is known under the name of Eikonal equation. The other

equations are generally referred to as transport equations.

The power of such form is than not solving all sub-equations is necessary, but

just solving both the Eikonal equation and the highest order transport equation

produce the results we are seeking.

As we will see later in more detail, the solution to the Eikonal equation is re-

quired in order to get the trajectory and phase of the ray, whereas the transport

equation gives information on the ray amplitude, which is required to find the

sound pressure.

Eikonal Equation

What it is expected from the Eikonal equation solution is the ray path, hence we

can define the ray trajectory as

dx

ds
= c∇τ

where s represents the arc-length of the ray.

By differentiating this equation with respect to s we get (considering only the

x-component)

d

ds

(
1

c

dx

ds

)
=

d

ds

(
dτ

dx

)
=
c

2

d

dx

[(
dτ

dx

)2

+

(
dτ

dy

)2
]

=
c

2

d

dx
|∇τ |2
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then by using the Eikonal equation and by repeating the procedure for other

coordinates, we obtain the equations for the ray path:

d

ds

(
1

c

dx

ds

)
+

1

c2
dc

dx
= 0

d

ds

(
1

c

dy

ds

)
+

1

c2
dc

dy
= 0

d

ds

(
1

c

dz

ds

)
+

1

c2
dc

dz
= 0

Rewriting them in cylindrical coordinates (r, z) we get

dr

ds
= c· ξ(s) dξ

ds
= − 1

c2
dc

dr
dz

ds
= c· ζ(s)

dζ

ds
= − 1

c2
dc

dz

where the auxiliary variables ξ and ζ have been introduced in order to write the

ray equations in the first order form.

Solving these differential equations, it is possible to obtain the trajectory of the

ray as shown in figure 3.1.

Figure 3.1: trajectory of a ray computed solving the ray equations
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Many times it is useful to have equations with the range as the independent

variable instead of s.

To get it we can proceed as follows. By dividing the ray equations by dz
ds

we

obtain

dz

dr
=
ζ

ξ
(3.2)

dξ

dz
= − 1

c3ζ

dc

dr
(3.3)

dζ

dz
= − 1

c3ζ

dc

dz
(3.4)

Then increasing the differential order of (3.2) and substituting on it the equations

(3.3) and (3.4), it becomes

d2r

dz2
=

dc
dz
− ξ

ζ
dc
dr

c3ζ2
(3.5)

Moreover, rearranging the ray equation is possible to write it as

ζ2 =
1

c2

(
dr

ds

)2

=
1

c2
1

1 + ( dr
dz

)2
(3.6)

Now using (3.5) and (3.6), we obtain the following differential ray equation for

the ray range r as a function of z.

d2r

dz2
=

[
1 +

(
dr

dz

)2
][

1

c

(
dr

dz

)
dc

dz
− 1

c

dc

dr

]
(3.7)

Following the same steps, it is possible to obtain the ray depth z as a function of

r.

The ray equations written in these forms point out the dependency of the trajec-

tory from the variation of c, both in range and in depth.

As we have seen in the previous chapter, the value of the speed of sound is very

sensitive with respect to changes in depth.

On the contrary, in general, the variations of the sound speed in a seawater envi-

ronment for a fixed depth around a sound source are negligible.

Therefore, the suppression of range dependency in c is a common procedure that

allows to greatly simplify ray equations.

In fact, (3.7) becomes

d2r

dz2
=

1

c

dr

dz

dc

dz

(
1 +

(
dr

dz

)2
)
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After working out a few mathematic calculations, it produces a more handy

solution

r(z) = r(z0) +

∫ z

z0

ac√
1− a2c2

dz′ (3.8)

3.1.2 Stratified media

In general, the more detailed the knowledge of c is, the more accurate the calcu-

lated path will be.

The information we get about the values of c is derived from periodical measures

of water column features, which provide tabulated value of c.

Moreover, to perform the computation of the ray trajectory, we need a continuous

function representing c. Therefore, a classical interpolation problem arises.

Interpolation of data is a problem deeply studied in literature and tens of algo-

rithms exist.

In order to accomplish our aim, the use of the linear interpolation is the right

choice, guaranteeing an acceptable correctness and a simple management. We

will refer to a medium where the speed of sound is linearly interpolated using the

term “c-linear” medium.

With this choice, the water column can be viewed as a stack of c-linear layers,

i.e., a stratified medium.

The boundaries of each layer are represented by two successive points of the

tabulated sound speed profile.

Within each layer, the speed of sound can be expressed simply as

c(z) = c0 + gz

where c0 is the y-intercept of the line passing through two successive sound speed

profile points and g is the line slope.

Having defined c(z) in such a way, equation (3.8) can be easily integrated yielding

r(z) = r(z1) +

√
1− a2c2
ag

∣∣∣∣c(z)
c(z1)

This equation can be rearranged in the typical form of the circumferences

(r − (r(z1)− b))2 +

(
z +

c0
g

)2

= R2
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where

R =
1

ag
(3.9)

b =

√
1− a2(c0 + gz1)2

ag
(3.10)

are respectively the radius and the range coordinate of the circle center.

The circumference center’s depth is placed where the speed of sound vanishes,

that is, at z = − c0
g

.

Therefore, in a c-linear media the ray follows a circular trajectory as showed in

figure 3.2

III

III IV

range

de
pt

h

R

Figure 3.2: Trajectory of a ray in a c-linear medium: the trajectory cases I, II,

III and IV occur depending both on the ray departure angle and on the slope of

c line within the layer

3.1.3 Path in the whole stratified medium

As previously discussed, to assume that c is range-independent throughout the

medium is very handy; along with linear interpolation, this provides a very simple
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function describing the variation of the speed of sound between two tabulated

depths.

Using this approach, the environment can be represented as a layered medium as

figure 3.3 shows. Figure 3.3 also shows that the water column can be modeled as

stack of c-linear layers.

In order to compute the entire path of the ray in the medium, for each c-linear

layer we can compute the circular trajectory of the ray, and joint the circle arcs

contained between the boundaries of the layers.

Figures 3.4a, 3.4b, 3.4c, 3.4d and 3.5 show some possible examples.

z

rc

Figure 3.3: A piecewise-linear sound speed profile gives rise to a layered medium
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Figure 3.4: Examples of ray trajectory within a layer, corresponding to the cases

I, II, III, and IV in Fig. 3.2
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Figure 3.5: All trajectories computed inside every layer are linked together yield-

ing the complete ray trajectory
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3.2 CUDA Algorithm

As explained in Section 1.2, when a programming parallel software it is necessary

to identify which parts of the algorithm can be well parallelized, and which cannot.

Generally, an algorithm solving real problems is made by a mix of the two cases

above and therefore its common execution path could appears like the following:

sync

sync sync

sync & share point

Figure 3.6: A typical program run path

Since we desire to develop an algorithm well suited for the CUDA program-

ming model, we must identify where parallelization works and where it has to be

stopped, turning back to a serial execution path. Going back to the circular ray

trajectory introduced in Section 3.1 it can be seen that once the circle parameters

are known, the computation of the trajectory inside a layer needs nothing more.

Hence it can be parallelized.

Therefore the tracing algorithm has been designed with two level of paralleliza-

tion:

• Parallelization across the rays. Every CUDA threads block computes

the trajectory of six rays.

• Parallelization of the ray. 32 threads work at the same time on every

ray.

This means that there are 192 active threads on every CUDA block. This choice

has been made in order to not overload the GPU (see Section 1.6.3).

The ray tracing theory assumes that the rays are independent each other, hence

the parallelization between rays can be full.

72



On the other hand, the threads working on the same ray cannot proceed in a

complete parallel way because they need to know the circle parameter of the

layer where they are computing the trajectory and in order to get the circle pa-

rameters, some initial conditions are necessary. Since the initial conditions come

from the trajectory computed on the previous layer, the algorithm will proceed

executing some parts in a complete parallel way (path inside the layer) interleaved

by convergence points.

Following is displayed the CUDA threads runs (figure 3.7).

sync

sync sync

sync & share point

Figure 3.7: The CUDA algorithm run path. The computation proceeds concur-

rently until the threads need to understand the new launching point. Then the

parallel run can proceeds

The algorithm will compute the circular trajectory layer-by-layer until the ray

range overcomes the valued set by the user. For every layer that the tracing

computation crosses, the algorithm proceeds as follows:

• Using the launching conditions it compute the circle parameters, i.e. center

and radius

• It Divide the layer depth into 32 equally spaced points.

• Every of the 32 thread computes one point per layer.

• When the entire trajectory of the layer is known the threads cooperate in

order to manage ray bottom/surface interaction. If it happened the threads

compute the coordinates of the interaction and the reflection angle.

• The launching conditions for the next layer trajectory computation are set.
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In the next, the above steps are described in more detail.

Launching Conditions And Circle parameters

At this point it should be clear that for every layer it is necessary to know the circle

parameters that make it possible to compute the ray trajectory using Equation

(3.8).

To get the parameters we need, it is required that some initial conditions have

been set by the previous-layer iteration. It is necessary to know the coordinate

of the last trajectory point computed from which the computation restarts and

the ray angle at this point.

If the iteration is the first, the initial conditions are the coordinates of the sound

source and the ray angle at the source. The source ray angle is derive as

StartAngle+
StartAngle− EndAgnle

Nrays
∗RayID (3.11)

where

• the StartAngle(EndAngle) is the maximum(minimum) angle value span on

which the rays are computed

• the Nrays is the number of the ray computed by the simulation

• the RayID is the numerical identifier of the ray.

By the knowledge of these starting parameters the algorithm can continue. First,

is necessary to know on which layer we are in. This is accomplished using the

function

1 i = wws2(&livello[0], zIn, orders[y ].Aing, maxIndexLayer);

that using the ray angle and the ray deepness, furnishes the layer’s ID number,

i.e. a numeric identifier assigned to every layer, we are looking for.

The ray angle is necessary only if the starting point lands on the interface between

two layers, in order to disambiguate on which layer the algorithm will proceed.
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Finally, when the ID of the layer involved in the computation of the trajectory

piece is known, it is possible to compute the circle parameters.

This is what the next part does, computing the parameters requested.

1 cIn = ssp v2(layer[ i ], zIn) ;

2 a = cosf(orders[y ].Aing)/cIn;

3 z0 = −cIn/layer[i ]. g;

4 R = abs(1/(a ∗ layer[i ]. g)) ;

5 zMax = zIn + z0 + R;

6 zMin = zIn + z0 − R;

Layer Partitioning and Trajectory Points computation

Until we do not leave the layer from where this piece of computation has started,

all trajectory points are simply derived by applying the equation 3.8 with the

circle parameters just calculated.

To obtain the minimum waste of computation time, the layer depth interval is

divided into a set of equally spaced points equal to the threads number involve

in the ray, i.e. 32.

In this way, every thread computes only one trajectory point per layer. The

following listing does what above, setting a depth coordinate point on which the

thread will compute the related range. Using that into (3.8), the CUDA thread

computes the correspondent range point.

1 if (orders[y ].Aing > 0 )

2 {
3 dz = (layer[ i ]. zIn + layer[ i ]. Dz − zIn) / Nthr;

4 point.y = zIn + (x+1) ∗ dz;

5 }
6 else if ( orders[y ].Aing < 0 )

7 {
8 dz = (zIn − layer[ i ]. zIn) / Nthr;

9 point.y = zIn − (x+1) ∗ dz;

10 }
11 else if ( orders[y ].Aing == 0 && abs(zIn− zMax) < abs(zIn− zMin) )
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12 {
13 zIn = zMax;

14 dz = (zIn − layer[ i ]. zIn) / Nthr;

15 point.y = zIn − (x+1) ∗ dz;

16 }
17 else if ( orders[y ].Aing == 0 && abs(zIn− zMax) > abs(zIn− zMin) )

18 {
19 zIn = zMin;

20 dz = (layer[ i ]. zIn + layer[ i ]. Dz − zIn) / Nthr;

21 point.y = zIn + (x+1) ∗ dz;

22 }
23 if ( point.y >= zMax )

24 {
25 point.y = zMax;

26 }
27 if ( point.y <= zMin )

28 {
29 point.y = zMin;

30 }
31 if (point.y <= layer[i ]. zIn)

32 {
33 point.y = layer[ i ]. zIn;

34 }
35 if ( point.y >= layer[i ]. zIn + layer[ i ]. Dz )

36 {
37 point.y = layer[ i ]. zIn + layer[ i ]. Dz;

38 }

Moreover, the previous code guarantee to avoid the computation of points outside

the depth interval [zMin, zMax] necessary to be inside the domain of the function

(3.8).

Another approach has also been developed, allowing users to fix the depth vari-

ation. However, if it is not strictly necessary, this second approach should be

deprecated since it introduced some waste of resources, and degrades the perfor-
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mance of the algorithm.

Boundaries Interaction

We now know of the complete trajectory within the layer where we are computing

the trajectory, so that, we must check if the ray has interacted with the seafloor

(or the surface).

To maintain a small complexity, both the seabed and the surface are treated as

piecewise linear surfaces.

Figure 3.8 shows how we proceed to find the interaction point.

Using some preliminary considerations, it is possible to discard pieces of trajec-

tory that surely can not interact.

interaction point

de
pt

h

Figure 3.8: pieces of trajectory checked in green, discarded pieces in red

For example checking only the trajectory pieces respecting the following condition

generally saves computation time.

1 if ( bottom[i−1].x <= max(me1.x,me0.x) && bottom[i].x >= min(me0.x,me1.
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x) && max(bottom[i].y,bottom[i−1].y) >= min(me0.y,me1.y) && min(

bottom[i].y,bottom[i−1].y) <= max(me0.y,me1.y) )

It is useful to point out that the strength of the “filtering” increases if the bound-

ary’s details increases, producing a better performance.

Interaction coordinate

After signaling out the points that may certain can interact with the bottom, it

is necessary to find the coordinates of the interaction.

For every trajectory segment chosen in the previous step (green pieces of the im-

age 3.8), we derive the equation of the line joining the two points of the trajectory.

Then using the line equation of the bottom segment, if the lines are not parallel,

crossing points between them always exists.

Moreover, checking the position of the computed crossing points, it is easy to

understand which of them is the actual interaction point. Figure 3.9 shows an

example.
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Figure 3.9: Only one interaction point exists. It is located inside the green section

of the trajectory

The following part of the code shows how the above is done.

1 float m =( me1.y − me0.y ) / ( me1.x − me0.x);

2 float rm = m / bottom[i−1].z;

3 if (rm == 1) return false;

4 y = (q − rm ∗ bottom[i−1].w) / (1 − rm);

5 if ( y <= max(me0.y, me1.y) && y >= min(me0.y, me1.y) && y != zIn )

6 {......}

Since not leaving threads idle is a fundamental guide line of the CUDA program-

ming, each thread checks one segment of the trajectory.

Reflection angle

Once we get the interaction point coordinate (if an interaction happened), the

next necessary step is to understand which is the new launching angle.

As [4] explains, the problem can be solved on noting that the tangent of the
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reflected ray can be expressed as

tref = tinc − 2(tinc · nbot)nbot (3.12)

where

• tinc is the tangent of the interacting ray

• nbot is the normal of the bottom

• · is the inner product

Therefore, using these two easily computable parameters, we can compute the

rebound angle we are looking for.

Setting the starting conditions for the next iteration

When the above steps have been executed, the threads are able to understand

which is the last valid trajectory point, and set it as starting point for the next

iteration.

If no interaction has taken place, it is the point computed by the last thread,

i.e. the 32-th threads. Opposite, if the interaction happened, the next iteration

starting coordinates are those of the interaction point and the launching angle is

the reflection angle on the bottom/surface.

3.3 Performance

As widely discussed in the first chapter, in order to get good performance when

running CUDA applications it is absolutely necessary to carefully handle the

memory.

To this end, we have adopted the 2-D matrix structure displayed in figure 3.10.

Using this structure helps to use the graphic card memory transactions at their

full capabilities.

The shape of the block of threads has been set to contain 192 threads, placed in

an ideal 6 x 32 matrix.
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Figure 3.10: 2-D matrix used to save trajectory data

There are 32 threads working on every ray, and 6 rays per block, hence every

matrix row is related to one ray.

This design makes every threads block “moving” toward the right direction, tak-

ing advantage from coalesced memory transactions. Figure 3.11 shows it in detail.

Summarizing, setting the number of threads to 192 guarantees the maximum

occupancy of the stream processors, whereas the threads matrix shape ensures

the best data bandwidth.
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Figure 3.11: Block of threads data managements

A speed test has been performed, comparing the classical serial implementation

of the tracer and the GPU-powered implementation on an shallow water scenario

(the most computationally challenging because of the high numbers of seabed/-

surface interactions).

Bellhop

Bellhop is a well known an widely used underwater simulation program imple-

menting the classical single thread execution.

bellhop is able to compute both the rays trajectory and the pressure field. Since

the ray tracing is the skeleton for the pressure computation, this computation is

always performed by the bellhop. If the pressure is not requested the software

ends its run, whereas if the user needs the pressure field, Bellhop derives the

pressure values using the rays trajectory already computed.

The ray tracing method is performed by a function named Trace. On it, solv-
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ing the ray equations and the dynamic ray equation [7], Bellhop computes the

trajectory points but also other parameters requested for the next pressure com-

putation.

In order to equally compare the two implementations, the Bellhop has been mod-

ified. All the actions performed into the Trace function not necessary to the

trajectories computing have been removed.

Execution times have been obtained by profiling the software and considering the

time to execute the Trace function.

The CUDA accelerated ray tracer

The CUDA implementation of the ray tracer has been timed by using the Nvidia

CUDA profile included into the CUDA SDK. On the CUDA tracer time counting

is included the time necessary to move data from the Host RAM to the Device

RAM and vice versa.

The Tester Systems

The Bellhop test has been executed on the next two systems:

CPU Intel Core 2 Duo E8400 Intel Xeon X5650

@ 3.0 GHz, 6 MB cache @ 2.66 GHz, 12 MB cache

RAM 4 GB DDR2 16 GB DDR3

whereas on the next two has been performed the CUDA runs

CPU Intel i7-2670QM Intel i7-2600

@ 2.2 GHz, 6 MB cache @ 3.4 GHz, 8 MB cache

RAM 8 GB DDR3 16 GB DDR3

GPU Nvidia GT 540M, 2 GB RAM Nvidia GTX 580, 3 GB RAM
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The results

The times has been collected varying the number of simulated rays. The results

follow.

Rays
Bellhop time [ms] CUDA time [ms] CUDA Speedup

E8400 X5650 GT 540M GTX 580 X5650/GT 540M X5650/GTX 580

2000 440 440 35.3 9.6 12.5x 45.8x

5000 1191 1142 92.4 24.1 12.4x 47.4x

10000 2405 2154 176.5 47.6 12.2x 45.3x

20000 5313 4133 392.8 95.6 10.5x 43.2x

40000 10178 8150 787.0 258.0 10.4x 31.6x

60000 16270 12212 1179.0 284.8 10.4x 42.9x

2000 5000 10000 20000 40000 60000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of rays computed

T
im

e 
of

 e
xe

cu
tio

n
[m

s]

Computation Time

 

 
E8400
X5650
GT 540M
GTX 580

Figure 3.12: The Simulation time vs. the number of simulated rays

The results show the power of the CUDA implementation.

On average, comparing the CUDA results with those reached using the Xeon,

the running time on a very low-cost graphic such as the GT 540M card is 11.3

times faster than the Xeon based computer, whereas using the GTX device the

computation is performed 42.8 times faster.
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3.4 Pressure computation

Once the rays path has been obtained, the next major goal is the computation of

the sound pressure produced by the rays. The theory says that, in order to get

the pressure, it is first necessary for every ray to solve a pair of coupled differential

equations known under the name of Dynamic ray tracing equations (see [4]):

dq

ds
= c(s)p(s) (3.13)

dp

ds
= − cnn

c(s)2
q(s) (3.14)

where s is the arc-length of the ray, c is the speed of sound and p and q are

a couple of complex-value variables that allow to handy compute the pressure

variations imposed by the ray passing.

cnn is the curvature of the sound speed in a direction normal to the ray path.

Using the auxiliary variables ξ and ζ introduced on Section 3.1.1, cnn can be

expressed as:

cnn = c

(
d2c

dr2
ζ2 − 2

d2c

drdz
ζξ +

d2c

dz2
ξ2
)

It is now possible to compute the influence of every ray onto a “receivers’s” grid.

The receivers grid is an ideal grid of receivers located at the points where the

sound pressure is required (see an example on figure 3.13). It could be a regular

grid (i.e, a grid with equally spaced points) or not.

Following the suggestion of [4], it can be seen that for every trajectory segment

there could be points far enough from the ray center to not be influenced by

the passing ray. In order to optimize the performance, it is useful to direct the

computation effort on the points of the grid where the sound pressure is in fact

influenced by the ray.

That strategy require that for every ray segment we find a ray influence zone.

Using the values of the q variable is possible to set the vertical boundaries of this

zone of influence, whereas the horizontal zone extremes are equals to the range

coordinates of the ray segment ends.

On the receivers located inside the zone will be computed the ray influence,

whereas on the receivers outside, the computation is avoided, saving the corre-

spondent computation time.
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Figure 3.13: receivers involved in the computation for a single ray segment

We tried to implements the pressure computation applying the above idea: namely,

every thread computes the influence of a ray segment on the receivers.

It has to be pointed out that every receiver corresponds to a memory location

on the device memory, and unfortunately, this kind of approach imposes a spare

memory access pattern that is badly managed by the CUDA architecture (see

Section 1.6.5).

An alternative approach has also been tested. The “focus” is moved to the

receivers. That means that a number of threads blocks equal to the number of

the receivers has been created. Every block takes care of only one receiver and

the threads of the block compute the influence of all the simulated rays on that

particular receiver assigned to the block.

Opposite to what happens on the first implementation, the receiver grid memory

access issue does not take place any more, but now, the problem is represented

by the ray trajectory memory handling.

Moreover, numerical integrators proceed step by step, and are an example of

algorithm that it is difficult to parallelize.

With all this said, it possible to understand why the simulations performed on
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the pressure computing exhibit a running time comparable to the classical CPU

implementation, or sometimes worse (because of memory transfers).

This is the reason why we have preferred to maintain these functions performed

by a classical CPU run.

87





Conclusions

The primary goal of this thesis is to provide a fast tool able to simulate an

underwater sound channel. The necessity arose because the existing software is

usually too slow to satisfy the present speed requirements.

To solve this issue we decided to develop a parallel version of ray tracing software

Bellhop.

This has been identified as the best choice since the classical underwater simula-

tion issue is complex but also repeating, i.e., computing the solution in a parallel

way gives benefits.

Between various possibilities, it has been decided to approach the issue using

the brand new NVIDIA graphic cards enabled to provide an all-in-one parallel

computation system at a good price.

The GPU-powered ray tracer has been developed by using two levels of paral-

lelization, both between the rays and inside every ray.

If the parallelization between the rays derives from the fundamental characteristic

of the ray tracing methods, the parallelization inside the rays could has been done

because of the using of the common assumption of a stratified medium, allows to

model the ray paths as piecewise circular trajectories, whose computation can be

subdivided among the treads.

By designing the software following this guideline, we obtained a software fully

benefiting by the execution on a CUDA device.

The algorithm exhibits a considerable speedup if compared with the “classical”

serially running algorithm.
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Referring to a Xeon provided systems, the CUDA tracer exhibit a performance

improvement of 11.3 times if compared with the entry-level GT 540M graphic

card and of 42.8 times if compare with a more powerful GTX 580.

The extremely interesting feature of this approach is that the speedup is of course

related with the power of the GPU used, but it occurs also using an entry-level

low-price graphic cards as the GT 540M.

It has to be underlined that not the whole Bellhop software has been redesigned to

run on GPUs. This choice because of the strictly serial execution nature of some

algorithm parts, e.g. the numerical integration, and because of some constraints

imposed by the CUDA architecture.

Hence, the optimal final solution that could be built in future will be an hybrid

program where each processing unit is employed to do the kind of work it does

best: pressure computation performed by the Bellhop, and trajectory tracing

performed on by the GPU.

In conclusion, performing this work, the intent was to provide a first step toward

a real decreasing of the ratio between the “systems price” and the computation

time on the underwater sound propagation simulation, hoping that it could be

useful in both the actual and the next generation underwater networks design

and management.
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