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Abstract

Multi-Higgs Production allows us to probe the Higgs self-couplings. Due to dominance of the
Higgs to top couplings, those processes are dominantly mediated by gluon fusion processes
which are at leading order already loop induced.
Triple Higgs production exhibits cross sections of the order of attobarn and is as such beyond
the reach of the LHC. Nevertheless, sensitivity studies have been started by experimental
collaborations, and the process has also gained interest by the theory community mostly in the
context of physics beyond the Standard Model.
Computations of two-loop processes for 2 ! 3 kinematics with massive loops are on the forefront
of what can be currently done within the field of precision calculations. Triple Higgs production
provides a case study to test new analytic or semi-analytic methods to be applied to the
computation of the NLO QCD corrections. In this thesis, we calculate the exact LO cross
section of Triple Higgs production at the LHC.
Afterwards we apply the transverse momentum expansion technique for the first time to a 2!3
process in order to reduce the amount of scale and verify that it correctly reproduces the exact
behaviour in its region of validity.
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Chapter 1

Introduction

The discovery of the Higgs boson in 2012 [1,2] has marked a turning point towards the under-
standing of the fundamental interactions in nature. The data so far confirms the validity of the
Standard Model (SM) of particle physics with high precision.
The SM is a Quantum Field Theory (QFT) based on a Gauge Symmetry Group SU(3)C ⇥
SU(2)L ⇥ U(1)Y [3–5]. The electroweak sector SU(2)L ⇥ U(1)Y is broken down to U(1)em by
Spontaneous Symmetry Breaking (SSB) of a scalar field: the Higgs field [6, 7].
Thanks to this, fermions and massive gauge bosons, obtain a mass proportional to the Vacuum
Expectation Value (VEV) of the Higgs field, without breaking Gauge Invariance.
The Standard Model explains the SSB introducing only one scalar doublet, which is composed
of four degrees of freedom, three of which are ”eaten up” by the W± and Z bosons to give them
masses, and the last one is the physical Higgs boson particle.
Measuring the properties of the Higgs boson is one of the main targets of the LHC. Indeed
the Higgs boson was observed in 2012, its mass is known precisely [8], and also its spin and
parity are understood [9]. Moreover, some of the Higgs couplings have been measured with
remarkable precision [10, 11], i.e. the couplings to the massive vector bosons and the third
generation fermion couplings; but its self-couplings have not been experimentally probed yet.
The Higgs self-interactions in the SM are fully determined by the Higgs mass and the VEV.
Various beyond-the SM extensions though predict them to di↵er sizeably from the SM value.
So far experimentally they have not been verified yet, e.g. for the trilinear Higgs self-coupling
only bounds within [�1.24, 6.49] [11] times its SM value exist. The measurement of the Higgs
self-couplings is of utmost importance since their measurement gives access to the Higgs po-
tential – the very origin of electroweak symmetry breaking.
The Higgs self-couplings can be determined experimentally observing double and triple Higgs
production. These processes exhibit a direct dependence on the Higgs self-couplings and so
they can be used to constrain them and see if there is agreement with the Standard Model
predictions.
A lot of e↵ort has gone into the predictions for double-Higgs production coming from the SM
and BSM theories also at higher order in the perturbative expansion [12,13].
The triple Higgs production cross section, instead, is known without approximations only at
Leading Order (LO), and, being a gluon fusion initiated process, is expected to have large QCD
corrections. While not being valid, those have been estimated in the infinite top mass limit [14]
In the first part of this thesis, an analytical result for the triple-Higgs production cross section
in the SM at LO is presented.
In the second part of the thesis, an approximation for the pentagon diagrams is discussed. That
is, the transverse momentum (pt) expansion, a method used to e�ciently approximate other
gluon-initiated top-quark loop processes [15–17].
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Chapter 1. Introduction

In chapter 2 we give a brief presentation of the Standard Model, focusing especially on the SSB
mechanism to fix some of the notation used in the rest of the thesis.
In chapter 3 we focus on the cross section of Triple Higgs Production at the LHC, giving a brief
description of the Parton Model and setting the notation for the 2!3 particle phase-space.
In chapter 4 we calculate the complete amplitude for the partonic process.
Finally, in chapter 5, we describe the pt expansion and we apply it to the LO partonic cross
section and check its range of validity.
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Chapter 2

Theoretical framework

In this section, a brief recap of the Standard Model is presented; in particular, after a compre-
hensive overview, the focus will be on Spontaneous Symmetry Breaking (SSB) mechanism, to
fix the notation used in the rest of the thesis.

2.1 Overview of the Standard Model

The Standard Model (SM) of particle physics is a comprehensive theory of electroweak and
strong interactions.
The SM could so far predict the interactions among elementary particles with remarkable
precision. However, it contains some free parameters that need to be fixed by experiments
(26 or 28 depending on the nature of neutrinos). In 2012, ATLAS and CMS announced the
discovery of a scalar resonance with a mass around 125 GeV at the LHC [1,2]. So far, this scalar
resonance seems compatible with the SM Higgs boson, the last ingredient needed to explain
SSB [18].

2.1.1 The Gauge group

The SM is a Yang-Mills theory [19] based on the symmetry group:

GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y . (2.1)

The number of generators of SU(N) (corresponding to the number of force carriers) is N2 � 1,
so we get 8 gluons from SU(3)C , three gauge bosons from SU(2)L, and one from U(1)Y .
The number of diagonal generators, which corresponds to the fundamental charges, is N � 1.
Before SSB, we have the color charge, the third component of the isospin charge T 3 (known as
the weak isocharge), and the weak hypercharge Y .
After SSB, the SM symmetry group breaks into:

G
SSB
SM = SU(3)C ⇥ U(1)em, (2.2)

which confirms the fact that gluons and photons remain massless after SSB. The charge related
to U(1)em is Q, the electric charge in units of e (so for the electron we have Qe = �1) and we
get the following relation:

Q = T
3 + Y. (2.3)
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2.1. Overview of the Standard Model Chapter 2. Theoretical framework

2.1.2 The particle content

The particle content of the theory is given by:

• The gauge fields (vector bosons):

G
a
µ, W

b
µ, Bµ, (2.4)

that transform respectively in the adjoint of SU(3)C , SU(2)L and U(1)Y , where a = 1, ..., 8
is the color index; b = 1, 2, 3 is the weak isospin index. The electroweak gauge fields are
recombined with a linear transformation to obtain the physical vector bosons:

G
a
µ, W

±
µ , Zµ, Aµ. (2.5)

• The Higgs boson, a doublet under SU(2)L composed by two complex components, corre-
sponding to 4 real degrees of freedom:

� =
1p
2

✓
�1 + i�2

�3 + i�4

◆
SSB�! � =

1p
2

✓
0

v +H

◆
, (2.6)

where v is the vacuum expectation value (VEV) of the Higgs field and H is the new field
representing the excitation around the vacuum. The latter expression is chosen in the
unitary gauge, where the other three real degrees of freedom are eaten by the massive
gauge bosons. The fundamental charges of the Higgs field are:

T
�
3 =

✓
1
2
�1

2

◆
, Q

� =

✓
1
0

◆
, Y

� =
1

2
. (2.7)

and it is sterile under SU(3)C .

• Six fermionic doublets under SU(2)L, three quark doublets and three lepton doublets,
respectively:

Q
1
L =

✓
uL

dL

◆
, Q

2
L =

✓
cL

sL

◆
, Q

3
L =

✓
tL

bL

◆
,

L
1
L =

✓
⌫
e
L

eL

◆
, L

2
L =

✓
⌫
µ
L

µL

◆
, L

3
L =

✓
⌫
⌧
L

⌧L

◆
.

(2.8)

Actually we do not need to carry all 6 doublets all the way, we can group them in three
generations: the three up-type quarks ui = u, c, t have the same fundamental charges and
di↵er only in their masses, and so do the down-type quarks di = d, s, b. The three quark
doublets Qi are formed by an ith generation up-type and down-type quark. In the same
way we can group the leptons in three doublets Li.

Q
i
L =

✓
u
i
L

d
i
L

◆
, L

i
L =

✓
⌫
i
L

e
i
L

◆
, (2.9)

where i = 1, 2, 3 denotes the generation.
Both transform under SU(2)L and U(1)Y , while the quark doublet transforms also under
SU(3)C . The fundamental charges are:

T
Q
3 =

✓
1
2
�1

2

◆
, Q

Q =

✓
2
3
�1

3

◆
, Y

Q =
1

6
,

T
L
3 =

✓
1
2
�1

2

◆
, Q

L =

✓
0
�1

◆
, Y

L = �1

2
.

(2.10)
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2.2. Electro-Weak Symmetry Breaking Chapter 2. Theoretical framework

• Three (four) fermionic singlets under SU(2)L, the up and down right quarks, the right
charged lepton (and the sterile right-handed neutrino):

u
i
R, d

i
R, e

i
R, (⌫i

R). (2.11)

The right-handed neutrino has not yet been observed and we will not focus on its pecu-
liarities.
Like before, only the quarks are charged under SU(3)C , all transform under U(1)Y and
are left invariant under SU(2)L transformations. The fundamental charges are:

T
u
3 = 0, Q

u =
2

3
, Y

u =
2

3
,

T
d
3 = 0, Q

d = �1

3
, Y

d = �1

3
,

T
e
3 = 0, Q

e = �1, Y
e = �1.

T
⌫
3 = 0, Q

⌫ = 0, Y
⌫ = 0.

(2.12)

2.1.3 The SM Lagrangian

The SM Lagrangian can be written in a short-handed form as:

LSM = LQCD � 1

4
W

a
µ⌫W

µ⌫,a � 1

4
Bµ⌫B

µ⌫

+ (Dµ�)
†(Dµ

�)� V (�†
�) +

X

f

⇥
if�µD

µ
f � (fyf�f + h.c.)

⇤
.

(2.13)

Looking at Eq. (2.13), the first term is the QCD Lagrangian [20], which contains the gluon field
strength as well as terms necessary for the quantisation of non-abelian fields [21] and gauge
fixing (which we also do not specify for the electroweak sector). It does not contribute to the
spontaneous symmetry-breaking mechanism. The next two terms are the kinetic terms of the
electroweak vector bosons, written using the SU(2)L and U(1)Y field strength tensors, which
are, respectively:

W
a
µ⌫ = @µW

a
⌫ � @⌫W

a
µ + g✏

abc
W

b
µW

c
⌫ , Bµ⌫ = @µB⌫ � @⌫Bµ, (2.14)

where W a
µ transforms in the adjoint of SU(2)L, a = 1, 2, 3; and Bµ transforms in the adjoint of

U(1)Y .
The first two terms of the second line of Eq. (2.13) are the Higgs kinetic and potential terms.
Finally, the last two terms are, respectively, the kinetic term of the fermions, and the Yukawa
term, which will be discussed later, and is shown here only schematically.
The covariant derivative appearing in the Lagrangian acts in the following way:

Dµ = @µ � ig
�
b

2
W

b
µ � ig

0
Y�Bµ, (2.15)

where g and g
0 are the electroweak coupling constants and are related to the electric charge e

through the relation e = g sin ✓W = g
0 cos ✓W , where ✓W is the Weinberg angle and �

a are the
Pauli matrices.

2.2 Electro-Weak Symmetry Breaking

In order to show how the SSB mechanism gives masses to the Gauge Bosons [22], we need to
look at the Higgs sector of the SM Lagrangian:

L
Higgs = (Dµ�)

†(Dµ
�)� V (�†

�). (2.16)
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2.2. Electro-Weak Symmetry Breaking Chapter 2. Theoretical framework

The Higgs potential is given by

V (�†
�) = µ

2
�
†
�+ �(�†

�)2, (2.17)

where � > 0 because the potential has to be bounded from below, and µ
2 can have any real

value in general.
The potential has a minimum in � = 0 if µ2

> 0, however, another minimum appears if µ2
< 0

for h�i =
q

�µ2

2� = vp
2
, if we define v

2 = �µ2

� .

This means that once the minimum is no longer in the origin, the vacuum state (the Higgs
VEV) is in v. Experimentally, the value of v is known with high precision and is around v '
246 GeV.
The Higgs field is a doublet under SU(2)L, so we can write it in its exponential form as:

� =
1p
2

✓
0

v +H(x)

◆
e
i ⇠

a(x)�a

2v , (2.18)

where H(x) is the excitation of the field around its vacuum state and ⇠
a(x) are the Goldstone

bosons. We can notice how we still have 4 degrees of freedom since the SU(2) index a runs
from 1 to 3.
Now we can apply a gauge transformation to get an easier form of the Higgs field, this arbitrary
choice is the ”Unitary Gauge”:

� ! �
0 = U� =

1p
2

✓
0

v +H(x)

◆
, U(x) = e

�i ⇠
a(x)�a

2v . (2.19)

In this gauge, linear combinations of the other three would-be Goldstone bosons (the ⇠
a(x)

fields) are said to be “eaten” by the weak gauge bosons. In practice we have rotated away the
three Goldstone fields, and they will only appear as the longitudinal polarizations of the W

and Z bosons. The vacuum field reads:

h0|� |0i = 1p
2

✓
0
v

◆
. (2.20)

Now we can substitute the expression of the Higgs vacuum state in the unitary gauge from Eq.
(2.20) in the kinetic Higgs Lagrangian, Eq. (2.16), to get the vector boson masses (substituting
from the beginning Y� = 1

2):

L
mass
U.G. = (Dµ�)

†(Dµ
�) =

1

2


(@µ � ig

�
a

2
W

a
µ � ig

01

2
Bµ)

✓
0
v

◆�† 
(@µ � ig

�
a

2
W

a
µ � ig

01

2
Bµ)

✓
0
v

◆�
=

1

2
v
2
�
0 1

�✓ g
2W

3
µ + 1

2g
0
Bµ �i

g
2W

2
µ + g

2W
1
µ

i
g
2W

2
µ + g

2W
1
µ �g

2W
3
µ + 1

2g
0
Bµ

◆2✓
0
1

◆
=

g
2
v
2

8

�
W

1
µW

1µ +W
2
µW

2µ
�
+

v
2

4

�
gW

3
µ � g

0
Bµ

�2
.

(2.21)

Now we can define W
±
µ = 1p

2
(W 1

µ ⌥W
2
µ)

) L
mass
U.G. =

g
2
v
2

4
W

+
µ W

�µ +
v
2

4

�
gW

3
µ � g

0
Bµ

�2
. (2.22)
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2.3. Fermionic sector Chapter 2. Theoretical framework

These are the mass terms of three massive gauge bosons. The mass of the W
± bosons can

already be read from the first term of Eq. (2.22): m2
W = g2v2

4 . Instead, to diagonalize the other
masses, we should rotate the other two fields. We then define:

(
Zµ = cos ✓WW

3
µ � sin ✓WBµ

Aµ = sin ✓WW
3
µ + cos ✓WBµ

()
(
Bµ = cos ✓WAµ � sin ✓WZµ

W
3
µ = sin ✓WAµ + cos ✓WZµ

, (2.23)

where tan ✓W = g0

g is the Weinberg angle and the fields Zµ and Aµ are the physical Z boson
and the photon

) L
mass
U.G. =

g
2
v
2

4
W

+
µ W

�µ +
v
2(g2 + g

02)

2 · 4 ZµZ
µ
, (2.24)

) m
2
W =

g
2
v
2

4
, m

2
Z =

v
2(g2 + g

02)

4
, m

2
� = 0. (2.25)

If we now want to get the interaction terms between the vector bosons and the Higgs boson,
we just have to make the substitution v ! v +H(x) in Eq. (2.24):

) L
int.
U.G. =

✓
1 +

H

v

◆2

m
2
WW

+
µ W

�µ +
1

2

✓
1 +

H

v

◆2

m
2
ZZµZ

µ
, (2.26)

from which we can directly extract the following Feynman rules, remembering also the combi-
natorial factors:

H = im
2
W

2
vgµ⌫

W
+
µ

W
�
⌫

H

H

= i
m2

W

v2 gµ⌫2!

W
+
µ

W
�
⌫

H = i
1
2m

2
Z

2
vgµ⌫2!

Zµ

Z⌫

H

H

= i
1
2
m2

Z

v2 gµ⌫2!2!

Zµ

Z⌫

2.3 Fermionic sector

The fermionic sector is the sum of the last two terms of Eq. (2.13). We now decompose the
generic fermionic field f , introducing the chirality projectors PL,R:

fL = PLf, fR = PRf, PL,R =
1 ⌥ �5

2
, PR + PL = 1, (2.27)

) P
2
L,R = PL,R, PLPR = PRPL = 0, f = fL + fR, (2.28)

where fL = u
i
L, d

i
L, e

i
L, ⌫

i
L and fR = u

i
R, d

i
R, e

i
R, i = 1, 2, 3.

The covariant derivative contains the kinetic term of each fermion and its gauge interactions,
while the Yukawa term is responsible for the fermion masses and interactions with the Higgs

10



2.3. Fermionic sector Chapter 2. Theoretical framework

boson.
Since quarks have a color charge, we add the interaction with the gluon in the covariant deriva-
tive, that acts on the components of the fermion fields as:

Dµ = @µ � igs
�
a

2
G

a
µ � ig

�
b

2
W

b
µ � ig

0
Y�Bµ, (2.29)

where gs is the strong coupling constant, Ga are the eight gluons and �
a are the Gell-Mann

matrices: the generators of SU(3) in the fundamental representation.
We rewrite the fermionic sector in the Unitary Gauge, expanding the covariant derivative:

L
U.G.
F =

X

f

(fLi/@fL + fRi/@fR)�
gp
2
(W�

µ J
+µ +W

+
µ J

�µ)

� g

cos ✓W
ZµJ

µ
Z � eAµJ

µ
em � gsG

a
µJ

aµ
S + LY .

(2.30)

The index f runs over all the fermionic fields: f = u, d, c, s, b, t, e, µ, ⌧, ⌫e, ⌫µ, ⌫⌧ . We have
respectively:

• The kinetic terms for the fermions
P

f (fLi/@fL + fRi/@fR);

• the electromagnetic current eAµJ
µ
em, where:

J
µ
em =

X

f

Qf (fL�
µ
fL + fR�

µ
fR); (2.31)

• the strong current gsGa
µJ

aµ
S , where

J
aµ
S =

X

q

(qiL�
µ
T

a
ijq

j
L + q

i
R�

µ
T

a
ijq

j
R), (2.32)

where T
a
ij =

�a

ij

2 are the SU(3)C generators in the fundamental representation, i,j are
color indexes and q runs over all the 6 quarks.

• the weak charged current gp
2
(W�

µ J
+µ +W

+
µ J

�µ), where

J
�
µ =

3X

i=1

(ui
L�µd

i
L + ⌫

i
L�µe

i
L), J

+
µ = (J�

µ )
†; (2.33)

• The weak neutral current g
cos ✓W

ZµJ
µ
Z , where:

J
Z
µ = J

3L
µ � sin2

✓WJ
em
µ =

X

f

⇥
fL�µT3fL � sin2

✓WQf (fL�
µ
fL + fR�

µ
fR)
⇤
. (2.34)

It is crucial to stress that all the kinetic terms and the gauge interactions couple fermions with
the same chirality, so all those terms will be gauge invariant.
The problem arises if we try to write a canonical Dirac mass term for the fermions, i.e the
up quark, muu because it would violate gauge invariance. We decompose it along the chiral
projectors:

muu = m(uL + uR)(uL + uR) = m(uLuR + uRuL). (2.35)

However, right- and left-handed fermionic fields are in di↵erent representations of the group
SU(2)L, (respectively the trivial representation and the fundamental representation), therefore

11



2.4. Higgs sector Chapter 2. Theoretical framework

they transform di↵erently under SU(2)L and that is the reason why such a term would violate
gauge invariance.
In order to avoid such a ”catastrophe”, we rely again on SSB and write a Yukawa-type inter-
action:

LY = �QL�yddR �QL�̃yuuR � LL�yeeR � LL�̃y⌫⌫R + h.c. (2.36)

where �̃ = i�2�
⇤.

It is easy to show that this Lagrangian is gauge invariant since the Higgs field transforms in
the fundamental representation of SU(2)L.
In the unitary gauge we get:

� =
1p
2

✓
0

v +H(x)

◆
, �̃ =

1p
2

✓
v +H(x)

0

◆
. (2.37)

Then the Yukawa Lagrangian becomes:

LY = �
✓
v +H(x)p

2

◆�
dLyddR + uLyuuR + eLyeeR + ⌫Ly⌫⌫R + h.c.

�
. (2.38)

and we can easily read the fermion masses mf = yfvp
2
and the Feynman rule for the interaction

between fermions and the Higgs boson from Eq. (2.38):

H = � ip
2
yf .

f

f

2.4 Higgs sector

Now we can also find the Feynman rules for Higgs self-interactions by looking at the Higgs
potential in Eq. (2.17). Being still in the unitary gauge, we find:

L
H =

�v
2

2

�
v
2 + 2vH +H

2
�
� �

4

�
v
4 + 4v2H2 +H

4 + 4v3H + 4vH3 + 2v2H2
�
, (2.39)

) L
H = ��v

2
H

2 � �vH
3 � �

4
H

4
, (2.40)

from which we can easily read the Higgs mass (m2
H = 2�v2) and the Feynman rules for its self

interactions:

H = �i�v3!

H

H

H

H

= �i
�
44!

H

H

In the SM, the strength of the Higgs self-interactions, given by the adimensional parameter �,
is fixed in terms of the Higgs boson mass:

� =
m

2
H

2v2
, (2.41)
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2.4. Higgs sector Chapter 2. Theoretical framework

that has been determined experimentally. This means that within the SM the Higgs self-
couplings are determined. It is though anyways crucial to measure them, as this would provide
the ultimate test of electroweak symmetry breaking by confirming the form of the Higgs po-
tential.
In Tab. 2.1 the degrees of freedom and the mass spectrum before and after SSB are recapped.
As can be inferred from the table, clearly the degrees of freedom remain the same even though
assigned to di↵erent fields.

µ
2
< 0 µ

2
> 0

Particle mass2 d.o.f Particle mass2 d.o.f

W
±
µ

g2v2

4 2⇥ 3 = 6 W
a
µ 0 3⇥ 2 = 6

Zµ
(g2+g02)v2

4 1⇥ 3 = 3 Bµ 0 1⇥ 2 = 2
Aµ 0 1⇥ 2 = 2 � µ

2 4⇥ 1 = 4
H 2�v2 1⇥ 1 = 1

TOT=12 TOT=12

Table 2.1: Gauge Bosons and Higgs mass spectrum before and after SSB.
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Chapter 3

Cross Section

In this chapter we will present the structure of the triple-Higgs production cross section at the
LHC. The first section will contain a brief description of the parton model, the second one will
be about the phasespace of a three-particle process, and the third one about the numerical
method used to do the multidimensional integral.

3.1 The Parton Model

The LHC or any hadron collider requires to know the elementary particle content of the hadrons
involved in the considered particle reaction.
We can though still use perturbation theory to calculate cross sections of processes at hadron
colliders if we start from three principles:

• the asymptotic freedom of Quantum Chromodynamics (QCD) [23]

• the validity of the parton model [24]

• the property of factorization in hadronic cross sections

It is possible to understand that QCD is indeed an asymptotic free theory by calculating the
running of the strong coupling constant gs with the renormalization scale already at one loop.
Contrary to the electric charge, which grows with the energy, the strong coupling constant
becomes smaller and smaller as the energy grows, with a pole for energies µ ' ⇤QCD that
separates perturbative QCD from non-perturbative e↵ects with the following profile:

gs(µ) ⇠ ln�1

✓
µ

⇤QCD

◆
. (3.1)

This means that the strong-coupling constant can be used to perform a perturbative expansion
of the amplitudes only for energies larger than the QCD pole implying that the hard scattering
processes of quarks and gluons can be computed within perturbation theory. However, the
long-distance e↵ects due to low-energy QCD of the strong interaction are not calculable with
the usual description of the Feynman diagrams. These e↵ects include the interactions between
quarks and gluons inside the protons accelerated at the LHC.
To have a quantitative description of what happens in the scattering of high energy hadrons,
we assume the parton model is valid.
We also use the property of factorization in hadronic cross sections: we assume that low-
and high-energy QCD e↵ects can be treated independently, so we can factorize them in the
cross section. These three assumptions hold with a very high level of precision, and thanks to

14



3.2. Partonic cross section Chapter 3. Cross Section

them, we can do precision calculations for hadron scatterings even if we have not yet explained
hadronization at low-energies.
Let’s then use these assumptions to write a formula to calculate the cross section � of scatterings
at the LHC:

� =
X

a,b

Z
dx1dx2⇥(x1x2 � ⌧1)fa(x1, µF )fb(x2, µF )�̂ab(x1, x2, Q, µF ) + O

✓
⇤QCD

Q

◆
, (3.2)

where �ab is the so-called partonic cross section of the hard scattering of partons a and b. As
one can see from Eq. (3.2), the partonic cross section is convoluted with the Parton Distribution
Functions (PDFs) fa and fb, the probability that the partons a and b carry a fraction of the
momentum x1 and x2 of the incoming protons at factorization scale µf . The latter is the
arbitrary energy scale that separates long-distance to short-distance QCD e↵ects. The profile
of the PDFs is known only numerically from a fit to experimental data and in this thesis is
taken from the public database LHAPDF [25] (set NNPDF40-lo-as-01180 [26]). Finally, Q is
the characteristic energy scale of the partonic process, ⇥ is the Heaviside theta function and
⌧1 is a constant that reflects a kinematical constraint, in our case the center of mass (CoM)
energy of the partonic process needs to be large enough to produce three on-shell Higgs bosons
(more on this later).
For the process studied in this thesis, the only relevant contribution to the total cross section
is the one coming from Gluon Fusion (GF), so a = b = g in Eq. (3.2).

3.2 Partonic cross section

In this section, we will analyze the partonic cross section, and in particular the three-particle
phasespace [27]. First of all, let’s specify the kinematic variables.
The four-momenta of the incoming protons will be denoted with the capital letter, so we have
P1 and P2 for the first and second proton respectively. We denote by s = (P1 + P2)2 the
invariant mass of the process, which is also the squared (CoM) energy of the two incoming
protons, which we assume to be

p
s = ECM = 14 TeV.

We label the partonic process with the following momenta:

g
a
µ(p1) + g

b
⌫(p2) ! H(p3) +H(p4) +H(p5), (3.3)

where a, b are the color indexes for the gluons and µ, ⌫ are Lorentz indexes. The gluons are taken
incoming, whereas the Higgs are taken outgoing. This means that the momenta conservation
reads:

p1 + p2 = p3 + p4 + p5. (3.4)

The particles are on-shell, so:

p
2
3 = p

2
4 = p

2
5 = m

2
H , p

2
1 = p

2
2 = 0. (3.5)

As explained in the previous section, the momenta of the gluons can be written as:

p1 = x1P1, p2 = x2P2. (3.6)

From now on, variables with a hat will be understood as partonic variables. Therefore, the
partonic COM energy is related to the total one with:

ŝ = ⌧s, ⌧ = x1x2. (3.7)
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3.2. Partonic cross section Chapter 3. Cross Section

Being a 2 ! 3 process, there is not a convention on generalizing the Mandelstam variables.
However, it is clear that the amplitude will depend on five independent kinematical variables
(other than the particle masses). In this work, we use the following:

ŝ = (p1 + p2)
2
, ŝ1 = (p3 + p4)

2
, ŝ2 = (p4 + p5)

2
,

t̂1 = 2p1 · p3 = m
2
H � (p1 � p3)

2
, t̂2 = 2p2 · p4 = m

2
H � (p2 � p4)

2
.

(3.8)

The only other energy scale that will enter the amplitude is the top-quark mass mt, which will
come out of the fermionic loops.
We also introduce two other variables that we will use later, useful for getting more compact
expressions even if they are not independent:

û1 = 2p2 · p3 = m
2
H � (p2 � p3)

2 = ŝ� t̂1 � ŝ2 +m
2
H ,

û2 = 2p1 · p4 = m
2
H � (p1 � p4)

2 = ŝ1 + ŝ2 � t̂2 � 2m2
H .

(3.9)

The partonic cross section is calculated in the CoM frame of the gluons, for which we have a
well-known formula:

�̂(ŝ) =
1

2E1

1

2E2

1

|v1 � v2|

Z
d⇧3

��A
��2, (3.10)

where the energies of the gluons in this frame are E1 = E2 = ÊCM/2, vi = pi/Ei are the

3-velocities of the gluons (pi are the 3-momenta),
��A
��2 is the unpolarized squared amplitude

of the process, and d⇧3(p1, p2, p3, p4, p5) is the Lorentz-invariant 3-particle phasespace, that
generalizes for N particles this way:

d⇧N = (2⇡)4�(4)
 
X

i=1,2

pi �
X

f=3,...,N

pf

!
Y

final states f

d3
pf

(2⇡)32Ef
, (3.11)

where the Dirac Delta represents the conservation of the 4-momentum. This expression for the
phasespace can be simplified using a mathematical trick.
The 2! N process can be in fact decomposed into a cascade of N � 1 2! 2 scatterings [28],
like depicted in Fig. (3.1):

Figure 3.1: Decomposition of a 2! N process into a cascade of 2!2 subprocesses to easy the compu-
tation of the phasespace.

So, the N -particle phasespace factor in Eq. (3.11) can be seen as a product of N � 1 terms,
each one being an intermediate 2-particle phasespace factor.

d⇧N(p; p3..., pN) =
dQ2

1

2⇡
d⇧2(p;Q1, p3)d⇧N�1(Q1; p4, ..., pN), (3.12)
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3.2. Partonic cross section Chapter 3. Cross Section

where pi, i = 1, ..., N are the momenta of the particles involved, p = p1 + p2 is the momentum
of the two initial particles and:

Q1 = p4 + ...+ pN ) Q
2
1 = Q

2
10 �Q

2
1 ) dQ2

1 = 2Q10dQ10. (3.13)

It is easy to show that Eq. (3.12) and Eq. (3.11) represent the same quantity, we start by
expanding the phasespace factors and the first di↵erential from Eq. (3.12) :

d⇧N =
Q10dQ10

2⇡

d3
Q1

(2⇡)32Q10

d3
p3

(2⇡)32E3
(2⇡)4�(4)(p�Q1�p3)

NY

j=4

d3
pj

(2⇡)32Ej
(2⇡)4�(4)(Q1�p4�...�pN).

(3.14)

Now we rearrange Eq. (3.14), noticing that we can rewrite the product of the first two di↵er-
entials as d4

Q1

d⇧N = d4
Q1�

(4)(p�Q1 � p3)
NY

j=3

d3
pj

(2⇡)32Ej
(2⇡)4�(4)(Q1 � p4 � ...� pN) . (3.15)

Now we solve for the first Dirac Delta getting rid of the d4
Q1 integration obtaining the condition

Q1 = p�p3, and finding Eq. (3.11), hence we demonstrated that indeed the N phase space can
computed as in Eq. (3.12).
Returning to the 2!3 process, we can then write the 3-particle phasespace as:

d⇧3(p1, p2; p3, p4, p5) =
dŝ2
2⇡

d⇧2(p; p3, p4 + p5)d⇧2(p4 + p5; p4, p5), (3.16)

where the expressions for the 2-particle phasespace is trivial and specifies to our cases as:

d⇧2(p; p3, p4 + p5) =
dt̂1
8⇡ŝ

, (3.17)

d⇧2(p4 + p5; p4, p5) =
dt̂2d'

16⇡2(ŝ2 + t̂1 �m
2
H)

, (3.18)

where ' is the azimuthal angle relative to the 4th Higgs in spherical coordinates. In our
calculation, we actually adopt a change of variable ' ! ŝ1. It will bring a factor J1 in the
integration of the phase space coming from the Jacobian of the transformation, and the new
limits of integration will be denoted by ŝ1± (the full expressions can be found in the Appendix
in Eq. (A.1)).
The other limits of integration are the following:

8
><

>:

ŝ2� = 4m2
H  ŝ2  (

p
ŝ�mH)2 = ŝ2+

0  '  2⇡

t̂i�  t̂i  t̂i+, i = 1, 2

, (3.19)

t̂1± =
1

2
(ŝ+m

2
H � ŝ2 ±

p
�1), t̂2± =

1

2

ŝ2 + t̂1 �m
2
H

ŝ2
(ŝ2 ±

p
�2), (3.20)

where the �i are functions of the other energy scales:

�1 = (ŝ+m
2
H � ŝ2)

2 � 4m2
H ŝ, �2 = ŝ

2
2 � 4m2

H ŝ2. (3.21)

So the partonic cross section is written as:

�̂ =
1

2E1

1

2E2

1

|v1 � v2|

Z ŝ2+

ŝ2�

dŝ2
2⇡

Z t̂1+

t̂1�

dt̂1
8⇡ŝ

Z t̂2+

t̂2�

dt̂2
16⇡2(ŝ2 + t̂1 �m

2
H)

Z ŝ1+

ŝ1�

dŝ1J1
��A
��2. (3.22)
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3.3 Multidimensional integration

In this section there will be a brief description of the method used to integrate the total cross
section.
Looking at Eq. (3.11), it seems that the partonic cross section is the result of a 3N -dimensional
integration, where N is the number of particles in the final state (N = 3 here). However, the
conservation of the 4-momentum gives 4 independent conditions, so we only have to integrate
3N �4 = 5 variables. We also have to consider that the unpolarized amplitude will not depend
on the orientation of the reference frame, so one azimuthal angle will be a dummy variable,
giving only a (2⇡) factor, already included in Eq. (3.22). So, the number of variables to inte-
grate is 4.
We also have to consider the integration of x1 and x2 to obtain the total cross section at the
LHC, so we have to deal with a non-trivial 6-dimension integral.
Given the multi-dimensionality of the integration as well as the fact that the PDFs are numer-
ical, the right tool is to use a Monte Carlo integration in order to obtain the cross section. For
this purpose, we wrote a FORTRAN program (B.1), using a Monte Carlo integration routine
known as VEGAS [29], using the implementation of the CUBA library [30]. The integration of
the phase-space was also checked numerically using RAMBO [31], a Montecarlo event generator
algorithm for phase-space distributions
Monte Carlo integration involves the use of random numbers within the interval [0, 1]N for an
N -dimensional integral. In essence, Monte Carlo integration works by evaluating the integrand
at numerous random points generated by a random number generator. The value of the integral
is then approximated by averaging the values of the integrand at these random points. This
approach is particularly advantageous for handling multidimensional integrals, as it tends to
be significantly faster than other traditional integration methods.
However, the VEGAS routine represents a refined version of the Monte Carlo integration tech-
nique. To improve the accuracy of the integral, VEGAS employs a method known as impor-
tance sampling. Unlike basic Monte Carlo integration, where random numbers are uniformly
distributed across the entire integration domain, importance sampling focuses on generating
more random numbers in regions where the integrand makes the most significant contributions.
This is achieved by constructing a probability distribution that closely models the integrand
itself. VEGAS accomplishes this by dividing the integration space into a rectangular grid,
performing the integration within each subregion, and iteratively refining the grid based on
where the integral is most heavily concentrated. This iterative adjustment allows VEGAS to
focus on the regions of greatest importance, thus increasing the precision of the integration over
successive iterations.
It is worth noting that VEGAS is specifically designed to evaluate integrals within the intervals
[0, 1]N . Therefore, if the integral in question has limits outside this range, it must first undergo
a substitution of the integration variable that redefines the limits to fall within the said hyper-
cube.
It is particularly beneficial to perform this substitution in a manner that closely mimics the
structure of the integrand. When this substitution is done e↵ectively, it facilitates the VEGAS
routine’s ability to identify the most crucial regions of the integration space. Consequently,
this leads to a more rapid convergence of the numerical evaluation of the integral.
In principle, the integration of the PDFs is already done in the right dominium (being x1 and
x2 fractions of the protons momenta, they are already in the range ri 2 [0, 1]).The hadronic
cross section from Eq. (3.2) is:

� =

Z 1

0

dx1

Z 1

0

dx2⇥(x1x2 � ⌧1)f1(x1, µF )f2(x2, µF )�̂, (3.23)
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where f1 and f2 are the PDFs relative to the two gluons, �̂ is the partonic cross section and
⌧1 = (3mH)2

ŝ is the normalized energy threshold for the process that is added to account for
the fact that the production of three on-shell Higgs bosons requires a minimum partonic CoM
energy (

p
ŝ � 3 mH). Hence, not all values of x1 and x2 are allowed. Therefore we make the

substitution:

⌧ = x1x2, x = x1 ) dx1dx2 =
1

x1
d⌧dx, (3.24)

The limits of integration of the new variables, considering also the role of the Heaviside theta
function are now the following:

⌧1  ⌧  1, ⌧  x  1. (3.25)

So we obtain:

� =

Z 1

⌧1

d⌧

Z 1

⌧

dx

x
f1(x, µF )f2(⌧/x, µF )�̂. (3.26)

Now we adapt the integral to VEGAS by making yet another change of variables:

⌧ = ⌧
r1
1 , x = ⌧

r2 ) d⌧dx = x ⌧ ln(⌧) ln(⌧1)dr1dr2. (3.27)

) � =

Z 1

0

dr1

Z 1

0

dr2 ⌧ ln(⌧) ln(⌧1)f1(x, µF )f2(⌧/x, µF )�̂. (3.28)

Being a numerical integration, we can safely keep x and ⌧ instead of writing their dependence
on r1 and r2, which are the random numbers given by VEGAS and are indeed in the right
range.
The last thing to notice is that the PDF from LHAPDF is not directly f(x), but is xf(x), namely
the momentum density. To take this into account, we simply need to make the substitution
f(x) ! f(x)/x. This yields

(f1(x, µf )f2(⌧/x, µf )) ! (f1(x, µf )f2(⌧/x, µf ))/⌧. (3.29)

At the end we get:

� =

Z 1

0

dr1

Z 1

0

dr2 ln(⌧) ln(⌧1)f1(x, µF )f2(⌧/x, µF )�̂. (3.30)

The partonic cross section is written as Eq. (3.22):

�̂ =
1

2E1

1

2E2

1

|v1 � v2|

Z
d⇧3

��A
��2 =

1

2E1

1

2E2

1

|v1 � v2|

Z ŝ2+

ŝ2�

dŝ2
2⇡

Z t̂1+

t̂1�

dt̂1
8⇡ŝ

Z t̂2+

t̂2�

dt̂2
16⇡2(ŝ2 + t̂1 �m

2
H)

Z ŝ1+

ŝ1�

dŝ1J1
��A
��2.

(3.31)

To correctly adapt it to VEGAS, we make the same change of variable to all the 4 partonic inte-
grations. If ✓̂i is a generic partonic variable to integrate (in our case, we have ✓̂i = ŝ1, ŝ2, t̂1, t̂2),
we make the substitution

✓i = (✓i+ � ✓i�) ri + ✓i�, (3.32)

where ri, i = 3, 4, 5, 6 are the random numbers given by VEGAS and are indeed in the right
range: ri 2 [0, 1] and ✓i+, ✓i� are the old limits of integration. Of course we have to remember
that this change of variables brings a factor given by the Jacobian of the transformation, which
in this case is

J2 = (ŝ2+ � ŝ2�)(t̂1+ � t̂1�)(t̂2+ � t̂2�)(ŝ1+ � ŝ1�). (3.33)
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In our notation, the prefactor of the partonic cross section is:

1

2E1

1

2E2

1

|v1 � v2|
=

1

2ŝ
. (3.34)

We then denote the prefactor of the hadronic cross section as:

L = ln(⌧) ln(⌧1)f1(x, µF )f2(⌧/x, µF ). (3.35)

So the final expression will be:

� =

Z 1

0

dr1

Z 1

0

dr2

Z 1

0

dr3

Z 1

0

dr4

Z 1

0

dr5

Z 1

0

dr6
L J1J2

��A
��2

512⇡4ŝ2(ŝ2 + t̂1 �m
2
H))

. (3.36)
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Chapter 4

Amplitude

In this section, we describe the method used to find the amplitude of Triple-Higgs Production
via Gluon Fusion at Leading Order.

4.1 General properties

We begin the study of the process by introducing the main features of the associated Feynman
amplitude.
The amplitude of

g
a
µ(p1) + g

b
⌫(p2) ! H(p3) +H(p4) +H(p5) (4.1)

is defined as:

A =
↵S(µR)

2⇡

GFmHp
2

✏
a
µ(p1)✏

b
⌫(p2)�abÂ

µ⌫(p1, p2, p3, p4), (4.2)

where ↵S(µR) is the strong coupling constant defined at a renormalization scale µR, GF is the
Fermi Constant, mt is the top quark mass, and ✏

a
µ(p1)✏

b
⌫(p2) are the polarization vectors of the

two initial gluons.
Using this notation, all the information about the Lorentz structure of the amplitude is encoded
in the tensor Â

µ⌫(p1, p2, p3, p4). The latter tensor doesn’t depend on the momentum p5 since
we implicitly used the 4-momentum conservation law:

p5 = p1 + p2 � p3 � p4. (4.3)

Moreover, the gluons are transversely polarised, so their momentum is perpendicular to their
polarization vector, namely:

✏
a(p1) · p1 = 0, ✏

b(p2) · p2 = 0. (4.4)

Also, the Ward identities have to be respected:

p1,µÂ
µ⌫(p1, p2, p3, p4) = 0, p2,⌫Â

µ⌫(p1, p2, p3, p4) = 0. (4.5)

Finally, the amplitude must also respect Bose Symmetry for the interchange of the initial gluons
(µ $ ⌫, a $ b, p1 $ p2), so:

Â
µ⌫(p1, p2, p3, p4) = Â

⌫µ(p2, p1, p3, p4). (4.6)
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4.2 Projectors

The tensor Âµ⌫ can be decomposed along a basis of projectors T̂µ⌫ :

Â
µ⌫ =

X

n

an(ŝ, ŝ1, ŝ2, t̂1, t̂2,mt,mH)T̂
µ⌫
n , (4.7)

where an(ŝ, ŝ1, ŝ2, t̂1, t̂2,mt,mH) are scalar form factors. It can be noticed that we traded
the dependence on the generic 4-momenta with the masses involved in the problem and the
generalized Mandelstam variables defined in chapter 3.
In order to correctly construct the projectors we have to employ the symmetries discussed
above.
First, the tensor structures with two indexes that respect Lorentz symmetry are only of three
types:

• combinations of 4-momenta, i.e. pµi p
⌫
j , i, j = 1, 2, 3, 4;

• the metric tensor gµ⌫ = diag(1,�1,�1,�1);

• the Levi-Civita tensor contracted in turn with two momenta, i.e. ✏µ⌫⇢�p
⇢
i p

�
j , i, j = 1, 2, 3, 4.

The latter cannot be present because the interaction between fermions and gluons are vector-
like in the SM Lagrangian (from a computational point of view, this can be seen from the fact
that the ✏-tensor only comes out when we have traces involving �5, not present here).
So the tensor amplitude is written as the most general sum of all these Lorentz structures:

Â
µ⌫ = a1g

µ⌫ +
4X

i,j=1

aijp
µ
i p

⌫
j . (4.8)

However, the gluons are transversely polarized, and we have to keep in mind that this structures
will be contracted with the two gluon polarization vectors. Since we arbitrarily chose ✏aµ(p1) for
the first gluon and ✏

b
⌫(p2) for the second one, everytime a projector will contain either pµ1 or p⌫2,

it will vanish upon contraction with one of the polarization vectors.
Therefore, the projectors will be constructed using only p

⌫
1 and p

µ
2 .With this in mind, the tensor

amplitude can then be written as:

Â
µ⌫ = a1g

µ⌫ + a2p
µ
2p

⌫
1 + a3p

µ
3p

⌫
1 + a4p

µ
4p

⌫
1 + a5p

µ
2p

⌫
3

+ a6p
µ
2p

⌫
4 + a7p

µ
3p

⌫
3 + a8p

µ
3p

⌫
4 + a9p

µ
4p

⌫
3 + a10p

µ
4p

⌫
4.

(4.9)

We are then left with ten Lorentz structures with relative form factors ai. We can still use
gauge invariance. This means that the tensor amplitude needs to vanish if we contract it with
p
µ
1 or p⌫2. In practice, we get 6 conditions for the form factors:

8
><

>:

p1,µp1,⌫Â
µ⌫ = 0

p1,µp2,⌫Â
µ⌫ = 0

p1,µp3,⌫Â
µ⌫ = 0

,

8
><

>:

p1,µp4,⌫Â
µ⌫ = 0

p3,µp2,⌫Â
µ⌫ = 0

p4,µp2,⌫Â
µ⌫ = 0

. (4.10)

The solution is:

a1 =
a10t̂2û2 � a2ŝ

2 � a4ŝû1 + a8t̂1t̂2

2ŝ
, a3 =

a4ŝû1 � a8t̂1t̂2 + a9û1û2

ŝt̂1

a5 = �a4ŝ+ a9û2

t̂1

, a6 = �a10t̂2 + a9û1

ŝ
, a7 = �a10û2 + a8t̂1

ŝ
.

(4.11)
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One of the equations turns out to be trivial, so we have 5 independent form factors at the end.
Â

µ⌫ is then written as:
Â

µ⌫ =
X

i=2,4,8,9,10

aiD̂
µ⌫
i , (4.12)

where the new projectors D̂µ⌫
i are combinations of the simple Lorentz structures discussed above

(Eq. (4.9)).
Now we can apply the Gran-Schmidt procedure to ”orthonormalise” the base constructed using
the five independent projectors. We notice that one of them has zero norm, so it will not
contribute to the amplitude and we discard it.
We are then left with four projectors, which means that we will have to calculate only four
form factors:

Â
µ⌫ = f1Ŝ

µ⌫
1 + f2Ŝ

µ⌫
2 + f3Ŝ

µ⌫
3 + f4Ŝ

µ⌫
4 . (4.13)

The projectors are orthonormal in the sense that we can calculate the polarization sum of the
squared amplitude simply taking the squared moduli of the form factors:

X

POL

|A|2 /
X

POL

✏µ(p1)✏⌫(p2)✏
⇤
⇢(p1)✏

⇤
�(p2)Â

µ⌫
Â

⇢�⇤ =

(�gµ⇢)(�g⌫�)
X

n

fnŜ
µ⌫
n

X

m

f
⇤
mŜ

⇢�⇤
m =

X

n

|fn|2,
(4.14)

since Ŝ
µ⌫
n Ŝm, µ⌫ = �mn. (4.15)

We write here the first two projectors, the other two will be written in Appendix (A.2):

Ŝ
µ⌫
1 = g

µ⌫ � p
⌫
1p

µ
2

p1 · p2
, (4.16)

Ŝ
µ⌫
2 = g

µ⌫ +
2pµ3(p

⌫
3(p1 · p2)� p

⌫
1(p2 · p3)) + p

µ
2(p

2
3p

⌫
1 � 2p⌫3(p1 · p3))

2(p1 · p3)(p2 · p3)� p
2
3(p1 · p2)

. (4.17)

4.3 Calculation of the form factors

In this section, we present the method used to calculate the form factors.
First, we discuss how the Feynman diagrams were generated; then we show how the loop
integrals were calculated, before we present the results.

4.3.1 Generating the Feynman diagrams

The gg ! HHH amplitude is calculated making use of Mathematica.
The amplitude at LO is loop induced, since there is no interaction vertex connecting gluons and
Higgs bosons in the SM. In general loop integrals diverge, however, in this case, given the fact
that we do not have tree-level diagrams means that we also do not have counterterms to absorb
the divergent part of the amplitude. Therefore, since the SM is a UV-safe theory, the sum of
all possible Feynman diagrams needs to be UV-finite by itself providing a powerful check of the
computation.
The Feynman diagrams relevant for the process are generated using the Mathematica package
FeynArts [32] and appear always with a fermionic loop (with loop momentum k), and can be
divided by their topologies in three cathegories: triangle loops, box loops and pentagon loops.
It is natural to decompose each form factor following this classification:

fi = f
4
i + f

⇤
i + f

D
i , for i = 1, 2, 3, 4. (4.18)
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Figure 4.1: Feynman diagrams for triple Higgs production at leading order

Looking at Fig. 4.1 the Higgs self-couplings appear with di↵erent powers in the di↵erent topolo-
gies:

• The first triangle loop is attached to only one Higgs propagator that then splits into
the three-Higgs final state through a quartic interaction. This class of diagrams will be
proportional to the Higgs quartic self-coupling;

• The second triangle loop is instead attached to a chain of two Higgs propagators (this
also means that it is very much suppressed relatively to all the others). This class of
diagrams will be proportional to the Higgs triple self-coupling squared;

• The box loop is instead attached to a on-shell Higgs and Higgs propagator that then splits
into two on-shell Higgs. This class of diagrams will be proportional to the triple Higgs
self-coupling;

• The pentagon loop is directly attached to three on shell-Higgs bosons, without presenting
any Higgs self-coupling.

The calculation is performed separately for each topology (triangle, box, and pentagon), so it
is possible to keep track of the relative contribution of each to the total cross section.
Moreover, the triangle and box loops can be calculated more easily looking at single and double
Higgs production, and then multiply the missing factors that come from the Higgs propagators
and self-couplings. Doing so also allows one to have a powerful check with results available in
the literature from single [33] and double Higgs production [34,35].
In order to respect chirality conservation, the amplitude directly depends on positive powers of
the mass of the quark running in the loop. This means that the top quark loop will give the
largest contribution, so we turn o↵ the masses of the other quarks in this thesis (this is also
justified a posteriori since we checked that the contribution from bottom quark loops give a
contribution under the 0.1% to the total cross section).

4.3.2 Loop Integral decomposition

After the generation of the diagrams, Dirac and color algebra is reduced using the Mathematica
package FeynCalc [36–38].
The regularization scheme used in this work is dimensional regularization [39], which consists of
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going from four space-time dimensions to D = 4� 2✏ spacetime dimensions, and then take the
✏ ! 0 limit after the evaluation of the loop integrals. So we change the space-time dimensions
of the amplitude using FeynCalc.
The fact that the projectors Ŝµ⌫

n are orthonormal, means that it is very easy to isolate the single
form factors.
The i-th form factor is in fact found simply by contracting the whole amplitude with the i-th
propagator:

fi = Ŝ
µ⌫
i Âµ⌫ . (4.19)

Dealing with scalar form factors instead of the tensor amplitude makes the computation much
faster. However, one-loop integrals could be in principle always be solved even if tensorial.
They are in fact reduced to a basis of scalar known functions through the Passarino-Veltman
reduction scheme [40].
Starting from the generic one-loop tensor integral, classified by the number of propagator factors
at the denominator n, and by the number of integration momenta p:

T
µ1...µp

n =
(2⇡µ)4�D

i⇡2

Z
d
D
k

k
µ1...µp

D0D1...Dn�1
, Di = (k + ri)

2 �m
2
i + i✏. (4.20)

The momenta follow the convention in figure 4.2.
For later purpose, we explicitly write four of those integrals following the usual notation, which
consists of denoting Tn with the n�th letter of the alphabet:

B
µ =

(2⇡µ)4�D

i⇡2

Z
d
D
kk

µ
1Y

i=0

1

(k + ri)2 �m
2
i

; (4.21)

B
µ⌫ =

(2⇡µ)4�D

i⇡2

Z
d
D
kk

µ
k
⌫

1Y

i=0

1

(k + ri)2 �m
2
i

; (4.22)

C
µ =

(2⇡µ)4�D

i⇡2

Z
d
D
kk

µ
2Y

i=0

1

(k + ri)2 �m
2
i

; (4.23)

C
µ⌫ =

(2⇡µ)4�D

i⇡2

Z
d
D
kk

µ
k
⌫

2Y

i=0

1

(k + ri)2 �m
2
i

; (4.24)

Figure 4.2: Momenta conventions for loop integrals

rj =
jX

i=1

pi, j = 1, ..., n� 1, r0 = 0. (4.25)
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The Passarino-Veltmann (PV) scalar integrals deserve a special mention. Indeed, it can be
shown that the independent scalar integrals are only four, with these expressions [41]:

A0[m
2
0] =

(2⇡µ)4�D

i⇡2

Z
d
D
k

1

k2 �m
2
0

, (4.26)

B0[r
2
10,m

2
0,m

2
1] =

(2⇡µ)4�D

i⇡2

Z
d
D
k

1Y

i=0

1

(k + ri)2 �m
2
i

, (4.27)

C0[r
2
10, r

2
12, r

2
20,m

2
0,m

2
1,m

2
2] =

(2⇡µ)4�D

i⇡2

Z
d
D
k

2Y

i=0

1

(k + ri)2 �m
2
i

, (4.28)

D0[r
2
10, r

2
12, r

2
23, r

2
30, r

2
20, r

2
13,m

2
0,m

2
1,m

2
2,m

2
3] =

(2⇡µ)4�D

i⇡2

Z
d
D
k

3Y

i=0

1

(k + ri)2 �m
2
i

, (4.29)

where

r
2
ij = (ri � rj)

2
. (4.30)

Moreover, due to Lorentz invariance in D-dimensions, each of the tensor integrals T
µ1...µp

n in
Eq. (4.20) can be decomposed as follows:

T
µ1...µp

n =
X

i

⇤µ1...µp

i T
i
n, (4.31)

where ⇤µ1...µp

i are Lorentz invariant p-rank tensors that do not depend on the loop momentum
and T

i
n are scalar loop integrals with n propagators. For example, Eq. (4.21) - (4.24) become:

B
µ = r

µ
1B1; (4.32)

B
µ⌫ = g

µ⌫
B00 + r

µ
1 r

⌫
1B11; (4.33)

C
µ = r

µ
1C1 + r

µ
2C2; (4.34)

C
µ⌫ = g

µ⌫
C00 + r

µ
1 r

⌫
1C11 + (rµ1 r

⌫
2 + r

µ
2 r

⌫
1)C12 + r

µ
2 r

⌫
2C22; (4.35)

where B1, B00, B11, C1, C2, C00, C11, C12, C22 are scalar integrals to be determined and are
always combinations of the four independent ones written above. Basically, one can always
write the tensor integral as a sum of scalar (and reducible) integrals times a Lorentz structure
independent of the loop momentum. This step is called the Tensor Integral Decomposition
(TID) and it is not unique, it depends on the conventions of Fig. 4.2.
To find the expressions of the reducible scalar integrals in terms of the four independent ones,
in this thesis, we use the algorithm implemented in FeynCalc.
In order to illustrate the algorithm, in the following, we will consider the expression of the
triangle loops as generated by FeynArts (before the contraction with the projector), the loop
integral has the following expression:

T
µ⌫
3 =

Z
d
D
k

i⇡2

g
µ⌫(�2k2 + 2m2

t � ŝ) + 4kµ
k
⌫ � 2pµ1p

⌫
2 + 2p⌫1p

µ
2

(k2 �m
2
t )((k � p1)2 �m

2
t )((k + p2)2 �m

2
t )

. (4.36)

The decomposition in terms of Eq. (4.20) integrals becomes clearer if we divide it into three
terms:
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T
µ⌫
3 =

Z
d
D
k

i⇡2

g
µ⌫(2m2

t � ŝ) + 2p⌫1p
µ
2 � 2pµ1p

⌫
2

(k2 �m
2
t )((k � p1)2 �m

2
t )((k + p2)2 �m

2
t )

+

Z
d
D
k

i⇡2

4kµ
k
⌫

(k2 �m
2
t )((k � p1)2 �m

2
t )((k + p2)2 �m

2
t )

+

Z
d
D
k

i⇡2

�2k2
g
µ⌫

(k2 �m
2
t )((k � p1)2 �m

2
t )((k + p2)2 �m

2
t )
.

(4.37)

The first two terms in Eq. (4.37) can already be written as PV functions, so we arrive at:

T
µ⌫
3 = (gµ⌫(2m2

t � ŝ) + 2p⌫1p
µ
2 � 2pµ1p

⌫
2)C0

⇥
p
2
1, p

2
2, (p1 + p2)

2
,m

2
t ,m

2
t ,m

2
t

⇤

+ 4Cµ⌫
⇥
p
2
1, p

2
2, (p1 + p2)

2
,m

2
t ,m

2
t ,m

2
t

⇤

� 2gµ⌫
Z

d
D
k

i⇡2

k
2

(k2 �m
2
t )((k � p1)2 �m

2
t )((k + p2)2 �m

2
t )
.

(4.38)

The last term of Eq. (4.38) can be decomposed in this way:

Z
d
D
k

i⇡2

k
2

(k2 �m
2
t )((k � p1)2 �m

2
t )((k + p2)2 �m

2
t )

=

=

Z
d
D
k

i⇡2

k
2 �m

2
t +m

2
t

(k2 �m
2
t )((k � p1)2 �m

2
t )((k + p2)2 �m

2
t )

=

= B0[(p1 + p2)
2
,m

2
t ,m

2
t ] +m

2
tC0[p

2
1, p

2
2, (p1 + p2)

2
,m

2
t ,m

2
t ,m

2
t ];

(4.39)

where in the first step we added and subtracted m
2
t and split the integral in two pieces. We can

then simplify (k2 � m
2
t ) with one denominator and get a function B0[ŝ, m2

t ,m
2
t ]. The second

one, of course, is precisely the function C0[0, 0, ŝ, m2
t ,m

2
t ,m

2
t ] times m

2
t , where we simplified

the scalar products because we implicitly went back to 4-dimension. In a real calculation, this
must be done with care in order to correctly deal with the divergent part of the B0 functions.

) T
µ⌫
3 = (gµ⌫(2m2

t � ŝ) + 2p⌫1p
µ
2 � 2pµ1p

⌫
2)C0

⇥
0, 0, ŝ, m2

t ,m
2
t ,m

2
t

⇤

+ 4Cµ⌫
⇥
0, 0, ŝ, m2

t ,m
2
t ,m

2
t

⇤
� 2gµ⌫(B0[ŝ, m

2
t ,m

2
t ] +m

2
tC0[0, 0, ŝ, m

2
t ,m

2
t ,m

2
t ]).

(4.40)

Let us turn to the decomposition of the remaining tensor integral Cµ⌫ . We start from Eq.
(4.35):

C
µ⌫ = g

µ⌫
C00 + p

µ
1p

⌫
1C11 + (pµ1p

⌫
2 + p

µ
2p

⌫
1)C12 + p

µ
2p

⌫
2C22. (4.41)
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The only thing left to do is to find the coe�cients Cij in terms of the independent set of scalar
integrals (Eq. (4.21)-(4.24)). To do so, we contract C

µ⌫ with the Lorentz structures at our
disposal, pµ1 , p

⌫
1, p

µ
2 , p

⌫
2, and g

µ⌫ :

gµ⌫C
µ⌫ = 4C00 + C11p

2
1 + 2C12(p1 · p2) + p

2
2C22. (4.42)

On the other hand, Cµ⌫ can be written in terms of the loop momentum combination k
µ
k
⌫ as

in Eq. (4.24), so Eq. (4.42) is also equal to:

gµ⌫C
µ⌫ = gµ⌫

Z
d
D
k

i⇡2

k
µ
k
⌫

D0D1D2
=

Z
d
D
k

i⇡2

k
2

(k2 �m
2
t )((k � p1)2 �m

2
t )((k + p2)2 �m

2
t )

= B0[p
2
1 + 2p1 · p2 + p

2
2,m

2
t ,m

2
t ] +m

2
tC0[p

2
1, p

2
2, [p

2
1 + 2p1 · p2 + p

2
2,m

2
t ,m

2
t ,m

2
t ].

(4.43)

Now we can equate Eq. (4.42) with Eq. (4.43) to get a condition on the Cij.
If we follow the same method substituting g

µ⌫ in turn with p
µ
1p

⌫
1, p

µ
1p

⌫
2 and p

µ
2p

⌫
2, we obtain a

system of four equations in four variables that allows to uniquely determine the Cij in terms of
B0 and C0 functions.
FeynCalc gives the possibility to do the whole PV decomposition with a few lines of code, so
we apply it to each form factor, always keeping distinct the di↵erent contributions coming from
di↵erent topologies.
We also have pentagon diagrams, so we also have to deal with the 5-point scalar functions E0.

E0[r
2
10, r

2
12, r

2
23, r

2
34, r

2
40, r

2
30, r

2
20, r

2
13, r

2
14, r

2
24,m

2
0,m

2
1,m

2
2,m

2
3,m

2
4] =

=
(2⇡µ)4�D

i⇡2

Z
d
D
k

4Y

i=0

1

(k + ri)2 �m
2
i

.
(4.44)

The package used to numerically evaluate the scalar integrals, LoopTools [42,43], contains also
a library for them, even though they can always be expressed as linear combinations of D0

functions when going back to 4 dimensions [44].
At this point we check that each form factor is indeed UV finite as we expect. In dimensional
regularization, the UV divergent terms will be the ones proportional to the pole 1/✏. So we
explicitly write:

D = 4� 2✏,

and we explicitate the pole structure of the B0 function as follows:

B0[q,m
2
t ,m

2
t ] =

1

✏
+B

fin
0 [q,m2

t ,m
2
t ],

where B
fin
0 is the UV-safe part of the B0. Only now do we take the ✏ ! 0 limit and we stop

at the 0-th order namely O(✏0). Now we check that the amplitude is not UV divergent looking
for the coe�cient of 1/✏, which is zero for all three topologies of each form factor separately.
Finally, we have an expression for all the form factors that depend only on the mass scales of
the problem mt, mh, on the Mandelstam variables ŝ, ŝ1, ŝ2, t̂1, t̂2, and on the known scalar PV
functions Bfin

0 , C0, D0 and E0.
We store each topology contribution to each form factor into a separate subroutine. To translate
them to FORTRAN language we use the Mathematica package FormCalc [45]. Despite the
complexity and size of the expressions of the form factors, our Montecarlo-code proved to be
stable and e�cient in numerically evaluating the multidimensional integrals.
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4.3.3 Results

We now need to take the squared modulus of the amplitude, to get the last piece to calculate
the cross section.
To get the unpolarized squared amplitude, we have to sum over all external polarizations and
average over the initial ones and over color.
Being a massless vector field, the gluon has two polarizations and, being charged under SU(3)C ,
8 degrees of freedom of color, so we have to average over those for both gluons. The sum over
the external polarizations was already discussed in Eq. (4.14), the only missing ingredient is a
factor of 8 coming from the SU(3)C algebra:

��A
��2 = 1

2

1

2

1

8

1

8
8
↵
2
S(µR)

(2⇡)2
G

2
Fm

2
H

2

X

i

|fi|2. (4.45)

For the numerical calculation we used the following set of parameters:

GF = 1.664⇥ 10�5 GeV�2
, mH = 125.0 GeV, mW = 80.4 GeV, (4.46)

mt = 173.0 GeV, mb = 0. (4.47)

For the strong coupling constant ↵s(µ), we assumed the factorization and the renormalization

scales to be the same (µR = µF = µ), and chose µ =
p
ŝ
2 .

Figure 4.3: Full partonic cross section as a function of the partonic CoM energy.

In Fig. 4.3 the full partonic cross section in attobarn is shown as a function of the partonic
center of mass energy in GeV.
It is useful to look at the contributions from the di↵erent topologies, so we decompose the
partonic cross section �̂ in analogy to what was done for the form factors in Eq. (4.18)

�̂ = �̂
4 + �̂

⇤ + �̂
D + �̂

int
, (4.48)

where �̂
int comes from the interference between the topologies. In practice, we calculate the

partonic cross section in our code turning on only the relevant topology for each form factor
and setting all the other contributions to zero. The result is shown in the plot in Fig. 4.4.
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Figure 4.4: Di↵erent topologies contributions to the partonic cross section as a function of the partonic
CoM energy.

Looking at Fig. 4.4, the triangle topology gives the smallest contribution. This was expected
since the Feynman diagrams with triangle loops are the most suppressed by Higgs propagators.
We can also infer that there is a large destructive interference, since the total cross section in
Fig. 4.4 is smaller if compared to the contributions of the single topologies.
Another interesting result to point out is the di↵erent contributions to the partonic cross section
coming from di↵erent form factor.
So we plot the partonic cross section as a function of the partonic center of mass energy turning
on one form factor at a time (like we did for the topologies), the only di↵erence is that this time
we do not have any interference terms since we chose to work with orthonormal projectors.

Figure 4.5: Form factors contribution to the partonic cross section as a function of the partonic CoM
energy.

We show the contributions from the form factors in Fig. 4.5.
Clearly, the first form factor dominates over the others. In particular, the third and fourth ones
are completely negligible giving a contribution of ten orders of magnitude less than the first
one, whereas the second one is not as small and gives a sizeable contribution, as can be seen
from Fig. 4.6.
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Figure 4.6: Zoom on the second form factor contribution to the partonic cross section as a function
of the partonic CoM energy.

Now we turn our attention to the hadronic cross section. As pointed out earlier, we used the
set NNPDF40-lo-as-01180 [26] from LHAPDF [25] for the PDFs.
The final results are shown in Table 4.1, where the first line refers to the maximum center of
mass energy at the LHC. The other two refer to higher energies, not accessible at the moment,
and serve only as reference values. The uncertainties reflect the ones obtained from the Monte
Carlo integration error.

ECM(TeV) � (ab)
14 24.88±0.05
27 126.4±0.1
100 1690±5

Table 4.1: Hadronic cross section of triple Higgs production at the LHC for di↵erent COM energies.

Reference [14] also presents the cross section of triple-Higgs production at the LHC, but the
results are slightly di↵erent from the ones shown in Table 4.1. This can be explained by the
fact that Ref. [14] used an older PDF set and a constant value for the strong coupling constant
(↵S = 0.138). We checked that the two results agree within the integration error using the
same input parameters.
We can look at the hierarchy between the form factors and between the di↵erent topologies
also for the hadronic cross section.
We notice that the third and fourth form factors are very suppressed (10 orders of magnitude
less than the others), so they are numerically compatible with zero. Unfortunately, we could not
demonstrate that they vanish analytically due to the complexity of the symbolic expressions.
Looking at Table 4.2 and Table 4.3, we see that the hierarchies found earlier for the partonic
cross section hold also at the hadronic cross section level, both for the di↵erent topologies and
for the two form factors. This is not surprising since the hierarchy holds for the whole range of
partonic center-of-mass energies.
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ECM(TeV) �1 (ab) �2 (ab)
14 24.88±0.05 0.250 ± 0.002
27 126.4±0.1 1.45 ± 0.03
100 1690±5 22.2 ± 0.1

Table 4.2: Contributions to the hadronic cross section of triple Higgs production at the LHC for
di↵erent COM energies from the two relevant form factors.

ECM(TeV) �
4 (ab) �

⇤ (ab) �
D (ab)

14 0.090 ± 0.003 34.20 ± 0.05 61.0 ± 0.2
27 0.44 ± 0.01 160.0 ± 0.2 293.0 ± 0.3
100 5.50 ± 0.01 1910 ± 3 3620 ± 5

Table 4.3: Contributions to the hadronic cross section of triple Higgs production at the LHC for
di↵erent COM energies from the di↵erent topologies.
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Chapter 5

The transverse momentum expansion

In this chapter, we are going to present the transverse momentum (pt) expansion of the ampli-
tude.
In the first section, we will describe the expansion in the forward limit, in the second section we
will discuss how to solve the loop integrals after the expansion, and in the last we will present
the results.

5.1 Description of the expansion

The purpose of the expansion was to reduce the number of energy scales involved in the integrals.
Triangle loop integrals do not need an expansion since they are already expressed in terms of
one energy scale.
It is convenient to expand the box and pentagon topologies separately, so we first present the
expansion for the pentagon loop integrals, and afterwards, the one used for the box integrals.

5.1.1 Pentagon diagrams

Here we will focus on the expansion of the pentagon loops.
From now on, it is more convenient to use the set of kinematical variables (ŝ, t̂1, t̂2, ŝ01, ŝ

0
2), where

ŝ, t̂1, t̂2 have already been defined in Eq. (3.8), and ŝ
0
i are defined as:

ŝ
0
1 = �2p3 · p5, ŝ

0
2 = �2p4 · p5. (5.1)

The kinematical quantities relevant for this expansion are the Higgs transverse momenta which,
assuming the gluons travel along the z-axis, are defined as:

pt,3 =
q

p
2
3x + p

2
3y, pt,4 =

q
p
2
4x + p

2
4y, (5.2)

and are expressed in terms of the kinematical variables as:

p
2
t,3 = m

2
H � t̂1û1

s
, p

2
t,4 = m

2
H � t̂2û2

s
, (5.3)

where û1 and û2 were defined in Eq. (3.9) and depend on ŝ
0
1, ŝ

0
2 in the following way:

û1 = 2p2 · p3 = ŝ+ ŝ
0
2 � t̂1 �m

2
H , (5.4)

û1 = 2p1 · p4 = ŝ+ ŝ
0
1 � t̂2 �m

2
H . (5.5)
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5.1. Description of the expansion Chapter 5. The transverse momentum expansion

The transverse momenta can be found by decomposing p3 and p4 in terms of a part parallel to
the beam axis (so proportional to p1 and p2), and a part perpendicular to it, that we denote
with r3,? and r4,?. So we have:

(
p
µ
3 = a3p

µ
1 + b3p

µ
2 + r

µ
3,?

p
µ
4 = a4p

µ
1 + b4p

µ
2 + r

µ
4,?,

(5.6)

where a3, a4, b3, b4 are coe�cients to be determined and, in order to have

p1 · r3,? = p1 · r4,? = p2 · r3,? = p2 · r4,? = 0 (5.7)

we need
r3,? = (0; p3x, p3y, 0), r4,? = (0; p4x, p4y, 0). (5.8)

Therefore, taking the square of these ”perpendicular” momenta we get the transverse momenta,
with a minus sign that shows that r3,? and r4,? are space-like:

r
2
3,? = �p

2
t,3, r

2
4,? = �p

2
t,4. (5.9)

The coe�cients ai and bi (i = 3, 4) are found by contracting Eq. (5.6) in turn with p1 and p2:

8
>>><

>>>:

t̂1
2 = p1 · p3 = a3p1 · p1 + b4p1 · p2 + p1 · r3,? = b3

ŝ
2

û1
2 = p2 · p3 = a3p2 · p1 + b4p2 · p2 + p2 · r3,? = a3

ŝ
2

û2
2 = p1 · p4 = a4p1 · p1 + b4p1 · p2 + p1 · r4,? = b4

ŝ
2

t̂2
2 = p2 · p4 = a4p2 · p1 + b4p2 · p2 + p2 · r4,? = a4

ŝ
2

()
(
a3 =

û1
ŝ , b3 =

t̂1
ŝ

a4 =
t̂2
ŝ , b3 =

û2
ŝ

(5.10)

So we get:

p
µ
3 = p

µ
1 �

t̂1

ŝ
(pµ1 � p

µ
2) +

�2

ŝ
p
µ
1 + r

µ
3,?, (5.11)

p
µ
4 = p

µ
2 �

t̂2

ŝ
(pµ2 � p

µ
1) +

�1

ŝ
p
µ
2 + r

µ
4,?,

where �i = ŝ
0
i �m

2
H , for i = 1, 2.

Using this notation, we identify the forward limit as the configuration in which both p
µ
3 ⇠ p

µ
1

and p
µ
4 ⇠ p

µ
2 are respected. Looking at Eq. (5.11), this situation corresponds to:

t̂1

ŝ
⌧ 1,

�1

ŝ
⌧ 1,

t̂2

ŝ
⌧ 1,

�2

ŝ
⌧ 1, r

µ
3,? ⇠ 0µ, r

µ
4,? ⇠ 0µ. (5.12)

It is useful to explicitly introduce the transverse momenta in the amplitude by solving the
system of equation constructed with Eq. (5.3)–(5.5), to get t̂1 and t̂2 in terms of ŝ01, ŝ

0
2, p

2
t,3, p

2
t,4:

t̂1,± =
ŝ

2

0

@1 +
�2

ŝ
±

s✓
1 +

�2

ŝ

◆2

� 4
p
2
t,3 +m

2
H

ŝ

1

A , (5.13)

t̂2,± =
ŝ

2

0

@1 +
�1

ŝ
±

s✓
1 +

�1

ŝ

◆2

� 4
p
2
t,4 +m

2
H

ŝ

1

A , (5.14)

The forward limit corresponds to the ”negative” solutions t̂1,�, t̂2,� and we can look at Eq. (5.13)
and Eq. (5.14) to express the limits in Eq. (5.12) as (we also use the definitions of the �i):

p
2
t,3

ŝ
⌧ 1,

ŝ
0
1

ŝ
⌧ 1,

p
2
t,4

ŝ
⌧ 1,

ŝ
0
2

ŝ
⌧ 1,

m
2
H

ŝ
⌧ 1, r

µ
3,? ⇠ 0µ, r

µ
4,? ⇠ 0µ. (5.15)
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5.1. Description of the expansion Chapter 5. The transverse momentum expansion

5.1.2 Box diagrams

Looking at Fig. 4.1, we can see that the box loop is connected with the final state through one
on-shell Higgs boson, and one virtual Higgs line.
Hence, it is possible to calculate the box integral by studying Double Higgs production, but
introducing di↵erent dummy masses for the final state. So we calculate the form factors of the
diagram in Fig. 5.1 as before.

Figure 5.1: Box diagram in Double Higgs production.

We call the contribution it gives to each form factor g⇤i , i = 1, 2, 3, 4. We set the masses of the
final state particles to be:

q
2
1 = m

2
1, q

2
2 = m

2
2, (5.16)

and we exploit the conservation of momenutum:

q2 = p1 + p2 � q1. (5.17)

The kinematical variables will be the reduced Mandelstam for 2!2 processes:

ŝ
0 = p1 · p2, t̂

0 = p1 · q1, û
0 = p2 · q1, (5.18)

where

ŝ
0 + t̂

0 + û
0 =

m
2
1 �m

2
2

2
= �m. (5.19)

The transverse momentum pt of the particle with momentum q1 is expressed in terms of the
other kinematical variables as:

p
2
t = 2

t̂
0
û
0

ŝ0
�m

2
1. (5.20)

We can express momentum q1 in analogy to what we did in Eq. (5.6):

q
µ
1 = ap

µ
1 + p

µ
2 + r

µ
? = p

µ
1 �

t̂
0

ŝ0
(pµ1 � p

µ
2) +

�m

ŝ0
p
µ
1 + r

µ
?, (5.21)

where the coe�cients a and b are found by contracting Eq. (5.21) in turn with p
µ
1 and p

µ
2 , and

r
µ
? is the part of qµ1 perpendicular to the beam axis.
The forward limit is associated to the configuration where p1 ' q1, so Eq. (5.21) suggests one
obtains it when:

t̂
0

ŝ0
⌧ 1,

�m

ŝ0
⌧ 1, r

µ
? ' 0µ (5.22)

We can express t̂
0 and û

0 in terms of the transverse momentum by solving the system of two
equations formed by Eq. (5.19) and Eq. (5.21).
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In the forward limit we obtain:

t̂
0 =

ŝ
0

2

0

@1 +
�m

ŝ0
�

s✓
1 +

�m

ŝ0

◆2

� 2
p
2
t +m

2
2

ŝ0

1

A , (5.23)

So we can express the conditions for the forward limit as:

p
2
t

ŝ0
⌧ 1,

m
2
1

ŝ0
⌧ 1,

m
2
2

ŝ0
⌧ 1, r

µ
? ⇠ 0µ, (5.24)

After calculating the loop integrals (more on this later), we can easily recover all the Triple-
Higgs box contribution to each form factor (f⇤

i , i = 1, 2, 3, 4).
The di↵erence between the box diagrams in Fig. 5.1 and Fig. 4.1 is that one of the two final
state lines splits into two on shell Higgs in the Triple Higgs case. So what is missing is one
Higgs propagator and one power of the trilinear Higgs self coupling. So we reconstruct (f⇤

i ,
i = 1, 2, 3, 4) by multiplying the missing factors to g

⇤
i :

f
⇤
i / g3h

q
2
1 �m

2
H

g
⇤
i , g3h = �v, (5.25)

where � was defined in Eq. (2.41), and v is the Higgs VEV.
We also have expressed the conservation of momentum in the trilinear vertex, and keep track
of all the possible combinations of the final state particle rearranging:

f
⇤
i =

X

(abc)

g3h

q
2
1 �m

2
H

g
⇤
i

���� q1 = pa + pb

q2 = pc

(5.26)

where the sum is done over all di↵erent triplets (abc), respectively, (345), (354), (453).
The identification of (q1, q2) in terms of (p3, p4, p5) has to be done also for Eq. (5.18) and
Eq. (5.20) in order to express the final expression in terms of the Triple-Higgs kinematics.

5.1.3 Practical algorithm

It is useful to sketch the practical algorithm followed to expand the amplitude around the small
parameters in Eq. (5.15).
We only do it for the pentagon diagrams since the analogy with the box diagrams is trivial and
it was already done in the cited works above.

• In the beginning, we follow the same steps as before, so we generate the diagrams using
FeynArts, then we use FeynCalc to contract them with the projectors to get the form
factors. Afterwards, we simplify the Dirac and SU(3)C algebras and obtain a list of
integrals that represent the starting point for the calculation.

• We substitute p5 everywhere in the form factors using the momentum conservation law.
Afterwards, we use Eq. (5.11) to express p3 and p4 everywhere in terms of p1, p2, r3,?,
r4,? and the kinematical variables. Then we use Eq. (5.13) and Eq. (5.14) to express t̂i
in terms of the transverse momenta.

• The integrands are now written only in terms of the quantities in Eq. (5.15), so we are
ready to perform the expansion. It is done considering only two energy hierarchies: the
small parameters (already defined) and the large parameters (ŝ and m

2
t ). Practically, all

small parameters are rewritten as if they were multiplying a common scale x. Then we

36



5.1. Description of the expansion Chapter 5. The transverse momentum expansion

Taylor expand the form factors around x = 0 and put x = 1 after the expansion. In
order to be consistent, we must take into account the di↵erent dimensionalities of the
parameters, so we scale them this way:

(rµ3,?, r
µ
4,?) 7! x (rµ3,?, r

µ
4,?), (p2t,3, p

2
t,4,m

2
H , ŝ

0
1, ŝ

0
2) 7! x

2 (p2t,3, p
2
t,4,m

2
H , ŝ

0
1, ŝ

0
2). (5.27)

It must be emphasized that we must treat ri,? and pt,i as independent quantities even
though we know that r2i,? = �p

2
t,i for i = 3, 4. This is because this expansion is performed

before the loop integration, so we will have scalar products between the perpendicular
momenta and the loop momentum and we need to use Eq. (5.27) to consistently deal with
this issue.
Throughout the rest of this thesis, we will refer to a given order n of the expansion as
the O(p2nt ) term, but we are implicitly including all the terms scaling as ((ab )

n), where
a = m

2
H , p

2
t,3, p

2
t,4, ŝ

0
1, ŝ

0
2, and b = ŝ, m2

t .
In analogy to the other works where the pt expansion was used [15, 17, 46], we expect
it to hold in all the phase-space points with

p
ŝ  4mt ' 750 GeV. We will check that

roughly after this value, the approximated partonic cross section will start to depart from
its exact value.

• At this point we can store each term of the Taylor expansion for each form factor to
keep track of the expansion order. So we can solve the loop integrals. The standard PV
decomposition proposed in FeynCalc fails in this context. In the next section we will
explore in detail the method used to solve these kind of integrals.

• Now we can calculate the cross section exploiting the same integration technique as before.

The advantage of calculating the cross section in this way is that the integrals will depend only
on one energy scale, namely ŝ/m

2
t , making them much faster to evaluate on our FORTRAN

code. In particular, this will be of advantage when one goes to next-to-leading order (NLO),
where the appearance of two-loop integrals with several mass scales can become very compli-
cated.
We can see how this works with an example. Let’s consider the following class of pentagon
integrals, as they appear in our calculation:
Z

dD
k

(k · p1)a1(k · p2)a2(k · p3)a3(k · p4)a4(k2)a5

[k2 �m
2
t ] [(k + p2)2 �m

2
t ] [(k � p4)2 �m

2
t ] [(k + p3)2 �m

2
t ] [(k � p1)2 �m

2
t ]
, (5.28)

where ai � 0, i 2 [1, 5]. The integral in Eq.(5.28) will depend only on the masses of propagators
(only one in this case), and on the kinematical quantities formed by the external momenta. In
total we have seven energy scales: ŝ, ŝ01, ŝ

0
2, t̂1, t̂2, m

2
H and m

2
t .

The pt expansion will modify the terms of Eq. (5.28) that contain p3 or p4, namely:

(k · p3)a3(k · p4)a4
[(k � p4)2 �m

2
t ] [(k + p3)2 �m

2
t ]
. (5.29)

Using Eq. (5.11),(5.13), (5.14), and expanding Eq. (5.29) in the forward limit, will generate
terms like k · p1, k · p2, k · r3,?, k · r4,? and other (k2 �m

2
t ) factors in the denominator.

Therefore, expanding the integrand in Eq. (5.28) results in:
Z

dD
k
(k · p1)a

0
1(k · p2)a

0
2(k · r3,?)a

0
3(k · r4,?)a

0
4(k2)a5

[k2 �m
2
t ]

n [(k � p2)2 �m
2
t ] [(k + p1)2 �m

2
t ]
, (5.30)

where the a0i are new non-negative integers and n is strictly positive. It is easy to see that these
integrals will only depend on ŝ, p2t,3, p

2
t,3, m

2
t , so we already reduced the number of energy scales
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with respect to the starting integral.
Moreover, since the perpendicular momenta ri,? appear only at the numerator, we can use the
Integration-by-parts (IBP) relations to rewrite the integral in Eq. (5.30) in terms of integrals
where a

0
3 = 0 = a

0
4. This technique will be reviewed in the next section.

In the end, we will have a dependence on only the mass ratio ŝ/m
2
t .

5.2 IBP Reduction

In this section, we will briefly review the method used to solve the loop integrals after the pt

expansion.
At the end, the form factors will still depend on the PV scalar functions because, as we stated
before, one-loop integrals can always be decomposed along the basis of the four scalar integrals
in Eq. (4.26)-(4.29). Doing so, one encounters though an issue with LoopTools when calculating
the expanded loop integrals using the algorithm presented in Section 4.3.2.
As an example we show an integral as the one of Eq. (5.30), where a01 = a

0
2 = a

0
3 = a

0
4 = a5 = 0

and n = 3: Z
dD

k
1

[k2 �m
2
t ]

3 [(k � p1)2 �m
2
t ] [(k + p2)2 �m

2
t ]
. (5.31)

As a first instinct one would be considering it as a E0 [0, 0, 0, s, 0, 0, 0, 0, 0, 0,m2
t ,m

2
t ,m

2
t ,m

2
t ,m

2
t ]

and try to numerically evaluate it via LoopTools, but LoopTools would fail to evaluate it since
the integral is still reducible.
The solution is to use integration-by-parts (IBP) relations, which help to reduce the number
of integrals by expressing them through a smaller group of master integrals (MIs). The first
automated approach to IBP reduction was introduced by the Laporta algorithm [47] , widely
used in various software tools. In this thesis, the Mathematica package LiteRed [48, 49] was
employed to handle the reduction process by identifying symbolic patterns that allow to rewrite
all scalar integrals in terms of MIs. A general outline of the method is provided here, more
details cand be found in Ref. [50].
Even if this work does not contain any multi-loop calculation, here we will present the IBP
method directly.
Following the notation of LiteRed, the most general L-Loop integral in D-dimensions can be
written as:

j(n1, n2, ..., nN) =

Z QL
i=1 d

D
kiQN

j=1 D
ni

i

, (5.32)

where ki are the loop momenta and D
ni

i can be either propagators (in which case they can only
be raised to a non-negative integer), or scalar products between loop and external momenta
(in which case they can be raised to a non-positive integer). If the latter cannot be expressed
in terms of the denominators, then they are called irreducible numerators. A set of linearly
independent Di that fall into these categories is called a basis of denominators.
After fixing a basis, one can use a property of scalar integrals in dimensional regularization:

Z LY

i=1

d
D
ki
@q

µ
i

@k
µ
j

1
QN

j=1 D
ni

i

= 0, (5.33)

where the q
µ
i can either be loop or external momenta. In particular, after di↵erentiating in

Eq. (5.33), the scalar products ki · qj can be expressed as superposition of the Di, so that the
left-hand side of Eq. (5.33) results in an integral in the form of Eq. (5.32), but with di↵erent
arguments ni.
Therefore, the relations in Eq. (5.33) can be used to recursively express the general integrals
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J(n1, ..., nN) in terms of a few linearly independent integrals with the same structure but with
minimal ni, which constitutes a basis of MIs.
The latter is always finite, even though it is not unique in general.
In the case of the process studied in this thesis, the form factors are not yet in the form of
Eq. (5.32), but they can be manipulated with similar tricks as in Eq (4.39) to put them into
the right form. In this thesis we used the FeynCalc built-in function TID to achieve this. In
truth, the output of TID will be in general written in terms of scalar integrals with irreducible
numerators k · r3,? and k · r4,?, and denominators belonging to an overdetermined basis. In
order to arrive to a true denominator basis, we have to manipulate the integrals manually,
which was done with privately written codes.
In the end, we identified two families of denominators that make two basis, so we will have two
independent classes of integrals in the form of Eq. (5.32):

j1(n1, n2, n3, n4, n5) =

Z
d
D
k

(k · r3,?)n4(k · r4,?)n5

[k2 �m
2
t ]

n1 [(k + p1)2 �m
2
t ]

n2 [(k � p2)2 �m
2
t ]

n3
, (5.34)

j2(n1, n2, n3, n4, n5) =

Z
d
D
k

(k · r3,?)n4(k · r4,?)n5

[k2 �m
2
t ]

n1 [(k � p1)2 �m
2
t ]

n2 [(k � p2)2 �m
2
t ]

n3
. (5.35)

Using LiteRed to analyze the two bases, five MIs were identified and the rules used for the
IBP reduction were obtained. One additional important feature of the LiteRed package used
in this work is the function AnalyzeSector, which also allows to search only for MIs without
the irreducible numerators, namely with n4 = n5 = 0. This means that, after the pt expansion,
every integral will only depend on the ratio ŝ/m

2
t as desired.

The MIs found by LiteRed were the following:

j1(0, 0, 1, 0, 0) =

Z
d
D
k

1

[(k � p2)2 �m
2
t ]

k!k+p2=

Z
d
D
k

1

[k2 �m
2
t ]
, (5.36)

j1(0, 1, 1, 0, 0) =

Z
d
D
k

1

[(k + p1)2 �m
2
t ] [(k � p2)2 �m

2
t ]

(5.37)

k!k+p2=

Z
d
D
k

1

[k2 �m
2
t ] [(k + p1 + p2)2 �m

2
t ]
,

j1(1, 1, 1, 0, 0) =

Z
d
D
k
[k2 �m

2
t ] [(k + p1)2 �m

2
t ] [(k � p2)2 �m

2
t ]
, (5.38)

j2(0, 1, 1, 0, 0) =

Z
d
D
k

1

[(k + p1)2 �m
2
t ] [(k � p2)2 �m

2
t ]

(5.39)

k!k+p2=

Z
d
D
k

1

[k2 �m
2
t ] [(k + p1 + p2)2 �m

2
t ]
,

j2(1, 1, 1, 0, 0) =

Z
d
D
k
[k2 �m

2
t ] [(k � p1)2 �m

2
t ] [(k � p2)2 �m

2
t ]
. (5.40)

Since we want to evaluate them numerically using LoopTools, it is convenient to show their
expression in the PV notation written above, so up to normalization factors, the MIs are:

j1(0, 0, 1, 0, 0) �! A0[m
2
t ], (5.41)

j1(0, 1, 1, 0, 0) �! B0[(p1 + p2)
2
,m

2
t ,m

2
t ], (5.42)
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j1(0, 1, 1, 1, 0) �! C0[p
2
1, p

2
2, (p1 + p2)

2
,m

2
t ,m

2
t ,m

2
t ], (5.43)

j2(0, 1, 1, 0, 0) �! B0[(p1 � p2)
2
,m

2
t ,m

2
t ], (5.44)

j2(0, 1, 1, 1, 0) �! C0[p
2
1, p

2
2(p1 � p2)

2
,m

2
t ,m

2
t ,m

2
t ]. (5.45)

We note the peculiar feature of this expansion: the result depends on integrals with (p1+p2)2 = ŝ

and (p1 � p2)2 = �ŝ, so on the scalar integral taken in the Euclidean and Minkowski region.
E↵ectively, we have hence reduced everything to three MIs taken though in the Minkowski and
Euclidean regions, the latter being simpler as no branch cuts need to be considered.

5.3 Results

In this section we will present the results of the pt expansions. In order to understand the
power of the expansion, we will confront it with the Heavy Top Limit (HTL).
Its primitive version works simply by taking the limit mt ! 1 before calculating the loop

integral. We calculated the expanded form factor on our own up to order O
⇣

1
m6

t

⌘
.

The propagators in the loop functions with loop momentum k can be expanded for small
external momentum p and large top mass mt as:

1

(k + p)2 �m
2
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2
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+ ..., (5.46)

The expanded results holds for: p
ŝ

2mt
⌧ 1. (5.47)

However, this limit is not physical since we need more partonic CoM energy to produce three
on-shell Higgs,

p
ŝ � 3mH as was explained in in Section 3.3, so we already expect the result

to diverge for very moderate partonic CoM energies.
We present now the results of the pt expansion.
We calculated only the first form factor since it is the one that gives by far the largest contri-
bution as we saw in Fig. 4.4.
We are missing only the small yet non-negligible contribution from the second form factor, but
the algorithm presented in this thesis can very easily be adapted to calculate it.

Figure 5.2: Pentagon contributions to the cross section, only relative to the first form factor.
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In Fig. 5.2, we can see the contributions to the cross section coming from the pentagon topolo-
gies of the first firm factor. The full line represents the full (not expanded) cross section,
whereas the dotted lines represent the expanded cross section at di↵erent orders in the pt ex-
pansion and in the HTL.
As expected, the HTL does not work at all in reproducing the Triple Higgs production cross
section.
On the other hand, the pt expansion gets better as we include higher orders. We had to stop
at the second order because using the limiting computational power of a desktop computer did
not allow to go beyond.
This is the biggest practical limitation of this technique: the symbolic computations needed to
simplify the form factors extensively slows down the algorithm. The intermediate expression for
the second-order expansion term had a size in the O(20) GB and typically each term increased
with a factor ⇠ 100 with respect to the previous one in the Taylor expansion.
Another factor why the expansion does not overlap completely with the full result might be
inherit at the approximations made. Here we had the goal to reduce the number of scales to
one, but a better approximation might be to combine various expansions or in alternative keep
some kinematic variables as arbitrarily large. The approach presented in this thesis was though
to investigate whether it will be really possible to reduce the amount of scales completely to
one to allow for relatively simple Master integrals when applying this method an order higher
in perturbation theory. We can conclude, that the proposed method will surely lead to more
accurate results than the infinite top mass limit employed so far for the computation of higher
order corrections to triple Higgs production [14]
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Conclusions

Precise theoretical predictions are needed in order to compare with the increasingly precise
experimental measurements.
The QCD corrections to gluon-initiated processes are expected to be substantial, but the cal-
culation of two-loop multi-scale integrals related to 2!3 processes are currently beyond the
state-of-the-art.
In this thesis, we calculated the Leading Order contribution to the cross section of Triple Higgs
Production via gluon fusion at the LHC. Afterwards, we extended the method of pt expansion
from Ref. [15, 17] for the first time to a case of 2 ! 3 kinematics.

In chapter 3 we discussed how we numerically calculated the multi-dimensional integral needed
for the cross section of a 2!3 process at hadronic colliders.
We implemented our own 3-particle phase space [28] using a Monte Carlo integration routine
known as VEGAS [29], with implementation of the CUBA library [30]. This implementation
could be cross-checked numerically with RAMBO [31].

In chapter 4 we discussed the method to calculate the full LO cross section of gg ! HHH.
The LO contribution is generated at the one-loop level and the Feynman diagrams (Fig. 4.1)
are composed of triangle, box, and pentagon topologies with a quark running in the loop. Since
the Higgs coupling is proportional to the mass of the particle it couples to, the process is domi-
nated by the top quark loops and approximate the masses of all the quarks to zero. We checked
a posteriori that their contribution is negligible: already the bottom quark gave corrections
inside the VEGAS integration error.
The tensorial amplitude was decomposed along an orthonormal basis of four independent pro-
jectors, exploiting all the symmetries of the problems, each multiplied by its scalar form factor.
The form factors were then calculated with the help of Mathematica packages, like FeynArts
[32], and FeynCalc [36]. In particular, the loop integrals were reduced using the Passarino-
Veltmann method [40], so that the form factors would only depend on the masses of the par-
ticles in the Feynman diagrams (mH and mt), on the five independent kinematic variables (ŝ,
ŝ1, ŝ2, t̂1, t̂2) and on the four independent PV scalar functions (Eqs. (4.26)-(4.29)).
The form factors were then translated to FORTRAN language using FormCalc [45], and writ-
ten in separate subroutines, keeping separated also the contributions from di↵erent topologies
to each form factor and the numerical evaluation of the PV functions was done using Loop-
Tools [43].
The hadronic cross section was calculated for di↵erent CoM energies of the incoming protons
at LHC. The result for the current accessible CoM energy (

p
s = 14 TeV) is � = 24.88± 0.05
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ab, where the uncertainty is given simply as the integration error of the VEGAS routine.
The result is compatible with the one in Ref. [14] within uncertainties and up to the change of
the input parameters.

In chapter 5 we discussed the implementation of the pt expansion for this process.
The expansion of the box integrals could be related to the work on Double Higgs production in
Ref. [15], since the amplitude has a very similar structure but with one of the two Higgs being
o↵-shell.
The expansion of the pentagon diagrams, instead, was conducted here for the first time.
The momenta of the final state were decomposed into two parts: one parallel to the beam axis,
and one perpendicular to it. To do so, two space-like four momenta were identified (r3,? and
r4,?), and their squares were precisely the inverse of the square of the transverse momenta of
the Higgs particles, see Eq. (5.9).
The form factors were then expressed only in terms of the quantities in Eq. (5.15) and the
top mass. A subset of these quantities, namely the small parameters to be expended in, were
rescaled by a common scale x, and the form factors were Taylor-expanded around x = 0 at the
integrand level.
The Tensor Integral Decomposition [41] was conducted again with FeynCalc, but the integrals
were not independent yet, so we used Integration By Parts relations to express the form factors
only in terms of 5 Master Integrals. The IBP reduction was conducted using LiteRed [49].
At the end, we used the same integration technique to get the approximated partonic cross
section at di↵erent orders of the pt expansion.
We saw that a second order approximation already is in agreement with the exact result in the
phase space region where they give the largest contribution to the cross section.

Implementing the pt expansion on the calculation of the cross section of Triple Higgs Produc-
tion gave some insight about some limitations that it brings.
The great advantage of the pt expansion is the computation time needed to do the Montecarlo
integration to get the cross section. In fact, it drops down significantly and this will be true
in particular for NLO calculations. The reason is that the expanded form factors have a really
simple expression where the scalar MIs depend only on one energy scale, as previously men-
tioned.
However, the expansion of the form factors takes a lot of computation power; In particular,
what took the longest was the symbolic simplifications after the Tensor Integral Decomposition
and after the IBP reduction.
Each higher order of the expansion increased the space occupied by the intermediate expression
by a factor of roughly 100. This has forced us to stop the expansion at O(p2t ). However, the
results are very promising, given the high number of approximations.
It is also true that the optimized usage of Mathematica, alongside its computing resources and
satellite packages, made it possible for us to develop this expansion on a desktop computer. One
should also note, that while for the computation of the analytic result at LO, the intermediate
expressions occupy a large space, an analytic computation of the full NLO QCD corrections for
the process is currently beyond the state of the art.

Even though the expansion works only in a region of the phasespace (the more enhanced by the
PDFs at the current CoM energies), in the future one could also think to find approximations
to recover the behaviour at high energies in order to merge the two like it was done with a
varity of top-quark mediated 2!2 processes [15–17,46].
As a final remark, we note that this might represent only the beginning of the implementation

43



Chapter 6. Conclusions

of transverse momentum expansions in the context of top-quark mediated 2!3 processes. The
power of these kinds of approximations is process-dependent, but we found an algorithm that
could be adapted in principle to the prediction of other processes, such as gg ! HHg, which
would be crucial as it is responsible for the cancelation of IR divergences in the NLO QCD
corrections of Double-Higgs production, which has a much higher cross section.
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A.1

• The integration limits of ŝ1 are the following:
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max
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H(ŝ2 � t̂1) +m

2
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• The Jacobian of the transformation from ' ! ŝ1 is the following:
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where

c6 = �2(ŝ+ t̂1 + t̂2), (A.5)

c4 = (ŝ2 + 4ŝ(t̂1 + t̂2) + 2ŝ1(t̂1 � ŝ2) + 2ŝ2t̂2 + (t̂1 + t̂2)
2 (A.6)
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A.2

The third and fourth projectors are the following:
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B.1

We report the FORTRAN code used to calculate the hadronic cross section

program CubaTest
implicit none

#include "/Library/Mathematica/Applications/LoopTools-2.16/x86_64-Darwin/include/looptools.h"
CHARACTER*30 PDFNAME, PATHNAME
integer ndim, ncomp, nvec, last, seed, mineval, maxeval
double precision epsrel, epsabs, userdata
parameter (ndim = 6)
parameter (ncomp = 1)
parameter (userdata = 0)
parameter (nvec = 1)
parameter (epsrel = 1D-3)
parameter (epsabs = 1D-12)
parameter (last = 4)
parameter (seed = 0)
parameter (mineval = 0)
parameter (maxeval = 50000)

integer res,vega,value
parameter(res=98,vega=99,value=97)

integer nstart, nincrease, nbatch, gridno
integer*8 spin
character*(*) statefile
parameter (nstart = 1000)
parameter (nincrease = 500)
parameter (nbatch = 1000)
parameter (gridno = 0)
parameter (statefile = "")
parameter (spin = -1)

integer nnew, nmin

47



B.1. Appendix B.

double precision flatness
parameter (nnew = 1000)
parameter (nmin = 2)
parameter (flatness = 25D0)

integer key1, key2, key3, maxpass
double precision border, maxchisq, mindeviation
integer ngiven, ldxgiven, nextra
parameter (key1 = 47)
parameter (key2 = 1)
parameter (key3 = 1)
parameter (maxpass = 5)
parameter (border = 0D0)
parameter (maxchisq = 10D0)
parameter (mindeviation = .25D0)
parameter (ngiven = 0)
parameter (ldxgiven = ndim)
parameter (nextra = 0)

integer key
parameter (key = 0)

external integrand

double precision integral(ncomp), error(ncomp), prob(ncomp)
integer verbose, nregions, neval, fail
character*16 env

integer c

integer LOOP,N0
double precision AMZ,AMH,mh,mw,v,gf,sinw,amb,xitla,amq
double precision amb2,amc,ALSMZ,amt,AMW,XLAMBDA,ecms
common/input/ECMS, AMZ, AMH, AMQ, v, amb2, SINW
COMMON/ALS/XLAMBDA,AMC,AMB,AMT,N0
parameter (mh=125.d0)
parameter (gf=1.16639d-5)
parameter (mw=80.423d0)

PDFNAME="NNPDF40_lo_as_01180"

CALL PDFSET(PATHNAME,PDFNAME)

AMZ=91.1874d0
AMH= mh
AMW=mw
LOOP=1
v=1.d0/dsqrt(dsqrt(2.d0)*gf)
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sinw=dsqrt(1d0-amw**2/amz**2)
amb=4.62d0
AMB2=AMB**2
amc=1.42d0
ALSMZ=0.118d0
N0=5
LOOP=1
amt=173.3d10
XLAMBDA=XITLA(LOOP,ALSMZ,1d-8)

CALL ALSINI(1d-8)

call getenv("CUBAVERBOSE", env)
verbose = 2
read(env, *, iostat=fail, end=999, err=999) verbose

999 continue

print *, "-------------------- Vegas test --------------------"

call vegas(ndim, ncomp, integrand, userdata, nvec,
& epsrel, epsabs, verbose, seed,
& mineval, maxeval, nstart, nincrease, nbatch,
& gridno, statefile, spin,
& neval, fail, integral, error, prob)

print *, "neval =", neval
print *, "fail =", fail
print ’(F20.12," +- ",F20.12," p = ",F8.3)’,

& (integral(c), error(c), prob(c), c = 1, ncomp)
c other integration rouutines in the following, not used
print *, " "

c print *, "-------------------- Suave test --------------------"
c
c call suave(ndim, ncomp, integrand, userdata, nvec,
c & epsrel, epsabs, verbose + last, seed,
c & mineval, maxeval, nnew, nmin, flatness,
c & statefile, spin,
c & nregions, neval, fail, integral, error, prob)
c
c print *, "nregions =", nregions
c print *, "neval =", neval
c print *, "fail =", fail
c print ’(F20.12," +- ",F20.12," p = ",F8.3)’,
c & (integral(c), error(c), prob(c), c = 1, ncomp)
c
c print *, " "
c print *, "------------------- Divonne test -------------------"

c call divonne(ndim, ncomp, integrand, userdata, nvec,
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c & epsrel, epsabs, verbose, seed,
c & mineval, maxeval, key1, key2, key3, maxpass,
c & border, maxchisq, mindeviation,
c & ngiven, ldxgiven, 0, nextra, 0,
c & statefile, spin,
c & nregions, neval, fail, integral, error, prob)

c print *, "nregions =", nregions
c print *, "neval =", neval
c print *, "fail =", fail
c print ’(F20.12," +- ",F20.12," p = ",F8.3)’,
c & (integral(c), error(c), prob(c), c = 1, ncomp)

c print *, " "
c print *, "-------------------- Cuhre test --------------------"

c call cuhre(ndim, ncomp, integrand, userdata, nvec,
c & epsrel, epsabs, verbose + last,
c & mineval, maxeval, key,
c & statefile, spin,
c & nregions, neval, fail, integral, error, prob)

c print *, "nregions =", nregions
c print *, "neval =", neval
c print *, "fail =", fail
c print ’(F20.12," +- ",F20.12," p = ",F8.3)’,
c & (integral(c), error(c), prob(c), c = 1, ncomp)
end

************************************************************************
c This is the integrand
integer function integrand(ndim, xx, ncomp, ff)
implicit none
integer ndim, ncomp
double precision xx(*), ff(*)

#define f ff(1)

double precision g3h,g4h,mh,g,mt,mw,gf
double precision pi,ecms,s,s1,s2,t1,t2
double precision s1max,s1min,jac,up1
double precision s2min,s2max,t1min,t1max,t2min,t2max
double precision lambda1,lambda2,factors1
double precision q,alphs,gs,alphas
double precision norm1,norm2,norm3,norm4
double precision Ampli,norm,intfactor,intphase
double precision invmass,tau1,tau,ecmstot,x2m,x2p,x2,scala
double precision lum,fp1(-6:6),fp2(-6:6)
complex*16 ampt1,ampb1,ampb2,ampb3,ampb4
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complex*16 ampp1,ampp2,ampp3,ampp4
complex*16 ampb3n,ampb4n,ampp3n,ampp4n
parameter (pi = 4.D0*datan(1.D0))
parameter (ecmstot=14000.d0)

c parameter (ecms=14000.d0)
c parameter (s=ecms**2.d0)
parameter (mh=125.0d0)
parameter (gf=1.16639d-5)
parameter (mt=173.3d0)
parameter (mw=80.423d0)
parameter (g4h=6.d0*mh**2.d0*gf/dsqrt(2.d0))
parameter (g3h=3.d0*mh**2.d0*dsqrt(2.d0)*dsqrt(gf/dsqrt(2.d0)))
parameter (g=dsqrt(8.d0*mw**2.d0*gf/dsqrt(2.d0)))
parameter (norm=0.3894D15)

invmass= (3.d0*mh)**2.d0
tau1=invmass/(ecmstot**2.d0)
tau=tau1**xx(1)

c --- the x2 integration ---------

s=tau*ecmstot**2.d0
x2m = tau
x2p = 1.D0

c--- phase mapping

x2=tau1**(xx(1)*xx(2))

c --- the scala --------

scala = 0.5d0*dsqrt(s)

call struc(x2,scala,fp1)
call struc(tau/x2,scala,fp2)

c ---luminosity
lum=dlog(tau1)*dlog(tau)*fp1(0)*fp2(0)
ecms=dsqrt(s)

s2min=(2.d0*mh)**2.d0
s2max=(ecms-mh)**2.d0
s2=(s2max-s2min)*xx(3)+s2min

lambda1=(s+mh**2.d0-s2)**2.d0-4.d0*mh**2.d0*s
lambda2=s2**2.d0-4.d0*mh**2.d0*s2

t1max=1.d0/2.d0*(s+mh**2.d0-s2+dsqrt(lambda1))
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t1min=1.d0/2.d0*(s+mh**2.d0-s2-dsqrt(lambda1))
t1=(t1max-t1min)*xx(4)+t1min

t2max=(s2+t1-mh**2.d0)/(s2)*(1.d0/2.d0)*(s2+dsqrt(lambda2))
t2min=(s2+t1-mh**2.d0)/(s2)*(1.d0/2.d0)*(s2-dsqrt(lambda2))
t2=(t2max-t2min)*xx(5)+t2min

s1max = (t2*(s2**2.D0+(s+s2)*t1-1.D0*(s*s2))+
&t1*(s*s2-2.D0*s2**2.D0)-mh**4.D0*(-t2+5.D0*s2+4.D0*t1)-
&1.D0*(s2**3.D0+s2*t1**2.D0)+
&mh**2.D0*(t1+2.D0*s2)*(2.D0*(s2+t1)-1.D0*t2)+
&s*(s2**2.D0-1.D0*(mh**2.D0*(s2+t2)))+
&2.D0*(mh**6.D0+dsqrt(s*
&(t1*(s2+t1-1.D0*mh**2.D0)+s*(mh**2.D0-1.D0*t1))*
&(mh**6.D0+
&mh**2.D0*(s2**2.D0+t1**2.D0+s2*(t2+2.D0*t1))-
&2.D0*(mh**4.D0*(s2+t1))-
&1.D0*(s2*t2*(s2+t1-1.D0*t2))))))/
&(1.D0*mh**2.D0-1.D0*(s2+t1))**2.d0

s1min = (2.D0*mh**6.D0+
&t2*(s2**2.D0+(s+s2)*t1-1.D0*(s*s2))+
&t1*(s*s2-2.D0*s2**2.D0)-mh**4.D0*(-t2+5.D0*s2+4.D0*t1)-
&1.D0*(s2**3.D0+s2*t1**2.D0)+
&mh**2.D0*(t1+2.D0*s2)*(2.D0*(s2+t1)-1.D0*t2)+
&s*(s2**2.D0-1.D0*(mh**2.D0*(s2+t2)))-
&2.D0*dsqrt(s*(t1*(s2+t1-1.D0*mh**2.D0)+
&s*(mh**2.D0-1.D0*t1))*
&(mh**6.D0+mh**2.D0*
&(s2**2.D0+t1**2.D0+s2*(t2+2.D0*t1))-
&2.D0*(mh**4.D0*(s2+t1))-
&1.D0*(s2*t2*(s2+t1-1.D0*t2)))))/
&(1.D0*mh**2.D0-1.D0*(s2+t1))**2.d0
s1=(s1max-s1min)*xx(6)+s1min

c jacobian phi->s1

up1 = s1+3.D0*s2+2.D0*t1-1.D0*t2

jac = dsqrt(1.D0*(-(1.D0*mh**2.D0)+1.D0*(s2+t1))**2.D0/
&(4.D0*(up1*mh**6.D0)-4.D0*mh**8-
&t2**2.D0*(s-1.D0*s2)**2.D0-
&(-(1.D0*(s1*t1))+s2*(s-1.D0*(s1+s2+t1)))**2.D0+
&mh**4.D0*(-s1**2.D0-t2**2.D0+4.D0*s**2.D0+
&t1*(-(8.D0*s1)-16.D0*s2)-10.D0*(s1*s2)-
&13.D0*s2**2.D0-4.D0*t1**2.D0+
&4.D0*(s*(s2+t2-1.D0*t1))+
&2.D0*(t2*(s1+5.D0*s2+2.D0*t1)))+
&2.D0*(t2*(s2*(s1+s2)*(s2+t1)+s*t1*(s1-1.D0*s2)+
&s2*(s**2.D0-1.D0*(s*(s1+2.D0*s2)))))-
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&2.D0*(mh**2.D0*(2.D0*(s**2.D0*t1)+
&s*(s2*(s1+3.D0*s2)+t2*(s1-2.D0*s2+2.D0*t1)-
&2.D0*t1**2.D0-1.D0*t2**2.D0)-
&1.D0*(up1*(s1*(s2+t1)+s2*(s2+t1-1.D0*t2))))
&)))

q=0.5d0*DSQRT(S)
alphs=alphas(q,1)
gs=dSqrt(alphs*4.d0*pi)

c Here I call the subroutines (from a different file .F) where I stored the topology contributions to each form factor
call triangle(ampt1,g,gs,mt,s,g4h,s1,s2,g3h,mh,pi,mw)
call box1(ampb1,g,gs,mt,s,s1,s2,mh,pi,mw,t1,t2)
call box2(ampb2,g,gs,mt,s,s1,s2,mh,pi,mw,t1,t2)
call box3(ampb3,g,gs,mt,s,s1,s2,mh,pi,mw,t1,t2)
call box4(ampb4,g,gs,mt,s,s1,s2,mh,pi,mw,t1,t2)
call pent1(ampp1,g,gs,mt,s,s1,s2,mh,pi,mw,t1,t2)
call pent2(ampp2,g,gs,mt,s,s1,s2,mh,pi,mw,t1,t2)
call pent3(ampp3,g,gs,mt,s,s1,s2,mh,pi,mw,t1,t2)
call pent4(ampp4,g,gs,mt,s,s1,s2,mh,pi,mw,t1,t2)

norm1=2.d0

norm2=2.d0

norm3=0.25D0*(4.D0*((s1+3.D0*s2+2.D0*t1-1.D0*t2)
&*mh**6.D0)-4.D0*mh**8.D0+
&mh**4.D0*(t1*(-(8.D0*s1)-16.D0*s2)-10.D0*(s1*s2)-
&13.D0*s2**2.D0-4.D0*t1**2.D0-1.D0*(s1**2.D0+t2**2.D0)+
&4.D0*(s**2.D0+s*(s2+t2-1.D0*t1))+
&2.D0*(t2*(s1+5.D0*s2+2.D0*t1)))-
&1.D0*(t2**2.D0*(s-1.D0*s2)**2.D0+
&(-(1.D0*(s1*t1))+s2*(s-1.D0*(s1+s2+t1)))**2.D0)+
&2.D0*(t2*(s*t1*(s1-1.D0*s2)+
&s2*(s**2.D0+(s1+s2)*(s2+t1)-
&1.D0*(s*(s1+2.D0*s2)))))-
&2.D0*(mh**2.D0*(2.D0*(s**2.D0*t1)-
&(s1+3.D0*s2+2.D0*t1-1.D0*t2)*(s1*(s2+t1)+s2*(s2+t1-1.D0*t2))+
&s*(-t2**2.D0-2.D0*t1**2.D0+
&1.D0*(s2*(s1+3.D0*s2)+t2*(s1-2.D0*s2+2.D0*t1))
&))))/s**2

norm4 = norm3

ampt1=ampt1/norm1
ampb1=ampb1/norm1*g3h
ampp1=ampp1/norm1

ampb2=ampb2/norm2*g3h
ampp2=ampp2/norm2
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ampb3n=ampb3*g3h/norm3
ampp3n=ampp3/norm3

ampb4n=ampb4*g3h/norm4
ampp4n=ampp4/norm4

Ampli=
& ampt1*Conjg(ampt1)
& +ampt1*Conjg(ampb1)
& +ampb1*Conjg(ampt1)
& +ampb1*Conjg(ampb1)
& +ampt1*Conjg(ampp1)
& +ampp1*Conjg(ampt1)
& +ampb1*Conjg(ampp1)
& +ampp1*Conjg(ampp1)
& +ampp1*Conjg(ampb1)
& +ampb2*Conjg(ampb2)
& +ampb2*Conjg(ampp2)
& +ampp2*Conjg(ampb2)
& +ampp2*Conjg(ampp2)
& +ampb3n*Conjg(ampb3n)
& +ampb3n*Conjg(ampp3n)
& +ampp3n*Conjg(ampb3n)
& +ampp3n*Conjg(ampp3n)
& +ampb4n*Conjg(ampb4n)
& +ampb4n*Conjg(ampp4n)
& +ampp4n*Conjg(ampb4n)
& +ampp4n*Conjg(ampp4n)

c intfactor is the prefactor before the integral
c intfactor=1.d0/(49152.d0*pi**4.d0*s**2.d0*(s2+t1-mh**2.d0))
c lum is the integral for the PDF
c norm is to go from GeV^-2 to attobarn
c Ampli is the squared of the form factors
c factors1 is the jacobian for the change of variables to integrate in the hypercube

factors1=dabs((s2max-s2min)*(t1max-t1min)*
& (t2max-t2min)*(s1max-s1min))

intfactor=1.d0/(49152.d0*pi**4.d0*s**2.d0*(s2+t1-mh**2.d0))

f=intfactor*factors1*jac*Ampli*norm*lum
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end

c------ the following routines have been copied from hpair and may be needed in the main code
cccccccccccccccccccccccccccccccccc
DOUBLE PRECISION FUNCTION ALPHAS(Q,N)

C--ALPHA_S: Q = SCALE, N = 1 -> LO, N = 2 -> NLO
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION XLB(6)
COMMON/ALSLAM/XLB1(6),XLB2(6)
COMMON/ALS/XLAMBDA,AMC,AMB,AMT,N0
B0(NF)=33.D0-2.D0*NF
B1(NF)=6.D0*(153.D0-19.D0*NF)/B0(NF)**2
ALS1(NF,X)=12.D0*PI/(B0(NF)*DLOG(X**2/XLB(NF)**2))
ALS2(NF,X)=12.D0*PI/(B0(NF)*DLOG(X**2/XLB(NF)**2))

. *(1.D0-B1(NF)*DLOG(DLOG(X**2/XLB(NF)**2))

. /DLOG(X**2/XLB(NF)**2))
PI=4.D0*DATAN(1.D0)

IF(N.EQ.1)THEN
DO 1 I=1,6
XLB(I)=XLB1(I)

1 CONTINUE
ELSE
DO 2 I=1,6
XLB(I)=XLB2(I)

2 CONTINUE
ENDIF

IF(Q.LT.AMC)THEN
NF=3
ELSEIF(Q.LE.AMB)THEN
NF=4
ELSEIF(Q.LE.AMT)THEN
NF=5
ELSE
NF=6
ENDIF
IF(N.EQ.1)THEN
ALPHAS=ALS1(NF,Q)
ELSE
ALPHAS=ALS2(NF,Q)
ENDIF
RETURN
END
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SUBROUTINE ALSINI(ACC)
C--ALPHA_S: INITIALIZATION OF LAMBDA_NF, ACC = ACCURAY AT THRESHOLDS
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION XLB(6)
COMMON/ALSLAM/XLB1(6),XLB2(6)
COMMON/ALS/XLAMBDA,AMC,AMB,AMT,N0
B0(NF)=33.D0-2.D0*NF
B1(NF)=6.D0*(153.D0-19.D0*NF)/B0(NF)**2
ALS2(NF,X)=12.D0*PI/(B0(NF)*DLOG(X**2/XLB(NF)**2))

. *(1.D0-B1(NF)*DLOG(DLOG(X**2/XLB(NF)**2))

. /DLOG(X**2/XLB(NF)**2))
PI=4.D0*DATAN(1.D0)
XLB1(1)=0D0
XLB1(2)=0D0
XLB2(1)=0D0
XLB2(2)=0D0

IF(N0.EQ.4)THEN
XLB(4)=XLAMBDA
XLB(5)=XLB(4)*(XLB(4)/AMB)**(2.D0/23.D0)
ELSEIF(N0.EQ.5)THEN
XLB(5)=XLAMBDA
XLB(4)=XLB(5)*(XLB(5)/AMB)**(-2.D0/25.D0)
ENDIF
XLB(3)=XLB(4)*(XLB(4)/AMC)**(-2.D0/27.D0)
XLB(6)=XLB(5)*(XLB(5)/AMT)**(2.D0/21.D0)
DO 1 I=1,6
XLB1(I)=XLB(I)

1 CONTINUE
IF(N0.EQ.4)THEN
XLB(4)=XLAMBDA
XLB(5)=XLB(4)*(XLB(4)/AMB)**(2.D0/23.D0)

. *(2.D0*DLOG(AMB/XLB(4)))**(-963.D0/13225.D0)
XLB(5)=XITER(AMB,XLB(4),4,XLB(5),5,ACC)
ELSEIF(N0.EQ.5)THEN
XLB(5)=XLAMBDA
XLB(4)=XLB(5)*(XLB(5)/AMB)**(-2.D0/25.D0)

. *(2.D0*DLOG(AMB/XLB(5)))**(963.D0/14375.D0)
XLB(4)=XITER(AMB,XLB(5),5,XLB(4),4,ACC)
ENDIF
XLB(3)=XLB(4)*(XLB(4)/AMC)**(-2.D0/27.D0)

. *(2.D0*DLOG(AMC/XLB(4)))**(107.D0/2025.D0)
XLB(3)=XITER(AMC,XLB(4),4,XLB(3),3,ACC)
XLB(6)=XLB(5)*(XLB(5)/AMT)**(2.D0/21.D0)

. *(2.D0*DLOG(AMT/XLB(5)))**(-321.D0/3381.D0)
XLB(6)=XITER(AMT,XLB(5),5,XLB(6),6,ACC)
DO 2 I=1,6
XLB2(I)=XLB(I)

2 CONTINUE
RETURN
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END

DOUBLE PRECISION FUNCTION XITER(Q,XLB1,NF1,XLB,NF2,ACC)
C--ALPHA_S: ITERATION FOR ALPHA_S(M_Z) -> LAMBDA_5
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
B0(NF)=33.D0-2.D0*NF
B1(NF)=6.D0*(153.D0-19.D0*NF)/B0(NF)**2
ALS2(NF,X,XLB)=12.D0*PI/(B0(NF)*DLOG(X**2/XLB**2))

. *(1.D0-B1(NF)*DLOG(DLOG(X**2/XLB**2))

. /DLOG(X**2/XLB**2))
AA(NF)=12D0*PI/B0(NF)
BB(NF)=B1(NF)/AA(NF)
XIT(A,B,X)=A/2.D0*(1D0+DSQRT(1D0-4D0*B*DLOG(X)))
PI=4.D0*DATAN(1.D0)
XLB2=XLB
IF(ACC.GE.1.D0) GOTO 111
II=0

1 II=II+1
X=DLOG(Q**2/XLB2**2)
ALP=ALS2(NF1,Q,XLB1)
A=AA(NF2)/ALP
B=BB(NF2)*ALP
XX=XIT(A,B,X)
XLB2=Q*DEXP(-XX/2.D0)
Y1=ALS2(NF1,Q,XLB1)
Y2=ALS2(NF2,Q,XLB2)
DY=DABS(Y2-Y1)/Y1
IF(DY.GE.ACC) GOTO 1

111 XITER=XLB2
RETURN
END

DOUBLE PRECISION FUNCTION XITLA(NO,ALP,ACC)
C--ITERATION ROUTINE TO DETERMINE IMPROVED LAMBDAS
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
common/input/AECMS, AMZ, AMH, AMQ, V, GF, amb, sinw

B0(NF)=33.D0-2.D0*NF
B1(NF)=6.D0*(153.D0-19.D0*NF)/B0(NF)**2
B2(NF)=27/2.D0*(2857-5033/9.D0*NF+325/27.D0*NF**2)/B0(NF)**3
B3(NF)= 81*(149753/6.d0+3564*zeta3-(1078361/162.d0+6508*zeta3/27)

. *nf+(50065/162.d0+6472*zeta3/81)*nf**2+1093/729.d0*nf**3)

. / B0(NF)**4
ALS2(NF,X,XLB)=12.D0*PI/(B0(NF)*DLOG(X**2/XLB**2))

. *(1.D0-B1(NF)*DLOG(DLOG(X**2/XLB**2))

. /DLOG(X**2/XLB**2))
ALS3(NF,X,XLB)=12.D0*PI/(B0(NF)*DLOG(X**2/XLB**2))

. *(1.D0-B1(NF)*DLOG(DLOG(X**2/XLB**2))

. /DLOG(X**2/XLB**2)

. +(B1(NF)**2*(DLOG(DLOG(X**2/XLB**2))**2
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. -DLOG(DLOG(X**2/XLB**2))-1)+B2(NF))

. /DLOG(X**2/XLB**2)**2)
ALS4(NF,X,XLB)=12.D0*PI/(B0(NF)*DLOG(X**2/XLB**2))

. *(1.D0-B1(NF)*DLOG(DLOG(X**2/XLB**2))

. /DLOG(X**2/XLB**2)

. +(B1(NF)**2*(DLOG(DLOG(X**2/XLB**2))**2

. -DLOG(DLOG(X**2/XLB**2))-1)+B2(NF))

. /DLOG(X**2/XLB**2)**2

. -(B1(NF)**3*(DLOG(DLOG(X**2/XLB**2))**3

. -5*DLOG(DLOG(X**2/XLB**2))**2/2

. -2*DLOG(DLOG(X**2/XLB**2))+1/2.d0)

. +3*B1(NF)*B2(NF)*DLOG(DLOG(X**2/XLB**2))

. -B3(NF)/2)/DLOG(X**2/XLB**2)**3)
AA(NF)=12D0*PI/B0(NF)
BB(NF)=B1(NF)/AA(NF)
CC(NF)=B2(NF)/AA(NF)
DD(NF)=B3(NF)/AA(NF)
XIT(A,B,X)=A/2.D0*(1D0+DSQRT(1D0-4D0*B*DLOG(X)))
XIT3(A,B,C,X)=A/2.D0*(1D0+DSQRT(1D0-4D0*B*DLOG(X)

. *(1-(A*B*(DLOG(X)**2-DLOG(X)-1)+C/B)/X/DLOG(X))))
XIT4(A,B,C,D,X)=A/2.D0*(1D0+DSQRT(1D0-4D0*B*DLOG(X)

. *(1-(A*B*(DLOG(X)**2-DLOG(X)-1)+C/B)/X/DLOG(X)

. +(A**2*B**2*(DLOG(X)**3-5*DLOG(X)**2/2-2*DLOG(X)+1/2.D0)

. +3*A*C*DLOG(X)-D/B/2)/X**2/DLOG(X))))
PI=4.D0*DATAN(1.D0)
N3LO = 0
ZETA2 = PI**2/6
ZETA3 = 1.2020569031595942853997381D0
NF=5
Q=AMZ
XLB=Q*DEXP(-AA(NF)/ALP/2.D0)
IF(NO.EQ.1)GOTO 111
II=0

1 II=II+1
X=DLOG(Q**2/XLB**2)
A=AA(NF)/ALP
B=BB(NF)*ALP
C=CC(NF)*ALP
D=DD(NF)*ALP
IF(NO.EQ.2)THEN
XX=XIT(A,B,X)
ELSEIF(NO.EQ.3)THEN
XX=XIT3(A,B,C,X)
ELSE
XX=XIT4(A,B,C,D,X)
ENDIF
IF(N3LO.NE.0) XX=XIT4(A,B,C,D,X)
XLB=Q*DEXP(-XX/2.D0)
Y1=ALP
IF(NO.EQ.2)THEN

58



B.1. Appendix B.

Y2=ALS2(NF,Q,XLB)
ELSEIF(NO.EQ.3)THEN
Y2=ALS3(NF,Q,XLB)
ELSE
Y2=ALS4(NF,Q,XLB)
ENDIF
IF(N3LO.NE.0) Y2=ALS4(NF,Q,XLB)
DY=DABS(Y2-Y1)/Y1
IF(DY.GE.ACC) GOTO 1

111 XITLA=XLB
RETURN
END

SUBROUTINE pdfset(pathname,pdfname)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
character*30 pdfname, pathname
common/pdflib/ngroup,nset,scalfac
common/pdflib0/iseterr,ials
if(ngroup.eq.0)then
call SetPDFpath(pathname)
call InitPDFsetByName(pdfname)
call InitPDF(nset)
endif
RETURN
END

SUBROUTINE STRUC(X,Q,PDF)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION PDF(-6:6), VALUE(20)
COMMON/PDFLIB/NGROUP,NSET,scalfac
IPDFLIB=NGROUP
CALL EVOLVEPDF(X,Q,PDF)
PDF(6)=0
PDF(-6)=0
RETURN
END

Now we show an example of soubroutine called from the integrand function to get the triangle
contribution

subroutine triangle(ampt1,g,gs,mt,s,g4h,s1,s2,g3h,mh,pi,mw)
implicit none

#include "/Library/Mathematica/Applications/LoopTools-2.16/x86_64-Darwin/include/looptools.h"
complex*16 ampt1
double precision g,gs,mt,s,g4h,s1,s2,g3h,mh,pi,mw
call ltini

ampt1=0.0625D0*
&(g*gs**2.D0*mt**2.D0*
&(2.D0+C0(s,0.D0,0.D0,mt**2.D0,mt**2.D0,mt**2.D0)*
&(4.D0*mt**2.D0-1.D0*s))*
&(s*(g4h*s1*s2+g3h*(s1+s2))+2.D0*(g4h*mh**6.D0)-
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&mh**4.D0*(3.D0*g3h-g4h*(s-3.D0*(s1+s2)))-
&1.D0*(g3h*s1**2.D0+(g3h*s1+g4h*s1**2.D0)*s2+
&(g3h+g4h*s1)*s2**2.D0)+
&mh**2.D0*(g4h*(s1**2.D0+s2**2.D0)+3.D0*(g3h*s1)+
&s2*(3.D0*g3h+4.D0*(g4h*s1))-
&1.D0*(s*(2.D0*g3h+1.D0*(g4h*(s1+s2)))))))/
&(mw*pi**2*(mh**2.D0-1.D0*s)*(mh**2.D0-1.D0*s1)*
&(mh**2.D0-1.D0*s2)*(2.D0*mh**2.D0+1.D0*s-1.D0*(s1+s2)))

end subroutine triangle
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