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Abstract

Purpose - This paper analyzes how anomaly detection can effectively be

applied to predictive maintenance in hydroelectric power plants and evaluates

the effects SHAP values have in helping the user understand the causes of the

reported anomaly.

Methods - We compared the performance of RRCF, KDE, SOD, ECOD,

isolation forest, auto-encoder, DeepSVDD, KitNet, and RSHash on data coming

from a real-world hydroelectric power plant, through human evaluation (since

no label was available and the labeling process was too expensive). Then we

checked whether SHAP applied to the best performing model gives informative

and correct indications on the cause of the anomaly.

Results - Our results showed that auto-encoders can catch all of the organi-

zation’s recorded anomalies and propose additional ones, that are later confirmed

by the expert of the domain. The application of SHAP is sufficiently able to gui-

de the user toward the features related to the anomaly but is a little slow to be

applied in streaming data.

Implications - From a practical perspective, more efficient maintenance

leads to less operative costs and higher reliability of the plant, on top of this

we used models and algorithms from well-known Python packages so this work

is ready to be applied as a production tool. From a social perspective, reducing

the costs makes hydroelectric technology more appealing to investors, helping the

transition towards renewable energies.

Keywords - Anomaly Detection, Hydroelectric, Interpretability, Machine

Learning, Maintenance.
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Sommario

Scopo - Questo lavoro analizza come il rilevamento delle anomalie possa

essere efficacemente applicato alla manutenzione predittiva delle centrali idroe-

lettriche e valuta gli effetti degli SHAP values nell’aiutare l’utente a comprendere

le cause dell’anomalia segnalata.

Metodo - Abbiamo confrontato le prestazioni di RRCF, KDE, SOD, ECO,

isolation forest, auto-encoder, DeepSVDD, KitNet e RSHash su un insieme di

dati provenienti da una vera centrale idroelettrica, attraverso una valutazione

umana (poiché non erano disponibili labels e procurarsele sarebbe stato troppo

costoso). Poi abbiamo verificato se SHAP, applicato al modello più performante,

fornisce indicazioni informative e corrette sulla causa dell’anomalia.

Risultati - I nostri risultati hanno mostrato che gli auto-encoder sono in

grado di cogliere tutte le anomalie registrate dall’organizzazione e di proporne

altre, che vengono poi confermate dall’esperto di dominio. L’applicazione di

SHAP è sufficientemente in grado di guidare l’utente verso le features relative

all’anomalia, ma è un po’ lenta per essere applicata ai dati in streaming.

Implicazioni - Da un punto di vista pratico, una manutenzione più efficiente

porta a minori costi operativi e a una maggiore affidabilità dell’impianto; inoltre,

abbiamo utilizzato modelli e algoritmi tratti da noti pacchetti Python, quindi

questo lavoro è pronto per essere applicato come strumento di produzione. Da un

punto di vista sociale, la riduzione dei costi rende la tecnologia idroelettrica più

interessante per gli investitori, favorendo la transizione verso le energie rinnovabili.
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Chapter 1

Introduction

In response to the effects of climate change, in the last years, our society has

increased its attention towards the transition from traditional forms of energy

production to more sustainable ones, called green energy or renewable energy.

This trend is reinforced by governments’ plans like the European green deal [1].

In this context hydroelectric power plants not only provide the largest share of

renewable energy, accounting for more or less 16% of the whole worldwide energy

production [2]. But also can be used to mitigate climate change’s effects like

droughts and floods or to manage water supplies [3].

For the economy of a hydroelectric power plant, the optimization of mainte-

nance is crucial. The size of hydroelectric power plants is generally huge, such

that as reported in [4] it can happen that the energy produced accounts for a big

share of an entire nation’s requirements. So, given that maintenance can reduce

the production for several weeks, it is generally the case that they are scheduled

in advance to give time for acquiring the pieces and to re-organize the energy

production plans. To be able to schedule maintenance in advance minimizing the

costs, at least the predictive maintenance policy is adopted, making it necessary

to analyze the data collected from the plant’s sensors to predict the possible next

fault of the system.

The data generated from hydroelectric power plants and in general in the vast

majority of industry 4.0 is very high-dimensional, such that automatic systems

are used to assert the satisfaction of a handmade set of conditions. But in this

way, some anomalous behaviors that don’t violate any of the conditions and don’t

generate any side effects (e.g. enhanced noise in the plant) cannot be discovered,

since it is not humanly possible for the personnel to watch the entire stream of
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data. So, to help the personnel discover all anomalous behaviors of the system, in

this thesis work we propose to find an appropriate machine learning model that

can both find all the anomalies we were searching for and contextually give the

highest quality information to the users. To do this, we compared some of the

most promising anomaly detection models that can be found in the literature on

the data coming from a real-world hydroelectric power plant.

On top of the comparison, we also tested the applicability of an additional

layer that implements the techniques from eXplainable AI (XAI), which means

to allow the human users to understand why and how the model came up with

its decision. This is especially important when the decision that arises from

that result has a big impact in terms of risks, costs, income or safety [5]. Take

as an example an algorithm that discovers cancer from the patient’s medical

exams, you cannot say to the patient ”you are 100% safe since the machine

in the right corner of the room says so” both for legal reasons and since the

action of the doctor is necessary in these situations, but on the other hand the

doctor alone can miss some cases. Here is simple to understand that if the

doctor can understand the model and use its results as a tool, then the optimal

performance can be reached. In this work, we tried to apply a specific algorithm

called SHapley Additive exPlanations (SHAP) [6] to help the user find the root

causes of the reported anomalies. To the best of the authors’ knowledge at

the time of writing, this technology has been very recently applied with various

objectives in the field of hydroelectric like Flow-duration curves prediction [7]

or reservoir water availability forecast [8], or it has been applied with similar

objectives but not within the hydroelectric context like [9], [10] or [11]. But

never to enhance predictive maintenance in the context of hydroelectric power

plants.

For the realization of this work, an essential contribution comes from the

collaboration with ANDRITZ HYDRO S.r.l. Unipersonale. Thanks to their help

we were able to obtain the data from a real power plant, gather insights about

the actual needs of the hydroelectric field, and most importantly the possibility

to compare the results of the models with the knowledge only an expert of the

domain can have.
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The rest of the thesis is organized as follows: Chapter 2 is devoted to a brief

introduction to the maintenance’s theory along with a clarification about the

nomenclature, since it may vary from source to source. Chapter 3 introduces the

notions that represent the core of this work, namely machine learning, anomaly

detection, interpretability, and the models that here are compared. Then Chapter

4 give a broad overview of how a hydroelectric power plant works, why vibra-

tion analysis is important in the context of maintenance, and the common way

vibrations are analyzed.

In Chapter 5 we first present a snapshot of the current state of the art to deal

with this type of task. After that, we introduce the context of this work, where

we explain the particular characteristics the data in this field has, the features

we had along with their connection with the problems explained in Chapter 4,

to end with a small digression about the requirements of safety the hydroelectric

field imposes. Finally, we report the choices we made, the list of the anomalies we

used in the model comparison, and how the comparison is designed. In Chapter

6 there are the results from the models with the better performance, the ones

introduced in Section 3.4. The others are moved to the appendix to improve

readability. Finally, conclusions and future works are discussed in Chapter 7.

Figure 1.1: Example of a hydroelectric power plant [12]
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Chapter 2

Maintenance

Maintenance is an essential concept for modern companies’ profitability and com-

petitiveness since it ensures that the standards regarding the system life (man-

agement of the asset), safety, availability, efficiency, and quality are respected

[13]. An official definition of the term maintenance can be found in the norm

ISO:14224 of the year 2004 as “the combination of technical and associated ad-

ministrative actions intended to retain an item or system in, or restore it to, a

state in which it can perform its required function”.

From the point of view of a company, in terms of operative costs, the main-

tenance operations can be very demanding. To make an example we report the

statistics from [14], where they found out that the component related to the main-

tenance can amount from a lower bound of 15% up to 70% of the total production

costs. Another important aspect is related to the availability of the production

plant since the maintenance operations can last for very long periods depending

on the unit to be restored and in some cases, the whole system has to be stopped.

So over the years, many strategies have been proposed with the objective of both

reducing the impact on the costs and increasing the availability of the system.

In the literature, the maintenance strategies’ nomenclature is not always con-

sistent. To have a base to start we can take as reference [15], where the author

clarifies what is correct nomenclature currently used in the industry. That is, the

maintenance strategies can be categorized into Reactive, Preventive, Predictive,

and Proactive. In the following, these four main strategies will be explained more

in detail along with Reliability Centered Maintenance, which usually is excluded

by the aforementioned group of four since it consists in actuating one of the

strategies for each component instead of the same strategy for the whole system.
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Figure 2.1: Graph of the costs associated with the maintenance strategies [16] (Proactive is often
merged with Predictive) .

2.1 Reactive maintenance

Reactive maintenance is usually also found in the literature under the names

of run-to-failure (R2F), failure-based maintenance, or corrective maintenance.

Historically it is the first strategy that has been applied in industry [17] and

it is the simplest of all the policies. The idea on which it is based is to apply

maintenance reacting to the failure, that is when a unit of the system doesn’t

work properly anymore.

The main advantage it has with respect to the other maintenance strategies

is simplicity since we only need a way to tell if a component is not working

properly. The drawbacks of this strategy then reside in the fact that the system

may be subject to unpredictable stops of production and that contextually with

the arising of a fault, also hazards for the safety of the rest of the system or the

personnel increase. Consequently, this type of policy can only be applied where

the failure of the component is for the most part self-contained and anyway we

need to be sure the risks mentioned above are avoided.
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2.2 Preventive maintenance

Also known as scheduled or interval-based maintenance, preventive maintenance

(PvM) is a more advanced strategy with respect to the reactive one, it has the

objective to avoid any unplanned failure of the system since in many scenarios

it is not acceptable to suddenly stop the production. The idea on which this

category of maintenance strategies is based is that the system can be analyzed to

formalize temporal spans in which the properties of the component are ensured

with high probability. An example of an application of this strategy could be

the oil change in the car, you are supposed to change it after a certain traveled

distance even if it could have been used for some more time.

The advantage of this strategy with respect to the reactive one is that the

failures are very likely to be avoided. The downsides are the introduction of an

in-depth analysis of the system to identify the time constraints and that the life

of the components is not exploited in its entirety, leading to more expenses in

equipment and personnel.

(a) Reactive maintenance strategy. (b) Preventive maintenance strategy. Notice the unexploited
part of the component life.

(c) Predictive maintenance strategy. Notice how the optimal time for mainte-
nance can be chosen in the period between the time the failure is reported
and its onset.

Figure 2.2: Representation of when the maintenance strategies are applied with respect to the failure
onset [18].
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2.3 Predictive maintenance

Predictive maintenance (PdM) in literature is also known as condition-based

maintenance (CBM). The main idea behind this type of maintenance strategy

is to measure and analyze the system state, to be able to spot in advance dan-

gerous trends that will definitely lead to the failure of some units in the system.

Then a simple way to set alarms on these trends that are usually applied in

industry is to set conditions on them, from which comes the name CBM.

An example of an application of this maintenance strategy can be found in

[15]. In the context of car maintenance, the brake pads are usually changed when

their thickness gets under 2 or 3 millimeters. As we can see the condition is on the

state of the pads (their thickness) and the trend measures the erosion accumulated

by the pads. It’s common knowledge that when the pads are completely eroded

then they can’t stop the car anymore, so a threshold is placed in such a way to

have enough time to appoint the maintenance while being able to still safely use

the car.

The advantage of this strategy with respect to the ones we introduced before is

that the balance between the exploitation of the unit’s lifespan and the avoidance

of unexpected failures is optimized to the needs of the user. So after the alarm on

a trend measure (key trend indicator KTI) is set, the users have enough time to

buy the components and to set the date of the maintenance in the time spot that

is more convenient to impact the less is possible the production. The effect is that

the maintenance-related costs are comparable with R2F since the maintenance

is applied only when needed while the system’s reliability, availability, and thus

profitability are increased. The downside instead is that the complexity of the

structure to produce, store and manage the flow of information that is required to

keep an eye on the KTI is a burden that must be taken care of from the company

or outsourced.

However, the availability of large quantities of data that comes from the use

of predictive maintenance is essential to allow centralized remote control of the

system and artificial intelligence models to be exploited in the task of optimization

of the maintenance, learning from the data itself.
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2.4 Proactive maintenance

As stated in [19] proactive maintenance (PaM) is a natural evolution of predictive

maintenance when the trained personnel started to use all the knowledge neces-

sary to deal with the information that came with the use of the aforementioned

maintenance strategy to also search for the root causes of the detected failures,

and then when possible those causes were removed to extend the lifespan of the

system. But in some sources like [20], the two are simply merged under the name

of predictive maintenance.

Since it may be cumbersome to understand how proactive maintenance works

from the plain definition, we report some examples from [15] and [21] that can

help to clarify the explanation.

In the context of car maintenance, it is common knowledge that tires have to

be inflated to a certain pressure and their angle with respect to the axis of the car

has to be set to a given value to distribute more evenly their degradation in time.

So when the user goes to the tire dealer to check and reset the tires’ pressure

and convergence, he is actually performing proactive maintenance removing the

causes of a sub-optimal working condition.

In the context of any system that is dependent on a fluid to carry on its

operations, the degree of contamination of the fluid is an essential parameter that

leads to failures, since every extraneous particle left in it can reach the working

components and increase their natural level of erosion. So if a company has a way

to measure the degree of contamination, then the personnel can keep an eye on

it. Thus ensuring that when the level becomes dangerous, the correct actions to

prevent the system’s degradation are promptly performed, like improving filtering

or changing the fluid.

The advantage of this strategy is the growing reliability of the whole system

added on top of the advantages that predictive maintenance already had. The

downside consists of additional costs and knowledge required from the personnel

to determine the root causes of faults and sub-optimal working conditions exploit-

ing methods like root cause analysis (RCA), failure modes and effects analysis

(FMEA), and fault tree analysis (FTA).
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2.5 Reliability Centered Maintenance

Reliability centered maintenance (RCM) has been defined in [22] as “a process

used to determine what must be done to ensure that any physical asset continues

to do whatever its users want it to do in its present operating context”. Essentially

it exploits the fact that the system is made of units and it is not mandatory to

apply a single maintenance strategy to all of them.

An example of what is meant to be RCM can be found in [15]. In the context

of a car maintenance, we already mentioned that the brake pads are under the

predictive maintenance strategy, that the tires are under the proactive strategy

and the motor’s oil is under the preventive one. But we can also say that the light

bulbs, that are changed only when they break are under the reactive maintenance

strategy. So, taking the car as a whole system we can state that RCM is used as

a maintenance strategy.

The advantage of this mixed strategy consists in the fact that it is able to

reduce the complexity costs and maintain the reliability and operative costs ad-

vantages. The more complex the maintenance strategy used is, the higher the

costs to apply it are, so if to a system’s unit is applied an advanced strategy and

the obtained benefits in terms of production are not enough, a simpler one can

be used instead.
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Chapter 3

Machine learning

Ever since the beginning of the revolution that brought the computer to be a

constant presence in our everyday life, there has always been the idea of making

it learn and improve from experience. Such that the man that is recognized as the

creator of the computer, Alan Turing wrote in 1950 a seminal paper on the topic

[23]. So, over the years researchers drawing on concepts and results from many

fields including statistics, artificial intelligence, philosophy, information theory,

biology, cognitive science, computational complexity, and control theory [24] were

able to create what is now called Machine Learning (ML).

As reported in [25] the existence of algorithms that can exploit experience

to improve themselves is a necessity in many scenarios. Having a way to learn

from data increases the performance in all the cases where the knowledge of

the problem is lacking, or too difficult to transfer into a program. An example

could be natural language (i.e. language related tasks) where Herdan’s law states

that “vocabularies’ sizes are concave increasing power laws of texts’ sizes” [26].

Another scenario is related to the environment, in fact when an algorithm is

put under tests in a real environment can happen that it doesn’t perform well.

The cause may be that some properties of the environment can’t be measured or

that they simply change over time. Also here an example can be found in natural

language where new words are invented and rules are changed over time. Finally,

there could be the need to discover hidden structure in the data.

One of the more common definitions of machine learning algorithm comes

from [24] and states “A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience E”.
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3.1 Types of learning

Over many years, a wide variety of machine learning algorithms has been discov-

ered to target their specific task, so it is natural to try to put an order with a

taxonomy classifying these tasks. At the topmost level of this taxonomy, there

are the five main categories that we are going to briefly introduce.

Supervised learning defines all the tasks where the objective is to learn and

generalize the map between the input points and the attached labels, whereas to

generalize means that the model must select the correct labels even when it has

never seen the specific instance. In this case, it is relatively easy to formulate

performance metrics to select the best model, e.g. the one that selects the higher

number of correct labels. This branch of the taxonomy is usually subdivided into

two more: classification where the labels are categorical and from a finite set, and

regression where the labels are usually real numbers.

Unsupervised learning is closely related to the density estimation field

of statistics. In fact, under this category, the task has at its disposal only the

data without labels, and the objective is in general to discover regularities and

irregularities in it. To make a few examples of the models we can find under this

branch of the taxonomy, we have clustering where the task is to find the similarity

between the points given a definition of similarity, then we have the so-called

latent variable learning like independent component analysis (ICA), principal

component analysis (PCA), etc. And at last, we have anomaly detection that

will be explained in Section 3.2.

Self-supervised learning instead uses the data itself as labels, at its core

the task here is to mask a part of the input data and then teach the model

to reconstruct it. It is very common in fields where there is an abundance of

unlabeled data that has some temporal or spatial relation to be learned from the

model. Like natural language or computer vision.

Semi-supervised learning is a simple layer of supervised on top of unsu-

pervised or self-supervised, this allows to obtain a regressor or a classifier but

with far fewer labels than with pure supervised. It is usually used where the

labeling process is expensive, like again in natural language where for example,

the task of named entity recognition (NER) is done with a small classifier on top

of a self-supervised model (BERT, GPT-3, etc.).

Finally, Reinforcement learning models learn by interacting with the en-

vironment or a simulation of it. Each action is associated with a reward and the

objective is to obtain the highest expected reward with the actions done.
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3.2 Anomaly detection

“Anomaly detection refers to the problem of finding patterns in data that do

not conform to expected behavior” is the definition given by [27]. This task has

ever gained its fair share of attention from the scientific community, such that

important publications on this topic date back to the 19th century [28, 29], and

nowadays the developed solutions find applications in a vast range of fields like

fraud detection [30], bot detection [31] and industry 4.0 [32].

Anomaly detection predominantly makes use of the unsupervised learning

paradigms since it exploits the assumption that the vast majority of the points

in the dataset are normal and only a few are to be considered outliers. Most of

the times this assumption is satisfied, but papers regarding supervised [33], semi-

supervised [34] or even self-supervised [35] are not missing from the literature.

The main categories of the algorithms used for anomaly detection are:

• Statistical methods were the first types of algorithms that have been

applied since the problem was born in the field of statistics. They learn the

probability distribution function (PDF) of the normal data and if a point

has low PDF then it’s an anomaly. Examples can be the evergreen kernel

density estimation (KDE) [36, 37], or the more recent ECOD [38].

• Proximity-based methods come right after for their simplicity. They

exploit the fact that a point distance-wise isolated from the others is prob-

ably an outlier if the training set is representative. Examples can be the

local outlier factor (LOF) [39], which is almost always taken into account

in publications at worst as a reference, or the very recent Rotation-based

Outlier Detection (ROD) [40].

• Machine learning models can be also used to do anomaly detection, the

most common examples are one-class support vector machines (OCSVM),

isolation forests, and neural networks that will be explored in detail in this

work.

• Ensembles of models are born from the necessity of recognizing different

types of anomalies. In fact, by an ensemble, we mean using multiple mod-

els and then coordinating their results in a single one, where each model

can specialize itself on a specific type of anomaly. Examples could be the

famous XGBOD [41] or Kit-Net that has been used in this work and will

be introduced in Section 3.4.
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3.3 Model Interpretability

In some cases it is not enough to trust and rely on the result from a machine

learning model: this typically happens when the decision that arises from that

result has a big impact on terms of risks, costs, income, or safety. For example,

think of a model that evaluates whether to give a loan to someone or not, since in

machine learning racial bias is not rare [42], it may happen that underrepresented

groups are systematically penalized. To avoid this kind of situation, the need

arises to be able to tell how the inputs influence the output (interpretability) and

how the parameters justify the result of the model (explainability). While the

related literature is still debating the definition of the two terms in the context

of XAI, in the following we will use the two terms interchangeably.

There are also some cases where interpretability is counterproductive as ex-

plained in [5]. For example, if the aforementioned model for granting loans can

be interpreted by the customers, then strange conditions may arise in which it

is convenient to return a credit card since for example the model is known to

penalize people with more than two.

In general, interpretability can be used to test the model in the way we report

directly from [5] (originally from [43]):

• Fairness: Ensuring that predictions are unbiased and do not implicitly or

explicitly discriminate against underrepresented groups. An interpretable

model can tell you why it has decided that a certain person should not get

a loan, and it becomes easier for a human to judge whether the decision is

based on a learned demographic (e.g. racial) bias.

• Privacy: Ensuring that sensitive information in the data is protected.

• Reliability or Robustness: Ensuring that small changes in the input do not

lead to large changes in the prediction.

• Causality: Check that only causal relationships are picked up.

• Trust: It is easier for humans to trust a system that explains its decisions

compared to a black box.

With linear models, it is easy to understand what pushes the model toward

its decision since there is a linear relationship between input and output, but with

more complex models like a neural network, the task becomes quite difficult. We

can have interpretability algorithms that are specialized for a certain type of
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model since they exploit its structure or properties, like for example the already

motioned ones for isolation forest [44] or [45], or we can have the so-called model-

agnostic algorithms that work independently on the model they are analyzing.

In this last category, we can find the famous Local Interpretable Model-Agnostic

Explanations (LIME) [46], in which essentially the single point is perturbed and a

linear model is built (Figure 3.1b) to classify the perturbations weighted by their

similarity with the original. The downside of LIME is that it isn’t fast enough to

be applied in many scenarios and that the explanations are local. Another very

recent algorithm is SHapley values Additive exPlanations (SHAP) [6] that is the

one used in this work. It uses the same principles as LIME, the perturbations

of the instance to explain, but then Shapely values are computed [47] (a concept

from game theory). Its implementation is faster, and the explanations are global

and additive (Figure 6.31), so we can see how much a given input has contributed

to the model output both in negative and positive ways.

The innovations in the field of model interpretability happen quickly since

there is a lot of interest in it. Suffice to say [48] reported that the collaboration

of models and humans can achieve better results than when they operate alone.

To encourage cooperation, interpretability is necessary.

(a) SHAP’s additive explanations, their sum is f(x) on the top
right corner [49].

(b) LIME’s local linear model. The bigger cross is the positive
point to explain [50].

Figure 3.1: Examples of representations of the interpretability algorithms.
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3.4 Models

3.4.1 IsolationForest

Isolation forest was first proposed in [51], despite being a relatively new algorithm

it is one of the most used algorithms. Its best qualities are effectiveness, speed,

low memory usage, and the numerous specialized algorithms for feature selection

and prediction explanation that have been developed over the years ([44] or [45]).

As the name says, the base of this algorithm is an ensemble of decision trees,

where each tree takes care of a subset of features and its training set is a sample

of the original one (bagging to reduce the model’s variance). The process used

to build the trees is to add a node, that is a random threshold cut for a random

feature until each point in the training set is isolated in a tree’s leaf. One can

understand that an anomalous point would likely be in a less crowded position

and so few cuts are needed to isolate it. In Figure 3.2 we can see the path to a

leaf containing the isolated point, since the points have two features the cuts are

only horizontal and vertical. Then to give the anomaly score to the input point,

the thresholds are executed from the root to a leaf for each of the trees and the

bigger the average depth it reaches, the less anomalous the input is.

Now it’s easy to see why it is extremely fast and has low memory usage,

since all we need to do is to store a series of values that define the cuts, and the

execution time is a series of if-then-else which size is kept under control by limits

on the number of points per tree, number of trees and their maximum depth.

As a side note, we report that for convergence reasons the author defined some

thresholds for the aforementioned hyper-parameters, these values are usually used

as default by the methods that one can use.

(a) For an anomalous point a few cuts are needed (b) For a non-anomalous point a lot of cuts are needed

Figure 3.2: Process to isolate an anomalous and a non-anomalous point, the two images are respec-
tively taken from [52] and [53]
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3.4.2 Auto-Encoder

Auto-Encoders are a particular type of neural network that is trained to recon-

struct its input. The formal definition of the problem has been given in [54] such

as to learn two functions, the so-called encoder A : Rp → Rd and decoder

B : Rd → Rp that satisfy 3.1:

argmin
A,B

E
x∈X

[∆(x, [B ◦ A](x))] (3.1)

Where ∆ is the reconstruction loss function, that usually is the root mean squared

errors (RMSE) between input and output.

Auto-Encoders are a relatively mature technology since as many of the ideas

at the base of ML, they were published in the ’80 [55] and then they exploded

in popularity and effectiveness when both the computation capability and avail-

ability of data exploded. But noticeable variations were proposed in recent years

like the 2013 Variational auto-encoders [56].

The common way they are used is to learn a representation of the input as

represented by the code section in Figure 3.3 since auto-encoders can be seen as

a generalization of principal component analysis (PCA) [57]. Or in a way that

is more suited to anomaly detection, in facts equation 3.1 can be exploited to

understand that outliers having less probability to appear in the input may have

a greater reconstruction error. At least, if we in some way restrain the power of

the NN with dropout and regularization.

Figure 3.3: Schema of a generic auto-encoder from [58]
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3.4.3 DeepSVDD

Deep Support Vector Data Description (Deep SVDD) [59] is a recent algorithm

introduced as a NN model that is trained specifically with an anomaly detection

related objective. Other models use a side effect of the NN as anomaly score.

To make an example auto-encoders are trained to reproduce their input, and

statistically, since outliers are rare the reconstruction error is large.

The theory at its foundations there is the old gold Kernel-based One-Class

Classification, the same used by One-Class Support Vector Machines. The in-

novation DeepSVDD brings is the fact that the kernel is approximated by the

neural network while minimizing the volume of the hyper-sphere containing all

the projected training points as depicted in Figure 3.4.

Given that once the optimal matrix of weights W ∗ is found the anomaly score for

the input xi is ∥ϕ(xi;W∗)− c∥2, then the loss function to train DeepSVDD is:

min
R,W

R2 +
1

νn

n∑︂
i=1

max{0, ∥ϕ(xi;W)− c∥2 −R2}+ λ2

L∑︂
l=1

⃦⃦
W l

⃦⃦2

F
(3.2)

Where:

• The first term minimizes the radius R of the hyper-sphere with center c in

the co-domain of the map.

• The second term is a penalty to admit some points outside the hyper-sphere

(soft boundary). Has ν as hyper-parameter to set the trade-off between the

number of violations and volume of the hyper-sphere and W = {W l : l =

1..L} as set of the weights of the NN.

• The third term is a regularization term.

Figure 3.4: Illustration of DeepSVDD’s objective directly from the original paper [59]
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3.4.4 KitNet

KitNet is a Python implementation of Kitsune, that was first developed as part

of a network intrusion detection system [60].

The structure of the anomaly detection part of Kitsune can be seen in Figure

3.5. The first component is an ensemble of small auto-encoders (maximum three

layers with at most seven visible neurons) like the ones we explained in Section

3.4.2, their objective is to compute RMSE given the features they receive in input.

Then an additional auto-encoder (in Figure 3.5 called output layer) is used as a

non-linear voting system to extract the final anomaly score. Before them, there

is an optional feature mapper whose objective is to learn an efficient map of the

input features for each of the models in the ensemble and then to forward the

transformed inputs to them.

This algorithm was built to be fast and to be executed in a streaming fashion.

For this reason, it has two working modes: training that is used to adjust the

weights of the anomaly detection part, in which a single iteration of error back-

propagation for each of the input points is executed until a fixed amount of them

is analyzed, optionally the same can be done for the feature mapper. Then the

model switches to execute and stops to update its weights only returning the

anomaly score.

Figure 3.5: Illustration of KitNet’s Architecture directly from the original paper [60].
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3.4.5 RSHash

Randomized Subspace Hashing algorithm (RSHash) [61] is another algorithm

that is suited to work with streaming data like KitNet in Section 3.4.4 and so is

designed to be fast and with low memory usage.

This model uses an ensemble of size m, and each of the simpler models is

composed of w hash tables. Here we report a simplified explanation of how it

works since the implementation details can be found in the original paper.

The first thing that is done is to select a subset of the training, a subset of the

features, and some randomized constants that are used in the very next operation

for each of the models in the ensemble. Then the points Xi sampled from the

training set are min-max normalized into X ′
i and transformed into Yi with:

yij =

⎧⎨⎩−1 if feature j not selected

⌊x′
ij+αj

f
⌋ otherwise

(3.3)

Then w hash tables are updated, in more detail at each hash tableHk is associated

with a different hash function hk built in a particular way explained in the original

paper [61] and each point Yi increments the length of the list in cell Hk(hk(Yi))

by one.

At the end suppose a point Xt to score and ck = len(Hk(hk(Yi))), take the

log2(min{c1, .., cw}) if the point were not in the training or log2(min{c1, .., cw}+1)

otherwise for overfitting reasons and to treat all the points the same way (if a

point is in the training set the minimum returns at least one) and the score is

simply the average value from the ensemble’s models. It’s easy to understand

that an anomalous value would obtain a low count in the hash table and so a low

score.
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Chapter 4

Hydroelectric power plant

A hydroelectric power plant is a very complex system that converts water energy

into electric energy. Being artificial intelligence the core subject of this work, the

following is to be intended as a fast overview of how hydroelectric power plants

work with the objective to both introduce the topic to readers from the artificial

intelligence field and to explain the main features used by the models with the

fault they are related with.

As reported in [62] the broad variety of natural conditions that allow the

exploitation to produce hydroelectric energy makes it possible to have a range of

specialized types of power plants:

• Run of river type of power plant (Figure 4.3) is built to exploit the water

flow of a river. It can receive directly the water if it is built as a dam or a

small penstock upon the river, to avoid generating changes to its flow, or

can receive water that is redirected from the river into the power plant using

a long penstock. Using this power plant we obtain a constant production of

energy but it is tightly coupled with the flow of the river, so the generated

energy can be affected by seasonal fluctuations.

• Storage regulation type of power plant (Figures 1.1 and 4.1) is built to

exploit a large reservoir of water (or multiple ones). It accumulates the

water in the storage during high water inflow periods and uses it when the

flow drops, doing this it remains mostly independent of the seasonality of

the flow. We usually find that the reservoir is placed at a higher altitude

than the power plant and so they can exploit whichever type the potential

energy it is converted to (both pressure and kinetic energy can be exploited),

thus generating way more power than the other types of plant.
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• Storage pumping type of power plant is built to exploit the property

of the Francis turbine to also work as a water pump, so it is essentially a

storage regulation that can pump the water back into the reservoir when

the energy has a low price to exploit it later when the price is high.

• Tidal type of power plant (Figure 4.2) is built to exploit the daily tide to

lead the water through the turbines four times a day (two high tides and

two low tides a day).

Figure 4.1: Sketch of a storage regulation hydroelectric power plant [63]

Figure 4.2: Example of a tidal type of hydroelectric plant [64]
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Figure 4.3: Example of a run-of-river type of hydroelectric plant [65].

4.1 How it works

The core of how a hydroelectric power plant works is the conversion of the po-

tential energy of the water uphill to electric energy using a turbine connected to

an electric generator (yellow elements in the sketch).

The law describing the energy produced by the unit is described in [62] and

here it is rewritten in the form that is more commonly used.

P (kW ) =
ηρgQ(m3/s)H(m)

1000
(4.1)

Where:

• η is the unit efficiency

• ρ is the density of the liquid used (mass of matter contained by a unit

volume)

• g is the gravitational acceleration.

• Q is the flow through the turbine, i.e. the volume of water that flows in it

for each unit of time.

• H is the net head seen from the turbine, that is the difference in altitude

between the uphill and downhill basins (head) minus the energy losses that

occur in the penstock, essentially it’s a measure of the potential energy the

turbine finds available to exploit.
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4.2 Operating point

The behavior of the machine at any moment, i.e.”what the machine is doing”, is

normally called the operating state. More specifically, when the unit is synchro-

nized i.e. actually delivers power to the grid, the combination of parameters in

Equation 4.1 is called the operating point. Because of the interdependencies we

will describe later, not all these parameters are linearly independent. In the end,

to describe the operating point in our case, the following variables are considered:

rotation speed (only needed to discriminate some transient operating states such

as run up and coast down), power, and wicket gates opening. For simplicity, the

net head was considered constant.

A first relation is the one that essentially allows us to not look too closely

at the speed. The machine we dealt with in the present work, like the vast

majority of the ones used in hydroelectric power plants, is of the synchronous

type, meaning the rotation speed and electric frequency of the grid are strictly

linked to one another through the number of generator poles, as long as the

generator itself is connected to the grid via the main circuit breaker (the case we

considered here). Of course, during the startup and shutdown sequences, the unit

is disconnected (the main circuit breaker is opened). During startup, the unit

acceleration (run-up) is controlled by the turbine speed governor until the rotation

speed corresponds to the grid frequency. Then the rotor windings get energized

by the exciter. A device called synchronizer operates with the exciter to match

the phase of the generator output with the grid so that the main circuit breaker

can be closed without excessive electrical unbalances. From that moment on, the

unit speed rigidly obeys to the grid itself, and the turbine governor switches to

power control mode.

Other relations that occur in Equation 4.1 are that g is constant in the loca-

tion, ρ depends on the sediments concentration in the water, but can normally

be considered constant as well. Then H depends on Q because the energy losses

are proportional to the square of the water velocity v, and since we are analyzing

a Francis turbine (it works the same also with Kaplan turbines) the flow Q is

in turn regulated by the distributor opening, also called wicket gates opening.

Finally, the efficiency also depends both on Q and H.
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4.3 Vibration analysis

In physics, with the term vibration is meant oscillations of a system about an

equilibrium position as written in [66]. Vibration analysis is one of the most

important, if not the most important type of analysis that machinery is subject

to, especially when rotors are involved. From one side the vibrations themselves

are a danger to the system since as [67] reports: machine vibration can accelerate

rates of wear (i.e. reduce bearing life) and damage equipment. It can create

noise, cause safety problems, lead to degradation in unit working conditions and

cause machinery to consume excessive power, thus damaging product quality. In

the worst cases, vibration can damage equipment so severely as to knock it out

of service and halt plant production. While from the other side as we will see in

Section 4.5, in the vibration is contained important information about the state

of the machine and the problems that afflict it.

To acquire the signals about the machine vibration, we need to place some

sensors. Generally, the type that is used depends on the property of the vibration

to be measured as explained in section 4.4. But keeping in mind that the sensors

measurements are subject to noise, it’s a better idea to use the right type of

sensor (accelerometer for acceleration measures) or at most to derive the signal

(derive velomitor signal to have an acceleration measure), since integrals add up

the signal’s noise while contributing with numerical errors.

In Figure 4.4b we can see an example of where a proximitor can be placed to

measure the relative displacement that vibration generates between the shaft and

the bearing. The sensor is placed integrally with the bearing structure pointing

towards the shaft. Ideally, its optimal position should be in the center of the

bearing pads, to be able to obtain the greatest precision but to do this a hole in

the pad would be necessary and that would destroy the film of oil that keeps the

bearing working. In Figure 4.4a we can see an example of where a velomitor can be

placed to measure the absolute vibration’s velocity of the bearing. Velomitors and

accelerometers are less cumbersome to be placed since being absolute measures

they don’t need two reference points but only one.

Finally, one important thing is that the sensors’ frequency can reach the

order of kHz. This means that the full signal cannot be continuously recorded for

extended periods of time, let alone extracting more informative features like the

ones in sections 4.4, 4.5 and 4.6. So a good trade-off that is usually applied is to

extract those features only once for each window of signals that are considered

informative, like in case of surpassed thresholds, fast variations, etc.
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(a) General position of the velomitor that measures the abso-
lute velocity of the bearing structure vibration [12].

(b) General position of the proximitor that measures the rela-
tive displacement between the bearing pads and the shaft
surface[12].

Figure 4.4

4.4 Time domain analysis

The analysis in the time domain of the signals from the plant is the basic form

of analysis done to assert that the measures associated with the plant’s RCM

continue to satisfy their constraints.

In the context of vibration analysis, we have two types of information we

would like to take into account depending on the nature of the signal. For a

relative vibration signal, we would like to know the extent of its range, since we

use it to assert the rotating parts are not touching the stationary ones. So, one

feature that is well suited to this use is peak to peak, which is the maximum

range the signal has in a window. For an absolute vibration signal, we would

like to know how much energy is involved since it is a good estimation of the

stresses the system has undergone to. In this case, RMS (root mean square)

is the most suited feature. Then there is the crest factor, which is the zero

peak, i.e. the maximum amplitude the signal has in a window, divided by the

RMS in the same window. It’s used to reveal whether the amplitude of the high-

frequency component of the vibration increases compared to the amplitude of

overall broadband vibration. One of its qualities is well suited for variable speed

machinery because both zero peak and RMS will increase as speed increases [68].
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4.5 Frequency domain analysis

The analysis in the frequency domain (spectral analysis) is useful to highlight the

various components that participate in creating the overall vibration. Then, the

combination of theory and expertise matches these components to the character-

istics of the system, each representing a particular phenomenon that can evolve

into potential faults.

Usually, in dealing with rotors’ vibrations, the frequency components are

expressed in terms of the so-called harmonics: the rotation frequency is considered

the fundamental frequency of the system or ”order 1 harmonic”, then the other

frequencies are named after it, like in Figure 5.3. This approach is especially

helpful when the rotation speed is not fixed, like in run-up or coast-down.

One of the most important problems that can be identified from the power

spectrum is the presence of an unbalance in the weight distribution, i.e. a center

of mass that is not aligned with the shaft axis. The causes can be both an uneven

construction material or as we will see later a radial misalignment between the

shaft components. From the literature [69] we know it is linked with a peak on

the synchronous component frequency of the spectrum, that is the frequency at

which the shaft rotates.

Another problem that can be identified from the power spectrum is the pres-

ence of misalignment between the components of the shaft. The shaft of a hy-

droelectric power plant is an extremely long and heavy element of the system,

which usually is built in several pieces that are flanged and bolted together with

special rods. But although the personnel has specific methods to connect them

in a way to minimize the misalignment, there are always some imperfections in

both construction and assembly. So the shaft can be subjected to:

• Radial misalignment also called offset or parallel offset misalignment, is

an offset between the components axis as can be seen in Figure 4.5. From

the literature [70], it generates an increase in the synchronous component

of the power spectrum (order 1 harmonics, the principal frequency of the

system) depending on the entity of the misalignment.

• Angular misalignment as can be seen from Figure 4.6, is an angle be-

tween the components axis. From the literature [70], it generates an increase

in both the synchronous component or the 2 order harmonics (double the

fundamental frequency of the system) depending on the entity and config-

uration of the misalignment.
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Finally, the last problem that we report here is a specific effect that affects

hydroelectric power plants equipped with Francis turbines. In literature is known

as vortex rope, and is a cavitation effect generated close to the outlet center of

the runner with the shape of a vortex, that as stated in [71] has the consequence of

inducing strong pressure pulsation, axial and radial forces and torque fluctuation

as well as turbine structure vibration. From the literature [72] we know that

the vortex is predominant in the operating condition called part load, that

depending on the machine design means a discharge Q between 45 and 60%

of the QBEP or best efficiency point discharge (the turbine achieves its highest

efficiency with that flow) and that it’s principal harmonic of the vortex rope effect

can be seen around 20-25% of the principal frequency of the system, then it has

also some others relevant tail harmonics around 50% of the principal frequency

of the system.

(a) Side view (b) Back view

Figure 4.5: Example of parallel misalignment of the shaft components

(a) Side view (b) Back view

Figure 4.6: Example of angular misalignment of the shaft components
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4.6 Orbit analysis

The orbit that the shaft travels inside the bearings is a fundamental entity to be

kept under control since the constructive gap (i.e. the space inside the bearing)

is the limit the orbit can take without dealing damage to the system.

With this objective, two sensors are placed to measure on two axes the relative

displacement of the shaft from the bearing pads (the bearings work with an oil

film that with the rotation of the shaft itself keeps it at some hundredths of [mm]

from the surface of the closest pad in the load direction). Then from these raw

signals as we will see in section 5.2.2 we can both extract time domain and visual

features with algorithms going through the reconstruction of the orbit as we can

see in Figure 4.7a

(a) Orbit reconstructed from shaft X and Y relative displace-
ment from the bearing [12].

(b) Time domain features extracted from the orbit raw signal
from the sensors [12].

Figure 4.7
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Chapter 5

Case Study

At this point the reader has been introduced to all the theoretical concepts that

are related to this work, so now it’s time to delineate the context we worked in,

what were our objectives, and how we act to achieve such goals.

Independently from the rest, we first want to give a fast overview about the

state of the art approaches, i.e. those that currently are used to apply predictive

maintenance in industrial setups. The vast multiplicity of methods that can be

used confirms that in each field of application the properties of the process and

subsequently of the data that comes from it are such that some models perform

and some do not. Thus justifying the effort of this work. After that, we will

introduce the structure of the data we had at our disposal in both its qualities

and defects along with the needs that have to be satisfied. An important thing

to keep in mind is that thanks to our collaboration with Andritz Hydro, we were

able to work on the data of a real plant. Finally, we will explain the choices we

made in terms of technologies, operations on the data, and experiments.

5.1 State of the art

Over the years, many methods have been developed to execute data-driven pre-

dictive maintenance. We talk about predictive maintenance since then proactive

or RCM can be reached by adding independent technologies like RCA. From the

literature, we can see that all the approaches currently considered state of the art

can be categorized into remaining useful life (RUL) or risk estimation and highly

multivariate analysis.
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5.1.1 Remaining Useful Life & Risk estimation

The objective of these types of approaches is to forecast the future of the system

and to tell respectively: how much time is expected to last the system until the

next break or what is the probability that the system will break in a time horizon

from now like can be seen in Figure 5.1.

Approaches of this kind are generally bottom-up [73], in the sense that their

scope is contained to simple components of the system or single features. Then

an additional system is needed to propagate the results to the overall system [74].

The advantage with respect to the other approach is that it makes it easier to

organize the maintenance operations since there is literally a count down to the

fault. But on the other side being the task extremely demanding in terms of

complexity and given the fact that the data is usually scarce and poor in quality,

the models may suffer a loss of precision that propagates and stacks up along the

system.

Talking about the real implementation, we have a wide range of possible

algorithms that we can use: from the historical dynamical models of the system

that use the finite element method (FEM) or experimental modal analysis (EMA)

like [75], to the use of self-organizing maps (SOM) and back-propagation networks

like in [76]. Among the many other options also using recursive neural network

(RNN) or neural Fuzzy (NF) is an option [77].

Figure 5.1: Example of the plot of the results from an RUL approach [78].
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5.1.2 Highly Multivariate Analysis

Contrarily to Risk estimation, highly multivariate analysis is a top-down ap-

proach, in the sense that specialized models are used to detect anomalies using

the whole system information like in Figure 5.2. Then a higher level system can

be used for the attribution of responsibility to the single features.

The advantage of this approach is that the faults are analyzed by learning the

correlation between the features from the data itself, instead of using literature

to build the high-level system used in RUL. So it is possible to catch also very

complex faults that depend on a high number of variables [79]. But the downside

is that the connection with the timing of the maintenance has to be imposed with

strategies like [80], even if degradation trends can be easily spotted since they

induce a variation of the distribution of the features and on the relations among

them.

For the implementation, the most widely used model is isolation forest or

one of its variants [81]. But also the aforementioned self-organizing maps [82] or

neural network-like models in the form of auto-encoders [83] can be applied.

Figure 5.2: Example of the plot of the results from a Multivariate approach [84]. Notice how the
anomaly is detected from all the signals jointly.
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5.2 Context

5.2.1 Data

As already anticipated, we worked on data from a real hydroelectric power plant.

If on one hand, this is to be considered a virtue since the chances an algorithm

that works on synthetic data also works in production are far lower, on the other

hand, requires extra care in the way the experiment is carried on. So, we will list

in the following all the critical points related to the data that ones must keep in

mind.

Data scarcity: Unfortunately, even if the flow of data coming from the

system is of a considerable size, the generation monitoring system it comes from

has been commissioned very recently (January 2022), so we were only able to

obtain a modest size dataset on the order of 60000 samples. This aspect is very

common in the field of hydroelectric since investments to push for digitization

have happened only in the last years. As a reference, in 2018 the project [85]

started to digitize Norwegian-Swedish hydroelectric power plants.

Unbalanced Data: In industrial scenarios, it is almost always the case

that the system’s units have a very long mean time between failures (MTBF),

i.e. the system works very seldom it has anomalies. This is particularly true

for hydroelectric machinery, because of the strategic importance of the energy

production field which drives a design and construction that are extremely robust.

For this reason, to have at least some anomalous period to take as a reference

when comparing the models, we deliberately took the data from a unit that is

known by the company to have gone through some maintenance operations and

anomalous conditions during its life.

Unlabeled Data: Like it regularly happens in industry 4.0 and even more

often in the context of hydroelectric power plants, the process of data labeling

is extremely expensive. For some subtle anomalies, it takes quite some time for

multiple experts of the domain to recognize them and individuate their causes.

So, given the quantity of data the system produces and the dimensionality of the

problem it is not reasonable to have a complete and certain point-wise labeling

of the data.

High-dimensional multivariate Data: Since the system is very complex,

the resulting stream of data is very high-dimensional with 200 features for each

machine. On top of this, multiple aspects co-occur in the generation of the ma-

chine’s vibrations, so it requires a multivariate analysis to catch all the anomalies
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that are not related to a unique variable. Obviously being designed for human

understanding the features are not linearly independent and so they carry some

redundant information. Overall, except for the two features related to the high-

frequency content of the power spectrum, that for an error on the data acquisition

system were constantly zero, each one has its relations with specific causes of the

anomalies like we will see in Section 5.2.2.

Seasonality: Some effects like the vortex rope are dominant or negligible

depending on the operating point as defined in section 4.2. For this reason, the

companies in the field of hydroelectricity define the so-called operating states

(OS), which is a partition of the operating range, in such a way that the system’s

behavior is expected to be stable inside one of them. But each of these states

doesn’t appear uniformly in the dataset because hydroelectric power plants are

well known to often operate under significant seasonality. When there is a lot of

water in the basin the plant is required to operate stably close to its full capacity.

From the point of view of the dataset being the power stable we almost always

find the unit in the High power operative state. On the other hand, when the

water availability becomes lower, the power is modulated between the Units (so

to keep a reserve in case of sudden need from the network, frequency control)

to accommodate a continuous balance between the incoming flow, the residual

capacity of the reservoir, and the grid’s needs. As a consequence, the Unit ranges

over all the operating states. Finally, some conditions like run-up and coast-down

don’t represent operating points, rather transient states are needed to reach the

operation or recover from it. From Table 5.1 we can see that some OS are not

as represented as the others and so they will be recognized as anomalies by the

models.

Operative states Number of samples

High power 31174
Low power 30140
Run up 2290

Coast down 1432
Others 4107

Table 5.1: Table with the number of samples for each operative state.
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5.2.2 Features

In the following, we will extend the explanation started in Section 5.2.1 about

the data listing all the features that the model can use. At the same time, we

draw the connections each one has with the problems seen in Chapter 4.

speed, wicked gate opening and power are the features that describe the

operating point explained in Section 4.2.

1x mag bearing and 2x mag bearing for both x and y directions, it is

the power spectrum of the first and second harmonics and is related to the shaft

unbalance and misalignment problems explained in Section 4.5.

1x ph bearing for both x and y directions, it is the phase of the spectrum in

the fundamental frequency and it’s mainly used to infer the shape of the shaft’s

orbit influenced by pure mechanical factors like imbalance and misalignment.

vortex bearing for both x and y directions, it is the power spectrum in the

frequency the first harmonic of the vortex rope effect explained in Section 4.5

shows its effect.

subsynchronous bearing is the integral of the frequencies below 1x as

shown in Figure 5.3, it is used since other effects influence these frequencies

besides vortex rope.

asynchronous bearing is the integral of the frequencies different from 1x as

showed in Figure 5.3. Its primary use is to tell apart bumps from other problems.

It is well known that a bump (approximated by a delta function) has Fourier

transform with a constant value of one. So, if it is a bump it is very likely that

asynchronous bearing increases, while if there is another problem then the growth

in magnitude should be localized in some specific frequency band.

RSI bearing or rotor-stator interaction as described in [86] is the effect that

gives pressure fluctuations resulting from the interaction of the rotating parts

(the impeller) and the stationary parts (the distributors, the ones that control

the flow) of the machine. The frequency depends on the number of impeller

blades multiplied by the number of nodal diameters (respectively 13 and 2 on

this machine).

crest bearing, pp bearing are the crest factor and peak to peak we ex-

plained in Section 4.4.

gap bearing is the average of all positions in the orbit as can be seen in

Figure 4.7b.

Orbit# bearing are feature extracted from the orbit graph in Figure 4.7.

Notice that we used features built from other two pairs of sensors, one for the
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structure of the machine and one for the absolute displacement of the bearing

from a fixed point. They have more or less the same type of features that are

used for the shaft bearing relative displacement except for the orbit ones.

5.2.3 Safety

As you might have guessed from the information we scattered in the text up to

now, safety is one of the most important concepts when dealing with hydroelectric

power plants. In fact, safety is always taken into account with more conservative

constraints both at design and operations control times. For this reason mainte-

nance in this field is a very sensitive activity and decisions cannot be delegated

to an artificial intelligence model, but instead are meant to be taken by a board

of experts.

Being timing the core of maintenance and given the high dimensionality of

the data coming from the sensors we explained in Section 5.2.1, it’s clear the

personnel in charge of maintenance’s scheduling avail themselves of some type

of autonomous system to detect anomalies, at least a set of thresholds. In this

context surely a model with optimal performances can be of great help, but as

usually happens, the more power we require from the model the less the reasons

for the decisions it recommends are understandable to the personnel.

This last part is what led us to test the application of an additional inter-

pretability component, independent of the model, to both exploit all the power

we needed to discover the most complex anomalies and at the same time return

to the user an explanation about the result itself.

Figure 5.3: Representation of frequencies used to compute the main features [12].
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5.3 Experiment

In this chapter, we will describe the choices that have been made to cope with

the peculiarities of this specific application, the ones that have been explained in

Section 5.2. After that, we will explain how the experiment is designed given the

needs that we want the models to satisfy.

5.3.1 Choices

Multivariate anomaly detection: In Section 5.2.1 we anticipated that we have

to deal with scarce, unlabeled, and unbalanced data coming from a multivariate

process. From this description, it’s sensible to model this problem as anomaly

detection, since as pointed out in Section 3.2 the vast majority of the models

developed to solve this task use the unsupervised learning paradigm. This choice

comes in handy when we try to analyze the data as a whole to catch the more

complex anomalies since in literature there are plenty of very powerful models

for multivariate anomaly detection. Notice that the possibility to use the other

learning paradigms of Section 3.1 is excluded since they would require at least a

small labeled dataset.

Reducing complexity: The first problem to solve is the fact that some

operating states are underrepresented, as said in Section 5.2.1 can make the model

see them as outliers and so as anomalies. For this reason, we only analyzed high

and Low power data. This is not much of a loss of generality since the others

are not so important or represent transitional states like run-up and coast-down.

Another choice to take was how many of the total 200 features to analyze since

machine learning models are well known to suffer from the curse of dimensionality,

i.e. the higher the dimension of the data is the bigger the dataset required to

properly train the model is. So, since each machine has multiple components of

the same type, e.g. multiple bearings, we decided to only analyze the structure

and the turbine bearing, thus reducing the features to 65 (actually 63 since two are

discarded being always zero for computational mistake in the plant’s condition-

based vibration monitoring system) and allowing the models to learn properly

with the amount of data we had at our disposal.

Training and test sets: The seasonality we spoke of in Section 5.2.1 instead

is not to be considered strictly as a problem, but to have a good representation

of all operating states in the training set it is better to take the data from the

”low-water” season. Unfortunately, the examined Unit entered the ”low-water”
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season by mid-April, i.e. towards the end of the data, so the training set is placed

at the end and that has to be kept in mind when reading the reported anomalies.

The test set instead is the whole dataset (from January 2022 to the end of May

2022) since we want to know if the models can find all the anomalies.

Human evaluation: If from one side choosing unsupervised learning saves

us from the expensive, complex ad sensible process of labeling the data, from the

other side makes it way more difficult to effectively compare the models with one

another. For some unsupervised tasks like clustering, there is indeed some perfor-

mance measure like Silhouettes [87], but here all we could do is visually inspect

the results and compare them knowing the anomalies we wanted to find smartly.

The core concept is to start from the events that the company has recorded and

then use the iterative process in Figure 5.4 to add the newly discovered anoma-

lies. For this, the collaboration with the expert of the domain was essential, since

there is the need for extended knowledge and years of experience in the field to

be able to find the causes for the new anomalies and thus confirm the result of

the model. One important thing is that if an anomaly is not confirmed, it doesn’t

mean it is an error. There can be non-immediate reasons well hidden in the over

200 features that cause an anomaly. But statistically, anomalies should be rare

events, so we considered better those models whose plotted results allowed us

to easily distinguish the anomalies between them and from the nominal working

conditions.

Figure 5.4: Flow chart of the iterative process used to gather the segments of the data that are to
be considered as anomalies
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(a) Example of the result of a model with well-distinguished
anomalies.

(b) Example of the result of a model with hard-to-distinguish
anomalies.

5.3.2 Anomalies

Starting from the anomalies that have been recorded by the company from the

RCM operations on the machine we are analyzing, we used the iterative process

explained in Section 5.3.1 to gather anomalies that were hidden in the complexity

of the data, not having generated any fault.

The anomalies we imposed to find in the model’s output are:

• On the date January 30 2022 there was a fault that wasn’t detectable from

the sensors but led to a major maintenance operation, but at time 18:59

and seconds 07, 08, and 11 there can be seen what has been identified as a

bump in the system.

• From March 22 2022 to April 6 2022 there is an increase in the machine’s

structure vibrations along the X axis. As we can see from Figure 5.6 this

segment of data is abnormal with respect to its operative condition (re-

member that vortex rope generates forces and torques). This anomaly was

discovered by the models since it didn’t surpass any threshold and didn’t

cause any fault or in loco personnel report.

• From February 24 2022 to March 13 2022 there is an anomaly well known to

the company, since the velomitors for the structure vibration were wrongly

installed after maintenance. This can be seen as a flat curve in Figure 5.7

(only unfiltered).

• From May 14 2022 to May 16 2022 there was a problem in the connection

between the center and the plant, so the signals are held or put to zero.

• After the maintenance it was not possible to reach the optimal alignment

between the shaft components, as a result of this the power spectrum in

the first and second order harmonics increases as expected given what we

have explained in Section 4.5. Actually as reported in Section 5.3.1 we took

the training from the most recent part of the dataset, so the model should

report the before maintenance data as anomalous.
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• At last there is also the fact that in the more recent part of the dataset

an increase in the overall vibrations is known to the company and at the

time of writing its causes were under investigation. Along with this also

connection problems have resulted in some missing features from time to

time.

Figure 5.6: Plot of the Crest structure X feature from High Power and Low Power operative states.

Figure 5.7: Plot of the Crest structure Y feature.

Figure 5.8: Plot of the power spectrum of first and second order to show the increase after the
maintenance.
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5.3.3 Models’ comparison

The experiment we carried on to gather the data for this work, essentially consists

of training and testing the set of machine learning models, that were introduced

in Section 3.4, with the train-test data explained in 5.3.1. On top of this, we also

built a set of datasets to check whether the models are robust to the following

conditions (there are two ”on-off” conditions so four datasets in total):

• We want the models to be stable in presence of errors of the sensors.

The system we extracted the data from has the setting to replicate the last

seen value in case of empty fields in the data received from the server on

the plant site, so these sections have to be shown as an anomaly from the

model. But a simple filter can be used to remove this faulty data, so we

decided to also try the model performance with the filtered data.

• We want the models to be stable in presence of the vortex rope effect.

As explained in Section 4.5 it generates torques and forces on the shaft,

thus having a big impact on the distribution of the features. So, given that

the vortex rope is predominant on part load, that in our work is under

the operative condition of low energy, and that its effect becomes negligible

after 80% QBEP that in our work is in high power operative conditions. We

make two datasets, one with only high power operative conditions and one

with all.

Since the experiment is also a test for the models’ capability to deal with the

data at different levels, from a small number of features up to several components

altogether, when we applied the filter we also kept only the smallest relevant sub-

set of features according to the expert of domain. Namely wicked gates opening,

power, peak to peak of the relative displacement of the shaft to the bearing, the

crest factor on the machine’s structure vibration, Orbit1 and Orbit4.

One very important thing to notice is that the experiment was developed in

Python [88] using the PyOD [89], PySAD [90] and SHAP [91] libraries, so the

results of this work are ready to be applied in the industry.
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Chapter 6

Results

6.1 IsolationForest

As we can see from Figures 6.1, 6.2, 6.3, 6.4 isolation forest is indeed a good model

since it found all the anomalies we were searching for (not by chance is one of

the most used for anomaly detection). Another important side of its performance

resides in its speed since all experiments take less than two seconds to be trained

and less than four to give an anomaly score to each point. But the inconvenience

is that the anomaly score is rather noisy and that makes it annoying to be read

by the personnel.

Overall its performances are very good and we can notice how its perfor-

mances degrade in the filtered setups. This is an index that probably needs all

the features since they carry important information to distinguish the anomalies.

Figure 6.1: Plot of the anomaly score from the isolation forest model with unfiltered data only with
High Power OS.
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Figure 6.2: Plot of the anomaly score from the isolation forest model with unfiltered data only with
all OS.

Figure 6.3: Plot of the anomaly score from the isolation forest model with filtered data only with
High Power OS.

Figure 6.4: Plot of the anomaly score from the isolation forest model with filtered data only with
all OS.

44



6.2 Auto-Encoder

Auto-encoder also found all the anomalies we were searching for, but the anomaly

score graph gives a very high score to the anomalies and so anomalies and non-

anomalies are more distinguishable making it more suitable for visualization pur-

poses. Another big advantage is that reducing the number of features doesn’t

impact too heavily on the anomaly score (note that the signal errors of unfiltered

data modify the scale, but if re-scaled the two plots are very similar, and that

makes it suitable for a system that needs a smaller subset of related features to

be analyzed together.

From the point of view of the speed of execution, the training time is up

to 305 seconds, way higher than the isolation forest since the model is full of

regularization and dropout layers to avoid overfitting. But the execution time is

very fast, lower than three seconds that taking into account some randomness is

in line with the one of isolation forest.

Figure 6.5: Plot of the anomaly score from the Auto-Encoder model with unfiltered data only with
High Power OS.
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Figure 6.6: Plot of the anomaly score from the Auto-Encoder model with unfiltered data only with
all OS.

Figure 6.7: Plot of the anomaly score from the Auto-Encoder model with filtered data only with
High Power OS.

Figure 6.8: Plot of the anomaly score from the Auto-Encoder model with filtered data only with
all OS.
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6.3 DeepSVDD

DeepSVD is a model built for streams of data but with a different approach to

training and testing, it has a function called fit and score that point-wise fits and

then scores the next instance. If on one hand, it can follow even a non-stationary

source of data, on the other the information about constant anomalies like the

misalignment after the maintenance is lost. For this model, we were able to

winch the training set to be the same as the other models like isolation forest and

auto-encoder and then score the entire dataset.

Figure 6.9: Plot of the anomaly score from the DeepSVDD model with unfiltered data only with
High Power OS.
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Figure 6.10: Plot of the anomaly score from the DeepSVDD model with unfiltered data only with
all OS.

Figure 6.11: Plot of the anomaly score from the DeepSVDD model with filtered data only with
High Power OS.

Figure 6.12: Plot of the anomaly score from the DeepSVDD model with filtered data only with all
OS.
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6.4 KitNet

KitNet is able to recognize all the anomalies and its plot is very similar to the

auto-encoder, both in the filtered and unfiltered data so also this model can be

used when there is the need to analyze a smaller subset of features. The visual

interpretability is lower than the auto-encoder since it has an amplification effect

on some anomalies probably given by the fact that it is an ensemble of models.

From the point of view of the speed of execution it is faster than an auto-

encoder to be trained with a maximum of 50 seconds (depending on the param-

eters of the model), but the time it requires to analyze all the data is up to 70

seconds, that is way too high to be able to attach the SHAP module to it.

Figure 6.13: Plot of the anomaly score from the KitNet model with unfiltered data only with High
Power OS.
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Figure 6.14: Plot of the anomaly score from the KitNet model with unfiltered data only with all
OS.

Figure 6.15: Plot of the anomaly score from the KitNet model with filtered data only with High
Power OS.

Figure 6.16: Plot of the anomaly score from the KitNet model with filtered data only with all OS.
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6.5 RSHash

RSHash is a model built to work with a stream of data like DeepSVD but has a

different approach to training and testing, it has a function called fit and score

that point-wise fits and then scores the next instance and then also scores it. If on

one hand, it can follow even a non-stationary source of data, on the other the in-

formation about constant anomalies like the misalignment after the maintenance

is lost. Also, some of the main anomalies are not recognized.

From the perspective of the execution time is slower than the alternatives

taking up to 550 seconds to fit and score the whole dataset.

Figure 6.17: Plot of the anomaly score from the RSHash model with unfiltered data only with High
Power OS.
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Figure 6.18: Plot of the anomaly score from the RSHash model with unfiltered data only with all
OS.

Figure 6.19: Plot of the anomaly score from the RSHash model with filtered data only with High
Power OS.

Figure 6.20: Plot of the anomaly score from the RSHash model with filtered data only with all OS.
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6.6 SHAP

SHAP values are relatively easy to be interpreted, since being built on Shapely

values, they are a fair split of the model output given the contribution of each

feature. Then the ones with a value enough higher than zero are features that

are to be considered responsible for the fault, the ones enough lower than zero

are the ones not related to the anomaly. Only the ones near zero are dubious,

but if the anomaly score is high inevitably some features have to stand out.

We found out that despite being extremely powerful, SHAP has shown some

undesirable effects: One of them is that interpretability algorithms are designed

to highlight a limited number of important features. So, when a lot of them are

actively contributing to the fault, it tends to move the weights only towards one

of them. Another one is that being a black box model it inherits the lack of

insight the model about the properties of the problem, e.g. the magnitude power

features are dangerous if high but they are sometimes reported as anomalous

when too low since it’s a rare event.

6.6.1 Post maintenance misalignment

Searching for the cause of the anomaly score translation towards higher values

that can be seen before January 30 (e.g. in Figure 6.6), we encounter for the first

time both of the problems discussed earlier.

As we can see from Figure 6.21, both the 1x and 2x components of the

relative vibration’s power spectrum of the bearing get a substantial increment,

as we would expect knowing that we are looking for signs of shaft misalignment.

On the contrary, we can see in Figure 6.22 that the synchronous component of

the absolute vibration’s power spectrum of the bearing decreased.

SHAP, as we can see in Figure 6.23, has highlighted gap bearing rX and

1x magn bearing aX as principal causes of the fault. From one side we can give

merit to the algorithm that at least has identified the unit’s faulty component,

the bearing. But on the other side, the relative 1x and 2x magnitude of the

relative vibration haven’t been highlighted enough (first problem).

The explanation for the correct identification of the faulty component is that

the misalignment directly affects the bearing, so it is sensible that the other

components’ signals were for the most part unaltered by the problem. While an

explanation for the misjudgment of the correct feature could be that: from one

side gap is very fragile as a feature and tends to give problems even when the
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anomalies are elsewhere. While from the other the high variability of the relative

vibration magnitude in the training set leads SHAP to think that a variation on

the absolute one is more relevant, maybe because (reading the signal from right

to left since the train is at the end) the absolute magnitude increases going out

its range of variation while the other decrease and so there are a discrete number

of points with such values.

Figure 6.21: Plot of x1 and x2 magnitude for the relative vibration of the bearing, only in the X
direction since the Y is almost the same.

Figure 6.22: Plot of x1 and x2 magnitude for the absolute vibration of the bearing, we can see
1x magn bearing aX that decreased after the maintenance.

Figure 6.23: SHAP gap bearing rX and 1x magn bearing aX values related to the better alignment
of shaft components before the maintenance. The one below is gap bearing rY.
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6.6.2 Anomaly of January 30 2022

Regarding the anomaly of 30 January that can be seen completely in Figure 6.24

and in more detail in Figure 6.25. We can see a first peek with the predom-

inant 1x magn bearing aX and lower async bearing rX, async bearing rY and

2x magn bearing aX that probably is a bump since the whole spectrum is in-

volved, followed a peak of all the relative and absolute creast bearing that prob-

ably is related to the subsequent increase in the vibrations.

This time instead, SHAP was able to well define the problem (the bump)

while catching only part of the localization, since also the structure was involved

(we know SHAP can highlight a limited number of features at a time).

Figure 6.24: Coarse image of the 30 January fault evidencing the enormous importance of the
synchronous magnitude of the absolute vibration of the bearing.

Figure 6.25: Detailed image of the 30 January anomalous double peak’s less prominent features
explanation.
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6.6.3 Unconnected sensor

Here there is not much to say, essentially the fact that a signal was no more

available broke a good amount of the other signals.

In Figures 6.26 and 6.27 we can see that gap and crest factor are reported or

both relative X and Y displacements, while in Figures 6.28 and 6.29 we can see

that the features in that period reach unreasonable values. 2700 microns means

that the shaft is out of the bearing since usually the available displacement is

about 500 microns summing both sides.

One thing to notice is that also here the gap features absorb all the ”blame”

for the fault, even if other features contribute to it. In the end, this time was

very hard for SHAP to highlight the features that correctly identify the problem.

Figure 6.26: SHAP values evidencing that it considers the gap values as important features to
identify the cause of the anomaly.

Figure 6.27: SHAP also highlight the the crest factor for both relative X and Y displacement along
with the synchronous phase of relative X displacement.
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Figure 6.28: Gap for both X and Y directions of the bearing’s relative displacement vibration.

Figure 6.29: Crest factor for both X and Y directions of the bearing’s relative displacement vibra-
tion.
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6.6.4 New anomaly

This anomaly is actually the true stress test for this experiment. It was first

discovered by the models since no threshold was surpassed or report of problems

was made by the in-loco personnel. As we can see from Figure 5.6 there is a period

with a considerable increase in the structure X vibration. With the collaboration

of the expert of the domain, we were able to obtain a reasonable explanation.

We already introduced RSI and said that is generated by the interaction

between the impeller and the distributor. This effect is known to have greater

effects when the distributor is in the upper part of its range. Quick distributor’s

position changes can easily affect it and make it increase or decrease in amplitude

“around” its steady-state pulsation. The investigated machine has a very partic-

ular and unfortunate specificity, in the sense that the head-cover and the runner

exhibit a coupled eigenmode (where the coupling is given by the water enclosed

in the labyrinths and the side-chamber) having both frequency and spatial shape

compatible with the RSI pressure field. It means that the machine runs with

the head-cover “in resonance” with the RSI pressure field’s pulsating forces, thus

amplifying whatever happens hydraulically to this effect. It happens that the

most sensitive direction is the X one. In the period identified as anomalous, a

test had been performed at the site for which some parameters were changed in

the turbine governor, which led to a much more reactive wicket-gates response to

the grid’s frequency perturbations, which also made the RSI pressure field more

variable. This cause summed up with the season entering the “low-water” period

as explained in Section 5.3.1, which led by its nature much more frequent power

set-point variations, hence wicket-gates movements. There is a range of powers

(combinations of net head and flow controlled by the wicket-gates) where RSI ef-

fects and vortex rope effects sum up to a maximum, and this range was much more

frequently crossed during the “low-water” season. The continuous changes in the

power set-point also cause pressure waves in the penstock, which are reflected

in increased low-frequency content (sub-synchronous). Effects of low-frequency

pressure field fluctuations reflect on both relative and absolute vibrations, while

the RSI effects are noticeable only in the absolute vibrations and might be more

easily masked by the normal operation because the head-cover vibrates a lot at

RSI frequency in any case.

This time SHAP has done a great job in both causes recognition and local-

ization as we can see from Figure 6.30.

58



Figure 6.30: SHAP values for subsync struct X, x2 magn struct X, x1 magn struct X,
vortex struct X, async struct X and rms struct X for the new anomaly.

6.6.5 More recent anomalous period

In the most recent period, the machine vibration started to increase, while the

connection to the plant started to fail from time to time because of electronic

problems in a firewall at the site. So in Figure 6.31, one should analyze point

by point what is happening. In reality, the combination of the two generates the

conditions to let SHAP give higher weights to random features.

When the signal is missing, we saw in Section 6.6.3 that some of the missing

features are drawn based on their overall stability in the training set. Plus when

the overall vibration gets extremely high, from one side all the features get more

anomalous and from the other, the bumps change the distribution of all the

features related to the frequency analysis.

In the end, this was reported only to show an instance where SHAP can really

do nothing to tell apart the causes of the anomalies.

Figure 6.31: SHAP for the anomalous period near the end of the data.
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Chapter 7

Conclusions

From the experiment, we can draw two different results. For the anomaly detec-

tion part, we found out that there are indeed good algorithms that can capture

each anomaly, and among them surely auto-encoder is to be considered the best

for this particular field of application. Its best properties are its robustness to

anomalies in the training, its speed of execution, the well-proportioned graph it

returns (that is nice for visualization purposes), and the fact that is stable with

different subsets of features and with different training sets. This last property

is the most remarkable since it means that the model can be applied in both a

top-down approach that takes into account the whole system, as well as a bottom-

up approach that instead oversees the system through small groups of features.

For the interpretability part, SHAP indeed has some types of instances in which

it performs very well, but sometimes it loses its effectiveness. Going more into

detail, it seems that the fact that numerous features co-participate in the same

anomaly goes against its principles. Overall, even if it takes its time to compute

(for the whole train set it would have taken 170h, so we only take small pieces

and heavily sub-sampled segments), it’s able for the vast majority of the times to

at least identify the faulty system’s unit, so using a bottom-up approach could

be the key to overcome SHAP weaknesses.

We reported all the results between the main reading and the appendix so if

the reader has different needs, some additional ideas can be found in them.

For future works, it may be helpful to have a labeled dataset or a metric to

systematically compare the models. Although it will be surely difficult to express

usability properties, it will be an advantage in both the automation of the process

of discovering the best model and the acceptability of the results.
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Appendix A

Other experiments

To keep the shape of this work clean we decided to only report the best working

experiments in the main document and to move the others here in the appendix.

The reasons we considered these models the less performing are:

• Some of the anomalies listed in 5.3.2 are not reported.

• The anomalies are not grouped together but instead, they have a uniform-

like distribution, and that is very unlikely to happen given the properties

of the system that generates the data as explained in section. 5.2.1.

• The fact that the results show signs of reduced robustness to errors or

anomalies in the training data with respect to the models reported in the

main part of this work.
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A.1 RRCF

Robust Random Cut Forest (RRCF) [92] shows a more or less uniform distribu-

tion of anomalies, and that is very unlikely to happen. Additionally, the anomaly

related to the structure vibration between March and April is not reported.

Figure A.1: Plot of the anomaly score from the RRCF model with unfiltered data only with High
Power OS.

Figure A.2: Plot of the anomaly score from the RRCF model with unfiltered data only with all OS.

Figure A.3: Plot of the anomaly score from the RRCF model with filtered data only with High
Power OS.

Figure A.4: Plot of the anomaly score from the RRCF model with filtered data only with all OS.
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A.2 KDE

The KDE [37] implementation used in this work has the inconvenience that all

the points in the training set are assigned to very low anomaly score (flat image

towards the end), thus giving up most of the robustness against anomalies in the

training set we appreciated in Auto-Encoders. Overall the results are very noisy

and excessively responsive to the ”unconnected sensors” anomaly.

Figure A.5: Plot of the anomaly score from the KDE model with unfiltered data only with High
Power OS.

Figure A.6: Plot of the anomaly score from the KDE model with unfiltered data only with all OS.

Figure A.7: Plot of the anomaly score from the KDE model with filtered data only with High Power
OS.

Figure A.8: Plot of the anomaly score from the KDE model with filtered data only with all OS.
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A.3 SOD

Subspace Outlier Degree (SOD) [93] produces very noisy results, but the main

problem is that the anomaly related to the unconnected sensors between February

and March is not reported.

Figure A.9: Plot of the anomaly score from the SOD model with unfiltered data only with High
Power OS.

Figure A.10: Plot of the anomaly score from the SOD model with unfiltered data only with all OS.

Figure A.11: Plot of the anomaly score from the SOD model with filtered data only with High
Power OS.

Figure A.12: Plot of the anomaly score from the SOD model with filtered data only with all OS.
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A.4 ECOD

Empirical-Cumulative-distribution-based Outlier Detection (ECOD) [38] can in-

deed find the anomalies more or less effectively at all the stages of the experiment

but has been placed here since there is a very small relative difference between

the anomalies and the background, and a hypothetical threshold would be less

stable than the ones in the main corpus of this work.

Figure A.13: Plot of the anomaly score from the ECOD model with unfiltered data only with High
Power OS.

Figure A.14: Plot of the anomaly score from the ECOD model with unfiltered data only with all
OS.

Figure A.15: Plot of the anomaly score from the ECOD model with filtered data only with High
Power OS.

Figure A.16: Plot of the anomaly score from the ECOD model with filtered data only with all OS.
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