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Introduction

The quest for transcendental numbers has always been a hard challenge:
even nowadays the transcendence of several constants which are ubiquitous
in mathematics is at a purely conjectural state and seems to be beyond of
the reach of current methods. As a noticeable example, the numbers e and
π have been proved transcendental only at the end of the nineteenth cen-
tury, despite being widely studied and employed since much earlier. Our
knowledge becomes even more blurred when one is interested in the alge-
braic independence of several numbers. At present, it is for instance an open
problem to determine whether the aforementioned e and π are in fact alge-
braically independent or not.
The first methods to investigate the transcendence of some numbers involved
a mixture of arithmetic and analytic techniques. This sophisticated machin-
ery could be applied in practice only to special values of particularly well-
behaved functions, such as the exponential one. A turning point in theory
was reached through the adaptation of these methods to the study of numbers
arising as periods of elliptic curves or, more generally, of Abelian varieties.
In this thesis, we will go through some of the major results which have been
obtained in this context, and we will eventually expose a contribution of ours
which lies halfway between the framework of the exponential function and
the one of the periods of Abelian varieties.
The first chapter will be devoted to a striking achievement by Chudnovsky
dating back to 1976 concerning the existence of two algebraically independent
numbers among the periods and quasi-periods of an elliptic curve over C with
algebraic invariants. If we exclude the applications of Lindemann-Weierstraß
Theorem to exponentials of algebraic numbers, this result enabled Chud-
novsky to give the first examples of two explicit algebraically independent
numbers of arithmetic interest, such as for instance π and Γ(1/4). Although
Chudnovsky’s strategy has become a classic in transcendence proofs, the orig-
inal paper [Chu76] in Russian has never been translated and only a rough
sketch of the argument can be found in [Chu84]. We hope that our detailed
exposition may serve as a possible reference on the subject.
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In the second chapter we will turn to a generalization of these techniques
to the case of periods of complex Abelian varieties. In particular, we will
focus on a result obtained by Vasilev in 1996, which stands as a qualitative
improvement of Chudnovsky’s earlier work and is still the best achievement
reached so far in this context. The main reference which we are going to
follow is Vasilev’s paper [Vas96].
Finally, the third and last chapter will revolve around an attempt of ours to
apply these techniques to the case when some periods are replaced by their
exponentials. Although we are not able to obtain a completely satisfactory
result, we will nonetheless succeed in giving an algebraic independence cri-
terion in most cases of interest. We will conclude our exposition by applying
such criterion to values of the B-function at rational numbers.
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Chapter 1

Periods of elliptic functions

1.1 Preliminaries

This section will be devoted to fix the common setting for the rest of our
entire exposition. We will hence give some elementary definitions regarding
finitely generated extensions of Q, with a brief excursus about transcendence
measures. We will then expose an elementary lemma in this context, upon
which several constructions will be later based. We warn the reader that,
whenever the terms algebraic, transcendental, algebraically independent and
so forth are used with no reference to a base field, the latter is always in-
tended to be Q.

For a polynomial P ∈ Z[x], we define its height, denoted by H(P ), as the
maximum modulus of its coefficients. We will write L(P ) for the length

of P , that is, the sum of the absolute values of the coefficients of P . If
P 6= 0, we also denote by t(P ) the type of P , which stands for the maximum
between the degree and the logarithm of the height of P . We will now
correctly generalize the definition of type of a polynomial to elements of
finitely generated extensions of Q.

Definition 1.1. A subfield K of C is of finite type over Q if it is a finite
extension of Q(x1, . . . , xq) for some x1, . . . , xq ∈ C algebraically independent
over Q.

In this definition, we also admit the case q = 0, meaning that the set
{x1, . . . , xq} is empty, so K is a finite extension of Q embedded in C. If
K is an extension of Q of finite type, we denote by trdeg(K/Q) the tran-
scendence degree of K over Q, i.e. the highest cardinality of a set of ele-
ments of K which are algebraically independent over Q. Let us set for short
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q = trdeg(K/Q) and let x1, . . . , xq ∈ K be algebraically independent over Q.
Since K is by definition a finite extension of Q(x1, . . . , xq), by the primitive
element Theorem there exists y ∈ K algebraic over Q(x1, . . . , xq) such that
K = Q(x1, . . . , xq, y). Up to multiplying y by the common denominator of
the coefficients of its minimal polynomial over Q(x1, . . . , xq), we may assume
that y is integral over Z[x1, . . . , xq].
A (q+1)-tuple (x1, . . . , xq, y) as the one just constructed will be called a gen-

erating system for K over Q. Every extension K of Q of finite type admits
a generating system, so that any a ∈ K can be written uniquely in the form

a =
d∑

i=1

Qi

Ri

yi−1,

where d = [K : Q(x1, . . . , xq)] is the degree of y over Q(x1, . . . , xq) and, for
any i = 1, . . . , d, Qi and Ri are relatively prime elements of Z[x1, . . . , xq].
We remark that, for x1, . . . , xq are algebraically independent over Q, the ring
Z[x1, . . . , xq] is a unique factorization domain. We may thus consider the
least common multiple P of the Ri’s for i = 1, . . . , d, so as to write a ∈ K
uniquely in the form

a =
1

P

d∑

i=1

Piy
i−1,

where P, P1, . . . , Pd lie in Z[x1, . . . , xq].
At this point, for any i = 1, . . . , q we may define the degree of a in xi as

degxi
a := max{degxi

P, degxi
P1, . . . , degxi

Pd}.
Similarly, we set the type of a ∈ K to be

t(a) := max{t(P ), t(P1), . . . , t(Pd)}.
We remark that this notion of type depends on the choice of a generating
system for K over Q. Furthermore, it enjoys the following properties:

Lemma 1.2. Let K be an extension of Q of finite type and let (x1, . . . , xq, y)
be a generating system for K over Q.

1. For all α1, . . . , αm ∈ Z[x1, . . . , xq, y] we have

t(α1 + · · ·+ αm) ≤ logm+ max
i=1,...,m

t(αi);

2. There exists a constant c > 0, depending only on the chosen generating

system, such that for all a1, . . . , am ∈ K we have

t(a1 + · · ·+ am) ≤ c(t(a1) + · · ·+ t(am)),

t(a1 . . . am) ≤ c(t(a1) + · · ·+ t(am));
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3. For any α ∈ Z[x1, . . . , xq, y] and β ∈ Z[x1, . . . , xq] with β 6= 0 we have

t

(
α

β

)
≤ cmax{t(α), t(β)}.

The proof of this Lemma, though elementary, requires some technical com-
putations; a detailed exposition can be found in [Wal74, Lemme 4.2.5]. Since
we will mainly deal with extensions of Q of transcendence degree q = 1, we
will later go through the proof of this Lemma in this particular case.

We now briefly expose some quantitative results involving transcendence
measures, which will be often recalled in the sequel. Let us consider a func-
tion ϕ : R2 → R, (x, y) 7→ ϕ(x, y), which for convenience we suppose to be
defined only for x ≥ 1 and y ≥ log 16. If ω ∈ C is transcendental, we say
that ϕ is a transcendence measure for ω if for all non-zero polynomials P
with integer coefficients of degree at most n and height at most h we have
log |P (ω)| ≥ −ϕ(n, log h). Furthermore, a real number τ > 0 is said to
be a transcendence type for ω if there is a constant c(ω, τ) > 0 such that
c(ω, τ)(n+ log h)τ is a transcendence measure for ω.
With this definition, it is clear that if τ is a transcendence type for ω, then
so is any τ ′ ≥ τ . For this reason, in the literature the transcendence type of
ω is often defined as the infimum of all these values τ . Nonetheless, we prefer
to stick with our definition, for it is in general a hard question to determine
whether this infimum is in fact a minimum or not.
The following two Propositions aim at proving that any transcendence type τ
for a transcendental number ω must satisfy τ ≥ 2, and that this is essentially
best possible in almost all the cases.

Proposition 1.3. Let ω ∈ C be transcendental. Then there exist two con-

stants c1, c2 > 0 such that for any integer T ≥ c1 there is a non-zero polyno-

mial P with integer coefficients which satisfies

degP ≤ 2T − 1, logH(P ) ≤ T + log 2, |P (ω)| ≤ e−c2T 2

.

Proof. For an arbitrary integer T > 0, set n = 2T − 1, h = eT and denote
by Λ the set of all non-zero polynomials of degree at most n and height at
most h. This set has cardinality |Λ| = (2h + 1)n+1 − 1. For any polynomial
P ∈ Λ we plainly have

|P (ω)| ≤ nh(max{1, |ω|})n.

Let us consider the set A = {P (ω) | P ∈ Λ}. Since ω is transcendental, the
cardinality of A must coincide with the one of Λ. Moreover, by the above
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inequality the points of A lie in the square

{z ∈ C | |Re(z)| ≤ nh(max{1, |ω|})n, |Im(z)| ≤ nh(max{1, |ω|})n}.

We divide each side of this square into ⌊
√

|Λ| − 1⌋ congruent segments, which
yield a grid made up of at most |Λ| − 1 smaller squares. Thus, two distinct
points of A, say P1(ω) and P2(ω), must lie in the same square. These then
satisfy

|P1(ω)− P2(ω)| ≤
2nhmax{1, |ω|}n

√
2√

(2h+ 1)n+1 − 2
≤ 2nhmax{1, |ω|}n

√
2

(2h)
n+1
2

≤ elog 2
√
2+logn+log h+n log(1+|ω|)−n+1

2
log(2h).

The leading term in this expression turns out to be e−
n+1
2

log(2h), so by choosing
T sufficiently large, say T > c1, we may find a constant c2 such that

|P1(ω)− P2(ω)| ≤ e−c2
n+1
2

log h ≤ e−c2T 2

.

The claim then follows by observing that P1 − P2 has degree at most n and
height at most 2h.

Proposition 1.4. Almost all complex numbers, with respect to the Lebesgue

measure on C ∼= R2, have transcendence type ≤ 2 + ε for any ε > 0.

Proof. We adapt the proof given in [Amo90] to the one dimensional case.
Let us fix ω ∈ C and define τ(ω) to be the infimum of the transcendence
types of ω. One first observes that τ(ω) coincides with the infimum of all
the positive real numbers η for which there exists a constant c(ω, η) > 0 such
that for any algebraic number α we have

log |ω − α| ≥ −c(ω, η)t(Pα)
η,

where Pα is the minmal polynomial of α over Q. The details of this step can
be found for example in [Lan66, Chapter VI, Theorem 2].
We denote by λ the Lebesgue measure on C ∼= R2. Let B signify the closed
unit ball of C and set

Λ = {ω ∈ B | τ(ω) > 2}.

It is enough to show that λ(Λ) = 0. Then

Λ ⊆
∞⋂

s=2

∞⋃

N=1

⋃

f∈Z[x]
⌊t(f)⌋=N

Af

(
e−sN2

)
,
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where Af (ε) consists of the set of ω ∈ B which have distance ≤ ε from one of
the roots of f . Thus, λ(Af (ε)) ≤ πε2 deg f , and so for any s ≥ 2 and N ≥ 1

λ
(
Af

(
e−sN2

))
≤ πe−2sN2

deg f.

The number of polynomials in Z[x] of type ≤ N is at most e2N
2
. This implies

that for any s ≥ 2 we have

λ(Λ) ≤ λ




∞⋃

N=1

⋃

f∈Z[x]
⌊t(f)⌋=N

Af

(
e−sN2

)

 ≤

∞∑

N=1

πNe−2(s−1)N2

.

The last sum is convergent and

∞∑

N≥1

Ne−2(s−1)N2 ≤
∞∑

N=1

e−(2s−3)N2 ≤
∫ ∞

1

e−(2s−3)x2

dx ≤ e
1
4s

√
π

2s− 3
,

which tends to 0 as s→ ∞.

As it is often the case, despite Proposition 1.4 it is in practice very compli-
cated to estimate the transcendence type of a given number. To our knowl-
edge, the only number that is known to have type ≤ 2+ ε for any ε > 0 is π,
for which Waldschmidt gave the following transcendence measure in [Wal78]:

ϕ(n, log h) = 240n(log h+ n log n)(1 + log n).

In the same paper, other transcendence measures for classical numbers can
be found, for instance connected with exponentials and logarithms. We con-
tent ourselves with exposing the one for π, for it will be of central importance
later on.

Finally, we conclude this section with an evergreen tool in transcendence
proofs, the so-called Siegel’s Lemma, which, despite its elementary formula-
tion, will be a crucial ingredient in all the constructions appearing through-
out our whole discussion. This Lemma provides a non-explicit way to find
non-trivial integer solutions to homogeneous linear systems with integer co-
efficients, and its proof is a mere application of the pigeonhole principle.

Lemma 1.5 (Siegel). Let m and n be positive integers with m < n. For all

i = 1, . . . ,m and j = 1, . . . , n, let aij be integers with absolute value at most

A ≥ 1. Then there exist integers x1, . . . , xn, not all zero, with absolute value

at most

B =
⌊
(nA)

m
n−m

⌋
,
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which satisfy
n∑

j=1

aijxj = 0.

for any i = 1, . . . ,m.

Proof. The number of n-tuples (x1, . . . , xn) such that 0 ≤ xj ≤ B for all
j = 1, . . . , n is (B + 1)n. For any such n-tuple and any i = 1, . . . ,m, let
us set yi =

∑n
j=1 aijxj. If we call −Vi and Wi the sum of the negative and

positive aij’s respectively, then −ViB ≤ yi ≤ WiB. Each yi runs therefore
in a range of (Vi + Wi)B + 1 ≤ nAB + 1 possible values, so the possible
m-tuples (y1, . . . , ym) are (nAB+1)m. We have (B+1)n−m > (nA)m, which
yields (B + 1)n > (nAB + 1)m. It follows that the map which associates
to each (x1, . . . , xn) the corresponding (y1, . . . , ym) cannot be injective. The
difference of two n-tuples having the same image under such map is the
sought solution to the homogeneous linear system of the Lemma.

The version of Siegel’s Lemma that we will now describe and that we will
actually exploit is slightly more general, as it deals with extensions of Q

of finite type. In spite of some technical complications, its proof remains
essentially elementary, making its usefulness in our exposition even more
remarkable and surprising.

Lemma 1.6. Let K be an extension of Q of finite type and let (x1, . . . , xq, y)
be a generating system for K over Q. Then there exists a constant C > 0
which enjoys the following property.

Let n and r be positive integers with n ≥ 2r and consider aij ∈ Z[x1, . . . , xq, y],
for i = 1, . . . , n, j = 1, . . . , r. Then there exist ξ1, . . . , ξn ∈ Z[x1, . . . , xq, y],
not all zero, such that for all j = 1, . . . , r

n∑

i=1

ξiaij = 0 and max
i=1,...,n

t(ξi) ≤ C

(
max
i,j

t(aij) + log n

)
.

Proof. Let us set δ = [K : Q(x1, . . . , xq)]. We wish to find a solution in
Z[x1, . . . , xq, y] for the linear system

n∑

i=1

ξiaij = 0 for j = 1, . . . , r

in the unknowns ξ1, . . . , ξn. Let us introduce for i = 1, . . . , n and l = 1, . . . , δ
the new unknowns ηij ∈ Z[x1, . . . , xq] in such a way that

ξi =
δ∑

l=1

ηily
l−1.

6



Moreover, we may write aij =
∑δ

h=1 bijhy
h−1 and yδ+u =

∑δ
k=1 εuky

k−1 for
any non-negative integer u ≥ 0, with bijh and εkl being suitable elements of
Z[x1, . . . , xq]. The initial linear system is then equivalent to solving

n∑

i=1

(
∑

h+l=k+1

bijhηil +
δ−2∑

u=0

∑

h+l=δ+u+2

εukbijhηil

)
= 0

in the unknowns ηil ∈ Z[x1, . . . , xq]. This argument enables us to reduce
to a find a solution in Z[x1, . . . , xq] of a linear system with coefficients in
Z[x1, . . . , xq] whose type is ≤ c1t(aij) for some c1 > 0 independent of the
aij’s. In order to simplify notation, it then suffices to prove our statement
for the case when y ∈ Z[x1, . . . , xq], that is, K = Q(x1, . . . , xq).
At this point, we may write

aij =

d1−1∑

m1=0

· · ·
dq−1∑

mq

aijmx
m1
1 . . . xmq

q

for suitable aijm ∈ Z with m = (m1, . . . ,mq) and d1, . . . , dq ≥ 0. Consider
an integer c2 > 0 satisfying

c2 ≥
((

3

2

) 1
q

− 1

)−1

and introduce the new unknowns ξiµ ∈ Z for i = 1, . . . , n and µ = (µ1, . . . , µq)
with µh = 1, . . . , c2dh − 1 for all h = 1, . . . , q, in such a way that

ξi =

c2d1−1∑

µ1=0

· · ·
c2dq−1∑

µq=0

ξiµx
µ1

1 . . . xµq
q .

By the algebraic independence of x1, . . . , xq, the original system is then equiv-
alent to the one given by

n∑

i=1

∑

m+µ=M

ξiµaijm = 0,

for all M = (M1, . . .Mq) ∈ Zq satisfying 0 ≤ Mj ≤ (c2 + 1)dj − 1. This is a
linear system with coefficients in Z, consisting of (c2+1)qd1 . . . dqr equations
and cq2d1 . . . dqn unknowns. Since

cq2d1 . . . dqn ≥ 4

3
d1 . . . dqr,

7



Lemma 1.5 ensures the existence of a non-trivial solution (ξiµ)iµ in Z for
such linear system. Moreover, if A is the maximum modulus of the aijm’s,
the modulus of each of the ξiµ’s is bounded from above by

(cq2d1 . . . dqnA)
(c2+1)qr

c
q
2n−(c2+1)qr ≤ exp (c3 (logA+ log d1 . . . dq + log n)) ,

where c3 is the absolute constant given by

c3 =
(c2 + 1)q

2c2 − (c2 + 1)q
+ q log c2.

Since the maximum type of the aij’s is at most max{d1+ · · ·+dq, logA}, the
claim is established.

1.2 Elliptic functions

Let us start by considering an elliptic curve E over C defined by the affine
equation y2 = 4x3−g2x−g3 for suitable g2, g3 ∈ C. It is well known that there
exists a meromorphic function ℘ over C, a so-called Weierstraß ℘-function,
which yields a surjective homomorphism of complex Lie groups

C → E, z 7→ [℘(z), ℘′(z), 1].

The kernel of this map is a lattice Λ in C, hence E turns out to be isomorphic,
as a complex Lie group, to a complex torus C/Λ. Let us denote by ω1 and
ω2 a pair of generators for the lattice Λ, chosen in such a way that Imω1

ω2
> 0;

these will be called periods of the elliptic curve E. We may then take ℘ to
be defined by the series

℘(z) =
1

z2
+

∑

ω∈Λr{0}

(
1

(z − ω)2
− 1

ω2

)
,

which converges absolutely and uniformly on C r Λ. Thus, ℘ has double
poles at the lattice points and it is doubly periodic with respect to both ω1

and ω2. More generally, any meromorphic function which is doubly periodic
in ω1 and ω2 is called an elliptic function for Λ. Of course, the derivative
℘′ of ℘ is elliptic for Λ, and it is a classical fact that the field of all elliptic
functions for Λ precisely coincides with C(℘, ℘′).
A primitive of −℘ is given by Weierstraß ζ-function, defined by the series

ζ(z) =
1

z
+

∑

ω∈Λr{0}

(
1

z − ω
+

1

ω
+

z

ω2

)
,

8



which converges absolutely and uniformly on CrΛ. This function has simple
poles at the lattice points and it is quasi-periodic with respect to Λ, in the
sense that there is a Z-linear map η : Λ = Zω1 + Zω2 → C such that for all
z ∈ Cr Λ and all ω ∈ Λ

ζ(z + ω) = ζ(z) + η(ω).

We will usually denote by η also the R-bilinear extension of η to Λ⊗R. The
complex numbers η1 = η(ω1) and η2 = η(ω2) are the quasi-periods of E. By
integrating ζ along a fundamental parallelogram of Λ, Legendre’s relation is
easily deduced, that is,

ω1η2 − ω2η1 = 2πi.

Finally, we recall the definition of Weierstraß σ-function, namely

σ(z) = z
∏

ω∈Λr{0}

(
1− z

ω

)
e

z
ω
+ 1

2(
z
ω )

2

,

which is an entire function having simple zeros at the points of Λ. Its loga-
rithmic derivative coincides with ζ, hence

σζ = σ′, σ2℘ = (σ′)2 − σ′′σ.

By the quasi-periodicity of ζ, we also deduce that for any ω ∈ Λ

σ(z + ω) = ±σ(z)eη(ω)(z+ω
2 ),

the sign being positive if and only if ω ∈ 2Λ.

We will now go through some analytic properties of the functions just intro-
duced, which will be used later on in this chapter.

Definition 1.7. Let f : C → C be a non-zero entire function. The order of

growth of f is defined as

lim sup
R→∞

log log |f |R
logR

,

where |f |R denotes the maximum of f on the ball of radius R centred at the
origin.

In other words, a non-zero entire function has order of growth ≤ ̺ for some
positive real number ̺ if there exists a constant c > 0 such that for any
sufficiently large R > 0 we have

|f |R ≤ ecR
̺

.
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Lemma 1.8. The function σ has order of growth ≤ 2.

Proof. Let us fix R > 0 and pick any w ∈ C such that |w| ≤ R. We
may find unique t1, t2 ∈ R with 0 ≤ t1, t2 < 1 in such a way that w =
z + n1ω1 + n2ω2, where z = t1ω1 + t2ω2 and n1, n2 ∈ Z. We therefore have
|ni| ≤ min{|ω1|, |ω2|}−1R. It follows that

|σ(w)| = |σ(z)|eRe((n1η1+n2η2)(z+n1ω1
2

+
n2ω2

2 ))

≤ |σ||ω1|+|ω2|e
|n1η1+n2η2||z+n1ω1

2
+

n2ω2
2 |

≤ |σ||ω1|+|ω2|e
1

min{|ω1|,|ω2|}
(|η1|+|η2|)(| 3ω1

2 |+| 3ω2
2 |)R2

,

which proves the statement.

Corollary 1.9. All the derivatives of σ have order of growth ≤ 2.

Proof. More generally, the order of growth of an entire function f is preserved
under taking derivatives. Indeed, let us fix R ≥ 1 and pick any w ∈ C with
|w| ≤ R. By Cauchy’s integral formula, for any m ≥ 0 we have

f (m)(w) =
1

2πi

∫

γ

f(z)

(z − w)m+1
dz,

where γ is the boundary of the ball of radius 2R centred at the origin. If f
has order of growth ̺, then there is an absolute constant c > 0 such that

|f (m)|R ≤ 1

2π

2πR

(2R−R)m+1
|f |2R ≤ 1

2m+1Rm
ec(2R)̺ ≤ e2

̺cR̺

,

hence the claim follows from the previous Lemma by specializing f = σ.

Corollary 1.10. Both σζ and σ2℘ are entire with order of growth ≤ 2.

Proof. It follows immediately from the previous Corollary and the identities
σζ = σ′, σ2℘ = (σ′)2 − σ′′σ.

We now turn to some technical results of key importance for the sequel.

Lemma 1.11. The j-th derivative ℘(j) of ℘ can be expressed in the form
∑

u(t, t′, t′′)℘t(℘′)t
′

(℘′′)t
′′

,

where the sum runs through all non-negative integers t, t′, t′′ such that

2t+ 3t′ + 4t′′ = j + 2

and u(t, t′, t′′) is a rational integer satisfying

|u(t, t′, t′′)| ≤ 3j(j + 7)!.

10



Proof. By deriving the identity (℘′(z))2 = 4℘(z)3 − g2℘ − g3 three times, it
is readily verified that ℘′′′(z) = 12℘(z)℘′(z). We now argue by induction on
j, the cases j = 0, 1, 2 being trivially true. Suppose that j ≥ 3 and that we
may write

℘(j−1) =
∑

v(s, s′, s′′)℘s(℘′)s
′

(℘′′)s
′′

with 2s + 3s′′ + 4s′′ = j + 1 and |v(s, s′, s′′)| ≤ 3j−1(j + 6)!. By deriving
this identity once, we get an expression for ℘(j) which is a sum, running over
s, s′, s′′, in which each v(s, s′, s′′) is multiplied by the term

s℘s−1(℘′)s
′+1(℘′′)s

′′

+ s′℘s(℘′)s
′−1(℘′′)s

′′+1 + 12s′′℘s+1(℘′)s
′+1(℘′′)s

′′−1.

We therefore obtain an expression for ℘(j) as in the statement by setting

u(t, t′, t′′) = tv(t+1, t′−1, t′′)+ t′v(t, t′−1, t′′+1)+12t′′v(t−1, t′−1, t′′+1).

For the absolute value of u(t, t′, t′′) we have indeed

|u(t, t′, t′′)| ≤ 3j−1(j + 6)!(t+ t′ + 12t′′) ≤ 3j−1(j + 6)!(6t+ 9t′ + 12t′′)

≤ 3j(j + 6)!(j + 2) ≤ 3j(j + 7)!,

which yields the claim.

Proposition 1.12. Let k ≥ 0 be an integer.The j-th derivative of ℘k can be

expressed in the form

∑
v(t, t′, t′′)℘t(℘′)t

′

(℘′′)t
′′

,

where the sum runs through all non-negative integers t, t′, t′′ such that

2t+ 3t′ + 4t′′ = j + 2k

and v(t, t′, t′′) is a rational integer satisfying

|v(t, t′, t′′)| ≤ j!cj+k.

for some constant c > 0 independent of j and k.

Proof. The j-th derivative of ℘k can be expressed in the form

(℘k)(j) =
∑

i1+···+ik=j

(
j

i1, . . . , ik

)
℘(i1) . . . ℘(ik).

11



By substituting for all h = 1, . . . , k the expression for ℘(ih) given by the
previous Lemma, we obtain

(℘k)(j) =
∑

i1+···+ik=j

(
j

i1, . . . , ik

) k∏

h=1

∑
u(tih , t

′
ih
, t′′ih)℘

tih (℘′)t
′
ih (℘′′)t

′′
ih ,

where the internal sum runs through all non-negative integers tih , t
′
ih
, t′′ih such

that 2tih + 3t′ih + 4t′′ih = ih + 2. By summing these latter identities over
h = 1, . . . , k, we get

2

(
k∑

h=1

tih

)
+ 3

(
k∑

h=1

t′ih

)
+ 4

(
k∑

h=1

t′′ih

)
=

(
k∑

h=1

ih

)
+ 2k = j + 2k.

Let us now introduce indices t, t′, t′′, denoting non-negative integers such that
2t+ 3t′ + 4t′′ = j + 2k. We may then rewrite (℘k)(j) as

∑

t,t′,t′′

∑

i1+···+ik=j

(
j

i1, . . . , ik

)
vi1,...,ik(t, t

′, t′′)℘t(℘′)t
′

(℘′′)t
′′

,

where

vi1,...,ik(t, t
′, t′′) =

∑ r∏

h=1

u(tih , t
′
ih
, t′′ih),

the sum going through all non negative integers tih , t
′
ih

and t′′ih for h = 1, . . . , k
satisfying

k∑

h=1

tih = t,

k∑

h=1

t′ih = t′,

k∑

h=1

t′′ih = t′′, 2tih + 3t′ih + 4t′′ih = ih + 2.

Now, given a triple (t, t′, t′′) as above, consider all possible sets made of k
triples of non-negative integers, say t1 = (t1, t

′
1, t

′′
1), . . . , tk = (tk, t

′
k, t

′′
k), such

that each triple is not (0, 0, 0) and moreover

k∑

h=1

th = t,

k∑

h=1

t′h = t′,

k∑

h=1

t′′h = t′′.

For all h = 1, . . . , k we have 2th+3t′h+4t′′h ≥ 2, so ith = 2th+3t′h+4t′′h−2 ≥ 0,
and furthermore

k∑

h=1

ith = j.

12



With this notation, we gain the expression for (℘k)(j) given in the statement
by setting

v(t, t′, t′′) =
∑

t1,...,tk

(
j

it1 , . . . , itk

) k∏

h=1

u(th, t
′
h, t

′′
h).

It only remains to estimate |v(t, t′, t′′)|. First, by the previous Lemma

∣∣∣∣∣

(
j

it1 , . . . , itk

) k∏

h=1

u(th, t
′
h, t

′′
h)

∣∣∣∣∣ ≤
j!

it1 ! . . . itk !

k∏

h=1

3ith (ith + 7)!

= j!3j
k∏

h=1

(ith + 7)!

ith !
= 3jj!

k∏

h=1

7!

(
ith + 7

7

)

≤ 3jj!(7!)k
k∏

h=1

2ith+7 = 3jj!(7!)k2j+7k.

On the other hand, the number of sets of k triples of the form t1, . . . , tk as
above is at most

∣∣∣∣
(
t+ k − 1

t

)(
t′ + k − 1

t′

)(
t′′ + k − 1

t′′

)∣∣∣∣ ≤ 2t+t′+t′′+3k−3.

Since t ≤ (j + 2k)/2, t′ ≤ (j + 2k)/3 and t′′ ≤ (j + 2k)/4, we eventually
deduce the estimate

|v(t, t′, t′′)| ≤ j!

8

(
3 · 2 25

12

)j (
7! · 2 73

6

)k
,

which establishes the claim.

Proposition 1.13. Let k ≥ 0 be an integer. The j-th derivative of ζk can

be expressed in the form

∑
u(τ, t, t′, t′′)ζτ℘t(℘′)t

′

(℘′′)t
′′

,

where the sum runs through all non-negative integers τ, t, t′, t′′ such that

τ + 2t+ 3t′ + 4t′′ = j + k and τ ≤ k,

while u(τ, t, t′, t′′) denotes a rational integer with absolute value at most j!cj+k

for some constant c > 0 independent of j and k.
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Proof. We argue by induction on k. For k = 1, we have ζ(j) = (−1)j℘(j−1),
so the induction basis is granted by Lemma 1.11. Assuming that the claim
holds for k − 1 ≥ 1, we have

(ζk)(j) = (ζζk−1)(j) = ζ(ζk−1)(j) +

j∑

i=1

(−1)i
(
j

i

)
℘(i−1)(ζk−1)(j−i)

= ζ(ζk−1)(j) +

j∑

i=1

(−1)i
(
j

i

)∑
vwζ̺i℘si+ri(℘′)s

′
i+r′i(℘′′)s

′′
i +r′′i ,

where si, s
′
i, s

′′
i , ̺i, ri, r

′
i, r

′′
i are non-negative integers with 2si+3s′i+4s′′i = i+1,

̺i + 2ri + 3r′i + 4r′′i = j − i + k − 1 and ri ≤ k − 1, while v = v(si, s
′
i, s

′′
i )

is given by Lemma 1.11 and w = wi(̺i, ri, r
′
i, r

′′
i ) by induction hypothesis.

Observe that for all i = 1, . . . , j we have

2̺i + 2(si + ri) + 3(s′i + r′i) + 4(s′′i + r′′i ) = j − i+ k − 1 + i− 1 = j + k.

Again by induction hypothesis, we may write

ζ(ζk)(j) =
∑

w1(˜̺, r̃, r̃
′, r̃′′)ζ ˜̺+1℘r̃(℘′)r̃

′

(℘′′)r̃
′′

,

with ˜̺, r̃, r̃′, r̃′′ non-negative integers such that ˜̺+2r̃+3r̃′+4r̃′′ = j+k−1 and
˜̺ ≤ k − 1. Let us now consider τ, t, t′, t′′ as in the statement and introduce
indices s, s′, s′′ denoting non-negative integers such that s ≤ t, s′ ≤ t′ and
s′′ ≤ t′′, with (s, s′, s′′) 6= 0. We may then set is,s′,s′′ = 2s+3s′+4s′′− 1 ≥ 0.
Thus, we obtain an expression for (ζk)(j) as the one in the statement by
defining u(τ, t, t′, t′′) to be

w̃(τ −1, t, t′, t′′)+
∑

s,s′,s′′

(−1)is,s′,s′′
(

j

is,s′,s′′

)
v(s, s′, s′′)w(τ, t− s, t′− s′, t′′− s′′),

convening to set w(τ, t− s, t′ − s′, t′′ − s′′) = 0 if τ = k. The estimate for |u|
now follows from the one in Lemma 1.11 and from the fact that the above
sum has at most (t+ 1)(t′ + 1)(t′′ + 1) ≤ (j + k + 1)3 terms.

We conclude this section with a remark of more arithmetic content regarding
the values of ℘ at tosion points of the elliptic curve E. By a torsion point of
E we mean a point of E of finite order, or, more loosely, any pre-image of
such a point in C under the map C → C/Λ ∼= E. Thus, we shall speak of
torsion points of E as any element of Λ⊗Q, to simplify notation.

Proposition 1.14. Let ω ∈ C be a non-trivial torsion point of E, so that

ω ∈ Λ⊗Qr Λ. Then ℘(ω) is algebraic over the field Q(g2, g3).

14



Proof. Suppose that for a positive integer n we have [n]([℘(ω), ℘′(ω), 1]) =
[0, 1, 0], where [n] denotes the multiplication-by-n map on E. This plainly
implies that the first component of [n]([℘(ω), ℘′(ω), 1]) vanishes. Moreover,
by the addition formulae for the coordinates of points of E, it is readily
checked that this component is a non-zero rational expression in ℘(ω) with
coefficients in Q(g2, g3).

Corollary 1.15. If ω is a non-trivial torsion point of E, then the set of all

℘(j)(ω) for j ≥ 0 lies in a finite extension of Q(g2, g3).

Proof. By Proposition 1.14 and the equation (℘′)2 = 4℘3 − g2℘ − g3, we
deduce that ℘′(ω) and ℘′′(ω) are algebraic over Q(g2, g3). The statement
then follows by Proposition 1.12.

By exploiting for example division polynomials, it would be possible to give
more precise quantitative information about ℘(ω) for a non-trivial torsion
point ω of E, for instance regarding its degree and height. For further de-
tails in this direction, we refer to [Bak68]. For the present exposition, the
rather implicit description of the algebraicity of ℘(ω) given above will how-
ever suffice.

1.3 The auxiliary function

We shall now start addressing the core topic of this chapter, namely a striking
result about algebraic independence of periods and quasi-periods of elliptic
curves obtained by Chudnovsky in 1976. As in the previous section, we let
E be an elliptic curve defined over C with invariants g2, g3, and ω1, ω2 be a
pair of periods for E with corresponding quasi-periods η1, η2.
A first result concerning the transcendence properties of these invariants was
published by Schneider in [Schn36] and reads as follows:

Theorem 1.16. The numbers ω1, ω2, η1, η2 are transcendental over Q(g2, g3).

Further generalizations were obtained by Baker in [Bak68] and [Bak69], who
applied his method for the celebrated theorem on linear forms in logarithms
of algebraic numbers to give effective quantitative contributions to the inves-
tigation of the transcendence of linear forms in ω1, ω2, η1, η2. Less than ten
years later, a turning point along these lines was achieved by Chudnovsky,
who managed to prove the following

Theorem 1.17. At least two of the numbers

g2, g3, ω1, ω2, η1, η2

are algebraically independent.
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Historically, this result provided the first explicit examples of two alge-
braically independent numbers, left alone the ones arising in the context
of the exponential function by means of Lindemann-Weierstraß Theorem, al-
ready known at the end of the nineteenth century. The rest of this chapter
is devoted to the proof of Theorem 1.17 and to the exposition of some of
its most noticeable applications. Theorem 1.17 first appeared in Russian in
the paper [Chu76], which has never been translated. A rough sketch of the
proof, which is going to be the main reference for our present exposition, was
drafted by Chudnovsky himself in [Chu84].

We now start the proof of Theorem 1.17, which is structured as follows. The
argument is by contradiction, thus supposing that any two numbers among
g2, g3, ω1, ω2, η1, η2 are algebraically dependent. The present section will be
then devoted to the exploitation of this assumption in order to construct
a suitable auxiliary function Φ which vanishes with high multiplicity at all
lattice points contained in some ball of sufficiently large radius. Afterwards,
we will select a lattice point at which Φ vanishes with lower order, and we
will be able to provide a description of the first non-vanishing derivative of
Φ at this point as a polynomial P (π) in π with integer coefficients. We will
thus end this section by finding an explicit estimate for the degree and height
of this polynomial.
In the next section, we will then derive a bound from above for |P (π)| by an-
alytic means, taking advantage of the large number of zeros of Φ. By taking
into account the degree and height of P , this final estimate will eventually
yield a high transcendence measure for π, which contradicts already known
results regarding the type of transcendence of π.

Let us start by supposing that any two numbers among g2, g3, ω1, ω2, η1, η2
are algebraically dependent, that is, they generate an extension of Q of tran-
scendence degree at most 1. We fix a torsion point ω ∈ C of E of order
at least 3, so that by Corollary 1.15 the numbers ℘(j)(ω) lie in a finite ex-
tension of Q(g2, g3). Moreover, by Legendre’s relation, π belongs to a finite
extension K of Q(g2, g3, ω1, ω2, η1, η2), which we may suppose Galois over the
latter field, up to passing to its normal closure. We also take K big enough
so that it contains all the numbers ℘(j)(ω) for j ≥ 0. For π is transcendental,
trdeg(K/Q) = 1. Let us therefore consider a number χ, integral over Z[π],
such that K = Q(π, χ). We call δ the degree of χ over Q(π).
In the sequel, we fix a positive real number 0 < ε < 1 and we denote by
c1, c2, . . . positive constants that only depend on g2, g3, ω1, ω2, η1, η2, χ, K
and ε. Moreover, by N we signify a sufficiently large positive integer, and we
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define the quantities

R =
⌊
N1− ε

2

⌋
, D =

⌊
N1− ε

4

⌋
.

We first introduce our auxiliary function.

Proposition 1.18. There exists an absolute constant C ∈ Z[π] and elements

Eh(π) = Eh1,h2,h3(π) ∈ Z[π] such that the function

Φ(z) = C6N

δD∑

h1=0

δD∑

h2=0

δD∑

h3=0

Eh1,h2,h3(π)z
h1℘(z)h2ζ(z)h3

satisfies

Φ(j)(ω + n1ω1 + n2ω2) = 0

for all n1, n2 = 0, . . . , R−1 and j = 0, . . . , N−1. Moreover, Eh(π), regarded

as a polynomial in π, has type at most c1N logN .

Before proceeding with the proof of this Proposition, we catch up with the
proof of Lemma 1.2 in the case of extensions of Q of finite type and tran-
scendence degree 1. To our purposes, the following result will suffice:

Lemma 1.19. Let us consider a polynomial P (x, y) ∈ Z[x, y] such that

degy P ≥ δ and set β = P (π, χ). Set d = degπ χ
δ and H = H(χδ). Then

degπ β ≤ degx P + (degy P − δ + 1)d,

H(β) ≤
(
degx P + (degy P − δ + 1)d

)
(degy P − δ + 1)dH(P )Hdegy P−δ+1.

Proof. Let us first write

χδ = a0 + a1χ+ · · ·+ aδ−1χ
δ−1

for some uniquely determined a0, . . . , aδ−1 ∈ Z[π]. Then we have

χδ+1 = χδχ = a0aδ−1+(a0+a1aδ−1)χ+· · ·+(aδ−1+aδ−2aδ−1)χ
δ−2+a2δ−1χ

δ−1,

which shows that degπ χ
δ+1 ≤ 2d. By arguing inductively, it is then readily

checked that for any n ≥ 0 we have

degπ χ
δ+n ≤ (n+ 1)d.

Let us now write

P (x, y) = b0(x) + b1(x)y + · · ·+ bdegy P (x)y
degy P

17



for some b0, . . . , bdegy P ∈ Z[x]. By our previous computations, we deduce
that for any h = δ, . . . , degy P

degπ bh(π)χ
h = degπ bh(π) + degπ χ

h ≤ degx P + (h− δ + 1)d,

where the first equality is justified by the fact that bh(π) ∈ Z[π]. Overall, we
conclude that

degπ β ≤ degx P + (degy P − δ + 1)d.

A similar argument can be applied to the height. For n ≥ 1 we easily compute
by induction

H(χδ+n) ≤ (n+ 1) degπ χ
δH(χδ)n+1.

Thus, for h = δ, . . . degy P

H(bh(π)χ
h) ≤ (degπ bh(π) + degπ χ

h)H(bh(π))H(χh),

whence the claim follows straightforwardly.

Corollary 1.20. There is a constant c > 0, only depending on χ, such that

for any P ∈ Z[x, y] we have

t(P (π, χ)) ≤ c t(P (x, y)).

We also recall some elementary estimates for the height of polynomials. If
P (x) and Q(x) are polynomials with integer coefficients, then

H(PQ) ≤ (degP + degQ)H(P )H(Q).

In particular, for any k ≥ 1 we deduce the following upper bound for the
height of the powers of P (x):

H(P k) ≤ k!(degP )kH(P )k.

Analogous bounds apply to the case of polynomials in several indeterminates,
provided we replace the degP and degQ by the sum of the degrees in each
indeterminate.

We are now ready to have a closer look to Proposition 1.18. The construction
of Φ as in the statement is based on the application of Siegel’s Lemma 1.6.
In order to achieve this, we first focus on those quantities that will arise as
the coefficients of a linear system in Z[π, χ], to which we will later apply the
results of the previous sections.
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Lemma 1.21. There is an absolute constant C ∈ Z[π] enjoying the following

property. For any k = (k1, k2, k3) ∈ Z3 such that 0 ≤ k1, k2, k3 ≤ D, set

Fk(z) := zk1℘(z)k2ζ(z)k3 .

Then for each n = (n1, n2), n1, n2 = 0, . . . , R− 1 and j = 0, . . . , N − 1

Pnjk(π, χ) := C6NF
(j)
k (ω + n1ω1 + n2ω2) ∈ Z[π, χ],

t(Pnjk) ≤ c2N logN.

Proof. We start by observing that for j = 0, . . . , N − 1

F
(j)
k (z) =

∑

j1+j2+j3=j

(
j

j1, j2, j3

)
(zk1)(j1)(℘(z)k2)(j2)(ζ(z)k3)(j3).

Observe that ζ(ω) ∈ Qη1 + Qη2, by the quasi-periodicity of ζ. Thus, by
Lemma 1.15 we may choose C to be a denominator in Q(π, χ) for each of the
numbers

ω, ω1, ω2, η1, η2, ℘(ω), ℘
′(ω), ℘′′(ω), ζ(ω).

To simplify notation, we introduce the quantities

a1 = (zk1)(j1)|z=ω+n1ω1+n2ω2 , a2 = (℘(z)k2)(j2)|z=ω+n1ω1+n2ω2 ,

a3 = (ζ(z)k3)(j3)|z=ω+n1ω1+n2ω2 .

If k1 ≥ j1, we have

Ck1−j1a1 =
k1!

j1!
(Cω + n1Cω1 + n2Cω2)

k1−j1 .

This yields a polynomial expression in Z[π, χ] for Ck1−j1a1 which has degree
in π and χ at most c3(k1 − j1) ≤ c3D and height at most c4k1!R

k1−j1 ≤
exp(c4D logD+ c4D logR). In the latter inequality we are taking advantage
of the fact that the term related to the degree in the classical estimate for the
height of a power of a polynomial is essentially irrelevant in this computation.
Furthermore, by the periodicity of ℘ and Proposition 1.12, we infer that

Cj2+2k2a2 = Cj2+2k2
∑

u(t, t′, t′)℘(ω)t℘′(ω)t
′

℘′′(ω)t
′′

,

where the sum runs through all non-negative integers t, t′, t′′ which satisfy
2t + 3t′ + 4t′′ = j2 + 2k2, while u(t, t′, t′′) is an integer of absolute value no
larger than j2!c

j2+k2
5 . This therefore yields a polynomial expression in Z[π, χ]

for Cj2+2k2a2 with degree in π and χ at most c6(t + t′ + t′′) ≤ c6(N + 2D)
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and height at most j2!c
j2+k2
5 ct+t′+t′′

7 ≤ exp(c8N logN).
Finally, by the quasi-periodicity of ζ together with Proposition 1.13, we get

a3 =
∑

u(τ, t, t′, t′)(ζ(ω) + n1η1 + n2η2)
τ℘(ω)t℘′(ω)t

′

℘′′(ω)t
′′

with the sum running through all non-negative integers τ, t, t′, t′′ which sat-
isfy τ + 2t + 3t′ + 4t′′ = j3 + k3 with τ ≤ k3, while u(τ, t, t′, t′′) is an integer
with absolute value at most j3!c

j3+k3
9 . Thus, we have a polynomial expression

for Cj3+k3a3 with degree in π and χ at most c10(j3 + k3) ≤ c10N and height
at most j3!c

j3+k3
9 (c10R)

τcτ+t+t′+t′′

11 ≤ exp(c12N logN).
Overall, the term C6N provides a suitable power of C so as to be a denomi-
nator for a1a2a3 in Q(π, χ). Thus, C6Na1a2a3 has degree in π and χ at most
c13N and logarithm of the height at most c14N logN . These estimates carry
through to sums of C6Na1(j1)a2(j2)a3(j3) for any j1, j2, j3 with j1+j2+j3 = j,
up to modifying the absolute constants. Indeed, the overall number of terms
in such sum is

(
j + 2

3

)
=

(j + 2)(j + 1)j

6
≤ c15j

3 ≤ c15N
3,

which does not affect the upper bound for the height, up to absolute con-
stants. Overall, we obtain a polynomial expression for P (x, y) in Z[x, y] of
type ≤ c16N logN such that P (π, χ) = Pnjk(π, χ). By Corollary 1.20, we
conclude that t(Pnjk) ≤ c2N logN .

We are now ready to complete the proof of Proposition 1.18. Let us consider
the function

Φ̃(z) = C6N

D∑

k1=0

D∑

k2=0

D∑

k3=0

Ẽk1,k2,k3(π, χ)z
k1℘(z)k2ζ(z)k3 ,

for suitable Ẽk(π, χ) to be defined. We remark that the Pnjk(π, χ)’s as in the
previous Lemma make up the coefficients of the linear system

Φ̃(j)(ω + n1ω1 + n2ω2) = 0, j = 0, . . . , N − 1, n1, n2 = 0, . . . , R− 1,

the unknowns being the Ẽk’s. Notice that this system consists of NR2 equa-
tions and (D + 1)3 unknowns. Since

NR2 ≤ N3−ε < N3− 3ε
4 ≤ (D + 1)3,

Siegel’s Lemma 1.6 ensures the existence of a non-trivial solution for this
linear system with components in Z[π, χ]. These components, namely the

Ẽk’s, have a type which satisfies

t(Ẽk(π, χ)) ≤ c17N logN.
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We now aim at removing χ from these coefficients; this will eventually lead
to the function Φ(z) as in Proposition 1.18. Thus, consider the polynomial

A(x1, x2, x3) =
D∑

k1=0

D∑

k2=0

D∑

k3=0

Ẽk(π, χ)x
k1
1 x

k2
2 x

k3
3 .

Let us call δ = [Q(π, χ) : Q(π)] and let σ1, . . . , σδ be the Galois automor-
phisms of Q(π, χ) over Q(π). The norm of A(x1, x2, x3) over Q(π), denoted
by NQ(π,χ)/Q(π)A, precisely coincides with

δ∏

i=1

(
∑

k

σi(Ẽk)x
k1
1 x

k2
2 x

k3
3

)
=

δD∑

h1=0

δD∑

h2=0

δD∑

h3=0

Eh(π)x
h1
1 x

h2
2 x

h3
3 , with

Eh(π) =
∑

κ1,...,κδ

δ∏

i=1

σi(Ẽκi
),

where the κi’s go through all the triples (κi1, κi2, κi3) with 0 ≤ κij ≤ D such
that hj = κ1j+· · ·+κδj for all j = 1, 2, 3. It is apparent that Eh(π) ∈ Z[π], for
it is fixed by all the Galois automorphisms of Q(π, χ) over Q(π). Moreover,
by exploiting the same arguments as in the previous Lemma, it is readily
checked that the type of the Eh(π)’s is at most c1N logN .
The function

Φ(z) = NQ(π,χ)/Q(π)A(z, ℘(z), ζ(z))

now satisfies all conditions in Proposition 1.18. Indeed, the type of its coef-
ficients has just been verified, and the identities

Φ(j)(ω + n1ω1 + n2ω2) = 0, j = 0, . . . , N − 1, n1, n2 = 0, . . . , R− 1,

hold true, since they are already satisfied by Φ̃ and the ratio Φ/Φ̃ is holo-
morphic outside Λ.

Now that we have constructed our auxiliary function, we first check that it
does not vanish identically. This is an immediate consequence of the following

Lemma 1.22. The three functions z, ℘(z) and ζ(z) are algebraically inde-

pendent over C.

Proof. We start by observing that z and ℘ are algebraically independent over
C. For let us consider a polynomial P (x, y) ∈ C[x, y] such that P (z, ℘(z)) = 0
for any z ∈ C r Λ. Then the polynomial P (x, ℘(z)) has infinitely many
roots, namely z + ω for all ω ∈ Λ, so it vanishes identically. If we write
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P (x, y) =
∑

m≥0 pm(y)x
m, this implies that pm(℘(z)) = 0 for all m. Since ℘

is a non-constant holomorphic function on Cr Λ, its image is open in C, so
by the identity principle pm = 0 for all m, whence P = 0.
Let us now assume that z, ℘ and ζ are algebraically dependent over C. Since
z and ℘ are algebraically independent, ζ must be algebraic over C(z, ℘). In
particular, it also lies in a finite extension of F = C(z, ℘, ℘′). Let Q be its
minimal polynomial over F , and write Q(x) = q0+ q1x+ · · ·+xd for suitable
q0, . . . , qd−1 ∈ F , setting qd = 1. By taking the derivative of the identity
Q(ζ(z)) = 0, we obtain

d−1∑

m=0

(q′m − (m+ 1)qm+1℘) ζ
m = 0.

Since the field F is closed under taking derivatives, this is a polynomial
relation for ζ over F of degree d − 1, so by minimality of Q we must have
q′m = (m + 1)qm+1℘ for all m = 0, . . . d − 1. Since qd = 1, in particular
q′d−1 = d℘, which shows that qd−1 = −dζ + k for some k ∈ C. From this
identity we deduce that ζ ∈ C(z, ℘, ℘′). We may therefore write

ζ(z) =
a(z)

b(z)

for some a(z), b(z) ∈ C(℘, ℘′)[z] with b(z) 6= 0. Let c and d be the degrees in
z of a(z) and b(z) respectively and call ac and bd their correspondent leading
coefficients.
By the quasi-periodicity of ζ, for any ω ∈ Λ we have

a(z)

b(z)
+ η(ω) = ζ(z) + η(ω) = ζ(z + ω) =

a(z + ω)

b(z + ω)
.

By specializing ω = nωi for i = 1, 2 and n ∈ Z, n > 0, we obtain

fn(z) =
a(z + nωi)

nb(z + nωi)
− a(z)

nb(z)
= ηi.

We restrict fn to the points of C where the coefficients of a and b have no
poles and b is non-zero. Notice that these points exist for we are excluding
from C only countably many elements. Thus, fn(z) is a rational function in
n with complex coefficients for any fixed z ∈ C. We may then compute

0 6= ηi = lim
n→∞

fn(z) = lim
n→∞

acn
cωc

i

bdnd+1ωd
i

.
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In order for this limit to be finite and non-zero, we must have c = d + 1, in
which case we obtain

η1
ω1

=
ac(z)

bd(z)
=
η2
ω2

.

This is however in contrast with Legendre’s relation.

As a result, we may find a positive integer N0 satisfying the following prop-
erty. Set for short R0 = ⌊(N0 + 1)1−ε/2⌋. For all n1, n2 = 0, . . . , ⌊N1−ε/2

0 ⌋ − 1
and any j = 0, . . . , N0 − 1 we have

Φ(j)(ω + n1ω1 + n2ω2) = 0,

but there are j0 ∈ {0, . . . , N0−1} and m1,m2 ∈ {0, . . . , R0−1} such that the
point z0 = ω+m1ω1+m2ω2 is a zero of multiplicity j0 for Φ. This reads that
Φ(j)(z0) = 0 for all j = 0, . . . , j0 − 1, but Φ(j0)(0) 6= 0. Notice that N0 ≥ N
by Proposition 1.18.
By combining Lemma 1.21 and the estimates on the type of the coefficients
of the Eh(π)’s, it is then readily checked that

P (π, χ) := Φ(j0)(z0)

is a non-zero element in Z[π, χ], whose type satisfies t(P ) ≤ c18N0 logN0.
Our next purpose is to take advantage of the large number of zeros of Φ in
the ball of radius R0 centred at the origin in order to provide a sharp upper
bound for |P (π, χ)|. This will be achieved in the next section by analytic
means and will eventually allow us to derive a high measure of transcendence
for π, which is known to have type of transcendence ≤ 2 + ε for any ε > 0.

1.4 Analytic part of the proof

In order to derive an upper bound for |P (π, χ)|, we begin with clearing out
the denominator of the auxiliary function Φ in the field of meromorphic
functions over C and giving an estimate for its order of growth.

Lemma 1.23. The function Ψ(z) = σ(z)3δDΦ(z) is entire and satisfies for

any ̺ ≥ N
3ε
8

0 (logN0)
2

|Ψ|̺ ≤ ec19N
1− ε

4
0 ̺2 .

Proof. It is clear that Ψ is holomorphic on C r Λ. Moreover, ζ and ℘ have
respectively simple and double poles at each lattice point, so Φ(z) has poles
of order at most 3δD at all elements of Λ. Since σ has simple zeros at these
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same points, the claim about Ψ being entire is established.
Let us fix h1, h2, h3 ∈ {0, . . . , δD}. By Corollary 1.10, we have

|σ2δD℘h2 |̺ ≤ ec20D̺2 , |σδDζh3 |̺ ≤ ec21D̺2 .

We already computed that t(Eh(π)) ≤ c18N0 logN0, which implies that

|Eh(π)| ≤ degEh|H(Eh)||π|degEh ≤ ec22N0 logN0 .

Since the sum defining Φ consists of at most (D+ 1)3 terms, the estimate of
the claim is readily established.

Since z0 is a zero of order j0 for Φ, we have

lim
z→z0

Φ(z)

(z − z0)j0
=

Φ(j0)(z0)

j0!
=
P (π, χ)

j0!
.

As a result, it follows that

P (π, χ) =
j0!

σ3δD(z0)
lim
z→z0

Ψ(z)

(z − z0)j0
.

We now introduce the main analytic tool that will enable us to give an upper
bound for |P (π, χ)|.

Lemma 1.24 (Schwarz). Let f be a holomorphic function on an open subset

of C containing the ball B1 of radius ̺1 > 0 centred at the origin. Suppose

that f has n zeros, counted with multiplicity, in the ball B2 of radius ̺2 <
1
3
̺1

centred at the origin. Then

|f |̺2 ≤
(
3̺2
̺1

)n

|f |̺1 .

Schwarz’s Lemma therefore results in a sharpening of the estimates given by
the classical maximum modulus principle, yielding a more accurate upper
bound for |f |̺1 according to the number of zeros of f in a relatively small
ball around the origin.

Proof. Let a1, . . . , an be zeros of f in B2. Then the function

g(z) = f(z)
n∏

i=1

1

z − ai
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is holomorphic on B1, so we may apply the maximum modulus principle to
deduce that

|g|̺2 ≤ |g|̺1 = |f |̺1 max
|z|=̺1

n∏

i=1

∣∣∣∣
1

z − ai

∣∣∣∣ ≤ |f |̺1
(

1

̺1 − ̺2

)n

.

On the other hand, we have

|g|̺2 = |f |̺2 max
|z|=̺2

n∏

i=1

∣∣∣∣
1

z − ai

∣∣∣∣ ≥
|f |̺2
(2̺2)n

.

Since by assumption ̺1 − ̺2 > ̺1 − 1
3
̺1 = 2

3
̺1, this chain of inequalities

finally yields

|f |̺2 ≤
(

2̺2
̺1 − ̺2

)n

|f |̺1 ≤
(
3̺2
̺1

)n

|f |̺1 .

Turning back to our situation, let us set c23 = |ω|+ |ω1|+ |ω2|, so that z0 lies
in the ball centred at the origin of radius

̺2 := c23R0 = c23
⌊
(N0 + 1)1−

ε
2

⌋
.

Up to taking N sufficiently large, in this ball Φ has by construction at least

N0

⌊
N

1− ε
2

0

⌋2
≥ N0(N0 − 1)2−ε ≥ 1

2
N3−ε

0

zeros, counted with multiplicities. Let us now set

̺1 := N
1− 3ε

8
0 .

By Schwarz’s Lemma 1.24 we infer that

|Ψ|̺2 ≤ |Ψ|̺1

(
3c23R0

N
1− 3ε

8
0

) 1
2
N3−ε

0

≤ |Ψ|̺1(c24N0)
− ε

16
N3−ε

0 ≤ |Ψ|̺1e−c25N
3−ε
0 logN0 .

Observe now that by Lemma 1.23 we have

|Ψ|̺1 ≤ ec19N
3−ε
0 .

The dominating term in the upper bound given by Schwarz’s Lemma turns
therefore out to be the one related to the zeros of Ψ, so that

|Ψ|̺2 ≤ ec26N
3−ε
0 logN0 .
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At this point, we may go back to estimating |P (π, χ)|. Since z0 lies in the
ball of radius ̺2 centred at the origin, we get

|P (π, χ)| ≤ j0!

|σ3δD(z0)|

∣∣∣∣
Ψ(z)

(z − z0)j0

∣∣∣∣
̺2

≤ 1

|σ3δD(z0)|
e−c27N

3−ε
0 logN0 .

Thus, it remains only to bound |σ3δD(z0)| from below. Let us recall that
z0 = ω +m1ω1 +m2ω2 for some m1,m2 ∈ {0, . . . , R0 − 1}, hence

|σ(z0)| = |σ(ω)|eRe((m1η1+m2η2)(ω+m1
2

ω1+
m2
2

ω2)).

Observe that Re
(
(m1η1 +m2η2)

(
ω + m1

2
ω1 +

m2

2
ω2

))
= α− β, where

α := (m1Re η1 +m2Re η2)
(
Reω +

m1

2
Reω1 +

m2

2
Reω2

)
,

β := (m1Im η1 +m2Im η2)
(
Imω +

m1

2
Imω1 +

m2

2
Imω2

)
.

It follows that α ≥ −c28R2
0 and β ≤ c29R

2
0, which yields α− β ≥ −c30R2

0. As
a result, we infer that

|σ3δD(z0)| ≥ e−c31DR2
0 ≥ e−c31N

3− 5ε
4

0 .

Since 5ε
4
> ε, we eventually reach the upper bound

|P (π, χ)| ≤ e−c32N
3−ε
0 logN0 .

At this point, we would like to combine this with the fact that P (π, χ) has
type at most c19N0 logN0 to derive a transcendence measure for π. In order
to achieve this, there is only one step missing, namely to obtain a polynomial
in Z[π], therefore removing χ. We may accomplish this by taking the norm
of P (π, χ) over Q(π), exactly as we did before for the Eh(π)’s.
Let us remind that we called σ1, . . . , σδ the Galois automorphism of Q(π, χ)
over Q(π). We first wish to estimate the type ofQ(π) = NQ(π,χ)/Q(π)(P (π, χ)).
Let us write P (π, χ) = a0 + a1χ + · · · + aδ−1χ

δ−1 for some uniquely deter-
mined a0, . . . , aδ−1 ∈ Z[π]. We set I := {0, . . . , δ − 1} and denote by Sδ

the symmetric group over δ elements. Thus, Sδ acts over Iδ by permuting
components and we may form the factor set Iδ/Sδ. Then we have

Q(π) =
∑

(i1,...,iδ)∈Iδ
ai1 . . . aiδ

δ∏

j=1

σj(χ)
ij =

∑

α∈Id/Sδ

aα
∑

(i1,...,iδ)∈α

δ∏

j=1

σj(χ)
ij ,
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where we put for the sake of brevity aα := ai1 . . . aiδ for an arbitrarily chosen
representative (i1, . . . , iδ) of α. Notice that for any α ∈ Iδ/Sδ

∑

(i1,...,iδ)∈α

δ∏

j=1

σj(χ)
ij ∈ Z[π],

and its degree and height do not depend on N . It is then readily seen that
the type of Q(π) ∈ Z[π] satisfies ≤ c33N0 logN0.
On the other hand, we can easily derive an effective upper bound for |Q(π)|.
For any Galois automorphism σ of Q(π, χ) over Q(π) we have

|σ(P (π, χ))| ≤
δ−1∑

i=0

|ai||σ(χ)i| ≤ ec34N0 logN0 ,

by taking advantage of the estimate for the type of P (π, χ). Since we have

already seen that |P (π, χ)| ≤ e−c32N
3−ε
0 logN0 , we obtain

0 <
∣∣NQ(π,χ)/Q(π)(P (π, χ))

∣∣ =
δ∏

i=1

|σi(P (π, χ))| ≤ e−c35N
3−ε
0 logN0 .

Summing up, we have constructed a polynomial Q with integer coefficients
which enjoys the following properties:

0 < |Q(π)| ≤ e−c35N
3−ε
0 logN0 , t(Q) ≤ c33N0 logN0.

This would imply that π has transcendence type ≥ 3 − 2ε, which contra-
dicts the transcendence measure for π given in [Wal78] and exposed at the
beginning of this chapter.

1.5 Corollaries

We shall now go through some of the most noticeable consequences of The-
orem 1.17, starting with an immediate Corollary covering a fairly broad
amount of cases of interest.

Corollary 1.25. If E has algebraic invariants g2, g3, then there are two

algebraically independent numbers among

ω1, ω2, η1, η2.

Before applying this result to some concrete instances of elliptic curves, we
expose a striking sharpening which can be obtained in the case of complex
multiplication
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Corollary 1.26. If E has algebraic invariants g2, g3 and complex multipli-

cation, then for any period ω of E the numbers ω and π are algebraically

independent.

Proof. Since E complex multiplication, the ratio τ = ω1/ω2 is an algebraic
number. As exposed in [Mas75a, Lemma 3.1], there exist non-zero coprime
integers A and B together with an algebraic number α such that

Aη1 − Bτη2 = αω2

Moreover, by Legendre’s relation

η2 =
1

τ
η1 +

2πi

τω2

.

By combining these two identities, we get

η1 =
1

A− B

(
2πiB

ω2

+ αω2

)
,

which shows that η1 is algebraic over Q(ω2, π). One similarly proves that
η2 is algebraic over the latter field, so that the transcendence degree of
Q(ω1, ω2, η1, η2) coincides with the one of Q(ω2, π). The claim then follows
by means of Corollary 1.25.

We may now list some interesting applications connected with values of the
Γ-function. Let E be an elliptic curve admitting complex multiplication in
the ring of integers of an imaginary quadratic field Q(τ). It is well known
that there are exactly as many isomorphism classes of such elliptic curves as
the class number of Q(τ). Moreover, E has automorphisms different from
±1 if and only if the ring of integers of Q(τ) is either Z[i] or Z[̺], where ̺ is
a third root of unity. In both cases, Q(τ) has class number 1, so we may find
exactly two elliptic curves, up to isomorhpism, which have automorhpism
group larger then {±1} and complex multiplication in the ring of integers of
an imaginary quadratic field.
The one of these with endomorphism ring isomorphic to Z[i] is given by the
affine equation

y2 = 4x3 − 4x.

As in [Wal99, Appendix 1], it is possible to compute that a pair of funda-
mental periods is given by

ω1 =
Γ(1/4)2√

8π
and ω2 = iω1.
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The other elliptic curve in which we are interested, having endomorphism
ring isomorphic to Z[̺], is given by the affine equation

y2 = 4x3 − 4,

while a pair of fundamental periods can be chosen to be

ω1 =
Γ(1/3)3

3
√
16π

and ω2 = ̺ω1,

provided that we embed Q(̺) in C so as to identify ̺ with e
2πi
3 . Corollary 1.26

then yields the following

Corollary 1.27. π is algebraically independent from both Γ(1/4) and Γ(1/3).

A more general treatment of the periods of elliptic curves with complex
multiplication in the ring of integers of an imaginary quadratic field can be
achieved by means of Chowla-Selberg formula. In this context, we briefly
summarize a result obtained in [ChoSel67].

Proposition 1.28. Let E be an elliptic curve having complex multiplication

in the ring of integers of an imaginary quadratic field K. Then a fundamental

period of E is given by

ω = α
√
π

d∏

a=0

Γ
(a
d

)wχ(a)
4h

,

where α is a non-zero algebraic number, d is the discriminant of K, w is the

number of roots of unity of K, h is the class number of K and χ =
(
d
·
)

is

the Kronecker symbol.

A straightforward application of Corollary 1.26 then yields the following

Corollary 1.29. With notation as in the previous Proposition, the numbers

π and

d∏

a=0

Γ
(a
d

)χ(a)

are algebraically independent.

By exploiting the identity

Γ

(
1

6

)
Γ

(
5

6

)
=

π

sin
(
π
6

) = 2π,
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one also deduces the algebraic independence of π and Γ(1/6). Further re-
sults concerning transcendence properties of Γ-values have been established
by generalizing Theorem 1.17 to Abelian varieties, which will be the main
focus of the next chapter.

Chudnovsky’s result also leads to some remarkable applications connected to
the j-function. We recall that the latter is a weight 0 modular function of
level SL2(Z) and it is defined by

j = 1728
E3

4

E3
4 − E3

6

,

where E4 and E6 are the Eisenstein series of weight 4 and 6 respectively.
It is a classical fact that for any quadratic irrational τ ∈ C in the upper
half plane, j(τ) is algebraic and, in fact, an algebraic integer. A discussion
about these results can be found for instance in [Sil94, Chapter 2]. For the
remaining values of j at algebraic points, we have the following

Proposition 1.30. For any algebraic number α with positive imaginary part,

other than a quadratic irrational, j(α) is transcendental.

This result follows directly from Schneider-Lang’s Theorem; a complete ex-
position can be found for instance in [Bak75, Chapter 6]. Other questions, on
which Chudnovsky’s result sheds some light, are related to the transcendence
of the values of the derivative of the j-function. As explained in [Lan71], for
any τ in the upper half plane we have the relation

j′(τ) = 18
ω2
1

2πi

g3
g2
j(τ),

where ω1, g2 and g3 are the usual quantities referred to an elliptic curve
whose j-invariant coincides with j(τ). As a by-product of Corollary1.26, if
such curve has complex multiplication, so if τ is quadratic irrational, then
ω1 and π are algebraically independent, hence ω2

1/π is transcendental. As a
result, we obtain the following

Corollary 1.31. For any τ quadratic irrational with positive imaginary part

such that j′(τ) 6= 0, π and j′(τ) are algebraically independent.

Apart from the case of complex multiplication, it is conjectured that j′(τ) is
transcendental whenever j(τ) is algebraic and j′(τ) 6= 0.
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Chapter 2

Periods of abelian functions

2.1 Complex Abelian varieties

In this chapter, we wish to expose a generalization of the techniques exploited
in proving Theorem 1.17 to the case of complex Abelian varieties. Since the
theory of Abelian varieties is extremely broad, we will spend this initial sec-
tion for introducing the main context of the rest of chapter, focusing only
on the theory of theta functions and eventually exposing some technical re-
sults needed for later reference. We will follow closely [Lan82]. The main
subject of this chapter, which consists in a result by Vasilev in 1996 concern-
ing the algebraic independence of periods of complex Abelian varieties, will
be described in the next section, after the necessary prerequisites have been
properly settled.

Let us start with an integer g ≥ 1 and let us consider a lattice Λ ⊆ Cg. The
main question that we will now address is to understand when it is possible
to embed the torus Cg/Λ in some complex projective space. If this is the
case, by Chow’s Theorem the image of Cg/Λ coincides with the C-points of
a projective variety, which we call a complex Abelian variety. In order to
achieve this, we will start by describing some functions which are going to
play a key role in the construction of this embedding.

Definition 2.1. A theta function on Cg with respect to Λ is a meromorphic
function ϑ, not identically zero, which satisfies for all z ∈ Cg and ω ∈ Λ

ϑ(z + ω) = ϑ(z)e2πi(L(z,ω)+J(ω))

for some L : Cg × Λ → C, C-linear in the first argument, and some function
J : Λ× Λ → C. The pair (L, J) is called the type of ϑ.
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It is apparent that J is defined only modulo a Z-valued function on Λ. More-
over, this definition actually imposes some restrictions on L and J , which we
now briefly investigate. By computing ϑ(z + ω1 + ω2) for any ω1, ω2 ∈ Λ via
the above formula, one easily checks that

L(ω1, ω2) ≡ L(ω2, ω1) (mod Z),

L(z, ω1 + ω2) ≡ L(z, ω1) + L(z, ω2) (mod Z).

For L is C-linear in the first argument, the second congruence is in fact an
equality, showing that L is R-linear in the second argument. We may there-
fore extend L by continuity to a map Cg × Cg → C which is C-linear in the
first argument and R-linear in the second one.

Before proceeding in our discussion, let us give a first elementary example.
Let q be a quadratic form on Cg, λ a C-linear map on Cg and c ∈ C any
complex number. The function

ϑ(z) = e2πi(q(z)+λ(z)+c)

is a theta function, which is called trivial. If b is the bilinear form associated
with q, then the type (L, J) of ϑ is given by

L(z, ω) = 2b(z, ω), J(ω) = b(ω, ω) + λ(ω) + c.

These theta functions make up a multiplicative group, and they will serve for
normalization purposes. We will say that two theta functions are equivalent
if their quotient is a trivial theta function.
Notice that if ϑ is an entire theta function having no zeros, then it must be
trivial. Indeed, in this case ϑ admits a logarithm, so we may write

ϑ(z) = e2πif(z)

for some entire function f . It then follows that f(z + ω)− f(z) = L(z, ω) +
J(ω), so all second order partial derivatives of f are constant. Thus, f is a
quadratic polynomial and ϑ must be trivial.

After these considerations, we introduce two R-bilinear forms which are of
central importance in this discussion. First, for any z, w ∈ Cg we define

E(z, w) = L(z, w)− L(w, z).

The condition L(ω1, ω2) ≡ L(ω2, ω1) (mod Z) implies that E takes on integral
values on Λ × Λ. Since the latter is a basis over R of Cg × Cg and L is R-
bilinear, E is in fact an alternating R-bilinear map which is also real valued.
Finally, let us consider for any z, w ∈ Cg

H(x, y) = E(ix, y) + iE(x, y).
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A standard computation shows that H is a hermitian form.

Definition 2.2. A theta function ϑ is called normalized if the following
conditions hold:

1. L(z, w) = − i
2
H(z, w);

2. The function K(ω) = J(ω)− 1
2
L(ω, ω) is real valued.

The reason for this technical definition will appear shortly. In the meanwhile,
we observe that for a normalized theta function the fundamental equation
reads

ϑ(z + ω) = ϑ(z)e2πi(−
i
2
H(z,ω)− i

4
H(ω,ω)+K(ω)).

Given any theta function, it is always possible to normalize it by multiplying
by trivial theta functions, as shown by the following

Proposition 2.3. In any equivalence class of theta functions modulo triv-

ial ones, there exists a normalized theta function, unique up to a non-zero

constant factor.

Proof. This is a straightforward reduction via multiplication by suitable triv-
ial theta functions. For a complete argument, we refer to [Lan82, Chapter VI,
Theorem 1.3].

The main reason which justifies the interest in normalized entire theta func-
tions results turns out to be the fact that their associated hermitian form is
non-negative, though not necessarily positive definite, as we now show.

Proposition 2.4. If ϑ is a normalized entire theta function on Cg with

respect to Λ, then its associated hermitian form H is non-negative.

Proof. We first prove that there is an absolute constant C > 0 such that for
all z ∈ Cg

|ϑ(z)| ≤ Ce
π
2
H(z,z).

Indeed, the function g(z) = ϑ(z) exp(−π
2
H(z, z)) satisfies for any ω ∈ Λ

g(z + ω) = g(z)eiπ(E(z,ω)+K(ω)).

Since the term E(z, ω) + K(ω) in the exponent in the right hand side is
real, we infer that |g(z + ω)| = |g(z)|. Thus, the function |g| is periodic,
and therefore bounded for it is also continuous. This proves the claimed
inequality.
Let us now suppose that there is w0 ∈ Cg such that H(w0, w0) < 0. By
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continuity, H(w,w) < 0 for all w in a suitable neighbourhood of w0. The
function z 7→ ϑ(zw) is entire and by the above inequality it tends to 0 as z
tends to infinity. It follows therefore that such function is identically zero,
so in particular it vanishes when computed at z = 1. As a result, ϑ is zero
in a neighbourhood of w0, whence also ϑ = 0, a contradiction.

The next point in our discussion is to determine when the hermitian form
associated with a normalized entire theta function ϑ is in fact positive defi-
nite. If this is the case, we say that ϑ is non-degenerate. This special kind
of functions will play a crucial role in the attempt of embedding the torus
Cg/Λ in a projective space.

Proposition 2.5. Let ϑ be a normalized entire theta function on Cg with

respect to Λ, with associated Hermitian form H. Let NH be the null space of

H, that is, the subspace of Cg consisting of the z ∈ Cg such that H(z, z) = 0.
Then

1. The values of ϑ only depend on the cosets of NH in Cg;

2. The image of the lattice Λ in Cg/NH is discrete.

Proof. Let us fix w ∈ Cg and w0 ∈ NH . For any z ∈ Cg we have

H(w + zw0, w + zw0) = H(w,w).

The same estimate as in the previous Proposition then yields

|ϑ(w + zw0)| ≤ Ce
π
2
H(w,w).

Thus, the function z 7→ ϑ(w + zw0) is entire and bounded, hence constant.
By evaluating it at z = 0, we see that it coincides with ϑ(w) and the first
point is established.
Let us now consider ω1, . . . , ωr ∈ Λ whose residue classes ω1, . . . , ωr generate
Cg/NH as a real vector space. We may find ε > 0 such that for all z ∈ Cg

in the ball of radius ε centred at the origin we have |E(z, ωi)| < 1
2

for each
i = 1, . . . , r. Let ω be an element of Cg/NH which has a lift ω ∈ Λ. If ω lies
in the ball of radius ε centred at the origin of Cg/NH , we may choose ω to
lie in the corresponding ball in Cg. Then E(ω, ωi) = 0, for it is an integer.
As a result, ω is orthogonal to ω1, . . . , ωr, whence ω = 0. This proves that
the image of Λ in Cg/NH is discrete.

As a consequence of this Proposition, a normalized entire theta function ϑ
naturally induces a theta function ϑ on the quotient space Cg/NH with re-
spect to the lattice given by the projection of Λ modulo NH . The hermitian
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form H associated with ϑ is then the one induced by H. It is readily checked
that H is always positive definite, so that ϑ is non-degenerate. Thus, asking
whether a normalized entire theta function is degenerate or not is tantamount
to wondering whether it can be viewed as a theta function on a proper quo-
tient of Cg.

We are now ready to tackle the question of whether the torus Cg/Λ can be
analytically embedded in a projective space. First, let us consider an entire
theta function ϑ0 on Cg with respect to Λ. We denote by L(ϑ0) the set of
all entire theta functions of the same type as ϑ0. Since these functions share
the same type, L(ϑ0) ∪ {0} is plainly a complex vector space. As shown
in [Lan82, Chapter VI, Theorem 3.1], if ϑ0 is non-degenerate the dimension
of L(ϑ0) ∪ {0} over C is finite and coincides with the square root of the
determinant of the associated R-bilinear form E with respect to the R-basis
of Cg given by Λ.
Let us now consider a basis ϑ0, ϑ1, . . . , ϑm for L(ϑ0)∪{0} over C. We denote
by V (ϑ0, . . . , ϑm) the set of common zeros of ϑ0, . . . , ϑm in Cg. Notice that
the fundamental formula for theta functions ensures that V (ϑ0, . . . , ϑm) is
invariant modulo Λ. Since ϑ0, . . . , ϑm have the same type, we obtain a well-
defined map

ϕϑ0 :
(Cg r V (ϑ0, . . . , ϑm))�Λ −→ Pm, z 7−→ [ϑ0(z), . . . , ϑm(z)].

The main result in this context is given by the following

Theorem 2.6 (Lefschetz). Suppose that ϑ0 is an entire non-degenerate theta

function. Then the map ϕϑ3
0

induced by L(ϑ3
0) is everywhere defined, and it

is an analytic embedding of Cg/Λ into a projective space.

Proof. We refer to [Lan82, Chapter VI, Theorem 6.1] or to [Mum74].

Let us observe that Cg/Λ is compact, while the standard metric topology
on Pm is Hausdorff. Thus, if there exists an entire non-degenerate theta
function, then the image of Cg/Λ in Pm via the above embedding is closed
in Pm. By Chow’s Theorem, this implies that Cg/Λ may be identified with
an algebraic subvariety of Pm.

Definition 2.7. Let Λ be a lattice in Cg. The complex torus Cg/Λ is called
a complex Abelian variety if it can be analytically embedded in a projective
space.

In view of this definition, Lefschetz’s Theorem yields a criterion to determine
when a torus Cg/Λ can be given the structure of a complex Abelian variety
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via an embedding into a projective space, the key point being the existence of
an entire non-degenerate theta function. However, so far we have not given
any example of explicit constructions of these functions for suitable lattices
Λ ⊆ Cg. Since a complete exposition would lead us too far afield from our
purposes, we content ourselves with giving some references on the subject.
Historically, the whole theory of theta functions arose naturally from the
study of Jacobian varieties. Given a compact Riemann surface R of genus
g ≥ 1, it is possible to construct a complex torus Cg/Λ for a suitable lattice Λ
by exploiting de Rham duality. The torus Cg/Λ obtained via this procedure
is usually called the Jacobian variety associated with R and it is possible
to explicitly construct an entire non-degenerate theta function on Cg with
respect to Λ, thus turning Cg/Λ into a complex Abelian variety. A detailed
description can be found for instance in [Mum82, Chapter 2, §2].

We now turn to the study of the function theory on a complex Abelian variety
V of dimension g. Let Λ be a lattice associated with V , in the sense that
the complex torus Cg/Λ can be identify with V via an embedding into a
projective space. From now forth, we will always restrict ourselves to the
case in which this embedding is realized by means of Lefschetz’s Theorem,
that is, we will always assume that there is an entire non-degenerate theta
function ϑ0 on Cg with respect to Λ.

Definition 2.8. A function A : Cg → C is called abelian with respect to Λ
if it is either 0 or the quotient of two entire theta functions of the same type.

If A is an abelian function, then it is meromorphic and periodic with respect
to Λ. Abelian functions for Λ make up a field, which is referred to as the
function field of V . We now give a description of the latter.

Proposition 2.9. The function field of V is a finite extension of a purely

transcendental extension of C of transcendence degree g.

Proof. We first construct g algebraically independent abelian functions. Up
to replacing ϑ0 by its cube, by Lefschetz’s Theorem we have an embedding

ϕϑ0 :
Cg
�Λ −→ Pm, z 7−→ [ϑ0(z), . . . , ϑm(z)],

where ϑ0, . . . , ϑm is a basis of L(ϑ0)∪{0} over C. After a change of projective
coordinates, we may assume that the point [1, 0, . . . , 0] ∈ Pm lies in the image
of ϕϑ0 . Consider now the affine open subset of Pm given by

U0 = {[x0, . . . , xm] ∈ Pm | x0 6= 0},
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which is isomorphic as a variety to the complex affine space Am, and therefore
homeomorphic to Cm. If z0 ∈ Cg/Λ is such that ϕϑ0(z0) = [1, 0, . . . , 0], then
the map

Cg
�Λ ∩ ϕ−1

ϑ0
(U0) −→ Cg, z 7−→

(
ϑ1(z)

ϑ0(z)
, . . . ,

ϑm(z)

ϑ0(z)

)

is a local chart around z0, when restricting its codomain to its image. Since
the torus Cg/Λ has dimension g as a complex manifold, we may find g abelian
functions A1, . . . , Ag which are local analytic coordinates at z0, and these are
algebraically independent.
It is now possible to prove that the function field of V is a finite extension
of C(A1, . . . , Ag) by some combinatorial arguments together with elementary
results on the dimension of L(ϑ0) ∪ {0}. A complete exposition is given in
[Lan82, Chapter VI, Corollary 2].

We remark that, up to applying a suitable translation to the torus Cg/Λ,
we may suppose that z0 = 0. Under this assumption, we have ϕϑ0(0) =
[1, 0, . . . , 0], so the proof of the previous Proposition implies in particular
that ϑ0(0) 6= 0, while A1(0) = · · · = Ag(0) = 0. Moreover, from the fact
that ϕϑ0 is an embedding, one also deduces that the Jacobian of the map
z 7→ (A1(z), . . . , Ag(z)) is non-zero at z = 0.
We now wish to define quasi-periodic functions and the period matrix for a
complex Abelian variety V . As a piece of notation, for any i = 1, . . . , g we
write ∂i for the standard derivation ∂/∂zi on Cg, endowed with coordinate
functions z1, . . . , zg. Furthermore, for a derivation ∂ of any order and a
holomorphic function f we write ∂ log f = (∂f)/f for the corresponding
logarithmic derivative of f . The next result provides a basis for the complex
vector space H1

dR(V,C) of the equivalence classes of first order meromorphic
differentials of the second kind, i.e. with vanishing residue at any point,
modulo exact differentials.

Proposition 2.10. The meromorphic differentials of the second kind

dz1, . . . , dzg, d∂1 log ϑ0, . . . , d∂g log ϑ0

make up a basis for H1
dR(V,C) over C.

Proof. We follow the argument of [Gri02]. Let us set for short ϕi = dzi
and ϕg+i = d∂i log ϑ0 for i = 1, . . . , g. Fix a basis λ1, . . . , λ2g of Λ as a Z-
module. These differentials are Λ-invariant and may therefore be viewed as
meromorphic differentials on V . It then suffices to prove the non-degeneracy
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of the 2g × 2g matrix Ω whose entries are given by the so-called periods

ωij =

∫ λj

0

ϕi, i, j = 1, . . . , 2g.

As in [Lan66, Chapter VI, Theorem 3.2], it is possible to replace λ1, . . . , λ2g
by a Frobenius basis e1, . . . , eg, v1, . . . , vg, that is, e1, . . . , eg make up a basis
for Cg over C and for all j = 1, . . . , g we have

ϑ0(z + ej) = ϑ0(z), ϑ0(z + vj) = ϑ0(z)e
cjzj+dj

for some cj 6= 0. With respect to this basis, for i, j = 1, . . . , g we have
ωij = eij, so the g × g minor of Ω given by the first g rows and the first g
columns is non-zero. Let us now fix i ∈ {1, . . . , g}. For any j = 1, . . . , g, ϑ0

is periodic with respect to ej, so ωij = 0. If j = 1, . . . , 2g, then

ωij =
∂iϑ0(vj)

ϑ0(vj)
− ∂iϑ0(0)

ϑ0(0)
=

1

ϑ0(0)

(
∂iϑ0(0)

ecjvij+dj
− ∂iϑ0(0)

)

=
1

ϑ0(0)

(
∂iϑ0(0)e

cjvij+dj

ecjvij+dj
+
ϑ0(0)e

cjzj+djδijcj
ecjvij+dj

− ∂iϑ0(0)

)
= δijcj,

where δij is Kronecker’s delta. Since the cj’s are non-zero, we conclude that
Ω is non-singular, as desired.

The non-degenerate matrix Ω appearing in this proof is called the period

matrix of V . Notice that the columns of the submatrix consisting of the
first g rows of Ω are a basis for the lattice Λ as a Z-module; its entries are
usually referred to as the periods of V , while the remaining entries of Ω are
the quasi-periods of V .
From the point of view of the function theory of V , we have constructed 2g
meromorphic functions

H1 = z1, . . . , Hg = zg, Hg+1 = ∂1 log ϑ0, . . . , H2g = ∂g log ϑ0

which are quasi-periodic with respect to Λ, in the sense that for the basis
λ1, . . . , λ2g of Λ given by the upper half of the matrix Ω the identity

Hi(z + λj) = H(z) + ωij

holds true for all i, j = 1, . . . , 2g. Moreover, we remark that by construction
ϑ0 is a denominator for all the abelian and quasi-periodic functions so far
constructed, in the sense that ϑ0A1, . . . , ϑ0Ag, ϑ0H1, . . . , ϑ0H2g are entire.
By exploiting their periodicity and quasi-periodicity, it is also possible to
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check that the functions A1, . . . , Ag, H1, . . . , H2g are algebraically indepen-
dent over C. In general, proofs for algebraic independence of this kind of
functions, though more manageable than the quest for algebraic independent
numbers, become particularly complicated for the case of several variables.
A satisfactory result for our purposes is [BroKub77, Corollary 7], which also
deals with exponential functions, appearing later on in our discussion.

We finally conclude the exposition of this setting with some remarks of arith-
metic nature. The further assumption that we will make on V is that it be
defined over a number field K, in the sense that V = X(C) for some projec-
tive variety X over K. Since X has dimension g, the function field K(X) of
X coincides with K(R1, . . . , Rg, S) for some rational functions R1, . . . , Rg, S
on X with S algebraic over K(R1, . . . , Rg) and R1, . . . , Rg algebraically in-
dependent over K.
Given any basis ϕ1, . . . , ϕg of Ω1

X/K(X), there is a unique map π : Cg → V
such that π∗ϕi = dzi for all i = 1, . . . , g. It is also possible to choose π in
such a way that it yields an embedding of V →֒ Pm defined over K for some
m ≥ 1. Moreover, we may always recover an entire non-degenerate theta
function ϑ0 with respect to Λ in such a way that this embedding is induced
by ϑ0 as in Lefschetz’s Theorem. For further details, we refer to [BirLan92].
By composing R1, . . . , Rg, S with this embedding, we obtain abelian func-
tions A1, . . . , Ag, B on V such that B is algebraic over K(A1, . . . , Ag) and
the latter field has transcendence degree g. The differential d : OX → Ω1

X/K

induces a map K(X) → Ω1
X/K(X)⊗OX(X) K(X), which in turn implies that

the field K(A1, . . . , Ag, B) is closed under ∂
∂zi

.
We remark that the denominators of A1, . . . , Ag are entire theta functions
on Cg with respect to Λ, since they are homogeneous polynomial expressions
in theta functions of the same type. The product of these denominators is
therefore a theta function with respect to Λ, which we will denote by ϑ.
By similar considerations it is possible to construct quasi-periodic functions
H1, . . . , H2g starting with a basis for H1

dR(V,K) and following the reasoning
proposed before. One eventually deduces that the field generated over K by
A1, . . . , Ag, B and H1, . . . , H2g is closed under taking derivatives. Up to mul-
tiplying ϑ by some theta function, we may assume that ϑ is a denominator
for H1, . . . , H2g as well.
The last result that we will assume is concerned with more quantitative in-
formation. As a piece of notation, for a vector µ ∈ Zg, µ = (µ1, . . . , µg), we
set |µ| =

∑g
i=1 |µi|.
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Lemma 2.11. The functions A1, . . . , Ag and H1, . . . , H2g can be expanded at

the origin in power series of the form

∑

|µ|≥1

bµz
µ1

1 . . . zµg
g ,

where z = (z1, . . . , zg) ∈ Cg, µ = (µ1, . . . , µg) ∈ Zg and µi ≥ 0 for all

i = 1, . . . , g. Furthermore, the coefficients bµ lie in K and enjoy the following

properties:

1. There exists a positive integer c1 such that the maximum modulus of

the conjugates of bµ satisfies ≤ ec1|µ|;

2. there exists a positive integer c2 such that

(3|µ|)!c|µ|2 bµ

is an algebraic integer.

Proof. We refer to [Schn41, §2, Hilf 5, 6].

2.2 The auxiliary function

For the rest of this chapter, we let g ≥ 1 be an integer and V be a complex
Abelian variety of dimension g defined over a number field K satisfying the
assumptions of the previous section. Our aim is to describe how to obtain
transcendence results concerning the periods and the quasi-periods of V , that
is, of the entries of the matrix Ω described in the preceding section. It is ap-
parent that the case g = 1 boils down to the one of elliptic curves, which has
already been treated extensively in the first chapter.
A starting point in the quest for transcendence properties of the period ma-
trix of V is to be found in [Schn41], where Schneider managed to show that no
row of Ω has only algebraic components. After proving Theorem 1.17, Chud-
novsky was able to generalize such result to the case of complex Abelian
varieties, thereby proving that among the entries of V there are at least two
algebraically independent numbers.
Further progress in the subject was made by Vasilev, who succeeded in show-
ing in 1996 the following

Theorem 2.12. Any g + 1 distinct rows of the matrix Ω taken together

contain at least two algebraically independent numbers.

40



At present, Vasilev’s contribution is still the sharpest result obtained so far
concerning the algebraic independence of the entries of the period matrix
Ω. We will now expose the proof of Theorem 2.12 proposed by Vasilev in
[Vas96], which will be the main reference for the rest of the chapter.
The core strategy of the proof will follow closely the main techniques that
we exposed in the first chapter, with some major technical complications
due to the presence of several complex variables. We will therefore construct
an auxiliary function vanishing with high multiplicity at several points of
the lattice Λ defining V by means of Siegel’s Lemma. The present section
revolves around the construction of such function and it will finish with a
couple of Lemmas which allowed Vasilev to render Chudnovsky’s argument
independent of known transcendence measures, as it was instead the case for
Theorem 1.17.
In the next section, the final part of the proof, essentially analytic in nature,
will be carried out. The main tools to deal with the case of several complex
variables are not as elementary as the ones appearing in the previous chapter
and they rely on the Bombieri-Lang version of Schwarz’s Lemma. In the last
section we will eventually deal with some applications of Theorem 2.12 for
Γ-values at rational numbers along the lines of the ones proposed in the first
chapter.

We first introduce some notation. The standard coordinates in Cg will be
given by z = (z1, . . . , zg) ∈ Cg. For an integral vector k = (k1, . . . , kg) ∈ Zg,
we set

|k| :=
g∑

j=1

|kj|, ‖k‖ := max
j=1,...,g

|kj|, k · λ :=

g∑

j=1

kjλj, zk = zk11 . . . zkgg .

Let P ∈ C[x1, . . . , xn, y1, . . . , ym] be a polynomial and set for short x =
(x1, . . . , xn), y = (y1, . . . , ym). We will write degP for the degree of P ,
while the notation degx P will refer to the degree of P in x, and similarly for
degy P . The maximum modulus of the coefficients of P , the height of P , will
be denoted as usual by H(P ). The sum of the moduli of the coefficients of
P , the length of P , will be denoted by L(P ).
Given a differentiation operator

∂ =
∂m

∂m1 . . . ∂mg
,

its order will be denoted by |∂| = m = m1 + · · ·+mg. The notation |∂| = 0
signifies that ∂ is the identity operator. For an entire function f : Cg → C,
we write |f |R for the maximum modulus of f in the ball of radius R ≥ 0
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centered at the origin.
By c1, c2, . . . we mean positive constants that only depend on the functions
A1, . . . , Ag, H1, . . . , H2g and ϑ.

We are now ready to begin with the proof of Theorem 2.12. Without loss of
generality, it is not restrictive to consider only the case of the first g+1 rows
of the matrix Ω. By the aforementioned result in [Schn41], at least one of
the numbers ωij for i = 1, . . . , g + 1, j = 1, . . . , 2g is transcendental, say ω.
Arguing by contradiction, let us suppose that the entries of the first g+1 rows
of Ω have transcendence degree strictly less than 2, so they generate a finite
extension of Q(ω). By the primitive element theorem, there is a complex
number χ, integral over the ring Z[ω], such that the field Q(ω, χ) contains
both K and ωij for the above ranges of i and j. Set for short δ := [K : Q]
and fix an integral basis α1, . . . , αδ of the ring of integers of K over Q.
Let us now consider a sufficiently large integer N and define the quantities

D = N6g, R = N3g+1, T = N6g+1.

We may now introduce our auxiliary function.

Proposition 2.13. There exists a constant C(ω) only depending on the ωij’s,

ω, α1, . . . , αδ and χ and there exist numbers Elν(ω) ∈ Z[ω] not all zero such

that the function

Φ(z) := C(ω)D(3T )!cT2
∑

‖l‖≤D

∑

‖ν‖≤D

Elν(ω)H
l1
1 (z) . . . H

lg+1

g+1 (z)A
ν1
1 (z) . . . Aνg

g (z),

where l = (l1, . . . , lg+1) ∈ Z
g+1
≥0 and ν = (ν1, . . . , νg) ∈ Z

g
≥0, satisfies the

conditions

∂Φ(k · λ) = 0 for |∂| ≤ T , ‖k‖ ≤ R.

Furthermore, the Elν(ω)’s, as polynomials in ω, may be chosen to have degree

≤ c3D and length ≤ ec4(T log T+D logR).

In order to prove this Proposition, we intend to interpret the vanishing con-
ditions on Φ as a homogeneous linear system in the Elν ’s so as to apply
Siegel’s Lemma. It is therefore convenient to separately study first the quan-
tities that shall arise as coefficients of this linear system, which is the aim of
the following

Lemma 2.14. For k = (k1, . . . , k2g) ∈ Zg and l, ν as above, define

Fklν(z) := (3T )!cT2

g+1∏

i=1

H li
i (z + k · λ)

g∏

s=1

Aνs
s (z).
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If ∂ is a differential operator of order |∂| ≤ T , then

∂Fklν(0) =
∑

κ

qκ

g+1∏

i=1

2g∏

j=1

ω
κij

ij

where κ = (κij)ij, κij ∈ {0, . . . , D} for all i = 1, . . . , g + 1, j = 1, . . . , 2g,
while qκ is an algebraic integer satisfying

qκ =
δ∑

m=1

qmκαm for some qmκ ∈ Z with |qmκ| ≤ ec5(T log T+D logR).

Proof. By the quasi-periodicity of Hi, we have

H li
i (z + k · λ) =

(
Hi(z) +

2g∑

j=1

kjωij

)li

=
∑

m0+···+m2g=li

(
li

m0; . . . ;m2g

)
Hm0

i (z)

2g∏

j=1

(kjωij)
mj

=
∑

m1+···+m2g≤li

ϕi,m(z)

2g∏

j=1

ω
mj

ij .

Let now κ range through the (g+1)× 2g matrices with non-negative integer
coefficients κij such that for i = 1, . . . , g + 1 we have κi1 + · · · + κi,2g ≤ li.
When taking the product over i = 1, . . . , g + 1 in the above equalities, we
obtain

g+1∏

i=1

H li
i (z + k · λ) =

∑

κ

ψκ(z)

g+1∏

i=1

2g∏

j=1

ω
κij

ij ,

the ψκ’s being suitable sums of products of the H1, . . . , Hg+1 in such a way
that the exponent of Hi does not exceed li. Notice that κij ≤ D, since li ≤ D
for all i = 1, . . . , g + 1. Thus, Lemma 2.11 shows that the coefficients of the
Taylor expansion of Fklν(z) around 0 all lie in the field generated by K and
the ωij’s. More precisely, if we write

∂ =
∂t

∂t1 . . . ∂tg
,

the coefficient in this series corresponding to

zt11 . . . z
tg
g

t1! . . . tg!
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coincides with ∂Fklν(0) and by the previous computations has the form

∂Fklν(0) =
∑

κ

qκ

g+1∏

i=1

2g∏

j=1

ω
κij

ij

for some integers qκ ∈ K. Furthermore, it turns out that qκ is a sum of suit-
able products of the coefficients of the Taylor expansion of H1, . . . , H2g and
A1, . . . , Ag whose total order is ≤ |∂|, by Cauchy’s formula for the product
of series. As a result, by the second part of Lemma 2.11 the term (3T )!cT2 is
a denominator for all such coefficients, so qκ is an algebraic integer. Hence,
we have

qκ =
δ∑

m=1

qmκαm

for some q1κ, . . . , qδκ ∈ Z.
Let us now write

Fklν(z) =
∑

µ∈Zg
≥0

∑

κ

ξκµ

g+1∏

i=1

2g∏

j=1

ω
κij

ij z
µ.

Let F̃klν(z) be the formal power series obtained from Fklν by replacing each
ξκµ with the maximum modulus of its Galois conjugates over Q. The follow-
ing inequalities between formal power series in zµ are intended to summarize
all corresponding inequalities between th moduli of coefficients of the same
order:

F̃klν(z) ≤ (3T )!cT2

g+1∏

i=1


R

2g∑

j=1

ωij +
∑

|µ|≥1

ec5|µ|zµ




D

∑

|µ|≥1

ec5|µ|z
µ




|ν|

≤ (3T )!cT2R
(g+1)D

g+1∏

i=1

(ωi1 + · · ·+ ωi,2g)
D


1 +

∑

|µ|≥1

ec6|µ|zµ


 .

For any κ, let q̃κ denote one of the Galois conjugates of qκ with maximal
modulus. The previous inequalities then show that

|qmκ| ≤ c7|q̃κ| ≤ t1! . . . tg!(3T )!c
T
2R

nDec8T ≤ ec5(T log T+D logR),

which yields the claim. The fact that |qmκ| ≤ c7|q̃κ| is a general fact, which
we prove in the next Lemma for the sake of clarity.
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Lemma 2.15. Let K be a finite Galois extension of Q of degree δ and let

α1, . . . , αδ be an integral basis of K over Q. Let β ∈ K be an algebraic integer

and write

β =
δ∑

i=1

biαi

for some bi ∈ Z. If β̃ is one of the Galois conjugates of β over Q with

maximal modulus, then for all i = 1, . . . , δ we have

|bi| ≤ c|β̃|,

where the constant c > 0 only depends on the choice of an integral basis of

K over Q.

Proof. We follow the proof proposed in [Shid87, Chapter 3, §8, Lemma 12].
Let σ1, . . . , σn be the Galois automorphisms of K over Q. We regard the
equations

σj(β) = b1σj(α1) + · · ·+ bδσj(αδ) for j = 1, . . . , δ

as a linear system in the unknowns b1, . . . , bδ. Let A be the matrix associ-
ated with this linear system, whose determinant therefore coincides with the
square root of the discriminant of K over Q, up to the sign. Let us set for
short β := (σ1(β), . . . , σδ(β)) and b := (b1, . . . , bδ). We plainly have

b = A−1β =
1

detA
A∗β,

where A∗ is the transposed cofactor matrix of A. Let us denote by ‖A∗‖ the
maximum modulus of the entries of A∗, id est, the maximum modulus of all
the (δ − 1)× (δ − 1) minors of A. Then we have

|bi| ≤
δ‖A∗‖
detA

|β̃|,

which yields the statement.

Lemma 2.16. Under the assumptions of Lemma 2.14, there exists a constant

C(ω) depending only on α1, . . . , αδ, ω, χ and on the ωij’s such that

P∂klν(ω, χ) := C(ω)D∂Fklν(0) ∈ Z[ω, χ],

where P∂klν(ω, χ), as a polynomial in ω and χ, satisfies the conditions

degχ P∂klν ≤ c9, degω P∂klν ≤ c10D, L(P∂klν) ≤ ec11(T log T+D logR).
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In this Lemma, we are assuming the usual conventions for the degree in
χ and ω and for the length of elements in Z[ω, χ], which we briefly recall.
Since χ is integral over Z[ω], of course the degree of P∂klν in χ is not well
defined. However, P∂klν has a unique representation as a polynomial in χ
with coefficients in Z[ω] if we admit only the first [Q(ω, χ) : Q(ω)] non-
negative powers of χ, and it is with respect to this representation that we
define degχ P∂klν , degω P∂klν and L(P∂klν). The inequality degχ P∂klν ≤ c9 is
then straightforward, since [Q(ω, χ) : Q(ω)] does not depend on N .

Proof. Let us choose C0(ω) ∈ Z[ω] in such a way that

C0(ω)α1, . . . , C0(ω)αδ, C0(ω)ωij for i = 1, . . . , g + 1, j = 1, . . . , 2g

are polynomials in Z[ω, χ], ad let e′ denote the maximum of their degrees in
ω. Setting C(ω) := C0(ω)

(2g(g+1)+1), we have

P∂klν(ω, χ) := C(ω)D∂Fklν(0) ∈ Z[ω, χ].

Since by Lemma 2.14

∂Fklν(0) =
∑

κ

qκ

g+1∏

i=1

2g∏

j=1

ω
κij

ij

with κij ≤ D, we deduce that

C(ω)1+
∑

i,j κij∂Fklν(0)

admits a representation as a polynomial in ω and χ of degree in ω at most
(2g(g+1)+1)e′D and of degree in χ at most (2g(g+1)+1)δD. Set for short

a := 1 +
∑

i,j

κij.

By Lemma 1.19, it follows that

degω C(ω)
a∂Fklν(0) ≤ (2g2 + 2g+ 1)e′D+ ((2g2 + 2g+ 1)δD− δ+ 1)d ≤ cD

for some absolute constant c > 0. Finally, degω P∂klν is obtained from
degω C(ω)

a∂Fklν(0) by adding a term which plainly grows linearly in D, so
we may conclude that degω P∂klν ≤ c10D, as desired.
The claim on the length of P∂klν can be established in a completely analogous
way by exploiting the estimates on the qmκ’s provided by Lemma 2.14.
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Proposition 2.13 now follows easily. We consider the auxiliary function

Φ(z) := C(ω)D(3T )!cT2
∑

‖l‖≤D

∑

‖ν‖≤D

Elν(ω)H
l1
1 (z) . . . H

lg+1

g+1 (z)A
ν1
1 (z) . . . Aνg

g (z),

with C(ω) given by the previous Lemma. The conditions

∂Φ(k · λ) = 0 for |∂| ≤ T , ‖k‖ ≤ R.

as in the statement are equivalent to a homogeneous linear system in the Elν ,
whose coefficients coincide with the C(ω)DP∂klν ’s introduced in the previous
Lemma. The number of unknowns of this system is D2g+1 = N12g2+6g, while
the one of equations is ≤ c12T

gR2g = c12N
12g2+3g. By the version of Siegel’s

Lemma exposed in [Bro75, Lemma 5.2], it is possible to find a non-zero
solution Elν(ω) ∈ Z[ω] satisfying

degElν ≤ c3D, L(Elν) ≤ ec4(T log T+D logR).

Let us remark that Φ(z) does not vanish identically due to the algebraic
independence of H1, . . . , Hg+1, A1, . . . , Ag.
We will now pursue the idea of bounding from above the number of zeros of
Φ on the period lattice.

Lemma 2.17. If P (x1, . . . , xg) is a non-zero polynomial, then the multiplicity

of the zero of the function P (A1(z), . . . , Ag(z)) at the origin does not exceed

the degree of P .

Proof. By the inverse function Theorem, the function z 7→ (A1(z), . . . , Ag(z))
is invertible in a suitable neighbourhood of the origin, since its Jacobian
is non-singular at the origin. This implies that the order of vanishing of
P (A1(z), . . . , Ag(z)) at the origin does not exceed the one of the function
Cg → C, w 7→ P (w), which is at most the degree of P .

Proposition 2.18. Let us consider a polynomial

P (x, y) ∈ C[x1, . . . , x2g, y1, . . . , yg]

and set d1 := degx P , d2 := degy P . Suppose that the function

F (z) := P (H1(z), . . . , H2g(z), A1(z), . . . , Ag(z))

satisfies the conditions ∂F (k · λ) = 0 for all k, ∂ such that ‖k‖ ≤ d1+1
2

and

|∂| ≤ d2. Then the polynomial P is identically zero.

47



Proof. Let us write P (x, y) =
∑

l Pl(y)x
l for Pl(y) ∈ C[y], l ∈ Z

2g
≥0, ‖l‖ ≤ d1

and set for short Fl(z) := Pl(A1(z), . . . , Ag(z)). By Lemma 2.17, it suffices
to show that for each l we have ∂Fl(0) = 0 whenever |∂| ≤ d2.
We argue by induction on r ranging from 0 to d2. Let us therefore suppose
that ∂Fl(0) = 0 for all l and for |∂| < r. If now |∂| = r, by induction
hypothesis for any function f : Cg → C holomorphic at the origin

∂ (Fl(z)f(z)) |z=0 = (∂Fl(0))f(0).

Since Fl is abelian, if f is more generally holomorphic at k · λ, we have

∂ (Fl(z)f(z)) |z=k·λ = (∂Fl(0))f(k · λ).

Hence, a straightforward computation leads to

0 = ∂F (k · λ) = ∂

(
∑

l

Fl(z)

g+1∏

i=1

H li
i (z)

)∣∣∣∣∣
z=k·λ

=
∑

l

∂Fl(0)

g+1∏

i=1

H li
i (k · λ)

=
∑

l

∂Fl(0)

g+1∏

i=1

(k1ωi1 + · · ·+ k2gωi,2g)
li .

This implies that the polynomial

R(s1, . . . , sg+1) :=
∑

l

(∂Fl(0))s
l

vanishes at each k · τ for ‖k‖ ≤ d1+1
2

and τi := (ωi1, . . . , ωi,2g) ∈ Cg+1 for
i = 1, . . . , g + 1. Since the period matrix is non-degenerate, the ti’s are
a basis for the whole Cg+1. We conclude that R(s) is identically zero by
[Schm80, Chapter 6, §8, Lemma 8A], so ∂lF (0) = 0 for all l, as desired.

Corollary 2.19. The function Φ(z) defined in Proposition 2.13 cannot van-

ish with multiplicity T + 1 at all points k · λ with ‖k‖ ≤ R2.

Proof. If it were so, the previous Proposition would imply that the Elν(ω)’s
all vanish, since D < T and D < R2, in contrast with Proposition 2.13.

As a consequence of this Corollary, we infer the existence of R0 > 0, k0 and
∂0 satisfying the relations

R < ‖k0‖ = R0 + 1 ≤ R2, |∂0| ≤ T

and moreover such that ∂Φ(k ·λ) = 0 for |∂| ≤ T and ‖k‖ ≤ R0, while k0 ·λ is
a zero of multiplicity exactly |∂0|+1 for Φ(z). In particular, ∂0Φ(k0 ·λ) 6= 0,
and we set for short

P (ω, χ) := ∂0Φ(k0 · λ) ∈ Z[ω, χ].
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With the notation of Lemma 2.14, we have

P (ω, χ) = C(ω)D(3T )!
∑

l,ν

Elν(ω)∂0Fk0lν(0)

By exploiting the estimates for degElν and L(Elν) provided by Proposi-
tion 2.13 and the ones for ∂0Fk0lν(0) given in Lemma 2.16, it readily follows
that

degχ P ≤ c9, degω P ≤ c13D, L(P ) ≤ ec14(T log T+D logR).

Notice that these estimates can be checked without reducing the degree in
χ, for Elν ∈ Z[ω].
The next step is to derive an estimate from above for |P (ω, χ)| by taking
advantage of the high number of zeros of Φ(z). This will be achieved via
analytic means, and it will be the object of the next section.

2.3 Analytic part of the proof

We begin our discussion with an elementary Lemma on the order of growth
of the main functions involved in the proof.

Lemma 2.20. Let G(z) be one of the functions 1, A1, . . . , Ag, H1, . . . , Hg+1.

Then ϑG is entire and for any ̺ > 0

|ϑ(z)G(z)|̺ ≤ ec15̺
2

Proof. By definition of theta function, for all j = 1, . . . , 2g we may find
uj1, . . . , ujg, vj ∈ C satisfying

ϑ(z + λj) = ϑ(z) exp(2πi(uj1z1 + · · ·+ ujgzg + vj)).

Let us denote by U the 2g × g complex matrix with entries the uij’s and by
V the vector (v1, . . . , v2g) ∈ C2g. With this notation, for any k ∈ Z2g we have

ϑ(z + k · λ) = ϑ(z) exp
(
2πi( tkUz + V · k)

)
.

Let us now pick z ∈ Cg with |z| ≤ ̺. We may write z = w + k · λ for some
k ∈ Zg and w in the fundamental parallelogram generated by λ1, . . . , λ2g. If
M denotes the maximum of |ϑ| on such parallelogram, we have

|ϑ(z)| = |ϑ(w)| exp
(
Re(2πi tkUz + 2πiV · k)

)
≤M exp

(
|2π tkUz + 2πV · k|

)
.

49



Let L be the minimum modulus of the λj’s, so that ‖k‖ ≤ 1
L
̺. If ‖U‖ denotes

the maximum modulus of the uij’s, then

∣∣tkUz
∣∣ ≤ 2g2‖U‖

L
̺2, |V · k| ≤ 2g‖V ‖̺,

and the claim for G = 1 follows. The remaining cases can be treated analo-
gously, by exploiting the fact that G is either abelian or quasi-periodic.

We now turn to the main analytic result that will enable us to derive a useful
upper bound for the quantity P (ω, χ) introduced in the previous section,
taking advantage of the high number of zeros of the auxiliary function Φ(z).

Proposition 2.21. There exist positive constants c16, c17 and c18, only de-

pending on λ1 . . . , λ2g, such that for any T ≥ 1, ̺ ≥ 1 and ̺1 ≥ c16̺ and any

entire function f : Cg → C satisfying the equation ∂f(k · λ) = 0 for |∂| < T
and ‖k‖ ≤ ̺ the following inequality holds:

|f |̺1 ≤ |f |c17̺1 exp(−c18TR2).

This Proposition stands as a generalization of Schwarz’s Lemma to several
complex variables. While the case of a single variable is essentially based on
the maximum modulus principle, some further refinements, first introduced
by Bombieri and Lang, are needed for this more general setting. We now
expose the proof of Proposition 2.21, following [Mas75b, Lemma 7].
Let f : Cg → C be a holomorphic function and let W be its set of zeros.
For any z ∈ Cg and ̺ ∈ R, ̺ > 0, denote by B(z, ̺) the closed ball of Cg

centred at z of radius ̺. Moreover, we write H for the 2g−2 real dimensional
Hausdorff measure over Cg. We then define the total multiplicity function of
f as

M(z, ̺) :=
(g − 1)!

πg−1̺2g−2
µ (B(z, ̺)) ,

where µ is the measure induced by H on W , in such a way that µ(B(z, ̺)) =
H(B(z, ̺) ∩ W ). This function measures the set of zeros inside B(z, ̺),
normalized with respect to the volume of the (g − 1)-st dimensional sphere.
We advise the reader that this notation for the total multiplicity function is
not standard; we prefer to stick with the symbols just introduced because
the traditional notation risks creating confusion with the rest of the proof of
our main result.
The function ̺ 7→ M(z, ̺) is non-decreasing for any fixed z ∈ Cg, so we may
define

M(z) = lim
̺→0

M(z, ̺).
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As shown in [Bom70, Proposition 3], M(z) is in fact a non-negative integer
equal to the order of vanishing of f at z. M(z, ̺) is the main tool to develop
Schwarz’s Lemma in several variables, as it is apparent from the following:

Lemma 2.22. For any ̺ > 0 we have

|f |̺ ≤ e−
1
4
M(0,̺)|f |24g̺.

Proof. See [Bom70, Proposition 4] and [Mas76, Lemma 18].

To establish Proposition 2.21, it therefore remains to bound M(0, ̺) from
below. First, we may find some σ ≤ 1 independent of ̺ such that the balls
B(k ·λ, s) for ‖k‖ ≤ ̺ are pairwise disjoint. Notice that the independence of
σ from ̺ is granted by the fact that the k · λ’s are points of a lattice in Cg.
Moreover, the hypothesis ̺ ≥ 1 also ensures that B(k · λ, σ) ⊆ B(0, 2̺). We
may then compute

M(0, 2̺) =
(g − 1)!

πg−1(2̺)2g−2
µ (B(0, 2̺)) ≥ (g − 1)!

πg−1(2̺)2g−2

∑

‖k‖≤̺

µ (B(k · λ, σ))

≥
(
σ

2̺

)2g−2 ∑

‖k‖≤̺

M(k · λ) =
(σ
2

)2g−2

T̺2.

This finally establishes Proposition 2.21 by taking c16 = 2, c17 = 48g and
c18 = (σ/2)2g−2.

We are now ready to head towards the conclusion of the proof. We first set
Θ(z) := ϑ(z)(2g+1)D, so that the function

Ψ(z) := Θ(z)Φ(z)

is entire. Since ‖k0‖ = R0 + 1, the point k0 · λ lies in the ball centred at the
origin of radius

√
gc(R0 +1) ≤ c19R0, where c is the maximum modulo of λj

for j = 1, . . . , 2g. It is not restrictive to assume c19 ≥ c18, in such a way that
by Proposition 2.21

|Ψ|c19R0 ≤ |Ψ|c20R0 exp
(
−c18TR2

0

)
.

Let us now observe that by Lemma 2.20 Ψ(z) is a sum of D2g+1 functions of
order of growth 2, each one raised at most to its (2g+1)D-th power. Indeed,
the coefficients Elν(ω) satisfy

|Elν(ω)| ≤ |L(Elν)|max{|ω|, 1}degElν ≤ exp (c21(T log T +D logR +D)) ,
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so the inequality T < DR2 yields that the leading term in |Ψ(z)| is given by
the powers of ϑAi and ϑHj for i = 1, . . . , g, j = 1, . . . , g + 1. Thus,

|Ψ|c20R0 ≤ exp
(
c22DR

2
0

)
.

By combining these two results, we therefore get

|Ψ|c19R0 ≤ exp
(
c22DR

2
0 − c18TR

2
0

)
≤ exp

(
−c23TR2

0

)
.

A similar inequality carries through to ∂0Ψ(k0 · λ). Indeed, by Cauchy’s
formula

∂tΨ(z)

∂zt11 . . . ∂z
tg
g

=
t1! . . . tg!

(2πi)g

∫

γ1

· · ·
∫

γg

Ψ(ζ)

(ζ1 − z1)t1+1 . . . (ζg − zg)tg+1
dζ,

where γi denotes a circle centred at zi of radius ≤ 1 for all i = 1, . . . , g.
Hence, we derive the inequality

|∂0Ψ(k0 · λ)| ≤ T ! exp(−c23TR2
0) ≤ exp(−c24TR2

0).

On the other hand, let us recall that ∂Φ(k0 · λ) = 0 whenever |∂| < |∂0|,
which implies that ∂0Ψ(k0 ·λ) = Θ(k0 ·λ)∂0Φ(k0 ·λ). Since ϑ(0) 6= 0, we have

|Θ(k0 · λ)| =
∣∣ϑ(0)(2g+1)D exp(2πi(2g + 1)D(tkUλ+ V · k))

∣∣ ≥ exp(c25DR
2
0).

All in all, we derive the following upper bound for |P (ω, χ)|:

|P (ω, χ)| = |∂0Ψ(k0 · λ)|
|Θ(k0 · λ)|

≤ exp
(
c25DR

2
0 − c24TR

2
0

)

≤ exp
(
−c26TR2

0

)
≤ exp

(
−c26TR2

)
.

By making explicit the dependence on N , we eventually constructed a poly-
nomial expression P (ω, χ) ∈ Z[ω, χ] satisfying

degω P ≤ c13N
6g, L(P ) ≤ exp

(
c14N

6g+1 logN
)
,

0 < |P (ω, χ)| ≤ exp
(
c26N

12g+3
)
.

By taking the norm of P (ω, χ) over Q(ω), we get a polynomial Q(ω) ∈ Z[ω].
In order to gather information about the degree and length of Q, as well
as about |Q(ω)|, we may argue exactly as in the very end of the proof of
Theorem 1.17. It is then readily seen that Q(ω) ∈ Z[ω] satisfies

degQ ≤ c27N
6g, L(Q) ≤ exp

(
c28N

6g+1 logN
)
,

0 < |Q(ω, χ)| ≤ exp
(
−c29N12g+3

)
.
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Summing up, for every N sufficiently large we have constructed a polynomial
Q(ω) ∈ Z[ω] satisfying the above conditions.
Contrary to the previous chapter, it is no longer possible to derive a con-
tradiction by means of transcendence measures. Indeed, although it would
be possible to prove that π is generated by the entries of the period matrix
Ω, the restriction to the first g + 1 rows of Ω prevents us from choosing
ω = π. We therefore need to rely on a classical transcendence criterion due
to Gelfond.

Proposition 2.23. Let us consider two increasing unbounded sequences {an}n
and {bn}n of real numbers for which there exist two constants c, d such that

an+1 ≤ can, bn+1 ≤ dbn

for every n ≥ 0. Let α ∈ C. Suppose that there is a sequence {Pn}n of non-

zero polynomials with integer coefficients such that Pn has degree at most an
and logarithm of the height at most bn, and moreover

|P (ξ)| ≤ e−an((2c+1)an+(c+d+1)bn).

Then Pn(ξ) = 0 for all sufficiently large n. In particular, ξ is algebraic.

Proof. We refer to [Wal74, Chapitre 5].

Since ω is transcendental, this Proposition yields at once the desired con-
tradiction. We remark that the growth conditions on the sequences {an}n
and {bn}n are satisfied, in our setting, thanks to Proposition 2.18. Indeed,
the latter allows us to circumvent the inconvenience appeared in the first
chapter of replacing N by some implicit N0 ≥ N whose modulus could not
be controlled.

2.4 Corollaries

We now derive some consequences of Theorem 2.12, mainly connected with
values of B- and Γ-functions at rational points.
Let us start by considering the curve y2 = 1− xn for some n ≥ 3. As shown
in [Wal79, §5.2g], this curve has genus g = ⌊(n−1)/2⌋ and the period matrix
Ω can be taken as

ωij = αjB

(
k(i)

n
,
1

2

)
for i, h = 1, . . . , 2g,

where α1, . . . , α2g are some algebraic numbers lying in the n-th cyclotomic
field, while k(i) = i if n is odd or if n is even and i ≤ g, while k(i) = i+ 1 if
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n is even and i ≥ g + 1.
It is well known since [Schn41] that every row of the matrix Ω contains a
transcendental number, so that all numbers in the set

S =

{
B

(
k

n
,
1

2

) ∣∣∣∣ k = 1, . . . , n− 1, k 6= n

2

}

are transcendental. By considering other curves it is actually possible to see
that B(a, b) is transcendental for any choice of a, b ∈ Q r Z. By selecting
now g + 1 rows from Ω, Vasilev’s result immediately yields the following:

Corollary 2.24. Any subset of S of ⌊(n + 1)/2⌋ elements contains two al-

gebraically independent numbers.

Let us now recall the classical identities

B

(
a,

1

2

)
= 22a−1 Γ

2(a)

Γ(2a)
, Γ(a)Γ(1− a) =

π

sin(πa)
,

holding for any a ∈ QrZ. For sin(πa) is algebraic whenever a is rational, it
turns out that the numbers S lie in a finite extension of the field generated
over Q by

√
π, Γ

(
1

n

)
, . . . ,Γ

(g
n

)
.

This observation readily yields an algebraic independence result for values

Corollary 2.25. At least two of the numbers

π, Γ

(
1

n

)
, . . . ,Γ

(g
n

)

are algebraically independent.

For instance, applying this Corollary for n = 3 and n = 4 and recalling the
identities

Γ

(
1

3

)
=

1

22/3π1/2
Γ

(
1

6

)
Γ

(
2

3

)
= 21/3

(π
3

)1/2
Γ

(
1

6

)
Γ

(
1

3

)−1

,

one easily deduces the algebraic independence of π from each of the numbers

Γ

(
1

6

)
, Γ

(
1

4

)
, Γ

(
1

3

)
, Γ

(
2

3

)
, Γ

(
3

4

)
, Γ

(
5

6

)
.

We now expose a slightly more sophisticated refinement of this arguments.
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Corollary 2.26. Let n ≥ 3 be an integer and set m = ⌊(n+ 3)/4⌋. Suppose

that l1, . . . , lm are distinct numbers of the set {1, 2, . . . , n− 1} such that

1. lj 6= n− lk for all j, k ∈ {1, . . . ,m};

2. for any s ∈ {1, . . . ,m− 1} there exists a k such that

{2ls}n ∈
{n
2
, lk, n− lk

}
,

where {2ls}n is the smallest non-negative residue of 2ls modulo n.

Then there are at least two algebraically independent numbers among

π, Γ

(
2lm
n

)
, Γ

(
l1
n

)
, . . . , Γ

(
lm
n

)
.

Proof. We first prove the existence of l1, . . . , lm. For l1 it is possible to
choose any number between 1 and n − 1 different from n

2
. Arguing induc-

tively, suppose that for some r ∈ {1, . . . ,m − 1} there are distinct num-
bers l1, . . . , lr ∈ {1, . . . , n− 1} satisfying the conditions in the statement for
j, k ≤ r and s ≤ r − 1. It follows that the cardinality of the set

Mr =
{n
2
, l1, . . . , lr, n− l1, . . . , n− lr

}

is at most 2r + 1 ≤ 2m − 1 < n − 1. As a result, its complement M c
r in

{1, . . . , n − 1} is non-empty. If {2lr}n ∈ Mr, we may define lr+1 to be any
number of Mr. Otherwise, if {2lr}n ∈ M c

r , then we choose lr+1 = {2lr}n or
lr+1 = n − {2lr}n. In this way the numbers l1, . . . , lr are pairwise distinct
and satisfy the two conditions of the statement, thus yielding the existence
of the desired l1, . . . , lm by induction.
Now, the first condition on the li’s implies that n/2, l1, . . . , lm, n−l1, . . . , n−lm
are pairwise distinct. Setting g = ⌊(n− 1)/2⌋, we have 2m > g ≥, hence by
Corollary 2.24 we deduce that at least two numbers in the set

S =

{
B

(
l1
n
,
1

2

)
, . . . , B

(
lm
n
,
1

2

)
, B

(
n− l1
n

,
1

2

)
, . . . , B

(
n− lm
n

,
1

2

)}

are algebraically independent. Observe that for any i = 1, . . . ,m we have

B

(
li
n
,
1

2

)
= 2

2li
n

−1Γ2

(
li
n

)
Γ

(
2li
n

)−1

= 2
2li
n

−1

(
2li
n

− 1

)
. . .

({2li}n
n

+ 1

) {2li}n
n

Γ2

(
li
n

)
Γ

({2li}n
n

)−1
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by exploiting the functional equation zΓ(z) = Γ(z + 1). Furthermore, the
identity Γ(z)Γ(z + 1) = π/ sin(πz) allows us to see that

n

n− 2li
B

(
n− li
n

,
1

2

)
=

sin(2πli/n)

sin2(πli/n)
πΓ2

(
li
n

)
Γ

(
2li
n

)−1

.

By using once again the second property of l1, . . . , lm, we see that the set S
is contained in a finite algebraic extension of the field generated over Q by

π, Γ

(
2lm
n

)
, Γ

(
l1
n

)
, . . . , Γ

(
lm
n

)
,

which establishes the claim.

As an application, by choosing n = 15,m = 4, l1 = 1, l2 = 2, l3 = 4, l4 = 8,
we see for example that among the numbers

π, Γ

(
1

15

)
, Γ

(
2

15

)
, Γ

(
4

15

)
, Γ

(
8

15

)

there are two algebraically independent ones.

Remark 2.27. Theorem 2.12 naturally leads to some questions about pos-
sible improvements in this direction. First, we notice that, without imposing
restrictions to the genus g of the curve, this result is best possible in terms
of the number of rows considered. Indeed, choosing only g rows would not
work for the case g = 1, since for instance the periods of an elliptic curve
with complex multiplication have algebraic ratio.
Another question is related to the possibility of increasing the transcendence
degree of the field generated by periods and quasi-periods. Again, this is not
possible in general, for it would not apply to the one-dimensional case.
It remains an open problem to determine whether these two problems can be
overcome by imposing some conditions on g. It has been shown that the num-
ber of algebraically independent coordinates of periods and quasi-periods of
a simple complex abelian variety of dimension g can be comparatively small
with respect to its dimension even in the case of complex multiplication. For
instance, Shimura in [Shim79] provides an example with g = 2n−1 in which
there are at most n+1 algebraically independent numbers among the entries
of the period matrix. In the same context, see also [Rib80].
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Chapter 3

A result involving exponential

and abelian functions

3.1 Main result

We will now turn to an attempt of exploiting the techniques studied so far
in order to obtain a mixed transcendence result for both the periods of a
complex Abelian variety and their exponentials. Historically, the first re-
sults about transcendental numbers revolved around the exponential func-
tion, which appeared particularly suited for the application of the methods
that we have been investigating until now. We will therefore try to address
the question of whether it is possible to combine the framework of periods of
complex Abelian varieties with the more classical one of the exponential func-
tion in the context of transcendence proofs. In this section, we will obtain
a partial answer to this, so as to discuss some applications in the next section.

Let us consider a complex Abelian variety V satisfying the same assumptions
of the previous chapter. Let Ω be its period matrix, with components ωij for
i, j = 1, . . . , 2g. Let us then fix g non-zero complex numbers ξ1, . . . , ξg and
define the g × 2g matrix E whose i-th row, for i = 1, . . . , g, coincides with

(
eξiωi1 , . . . , eξiωi,2g

)
.

Pick two integers m,n such that 1 ≤ m ≤ 2g and 1 ≤ n ≤ g. Let us choose
m rows of the matrix Ω and n rows of the matrix E, say the rows i1, . . . , in
for 1 ≤ i1, . . . , in ≤ g. Let S be the set made up of the entries of the chosen
rows, together with ξi1 , . . . , ξin . According to [Schn41], each row of Ω cannot
have only algebraic entries, so the field Q(S) has transcendence degree at
least 1 over Q.
The aim of the present chapter is to prove the following
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Theorem 3.1. Suppose that Q(S) has transcendence degree 1 over Q. If

2m + n > 2g, then any transcendence type τ of a transcendental number ω
in Q(S) satisfies

τ ≥ 2 +
2m+ n− 2g

2g + n
.

For the proof, we will apply the same transcendence techniques as the ones
introduced in the previous chapters. In the shape of the auxiliary function
that we will introduce, some exponential functions related to the rows of the
matrix E will appear. The analytic part of the proof remains essentially un-
touched, since these exponential terms have lower order of growth than the
abelian and quasi-periodic functions. However, their presence badly affects
the arithmetic arguments in the proofs of the preceding chapters, since it
tends to increase the type of the final polynomial, thereby weakening the
final measure of transcendence. We will therefore suitably adapt our aux-
iliary function so as to restore a transcendence type bounded away from 2.
After the proof, in the next section we will discuss some applications of The-
orem 3.1.

Let us now start the proof of Theorem 3.1. Without loss of generality, we
may suppose that the chosen rows are the first m of Ω and the first n of E.
Let K be a number field, embedded in C, containing all the coefficients of the
Taylor expansion of H1, . . . , Hm and A1, . . . , Ag around 0, as in Lemma 2.11.
We may assume that K is a Galois extension of Q, up to passing to its normal
closure. Set moreover δ := [K : Q] and let α1, . . . , αδ be an integral basis
for the ring of integers of K. We fix a transcendental number ω ∈ Q(S) and
we suppose that all numbers in S are algebraic over Q(ω). By the primitive
element Theorem, we may find a complex number χ, integral over Z[ω], such
that Q(ω, χ) contains both Q(S) and K. We let N signify a sufficiently large
positive integer and we write c1, c2, . . . for positive constants depending only
on S.
We set for short b = 2m + n − 2g, which is positive by hypothesis, and we
let a be a real number such that

a >
2g + n

2m+ n− 2g

We then choose a real number ε satisfying

0 < ε < min

{
b

2m+ n
,

ab− 2g − n

a(m+ 1) + g(a+ 1)

}
.

For ε in this range of values, it is always possible to find δ > 0 such that

ε < δ < min

{
b− εg

m
,
ab− 2g − n+ ε(a(m+ n− g)− g)

a(2m+ n) +m

}
.
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We define the quantities

r = m+ n,

t = 2g + ε(g + n+m)− δn+ n,

d = t− rε,

d0 = t− r(ε+ 1− δ),

which have been chosen in such a manner that they satisfy





gt+ 2gr = nd0 + (g +m)d,

0 < d0 < d < t < d0 + r,(
2 + 1

a

)
d0 +

1
a
r < t.

We finally set

R = N r, T = N t, D = Nd, D0 = ⌊Nd0 logN⌋.

We are ready to introduce our auxiliary function.

Proposition 3.2. There exists a constant C(ω) only depending on S, ω,

α1, . . . , αδ and χ and there exist numbers Ehlν(ω) ∈ Z[ω] not all zero satis-

fying the following property. Consider the function

Φ(z) := C(N)
∑

‖h‖≤δD0

∑

‖l‖≤δD

∑

‖ν‖≤δD

Ehlν(ω)
n∏

r=1

ehrξrzr

m∏

i=1

H li
i (z)

g∏

s=1

Aνs
s (z),

with

C(N) = C(ω)nT+2gnD0R+2gmD+1(3T )!cT2 ,

c2 as in Lemma 2.11, h = (h1, . . . , hn) ∈ Zn
≥0, l = (l1, . . . , lm) ∈ Zm

≥0 and

ν = (ν1, . . . , νg) ∈ Z
g
≥0. Then Φ satisfies the conditions

∂Φ(k · λ) = 0 for |∂| ≤ T , ‖k‖ ≤ R.

Moreover, the Ehlν(ω)’s, as polynomials in ω, satisfy

t(Ehlν) ≤ c3D0R log(D0R).

For the proof of this Proposition, we rely once again on Siegel’s Lemma. We
first deal with the quantities that will serve as coefficients for a linear system
to which we will apply Siegel’s Lemma.
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Lemma 3.3. For k = (k1, . . . , k2g) ∈ Zg and h, l, ν as above with ‖h‖ ≤ D0

and ‖l‖, ‖ν‖ ≤ D, define

Fkhlν(z) :=
n∏

r=1

ehrξr(zr+(k·λ)r)
m∏

i=1

H li
i (z + k · λ)

g∏

s=1

Aνs
s (z),

and let ∂ be a differential operator of order |∂| ≤ T . Then there is a constant

C(ω) ∈ Z[ω] depending only on S, ω, α1, . . . , αδ and χ such that

P∂khlν(ω, χ) := C(N)∂Fkhlν(0) ∈ Z[ω, χ],

with C(N) defined as in Proposition 3.2, satisfies

t(P∂khlν(ω, χ)) ≤ c4D0R log(D0R).

Proof. As we have seen in Lemma 2.14, we have

m∏

i=1

H li
i (z + k · λ) =

∑

κ

ψκ(z)
m∏

i=1

2g∏

j=1

ω
κij

ij ,

the ψκ’s being suitable sums of products of the H1, . . . , Hm in such a way
that the exponent of Hi does not exceed li. Let us also write

ψ′
κ(z) = ψκ(z)

g∏

s=1

Aνs
s (z),

with Taylor expansion around 0 given by

ψ′
κ(z) =

∑

q

βκ,q
zq11 . . . z

qg
g

q1! . . . qg!
.

for some algebraic integers βκ,q ∈ K. By Lemma 2.14, the components of
βκ,q with respect to the integral basis α1, . . . , αδ have modulus ≤ c5e

T log T .
Furthermore, we have

n∏

r=1

ehrξr(zr+(k·λ)r) =
n∏

r=1

ehrξrzr

n∏

r=1

2g∏

j=1

(
eξrωrj

)hrkj

=
n∏

r=1

2g∏

j=1

(
eξrωrj

)hrkj
∑

p

γp
zp11 . . . z

pg
g

p1! . . . pg!
,
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where p = (p1, . . . , pg) ∈ Z
g
≥0 and γp = 0 if pj 6= 0 for some j = n+ 1, . . . , g,

while γp =
∏n

r=1 h
pr
r ξ

pr
r otherwise. It follows that

n∏

r=1

ehrξrzr

m∏

i=1

H li
i (z + k · λ)

g∏

s=1

Aνs
s (z) =

=

(
∑

p

γp
zp11 . . . z

pg
g

p1! . . . pg!

)(
∑

κ

∑

q

βκ,q

m∏

i=1

2g∏

j=1

ω
κij

ij

zq11 . . . z
qg
g

q1! . . . qg!

)
=

=
∑

p,q

∑

κ

γpβκ,q

m∏

i=1

2g∏

j=1

ω
κij

ij

zp1+q1
1 . . . z

pg+qg
g

p1!q1! . . . pg!qg!
=

=
∑

p,q

∑

κ

γpβκ,q

(
p1 + q1
p1

)
. . .

(
pg + qg
pg

) m∏

i=1

2g∏

j=1

ω
κij

ij

zp1+q1
1 . . . z

pg+qg
g

(p1 + q1)! . . . (pg + qg)!
.

The t-th term in the Taylor expansion of Fkhlν at 0 therefore coincides with

∑

p+q=t

∑

κ

βκ,q

g∏

a=1

(
pa + qa
pa

) n∏

r=1

hprr ξ
pr
r

m∏

i=1

2g∏

j=1

ω
κij

ij

n∏

r=1

2g∏

j=1

(
eξrωrj

)hrkj z
t
1 . . . z

t
g

t1! . . . tg!

This t-th coefficient is nothing but ∂Fkhlν(0) for ∂ = ∂t/∂t1 . . . ∂tg divided by
t1! . . . tg!. First, we need to find a suitable quantity that clears out denomi-
nators. The βκ,q have already been treated in Lemma 2.14, and to force them
into Z[ω, χ] we need to multiply by a factor C(ω)(3T )!cT2 , where C(ω) is a
denominator for α1, . . . , αδ. We may then choose C(ω) in such a way that it
be a denominator also for all the numbers in S. Thus

P∂khlν(ω, χ) = C(ω)nT+2gmD+2gnD0R+1(3T )!cT2 ∂Fkhlν(0) ∈ Z[ω, χ].

In view of Corollary 1.20, we wish to compute the degree in ω and χ and the
height of the above polynomial expression for P∂khlν(ω, χ). First, we remark
that C(ω)(3T )!cT2 βκ,q has bounded degree in ω and by the computations in
Lemma 2.16 logarithm of the height ≤ c6T log T . Moreover,

log

(
g∏

a=1

(
pa + qa
pa

))
≤ log

(
2gT
)
≤ c7T, log

(
n∏

r=1

hprr

)
≤ c8T logD0,

and these terms only contribute with their height, being constant in ω. Fur-
thermore, C(ω)nT

∏n
r=1 ξ

pr
r yields a polynomial expression in Z[ω, χ] with

both degree in ω and χ satisfying ≤ c9T , while logarithm of the height
≤ c10T log T . For the product of the ωij’s we have degree in ω and χ ≤ c11D
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and logarithm of the height ≤ c12D logD, while for the product of the eξrωrj

we get degrees ≤ c13D0R and logarithm of the height ≤ c14D0R log(D0R).
These computations are easily checked by recalling that for a polynomial
Q ∈ Z[x] and any integer s ≥ 0

H(Qs) ≤ s!(degQ)sH(Q)s

and noticing that in our situation the leading term is always the factorial one.
Overall, we conclude that for the above polynomial expression of P∂khlν(ω, χ)
the following inequality holds:

t(P∂khlν(ω, χ)) ≤ c15D0R log(D0R).

The claim is then established by means of Corollary 1.20.

After these technical computations, we are now in the position of proving
Proposition 3.2. We first consider the function

Φ̃(z) := C(N)
∑

‖h‖≤D0

∑

‖l‖≤D

∑

‖ν‖≤D

Ẽhlν(ω, χ)
n∏

r=1

ehrξrzr

m∏

i=1

H li
i (z)

g∏

s=1

Aνs
s (z),

for some Ẽhlν(ω, χ) ∈ Z[ω, χ] not all zero to be chosen in such a way that

∂Φ̃(k · λ) = 0 for |∂| ≤ T and ‖k‖ ≤ R.

We may regard these conditions as a linear system in the Ẽhlν ’s whose coeffi-
cients coincide with the P∂khlν(ω, χ) of Lemma 3.3. Since T gR2g < Dn

0D
g+m,

Siegel’s Lemma 1.6 ensures the existence of the desired Ẽhlν , and in combi-
nation with Lemma 3.3 it also yields

t(Ẽhlν(ω, χ)) ≤ c16D0R log(D0R).

At this point, we may remove χ from the coefficients Ẽhlν(ω, χ) by applying

the same procedure as in the first chapter, that is, by multiplying Φ̃ by all
those functions obtained from Φ̃ by replacing the Ẽhlν(ω, χ) with their Ga-
lois conjugates over Q(ω). This eventually leads to the auxiliary function Φ
described in Proposition 3.2.

As shown in [BroKub77, Corollary 7], the functions A1, . . . , Ag, H1, . . . , Hm

and eξ1z1 , . . . , eξnzn are algebraically independent, whence Φ(z) does not van-
ish identically. As a result, we can find an integer N0 ≥ N such that

∂Φ(k · λ) = 0 for ‖k‖ ≤ N r
0 , |∂| ≤ N t

0,
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but there are k0, ∂0 with ‖k0‖ ≤ (N0 + 1)r, |∂0| < (N0 + 1)t such that

∂Φ(k0 · λ) = 0 for |∂| < |∂0|,
∂0Φ(k0 · λ) 6= 0.

We set for short R0 = (N0+1)r and T0 = (N0+1)t. The argument proposed
in Lemma 3.3 shows that

P (ω, χ) = ∂0Φ(k0 · λ) ∈ Z[ω, χ]

is a non-zero element of Z[ω, χ] of type

t(P (ω, χ)) ≤ c17D0R0 log(D0R0).

The final step consists in estimating |P (ω, χ)| from above. As it has been
customary so far, we are going to achieve this goal by analytic means. The
same tools exploited in the previous chapter can be applied essentially un-
changed. Indeed, the functions eξ1z1 , . . . , eξnzn have a lower order of growth
than the quasi-periodic functions, so they shall not harm the estimates that
were established in Vasilev’s proof of Theorem 2.12.
Let us consider the function

Ψ(z) = ϑ0(z)
(g+m)δDΦ(z),

which is entire, since ϑ0 is a denominator for the abelian and quasi-periodic
functions appearing in the expression of Φ. Since k0 · λ is contained in the
ball centred at the origin of radius ≤ c18R0, by Proposition 2.21 we infer that

|Ψ|c19R0 ≤ |Ψ|c20R0e
−c21T0R2

0 .

The coefficients Ehlν have modulus at most ec22D0R log(D0R) by Lemma 3.3.
The exponential terms eξ1z1 , . . . , eξnzn plainly have order of growth 1, while
Lemma 2.20 implies that ϑ0, ϑ0A1, . . . , ϑ0Ag, ϑ0H1, . . . , ϑ0Hm all have order
of growth ≤ 2. As a result, it turns out that

|Ψ|c20R0 ≤ ec22(D0R0 log(D0R)+DR2
0),

and therefore
|Ψ|c19R0 ≤ e−c23T0R2

0 .

By Cauchy’s estimate, this upper bound remains essentially unaltered for the
derivatives of Ψ, as we have already seen in the previous chapter. Hence

|∂0Ψ|c19R0 ≤ e−c24T0R2
0 .
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Since ϑ0(0) 6= 0, it follows that |ϑ0(k0 · λ)(g+m)δD| ≥ ec25DR2
0 . This finally

yields

|P (ω, χ)| = |∂0Ψ(k0 · λ)|
|ϑ0(k0 · λ)(g+m)δD| ≤ e−c26T0R2

0 .

By taking the norm of P (ω, χ) over Q(ω) as we did in the preceding chapters,
we eventually obtain a polynomial Q with integer coefficients satisfying

0 < |Q(ω)| ≤ e−c27T0R2
0 , t(Q) ≤ c28D0R0 log(D0R0).

Since (D0R0 log(D0R0))
2+ 1

a < T0R
2
0, we conclude that ω has the desired

transcendence type.

3.2 Some applications

Let us now comment on some features of Theorem 3.1. By Proposition 1.4,
almost all transcendental numbers have transcendence type ≤ 2 + ε for any
ε > 0. It should therefore be expected that in almost all cases Theorem 3.1
yields in fact the existence of two algebraically independent numbers in S,
provided 2m + n > 2g. Another reason why it seems likely to turn this
Theorem into the form trdeg(Q(S)/Q) ≥ 2 is that it is possible to see that π
belongs to the field generated by the entries of Ω, by exploiting a version of
Legendre’s relation for complex Abelian varieties. Thus, in case π can actu-
ally be generated by fewer than g + 1 rows of Ω, we deduce the existence of
two algebraically independent numbers among the ones in S when selecting
precisely those rows.
The main problem in deducing that trdeg(Q(S)/Q) ≥ 2 is the fact that we
have not been able to apply Gelfond’s criterion at the end of the proof. In
order to do so, we should find an upper bound for the number of zeros of
the auxiliary function Φ in a ball of radius a power of N , as it had been
done in Vasilev’s proof via Proposition 2.18. Unfortunately, the exponential
terms appearing in the expression for Φ do not allow a clear generalization
of Vasilev’s arguments.
We mention that Theorem 3.1 is already present in [Chu84] in the form
trdeg(Q(S)/Q) ≥ 2 for the case of elliptic curves, thus with g = 1. However,
the proof is only roughly sketched, and there is no reference on how to make
it independent of the final transcendence type. Moreover, other results in
[Chu84] are quoted without any proof, and they appeared in the literature
only much later with complete proofs by other authors. The result by Vasilev
that we exposed in the second chapter is an example of these, as pointed out
in [Gri02]. In view of all this, we prefer to discuss some corollaries and ap-
plications of Theorem 3.1 without assuming Chudnovsky’s stronger result
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claimed in [Chu84]. Anyway, we found no reference in the literature con-
cerning results akin to Theorem 3.1 for the general case of complex Abelian
varieties.

Let us consider the case of elliptic curves for g = 1.

Corollary 3.4. Let E be an elliptic curve over C with algebraic invariants.

Let ω1, ω2 be a pair of fundamental periods for E with η1, η2 their associated

quasi-periods. Choose any non-zero complex number ξ ∈ C. If the numbers

ω1, ω2, ξ, e
ξ, e

ξ
ω1
ω2

are algebraically independent, then any transcendence type τ of one of these

numbers satisfies

τ ≥ 2 +
1

3
.

The same statement holds for the numbers

η1, η2, ξ, e
ξ, e

ξ
ω1
ω2 .

Proof. It is enough to apply Theorem 3.1 to the first or the second row of
the period matrix of E while choosing ξ1 =

ξ
ω1

.

Corollary 3.5. In the notation of Corollary 3.4, there are two algebraically

independent numbers in each of the sets

{
ω1, ω2, log π, π, π

ω1
ω2

}
,
{
η1, η2, log π, π, π

ω1
ω2

}
.

Proof. We apply Corollary 3.4 with ξ = log π and take advantage of the fact
that π is known to have transcendence type ≤ 2+ ε for any ε > 0. For a list
of known transcendence types, we refer to [Wal78].

Corollary 3.6. The statement of Corollary 3.4 applies to each of the set of

numbers {
ω1, ω2, e, e

ω1
ω2

}
,
{
η1, η2, e, e

ω1
ω2

}
.

The case of complex multiplication is not particularly interesting in this
last Corollary. Indeed, under this assumption ω1/ω2 would be an imaginary
quadratic algebraic number, so e and eω1/ω2 would be algebraically indepen-
dent by Lindemann-Weierstraß Theorem.
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Corollary 3.7. Let α 6= 1 be any non-zero algebraic number. Then the

statement of Corollary 3.4 applies to each set of numbers
{
ω1, ω2, logα, α

ω1
ω2

}
,
{
η1, η2, logα, α

ω1
ω2

}
.

To give some concrete examples, we may consider the elliptic curves that we
have already described in the first chapter. Let ̺ = e2πi/3 be a primitive
third root of unity. Then the statement of Corollary 3.4 holds for each set of
numbers

{
Γ

(
1

4

)
, eΓ(

1
4), eiΓ(

1
4)
}
,

{
Γ

(
1

3

)
, eΓ(

1
3), e̺Γ(

1
3)
}
.

Moreover, there are two algebraically independent numbers in both the sets
{
Γ

(
1

4

)
, π, eπ

}
,

{
Γ

(
1

3

)
, π, eπ, e̺π

}
.

Notice that the case of Γ(1
4
), π and eπ is particularly fortunate due to Euler’s

identity eπi = −1. We remark that for the last two sets of numbers there
are way sharper results thanks to a celebrated Theorem by Nesterenko, who
managed to show that the sets of numbers

{
Γ

(
1

4

)
, π, eπ

}
,

{
Γ

(
1

3

)
, eπ, eπ

√
3

}

have transcendence degree 3. Results connected with Nesterenko’s tech-
niques are at present the only ones concerning the algebraic independence
of three numbers, left alone Lindemann-Weierstraß Theorem. Nesterenko’s
arguments make use of Eisenstein series and special values of modular func-
tions; we refer to [Nes96] for more details.

We now pass to study some examples of applications to complex Abelian
varieties. For an integer N ≥ 3, let us consider the curve y2 = 1 − 4xN ,
which has genus ⌊N−1

2
⌋. Let us also write ζ = e

2πi
N . As shown in [Lan66,

Chapter V], the period lattice of the Jacobian variety associated with this
curve has generators given by the vectors

λj =

(
. . . , ζkj

(
1− ζk

)2 1

N
B

(
k

N
,
k

N

)
, . . .

)

for j = 0, . . . , N−1, the components running over k = 1, . . . , ⌊N−1
2

⌋, together
with the vector (

. . . ,
(
1− ζk

) 1

N
B

(
k

N
,
k

N

)
, . . .

)
.
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An analogous expression applies to the quasi-periods, provided we let k run
from ⌊N+1

2
⌋ to N − 1.

One may now apply Theorem 3.1 in order to derive results of algebraic in-
dependence for B-values, for instance by exploiting the fact that for any
a ∈ Q r Z the number B(a, a)B(1 − a, 1 − a) is a non-zero algebraic multi-
ple of π, using computations as the ones in the previous chapter. Let us go
through some examples of these arguments.

Corollary 3.8. For any non-zero complex number ξ, there are two alge-

braically independent numbers among

B

(
1

12
,
1

12

)
, B

(
5

12
,
5

12

)
, π, ξ, eξ, ei

√
3ξ.

Proof. We apply Theorem 3.1 to the complex Abelian variety described above
for N = 12 with the following choices. We choose the rows of the period
matrix whose components are algebraic multiples of

B

(
1

12
,
1

12

)
, B

(
5

12
,
5

12

)
, B

(
7

12
,
7

12

)
, B

(
11

12
,
11

12

)
.

As for the matrix E defined before Theorem 3.1, we choose its fourth row,
and we also pick

ξ4 = ξ

((
1− ζ4

)2 1

12
B

(
4

12
,
4

12

))−1

,

where ζ = e
2πi
12 . It is readily checked that the products

B

(
1

12
,
1

12

)
B

(
11

12
,
11

12

)
, B

(
5

12
,
5

12

)
B

(
7

12
,
7

12

)

are non-zero algebraic multiples of π. Thus, π belongs to the field generated
by S, with S defined as in Theorem 3.1. As a result, trdeg(Q(S)/Q) ≥ 2.
The numbers of S appearing in the matrix E are of the form eξζ

4j
for some

integers j, together with eξ(1−ζ4)−1
. Moreover, ζ4 = ̺, where ̺ = e

2πi
3 , while

(1− ζ4) is a primitive sixth root of unity. Hence, these numbers turn out to
be

eξ, eξ̺, eξ̺
2

, eξ̺
−1/2

.

Since ̺ = (−1 + i
√
3)/2, it follows that the transcendence degree of Q(S)

coincides with the one of the field generated over Q by the numbers in the
statement, which is therefore proved.
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A similar strategy, choosing the third row of the matrix E, allows for example
to prove that there are at least two algebraically independent numbers among

B

(
1

12
,
1

12

)
, B

(
5

12
,
5

12

)
, π, ξ, eξ, eiξ.

By choosing ξ = π2, one deduces for instance the existence of two alge-
braically independent numbers among

B

(
1

12
,
1

12

)
, B

(
5

12
,
5

12

)
, π, eπ

2

, (−1)π.
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