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Abstract

State-of-the-art. The presence of supermassive black holes (SMBHs) at the center of
galaxies has been proved by the most recent observations. The mass of these SMBHs is
found to correlate with a number of properties of the host galaxies. Such relations have
been extensively studied from a theoretical and observational point of view to acquire
clues about the evolution of SMBHs within their hosts. SMBHs are thought to grow
their mass through at least two mechanisms: 1) they are fuelled by the cold gas in the
surroundings falling into the central region because of gravitational forces; 2) they build
a certain amount of mass through BH-BH mergers as a consequence of the merging of
their hosts. The relative role of these two scenarios has not been completely understood
yet. There are predictions based on models and/or hydrodynamic simulations, but they
are necessarily characterized by many input assumptions and related parameters that
can induce strong degeneracies or divergences. A step forward to unveil the evolution
and merger histories of massive black holes will be achieved in the next future thanks to
advances in Gravitational Waves detections and in observations at high redshifts.

This project. In the present thesis project I present a novel semi-empirical method-
ology that avoids the modelling of galaxy and SMBH growth and assembly within dark
matter halos from first principles. The approach here defined starts by assuming the
empirical scaling relations between stellar mass and halo mass (SMHM), that at z < 4
are computed from the equivalence between the cumulative number of galaxies and the
halo mass function. Thanks to this relation it will be possible to convert dark matter
halo assembly history into respective galaxy growth histories. These are characterized by
a total mean mass accretion, ⟨M⋆,tot⟩, and a mean rate of galaxy mergers, ⟨M⋆,merg⟩. By
subtracting the two quantities the average mass acquired through the only star formation
processes is obtained. A similar procedure is applied, for the first time, to black holes
by starting from black hole mass - galaxy properties relations, such as MBH - M⋆ (with
galactic mass) and MBH - σ (with velocity dispersion) relations. They are used to infer,
from the dark matter and then the stellar accretion tracks, the total growth ⟨MBH,tot⟩ and
mean black hole merger contribution ⟨MBH,merg⟩, and finally to extract the black holes
growth via gas accretion through the equation ⟨MBH,tot⟩ - ⟨MBH,merg⟩. This method will
allow to predict in a fast and robust way i) the black hole accretion curves (i.e. ’light
curves’), ii) the amount of the contribution of black hole mergers in the assembly process
across cosmic time.
The methodology introduced adopts as input just a series of N-body simulations and/or
analytic dark matter merger trees and it is designed to work on minimal assumptions.
Some risks still persist and mainly reside in the choices of SMHM and BH-host galax-
ies relations. Also the rate of galaxy/black hole mergers strongly depends on the shape
and redshift dependence of the input relations. About these some valid priors can be
extracted from the low redshift Universe (z ∼ 0), where direct constraints on BH/AGN-
galaxy scaling relations are available. Moreover, precious information can be derived from
the comparison of the mean black hole accretion tracks obtained from the outlined cal-
culation with those extracted from continuity equation models. The latter is a technique



that, from bolometric AGN luminosity functions depending on z and for given mean ra-
diative efficiency and Eddington ratio, allows to evaluate the average growth rate of black
holes. Through this comparison it is ultimately possible to acquire a general understand-
ing of the types of relations that are more efficient in reproducing the evolutionary paths
of SMBHs and the expected contribution of BH − BH mergers in the whole process.
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Chapter 1

Introduction

When astronomers refer to black holes, at least two categories can be distinguished: from
one side there are the so called stellar black holes, with masses reaching few tens times
the mass of the Sun (Fender & Belloni (2012)); to the other side supermassive black
holes (SMBHs) that are characterized by masses up to billions of times the mass of the
Sun and that are the protagonist of this thesis project. Most of the best studied SMBHs
have masses in the range between ≳ 106 M⊙ and few 109−10 M⊙ (Gultekin et al. (2009)).
The population of supermassive black holes may be extended to lower masses, down to
few 105 M⊙ (Peterson et al. (2005)), even though this range is much harder to probe.
From an observational point of view these two types of black holes seem to be separated
by a gap, hence it is probable that there are intrinsic differences between stellar black
holes and SMBHs. The former are found in large numbers throughout galaxies, while
the latter tend to be located at the center of their host galaxies and usually there is only
one SMBH observed per galaxy. Very distant are also the processes which lead to the
formation of these two. For what concerns stellar mass black holes, they are believed to be
the remnants of the collapse of massive stars, with masses ≳ 10 M⊙. Supermassive black
holes instead form a scenario much complex and still not completely understood. There
are various hypothesis that are being investigated through theoretical and observational
points of view. In the fallowing Section I am going to summarize some of the work done
in this direction.

1.1 Formation of SMBHs

Supermassive black holes must have formed from the same material that constitutes
galaxies and the rest of the universe. The most accredited cosmological model is the
so-called ΛCDM model, according to which the mass content of the universe is domi-
nated by a non-baryonic dark matter that does not interact electromagnetically, but only
gravitationally with its environment. The remaining part is represented by the baryonic
matter in the form of diffuse gas or condensed in stars, and its contribution is at most of
15 %. Current cosmological theories attribute the birth and growth of structures in the
universe to gravitational collapse of small perturbations in a quasi-homogeneous universe
dominated by Cold Dark Matter (CDM). In this framework the collapse of structures
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Introduction

proceeds bottom-up on larger and larger scales, meaning that smaller structures, halos
and galaxies (≲ 106 M⊙), appear first and are then incorporated into larger ones at
later times (White & Rees (1978)). The first SMBHs should have formed within these
proto-galaxies and then grown with them.

Among the theoretical scenarios, the most popular one associates the first supermas-
sive black holes with the remnants of the first generation of stars, that formed out of zero
metallicity gas (Madau & Rees (2001)). Indeed from simulations of the collapse of pri-
mordial molecular clouds (Bromm et al. (1999); Bromm et al. (2002); Abel et al. (2000);
Yoshida et al. (2006); Gao et al. (2007)) it is expected that the first generation of stars
contained many ’very massive stars’ (VMSs) with M⋆ > 100 M⊙ (Carr et al. (1984)).
This is probably due to the slow subsonic contraction of the gas cloud, mostly composed
of molecular hydrogen that is a much more inefficient coolant than the atomic line and
dust cooling that takes over when heavy element are present. If these very massive stars
menage to keep their masses until death, they will collapse after short life-time, of some
Myrs. The final fate actually depends on the exact mass of the star. According to that
different outcomes are possible:

i) Low-metallicity stars with masses between ∼ 25 and 140 M⊙ are predicted to form
black holes directly. The mass of the remnant is nearly half of the stellar mass
(Zhang et al. (2008)) and in this case it is probably too light to be dynamically
stable within the center of its host, once stars populate the galaxy. It is more likely
that the formed BH interacts with other stars and begins to wonder within its host;

ii) Between ≈ 140 and 260 M⊙ it is believed to place the domain of pair instability
supernovae. After helium burning, in the central region of stars temperature and
density conditions allow the formation of abundant electron/positron pairs. Hence
internal energy is converted into rest mass of the pairs without contributing much
to the pressure (Barkat et al. (1967); Bond et al. (1984)). When such an instability
occurs, the star enters in a rapid contraction regime until the oxygen and silicon
burning is switched on and may reverse the collapse. These objects go finally
to complete disruption due to nuclear-powered explosions. Stellar cores implode
to a certain maximum temperature, burn fuel explosively and explode leaving no
remnants (e.g. Fryer et al. (2001));

iii) Stars with Main Sequence masses above 260 M⊙ have still another faith. In these
objects, the cores can become so hot that pair instability is reached before the
explosive nuclear burning alts the collapse (Bond et al. (1984)). Hence instead of
producing an explosion the mechanism accelerates the collapse, the nuclear energy
released by pairs is not sufficient to reverse the implosion and the star becomes a
black hole (e.g. Woosley & Weaver (1986)).

According to the scenarios just listed, if a VMS with a mass above 260 M⊙ forms, it
is highly probable that it will lead to the formation of a black hole with a final mass
of the order of ∼ 100 M⊙. However it is still not clear whether many first stars were
born with such high masses and actually some simulations have retrieved much lower
initial estimates of stellar masses, up to few tens of solar mass (e.g. Hosokawa et al.
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1.1 – Formation of SMBHs

(2012)). If this is the case, then it is very hard that first stars have given birth to the
first supermassive black holes.

Other possible paths for the formation of SMBHs with substantial initial masses,
millions of M⊙, involve dynamical instabilities pertaining both the gaseous and stellar
components of proto-galaxies. In them, gas can cool and contracts until the equilibrium
between gravitational and centrifugal forces is reached and this typically happens before
densities required to the formation of the SMBH are achieved. However, gravitational
instabilities may happen and transport mass at the expense of rotational support. At
least a couple of situations may occur at this point. On the one side, if the galactic
disk is globally unstable, a SMBH seed could form as a consequence of a very rapid
accumulation of gas that produces a supermassive star with a mass of the order of ∼
106 M⊙ (e.g. Begelman et al. (2006); Johnson et al. (2012)). Such a gas accumulation
needs to last less than ∼ 2 million years, more or less the nuclear time-scale, in order to
avoid the star exploding as a supernova. Once the huge star has exhausted the hydrogen
reservoir, its core starts to contract leading to the formation of a black hole of a few tens
of M⊙ in the heart of the dying star. Gas continues to fall within it forming a system
(a ’quasi-star’) composed of a black hole that grows accreting the surrounding material
until a maximum black hole accretion luminosity is reached, i.e. the one that equates the
gravitational energy of the gas in-falling envelope. At that point the quasi-star dissolves
leaving a black hole with a mass up to the 10 % of the mass of the quasi-star at the center
of the galaxy. It is how a SMBH seed is formed and begin its life (Begelman (2010); Ball
et al. (2011)). On the other hand, in galaxies just locally unstable (Lodato & Natarajan
(2006)) SMBH seeds can form as a consequence of stellar dynamical instabilities, provided
that gas is only mildly polluted by heavy elements (Omukai et al. (2008); Devecchi &
Volonteri (2009)). Basically stars start to form in the central region creating a dense
stellar cluster in which star-star collisions are common and can produce very massive
stars of ∼ 1000 M⊙ before the explosion of the first supernova. If heavy elements are
still rare, up to about the second generation of stars, a very massive star is destined to
collapse and form a black hole with a mass similar to the progenitor. This is not the case
when heavy elements are more abundant because of the losing mass processes through
strong winds occurring before the collapse into a stellar mass black hole. Hence this path
of SMBH formation is available just in the early universe.

All of these possibilities, summarized in Figure 1.1 from the review of Volonteri (2010),
are not mutually exclusive and actually observations that can probe possible scenarios
are scarce. This is due to the fact that SMBHs in the early universe have relatively
law masses and luminosities (from accretion mechanisms), with consequent limited ca-
pabilities of being detected. In this context much improvements would be achieved in
the gravitational waves filed, since these objects can be primary targets for instruments
operating in frequencies of mHz. At subsequent epochs most of the information about
the initial conditions is lost and that makes things even more complicated. Some clues
about the mechanisms involved could be inferred from the lowest-mass SMBHs that are
possibly nearer to be pristine objects because of the limited growth. Nevertheless, once a
primordial black hole has formed, it then mainly grows its mass from in-falling gas from
the surroundings. This process is accompanied to a release of a big amount of energy,
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Figure 1.1: Scheme with possible supermassive BHs formation paths in high redshift
galaxies.

in the form of radiation, that allows to identify supermassive black holes even at high
redshift. This active phase, occasional and opposite to a dormant phase, is what defines
the so-called Active Galactic Nuclei (AGN). In the next Section I am going to illustrate
how this phenomenon is revealing important aspects about the evolution of supermassive
black holes across cosmic time.

1.2 Evolution of SMBHs

Supermassive black holes are responsible for one of the most energetic phenomena in
the universe, called Active Galactic Nuclei (AGNs). Many objects of this type can be
observed and investigated in the distant universe. When matter falls onto a SMBH (ac-
cretion), it emits intense electromagnetic radiation, covering a wide range of wavelengths,
as a consequence of the release of gravitational energy. The bolometric luminosity, L, is
connected to the mass in-falling rate, Ṁ, through the following equation: L = ϵṀc2,
where ϵ is called the radiative efficiency, i.e. how much gravitational energy released
is converted into radiation. Typically, for accretion processes characterized by optically
thick disks (Shakura & Sunyaev (1973)), the radiative efficiency value considered is ϵ ∼
0.1. AGN luminosities are huge and can reach up to 1015 L⊙, moreover they may produce
powerful outflow in forms of jets and disk winds. Because of their strong radiation and
kinetic power, active SMBHs assume a key role in the regulation of star formation in
galaxies and are also able to affect their surroundings on galaxy clusters scale, ∼ Mpc
(e.g. Fabian (2012)).
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1.2 – Evolution of SMBHs

As said, AGN represents the mechanism through which a SMBH acquires its mass.
In particular the actual amount of gas that is used for this scope is given by:

Ṁacc = 1 − ϵ

ϵ
· L

c2 , (1.1)

where L, a given bolometric luminosity, can be assigned to the mass of the growing black
hole through the Eddington ratio, λ = L/LEdd, with LEdd expressing the Eddington
luminosity at a certain MBH (units of M⊙). More details will be given in Section 4.1.
According to what just said, it is possible to have access to the growth history of a
supermassive black hole through the study of the cosmological evolution of active galactic
nuclei. The available information one reaches out of an AGN is its luminosity and,
specifically, the main wave range of investigation is the X-ray regime. The SMBH and
its accretion disk are believed to be surrounded by a wider structure, of ≳ 0.1 pc, that
consists of gas and dust and called ’torus’. This latter is usually assumed to have a donut-
like shape and with clouds emitting broad emission lines (velocities of ≳ 1000 kms−1)
inside its hole. This is the so-called broad line region (BLR) as opposite to the narrow
line region (NLR), that is responsible of producing emission lines with velocity widths ≲
1000 kms−1 and located above and below the torus hole.

With reference to the unified scheme of AGNs by Antonucci (1993), what determines
the observational characteristics of an AGN is the viewing angle with respect to the torus.
In the first place it causes significant extinction of light, from optical to ultraviolet, that
is emitted by the accretion disk and the broad line region. Also, it is responsible for
the photoelectric absorption of the X-ray continuum. In fortunate cases, the line-of-
sight toward the SMBH is unblocked by the torus. Thanks to this face-on view one can
observe the broad line region and un-absorbed X-ray continuum. These are the ’type-I’
or unobscured AGNs. On the other hand, when the torus completely block the light-of-
sight, i.e. edge-on view, the broad lines can not be observed in the optical spectra and
X-ray spectrum is almost entirely absorbed and becomes hard, meaning that the flux
related to higher energies is more than what is received at lower energies (Awaki et al.
(1991)). These objects are defined of ’type-II’ or obscured AGNs. Naturally the latter are
more difficult to detect, but may constitute a conspicuous part of the total population.
For such reason, it is preferable to rely on surveys in ’hard’ X-rays, e.g. above 2 keV,
that provide the most efficient and complete way to treat AGNs. Rays of those energy
have strong penetrating power against absorption. The other favorable aspect in the use
of hard X-rays is the minor contamination from stars in the host galaxy with respect to
other wavelengths. In this way it will be possible to reconstruct a clean AGN sample,
even at low luminosities.

1.2.1 X-ray background

Almost isotropic X-ray radiation, observed from all directions of the sky, constitutes the
so-called X-ray background (XRB). It was discovered through the famous experiment
conducted by Giacconi et al. (1962) and, since then, much effort has been employed
in trying to unveil the nature of this cosmic background. It is now established (Ueda
(2015)) that, mainly, it is formed by the superposition of X-ray emission from the whole
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AGN population in the universe. Hence understanding the origin of XRB is equivalent
to revealing the cosmological evolution of AGNs. Actually to determine the redshift
and type of the objects detected, multi-wavelength follow-up observations, in particular
optical spectroscopic ones, are required. Then the most important quantity that allows
to study the cosmological evolution of AGNs is the Luminosity Function (LF), i.e. the
co-moving space number density as a function of bolometric luminosity and redshift. In
order to build reliable statistics, it is of maximum importance to consider an unbiased
AGN sample covering wide redshift and luminosity ranges through the combination of
multiple surveys with different flux limits. The first time the hard X-ray luminosity
function (XLF) of AGNs has been quantitatively determined is in the work of Ueda et al.
(2003), in which authors compiled a sample made of 247 objects detected with HEAO-1,
ASCA and Chandra. The luminosity function has been calculated in the 2-10 keV bands
and in the luminosity range of 1041.5 - 1046.5 erg s−1 as a function of redshift up to z =
3, including both type-I and -II AGNs. The redshift completeness is very high of ∼ 100
%, 97% and 93 % for the above-mentioned missions respectively. The final determination
of the hard XLF, dϕX(LX, z)/dlog10LX (Mpc−3dex−1), has been obtained through an
analysis based on the maximum likelihood method fully corrected for observational biases.
Figure 1.2 from Ueda et al. (2003) represents the resulting hard XLF of Compton-thin
AGNs in five redshift ranges. With Compton-thin AGNs are intended those objects
in which absorption is smaller than log10NH = 24, that corresponds to an opacity for
Compton scattering of ∼ 1. The shapes of the luminosity functions are approximated
as a double power-law function, with different slopes above and below a certain break
luminosity. The evolution in shapes is rather complicated and, according to Ueda et al.
(2003), a model that could describe the results is a luminosity-dependent density evolution
(LDDE) model. Following this latter, the number density of AGNs rapidly increases with
redshift, reaches a peak and then slowly declines towards higher redshift. An interesting
finding is that the z at which the peak is reached increases with AGN luminosity, i.e. more
luminous AGNs are more abundant than ones of lower luminosities at higher redshift.
Such a behaviour is called ’cosmic downsizing’ or ’anti-hierarchical evolution’ of SMBHs.
It implies the fact that more massive black holes formed at earlier epochs (see Section
6.3). A model of this kind was already introduced to reproduce data about XLF detected
with ROSAT in the soft X-ray band (Miyaji et al. (2000)), even though in that case
it has not been possible to detect the luminosity-dependence of the peak redshift. The
discovery of the SMBH downsizing is something not really expected from a naively point
of view, because it is apparently opposite to the prediction of the structure formation
theory of the universe, based on cold dark matter models, before mentioned (bottom-up
evolution). In scenarios of that type massive dark matter halos have formed more recently
by merging from less massive ones. Some possible origins of the cosmic downsizing will
be given in the following paragraphs. Many other works about X-ray surveys, followed by
multi-wavelength identifications, have been conducted since that first work so to provide
larger and larger samples of AGNs (Barger et al. (2005); Hasinger et al. (2005); Franca
et al. (2005); Silverman et al. (2008); Ebrero et al. (2009); Yencho et al. (2009); Aird
et al. (2010)). One of the largest is furnished by Ueda et al. (2014), that includes 4039
objects detected with MAXI, ASCA, Chandra, XMM-Newton, Swift and ROSAT. The
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1.2 – Evolution of SMBHs

Figure 1.2: X-ray luminosity functions of Compton-thin AGNs at different redshift ranges:
z = 0.015-0.2 (short-dashed black), 0.2-0.4 (medium-dashed red), 0.4-0.8 (long-dashed
blue), 0.8-1.6 (thick solid magenta) and 1.6-3.0 (thin solid cyan). The curves are obtained
as best-fit LDDE models and data points have been assigned to their 1σ statistical errors.
Those are the results of the AGN sample analysis made in Ueda et al. (2003).

plot that illustrates all data luminosities as function of redshift can be visualized in Figure
1.3. With more and more up-to-date luminosity functions it is then possible to better
constrain the growing histories of supermassive black holes. The method to relate LF to
the mass density of SMBHs, at each redshift, will be explained in the next Section.

1.2.2 Growth of SMBHs

As previously mentioned, the growth of a supermassive black hole is determined by mass
accretion processes responsible for the high luminosity of AGNs. The link between the
luminosity and the mass accretion rate of single SMBH is represented by the radiative
efficiency, ϵ. Once the AGN luminosity function is obtained as a function of redshift, this
makes it possible to retrieve the global growth history of SMBHs. This argument was
introduced by Soltan (1982), and states that the total mass density of SMBHs (including
non active ones), ρ(z), can be calculated by integrating the mass-accretion rate density,
ρ̇(z), over cosmic time, i.e.:

ρ(z) =
∫︂ ∞

z
ρ̇(z)dz

dt

dz
. (1.2)

In turn the term ρ̇(z) is related to the LF of AGNs in the following way:

ρ̇(z) = 1 − ϵ̄

ϵ̄c2

∫︂
Ldϕbol(L,z)

dlog10L dlog10L. (1.3)

11



Introduction

Figure 1.3: Redshift versus luminosity plot of the sample collected in Ueda et al. (2014).
Left: sample detected in the hard (>2 keV) band (red: Swift sample; magenta: ASCA
sample; blue: XMM-Newton sample; black: Chandra sample). The open and filled circles
represent X-ray unabsorbed AGNs (with log10NH < 22) and X-ray absorbed AGNs (with
log10NH ≥ 22), respectively. Right: redshift-luminosity plot of the sample detected in the
soft (0.5–2 keV) band (red: ROSAT sample; blue: XMM-Newton sample; black: Chandra
sample).

Here the luminosity considered, L, is a bolometric luminosity, i.e. integrated over all
wavelengths, and ϵ̄ is an averaged radiation efficiency assumed not to depend on z or L
in the above Equation. This formula can be used to determine the value of mass density
at z = 0 and then compare the result to estimates of the same quantity but derived
from independent methods, e.g. exploiting MBH - galaxy properties relations (see Section
1.3). This would give constraints on ϵ̄, that characterizes the accretion modes of AGNs,
e.g. standard disk (Shakura & Sunyaev (1973)) or radiatively inefficient accretion flows
(Ichimaru (1977)).

The bolometric luminosity function of all AGNs, that should include both Compton-
thin and Compton-thick (log10NH > 24) AGNs, can be derived from the XLF assuming
luminosity dependent bolometric correction factors with their scatter, e.g. from Hopkins
et al. (2007a). Adopting that types of corrections, it can be derived the trend of ρ(z)
illustrated in Figure 1.4, from Ueda (2015). The curves have been obtained by assuming
an average radiative efficiency of ϵ̄ = 0.04 and in luminosity ranges of log10L = 43-48
(solid black) and log10 = 46-48 (dashed red). As one expects from downsizing evolution,
less luminous AGNs contribute more significantly to the global density at lower redshift.
The value of ρ(z = 0) is not far from the observed local SMBH mass density, ρobs ≈
106 M⊙Mpc−3 and calculated in Ueda et al. (2014) using the supermassive black hole
- stellar bulge mass, MBH - M⋆,bulge, scaling relation found in Kormendy & Ho (2013).
Another application of this procedure can be the derivation of the mass function of
SMBHs, including non active ones. Indeed, if mergers are neglected, the latter can be
derived directly from the AGN luminosity function (Yu & Tremaine (2002); Marconi et al.
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1.2 – Evolution of SMBHs

Figure 1.4: Evolution of SMBHs mass density derived by using Equation 1.2 with con-
verted (bolometric corrections) X-ray LFs from Ueda et al. (2014) up to redshift z = 5.
The assumed value of the average radiative efficiency is ϵ̄ = 0.04 and the related interval
of luminosities are log10L = 43-48 (solid black curve) and log10L = 46-48 (dashed red
line). Short-dashed blue curve represents the evolution of the co-moving stellar mass
density (Madau & Dickinson (2014)) scaled by a factor of 0.002.

(2004); Shankar et al. (2004)). This implies the introduction of the Eddington ratio, λ,
that is the bolometric luminosity divided by the Eddington luminosity, with the following
expression:

LEdd = 4πGMBHmpc
σT

= 1.25 × 1038
(︄

MBH
M⊙

)︄
erg · s−1 (1.4)

with mp the proton mass, σT the electron Thomson scattering cross-section and MBH the
mass of the central SMBH. The just explained scheme will be the one applied in Shankar
et al. (2009) that leads to the retrieval of mean growing curves of supermassive black
holes at different final masses (see Section 4.1 of Chapter 4) and that will be used as the
model to be compared to the results of my work.

In Figure 1.4 it appears also the curve that delineates the growth history of galaxies
(short-dashed blue one), obtained by the compilation of Madau & Rees (2001). The
stellar mass density has been re-scaled by a factor of 0.002. The overall similarity between
SMBHs and galaxies accretion supports a co-evolutionary scenario (already reported in
Boyle & Terlevich (1998)) and further discussions will be given in the next Sections.
Before going on, some hypothesis related to downsizing evolution of SMBHs are suggested
in the following.
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1.2.3 Downsizing evolution

Downsizing or anti-hierarchical evolution of SMBHs, found from AGN X-ray surveys,
indicates that the actual more massive black holes formed earlier in cosmic time than
less massive ones. Also star formation in galaxies has manifested a similar behaviour.
This was firstly suggested by Cowie et al. (1996), and subsequent observations supported
the results (Kodama et al. (2004); Fontanot et al. (2006)). If the co-evolution of SMBHs
and galaxies goes at almost the same path, then it would mean that both downsizing of
AGNs and star formation have the same origins.

This fact does not necessarily conflict with the well-accepted bottom-up structure for-
mation models in cold dark matter dominated universe. Indeed it is not said that growing
processes characteristic of SMBHs follow the assembly of dark matter halos. Actually, the
observed decrease of the space density of luminous AGNs at z < 2 (Ueda et al. (2014))
would lead to the conclusion that merging of massive dark matter halos does not imply
rapid growth of SMBHs at low redshift. The main fact is that the accretion mechanism
is governed by baryon specific physics rather than pure gravity governing the dynamics
of dark matter halos. This particular phenomenon can be accessed through theoretical
or semi-analytic models and cosmological hydrodynamic simulations (e.g. Marulli et al.
(2008); Fanidakis et al. (2012); Hirschmann et al. (2012b); Hirschmann et al. (2014);
Enoki et al. (2014)), but the actual origins have not yet been defined. A possible cause
can be that the cooling of the gas that fuels the AGN is suppressed in very massive
objects and at low z as a consequence of AGN feedback in ’radio mode’ or ’kinetic mode’
(Fabian (2012)). This, followed by a decrease of star formation due to lack of cold gas,
can lead a quicker decrease of density of luminous AGNs (Enoki et al. (2014)).

Possible explanations could be linked to the difference in mechanisms of AGNs fueling.
Two are at least proposed: major mergers on the one hand and processes such as disk
instabilities and hot-halo accretion (e.g. Marulli et al. (2008); Fanidakis et al. (2012)) to
the other. Such a picture goes in line with results on AGN morphologies, i.e. many of
them are disk-dominated galaxies (e.g. Kiuchi et al. (2006); Georgakakis et al. (2009)).
However, some of the models over-predict the space density of AGNs of low luminosities
compared to observations at z > 1-2 (Miyaji et al. (2015)). Actually some physical
mechanisms may be still not clear and some observational biases can be on act.

Now that basic information on the histories of SMBHs has been acquired, in the
following I will summarize other methodologies to investigate central massive black holes,
i.e. how to infer their mass (locally) and which types of relations this seems to establish
with the host galaxy properties.

1.3 SMBHs and host galaxies
In the previous Section I have discussed about possible studies that can be conducted in
order to understand the formation and evolution of supermassive black holes. There could
be many other ways available to explore these issues, in there I just limit the attention on
one of the most common, that could give us general ideas on what happens for growing
black holes and how to observe it. At this point the final result of all of the more or less
defined processes is the presence of a supermassive black hole at the center of most of
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galaxies. Once a SMBH has practically ended its growth it becomes no more visible, or
at least in a direct way. Below I am going to give short list on the principal methods that
allow to get mass measurements of supermassive black holes that are in their dormant or
active phase.

1.3.1 Detection of SMBHs

Basically all massive black hole mass measurements rely on the gravitational effects it
exerts in its surroundings. A SMBH at the center of a galaxy causes gas and stars to
move on orbits that mainly follow the same Kepler’s laws of planets around the central
stars. If random motions are limited, then the mass that can be calculated within a
certain radius r is given by:

M(r) = f
V2r
G

, (1.5)

where V is the rotation velocity, G is the gravitational constant and f a factor that
accounts for the geometry. If one measures the velocity as a function of distance from
the center it is possible to calculate the mass of the SMBH, i.e. the larger is the mass,
the faster would be the gas and stellar velocities. Many different techniques have been
employed in order to measure, or at least estimate, the masses of SMBHs in nearby and
also distant galaxies (when possible). Here below a probably not exhaustive list of them:

• Stellar dynamical measurements are typically conducted for quiescent SMBHs, so
to avoid contamination from the light of active galactic nuclei.
The case of the Milky Way is a special one because the proper motions of single
stars in the proximity of the Galactic Center have been monitored for many years.
Their orbits almost exactly trace the Keplerian potential generated by a dark object
of a mass MBH,MW ≈ 4 × 106 M⊙ (e.g. Schodel et al. (2003); Ghez et al. (2003)).
For all other galaxies one should relay on integrated stellar dynamics, since single
stars can not be resolved. In these situations the whole potential of the galaxy is
modeled so to extract the signature of a central supermassive object from spectra
of the central nucleus. A SMBH makes stars to move faster than they would in its
absence. Since stars are actually affected only by gravitational forces, these meth-
ods are the most direct ones, even though may be subjected to systematic errors
related to uncertainties in modeling the galaxy, e.g. anisotropy, stellar population
mass-to-light ratios, triaxiality, inclusion of the dark matter halo and so on (see
Gebhardt et al. (2011)). These could cause a factor of ∼ 2 of uncertainty in the
mass measurements.

• Along with stellar dynamical techniques, there are gas dynamical measurements
(Barth et al. (2001)) that, instead, are more suitable for low-luminous AGNs because
they are made from the motion of ionized gas. Also for these techniques there could
be many sources of uncertainty: the motion of gas is affected by pressure, including
inflows and outflows, and the observed velocity can differ from the true nearly-
circular velocity that probes just the SMBH gravitational potential.

• Another technique employs water masers that often form in the accretion disks of
active galactic nuclei. Molecules that are on their higher energy state decay on the
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lower state by emitting a photon corresponding to the energy of transition, typically
at radio wavelengths. By taking measures of rotation of water masers, it is possible
to achieve estimates of SMBH with good accuracy (Kuo et al. (2010)), since they
consent to probe small scales (sub-light-year) that correspond to regions dominated
by the black hole potential. This technique hence is by itself powerful and accurate
but water masers are not easily detected.

• In active galactic nuclei that emits broad emission lines, originated in the vicinity of
the black hole, it would be possible to estimate the mass from the average velocity
of the gas and the radius of emitting region that probably is under the effect of
the SMBH gravitational potential. To retrieve V(r) curves, a common technique is
reverberation-mapping (Peterson (1993)), that uses the time delay in the response
of spectral lines to the variation of the continuum. Since the speed of light is
known, the size r of the emitting region can be estimated. Then the rotation speed
V is evaluated from the width of emission lines, assuming the broadening is due
to Doppler shift. Main uncertainties are related to whether inflows or outflows
contaminate measurements and in the estimation of the geometrical factor f .

• In case of distant AGNs and quasars none of these techniques can be applied and
one has to rely on secondary indicators. Most common techniques are based on an
empirical relationship between the size of the broad-line region and the luminosity
of the continuum in optical/UV. This scaling relation has been itself found through
reverberation mapping and naturally uncertainties of the ’primary’ method are
summed to uncertainties of the secondary. Hence many errors can affect SMBH
mass estimates for distant objects (Shen & Kelly (2012)).

Thanks to the methods just introduced it has been possible to get more and more es-
timates of supermassive black hole masses and start to see if some links exist between
them and other galactic quantities. Indeed this is the case and the principal findings are
summarized in the following.

1.3.2 Scaling relations: hints of co-evolution?

Many works have been trying to calibrate and unveil characteristics of scaling relations
between supermassive black hole masses and host galaxy properties. First discovery of
them has to be attributed to Dressler & Richstone (1988), that used stellar dynamical
method to calculate the SMBH masses at the center of two neighboring galaxies: M31
and M32. They discussed of an upper-limit of ∼ 109 M⊙ for SMBHs in galaxies with the
largest spheroids, based on the ratio MBH/M⋆,bulge, posing the idea of a relation between
them. Later on Kormendy & Richstone (1995) found a linear distribution of MBH -
M⋆,bulge using only six galaxies. Much improvement in galaxy observations was achieved
after the launch of the Hubble Space Telescope (HST) in 1990. In particular, thanks to
HST data, Magorrian et al. (1998) proposed a log-linear relation to fit data relative to
MBH and Mbulge. With continuously increasing sample of objects, many other works have
reported near-linear MBH - M⋆,bulge (or using bulge luminosity Lbulge) relation (e.g. Ho
(1999); Haring & Rix (2004); Ferrarese & Ford (2005); Graham & Driver (2007); Gultekin
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et al. (2009); Sani et al. (2011); Kormendy et al. (2011); Kormendy & Ho (2013)), even
though in the last studies (Gultekin et al. (2009); Sani et al. (2011); Kormendy et al.
(2011)) authors left out low-mass bulges and/or galaxies from their sample calling them
’pseudo-bulges’.
In the meantime some works reported steeper MBH - M⋆,bulge relations (e.g. Laor (1998);
Wandel (1999); Salucci et al. (2000); Laor (2001)) because of the inclusion of smaller
galaxies in the sample. Actually in Salucci et al. (2000), they hypothesized that LTGs
(spirals) would follow a steeper MBH - M⋆,bulge relation with respect to ellipticals. Graham
(2012), with updating measures of BH masses and distances, observed a break in MBH
- Lbulge plot, i.e. different relations for Sérsic and core-Sérsic spheroids (Section 6.1.2).
In particular it seems that (massive) core-Sérsic galaxies follow a near-linear relation,
while Sérsic (most of which late-type galaxies) a super-quadratic (meaning a log-slope
between 2 and 3) relation. Core-Sérsic galaxies are massive ones, that probably have
undergone major dry (gas poor) mergers and, consequently, have a deficit of light in
their spheroid cores. This can be explained by the fact that the massive BHs from the
merging galaxies make stars depart from the center of the remnant galaxy (Begelman et al.
(1980)). Galaxies with partially depleted cores were discovered by King & Minkowski
(1966) and defined core-Sérsic galaxies described by a core-Sérsic function (Graham et al.
(2003)). On the other hand, galaxies that grow over time through accretion or gas-
rich mergers are likely to have Sérsic light profiles (Sérsic (1963)). Accepting the idea
of co-evolution between the supermassive black hole and the hosting galactic bulge, a
steeper MBH - M⋆,bulge relation would imply the fact that the fractional growth of MBH
is greater than the fractional growth of the host M⋆,bulge in Sérsic galaxies, that have an
evolution characterized by gas-abundant processes. On the other hand an almost linear
MBH - M⋆,bulge relation, that seems to pertain to core-Sérsic galaxies, may reflect their
hierarchical growth through major dry mergers (Graham & Scott (2015)). A scenario of
this type is in agreement with studies that have observed a parallelism between the AGN
accretion rate with star formation rate (Diamond-Stanic & Rieke (2012); Seymour et al.
(2012); LaMassa et al. (2013); Drouart et al. (2014)), as well as simulations (Fontanot
et al. (2006); Hopkins & Quataert (2010); Dubois et al. (2012); Bonoli et al. (2013);
Neistein & Netzer (2014)), and open new possibilities of investigation.

Possible MBH - M⋆ relation

By looking at all the above results, the existence of a strong relation between central black
hole mass and its surrounding spheroid mass finds wide consensus among the scientific
community. Another aspect concerns instead the possibility of scaling relations with
global properties of the galaxy, i.e. the total galactic stellar mass, M⋆. In Läsker et al.
(2014), authors used a sample made mostly of ETG galaxies and with some LTGs as well
(total 35 objects) and inferred a relation between MBH and the total galaxy luminosity
equally strong as the one with the spheroid component. Moreover, the detection of many
bulge-less galaxies with central black holes has accredited this hypothesis of a relation
between MBH and the total galaxy mass, M⋆ (Reines et al. (2011); Secrest et al. (2012);
Schramm et al. (2013); Simmons et al. (2013); Satyapal et al. (2014)). Actually it is still
not clear whether a MBH - M⋆ relation exists for every type of galaxies, i.e. valid for both
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ETGs and LTGs, or if there is a morphological dependence similar to MBH - M⋆,bulge
(see also Savorgnan & Graham (2016a)). What is true for sure is that if one could rely
on a relation with the total mass of the galaxies, it would be much easier to evaluate
supermassive black hole masses and even for distant unresolved galaxies.

Black hole mass and stellar velocity dispersion

A self-gravitating system obeys to the virial theorem, according to which: M ∝ rV2
rms/G,

essentially the Equation 1.5 seen before to determine the SMBH mass. The term V2
rms

for galaxies is the observed root-mean-square velocity, typically a combination of two ve-
locity components: the stellar velocity dispersion, σ⋆, and the rotational velocity, Vrot. It
is thus given by

√︂
σ2

⋆ + V2
rot/sin(i)2 (Busarello et al. (1992); Ferrarese & Merritt (2000))

with Vrot being the line-of-sight mean rotational velocity and i the inclination angle of
the galaxy. The mass M in the Equation 1.5 is the mass enclosed in a radius r and G
is the gravitational constant. In bulges of galaxies, usually the velocity is dominated by
random motions, while in disks it is the rotational component the most important one.
The virial theorem is a fundamental tool for many applications, and in here specifically it
connects the velocity dispersion and the mass enclosed within a certain radius in galactic
bulges. In combination with observed relations between black hole mass and host bulge
stellar mass, Equation 1.5 constituted an incentive to question about an eventual MBH -
σ⋆ relation. Indeed the very first discoveries have to be attributed to Ferrarese & Merritt
(2000) and Gebhardt et al. (2000), that suggested this could be a fundamental relation
between the central black hole and its host galaxy. The reason of such a supposition is
because the correlation seemed to have minimal intrinsic scatter, consistent with zero.
The problem was that the slopes reported in the two above-cited works were different, i.e.
implying two different feedback mechanisms. According to Ferrarese & Merritt (2000),
MBH ∝ σ4.80±0.50

⋆ , supporting a energy-balancing feedback model (Silk & Rees (1998));
on the other hand in Gebhardt et al. (2000) the predicted relation was of the type MBH
∝ σ3.75±0.30

⋆ , for which the feedback model of Fabian (1999) based on momentum con-
servation was more suitable. The discrepancy of the two was found (Merritt & Ferrarese
(2001)) to be due to the different symmetrical and non-symmetrical regressions employed
by the two studies respectively. This has pointed out the dependence of inferred scaling-
relations on the regression procedure adopted.
Another important aspect to consider is the type of galaxies of which the sample is made.
For example in Graham & Scott (2013) authors noted that there could be a substructure
in the MBH - σ⋆ relation linked to the presence or not of the bar, e.g. barred galaxies
followed a shallower slope scaling relation with respect to the non barred ones. In ad-
dition to that, in the work of McConnell & Ma (2013) they found that in the MBH -
σ⋆ diagram, towards the high-mass end, some galaxies have offset MBH (upturn) with
respect to the best fit relation. These where presumably the massive core-Sérsic galaxies
gone through multiple dry mergers. During a major merger indeed it is supposed that the
mass growth of the galaxy and the black hole is not accompanied to a respective growth
in the stellar velocity dispersion (Burkert & Silk (2001); Ciotti & van Albada (2001);
King (2010); Oser et al. (2010); King & Nealon (2019)). Another problem has been more
recently pointed out by Shankar et al. (2016), that have observed an offset in the M⋆ - σ⋆
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diagram between the sample of ellipticals with dynamically measured black hole masses
and a large sample of active galaxies from the Sloan Digital Sky Survey (SDSS), for which
the sphere of influence is not resolved yet. Authors suggested that the black hole mass
scaling relations inferred by using sample of objects with dynamical MBH measurements
are selection biased. This fact has not been addressed since then, and deeper analysis
should be conducted to confirm the validity of the bias.

Despite all the issues connected to scaling relations, their study is by itself important
to understand the relative growth of galaxy properties and black hole mass. It would
give notable improvement in all those researches about black-hole and galaxy evolution-
ary interplay, e.g. the regulation of material (gas and dust) in the galaxy through AGN
feedback, the relation between BH growth and star formation rate in the galaxy, where
star formation is connected with the availability of gas and also about the galaxy mor-
phology (e.g. Marconi et al. (2008); Volonteri & Ciotti (2013); Heckman & Best (2014);
Calvi et al. (2018); King (2019)). In addition to that scaling relations allow to estimate
BH masses in galaxies where the sphere of influence of the black hole is not resolvable
due to technological limitations. They are also used to calibrate secondary BH mass mea-
surements, e.g. constraining virial f -factors for reverberation mapping methods (Bennert
et al. (2011); Bentz & Katz (2015); Yu et al. (2019)). SMBH - galaxy correlations, defined
in the local universe at z ∼ 0, can also work as a reference point for studies attempting
to determine the evolution of these relations at high redshift (e.g. Bennert et al. (2011);
Sexton et al. (2019)). Finally they are very useful to calculate the black hole mass func-
tion of the (local) universe (e.g. Driver et al. (2007)), to estimate supermassive black
hole merger timescales (Biava et al. (2019)) and to constrain the SMBH merger rates
(e.g. Chen et al. (2019)).

1.4 This thesis

The purpose of this thesis project is to connect the parts described so far, i.e. the
formation and evolution of supermassive black holes and their relations with hosting
galaxies, through the employment of a new Discrete statistical sEmi-empiriCal mODEl,
Decode. In brief such a model allows to generate mean mass assembly histories of
galaxies within dark matter halos, and in particular the mean merger contribution to the
growth of galaxies of given final masses. Trough sets of re-parametrizations involving
scaling relations it is possible to convert M⋆ −→ MBH and obtain mean accretion paths
for SMBHs assigned to each galaxy. At that point growing curves of supermassive black
holes, appropriately subtracted by contribution of mergers, can be compared to models
of SMBH accretion that are obtained from methodologies as described in Section 1.2.2,
hence with the evaluation of AGN luminosity functions. Below I report the content
summary of each Chapter.

• Chapter 2 describes all the details of Decode implementation, its particularities
and in which ways it can be defined a semi-empirical and statistical model.

• Chapter 3 presents first outcomes I derive from the running of the code. In par-
ticular I will explain what is expected from it and its dependence on the input
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stellar mass function (SMF), that makes possible the passage from dark matter
halo growth to the one of the stellar (galactic) component.

• Chapter 4 refers to the first and most direct application of Decode outputs to
the study of the SMBH growth: the employing of MBH - M⋆ scaling relation. By
assuming particular shapes for it, I am going to show which one would be more
suitable for the description of MBH evolutionary tracks in comparison to the accre-
tion model of reference throughout this work, the one described in Shankar et al.
(2009).

• Chapter 5 is instead devoted to a second application of Decode outputs that
involves the probably most fundamental scaling relation, MBH - σ relation. Velocity
dispersions in this context can be only evaluated starting from M⋆, hence it is a less
direct process with respect to the one of previous Chapter. Nevertheless it would
be interesting to make comments about it so to have a more comprehensive view of
the available roads opened by the model.

• Chapter 6 assembles the results obtained in precedent steps. In particular it sum-
marizes the most interesting findings, the sources of uncertainties related to them,
some alternative views to the ones adopted so far and the general idea behind the
use of semi-empirical models of this type.

• Chapter 7 finally depicts some proposals for future applications. In order to im-
prove evaluations made up in this project, two are the necessary fields of operation:
increasing observations and looking at other models and simulations.
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Chapter 2

Description of DECODE

The present Chapter is devoted to the presentation of Decode, a new Discrete statistical
sEmi-empiriCal mODEl designed by the research group of the University of Southampton
(Fu et al. (in preparation), personal communication). The principal purpose of the model
is to provide a flexible, fast and accurate tool to predict, in a full cosmological context,
the average galaxy assembly and merger histories.

In what follows I will give a detailed description of how the code has been implemented,
along with the consequent advantages and disadvantages related to it. Before addressing
the characteristics and specifics of Decode, I think it is important to familiarize with
the concept of semi-empirical model (SEM).

2.1 Semi-empirical models

The study of the formation and evolution of galaxies in the universe is a field subjected
to large debate, in particular about what concerns the relative roles of star formation
and mergers in regulating their growth. In the last fifteen years, many works in literature
have been conducted to this purpose, e.g. see Guo & White (2008); Oser et al. (2010);
Cattaneo, A. et al. (2011); Lackner et al. (2012); Lee & Yi (2013); Pillepich et al. (2014);
Rodriguez-Gomez et al. (2016); Qu et al. (2016); Clauwens et al. (2018); Pillepich et al.
(2018b); Davison et al. (2020). The general idea is that galaxies are present at the
center of Dark Matter (DM) halos and that they grow their mass either via mergers with
other DM halos or through smooth mass accretion from their environments (Murali et al.
(2002); Conselice & Arnold (2009); Genel et al. (2010) and L´Huillier, B. et al. (2012)).
In order to have a clearer view of what is the process that dominates over cosmic epochs,
it is first of all necessary to correctly predict the merger histories of the host DM halos
in the context of a ΛCDM Universe; secondly it is important to well connect DM halos
merger trees to galaxies and obtain their assembly histories.

Among the different techniques that have been proposed so far to get through this
problem, we can cite hydrodynamic simulations (e.g. Vogelsberger et al. (2014); Schaye
et al. (2014); Pillepich et al. (2018a)), and semi-analytic models, SAMs, (see Baugh
(2006); Monaco et al. (2007); Hirschmann et al. (2012a); Shankar et al. (2012); Lacey
et al. (2016a); Henriques et al. (2019); Jiang et al. (2021)). In both situations the
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growth of galaxy follows from first principles that model the physical processes regulating
baryon cooling, star formation and feedback mechanisms. The main problem related to
such approaches is the fact that they are characterized by many input assumptions and
related free parameters. Such large parametrization can induce strong degeneracies or
divergences (e.g. Lapi & Cavaliere (2011); González et al. (2011)). Moreover there is still
the issue connected to the relative roles of mergers and star formation in the accretion. It
has been noted that quite different merger histories can lead to similar morphologies and
kinematic properties in the remnant galaxies (e.g. Bournaud, F. et al. (2007)). Finally
there is often the possibility that different hierarchical models return divergent balances
between the quantity of stellar mass that is formed in-situ (star formation by cold gas)
and the fraction of mass gained ex-situ, via mergers.

A way out in this context is represented by recently-developed semi-empirical models
(SEMs) that avoid to evolve galaxies from first principles. Important steps in this di-
rection have been performed in e.g. Hopkins et al. (2009a); Cattaneo, A. et al. (2011);
Zavala et al. (2012); Shankar et al. (2014); Moster et al. (2018); Grylls et al. (2019). The
approach adopted by SEMs is based on abundance matching techniques. They consist
in the generation of a monotonic stellar mass - halo mass (SMHM) relation from the
equivalence between the cumulative number densities of measured stellar mass functions
(SMF) and DM halos mass functions (HMF) (e.g. Kravtsov et al. (2004); Vale & Ostriker
(2004); Shankar et al. (2006); Moster et al. (2010); Behroozi et al. (2010)). Essentially
galaxies are assigned to each halo at any epoch along dark matter merger trees via these
relations, thus giving the possibility to track the full stellar mass evolution in, for ex-
ample, the main progenitor branch of the merger tree. It has to be noted that, despite
their flexibility, traditional semi-empirical models can suffer from volume limitation ef-
fects because of finite number of merger trees and/or dark matter halos. This becomes
particularly relevant at high masses. In the context of the thesis project I will show how
SMHM relation is computed and included in the model. I anticipate that the calculation
follows from the formalism put forward in Aversa et al. (2015).

The predecessor of Decode is the STatistical sEmi-Empirical modeL, Steel, pre-
sented in Grylls et al. (2019) and Grylls et al. (2020). In this model the authors adopt
the following method: they trace back in time the mean accretion histories of small bins
in halo mass, weighted by the HMF; then, employing a mean SMHM relation, they can
convert mean DM halo assembly histories into total mean galaxy accretion tracks and
mean cumulative mass accretion by merging satellites. Star formation histories are then
obtained subtracting the contribution of mergers to the total galaxy growth, and the
results can be compared to independent observational data.
The method just outlined provides a powerful tool to investigate mean evolutionary
trends, but it is significantly sensitive to the SMHM relation of input. Even small dif-
ferences in the relation may bring to relevant discrepancies in the final evaluation of
the galaxy merger rates. In this work I am going to analyse how a distinct choice of
the SMHM relation impacts in the indirect derivation of growing curves of supermassive
black halos hosted by galaxies.
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2.2 DECODE implementation

As already mentioned, Decode is a model that allows to investigate the evolution of
galaxies within DM halos avoiding the adoption of a full SAM, hydrodynamic simulation
or a complex cosmological SEM. It basically consists in the following few and simple
steps:

• Generation of the central DM halo population;

• Generation of the DM subhalo population;

• Evolution of subhalos after infall;

• Generation of the galaxy population (baryonic component).

In fact, the last point can be directly achieved as an output of the program, or, as in the
case of my thesis project, it can be considered independently and performed in a second
moment. Hence, the main potentiality of Decode resides in the creation of the mean
merger histories of parent DM halos.

Figure 2.1, taken from Fu et al. (in preparation, p.c.), summarizes all the passages
implemented in the code. Generally speaking, the program produces large catalogues of
parent halos, starting from a HMF of input, and assigns to each of them a mean halo
growth track based on N-body numerical simulations and analytic models. In this work
the reference model for the global accretion of DM halos is the one described by van den
Bosch et al. (2014). The population of subhalos linked to each halo is again created
through sub-halo mass functions, SHMFs, that rely on accurate N-body simulations, as
explained in Jiang & van den Bosch (2016).

The reason why Decode can be described as discrete is related to the fact that it
is built object-by-object, similarly to an N-body simulation, but, differently from the
latter, it is almost entirely independent from volume and/or mass resolution limitations.
Actually this should not be misinterpreted: Decode does not produce single and spe-
cific evolutionary track for each object. The real information still consists in the mean
halo/galaxy growth histories, as in Steel (Grylls et al. (2019)) above-mentioned. The
difference is that in the case of Steel the model relies on continuous statistical weights,
while in Decode we have stochastic samples of halos that on average evolve in mass as
predicted by Steel.

Another aspect to be noted is the fact that, up to now, we never speak about the
cosmological model to be used. Indeed the results are not strictly sensitive to the choice of
the cosmological parameters because merger trees are built through the SHMF, that has
been demonstrated not to differ much when studied in different simulations (e.g. Jiang
& van den Bosch (2016); Green et al. (2021)). Nevertheless throughout this work I adopt
the ΛCDM cosmological model with parameters from Planck Collaboration et al. (2020):
(Ωm, ΩΛ, Ωb, h, nS , σ8) = (0.31, 0.69, 0.049, 0.68, 0.97, 0.81).

In what follows I will describe in more details the features of each passage implemented
in Decode.
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Figure 2.1: Schematic structure of Decode for the part involving dark matter. Panel A
shows the functions used to create the parent halos catalogue. The plot on the upper left
corner displays the HMF from which the masses of dark matter halos are generated. Below
there are the curves of mean accretion history assigned to each halo through analytic fit.
Panel B represents functions employed to create the population of sub-halos assigned to
each halo. They are generated from the sub-halo mass functions, SHMFs, distinguished
for orders of the sub-halos. I am going to focus on sub-halos just up to 1st order. As
final step, redshift of infall is assigned through analytic fits that depend on the order and
mass of the sub-halo (bottom right corner).
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2.2.1 Catalogue of parent halos

Parent dark matter halos are extracted from an HMF given as input in the code. The
choice for this work is the one that has been defined by Tinker et al. (2008). This density
distribution function is valid just for central halos.

To extract halo masses the HMF is multiplied by a given input cosmological volume,
arbitrarily chosen. A mass range is defined and some care should be put in this step to
well calibrate the cosmological volume and the highest mass to be considered. Objects
at the high mass end are more rare than the smaller ones and if not a sufficiently large
volume is given, we end up with a very poor sample of high mass objects and need to
run the program many times in order to have a good statistics.

Figure 2.2 presents an example of how to insert the parameters that are used for the
creation of the parent sample. For this project, as I am going to specify in Chapter 3,
the value of parameters chosen are: cube_side = 150, length of the side of the cubic
cosmological volume in units of Mpc/h, and masses within M0_host_min = 11 and M0
_host_min = 15 in units of log10(M/M⊙). This method is extremely rapid and allows to
create very large samples of objects at z = 0.

For what concerns the average mass accretion history, this is obtained for each central
halo using the methodology described in van den Bosch et al. (2014). It has to be specified
that Decode does not give as direct output the total accretion tracks. These are included
during the generation of the merger trees for each parent halo of a certain final mass in
the way that will be clarified in the next Sections. The computation of the growth is,
in fact, not performed for the single halo: the same mean history is assigned to all the
DM halos falling within given mass bins of size ∆log10Mbin = 0.5 dex. For the purpose
of the project presented here, having mean accretion curves is instead necessary. Hence
the same function will be recalled again (see next Chapter) to reconstruct total mean
accretion curves, this time for single values of halo final masses.

2.2.2 Population of subhalos

On average the number of subhalos of a given mass that fall onto the parent halo at
a certain time is defined by a subhalo mass function (SHMF). In Decode the adopted
function is the time-independent one described in Jiang & van den Bosch (2014) and Jiang
& van den Bosch (2016), that is computed by summing the contribution of distribution
functions associated to subhalos of different orders. The order of a subhalo represents
its hierarchical priority, meaning that first-order subhalos are the ones that directly fall
onto the main branch, second-order subhalos are satellites of first-order ones at time of
accretion onto the parent halo and so on. This can be visualized in Panel B of Figure 2.1,
where the matryoshka-like scheme appears clear. In this project I will convert (sub)halo
masses into stellar masses and then into central black hole masses. Subhalos of order
higher than the first will be converted into a black hole of negligible mass when counted
in the merging accretion process. Hence I consider only subhalos of first order.

In general the way to account for all subhalos that have ever fallen onto a parent halo
is to use the cumulative total un-evolved SHMF. Then the SHMFs distinguished by order
are considered (see again Panel B of Figure 2.1): for first-order subhalos the function
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Figure 2.2: Example of input parameter file.

used can be found in Jiang & van den Bosch (2016), while for higher-orders subhalos the
prescription is given by Equation (17) in Jiang & van den Bosch (2014). Each subhalo
is at this point assigned with a probability of being of a certain order according to its
mass. This probability is simply calculated from the ratio between first- or higher- order
SHMF and the total SHMF computed in the chosen bin of (sub)halo mass.

2.2.3 Time of infall

The infall redshift, zinf , is defined as the time at which a DM halo (subhalo) enters for the
first time the virial radius of another halo. The procedure to determine this time is again
built in a statistical way and it is distinguished for first-order subhalos and higher-order
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ones. I have already specified the fact that I will focus just on subhalos of first-order, but
for completeness I describe how the whole mechanism should work when considering also
higher order subhalos.

• For first-order subhalos: the redshift probability distribution is directly calcu-
lated from the SHMF. A growing parent-halo, in a redshift interval of size dz, is
subject to a change in mass of the order of dMh,par(z). Hence from Mh,par it gets
a mass of Mh,par + dMh,par, with a consequent slightly change in the SHMF asso-
ciated to it. The probability density function (PDF) of infall redshifts related to
a subhalo with a certain infall mass, Mh,sub, is then proportional to the derivative
of the SHMF with respect to the redshift. This is represented by the following
equation:

PDF(zinf) ∝ d

dz
ϕ(Mh,sub, Mh,par(z)). (2.1)

In other words, since the un-evolved SHMF ϕ(Mh,sub) describes the total number
and mass of the subhalos that have ever merged with the parent halo at any given
epoch, the change of SHMF dϕ(Mh,sub, Mh,par(z)) gives the number and mass of
subhalos, with mass within Mh,sub and Mh,sub + dMh,sub, that have merged with
the parent halo in the redshift interval dz. Once normalized equation 2.1 provides
the PDF for a subhalo of mass Mh,sub to be accreted at a redshift z, and the infall
redshift for the subhalo is extracted from this distribution function. The SHMF
only characterizes subhalos that merge with the parent-halo and this is the reason
why such a method is only applicable to first-order subhalos.

• For second-/third-order subhalos: to assign infall redshift to second-order sub-
halos, the steps to follow are in a certain way analogous to the ones described in
the previous point. First of all to each parent halo, named P0, it is assigned a full
merger tree made by first-order subhalos, S1, with the specification of the infall
time (Jiang & van den Bosch (2014); Jiang & van den Bosch (2016)). Then each
S1 is assigned with its satellite accretion history using again a SHMF of first order.
A satellite of a subhalo is a subhalo of second-order, S2, for P0. This loop can be
repeated many times so to reach the order needed.
The whole process can be sped up after the first runs of the code. Indeed once the
merger histories of all relevant subhalos S2 and S3 have been defined, it is possi-
ble to produce analytic fits out to the infall redshift distribution functions. The
parametric form chosen for the PDF is given by:

P (z) = Azα 1
δeβz − γ

, (2.2)

with A, α, δ, β and γ being dimensionless free fitting parameters, whose best values
are not reported here because I am not going to use them. Anyway equation 2.2 is
used to assign infall redshifts statistically to second- and third-order subhalos.

The technique just described has the big advantage of being fast and not affected by mass
resolution limitations. On the other hand it does not generate specific accretion histories
for single objects. What is actually obtained is a stochastic merger tree of subhalos for a

27



Description of DECODE

given average parent halo mass accretion track. This implies that to compute the ’right’
merger histories, it is necessary to take the mean of many objects growing tracks that
account for accretion through mergers.

2.2.4 Merging timescale

The merging timescale is the typical timescale that a subhalo needs in order to com-
pletely merge with its progenitor. For what concerns DM halos, this time is in good
approximation expressed by the Equation (5) in Boylan-Kolchin et al. (2008), that is:

tmerg = tdynA (Mh,host/Mh,sub)b

ln(1 + Mh,host/Mh,sub)exp
[︄
c J

Jc(E)

]︄[︄
rc(E)
Rvir

]︄d

. (2.3)

In the above formula tdyn is the halo dynamical timescale, J/Jc(E) is the orbital energy
and A, b, c and d are free parameters. The parameters adopted in Decode implementa-
tion are the ones found in McCavana et al. (2012). Last term of Equation 2.3 is the ratio
between the average radius of the subhalo orbit, rc, and the halo virial radius, Rvir, and
it is computed assuming an orbital circularity, ξ. The latter is either assigned following
Khochfar & Burkert (2006), i.e. extracted from a Gaussian distribution with a center
value of ξ̄ = 0.5 and a standard deviation of σξ = 0.23, or it is assumed a constant value
for it (see Section 3.1.1). Then the radii ratio is given by the formula reported below:

rc

Rvir
= ξ2.17

1 −
√︁

1 − ξ2 . (2.4)

All these expressions are approximation and in order to allow for some flexibility, the
merging timescale is corrected through a fudge factor: tmerg −→ fdyntmerg. It is found (Fu
et al. (in preparation)) that the fudge factor is well represented by a linear relation that
depends on the ratio q = (Mh,host/Mh,sub):

fdyn = a · q + b, (2.5)

where best-fit values for the parameters (a, b) are (0.00035, 0.65). In Figure 2.3, taken
again from Fu et al. (in preparation), one can find the plot representing fdyn factor as
a function of Mh,sub/Mh,par on the top and the plot expressing equation 2.3, without the
fudge factor correction (solid line from McCavana et al. (2012)) and with the correction
(dash-dotted line), on the bottom.

At this point the last step is to assign merging timescales to all subhalos. They are
initially computed for first-order subhalos through Equation 2.3 and considering the mass
ratio MP0/MS1. Then taking into account the time of first accretion, we have at least three
possibilities: 1) the first-order subhalo has survived today, and so its satellites; 2) the
first-order subhalo has not survived and all its satellites are released to the parent halo;
3) the higher-order subhalos have been tidally disrupted before the first-order subhalo
has merged (do not exist). The merging timescales are assigned to second-order subhalos
using mass ratio MS1/MS2. For second-order subhalos released from first-order ones to
the parent, a new tmerg is then calculated considering the ratio MP0/MS2.
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Figure 2.3: Merging timescale as a function of mass ratio (bottom plot) Mh,sub/Mh,par.
Solid line is obtained using equation fro McCavana et al. (2012), while dash-dotted line
is the result of the fudge factor application (top plot).

Paragraphs 2.2.1, 2.2.2, 2.2.3 and 2.2.4 describe all the passages performed every time
Decode is run. Output data will be automatically stored into two ASCII files. One,
named output_parents.txt, contains the information on the central halos. The other,
named output_mergers.txt, contains the information on the mergers.
File output_parents.txt is organized as follows: it contains two columns reporting
respectively the ID of the parent halo and its mass at z = 0 in units of log10(M/M⊙).
File output_mergers.txt is organized as follows:

• first column: ID of the corresponding parent halo;

• second column: ID identifying the (i - 1)-th order progenitor. It is -1 if the progen-
itor is the parent halo itself;

• third column: ID identifying the subhalo itself;

• forth column: order of the subhalo;

• fifth column: subhalo mass in units of log10(M/M⊙);

• sixth column: redshift at first accretion (zinf);
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• seventh column: merging timescale in units of [Gyr].

As mentioned at the beginning of Section 2.2, for the moment I have left out the steps
related to the halo-mass/stellar-mass conversion, since it is applied in a second moment
and not made to be a direct output in my use of Decode. The procedure implemented
to address this point will be presented in the next Section.

2.3 Stellar Mass - Halo Mass (SMHM) relation
In Section 2.1 I have introduced the basic concept of the abundance matching technique
when explaining the general characteristics of semi-empirical models. As said abundance
matching is a standard way of deriving a monotonic relationship between galaxy and
halo properties by connecting the corresponding number densities (e.g. Vale & Ostriker
(2004); Shankar et al. (2006); Moster et al. (2010); Moster et al. (2013); Behroozi et al.
(2013); Behroozi & Silk (2015)). It is possible to derive the relation M⋆(Mh, z), with
M⋆ stellar mass and Mh halo mass, by solving the following equation (e.g. White et al.
(2008); Shankar et al. (2010); Aversa et al. (2015)):∫︂ +∞

logM⋆

ϕ(M′
⋆, z)dlogM′

⋆ =

∫︂ +∞

−∞

1
2erfc

{︄
logMh(M⋆) − logM′

h√
2σ̃logM⋆

}︄
· ϕ(M′

h, z)dlogM′
h,

(2.6)

which holds when a log-normal distribution of M⋆ at fixed Mh with dispersion σlogM⋆ is
adopted. In the above formula I have defined σ̃logM⋆ = σlogM⋆/µ with µ = dlogM⋆/dlogMh
the derivative of the SMHM relation. The only input parameter in equation 2.6 is this
scatter. For what concerns the HMF, it should be a total one that considers both parent
halos and subhalos; hence it is given by the sum ϕ(Mh,tot) = ϕ(Mh,par) + ϕ(Mh,sub). The
correction to the HMF (already specified as input in Decode) follows an analytic formula
presented in Behroozi et al. (2013), that accounts for the abundance of surviving satellite
as a function of redshift. Essentially the HMF of input and the corrected one are similar,
with the latter being just slight steeper at the low mass end as can be seen in Figure 2.4
(from Fu et al. (in preparation)). At this point the SMHM relation obtained from 2.6, at
any redshift, is used to seed every parent halo and subhalo with galaxies. To be specified
is the fact that subhalos are assumed to always maintain same mass after infall. Actually
I will use a calculation of stellar mass from DM halo mass worked out with the mean
SMHM relation, meaning the scatter term is not included. This is because Decode, at
this level of development, is mostly sensitive to mean galaxy and halo growth.

2.3.1 Stellar Mass Function

What I have just explained is a fast and flexible method that allows the computation
of SMHM relation in a numerical way, without the need of applying a complex and pre-
defined analytic fit. However, such SMHM relation is highly affected by the shape of
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2.3 – Stellar Mass - Halo Mass (SMHM) relation

Figure 2.4: Halo mass function for parent DM halos by Tinker et al. (2008) (red dash-
dotted line) and the HMF corrected for the abundance of satellites (blue dash-dotted
line). Super-imposed there are triangles that represent mass functions calculated from
Decode.

the measured SMF, ϕ(M⋆, z), which represents a major source of uncertainty. Indeed
many works (e.g. Bernardi et al. (2013); Bernardi et al. (2016); Bernardi et al. (2017))
point out the fact that SMF is not easy to know with sufficient accuracy, even in the
local universe, as it can depend for example on the light profile chosen to fit photometry.
Other problems are related to the methodology used to measure stellar masses which can
lead to different conclusions about the redshift evolution of SMF (e.g. Shankar et al.
(2014) compared to Bernardi et al. (2017) and to Davidzon et al. (2017)).

Generally speaking, in the context of SEMs, what can be done is to evaluate to which
extent the choice of the SMF, hence the resulting SMHM relation, impacts in results that
are comparable with other observational data. In particular in this thesis project I am
going to estimate which SMHM relation, assumed to convert halo mass into stellar mass,
can best reproduce growing curves of supermassive black holes when compared to ones
obtained through different methods (i.e. from continuity equations), see future Sections
for details. Here I briefly report the features of the SMHM relations to be used: i) a
first one is derived using SMFs of Tomczak et al. (2014); ii) a second SMHM relation is
instead obtained from an empirical model set up in Moster et al. (2018).
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Tomczak SMF

In Tomczak et al. (2014), authors measure the galaxy SMF over a broad redshift range (0.2
< z < 3) using observations from the FourStar Galaxy Evolution Survey (ZFOURGE).
They build a large sample of galaxies complete to low stellar masses with accurate pho-
tometric reshifts. Actually their data allow to probe the SMF down to ≈ 109.5 M⊙ at
z < 2.5.
Some studies (e.g. Baldry et al. (2008); Ilbert et al. (2013); Muzzin et al. (2013)) have
noted that SMF at z ≤ 1.5 exhibits a steepening of faint-end slope at ∼ log10(M⋆/M⊙) ≤
10 and so it is not well characterized by a single-Schechter function (Schechter (1976)).
In Tinker et al. (2008) they fit both single- and double- Schechter functions to all SMFs
and show that a low-mass upturn is present in the SMF up to at least z = 2. Also they
find no evidence of evolution in the characteristic mass (turning point) of M⋆ ≈ 1010.65

M⊙ or in the slope at low masses which is ≈ -1.5. Their stellar mass functions can be
visualized in the Figure 2.5 (Figure (6) of their paper).

Figure 2.5: Stellar mass functions from Tomczak et al. (2014) for all galaxies between 0.2
< z < 3. Their data are compared with results of other studies: Moustakas et al. (2013)
(Mo12), Santini et al. (2012) (S12), Ilbert et al. (2013) (I13) and Muzzin et al. (2013)
(Mu13).
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Moster model

Moster et al. (2018) provide a novel empirical galaxy formation model Emerge, that
reconstructs the evolution of galaxies in individual dark matter halos. The model is syn-
thetically built in this way: halo merger trees are obtained from N-body cosmological
simulations and for each of them it calculates the growth rate at every redshift; then
the SFR of the galaxy is determined as the product of the halo growth rate (how much
material is available) and the instantaneous baryon conversion efficiency, ϵ(Mh, z), (how
efficiently the material can be converted into stars). Stellar mass of every galaxy is cal-
culated by the integration of the star formation histories also taking into account mass
loss from dying stars. Once the halo under consideration is captured by another one,
becoming a subhalo, the seeded galaxy continues to form stars for a certain amount of
time and then is rapidly quenched. The best model is finally constrained using several
sets of observed data, including SMFs and sSFRs up to high redshift.
Once best-fitting values are found, from the instantaneous conversion efficiency it is
possible to calculate the integrated baryon conversion efficiency ϵint(Mh) = M⋆/Mb =
M⋆/(fbMh), or in other words the SMHM relation. In the previous expression Mb is
the total baryonic mass in a halo and fb is the universal baryon fraction. Figure 2.6
shows the integrated conversion efficiency as a function of halo mass for each individual
galaxy in the simulation box. It turns out that the low-mass slope is quite steep at low
redshift and becomes shallower at high redshift. Instead high-mass slope is shallower and
does not depend on redshift. Anyway Moster et al. (2018) find good agreement between
these integrated conversion efficiencies and previous results for the SMHM relation from
abundance matching methods.
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Figure 2.6: Integrated baryon conversion efficiency for central galaxies as function of halo
mass at six redshift. Points are color-coded according to the sSFR (yr−1) of the galaxy.
Solid black lines represent the median conversion efficiency at fixed halo mass and dashed
black lines are 1σ boundaries. The symbols are eight individual systems that have been
selected at z = 0.1.
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Chapter 3

Output of DECODE

In Chapter 2 I have introduced Decode, in particular I focus on its implementation and
main characteristics. At this point we dispose of a rapid and efficient tool that allows
to probe, in a full cosmological context, galaxy assembly and merger histories for any
given input stellar mass - halo mass (SMHM) relation. This model relies on minimal
parametrization and its applications are numerous and approachable in an easy way.

The purpose of this project is to use the ability of Decode to rapidly predict mean
merger histories and to investigate the growth of supermassive black holes (SMBHs)
believed to reside at the center of each galaxy. The mechanisms through which a BH
acquires mass are basically two: accretion from infalling cold gas (see Section 1.2.2) and
mass gain by BH-BH mergers. The relative roles of these two processes is still not well
known, in particular how much is the contribution of mergers, if it has been always the
same through cosmic time and for which systems (in terms of mass) it is more relevant.
Trying to give answers to these questions is far from easy and the work conducted here is
going just to give estimates in a wide more general and complex framework. Nevertheless
some results obtained can be compared to other models (see Section 4.1 of Chapter 4)
and observational data so that it is possible at least to get basic knowledge of what is
happening in the growing path of a supermassive black hole.

I still miss the key ingredient that makes us able to relate the outputs of Decode
(mean halo/galaxy merger histories) to information on the accretion of black holes, specif-
ically I am referring to models of gas accretion based on continuity equation (see Section
4.1). Such a bridge between them is represented by the scaling relations, a topic already
discussed in Chapter 1.

Finally the outline of the project is schematize below:

• Reconstruct mean growing histories of DM halos from Decode (Section 3.1);

• Convert halo masses in stellar masses of galaxies within them through SMHM re-
lations (Section 3.2);

• Build SMBHs accretion curves through the following re-parameterization:
Mh −→ M⋆ −→ MBH. The last conversion can be performed:

– Directly through the employment of M⋆ - MBH scaling relations;
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– With an additional step consisting in the computation of the stellar velocity
dispersion, σ (km s−1), from the total galactic mass M⋆ and then the use of σ
- MBH scaling relations to obtain MBH;

(Following Chapters).

3.1 Dark-matter halos growth

This Section is dedicated to the analysis of Decode output data and of the information
one can get from them.

3.1.1 Input parameters

First of all, as mentioned in 2.2.1, it is necessary to set some input parameters in order
to extract the sample of parent halos, to retrieve the sample of subhalos for each of them
and to assign to these subhalos the respective redshift of infall, zinf . The choices I made
are reported below:

• halo_mass_function = tinker08
It is the halo mass function used to generate the main progenitors and as already
said is the one of Tinker et al. (2008);

• cube_side = 150
It is the size of the simulated cosmological cube volume side in units of Mpc/h.
This corresponds to a quite big cosmological volume and the exact total number
of parent halos generated within it amounts to Nh,par = 166280. It allows to have
a very high quantity of parent halos with low/intermediate masses and a more
restricted but statistically good number of high-mass parent halos;

• z_min = 0
z_max = 4
z_bin = 0.1
This set of parameters constraints the redshift interval within which the code will
calculate the central halo accretion track and mergers. The parameters z_bin de-
notes the resolution for drawing the probability distribution of the redshift at first
accretion. The maximum value of z has been set to zmax = 4 in consideration of the
redshift up to which stellar mass functions of use in this project are reconstructed
(Subsection 2.3.1). Actually the one of Tomczak et al. (2014) has been obtained
from observations at maximum redshift zmax ≃ 3, so my choice will imply an extrap-
olation of the SMHM relation at higher redshift, resulting in more approximated
results;

• M0_host_min = 11
M0_host_max = 15
M0_host_bin = 0.1
These are the parameters to set the mass interval, reported in units of log10(M/M⊙),
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within which the code will generate the parent halos. The parameter M0_host_bin
defines the resolution for drawing the halo mass function distribution. The extremes
of the mass interval are decided so to produce, in a second moment, supermassive
black holes with final masses between ∼ 106 - 1010 M⊙. Naturally these values and
the exact halo mass that is converted into a SMBH of a certain final mass change
depending on the scaling relation of use;

• mass_definition = vir
It indicates the mass definition, which in this case is the virial mass. This is imple-
mented via the Python colossus package;

• use_mean_track = yes
This option states how to calculate the accretion track of the parent dark matter
halos. The options allowed are ’yes’ or ’no’. If ’yes’ the code will assume a single
mean track per halo mass bin, set to log10(Mbin/M⊙) = 0.5 dex. This is done
according to the formalism of van den Bosch et al. (2014) as already mentioned. If
’no’ then it will assign a single stochastic mass accretion assembly derived from the
methodology of Hearin et al. (2021). In order to fulfill the purpose of this project
the decision made is to use mean tracks, hence ’yes’ option. I anticipate that a part
of Chapter 7 will be devoted to a possible application of the second method, with a
brief explanation of the code diffmah involved. It is built so to give the possibility
of choosing which type of halo to generate, if of early or late type (distinction made
clearer later on in that occasion);

• M_sub_res = 1e-3
It gives the subhalos mass resolution. For a subhalo mass resolution set to fres, the
code will generate subhalos with masses higher than fresMh,par;

• max_order = 1
It specifies the maximum order of subhalos the program generates. As said several
times in Chapter 2 I am going not to consider the contribution of subhalos of
orders higher than one because black hole masses that will be derived from them
have negligible contribution to the total mean merging mass;

• use_merger_tree = no
This parameter gives the choice between a full merger tree and a statistical ap-
proach. Since the scope of using such a model is to keep a statistical-empirical
approach, then the default option is set to ’no’;

• type_orbital_circularity = constant
orbital_circularity = 0.5
fudge = -1
This last set of parameters is needed to calculate the subhalos merging timescale
as described in Subsection 2.2.4, using McCavana et al. (2012) fitting parameters.
The first voice, type_orbital_circularity, specifies if one wants to extract the
orbital circularity from a Gaussian distribution or let it to be a constant (0.5 in
this case). As showed in Figure 2.3, a fudge factor correction is applied so to adapt
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merging timescale to N-body simulations and semi-analytical works. If set fudge
to a negative value the program apply the linear correction that depends on the
progenitor/subhalo mass ratio, see Equation 2.4.
In fact such merging timescales are calculated for galaxy mergers, and in most of the
work presented here they are not taken into account. The introduction of a tmerg
is instead considered in a second moment to adjust results regarding high massive
black holes. For such supermassive black holes, with final masses above 109 M⊙,
merger contribution becomes very important at low redshift and that would create
some problems if not limiting the amount of mergers in some way (see Section 6.2).

3.1.2 Running the code

Now that all the parameters have been defined it is possible to analyse what a run
of Decode produces. Figure 3.1 displays the distribution of parent halo log-masses
generated, with a bin size of the order of ∆log10(Mh,par/M⊙) = 0.1 dex. Superimposed
there is the halo mass function of Tinker et al. (2008) (red dashed line) from which halos
are extracted to build the catalogue. This is done to prove the correct behaviour of the
program and to have an idea of the completeness of the sample so obtained. The mass
function is indeed well represented by the parent halos available, with the only exception
represented by the high mass end, where the sample is poor (Nh,par ≈ 10 - 20 objects).
Masses that are actually considered when reconstructing SMBH histories are at most of
the order of ∼ 1014 M⊙ and up to there the number of halos created is enough to have
good statistics.

For each halo in the local catalogue the model reconstruct the merger history (Sections
2.2.2 -2.2.4) but what is the real information of Decode, as already mentioned during the
description of the model, is the mean mass that is gained by mergers. I will define here
the simple and general procedure to follow, applied to halos at this stage and repeated
in an analogous way for black holes later on in the project. The main steps are:

i) Select a bin of mass, e.g. halos between log10(Mh,par) = 12.5 dex and log10(Mh,par)
= 12.6 dex;

ii) Randomly extract 50/60 parent halos within that bin (such numbers of objects
consist of good compromise between speed of calculation and right quantity to
produce smooth mean merger curves);

iii) For each of them compute the cumulative mass accretion through mergers. From
now on and if not otherwise specified merger histories computed are the maximal
ones. How?

iv) Take all subhalos related to a main progenitor and the corresponding redshift at
first accretion, zinf ;

v) Consider a redshift interval of interest, e.g. z = [0, 4] in step of dz = 0.1;

vi) For every z-step sum masses of all subhalos with zinf ≥ z;
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Figure 3.1: Hist plot representing the mass distribution of parent halos in the catalogue
generated with input parameters in 3.1.1. Masses are in logarithmic units and binned
in ∆log10(Mh,par/M⊙) = 0.1 dex. Red dashed line is the analytic halo mass function of
Tinker et al. (2008) used to extract the catalogue, multiplied by the size of the bin and
the physical volume of the simulation = (150/h)3 Mpc3.

vii) Once individual histories are obtained compute their mean, ⟨Mh,merg(z)⟩, and the
error of the mean, σmerg(z).

To evaluate how much is the mass acquired through mergers compared to the total
growth of a dark matter halo, I explicitly calculate these mean global accretion tracks
following van den Bosch et al. (2014). For each bin of mass, the central value is chosen to
be the final mass of the parent halo from which its past history is built. The function that
works it out is already implemented in Decode and it is sufficient to give as arguments the
final mass and redshift interval, z-steps, selected. The curves so obtained can be visualized
in Figure 3.2, where log-masses selected are within log10Mh,par(z = 0) = 11.05 dex and
log10Mh,par(z = 0) = 13.95 dex. Finally all pieces of information achieved up to now are
summarized in Figure 3.3. It includes the mean total accretion track of a dark matter
halo with final mass ≈ 1012.55 M⊙, represented by the thick red curve, the cumulative
merger histories of sixty halos selected in the mass bin bordered by log10(Mh,par) = 12.5
dex and log10(Mh,par) = 12.6 dex (gray thin lines), and the mean merger history obtained
from them which is the thick blue curve. Errors are not visualized in order to keep clean
the figure.
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Figure 3.2: Total mean accretion histories of parent halos computed implementing the
methodology in van den Bosch et al. (2014). The curves are reconstructed up to a z =
4, and for halos of final masses within the range [11.05, 13.95] in logarithmic units and
with steps of ∆log10(Mh,par/M⊙) = 0.1 dex.

3.2 From halo mass to stellar mass

The aim of this work is to reproduce curves similar to the one showed in Figure 3.3 for
black holes. This comes with the necessity to perform the intermediate and fundamental
step consisting in the conversion of halo masses in masses of galaxies (stellar mass) growing
within them. As explained in Chapter 2, in particular in Section 2.3, this passage is what
makes Decode truly a semi-empirical model. For what concerns which SMHM relation to
use, the two possibilities introduced in Section 2.3.1 are the ones I am going to apply. The
choice made is in agreement with the work that presents Decode as new model (Fu et
al. (in preparation)). In there the authors analyzed different shapes of SMHM relation,
evaluated starting from varying stellar mass functions or methods found in literature
(e.g. Baldry et al. (2012); Tomczak et al. (2014); Bernardi et al. (2017); Davidzon et al.
(2017); Moster et al. (2018); Behroozi et al. (2019); Grylls et al. (2020); Leja et al.
(2020)), and compare results on galaxy formation and evolution (in particular merger
rates, abundances of satellite galaxies, morphology of central galaxies and bulge-to-total
ratios) with observational data and/or other cosmological simulations. They actually opt
for a model made in this way:
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Figure 3.3: Total mean accretion track (red line) from van den Bosch et al. (2014);
cumulative merger histories of sixty halos of final masses within log10Mh,par = 12.5 - 12.6
dex (gray lines); mean merger history (blue line).

• SMF at z = 0 adopted is the one from Bernardi et al. (2017), valid down to M⋆ ∼
109 M⊙;

• At z > 0 SMF is made to evolve consistently with the Tomczak et al. (2014) SMFs
obtained between 0 < z < 3 (see Section 2.3.1);

• The correction made to the Bernardi et al. (2017) + Baldry et al. (2012) SMF at z
= 0 in order to apply Tomczak et al. (2014) evolution is given by:

log10ϕ(M⋆(z)) ≃ (0.99 + 0.13z) · log10ϕ(M⋆(z = 0.1)). (3.1)

Since SMF of this kind is close to SMFs obtained by the code Emerge of Moster et al.
(2018) at low redshift, it is interesting to observe how much results are effected by the
choice of using one or another. In Figure 3.4 one can visualize the differences in SMFs
with redshift evolution. The curves labelled as Model 2 are the SMFs(z) just described
and considered as the reference model (RM) also in this project. They fit well data from
Tomczak et al. (2014), as it is possible to note, with slightly deeper redshift evolution at
low-mass end. As a general trend it appears that the SMFs modelled in Moster et al.
(2018) have a milder z evolution at nearly all stellar log-masses than both Tomczak et al.
(2014) data points and the reference model. About what concerns SMHM relations,
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Figure 3.4: Comparison between SMFs by Tomczak et al. (2014) data (blue points),
Moster et al. (2018) model (orange line) and Model of reference (blue line) in Fu et al.
(in preparation) at six redshift intervals. Reference model well represents Tomczak et al.
(2014) SMFs at any time steps, with small deviations at low stellar masses. Moster et al.
(2018) modelled SMFs on the other hand differ to the ones of reference model and to
Tomczak et al. (2014) data at higher z.

diversity among the realizations above-cited can be well visualized in Figure 3.5. The
model of reference (RM), that is the one used in this work, is reproduced by the blue
curve and the shaded region marks how the relation has changed through time up to a
z = 4. Relation extrapolated from Moster et al. (2018) (Mo18), on the other hand, is
defined by the red line, and again shaded region considers the evolution of the relation
in z. At first glance it can be noticed the fact that, at least for DM halo masses ≳ 1011.8

M⊙, in the case of the RM the relation is subjected to a broader change in time, while
in Mo18 such a change is more limited. This is a consequence of what said above about
the corresponding stellar mass functions. Another aspect to be pointed out is that in
both cases one can perceive a variation in the slope of the relation; variation that is more
accentuated in the case of the RM. This happens approximately at a characteristic mass
of M⋆ ∼ 1010.1 - 1010.3 M⊙ and this will be reflected in the conversion of black hole masses.
In that context interesting features will happen at an approximate characteristic mass of
MBH ∼ 108 M⊙. Real discordance between the two models characterizes the low-mass
end. Actually at these mass ranges the RM has a lower and steeper trend (slope of the
order of 2.3 - 2.4 with a normalization of ∼ 7.3 dex in log10(M⋆/M⊙)) than Mo18 (slope
of the order of ∼ 1.55 with a normalization of ∼ 8.3 - 8.4 dex in log10(M⋆/M⊙)) at every
epochs. It means that, at a fixed halo-mass, the RM produces a smaller stellar mass
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and with a faster evolution (in the redshift range considered). This has non negligible
consequences for what will be the behaviour of growing supermassive black halos. The
situation is more comparable at the high mass end, at least at low redshift where curves
(see Figure 3.5) can be approximated by a straight line of slope ∼ 0.65 and a normalization
of ∼ 9.5 dex in log-stellar masses. It is important to underline the fact that all values
reported in this last part are estimates, not fits of the curves; it is just to give orders of
magnitude and errors are not considered. At higher redshift RM and Mo18 are again not
in agreement at high mass end where the first becomes more and more steep backwards
in time. This fact implies that accretion curves derived from RM are slightly less flat
towards present times. Figure 3.6 helps to better understand and visualize how results

11 12 13 14
log10[Mh / M ]

7

8

9

10

11

12

lo
g 1

0[
M

 / 
M

]

Reference model at z = 0
Moster et al. (2018) at z = 0
Redshift evolution
Redshift evolution

Figure 3.5: Stellar mass - halo mass relations derived from observational data combination
of Baldry et al. (2012) + Bernardi et al. (2017) + Tomczak et al. (2014) (blue line and
blue shaded area) and from Moster et al. (2018) empirical model (red line and red shaded
area). Straight lines are referred to local (z = 0) relations, while shaded areas consider
redshift evolution up to z = 4. All masses are expressed in logarithmic units.

can differ case by case depending on which of the two relations is applied. Left panel is
representative of the low-mass end situation since galaxies are seeded in a halo of final
mass of the order of Mh,fin = 1012 M⊙, hence at approximately the correspondence of the
change in slopes of the SMHM relations. Right panel, instead, shows what happens if
masses are converted starting from a dark matter halo with high final mass of Mh,fin =
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1014 M⊙. In this latter case the mass evolution of galaxies is almost all confined within
the high-mass range, since masses at z ≈ 4 are of the order of M⋆(z = 4) ∼ 1011 M⊙. As
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Figure 3.6: Galaxy evolution derived from the conversion of Mhalo(z) (by van den Bosch
et al. (2014)) at each redshift using either the RM and Mo18 relations. Left: curves are
built starting from a DM halo with final mass of Mhalo(0) = 1012 M⊙ (to investigate
low-mass end of SMHM relations); Right: analogous but with the final mass of DM halo
of Mhalo(0) = 1014 M⊙ (to investigate high-mass end of SMHM relations). Blue lines are
always related to the RM relation while blue curves to Mo18 relation.

expected much more profound deviations concern the low-mass end, where galaxy growth
predicted by the RM is always ’behind’ the one computed using Mo18. Similar trends are
on the contrary found when accretion path regards especially high masses with only the
exception that curves made from Mo18 flattens toward recent epochs as a consequence
of very little evolution of the Moster et al. (2018) SMHM relation at high-mass end.
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Chapter 4

Main: SMBH application I

This Chapter presents the main and truly original part of the thesis project and it is
entirely devoted to the study of supermassive black holes accretion. The final purpose is
twofold:

1) From one side it is to validate Decode as an efficient, self-consistent and reliable
model through the presentation of a new application of it;

2) From the other side it is to infer possible constraints on i) black hole mass - stellar
mass relation, using an approach that allows to assign a temporal dimension to it;
ii) black hole accretion curves, or in other words curves that describe the growth of
a BH through infalling gas and strictly related to AGN light curves; iii) the black
hole merger rates, more specifically the merger contribution to the evolution of a
SMBH.

The interconnection between them is represented, as already stated, by scaling relations
that have been known to subsist between SMBH mass and many properties of the hosting
galaxies such as the luminosity (Lhost), stellar mass (M⋆) and stellar velocity dispersion
(σ⋆). The tightness of these correlations may imply a connection between nuclear ac-
tivity and galaxy formation and evolution (e.g. Magorrian et al. (1998); Ferrarese &
Merritt (2000); Gebhardt et al. (2000); Marconi & Hunt (2003); Haring & Rix (2004);
Gultekin et al. (2009); Graham et al. (2011); Beifiori et al. (2012)). Actually, the physical
mechanism that is responsible for such tight relations is not yet well understood, mainly
because of the huge diversity in scales under consideration: the dynamical sphere of the
SMBHs (∼ pc) and the dimensions of their hosts (∼ 10 kpc). A quite popular explanation
invokes active galactic nucleus (AGN) feedback as the possible physical connection (see
e.g. Matteo et al. (2008); Hopkins et al. (2008); DeGraf et al. (2015)). Other studies
are based on the hypothesis that accretion of SMBHs and star formation in galaxies are
fed by a common gas supply (e.g. Cen (2015); Menci et al. (2016)). Finally there are
authors stating that there is no need of a physical coupling, since statistical convergence
from galaxy assembly alone (i.e. mergers) may reproduced the observed correlations (e.g.
Hirschmann et al. (2010); Jahnke & Macciò (2011)).

It is at this point evident why it becomes important to study these scaling relations
as a function of redshift, determining how and when they emerge and evolve over cosmic
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time (e.g. Schramm & Silverman (2013); Sun et al. (2015)). Addressing this task from
an observational point of view is still not easy because of many problems that arise when
taking measurements at high redshift, that especially are conducted on AGNs (far more
luminous and with accessible measurements of SMBH masses). First of all one has to deal
with the uncertainties in black hole mass estimates that relay on gas dynamics; secondly
also measuring host galaxy properties can be challenging because of the overwhelming
nuclear light; finally it has not to be underestimated the effect of the selection function
when interpreting data (e.g. Lauer et al. (2007b); Treu et al. (2007)).
In this work the line of reasoning is the following:

• Observational data used to calibrate local scaling relations (z = 0) are collected
from different literature works;

• Due to the variations of technical methods implied, samples of objects selected and
encountered problems in observational campaigns, these data do not represent a
homogeneous group. The reason for accumulating some of them is to have a guide
line in the choosing of shapes for scaling relations to adopt;

• Once a specific relation is arbitrarily set up, in a first moment it is assumed not
to evolve with z and to be maintained up to epochs of z ≈ 4. It is a strong
assumption in consideration of what just written about difficulties in high redshift
measurements.
In a second moment, there will be the possibility to allow for a mild z - evolution
in the scaling relations of the form (1 + z)α (see Section 6.1.1).

• Finally the relation chosen is applied to results of growing galaxies (alias DM halo
once given the SMHM relation) following analogous steps explained in Section 3.1.2;

• What is obtained, i.e. accretion curves of supermassive black holes, is then com-
pared to gas-accretion curves derived by the employment of the continuity equa-
tion through the formalism and methods proposed in Marconi et al. (2004) and
Shankar et al. (2009). Since those curves represent the ending and, in a certain
sense, the starting point for the project developed here, the analysis made in the
above-mentioned works is explained in more detail in Section 4.1;

• It is through this comparison, in particular with accretion curves found in Shankar
et al. (2009), that some considerations can be made about the shapes of scaling
relations.

Once having defined the evolutionary model of Shankar et al. (2009) (S09), I will analyse
the way to build the results to compare, which scaling relations are chosen and why others
are discarded. To be clear scaling relations that enter in this work are the MBH - M⋆

relation (this Chapter) and the MBH - σ relation (Chapter 5).

4.1 SMBH evolutionary model
Since the discovery of quasars (Schmidt (1963)), it has been suggested that active galac-
tic nuclei (AGN) are powered by mass accretion onto supermassive black holes (e.g.
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Salpeter (1964); Lynden-Bell (1969); Rees (1984)), and the presence of remnant BHs in
the spheroids of galaxies in the local universe (Richstone et al. (1998)) strongly supports
the hypothesis. This scenario has consequently opened the road to the study of the cor-
related evolution of quasar and black hole populations. Again scaling relations discussed
above play a key role in this framework because they make it possible to estimate the
local mass function of black holes (Salucci et al. (1999); Yu & Tremaine (2002); Marconi
et al. (2004); Shankar et al. (2004)). At this point the principal link is made between
the integrated emissivity of the quasar population, the integrated mass density of rem-
nant black holes, and the average radiative efficiency of black hole accretion (e.g. Soltan
(1982), Fabian & Iwasawa (1999); Elvis et al. (2002)). Essentially given assumed values
of the radiative efficiency and the Eddington ratio L/LEdd, the observed luminosity func-
tion of quasars at different redshift can be connected to the mean growth rate of black
holes of the corresponding mass. Once growth rates are obtained they can be integrated
forward in time and track the evolution of the black hole mass function. I report below
the formalism behind each passage and I am going to specify the assumptions made in
Shankar et al. (2009) to reconstruct final BH accretion curves.

4.1.1 AGN bolometric luminosity function

It is important to derive with accuracy the shape of the AGN luminosity function at
single redshift step, ϕ(L, z), with L the bolometric luminosity. This is not immediate
because usually observations are made at specific bands and then bolometric corrections
are applied. It can be that these corrections are z-dependent or that they are in some
measure related to the intrinsic luminosity of the object (e.g. Marconi et al. (2004);
Richards et al. (2006); Hopkins et al. (2007a)). Another difficulty in the determination
of a complete sample of AGN population is obscuration of the central engine made by
dense gas and dust residing in a torus surrounding the growing BHs or in the interstellar
medium of the host (e.g. Rigby et al. (2006)).

Shankar et al. (2009) base their calculations on the bolometric LF estimated in the
work of Ueda et al. (2003) (see Chapter 1), where a vast sample of AGNs from Chandra,
ASCA, HEAO-1 surveys is considered along with absorption-corrected LF out to z ∼ 3.
The bolometric correction adopted is the one of Marconi et al. (2004) with the inclusion
of a dispersion of 0.2 dex. The model of the AGN LF derived in Shankar et al. (2009)
is shown in Figure 4.1 compared to a large collection of data from optical surveys (Pei
(1995); Wisotzki (1999); Fan et al. (2001); Fan et al. (2004); Kennefick et al. (1995);
Hunt et al. (2004); Wolf et al. (2003); Richards et al. (2005); Richards et al. (2006); Jiang
et al. (2006); Cool et al. (2006); Bongiorno et al. (2007); Fontanot et al. (2007); Shankar
& Mathur (2007)) and X-ray surveys (Barger et al. (2003); Ueda et al. (2003); Barger &
Cowie (2005); Barger et al. (2005); Franca et al. (2005); Nandra et al. (2005); Silverman
et al. (2008)) once converted into bolometric quantities and corrected for obscuration
following Hopkins et al. (2007a).
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Figure 4.1: Bolometric AGN LF. Curves represent the model of Shankar et al. (2009), with
solid line the total LF including very Compton-thick sources; short-dashed line includes
sources with column densities up to logNH/cm−2 = 24; dot-dashed line considers only
sources with logNH/cm−2 ≤ 22. Symbols are all data from optical and X-ray surveys
reported in Section 4.1.1.

4.1.2 Local black hole mass function

The principal observational constraint in models set up in Marconi et al. (2004) and
Shankar et al. (2009) is represented by the local black hole mass function (BHMF). As I
mentioned before, local ϕ(MBH) can be determined through the use of scaling relations,
especially between MBH and stellar velocity dispersion, σ⋆ (km s−1), and MBH - bulge
luminosity, Lbulge (erg s−1), relations, applied to known galaxy luminosity and velocity
dispersion functions (e.g. Nakamura et al. (2003); Sheth et al. (2003)). Figure 4.2 from
Shankar et al. (2009) illustrates the local mass functions resulted from different relations
between black hole mass and host galaxy properties. The solid line represents the result
obtained using the MBH - Lsph relation calibrated in McLure & Dunlop (2002), while
solid squares the one found in Shankar et al. (2004). Other curves are evaluated with
the application of MBH - σ⋆ relation, for example the short-dashed line, gained from
the relation of Tundo et al. (2007), the dot-dashed line from Marconi et al. (2004) and
triple-dot dashed line from the one calibrated in Ferrarese & Ford (2005). The picture

48



4.1 – SMBH evolutionary model

also shows other estimates of the local BHMF, e.g. combining the galaxy baryonic mass
function of Bell et al. (2003) with the relation between black hole mass and spheroid
stellar mass of Haring & Rix (2004) (star symbols); and other two BHMFs, represented
by the dotted curve and open circles, are the one derived in Hopkins et al. (2007b) and
Graham et al. (2007) respectively. These two latter cases appear to be not consistent
with other results. In Shankar et al. (2009) they adopt the gray band in Figure 4.2 as
representative of the mean and the systematic uncertainties of estimates of the local mass
function.

Figure 4.2: Local black hole mass function obtained from various calibrations of the MBH
- Lsph, MBH - σ⋆ or MBH - M⋆ relations, assuming intrinsic scatter of 0.3 dex in all cases.
Gray region is inclusive of all these estimates. Dotted curve is the local black hole mass
function derived by Hopkins et al. (2007b) using the black hole fundamental plane and
open circles represent the BHM-function from Graham et al. (2007) obtained using the
relation between black hole mass and Sérsic index.

4.1.3 Evolved black hole mass function

The next step is to evaluate the evolution of the black hole mass function implied by
the AGN bolometric functions described in 4.1.1. The formalism I will use is the one of
Shankar et al. (2009). The expression ϕ(X) will indicate mass and luminosity functions
in logarithmic units, i.e. ϕ(X) = n(X)·X·ln(10), where n(X)dX is the comoving space
density of black holes in the mass or luminosity range X −→ X + dX in Mpc−3. The
Eddington accretion rate is defined as:

ṀEdd ≡ LEdd
0.1c2 ≃ 22

(︄
MBH

109M⊙

)︄
M⊙yr−1 (4.1)

with LEdd the standard Eddington luminosity evaluated with Thomson scattering opacity
and pure hydrogen composition at mass MBH. The dimensionless accretion rate is given
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by:
ṁ = ṀBH/ṀEdd. (4.2)

The black hole growth rate is related to the large scale accretion rate by:
ṀBH = (1 - ϵ)Ṁinflow, where L = ϵṀinflowc2, with ϵ the radiative efficiency. It means
a fraction ϵ of in-falling mass is radiated away before entering the black hole. Defining
f = ϵ/(1 − ϵ) and f0.1 = f/0.1, the relation connecting the bolometric AGN luminosity,
L, and the mass of black hole, MBH, growing at a dimensionless ṁ is written as:

L = ϵṀinflowc2 = 0.1f0.1ṀBHc2 = f0.1ṁlMBH, (4.3)

and l ≡LEdd/MBH = 1.26 × 1038 erg s−1 M−1
⊙ . Since Eddington accretion ṀEdd is

associated to a f = 0.1, then the Eddington luminosity is LEdd = lMBH and the link
between the Eddington ratio λ = L/LEdd and the accretion rate ṁ is given by:

λ ≡ L
LEdd

= ṁf0.1. (4.4)

If a black hole grows at constant rate ṁ, then it evolves exponentially with a time-scale
of tgrow = MBH/ṀBH = ts/ṁ = 4.5 × 107 ṁ−1yr, with ts equal to the Salpeter (1964)
timescale for f0.1 = 1.

The black hole mass function, n(MBH, t), evolves according to a continuity equation
(see Cavaliere et al. (1971); Small & Blandford (1992))

∂n
∂t

(MBH, t) = −∂(MBH⟨ṁ⟩n(MBH, t))
∂MBHts

, (4.5)

with ⟨ṁ⟩ is the dimensionless accretion rate average over the active and inactive popu-
lation of black holes of mass MBH at time t. Models proposed both in Marconi et al.
(2004) and Shankar et al. (2009) assume constant accretion rates ṁ = ṁ0, meaning that
at any given time a black hole is either accreting at ṁ0 or not accreting. It is evident that
adopting a single ṁ gives approximated results, especially for low-luminosity AGNs in
the nearby universe with diverse values of Eddington ratios (e.g. Heckman et al. (2004);
Greene & Ho (2006)). Nevertheless it constitutes a good starting point for the study of
black hole growth. With a constant ṁ0, the probability that a BH of mass MBH is active
or not, defined as the duty cycle P0, is simply given by the ratio of luminosity and mass
functions:

P0(MBH, z) =
ϕ(L, z)

⃓⃓⃓
dlogL

dlogMBH

⃓⃓⃓
ϕ(MBH, z) ≤ 1. (4.6)

As said before the mass MBH and luminosity L conversion is: MBH = L/(f0.1ṁ0l). If
also ϵ is constant, then we have a relation of proportionality MBH ∝ L. The inequality in
Equation 4.6 is necessary in order to have a physically consistent model.

The algorithm

Here below I describe the method employed in Shankar et al. (2009) to retrieve BHMF
evolution.
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• A black hole mass function is assumed at initial redshift zi: n(MBH, zi);

• Equation 4.5 is used to get characteristic curves MBH(MBH,i, z);

• Logarithmic spaced values of MBH,i are defined and the integration forward in time
is performed with a mid-point scheme from redshift step zj to zj - ∆z:

MBH,j+1 = MBH,j + ṁ0P0(MBH,j+1/2, zj+1/2)MBH,j+1/2
dt

dzts
∆z, (4.7)

The values at mid-point j + 1/2 are obtained by the extrapolation of the black hole
mass at ∆z/2 using dMBH/dt at the beginning of the step and the duty cycle P0 is
computed with the mid-step mass function and the luminosity function evaluated
at zj+1/2,

• The number of black holes is conserved, so n(MBH, z)∆MBH = n(MBH,i, zi)∆MBH,i.

Basically all this procedure just depends on initial conditions, observed luminosity func-
tion and the values of ṁ0 and f0.1 = L/(MBHlṁ0) assumed.

Initial redshift considered is zi = 6, and n(MBH,i, zi) is evaluated from Equation
4.6 using the luminosity function at z = 6 and an assumed P0 = 0.5. A good overall
agreement with the average estimate of the local black hole mass function is obtained
setting the following parameters:

ṁ0 = 0.60, ϵ = 0.065 (f0.1 ∼ 0.7). (4.8)

Figure 4.3 shows the average accretion histories for black holes of different relic mass MBH
at z = 0 as a function of redshift, obtained applying the reference model just described.
It has to be pointed out that the derivation of tracks for lower BH final masses needs the
extrapolation of luminosity functions at the very faint end using a power low fit, since no
objects can be observed at such luminosities. Those are the accretion curves I am going
to refer to when I will make the comparison between results of this work and the model
for the growth of a supermassive black hole.

4.2 Building accretion curves: MBH - M⋆ relation
In this Section I finally expose the method to reconstruct accretion curves illustrating
the evolution in mass of supermassive black holes of different types, or in other words
of different final masses. I recall that this is done starting from the assumption of a
scaling relation that allows to relate, in an unambiguous way, the growing paths resulted
from the analysis of Decode output (see Figures 3.3 and 3.6) to tracks similar to what
displayed in Figure 4.3.

In particular, since Decode actually gives information just on the total mass a galaxy
grows within a dark matter halo, the first immediate relation one should imply is the MBH
- M⋆ relation, with M⋆ the entire mass in stars of the hosting galaxy. In fact this is not
the most intrinsically accurate relation, in the sense that observations have pointed out
different behaviours depending on the galaxy morphology (see e.g. Davis et al. (2018)
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Figure 4.3: Log-mass growth along characteristic curves MBH(MBH,i, z) derived in
Shankar et al. (2009) through the procedure explained in Section 4.1. The highest red-
shift value is set to z = 4 in the plot since it is the limiting z in my future calculation.

and Sahu et al. (2019a)) or on the fact the galaxy is active or not (e.g. Reines & Volonteri
(2015)). In addition to that a relation of this type is more affected by selection bias (e.g.
Shankar et al. (2016)), because of the prohibitive (in some cases) resolution needed to
acquire a reliable black hole mass estimate from observations. Nevertheless many research
groups have attempted to calibrate MBH - M⋆ relation, especially because it becomes very
useful for observational campaigns at high redshift.

For the purposes of the project I choose not to rely on already calibrated relations and
adjust parameters of them so to have good agreement with curves of Figure 4.3. Anyway I
also collect sets of data from literature and test at least for coherency between observations
and arbitrary chosen relations. An aspect it is important to underline concerns the
normalization of these relations. In a certain sense it is less informative, in this context,
than the slope because it is degenerate with the radiative efficiency of the curves of the
reference model (S09). Since scaling relations are defined in log - log planes, a change
in the normalization has the only effect of shifting curves upwards or downwards varying
values of black hole masses of a fixed quantity at a given galactic mass. This is also true
for variations in the choice of constant radiative efficiency, ϵ, to create accretion curves.
Indeed changing ϵ makes curves in Figure 4.3 just to vertically translate in log-black hole
mass.
I proceed presenting the collected data points and the scaling relations I am going to
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apply.

4.2.1 Data sample and Chosen relations

Data are collected from the works of Kormendy & Ho (2013); Reines & Volonteri (2015);
Davis et al. (2018); Sahu et al. (2019a). It does not constitute, and it is not intended
to be, a complete selection of objects. Anyway it can be in some measure representative
of differences connected to different classes of objects and hence of the difficulties found
in having a MBH - M⋆ ’all-inclusive’. Data are manifestly scattered (see Figure 4.4) with
high variations in terms of supermassive black hole masses predicted at fixed galactic
mass. To better clarify which types of objects I am referring to, a brief description of the
data sets is reported below:

• In Reines & Volonteri (2015) authors investigate the relation between BH mass and
their host galaxy total stellar mass using a sample made of 262 broad-line active
galactic nuclei (AGNs) in the nearby universe (z < 0.055). They also add 79 galax-
ies with dynamical measures of BH masses.
The sample of broad-line AGNs is built through the analysis of the Sloan Digital
Sky Survey (SDSS) spectra of nearly 67,000 emission line galaxies in order to find
objects with broad Hα emission, characteristic of dense gas orbiting a massive BH,
and also with narrow emission-line ratios that indicate photo-ionization by an ac-
creting massive black hole. The BH masses are estimated through virial techniques
(e.g. Greene & Ho (2007a); Vestergaard & Osmer (2009); Schulze & Wisotzki
(2010)), based on the assumption that the broad-line region (BLR) kinematics is
almost only affected by the gravity of the BH, thus its mass is given by MBH ∝
r∆V2/G. In particular Reines & Volonteri (2015) use the broad Hα line following
approaches outlined in Greene & Ho (2005) and Reines et al. (2013). Total stellar
masses, M⋆ are instead obtained using mass-to-light ratios for i-band data (M/Li)
as function of g - i color (Zibetti et al. (2009)). [Related data points in Figure 4.4
are represented by sky-blue dots]
The authors collect additional objects to complete their work, including dwarf galax-
ies hosting broad-line AGNs (from Reines et al. (2013); Baldassare et al. (2015);
Thornton et al. (2008)); reverberation-mapped AGNs, with BH masses evaluated
through the time lag between the continuum flux and broad emission line vari-
ability, because it gives the light-travel time across BLR, hence the BLR radius
(from the works of Peterson et al. (2004); Bentz et al. (2009); Denney et al. (2010);
Barth et al. (2011)); finally galaxies with dynamically detected BHs, that rely on
observations capable of spatially resolving the BH sphere of influence (inventory of
BH masses from Kormendy & Ho (2013)); [Related data points in Figure 4.4 are
represented by orange dots]

• The sample from Davis et al. (2018) is made of 40 spiral galaxies with directly mea-
sured SMBH masses via proper motion, stellar dynamics, gaseous dynamics and/or
astrophysical maser emission (see also the precedent paper of Davis et al. (2017)).
For what concerns the galaxy stellar masses, imaging data are principally retrieved
from the Spitzer Survey of Stellar Structure in Galaxies (Sheth et al. (2010)), with
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central wavelength of 3.6 µm, others from Hubble Space Telescope F814W and Two
Micron All Sky Survey (2MASS) centered at 2.2 µm. Then masses are calculated
applying mass-to-light ratio following Meidt et al. (2014) and accounting for dust
emission at 3.6 µm.
The novelty in the work of Davis et al. (2018) is that it has the principal scope of
studying late-type galaxies so to provide greater insight into the mutual growth of
black holes and galaxies in a more gas-rich environment; [Related data points in
Figure 4.4 are represented by green dots.]

• In Sahu et al. (2019a) authors report a data set consisting of 84 early-type galaxies
(ETGs) with directly measured black hole masses, expanding the work done in
Savorgnan & Graham (2016b). ETGs include elliptical galaxies (E), ellipticals
with intermediate stellar disks (ES) and lenticulars (S0). BH masses are measured
from direct methods, i.e. modeling of stellar and gas dynamics. Authors prefer
to use masses calculated from stellar dynamics because stars are influenced only
by gravitational forces, while gas dynamics is also subjected to non-gravitational
forces (review of Ferrarese & Ford (2005)). For the galaxy images, the most part
are Spitzer Space Telescope (SST) 3.6 µm images taken with the Infra-Red Array
Camera (IRAC). The remaining ones are Sloan Digital Sky Survey (SDSS) (York
et al. (2000)) r’-band images and Two Micron All Sky Survey (2MASS) (Jarrett
et al. (2003)) Ks-band images. Then masses are calculated again adopting mass-
to-light ratio from Meidt et al. (2014) based on the Chabrier (2003) IMF. [Related
data points in Figure 4.4 are represented by purple dots.]

This is the time to introduce scaling-relations I choose to convert M⋆ into MBH. I
should stress again the fact that such relations do not fit the data collected above. The
latter only serve as an indication and for this reason I do not even report errors assigned
to them. The idea is indeed trying to find an optimal shape and parametrization of the
scaling relations in use, so to produce the best possible concordance between growing
curves that will be calculated and the ones predicted by the model of Shankar et al.
(2009) (Figure 4.3). In this view, a fit of data would not be the best option because it
does not let much space for variability. Actually what is needed is the possibility to test
many guesses for parameters, even with small differences between each other, and then
to decide what is the most suitable choice. In addition to that it is not said a fit would
be really meaningful because, as explained before, the samples of data selected have been
derived through different observational campaigns, hence employing different techniques
right for the targets addressed to each time. They could be active or inactive galaxies,
dwarf or giant ellipticals, ETGs or LTGs and so on. Indeed the data related to them have
been treated time by time in a diverse way and even the fits that have been performed
on them in the same works above cited are not compatible with each other.

In a first moment I have opted for a log-linear shape to assign to the relation that
could be in some agreement with the previously cited works. The parametric form is
defined by the following:

log10(MBH/M⊙) = α · log10(M⋆/1011M⊙) + β, (4.9)
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with α that indicates the slope of the relation and β the intercept at a normalization
of M⋆ = 1011 M⊙. The values I assigned by eye to α and β are listed in Table 4.1
and represent an attempt to investigate if a general concordance is achieved between all
what I have explained so far. In any literature work that tries to calibrate the MBH -

α β (dex)

1st 1.00 7.40
2nd 1.25 8.15
3rd 1.50 8.90

Table 4.1: Values chosen for parameters α (slope) and β (intercept) to be inserted in
Equation 4.9. They do not have errors with them because do not represent a fit of data.

M⋆ relation, when fitting their data authors consider a third parameter which accounts
for the intrinsic scatter in the linear relation. Values for this range between ∼ 0.20 dex
up to ∼ 0.60 dex for more scattered samples. Since it is difficult to introduce it when
converted M⋆ in MBH at each redshift-step using one of the proposed relation, I will
discuss a possible way to introduce some scatter later on. Figure 4.4 shows the arbitrary
selected relations over-plotted to the scatter plot of data collected as explained above. As
anticipated, it is evident the dispersion of observational points in the log10MBH - log10M⋆

plane. In particular it seems that the population of active galaxies (sky-blue points) stay
systematically below data concerning quiescent objects. It is also notable the fact that
late type galaxies (green points by Davis et al. (2018)) may be fitted by a steeper relation
with respect to the one of early type galaxies (purple points from Sahu et al. (2019a)).
Identifying possible reasons for such a behaviour goes beyond the scope of the present
project, some suggestion will be given in future chapters.

4.2.2 SMBH growing curves: first results

All steps traced up to now lead to the production of supermassive black holes growing
histories. Once having selected a scaling relation, this is assumed to be valid up to
redshift z = 4 and the following chain of re-parametrizations is applied: Mhalo(z) −→ M⋆(z)
(Section 3.2) −→ MBH(z). If not otherwise specified the results presented are obtained
using the stellar mass - halo mass (SMHM) relation defined as the reference model (RM)
in Section 3.2. In order to construct accretion curves comparable to the ones in Figure
4.3 in a first approximation I use total mean accretion histories of parent halos that are
derived through the application of van den Bosch et al. (2014) methodology as explained
in Section 3.1.2 and showed in Figure 3.2.

Halo initial masses are made to vary from Mhalo(0) = 1011.55 M⊙ to Mhalo(0) = 1013.95

M⊙ and with logarithmic spaced values of step ∆log10(Mhalo/M⊙) = 0.1 dex. Once the
halo masses are defined at each redshift step, they are converted into M⋆ according to
the given SMHM relation and finally into MBH through Equation 4.9 and parameters in
Table 4.1. The so-obtained black hole histories in mass do not yet distinguish between
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Figure 4.4: Different log10MBH - log10M⋆ relations arbitrarily defined. Blue line corre-
sponds to 1st set of parameters (α, β) reported in Table 4.1; Green line to the 2nd set
(intermediate slope); Orange line is built using the 3rd set in Table 4.1. They are made
to intercept each other in (8.00, 4.40) dex. Points indicate data collected from literature
works of Reines & Volonteri (2015), Davis et al. (2018) and Sahu et al. (2019a) as de-
scribed in Section 4.2.1.

merger contribution and gas accretion, they represent the total growth of a supermassive
black hole with a given final mass. In fact, I will need to separate at a certain point the
two contributions because red tracks in Figure 4.3, made following continuity equation
models, assume that only gas accretion processes are in act. Figure 4.5 summarizes all
what said and shows, from left to right, total black hole accretion histories respectively
calculated with the first, the second and the third couple of parameters as presented in
Table 4.1. Red curves in each panel are the ones by Shankar et al. (2009) and blue curves
are those computed in this thesis. Immediate considerations can be made regarding the
capability of the single relation to reproduce the model of reference (red curves).

1) On the left the assumed relation between MBH and M⋆ is a pure relation of propor-
tionality, specifically MBH/M⋆ = const. This constant of proportionality evaluated
from the parameters I have introduced is ≈ 2.5 × 10−4. Actually it is not strictly
significant in the sense that it is degenerate with the radiative efficiency ϵ applied to
get red curves and varying the constant has only the effect of rising up or down blue

56



4.2 – Building accretion curves: MBH - M⋆ relation

curves. What is more important is the shape of the resulting tracks. In this case
disagreement with curves of Shankar et al. (2009) can be highlighted in a twofold
perspective: following curves from past to present epochs or the contrary. On one
side it can be observed that the growing rate is not enough to match the accretion
model; at low redshift, models of similar masses at z ≈ 4 to the ones predicted by
Shankar et al. (2009) model, systematically stay below these latter. On the other
side, if starting from similar masses at low z, blue curves systematically remain
above curves of the reference model. In any case a relation of proportionality be-
tween MBH and M⋆ predicts black holes with a too low evolution, meaning that at
each change in M⋆ as function of z the change in MBH should be more accentuated.
This would imply a super-linear relation in terms of physical masses or a steeper
linear relation in terms of log-masses;

2) The central panel of Figure 4.4 is representative of an intermediate situation between
a linear MBH - M⋆ relation and a relatively high super-linear relation. Slope inserted
in Equation 4.9 is α = 1.25. In this second case the agreement is fairly good at
smaller black hole final masses (z ∼ 0), up to approximately MBH(0) ≃ 107−7.5 M⊙.
From those values on the situation worsen, and again black hole differential growths
appear to be much lower than what should be in comparison of the Shankar et al.
(2009) model. One should search for a steeper log-linear relation, at least when
considering conversion towards higher final black hole masses;

3) Last case, on the right, is related to a slope α = 1.50 which can be described as
significantly steep. When compared to relations of lower slopes, relevant effects
are observed at the two extremes of masses range. It means that, according to
intercepts and normalization chosen, below M⋆ ≈ 108 M⊙ (see conjunction point
of lines in Figure 4.4) predicted black hole masses start to be progressively much
smaller than ones predicted by e.g. a relation of α ∼ 1; on the opposite side instead
the converted black hole masses begin to be much higher than the latter cases. This
is reflected in the behaviour of blue curves in the respective panel of Figure 4.5,
where resulted growing rates are slightly too high at smaller masses (maybe a less
steep relation is needed there), while a not bad agreement is found at higher masses,
probably because of a fortunate combination between black hole mass conversion
and a slow evolution of the galaxy itself at that range of masses (see Figure 3.6).

To sum up, what emerges after this first tentative of reconstructing SMBH accretion
curves is that a diverse behaviour is expected between black holes at low mass and high
mass end. In my opinion, a consequence of such an observation, in terms of scaling
relation, is the fact that it could be advisable also to take into consideration broken
power law relations, i.e. a change of slope at a certain M⋆ (MBH) characteristic.

4.2.3 Broken power law relation

The analysis made in the above Section has suggested that a broken-power law MBH - M⋆

relation would produce black hole accretion curves in better agreement with the model of
growing proposed in Shankar et al. (2009). It is important to underline that in the present
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Figure 4.5: Supermassive black holes growing curves calculated following the procedure
described in Section 4.2 are colored in blue, while the dashed-red curves are representative
of the results obtained from the model of S09, outlined in Section 4.1. From left to
right, the sets of lines (blue) are derived through the application of Equation 4.9 to
global growths (gas accretion + mergers) of the stellar mass of hosting galaxies, and the
parameters adopted can be found in the Table 4.1 respectively.

Section the solution I come up with is not necessary accompanied to physical explanation.
It is just to show that the shapes of the growing tracks can reach an alignment to the
ones of Figure 4.3, if one employs a certain type of scaling relation in this context.

The relation I am going to adopt has the following parametric form:

log10(MBH/M⊙) =
{︄

α1 · log10(M⋆/1011M⊙) + β1 if M⋆ < M⋆,ch

α2 · log10(M⋆/1011M⊙) + β2 if M⋆ ≥ M⋆,ch
(4.10)

with M⋆,ch the characteristic stellar mass at which the change of slope (or of power-
low) is applied. Values of α1 and β1 selected are the same as the ones in the second
line in Table 4.1: (α1, β1) = (1.25, 8.15 dex). This is because, as pointed out before,
with these parameters the conversion M⋆ −→ MBH predicts growing curves with shapes
comparable to the ones of Shankar et al. (2009). For what concerns the characteristic
mass, after some adjustments, the value I insert is M⋆,ch = 109.8 M⊙. Again this is only
a consequence of my calculation and not intended to arrive to a physical hypothesis.
Finally α2 and β2 are chosen so to reproduce red curves of the model of reference and
also to be in agreement with the findings of Sahu et al. (2019a) in their global fit of
the entire sample of ET galaxies valid for MBH ≳ 107 M⊙ (see Equation (11) of their
paper). Given values are (α2, β2) = (1.65, 8.63 dex) and the broken power law relation so
built up is represented in Figure 4.6, analogous to Figure 4.4 with single-slope log-linear
relations. Global accretion curves of supermassive black holes, obtained from initial halo
masses between Mhalo = 1011.55 - 1014.15 M⊙, same SMHM relation (RM) as before and
the broken-power low black hole - stellar mass relation, are showed in Figure 4.7a. I have
increased a little bit the range of halo masses so to have clearer view of concordance.
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Figure 4.6: Broken power-low relation in log10(MBH) - log10(M⋆) plane (red curve). Data
points are the same as described in Section 4.2.1, from Reines & Volonteri (2015), Davis
et al. (2018) and Sahu et al. (2019a).

Indeed at smaller black hole final masses it seems that the adopted relation is effective in
reproducing Shankar et al. (2009) red accretion curves. This is slightly less true at higher
final masses, where resulted tracks appear to have exceeding growth rates with respect to
what predicted by the RM. i) Surely this is in part due to the fact that the BHs growth
taken in consideration so far is a global growth, hence I should subtract the contribution
of mergers which can be conspicuous at low redshift for massive objects. ii) A secondary
aspect may be responsible for such a behaviour, that is the role of the SMHM relation of
use. In Figure 3.5 of Section 3.2, the RM SMHM relation is displayed along with the one
obtained by the model of Moster et al. (2018) (Mo18). As anticipated in that occasion,
the latter has similar trend in correspondence of high mass end as the one of the RM, but
only at low redshift. When considering the evolution of such relations, instead, the one
of RM has a manifestly wider scatter in this sense and that is reflected in the growing
histories of stellar components. As one can perceive by looking at the right panel of
Figure 3.6, growing curves of RM tend to stay above the ones of Mo18 that flatten at
low redshift. In order to see the effects that a different choice of SMHM relation implies,
I calculate total BH growing curves inserting Mo18 relation when converting from halo
masses to stellar masses, instead of the RM one, and I decide to concentrate on the results
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obtained at higher masses. In particular I start from final halo masses Mhalo ≳ 1012.5

M⊙ so to have notable differences. Figure 4.7b visualizes curves obtained in the situation
just depicted, and effectively a mild improvement is achieved in terms of growing rates
of the curves compared to the model of reference. In particular the former follow better
the flat (less and less accretion) trend of the latter ones. Anyway at this point a deeper
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Figure 4.7: Panel (a) shows the global accretion curves (blue) of SMBHs that are evalu-
ated using the broken power law relation of Equation 4.10 to convert M⋆(z) to MBH(z),
and the stellar mass - halo mass relation of reference (RM, see Section 3.2) to convert
Mhalo(z) to M⋆(z). Panel (b) is the same but the blue lines, this time, follows from a M⋆

converted by the SMHM relation of Moster et al. (2018). Only growing paths of black
holes with higher final masses are represented since at lower masses an agreement with
red-dashed curves of S09 is not found, due to the shape of SMHM in that range.

analysis should be conducted in the evaluation of mergers contribution in the growing
histories of supermassive black holes. In other words I investigate if Decode information
about mean merger accretion for each halo is compatible with the input scaling relation
in terms of predicting the ’only’ gas accretion curves of the reference model.

4.2.4 Contribution of mergers

In this Section and for the rest of this Chapter, when making considerations about mean
merger contribution what is intended is a maximal merger contribution. It means that
I always make the assumption that for all subhalos that have ever fallen into the parent
halo a BH-BH merger occurs. This is probably not the case, in the sense that the exact
merger mechanism of two supermassive black holes is still not completely understood.
However, as I am going to expose in a while, this maximal contribution approach has no

60



4.2 – Building accretion curves: MBH - M⋆ relation

net impacts when applied at low mass regimes. On the other hand consequences become
non negligible moving towards more and more massive objects, and that should imply
further considerations and adjustments.

In the meantime the procedure followed in order to acquire mean merger histories
is analogous to what I have presented in Section 3.1.2. I report below the main steps
already discussed there and the additional ones that allow to retrieve something similar
to Figure 3.3, but for supermassive black holes.

i) Collect ∼ 60 parent halos among the output_parents.txt catalogue, derived by a
run of Decode, and within a single halo mass bin of size ∆log10(Mhalo/M⊙) = 0.1
dex. The chosen number is enough to have a good statistics;

ii) For each of these parent halos retrieve all the in-falling subhalos related to them
that can be found in the catalogue output_mergers.txt;

iii) Convert each subhalo with mass Msubhalo in stellar mass, M⋆, through the SMHM
relation of input (RM in our case), and then into black hole mass, MBH, through
the scaling relation defined (broken power low in Section 4.2.3);

iv) For the time interval between z = 0 - 4 divided in steps of dz = 0.1, calculate the
merger cumulative accretion history of the single objects. This is done by summing
at each redshift step, z, all the ’in-falling’ black holes, meaning the ones associated
to a zinf ≥ z;

v) Determine the mean of the ∼ 60 tracks so-obtained, ⟨MBH,merg(z)⟩ and the error of
the mean σBH,merg(z);

vi) Finally subtract the mean merger contribution to the average total growing curves,
blue curves introduced in Section 4.2.3. The result of this operation is a set of mean
tracks (of different final masses) that reproduce the gas accretion onto supermassive
black holes and that can be coherently compared to the model set by Shankar et al.
(2009).

Results related to two SMBHs with significant different masses are displayed in Figure
4.8. On the left it is shown the case of a typical black-hole of final mass ≈ 107 M⊙ and
on the right of a final mass slightly higher than 108 M⊙. In both of them the blue curve
corresponds to the subtraction ⟨MBH,tot⟩ - ⟨MBH,merg⟩ with mean merger being traced
by orange line. Light orange and light blue shaded areas account respectively for the 1σ
error of the mean merger history and for a scatter arbitrarily added to the accretion curve
obtained from the subtraction. This latter is inserted firstly to have an idea of what would
be the discrepancy between the model of reference and the results obtained, secondly
because as mentioned in Section 4.2.1 an intrinsic scatter in MBH - M⋆ exists and it is not
easy to compute. In this context, since there is not the possibility of evaluating a ’real’
error, I assign a ’fake’ scatter so to encompass the curves of the reference model within
it. What can be noted is the fact that in the case of smaller supermassive black hole the
concordance is better and the two curves (red and blue) are yet compatible if a scatter of
∼ 0.25 dex is included. On the other hand an higher value of ∼ 0.35 dex should be added
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in the case of the black hole on the right of Figure 4.8 to have complete concordance.
These values are just estimates of the order of magnitude of the discrepancies I obtain
applying all the procedure described so far. Naturally this is only one example among
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Figure 4.8: Left: blue curve traces the gas accretion history of a SMBH with a final
mass of ≈ 107 M⊙ as calculated from i) the application of the broken power law scaling
relation (Equation 4.10) for the conversion M⋆ - MBH and ii) the subtraction of the mean
contribution of mergers in that case, given by the orange curve (see Section 4.2.4 for
the details of derivation). The orange shaded area considers the 1σ error of the mean
track, while blue shaded area represents an arbitrarily scatter (of ∼ 0.25 dex) added so
to enclose the red-dashed curve, referred to the S09 model. Right: same as the panel on
the left, but valid for a SMBH with a final mass of ≳ 108 M⊙. In this second case the
arbitrary chosen scatter is of ∼ 0.35 dex.

an infinite number of possibilities and the real result is not the exact parametrization
of the scaling relation. What matters is to illustrate the potentiality of this application,
that is indeed self-reliable and almost without the need of initial assumptions about the
physical mechanisms involved. One could in a second moment adopt a more quantitative
approach and make constraints about the evolution of a supermassive black hole.

At this level of analysis it is still possible to note some interesting characteristics of
the curves derived. In the first place I repeat the fact that in order to obtain a general
concordance with the lines of Shankar et al. (2009) one should introduce a variation in
what is a perfect log-linear relation to be maintained in all past epochs. The solution for
which I opted in this Chapter has been the introduction of a sort of plateau towards low
mass end of the MBH - M⋆ scaling relation. In Chapter 6 I am going to mention another
possible way out that consists in hypothesizing a redshift evolution of the relation in use,
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4.2 – Building accretion curves: MBH - M⋆ relation

with the effect of rising up values at low masses. Other possibilities are to consider non
log-linear scaling relations, of second, third etc. order in the log10(M⋆) variable. Actually
the only method to get true indications would be the availability of data for low mass
SMBHs (or galaxies) so to reduce the scatter, in particular in that region of the diagram
(see again Figure 4.6).

Another piece of information regards the contribution of mergers, that will be dis-
cussed in more details in the future of this thesis. Focusing now on Figure 4.8, what
can be pointed out is that the mass gained by mergers is, at least up to SMBH final
masses of ∼ 108 M⊙, of second order with respect of the predicted contribution by gas
accretion. In the case presented on the left panel actually the percentage of total merger
contribution with respect to the global growth is negligible, of the order of 0.5 - 0.6 %;
for a SMBH similar to the case found on the right panel the merger contribution is again
of secondary importance even if ten times bigger than the former one: nearly 5 - 6 %.
These percentages are actually quit surprising because, as said previously, what I am
calculating is the maximal merger contribution. I am not going to expand about possible
implications of such a finding. Another aspect that can be useful to introduce at this
level is the fact that for higher and higher black hole masses (meaning higher starting
halo masses) the merger contribution begins to be important, especially at low redshift.
In that situation, it may also happen that the mass acquired through mergers is even
larger than the total mass predicted and this produces something not physical and to
be discarded. A suggestion to improve this will be given in Chapter 6, and will imply a
delay time, actually the merging timescale, tmerg, explained in 2.2.4, in order to reduce
the number of mergers that enter in the cumulative mean merger history.

Before going deeper in the analysis of all these issues, I would like to complete the
discussion about scaling relations and their use in this project also showing how it can
be feasible to obtain results through MBH - σ relation. This is less obvious than before
since no data about dynamics are given, the returns of Decode are only in terms of
total galactic masses. However, it would be a pity not to rely on MBH - σ relation since
it is thought to be the most fundamental one (e.g. Marsden et al. (2020)). I am going
to devote next Chapter to the explanation of how the stellar velocity dispersion, σ⋆, can
be inferred from global stellar mass, M⋆, and how, following the same passages, similar
results are obtained. Strictly speaking not additional information is really added since
the starting point is always the same, i.e. M⋆. Indeed the purpose is not to get to final
solutions about scaling relations, but to make evident the fact that, with few and simple
steps, the applications of Decode are really manifold.
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Chapter 5

Main: SMBH application II

The first observational works on the relation between central black hole mass, MBH,
and the stellar velocity dispersion, σ, of a galaxy (Ferrarese & Merritt (2000); Gebhardt
et al. (2000)) revealed a relation with little or no intrinsic scatter, suggesting that this
relation could be the most fundamental one. Since then, the MBH - σ relation has been
widely studied by the astronomical community since it is believed to be connected to the
galaxy/halo gravitational potential well and hence to AGN feedback processes (see e.g.
Granato et al. (2004)). The relation is typically written in the form:

log10(MBH/M⊙) = α · log10(σ/200kms−1) + β. (5.1)

The values for the slope and normalization in Equation 5.1 initially retrieved by Ferrarese
& Merritt (2000) were α = 4.80 ± 0.54 and β = 8.14 ± 1.80. However other recent works
have reported different values, e.g. Tundo et al. (2007) suggest values of α = 3.83 ±
0.21 and β = 8.21 ± 0.06. There is some debate in literature about the exact shape
of the MBH - σ relation and about its dependence on galactic properties, such as the
morphological type, or even on the environment (see e.g. Wyithe (2006); Lauer et al.
(2007a); Hu (2008)). There is a general consensus, instead, on the fact that MBH - σ
relation only weakly evolves with redshift (e.g. Gaskell (2009); Salviander & Shields
(2013); Shen et al. (2015)). This has been also supported by other works that base their
conclusions on direct observations of high redshift quasar samples (Woo et al. (2008)) or
as seen in Shankar et al. (2009) from the comparison between the cumulative accretion
from AGN with the local black hole mass density obtained through the employment of
the MBH - σ relation.

The questions to be addressed in this context are the following: i) how the velocity
dispersion can be retrieved from the total stellar mass of galaxies? ii) Which type of MBH
- σ relation is better in describing SMBHs accretion curves when compared to the ones of
Shankar et al. (2009)? iii) How much is the predicted contribution of mergers? iv) Is the
whole process consistent in its results? I am going to answer to them in next Sections.
Essentially, apart from a first part, the way of proceeding will be the same as what seen
in Chapter 4.
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5.1 Velocity dispersion from M⋆

The main equation of reference to relate the stellar velocity dispersion, σ⋆, to the total
galactic mass, M⋆ is the Equation (2) in Bernardi et al. (2018) reported below:

M⋆ = k(n, R)Reσ
2
R/G. (5.2)

The above equation follows from the assumptions that the contribution of dark matter on
the velocity dispersion σR, evaluated within the projected radius R, is negligible, that the
galaxy is not rotating and has an isotropic velocity dispersion and that the total mass-
to-light ratio is constant. In that case the Jeans’ equation implies that the shape of the
luminosity-weighted projected velocity dispersion profile is fully determined by the shape
of the surface brightness profile (Prugniel & Simien (1997)). Therefore, the dynamical
mass can be estimated by finding the mass-to-light ratio which correctly predicts the
amplitude of σR on a scale; if all the assumptions before stated are accurate, then this
same value will be returned whatever R one chooses to match.

The other terms in Equation 5.2 are the projected half-light radius Re, i.e. the radius
within which half of the galaxy’s luminosity is contained, the universal gravitational con-
stant G and the coefficient k(n, R) that is determined using the Prugniel–Simien method-
ology for each R, with n being the Sérsic index characterizing the surface-brightness pro-
file. The k coefficient can be calculated for various ratios of R/Re and I decide to use
values related to R = Re/8 so R/Re = 0.125. This is because the velocity dispersion
within it, σe/8, should be in principle not much influenced by the presence of dark mat-
ter, hence being subjected only to the gravitational effect of the central supermassive
black hole. In Bernardi et al. (2018) values of k are reported for different indexes n in
the range [2, 10] and they can be found here in Table 5.1.

The terms Re and n in Equation 5.2 are actually still missing because the only infor-
mation we dispose of is the M⋆. Thus the former have to be related to the latter and this
is done adopting both semi-analytic and observational prescriptions.

• The M⋆ - Re relation I am going to use is the redshift-dependent one found in
Marsden et al. (2022), in turn derived following Ricarte & Natarajan (2018):

Re(M⋆,z) = Re(M⋆, 0)f(M⋆, z). (5.3)

Re(M⋆, 0) represents the local relation between the effective radius and the stellar
mass. The one I choose to adopt is obtained from the observational work of Hyde
& Bernardi (2009). The parametric form used to fit data is given by:

log10Re = p0 + p1log10(M⋆/M⊙) + p2[log10(M⋆/M⊙)]2, (5.4)

with resulting best fit parameters p0 = 7.55 ± 0.44, p1 = -1.84 ± 0.08 and p2 =
0.110 ± 0.004.
The term f(M⋆, z) accounts for the redshift evolution of the relation and in Marsden
et al. (2022) it is assumed the following expression for it:

f(M⋆, z) = (1 + z)−γ(M⋆), (5.5)

66



5.1 – Velocity dispersion from M⋆

n R/Re = 0.125

2.00 7.20
2.50 6.46
3.00 5.76
3.50 5.15
4.00 4.62
4.50 4.17
5.00 3.79
5.50 3.46
6.00 3.17
6.50 2.92
7.00 2.70
7.50 2.50
8.00 2.32
8.50 2.16
9.00 2.01
9.50 1.88
10.00 1.75

Table 5.1: Dependence of coefficient k(n, R/Re) in Equation 5.2.

and
γ(M⋆) = A · log10M⋆[(B · log10M⋆)p + (C · log10M⋆)s]−1, (5.6)

with A = 3.05 × 10−3, B = 9.67 × 10−2, C = 0.204, p = -39.0 and s = -4.30;

• For what concerns the M⋆ - n relation the one I am going to use is evaluated by Sahu
et al. (2020) for the spheroidal component of early type galaxies (ETGs) reported
below:

log10(M⋆,bulge/M⊙) = (3.27 ± 0.25)log10(nsph/3) + (10.50 ± 0.06). (5.7)

Actually this is valid just for spheroids but I decide to employ it in any case because
it just enters in the calculation of the coefficient k(n, R) that is itself approximated.

At this point all ingredients entering in Equation 5.2 have been defined and it is possi-
ble to get values of σe/8 at each wanted redshift. It is then straightforward to derive MBH
out of σe once a specific black hole mass - velocity dispersion relation has been identified.
I am going to exactly apply the same steps as before: i) I collect an heterogeneous sam-
ple of local data concerning the MBH - σ relation from different literature works; ii) try
different values to assign to the parameters of the log-linear relation (i.e. Equation 5.1)
and make considerations about the shapes of black hole accretion curves so determined,
always in comparison of curves of the reference model; iii) evaluate the contribution of
mergers in the growing process adopting the type of conversion (scaling relation) that
better suits the curves of Shankar et al. (2009).
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5.2 Data sample and Chosen relations
This Section is intended to present in some details the sets of data collected, with again
the clarification that those data will not be used to perform a fit. I repeat the fact that it
is just to have an indication of possible consistency between what will be my results and
what one should expect from ’reality’. Since now, much effort has been made in trying
to calibrate the MBH - σ relation and choosing representative works is not an easy task.
The ones I am going to describe are just a few, many others could have been considered.

• A first set of data is taken from Xiao et al. (2011), where the authors investigate the
low mass end of the MBH - σ⋆ relation. They present new measurements of stellar
velocity dispersion for 76 Seyfert 1 galaxies selected from the sample of broad-line
active galaxies with low-mass BHs in Greene & Ho (2007b) (BH masses estimated
with single-epoch virial method). Observations are made with the use of the Keck
Echellette Spectrograph and Imager (ESI) and the Magellan Echellette (MagE),
and then results are combined with other ESI observations of similar objects so to
have a final sample of 93 galaxies with BHs of masses below ∼ 2 × 106 M⊙; [Related
data points in Figure 5.1 are represented by pink dots]

• Other data are retrieved from the work of Kormendy & Ho (2013) in which they
review all the information available up to that time about the 87 supermassive
black holes found at the center of galaxies. MBH measurements are based on stellar
dynamics, ionized gas dynamics, CO molecular gas disk dynamics, or maser disk
dynamics. Host galaxies belong to different morphologies, some of them are ellipti-
cals and others disk galaxies with classical or pseudo-bulges. For the stellar velocity
dispersion, σe, they adopt the convention that σ2

e is the intensity-weighted mean of
V2 + σ2 out of a fixed fraction of the effective radius Re. In particular authors use
Re/2 when σe is calculated from photometry and published kinematics. Otherwise
σe is from the MBH source paper from Gultekin et al. (2009). [Related data points
in Figure 5.1 are represented by green dots]

• Next set of data collected comes from Sahu et al. (2019b). In this work the authors
identify 145 galaxies, both early- and late-type (ETGs and LTGs), with directly
measured SMBH masses obtained from stellar dynamics, gas dynamics, kinematics
of megamasers, proper motion, or direct (recent) imaging techniques. Most part
of data about ETGs galaxies are from Savorgnan & Graham (2016b) and Sahu
et al. (2019a), the remaining from Nowak et al. (2007), Gultekin et al. (2014),
Huré et al. (2011), Nguyen et al. (2018), Thater et al. (2019) and Boizelle et al.
(2019). Data related to LTGs are mainly obtained from Davis et al. (2018) and
Davis et al. (2019), the rest part comes from the works of Combes et al. (2019)
and Nguyen et al. (2020). The velocity dispersion has been measured in many ways
in literature, e.g. luminosity-weighted line-of-sight velocity dispersion within one
effective radius, Re; luminosity weighted line-of-sight stellar rotation and velocity
dispersion within one effective radius of either the spheroid or the whole galaxy; or
velocity dispersions within an aperture of radius equal to one-eight of Re,sph, σe/8.
Due to the inconsistency in the use of aperture size and contamination linked to
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disk rotation when considering large aperture, authors in Sahu et al. (2019b) decide
to use the central velocity dispersion data taken from the HyperLeda database
(Paturel et al. (2003)). Velocity dispersions found in there are homogenized for a
uniform aperture of size of 0.595 h−1 kpc; [Related data points in Figure 5.1 are
represented by yellow dots]

• Other data included are from de Nicola et al. (2019) in which they use a sample
of 83 BH masses collected from reliable spatially resolved estimates available from
literature. Authors start with the big compilation of BH masses from Saglia et al.
(2016), with some additional galaxies from Kormendy & Ho (2013), van den Bosch
(2016) and from Krajnović et al. (2018). All BH masses are measured through
stellar dynamics, gas dynamics or astrophysical masers, hence derived from spatially
resolved kinematics. The authors then discard BHs with upper limits on their
masses or estimates from reverberation mapping and virial methods, because these
should be calibrated with MBH - galaxy relations. Effective velocity dispersions are
retrieved from the same sources as before (Saglia et al. (2016), Kormendy & Ho
(2013) and van den Bosch (2016)); [Related data points in Figure 5.1 are represented
by orange dots]

• The final set taken into consideration is collected from Baldassare et al. (2020).
In this paper the authors obtain new stellar velocity dispersion measurements for
eight active dwarf galaxies with M⋆ < 3 × 109 M⊙ and low mass black holes. These
objects are drawn from the sample of Reines et al. (2013) dwarf galaxies with both
broad and narrow optical emission line signatures of AGN activity. Measures for
the velocity dispersion are taken again using the Keck Echellette Spectrograph and
Imager (ESI) as in Xiao et al. (2011) and BH masses are obtained through virial
methods. In addition to the eight galaxies, other systems are reported in the work
so to investigate the low mass-end of MBH - σ⋆ relation. They are taken from
Filippenko & Sargent (1989), Barth et al. (2004), van den Bosch & Tim de Zeeuw
(2010), Baldassare et al. (2015), Baldassare et al. (2016), Nguyen et al. (2018) and
Nguyen et al. (2019). [Related data points in Figure 5.1 are represented by blue
dots]

Now that observational data have been collected, they can be represented as a scatter
plot in the log10(MBH) - log10(σ) plane so to observe what types of relation would possibly
describe them. In a first moment a purely log-linear relation is considered, specifically
the equation of reference is Equation 5.2. As done in the analogous Section 4.2.1 of
Chapter 4, some values for the parameters α and β are arbitrarily inserted in order to
get basic understanding about the shapes of BH accretion curves derived from them, and
to investigate if or not they tend to be in agreement with Shankar et al. (2009) model. It
has to be said that many works in literature (including the above-mentioned ones) have
found relations of type MBH ∝ σ4, hence a reference value for the α parameter I decide
to adopt is right this one. Other two cases are then analyzed which are opposites, in a
certain sense, to the former and all of them are listed in Table 5.2. Finally Figure 5.1 puts
together all what explained so far: the sample of data selected is represented by colored
dots, while straight lines are the scaling-relations related to parameters introduced. A
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α β (dex)

1st 2.50 7.50
2nd 4.00 8.30
3rd 5.00 8.60

Table 5.2: Values chosen for parameters α (slope) and β (intercept) to be inserted in
Equation 5.2. They do not have errors with them because do not represent a fit of data.

thing that is interesting to note is the fact that, even though the observational data
collected belong to variate samples and are obtained employing different methods, they
are much less scattered than what seen in the complementary Figure 4.4. In the former
plot data dispersion along the y-axis is at most of the order of 2 dex, while in the situation
representing MBH - M⋆ it can reaches values above 3 dex.
For what regards the scaling relations, it is evident that the one assigned with the first
couple of parameters in Table 5.2 (blue line in the Figure 5.1) is not compatible at all with
the most of the considered mass ranges. This is in fact made on purpose so to investigate
how the low mass end of the scaling relation, for which data are necessarily more sparse,
tends to behave. The other two, instead, appear to be more reliable at intermediate and
high masses, and less in line at low masses. Therefore it would be interesting to observe
the black hole accretion curves resulting from them. Again at first approximation what
is considered is the total accretion of a supermassive black hole, disregarding for the
moment the role of mergers. This is to have a first feeling of which type of relation would
be more suitable. Next Section is devolved to this purpose.

5.3 First results

In order to continue the parallelism of what done previously for the case of MBH - M⋆

relation, supermassive black hole growing curves are produced starting from the same
initial halo masses, between Mhalo(0) = 1011.55 M⊙ and Mhalo(0) = 1013.95 M⊙, making
them evolve according to van den Bosch et al. (2014) and finally through the series
of re-parametrization: Mhalo - M⋆ (RM) - σ - MBH getting the accretion tracks to be
compared to the ones of Figure 4.3. Applying scaling relations defined in the previous
Section, what is obtained is depicted in Figure 5.2. At first glance, it can be pointed
out that it is as if the resulting blue curves are shifted downwards with respect to the
situation of Figure 4.5, in particular since I have made them start from same values of
Mhalo(M⋆). I have already discussed about degeneration between the normalization of
scaling relations and the radiative efficiency used to calculate red dashed curves. Hence
one could just change the β parameters, increase them by the same amount and re-align
everything. However in doing so, log-linear curves in the log10(MBH) - log10(σ) plane
reach positions systematically above the data points and, even though such curves are
not fit of them, that would be not desirable. A possible explanation is that I may have
introduced a source of systematic in the passage from M⋆ to σ. Indeed this is not absurd
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Figure 5.1: Different log10MBH - log10σ relations arbitrarily defined. Blue line corresponds
to 1st set of parameters (α, β) reported in Table 5.2; Red line to the 2nd set (intermediate
slope); Green line is built using the 3rd set in Table 5.2. They do not have a common
interception since it would be more difficult than what done in the case of Figure 4.4 due
to the less scatter in observations. Points indicate data collected from literature works
of Xiao et al. (2011), Kormendy & Ho (2013) and Sahu et al. (2019b), de Nicola et al.
(2019) and Baldassare et al. (2020) as described in Section 5.2.

since the relations considered are themselves models or calibrations out of observational
data, hence in any case subjected to a part of uncertainty. Actually trying to define and
adjust such errors is another matter and beyond the scope of the project. However if
we trace back the steps made in Section 5.1 and consider that I am working with log
relations, that I am starting from the same values of M⋆ as in the previous Chapter, that
variations in the k coefficient (see Equation 5.2) among the ones found in Bernardi et al.
(2018) would be too mild to be responsible of the shift of curves in Figure 5.2, then the
probably most influencing term is in the definition of the effective radius Re. I find that
if values assigned to it are reduced of almost a half, the parallelism with the situation
in Chapter 4 is re-established without the need of shifting up all the normalizations in
the MBH - σ relations. In fact, it is not a negligible reduction the one applied to Re and
would imply a down-shift of nearly 0.3 dex in the log10(M⋆) - log10(Re) relation. In any
case I decide to opt for this type of adjustment so to maintain order and consistency

71



Main: SMBH application II

between all the passages I have performed so far, with some cautions including the fact i)
that this could not be the best resolution, ii) that some other relations between M⋆ - Re
could be investigated, iii) that it is not said the relations used are the optimal ones, iv)
errors may have been made before in the part concerning MBH - M⋆ relation and v) that
I am not taking into account what effect the variation of the radiative efficiency would
produce in curves of Shankar et al. (2009). New results obtained with the reduced Re are
displayed in Figure 5.3. At this level some comments about the goodness of results are
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Figure 5.2: Supermassive black hole growing curves: blue ones represent total accretion
(not subtracted by merger contribution) and red dashed ones are the tracks of Shankar
et al. (2009). Redshift range is from z = 0 and z = 4. In the left panel curves have been
obtained employing the relation parametrized by the first couple of α and β in Table 5.2,
central panel is instead related to the second couple of parameters and on the right curves
resulting from the third set are plotted. For all of the three situations the starting halo
masses are the same.

needed, always in comparison to the reference curves of Shankar et al. (2009).

1) The first set of curves, found in the left panel of Figure 5.3, are referred to the
parameters α = 2.50 and β = 7.50. I have already underlined that a relation of this
kind is almost completely in disagreement with observational data. However, what
can be evinced looking at the figure is the fact that at low masses the so-produced
accretion tracks have growth rates of similar trend with respect to the ones of the
reference model. Apparently this quite good behaviour is maintained up to nearly
black hole masses of MBH ∼ 106.5 M⊙. Above these values of mass, the predicted
growing rates appear to be too mild to correctly describe Shankar et al. (2009)
curves, meaning a steeper log-linear relation is needed to make the former keep up
with the latter;

2) The situation illustrated in the middle panel of Figure 5.3 is representative of results
obtained applying a MBH - σ relation of the type MBH ∝ σ4 that, as mentioned, is
something expected from literature works. Indeed a fair agreement is not excluded
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Figure 5.3: Same as Figure 5.2, but with curves obtained after the reduction of the Re
term evaluated from M⋆.

at intermediate black hole masses, saying in between MBH ∼ 106 and MBH ∼ 108

M⊙, which is more or less the range where most part of observations is retrieved.
At higher and higher masses, however, the rates of growth are again too slow in
comparison the the ones related to the curves of Shankar et al. (2009) and another
possible change of slope is advisable;

3) Final relation introduced is of the type MBH ∝ σ5, which is not distant to some
findings in literature (e.g. the slope in Ferrarese & Merritt (2000) of α = 4.80 ±
0.54). In this case at low masses the curves produced have far too steep growing
rates, and as it is notable also in Figure 5.1 values of BH masses predicted (green
line) seem well below observational data in that range. For BH masses ≳ 107 - 107.5

M⊙, instead, we obtain fair good improvements in terms of comparison between
blue curves growing rates and the ones of red curves.

As for the case of MBH - M⋆ relation, a single slope log-linear scaling relation may
not be the perfect choice when one uses it to reconstruct the mass growing history of
supermassive black holes. In the next Section I am going to look for alternatives that
would produce a general agreement, meaning at all mass steps considered. In particular
two are the proposed relations: a broken power law type relation and a log-quadratic
relation, or in other words a parable in the log10(MBH) - log10(σ) plane.

5.4 Alternative relations

In consideration of the analysis made in the previous Section about results of Figure 5.3,
if one wants to apply a single scaling relation to be valid at each redshift step between z
∼ 0 - 4 and for every SMBH of final mass in the range MBH ∼ 106.5 - 109.5 M⊙, then a
simple log-linear relation is not efficient in reproducing the results of the Shankar et al.
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(2009) model. Hence I firstly decide to test if a broken power law type MBH - σ relation
would be more suitable for our purposes.

5.4.1 Broken power law MBH - σ relation

The Equation to be parametrized in that case is of the form:

log10(MBH/M⊙) =
{︄

α1 · log10(σ/200kms−1) + β1 if σ < σch

α2 · log10(σ/200kms−1) + β2 if σ ≥ σch
(5.8)

where σch indicates the limiting value of velocity dispersion at which a change in the slope
is expected. Naturally finding optimal parameters is not an easy task since the aim is to
achieve a good, but qualitative, comparison with the curves of the reference model (still
not considering mergers). Observing the trend of curves in Figure 5.3, the most intuitive
options for α1 and β1 parameters, at low mass ranges, correspond to the first couple in
Table 5.2: (α1, β1) = (2.50, 7.50 dex). For the characteristic σ a tentative value could be
σch ≈ 101.9 km s−1, to which is assigned a MBH ≈ 106.5 M⊙. The other two parameters are
defined after various attempts and the final values chosen are: (α2, β2) = (4.80, 8.40 dex).
A slightly higher slope is necessary to rise values up of a ’correct’ amount. The relation so
built is represented in the left panel of Figure 5.4, again over-plotted to the same sample
of data as before. The global accretion tracks that come out applying this type of scaling
relation are illustrated in left panel of Figure 5.5. Generally speaking a similar trend is
perceived, even if curves have growths not smooth in the region corresponding to change
of slope because such a variation is quite brusque. In this view another option would
be to consider a log-quadratic relation so to have gradual global variation of the slope.
Actually there are some works, e.g. Gaskell (2009), that try to fit data with a relation
quadratic in log10σ, hence that could not be so distant from ’reality’. In any case, mine
is only a tentative to smooth the accretion tracks and at the same time maintaining a
sort of consistency with observational data points.

5.4.2 Log-quadratic MBH - σ relation

The equation that describes the conversion has the following parametric form:

log10(MBH/M⊙) = a · [log10(σ/kms−1)]2 + b · log10(σ/kms−1) + c, (5.9)

with a, b and c the parameters arbitrarily introduced. In choosing them I try to make
the parable to be nearly tangent to the flatter part of the broken power law at low masses
and to the steeper part at higher masses. In this way just mass values at intermediate
steps would be subjected to a considerable change. The parameters I have adopted are
given by: (a, b, c) = (1.10, - 0.35, 3.45). The relation in the log10(MBH) - log10(σ) plane
is displayed in the right panel of Figure 5.4. In this latter I have also reported again
the log-linear relation pertaining to the second couple of α and β in Table 5.2, in order
to see that in the intermediate part of the range of masses considered the parable has a
similar behaviour as such log-linear relation. The emerging series of accretion paths of
supermassive black holes can be observed on the right panel of Figure 5.5.
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Figure 5.4: Alternative MBH - σ scaling relations introduced in Section 5.4. Left: scatter
plot of the data collected and presented in Section 5.2 with, superimposed, the broken
power low relation represented by the solid violet line and defined by Equation 5.8. Right:
the same as the situation in the left panel but with the violet line being the log-quadratic
relation given by Equation 5.9. The dashed-red line is the log-linear MBH - σ relation
obtained by inserting in Equation 5.1 the second set of parameters in Table 4.1.

As expected the curves in this case evolve without sharp interruptions and have grow-
ing rates fairly in agreement with red dashed curves. The only unwanted issue that comes
out in this occasion is at the very low mass end. Since the relation is a parabolic rela-
tion, at certain values of log10(σ) it enters its decreasing part and this leads to prediction
of higher black hole masses at lower values of velocity dispersion. In Figure 5.5 this is
perceived for the paths conducting to final BHs of small masses and at high redshift.
The situation at a certain point can become not physical because, if the log-quadratic
relation is kept always the same, then growing curves assume reverse trends. This would
be actually a problem when it arrives the moment of evaluating the merger contribution.
Indeed subhalos, then converted in stellar masses and then in velocity dispersions will be
mainly confined to the very lower left angle of the log10(MBH) - log10(σ) plane, towards
the descending branch of the parable, resulting in an exceeding estimate of the cumulative
merger contribution especially at high z. Hence either we adopt the broken power low
relation to continue the calculation or approximate the parable to its tangent at a certain
σ and keep it this way at smaller and smaller values. I decide for the latter alternative in
order just to have smooth growing curves, with the awareness that it may not be adherent
to a truly physical situation. Only data points down to that values of MBH and σ could
in the future reveal something about the shape of the scaling relation. To summarize,
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Figure 5.5: Blue curves are the global growing curves of supermassive black holes derived
through the conversions σ −→ MBH defined in the parallel Figure 5.4. Left: mass histories
obtained through the application of the broken power law scaling relation of Equation
5.8; Right: the same as the left panel but with blue curves derived from the employment
of the log-quadratic MBH - σ relation of Equation 5.9. As usual red-dashed lines are the
ones of the S09 model, and with the function of term of comparison.

the conversion I am going to assume for further investigation about merger contribution
is the following:

log10(MBH/M⊙) =

⎧⎪⎪⎨⎪⎪⎩
2.20 · log10(σ/200kms−1) + 7.10 if σ < 101.25 km/s
1.10 · [log10(σ/kms−1)]2

−0.35 · log10(σ/kms−1) + 3.48 if σ ≥ 101.25 km/s
(5.10)

that finally produces the global accretion curves of Figure 5.6
This is the right moment to go deeper in the analysis and evaluate the role of mergers

in the growing histories of SMBHs. Every passage is in analogy of what done in Chapter
4, with only the addition of the intermediate steps described in Section 5.1.

5.5 Contribution of mergers
In this Section I am going to retrieve the mean mass assembling histories of supermassive
black holes that are evaluated from predicted BH-BH mergers. Again the contribution
considered is the maximal one, that means black hole mergers are expected to occur
whenever a subhalo enters the influence radius of the parent halo, i.e. we have a galaxy
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Figure 5.6: Total growths of supermassive black holes (blue lines) resulting from the
employment of the relation described by Equation 5.10. Red dashed curves are always
our reference term of comparison (by Shankar et al. (2009)).

merger. As anticipated this is quite improbable, since typically galactic mergers and the
consequent merger of their hosted supermassive black holes require some time, called
merging timescale. Also some mechanisms may prevent that the merger happens at all,
but this is not to be discussed here. What is important is that in this framework the
mean merger contribution subtracted from the global mean accretion is maximal and it is
derived from the output of Decode following exactly the passages enumerated in Section
4.2.4 with the additional conversions illustrated in this Chapter: M⋆ −→ σ and then σ
−→ MBH. I would like to test for coherency between all the passages performed, hence
I make an analogous plot as Figure 4.8 that shows the growing paths of supermassive
black holes with final masses of different orders of magnitudes: one with a typical final
mass of nearly MBH ≈ 107 M⊙ and another with final mass of the order of 108 M⊙. I also
start from exactly the same values of Mhalo at z = 0, so to build something comparable.
What I get as output can be observed in Figure 5.7. In both panels the blue curves
represent the mean subtracted growth, or in formula: ⟨MBH,tot⟩ - ⟨MBH,merg⟩. They
should trace the mean accretion of a typical supermassive black hole of that final mass
due only to in-falling gas during phases of activity (AGN). Those are the histories to
be compared to the model of Shankar et al. (2009) which, as already explained, is built
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exactly considering AGN luminosity functions. The blue shaded areas around blue lines
indicate a dex scatter arbitrarily added to get an estimate of the distance between the
red-dashed curve and the blue one. On the left the scatter is of the order of ≈ 0.25,
while on the right panel the added scatter amounts to ≈ 0.35. Such values have no real
significance, but it is interesting to note that they are similar to the ones associated to
intrinsic scatter in scaling relations from data points (see Section 5.2) that I do not take
in consideration. Again the choice made to assign the scatter is in line of what done in
Section 4.2.4. Another common feature as before is the need to adopt a scaling relation
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Figure 5.7: Left: blue curve traces the gas accretion history of a SMBH with a final mass
of ≈ 107 M⊙ as calculated from i) the application of the Equation 5.10 for the conversion
σ - MBH and ii) the subtraction of the mean contribution of mergers in that case, given
by the orange curve (see Section 5.5 for the explanation of the derivation). The orange
shaded area considers the 1σ error of the mean track, while blue shaded area represents
an arbitrarily scatter (of ∼ 0.25 dex) added so to enclose the red-dashed curve, referred
to the S09 model. Right) Same as the panel on the left, but valid for a SMBH with a
final mass of ≳ 108 M⊙. In this second case the arbitrary chosen scatter is of ∼ 0.35 dex.

with a differential behaviour among the range of BH masses, in particular that flattens
towards the low mass end and is steeper at higher orders. Actually the priority in this
work has been given to the comparison with the model of Shankar et al. (2009) and not
with observational data, that I repeat are local and rather dis-homogenized. Something
that can be said is that if varied growing rates are expected at changing steps of BH
mass, it is also as a consequence of the evolution of the host galaxy itself. Nevertheless
what really matters is the possibility, with some adjustments, to investigate how all these
considerations are related with each other through the use of the principal subject of this
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project, the semi-empirical model Decode.
I conclude this final Section by making a rapid comment about the role of mergers

in the situations depicted in Figure 5.7, waiting for an expanded discussion about it in
the next Chapter. Again the inferred maximum contribution of mergers is surprisingly
low, even at relatively high black hole masses. Consistently with estimates found in
Section 4.2.4, for a black hole of final mass around 107 M⊙ this amounts to nearly 0.5
% of the mean global growth. It is ten times bigger for a final BH of mass ∼ 108 M⊙,
about 6 %, but still much lower than what is considered the contribution of in-falling gas.
The treatment of mergers at even higher black hole final masses need a deeper analysis
for reasons already explained, i.e. the fact that at low redshift some undesired facts
can happen that make the cumulative merger accretion exceed the global mean growth.
Similar discussions can be done employing other scaling relations and/or different input
SMHM relation, as mentioned in the previous Chapter. For this application I prefer not
to investigate about the role of SMHM relation (e.g. Moster et al. (2018) model instead
of our Reference-Model (RM)) because the galactic mass, M⋆, is subjected to repeated
conversions and the exact propagation of all effects would be difficult to predict, hence
to analyze.
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Chapter 6

Results

The present Chapter aims at pointing out the principal results obtained from the whole
procedure, especially for what regards the growing histories of supermassive black holes
inferred through the methodology built so far. Two are the main branches along which
the investigation has been oriented: understanding the role of scaling relations in the
context of a semi-empirical model such as Decode, and, on the other hand, using the
information provided by the model itself, i.e. mean merger histories, so to refine and
make constraints about these relations. Now that the general sense is given, I am going
to describe the conclusions that I have come with when putting things together. In the
first place some considerations are made about the type of scaling relation, either MBH
- M⋆ or MBH - σ, that is more convenient to employ in order to derive SMBH accretion
curves in line with the ones that are calculated through the model of reference (Shankar
et al. (2009)). In the second place I am going to define, in a more quantitative way, the
amount of merger contribution to the global growth of a SMBH when a specific relation
is used.

6.1 SMBH growth: scaling relations

The principal difficulty has been to find by hand parametrizations that could lead to
concordance with the model of S09. Among the various attempts, some have been dis-
carded because the resulting SMBH growing curves had a manifestly distant behaviour to
S09. Constraints about scaling relations are acquired confronting the shapes of the black
hole accretion tracks, meaning how much the MBH predicted varies when changing M⋆

(σ) of small amounts. It means the derivative of scaling relations, or directly the slope
if log-linear scaling relations are considered. This information has not to be confused
with another that instead concerns the normalization, that is the scaling term between
MBH and M⋆ (σ). In the context of log-relations a scale becomes a constant and this
means having the possibility of shifting upwards and downwards relations of an arbitrary
amount with the only effect of moving the set of BH curves (e.g. Figure 4.5) up and
down. Things are complicated by the fact that it is in principle not understandable from
which halo masses (or stellar masses) to start to obtain the desired SMBH final masses.
For example if one would like to achieve a SMBH with a certain final MBH and adopts a
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low normalization in terms of MBH/M⋆, then it is necessary to invoke quite high values
of M⋆ to obtain the desired conversion. The behaviour of stellar mass growing curves is
different according to the final value of M⋆, and a consequence of a bad calibration of the
normalization is that one arrives at a mismatch between the shapes of SMBH growing
curves evaluated from the conversion M⋆ −→ MBH and the shapes of the model of reference
(S09). Moreover the curves of the reference model itself are subjected to the possibility
of being shifted if one changes the radiative efficiency to insert in the model and this im-
plies a source of degeneration. The only way to come out of this issue is to have scaling
relations correctly calibrated through observational data, that is not our case.

In choosing which parameters to insert in scaling relations, I have tried at least to
maintain a sort of consistency with data points collected from various literature works,
but without true adaptation to them. In the following Section I am going to summarize
the types of scaling relations for which I have found good agreement with the reference
model. Actually all what described so far did not take into consideration the possibility
of evolving scaling relations. At the state of the art it is not well understood neither at
what epochs in the past such relations have established neither if they have maintained
the same form since then. Having a tool that consents to bring scaling relations in the
past, linking them to other available information, could really represent a step forward
in the study of co-evolution between supermassive black holes and their hosting galaxy
properties.

6.1.1 Discussion: MBH - M⋆ relation

All the literature works cited in Section 4.2.1 perform linear fits in the log10MBH - log10M⋆

plane and try to make constraints on the slope and normalization parameters. The results
they obtain are not always in concordance between each other and seem to be slightly
influenced by the galaxy properties, such as the morphological type (e.g. Sahu et al.
(2019a), Sahu et al. (2019b)). Hence the perception is that a truly global relation, valid
once and for all, struggles to exist. At the level of refinement of this project, I would
like to find a general trend that could in some way be representative for each object
type and for every mass step in the range considered. A deeper analysis could imply a
separation of galaxies obtained from Decode output catalogue into ellipticals and non-
ellipticals by assuming some criteria based on the number of major mergers, e.g. that
an elliptical galaxy is formed if a major merger has occurred in its past (Bournaud et al.
(2007); Hopkins et al. (2009b); Hopkins et al. (2010); Shankar et al. (2013); Fontanot
et al. (2015)). Another possibility may include the use of bulge-to-total ratios (B/T) as
function of M⋆ extrapolated e.g. from semi-analytical models (SAMs) that are usually
implemented so to form stellar bulges through disc instabilities (e.g. Lacey et al. (2016b);
Henriques et al. (2020); Oklopčić et al. (2017)). At that point the re-parametrization
would be M⋆,tot −→ M⋆,bulge −→ MBH, with the last step making use of another well known
and discussed scaling relation that links the mass of the supermassive black hole and the
mass of the galactic bulge. To this purpose I will mention in a while an interesting feature
of MBH - M⋆,bulge reported in Graham & Scott (2015) and suggesting something opposite
to what retrieved in this project.
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Reference scaling relation

As extensively discussed in Section 4.2.3, a redshift-independent relation with manifest
good agreement to the black hole accretion tracks calculated in Shankar et al. (2009)
should have a change of steepness at a given mass range. Actually in order to reproduce
the relatively slow growing rates towards low black hole masses, predicted in S09, such a
change needs to be from a milder slope to a steeper relation. In other words the scaling
relation employed to convert M⋆ to MBH valid at each z presents a low mass plateau. The
final form, reached after some adjustments as explained in Section 4.2.3, appears like:

log10(MBH/M⊙) =
{︄

1.25 · log10(M⋆/1011M⊙) + 8.15 if M⋆ < 109.8 M⊙

1.65 · log10(M⋆/1011M⊙) + 8.63 if M⋆ ≥ 109.8 M⊙
(6.1)

that is Equation 4.10 with the parameters inserted made explicit. It is difficult to attribute
to it a physical valence just looking at Figure 4.4. Data points are highly scattered
and collected from samples of non homogeneous objects, and there is still the question
of normalization which has been arbitrary inserted. Nevertheless this is what can be
predicted with the available information: the observed data-sets, the growing curves of
S09 and galaxy evolution obtained by the conversion of halo histories through the SMHM
of the RM (see Section 2.3.1). About this latter, naturally things can be significantly
different if one varies the SMHM of input. Again in Section 4.2.3 I have pointed out
what happens to global growing BH curves if instead of RM stellar mass - halo mass, the
one from Mo18 model is used (Moster et al. (2018)). In that occasion I have done the
calculation just for high SMBH final masses because at low mass end no real concordance
could be found due to the scarce evolution of SMHM relation in that part (see Figure
3.5). Hence I decide to continue the analysis just with the employment of the RM SMHM
relation. A solution of the type 6.1 is thus in line with the findings of a model (Shankar
et al. (2009)) that starts from different observables and reconstructs mean black hole gas-
accretion tracks for given radiative efficiencies and Eddington ratios. A note of caution is
at this point demanded. The results from the model itself may not be fully reliable, or at
least less certain at higher redshift. This is because AGN luminosity functions are badly
estimated at that z due to difficulties in observing faint distant objects. The curves in
Figure 4.3 are based on an extrapolation of AGN LF at low black hole masses (i.e. low
AGN luminosities) and that would potentially compromise the shape of curves at that
epochs. Nevertheless I continue following that road and introduce an alternative to the
broken power law relation which is to add a z-dependent term.

Redshift evolution (?)

The time evolution of scaling relations is difficult to investigate in high redshift obser-
vations. As mentioned, studies are often based on broad-line AGN samples, with BH
masses estimated through virial methods. The underlying assumption is that broad-line
AGNs behave the same way as any other galaxy and follow the same scaling relations,
which as seen in Reines & Volonteri (2015) may not be true. It has to be said that most
observational studies have found mild or null evolution of scaling relations (e.g. Shields
et al. (2003); Jahnke et al. (2009); Salviander & Shields (2013); Schramm & Silverman
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(2013); Shen et al. (2015)). For instance Jahnke et al. (2009) find no z evolution of MBH
- M⋆ relation when comparing objects at 1 < z < 2 with local MBH - M⋆,bulge relations.
Indeed the evolution of the scaling relation is often addressed by confronting the high-
redshift MBH - M⋆ to the same relation scaled from the local bulge mass relation. The
passage from MBH - M⋆ plane to the MBH - M⋆,bulge one implies a redistribution of stellar
mass from galactic disc to form a bulge and this can happen both because of mergers or
through secular processes. The works above-cited indeed find that many galaxies at high
z have a disc component. Hence the mild evolution coming out from observations would
indicate that no addition of stellar mass is required to build the bulges, and the MBH -
M⋆,bulge relation, from high redshift galaxies. Also, the presence of discs at high z could
imply the abundance of under-massive bulges with the consequence that time evolution
of MBH - M⋆,bulge relation may be stronger than the one with total M⋆. This suggests
the idea that the assembly of BHs takes place before the assembly of their host galaxy
bulges. More recently, Ding et al. (2020) used 32 X-ray selected broad-line AGNs at 1.2
< z < 1.7 and showed that the ratio MBH/M⋆ and MBH/M⋆,bulge are larger than in the
local Universe (∼ 0.43 dex), that means such relations are slightly offset towards more
massive BHs or lower stellar mass/bulge mass compared to the relation at z = 0. To sum
up it can be said that there is no general consensus on the time evolution of the MBH
- M⋆ mean relation and the only way to get to a clearer framework is to conduct more
observations and analysis at high redshift. In any case, for the purposes of this project,
it would be interesting to see which is the effect on the BH growing curves of increasing
with z the normalization of the MBH - M⋆ relation. This is done by adding a term in the
single-slope log linear relation:

log10(MBH/M⊙) = α · log10(M⋆/1011M⊙) + β + γ · log10(1 + z), (6.2)

where γ is a new parameter to be arbitrarily introduced. To maintain a continuity with
what previously found I test the following solution: starting from the same slope α and
similar normalization β attributed to the high mass side of the broken power law in
Equation 6.1, i.e. (α, β) = (1.65, 8.70 dex), I then assign a different γ value according to
the final galactic mass. Specifically I have opted for a milder evolution in correspondence
of SMBHs with final higher masses, whose shapes of accretion curves were already well
described by a non-evolving scaling relation similar to the one now in consideration;
towards smaller SMBH final masses instead I consider a more important evolution in
normalization that has the same function as the introduction of a flatter non evolving
scaling relations, i.e. the one of rising up the values of black hole masses converted from
a fixed M⋆. This implies less deep growing rates (dMBH/dz) at the considered redshift
ranges, but a speed up in terms of the whole accretion mechanism since the birth of the
black hole. As boundary stellar mass I have considered M⋆ ≈ 1011 M⊙ since, by looking
at Figure 3.5, it is where the evolution of SMHM is being already rising up. Hence above
that M⋆ I include a z-evolutionary term of the type MBH ∝ M⋆ · (1 + z)0.2, i.e. γ = 0.2;
below that final M⋆ I double the value of γ and adopt a relation MBH ∝ M⋆ · (1 + z)0.4.
The variation of the scaling relation between z = 0 and z = 4 can be visualized in Figure
6.1 represented by the colored shaded area. It characterizes the increase in normalization
with growing z. In the Figure I also show as red dashed line the broken power law, our
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reference MBH - M⋆ relation, in comparison. It can be said that the z-evolution assumed
is actually very mild and it is well within the scatter in the log10MBH - log10M⋆ relation.
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Figure 6.1: MBH - M⋆ scaling relations in the log - log plane. Violet straight line is
the chosen log-linear relation at z = 0 with slope and normalization given by α = 1.65
and β = 8.70 dex respectively. To that a differential redshift evolution is applied and
represented as the pink shaded area. Last value of z taken is 4. Broken power law of
reference is also displayed as red dashed line. This is applied without an evolution in z.

The tracks of BH global growing that emerge from an evolving scaling relation are
illustrated in Figure 6.2. Different colors indicate the lines that have been obtained with
different redshift evolution treatments. Towards lower masses, at high z, the curves still
have the tendency to fall down slightly faster than the prediction of S09, but the overall
trend is reproduced. Naturally one should subtract the contribution of mergers also in
this case and this is done respecting the usual method adopted during the whole project.
The results presented in Figure 6.3 are again for typical supermassive black holes of
final masses of MBH ≈ 107 M⊙ and MBH ≈ 108 M⊙. The orange lines that reconstruct
the cumulative merger growths appear more discontinuous and with less smooth trends
because the scaling relation in use is continuously changing its normalization with redshift.
With a choice of this type I obtain global merger contributions of ∼ 0.3 % in the case
of the smaller black hole and of ∼ 5-6 % for the more massive one. Discrepancies with
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Figure 6.2: Global (gas + mergers) growing of SMBH of different final masses obtained
through the conversion of M⋆ with the z-evolving log-linear relation. Blue and green
curves start from the same relation defined at z = 0, then depending on the M⋆(z = 0)
they are assigned with a stronger (γ = 0.4) redshift evolution (blue curves) or milder (γ
= 0.2) redshift evolution (green curves).

the reference model of S09 are of the order of 0.50 dex towards low mass end and always
of the order of ∼ 0.3 dex at higher masses. This is not bad in consideration to the fact
that I have treated the question of redshift evolution in a quite rough way, and probably
a further investigation, e.g. adopting different scaling relations or forms of z-evolution,
is necessary. Anyway this is to show another possible approach to the study of SMBH
scaling relations in the context of semi-empirical models. Now that I have introduced in
the discussion the chance of redshift evolving scaling relations and mentioned about the
MBH - M⋆,bulge relation, I would like to briefly look at an interesting aspect about the
latter. In Graham & Scott (2015), authors suggest that the relation between black hole
and bulge mass becomes steeper, quadratic like, at roughly M⋆,bulge ≲ (0.3 - 1) × 1011

M⊙. Since this is nearly an opposite behaviour of what corresponds to our reference MBH
- M⋆ relation it would be nice to make a sort of parallelism between them, by applying
same procedures. This is done in the following Section.
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Figure 6.3: Mean supermassive black hole accretion tracks subtracted for the merger
contribution. Left: history of a SMBH with final mass of the order of MBH ≈ 107 M⊙;
Right: analogous but valid for a SMBH with final mass of the order of MBH ≈ 108 M⊙.
Blue curves in both panels indicate the retrieved mean accretion due to gas (global -
mergers) with an additional scatter represented by blue shaded areas. Orange lines are
the mean merger contributions, ⟨MBH,merg⟩, extrapolated from Decode through all the
conversion steps that include a z evolving MBH - M⋆ scaling relation, with dashed regions
around them the error of the mean. Red dashed curves are from the model of S09.

6.1.2 MBH - M⋆,bulge Scaling relation

In this Section I am going briefly through some aspects of the relation between the black
hole mass and the stellar mass of the spheroidal component of a galaxy, i.e. MBH -
M⋆,bulge. Having an idea of how such a relation can be defined and change through
cosmic time is important because it gives insights into the evolutionary scenario which is
jointly related to the central supermassive black hole and the central region of a galaxy.
In Graham & Scott (2015), authors make considerations about MBH - M⋆,bulge relation
that can have consequences for what just said about growing histories. They start by
noting that a near-linear scaling relation between MBH and host spheroid stellar mass,
M⋆,bulge, is not perfectly efficient in describing the black hole - spheroid interconnection
(see also Graham (2012)), and that for the description of Sérsic spheroids a non-linear
relation would be more suitable. To clarify, Sérsic spheroids are elliptical galaxies and
bulges of disk galaxies that do not have partially depleted cores, that instead happens for
the so called core-Sérsic galaxies (e.g. Graham & Driver (2005); Graham et al. (2003)).
Objects of the first type have typically B-band absolute magnitudes of MB ≳ - 20.5
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± 1 mag and Sérsic indices n ≲ 3 - 4. Actually Graham (2012) has pointed out that
the relationship between MBH and M⋆,bulge pertained to that galaxies should be better
described by a near-quadratic relation as subsequently confirmed in Graham & Scott
(2013) and Scott et al. (2013). In these works it has been observed that only at high
masses MBH ≳ 108 M⊙ a near-linear MBH - M⋆,bulge is evident. Due to the scatter in the
MBH - M⋆,bulge diagram and the location of bright Sérsic galaxies at the high-mass end of
the near-quadratic relation, surveys that have not probed enough the region below MBH
≈ 107 M⊙ can already miss the bend in the scaling relation (e.g. van den Bosch et al.
(2012); McConnell & Ma (2013); Feng et al. (2014)).

These scaling relations as said are important for several reasons. Given the broken, or
rather bent, MBH - M⋆,bulge relation, it implies that within Sérsic galaxies, the supermas-
sive black holes grow more rapidly than the stellar spheroid (Graham (2012)). That is,
there is no conjunct and lockstep growth of black holes and bulges in these galaxies since
the MBH/M⋆,bulge ratio is not a constant value. An additional, connected, interesting
aspect regards feedback from supermassive black holes (e.g. Page et al. (2012); Wurster
& Thacker (2013); Fanidakis et al. (2013)) that is believed to regulate star formation
in the spheroid and provide potential solution to the overabundance of massive galax-
ies predicted by dark matter only simulations. This process has been also invoked to
produce the turnoff in the galaxy luminosity function at high luminosities (e.g. Benson
et al. (2003); Bower et al. (2006); Croton et al. (2006)). The MBH - M⋆,bulge relation then
tends to flatten and to settle into a relation with a slope close to unity for the brighter
core-Sérsic galaxies (Graham (2012)). The presence of partially depleted cores in these
bigger spheroids is thought to indicate that they and their black hole have formed through
simple, additive, dry major merger events that led to the establishment of the near-linear
MBH - M⋆,bulge relation. The process of ’kinetic’ or ’radio mode’ AGN feedback may
therefore subsequently maintain such a relation.

Now that a general framework is given, I report what are the findings of Graham &
Scott (2015), who investigate AGNs with low mass black holes using data from many
authors so to avoid possible biases. I do not describe here how BHs and relative spheroid
masses have been calculated, what matters for our purposes is to understand location of
these data (nearby objects) in the log10MBH - log10M⋆ plane. This is showed in Figure
6.4, where data points collected are represented by colored dots, the broken power law
relation related to MBH - M⋆,bulge corresponds to the blue line and the red dashed line
is our reference MBH - M⋆ relation. Even though these last two do not constitute the
same type of relation they have been put together in the plot because the ranges of
spheroidal masses considered are overlapping. Actually massive elliptical galaxies are
totally described by bright core-Sérsic spheroids, hence towards high mass end we should
have M⋆ ≈ M⋆,bulge. The blue line equation is given by:

log10(MBH/M⊙) =
{︄

2.20 · log10(M⋆,bulge/1011M⊙) + 9.35 if M⋆,bulge < 1010.5 M⊙

1.10 · log10(M⋆,bulge/1011M⊙) + 9.00 if M⋆,bulge ≥ 1010.5 M⊙
(6.3)

whit slopes and intercepts inserted so to respect the mean values reported in Graham
& Scott (2015). Once the scaling relation is defined it would be interesting to include
it in the process of deriving growing curves of SMBH as done so far. However it is
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Figure 6.4: Scatter plot of the data sample extracted from Graham & Scott (2015) and
representative of the MBH - M⋆,bulge scaling relation. The solid blue line corresponds to
the broken power law defined in Equation 6.3, with slopes and normalizations similar to
the ones found in Graham & Scott (2015), but adjusted in order to reproduce growing
black hole curves slightly more in agreement with Shankar et al. (2009) model (see Figure
6.6 later on). This refers again to the scaling relation between the black hole mass and
the stellar mass of the spheroidal component of the hosting galaxies. The dashed-red line
is the MBH - M⋆ relation of reference, described by Equation 6.1 and valid for the total
stellar mass of the galaxy. It is inserted so to have and idea of the different behaviours.

not advisable to use MBH - M⋆,bulge relation, instead of the one with the total mass, in a
straightforward way because the information at our disposition only concerns the growing
history of the whole galaxy which is not the same as the one of bulges. An appropriate
treatment would require to separately derive, at different galaxy mass steps, the evolution
of the bulge component and then use it for the conversion to black hole masses. This is
far from trivial and implies the assumption of a bulge formation process, which can only
be addressed through analytical models to be implemented in hydrodynamic simulations.
Therefore, considering all of this in full details is something well beyond the scope of
our project, which has the prerogative of being simple and not relying on pre-assumed
models. In any case something can be inferred by looking at Figure 6.5 from Fu et al.
(in preparation). Thick blue curves represent mean growth of galaxies with different final
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masses, extrapolated by the mean total accretion of Decode halos (van den Bosch et al.
(2014)) converted through the RM SMHM relation. The formation and evolution of the
bulge are then calculated by the implementation of simple models, e.g. by assuming that
once a major merger occurs, M⋆,1/M⋆,2 > 0.25, the descendent galaxy is strictly elliptical
with bulge-to-total ratio B/T = 1. For a complete descriptions of the models adopted I
leave to the lecture of Fu et al. (in preparation). In all panels of the Figure 6.5 the curves
of bulge accretion are colored in orange, while green lines are accounting for the disks.
It can be noted that, for low massive galaxies, the growth of the bulge follows nearly the
same rate as the growth of galaxies, naturally scaled for an almost fixed fraction. For
higher stellar masses, e.g. above M⋆(z = 0) ∼ 1010.5 M⊙, the bulge has a rapid growth
until it becomes the dominant component of the galaxy (massive elliptical galaxy) for
the most part of their accretions. Because of such diversity in the evolution of the bulge

Figure 6.5: Figure taken from Fu et al. (in preparation) showing the mean evolution
of the galactic components, e.g. the bulge (orange curves) and disk (green curves), as
evaluated from a procedure explained in the paper above-mentioned. Basically the total
galaxy growth (solid blue lines) is the same as the one considered in this work and the
bulge and disk evolution are extrapolated adopting some recipes based on the occurrence
or not of major mergers in the mean merger histories of the considered galaxies with
different final masses.
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component in galaxies, it is not easy to retrieve general solutions regarding the growth
of SMBHs starting from MBH - M⋆,bulge relations. In order to keep things on a simple
ground the method I adopt is the following:

i) I calculate the galaxy growing histories in the same way as always done, using the
RM SMHM relation;

ii) For galaxies with M⋆(z = 0) ≲ 1010.7 M⊙, I re-scale the total stellar mass at each
redshift for the same quantity of ∼ 1/4 to get an estimate of the M⋆,bulge. I convert
these bulge masses to black hole masses adopting the scaling relation defined by
Equation 6.3. Without any kind of evolution that would produce black hole grow-
ing curves with far too steep descending towards high redshift. Indeed, I am not
considering the MBH - M⋆ relation that refers to the total galactic mass; the bulge
and the supermassive black holes are expected to have connected growth but not
at the same path. According to the study of Ding et al. (2020) I apply a redshift
evolution of the kind ∝ (1 + z)1.7 which is substantial but consistent with data
found at 1 < z < 2 (see their Figure 13);

iii) For galaxies with M⋆(z = 0) ≳ 1010.9 M⊙ the situation is slightly more complicated
because bulges have an almost exponential growth till they reach the entire galaxy
mass. In this case I do not scale the mass of the galaxies and maintain it at each
redshift step. I subsequently apply the same MBH - M⋆,bulge relation of Equation
6.3 but this time with much milder redshift evolution, of the type ∝ (1 + z)0.2 to
compensate the fact that M⋆ > M⋆,bulge at high z (see Figure 6.5). At that masses,
at a certain point, I have the brusque change of the slope of the scaling relation.

This is a very simplistic way to treat a complex issue and all values of parameters used
are not to be considered ’real’ in a physical term. The intent is to have a qualitative
understanding of the processes that regulate the growth of a supermassive black hole
and how they could be investigate in a context like this. The plot I obtain following
the procedure just described is given in Figure 6.6. Naturally the agreement with the
curves of S09 can not be perfect because of the very approximated process employed.
Nevertheless it is neither extremely bad and at least it gives the possibility to make some
considerations. About the Sérsic and core-Sérsic separation, Graham & Scott (2013)
identify two regimes of black-hole growth: gas-dominated processes occurring in Sérsic
galaxies and gas-poor (dry) major merging forming the core-Sérsic galaxy sequence. In
this scenario, it seems that the low mass spheroids grow their black holes rapidly, relative
to the spheroids, through the accretion of gas and stellar material. Moreover the growth
of the black hole and the spheroid is in a certain measure linked because they both relay
on the same reservoir of cold gas in the galaxy. This could explain the establishment
of the quadratic or super-quadratic scaling relation MBH - M⋆,bulge. Such a mechanism
continues until a critical point is reached, that is when the mass of the spheroid rises
up approximately the value of M⋆,bulge ∼ 1010.5 M⊙. At this stage radio-mode feedback
from the black hole may become important. This means that large part of the energy of
an active galactic nucleus is released in a kinetic form via radio-emitting jets, which are
able to expel the majority of the galaxy’s cold gas supply and prevent this from cooling
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Figure 6.6: Supermassive growing curves calculated following the procedure outlined in
Section 6.1.2. In particular the blue curves (point ii) of the list present in the same
Section) are those that, according to the separation made in Graham & Scott (2015),
would trace the global accretion of black holes within the so called Sérsic galaxies; while
the green ones (point iii) of the list) are related to the core-Sérsic galaxies. The solid
blue line in correspondence of MBH ≈ 1.8 × 108 M⊙ gives the turning point of the broken
power law type relation adopted (Equation 6.3). The blue shaded region should indicate
the SMBH growing phases dominated by merger processes.

again. Actually this feedback is not thought to be the responsible for the un-setting of the
scaling relation between MBH and the host spheroid. With little reservoir to accrete from,
the supermassive black hole now grows predominantly through dry merging with other
massive black holes, leading to the core-Sérsic relation with linear growth of the black
hole and the host spheroid. Indeed, the growing curves in Figure 6.6 seem to concord
with such an explanation. The ones colored in blue are referred to hosts with smaller
final masses (ii) and behaves like Sérsic galaxies in a certain sense. These objects have
very law probability of having had a major merger in their past, hence their growth is
almost totally due to gas accretion processes. This fact would be clarified in the following
Sections when the percentage of merger contribution will be given at each step of mass.
For now this just comes out from the behaviour of curves (blue), which are entirely
confined within that range of mass populated by Sérsic galaxies according to Graham &
Scott (2015). The turning point is indicated in the Figure 6.6 as a thick and horizontal
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dark-blue line, at MBH ≈ 1.8 × 108 M⊙, and the shaded region indicates the subsequent
change of slope in the MBH - M⋆,bulge relation, speaking in strictly terms, and a possible
change in the growing mechanism as hypothesized in Graham & Scott (2015). Green
curves are those obtained applying the passages of point (iii) in the previous list. Indeed
it is plausible that in that context, at a certain point, the total growth is regulated by
mergers because of higher discrepancies between green curves and the ones of S09. That
is again addressed in next Sections. Anyway, I am still in the field of speculation and,
since the steps made to calculate that curves are subjected to high amount of uncertainty,
they should be considered with caution.

What has been depicted so far is or would be another useful application of the very
flexible procedure adopted in this work. It allows to investigate about scenarios that lead
to the formation and evolution of supermassive black holes. Before finally passing to the
part concerning the role of mergers, I conclude the series of scaling relations by briefly
discuss the results found in Chapter 5 about the MBH - σ relation.

6.1.3 Discussion: MBH - σ⋆ relation

The MBH - σ⋆ scaling relation is possibly the one most studied and discussed since it is
believed the most fundamental of all black hole - host galaxy scaling relations (Marsden
et al. (2020)), and Chapter 5 is entirely devoted to it. In here I just briefly summarize
the main results.

The MBH - σ relation is thought to arise as a consequence of AGN feedback mech-
anisms (review of King & Pounds (2015)), specifically the black hole in these models is
expected to grow until it reaches a critical point (as mentioned in the previous Section)
at which it is massive enough to drive energetic/high-momentum large scale winds that
can potentially remove residual gas and inhibiting further star formation and black hole
growth. The limiting mass reached by the black hole, which is dependent on the potential
well of the host, would provide an explanation for the existence of the MBH - σ⋆ relation.
Indeed by looking at data points collected in Figure 5.1, it can be observed that such
a scaling relation has a tight and rather well established behaviour at higher masses,
while towards low mass end the situation is less clear and subjected to higher scatter.
This should be investigated a little more, but in the meantime, for our purposes, I would
like to introduce a scaling relation that can be suitable in the providing of black hole
accretion curves. This is done after having calculated the velocity dispersion σ (kms−1)
from the stellar mass of the galaxy, following the steps highlighted in Section 5.1. Such a
calculation implies as ’input’ other scaling relations, i.e. the M⋆ - Re and M⋆ - n, with Re
and n being the effective radius (alias half light radius) and the Sérsic index respectively.
This does not come without problems because the just mentioned relations are subjected
to errors themselves. However since all quantities at the end enter in logarithmic units,
each systematic is transformed into a constant value that can be adjusted almost freely as
needed because of the degeneration to which normalization is subjected (see Section 5.3).
After that it has been possible to calculate the MBH(z) histories starting from velocity
dispersions and by the use of an arbitrarily decided scaling relation. First choices have
been naturally oriented to log-linear type scaling relations because of all the literature
works. However a solution like that, in parallel to what noted also in the case of MBH -
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M⋆ relation, seems not efficient in reproducing black hole growing curves compatible with
the model of S09. Hence I turn the attention towards other types of relation, that would
include changes of slope (thus of growing rates when converted). A broken-power law
relation proved to be not bad, but the apparently much diverse slopes considered make
the curves to have non smooth trends. Hence I decide to use a log-quadratic relation that
is turned in a log-linear one at low masses to avoid taking values in correspondence of
the descending branch of the parable. The relation of reference in this occasion is finally
given by Equation 5.10. The resulting mean global growing paths of supermassive black
holes are showed in Figure 5.6 and the accretion curves subtracted by the mean merger
contribution (for SMBHs of ≈ 107 and 108 M⊙ final masses) are displayed in Figure 5.7.
For this type of application I do not further consider the role of a redshift dependent
term since something related to the evolution is already inserted during the derivation
of σ⋆ from M⋆, when calibrating the relation M⋆ - Re (see Equations 5.3, 5.5, 5.6). In-
deed, due to this, the resulting growing curves are already ’enhanced’ at higher redshift
and leads also to slightly decreasing behaviours towards higher masses (where M⋆(z) are
characterized by very slow evolution).

Now that all aspects about scaling relations have been analysed is the time to discuss
about how much is the contribution of mergers derived from the combination of Decode
and such relations. In particular the main goal is to understand: i) what is the amount
of mass acquired at most by a supermassive black hole from mergers; ii) how much
this depends on the scaling relation employed; iii) what happens at high masses (not yet
investigated in previous treatment) and what if a merging timescale is introduced to limit
the global contribution of mergers at that range. All of these issues will be explained in
the next Section.

6.2 Mergers

Despite the fact that I have always led the calculation of merger contribution as a fi-
nal passage in the procedure outlined, it is the essential information retrieved from the
model. Actually, as explained in Chapter 2, what confers to Decode the characteris-
tic of being statistical is the treatment of mergers themselves. Merger trees are derived
from probability distribution functions and not through hydrodynamic simulations that
imply the movement of dark matter particles according to some physical mechanisms of
input. The main advantages of this are the extreme rapidity and the almost limitless
resolution achievable by the model in the determination of number of mergers. To the
other side, results obtained by the application of this approach are inevitably intended
to trace mean behaviours rather than specific and detailed growing histories. Indeed any
time I am going to speak about merger contribution, what I am supposing is the average
cumulative accretion that a supermassive black hole of a certain final mass has gained
from mergers. The way to build it is explained throughout the previous Chapters and
it is not repeated here. The aspect that is instead important to underline at this point
is how well the contribution of mergers can be predicted by the employment of scaling
relations. In other words I would like to investigate the interplay between the adoption
of a specific scaling-relation and the amount of merging mass inferred through it. At the
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end, this could help to better define the suitability of a choice with respect to another
one.

6.2.1 Global merger contribution: percentages

It has been repeated many times the fact that, up to now, the contribution of merger
considered in the whole project is a maximal one. Therefore each sub-halo that have ever
entered the sphere of influence of another halo (at the in-falling redshift zinf) is taken into
account in the calculation. The real situation is naturally different and, at least for what
concerns galaxy mergers, this imply some time from the moment called zinf to the one of
complete merger, as mentioned in Section 2.2.4. Nevertheless the approximation adopted
here may still represent a good one, especially in the case of low mass objects in which
the impact of mergers is very limited. To have an idea: for a galaxy with a final mass
of the order of M⋆ ≈ 1010.8 M⊙, the probability that a major merger (M⋆,1/M⋆,2 ≳ 0.25)
has occurred in its past is of about 10 %. This value rises up to ∼ 70 % for galaxies with
final masses of the order of M⋆ ≈ 1011.5 M⊙. Hence, in these latter cases, it is plausible
that adopting maximal merger histories is no more a comfortable solution.

For what concerns black holes, things are not so different because, in the first place,
their masses are converted starting from stellar ones through our agreed scaling relations.
The way they are involved in this scenario, and how different it becomes if one relation
is selected instead of another, can be evaluated taking the final (z = 0) mass ratio
⟨MBH,merg⟩/⟨MBH,tot⟩ for each choice of scaling relation and mass step. In practice I
have obtained mean cumulative merger accretions for all mass steps related to the sets
of global black hole growing curves (e.g. Figure 4.5) and compared their final values to
what is the prediction of the total final mass of a supermassive black hole. The percentage
contribution of mergers as a function of log10MBH(z = 0) can be visualized in the Figure
6.7. Points labelled with ’log-linear1’, ’log-linear2’ and ’log-linear3’ are referred to log-
linear MBH - M⋆ relations parameterized by values of slope (α) and normalization (β)
found in Table 4.1. Red squares represent instead results coming out from the use of
the reference MBH - M⋆ broken power law type relation, described by Equation 6.1.
Finally orange points are the ones retrieved through the modified log-quadratic MBH -
σ relation (see Equation 5.10). Gray horizontal dashed lines sign the moments at which
the contribution of mergers to the total growth is of 50 % and 100 % (total). There are
many interesting aspects that can be inferred by looking at Figure 6.7.

1) First of all, the plot gives the immediate impression about the impact the choice of
a scaling relation has in performing the calculation. Starting from exactly the same
stellar masses, the scenarios that are depicted can be very different. In particular,
it seems that if one opts for a pure linear relation, i.e. α = 1.00 (violet squares),
then the contribution of merger becomes predominant (more than a half) already
at black hole final masses of ∼ 107.5 M⊙ and then grows up in a rather exponential
mode. The situation is mitigated when a slight steeper slope is considered (blue
points corresponding to α = 1.25) and becomes much distant when a slope of the
order of 1.50 is adopted. In here I am referring just to the slopes of relations because
the normalization is cancelled out in the ratio, hence has no significance in here.
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Figure 6.7: Percentage of cumulative merger contribution as a function of final mass of
the supermassive black holes. Different color squares are representative of the different
scaling relations adopted to evaluate mergers: violet, blue and green ones are related
to the log-linear MBH - M⋆ relations with parameters found in Table 4.1 respectively;
red points are derived from the application of the reference broken power low relation of
Equation 6.1; orange ones are from the chosen modified log-quadratic MBH - σ relation,
Equation 5.10.

Such a behavior produced by a flatter scaling relation has to be attributed to the
fact that the difference in mass between the components in a BH - BH merger
is not so distant, meaning the mass of the in-falling BH is similar to the one of
the progenitor. Actually the trend of the pure linear scaling relation is the same
as what is derived by considering the maximal merger contribution for galaxies,
because MBH is equivalent to M⋆ scaled by a constant factor, i.e. 10−3.6 in our
case. It means that if one selects the broken power low relation as the reference one
(red squares), then at most the relative contribution of mergers in the growth of the
supermassive black hole is much lower than what is found for the host galaxy, or, put
in a different way, the predicted accretion through in-falling gas is on average less
efficient in the galaxy (encoded by star formation rate values (SFR)) with respect
to the central black hole. In fact, in the case of a galaxy the mean mass assembly
through mergers is in a certain way reduced if one includes the actual time needed

96



6.2 – Mergers

for a merger to conclude, i.e. the total mass at z = 0 that has been ’truly’ gained
by mergers is not as high because some satellites have not yet been incorporated.
Hence for a correct evaluation of the contribution of mergers, the merging timescale
(see Section 2.2.4) should be included. Since in the case of black hole I have no real
indication of the amount of this delay then for the moment I continue to refer to
the maximal contribution.

2) A second issue to be noted and discussed is the fact that for all considered cases
there are some points that stay in a ’forbidden’ region, that is above the 100 %
line. It would mean that the mass grown by mergers is higher than the total one
made by the sum of gas + mergers. It is not physical and solutions of this type
should be discarded. This is actually a rather ambiguous passage because few
things are interplaying and it is not easy to attribute a cause and an effect. As
seen in the previous point, the scaling relation has for sure an important part of
responsibility, in the sense that if one changes it (e.g. making the slope even steeper)
then possibly the overflow effect is restrained. But is that enough? And has then
it significance, i.e. is it coherent with data points and/or S09 reference model?
Actually the other relevant aspect has already been introduced in point 1) and
concerns the ’real’ contribution of mergers. Some of them may have not occurred
yet and hence should be not taken in to account in the calculation. Intuitively
one can hypothesize that supermassive black holes hosted by galaxies that have
not yet completed the merger are themselves still present as individual component
(not fallen) and their contribution should be discarded. It is far from easy, the
mechanisms involved are not well understood and difficult to reproduce without
the help of semi analytic models/simulations. Constraints related to supermassive
black hole mergers will be achieved only from future space-based gravitational wave
observatories like LISA (Laser Interferometer Space Antenna) and BBO (Big Bang
Observer). In here I limit the treatment of mergers and go through the easiest
approach that is to introduce in the calculation of BH merger contribution the
same merging time-scale as for the galaxies (see Section 6.2.2).

3) A last interesting fact is related instead to the MBH - σ scaling relation, that predicts
merger contributions given by orange squares in Figure 6.7. I have decided just to
show results derived from the use of the modified log-quadratic relation (Equation
5.10) because essentially considerations made before regarding MBH - M⋆ relation
can be repeated also in this case. In my opinion, the positive outcome is that the
trend linked to the increase of merger contribution achieved by that particular MBH
- σ relation is similar to the one inferred from the reference MBH - M⋆ relation (in
red). This is not for granted especially because the passages and transformations to
arrive at Equation 5.10 are performed independently from the shape of the chosen
relation with the stellar mass. Only last points (corresponding to the highest values
of final M⋆) are shifted upwards in the case of the relation with velocity dispersion.
I think that this is more practical than conceptual, in the sense that it is probable
that velocity dispersions calculated in correspondence to that stellar masses (from
M⋆/Re) are slightly too large at higher redshift, and this leads to total black hole
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growing curves with a sort of descending mode (Figure 5.6).

What I am going to do next is to re-calculate merger contributions both for galaxies
and for their central black holes (through the reference MBH - M⋆ relation) including
merging timescales. These latter are evaluated for single galaxy satellite according to the
prescription of McCavana et al. (2012) in the way described in Section 2.2.4 and given as
output of Decode. I repeat again the fact that using them also for black holes means
forcing a little bit the situation. But, since I have no indication at disposition about the
merging timescales of black holes, I will try and go on with this rough approximation.

6.2.2 High mass end: merging timescale

Inserting a time delay in the calculation of cumulative merger histories goes with no
particular difficulties. Basically once I have the epochs of the first in-falling, zinf , assigned
to every sub-halo (sub-galaxy through SMHM conversion), it is enough to add to this
latter the corresponding merging timescale, and obtain the final redshift of in-fall, zfin.
Then at single redshift step considered, the objects that enter in the calculation of mass
gained from mergers at that z are only those with zfin ≥ z. Final results can be observed
in Figure 6.8, where red squares are referred to supermassive black holes while blue ones
to their hosting galaxies. Red-dashed segments connect points that represent maximal
merger contribution for SMBHs and straight one instead link those in which calculation of
mergers has been conducted inserting the merging timescale. Analogous, but concerning
galaxies, are the points in blue, that depict a more realistic situation with respect to
the maximal merger approach. Despite the reduction of the amount of mass that has
actually entered in the central galaxy, mean merger histories predicted at high final
masses are still overcoming the mean global growth of the galaxies. Causes of this may
be of different typologies: i) the SMHM relation may be not completely appropriate
towards high masses, e.g. slightly less evolving relation at high mass end? (see Figure
3.5); ii) there could have been a statistical over-production of sub-halos in that bins
of mass; iii) it is possible that not all the mass of a satellite galaxy is accreted, just a
part of it (more physical option). Other reasons can be given to describe this peculiar
behaviour but it is not the aim here to discuss about them. What is observable is that
the problem, at least in this range of masses, is in a certain sense avoided if one makes
the conversion M⋆ −→ MBH applying the reference scaling relation defined by Equation
6.1. As already mentioned in the previous Section it seems that with such a resolution
the efficiency of gas accretion processes is higher in the case of supermassive black holes.
What is even more ’surprising’ is the fact that considerable differences between including
or not a merging timescale start to appear only towards very massive SMBHs, i.e. at
MBH ≳ 109 M⊙. Hence the procedure defined before this point can be considered, if not
completely correct, at least sustainable. At this point it is possible to have a feeling of
how much the situation improves if inserting a tmerg, even if it may not be the correct one.
Figure 6.9 illustrates the case of a supermassive black hole with final mass of the order of
MBH(z = 0) ≈ 109.5 M⊙, for which a maximal merger approach would have led to a non
properly physical condition (⟨MBH,merg⟩ > ⟨MBH,tot⟩). This is well depicted by the blue
curve (total - merger) on the left panel, that abruptly falls down up to the moment at
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Figure 6.8: Same as Figure 6.7, but illustrating, in red, points pertained to the reference
MBH - M⋆ relation and in blue merger contributions of the hosting galaxies. These last
and red squares linked through straight segments have been calculated with the inclusion
of merging timescales, while red dashed segments unite points for which the maximal
merger contribution approach has been followed.

which it is interrupted because it can not be longer defined (negative log). On the right
panel, instead, the effect of the merging timescale is immediately noted. The blue curve
is significantly flattened but the total merger contribution does not overpass the total
growing of the black hole and at the end its amount rises up to ∼ 70 %, which is still
important without being prohibitive. That treatment can be optimized in many ways, e.g.
retrieving estimates of the proper merging timescales for black holes or confronting the
total number of mergers in our case with respect to other semi-analytic and hydrodynamic
simulations. Naturally the same passages can be applied for all the scaling relations that
have entered at some point in this work and see what changes in one or another case.
Here I limit the discussion to the reference MBH - M⋆ scaling relation because it was the
one with a better realization in comparison to the model of S09 and it was more directly
approachable than the MBH - σ relation that is derived after some slightly problematic
steps.
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Figure 6.9: Difference in the treatment of mean merger contribution (orange lines) when
a SMBH of final mass ≳ is considered. Left: maximal merger contribution approach
is followed with a consequent situation in which it overcomes the total growth of BH
predicted and the subtracted curve (blue line) is interrupted; Right: merging timescales
are included in the calculation leading a reduction of merger contribution and a more
suitable aspect of the subtracted blue curve.

6.3 Conclusions

I would like to conclude by making some final remarks about the general framework that
it is depicted as a consequence of what discussed so far. It is about the mean behaviour
of gas accretion processes that happens in supermassive black holes with different final
masses. The scenarios may be really diverse and there is the possibility that a global rule
will never be found. Nevertheless, common features among macro-groups, i.e. defined by
mass ranges, can at least be understood by connecting all information available at the
moment. Part of it is provided by SEMs, of which Decode is a new example. Figure
6.10 is representative of the efficiency of gas accretion processes pertained to different
supermassive black hole final masses and predicted through the application of all the
procedures illustrated up to now. Growing curves, subtracted from the mean merger
contribution, have been normalized to their final values so to have the possibility to
compare their trends. The range of mass is the one always considered, e.g. final black
hole masses go from MBH ≈ 106.5 up to MBH ≈ 109.5 M⊙. Actually the Figure is a picture
of what happens when the reference MBH - M⋆ relation is employed and the calculation of
mergers performed with the inclusion of the merging timescales. It is a specific example
and the one of choice because, as already said, it is the case in which the agreement with
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accretion curves of our model of reference, Shankar et al. (2009), is fairly the best among
the ones introduced in this work. Anyway other possibilities can be explored without
problems and following same passages. In this situation what is immediately perceivable
from Figure 6.10 is the fact that gas accretion mechanisms are of particular importance,
in the epochs under consideration, just for objects with lower masses (bottom lines in
the plot). Indeed in these latter in-falling gas produces an increase of mass that amounts
to nearly 104 M⊙. Much different is the case of more massive objects in which gas
accretion processes, for z < 4, are almost nearly silenced and their contribution to the
growing of the SMBH is of a totality of ∼ 10 - 100 M⊙. This implies a scenario in which
the reservoir of gas is almost exhausted and with the most part of accretion probably
happened in a more distant past. Any clues about such possibilities will be only given
through observational investigations of AGN populations at high redshift, at least z >
4. The ultimate part of their growth, as discussed in the previous Sections, seems to be
dominated by major merger events that are maybe responsible for the un-setting of the
linear trend between the mass of the supermassive black hole and the one of the spheroid
component M⋆,bulge, see Figure 6.6. On the other hand, low-mass and probably gas-rich
systems have been growing their central SMBHs through in-falling gas for more than 12
Gyr. However the behaviour of them can be only understood if one has the availability of
characterizing AGN luminosity functions at high redshift and for faint objects, thing that
is far from easy. What is important to underline at this point is that the potentialities of
an approach of this type are wide and always improvable along with the results obtained
from observational campaigns.

As conclusive notes I would like to briefly sum up what are, in my opinion, the
most interesting results of the project. The novel semi-empirical procedure adopted
and described in full details in Chapters 2 and 3 has allowed to investigate the growth
of supermassive black holes within their host galaxies in a way almost independent on
predefined assumptions and parametrizations. The only free quantities that enter are the
stellar mass - halo mass relation (see Sections 2.3.1 and 3.2) and the scaling relations
between the black hole mass, MBH, and the host galaxy properties, M⋆ and σ⋆ (Chapters
4 and 5). The ones adopted in this project are repeated here: i) the SMHM relation of
reference is the one introduced in Section 3.2 (blue curve and blue shaded area of Figure
3.5) and evaluated by the redshift-dependent stellar mass function that combines the
observational works of Baldry et al. (2008), Bernardi et al. (2017) and Tomczak et al.
(2014); ii) the un-evolved MBH - M⋆ relation used to calculate SMBH growing curves in
agreement with the model of Shankar et al. (2009) (principal term of comparison in this
thesis) is the broken power law type relation expressed by Equation 6.1; iii) the un-evolved
MBH - σ⋆ relation of choice is a modified log-quadratic relation, defined in Equation 5.10,
for analogous reasons as for MBH - M⋆. Adopting these inputs, the scenario about the
growth of supermassive black holes that I retrieved is the following:

• SMBH with final masses up to about ∼ 109 M⊙, grow their mass principally through
secular processes that involve the in-fall of cold gas present in their surroundings.
They reside in the smaller gas-rich galaxies, the ones with less probability of having
been subjected to a major merger in their past. Actually the scaling relations that
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Figure 6.10: Efficiency of gas accretion mechanisms starting from z = 4 up to recent
epochs. The curves are obtained from the subtraction of the mean total growth of SMBHs
and mean merger contribution evaluated for single mass step and with the inclusion of a
tmerg. They are then normalized to the final mass so to make clearer the differences in
the behaviours. The final mass increases from the bottom part of the set to the top, in
which lines of high mass objects are illustrated.

connect the smallest black holes to their hosts can not be defined with high accu-
racy neither by observations (sparse in that range of masses) neither through the
comparison of the respective growing curves with our model of reference (Shankar
et al. (2009)), which is less reliable in describing the evolution of small SMBHs
at high redshift. Therefore results about them should be taken with caution and
not considered exact. What is for sure is the fact that for objects of this type the
merger contribution in their growth is far more limited with respect to the one of
gas-accretion processes (see Figures 6.7 and 6.8).

• Towards the very high mass end, specifically supermassive black holes of final mass
≳ 109 M⊙, the resulting situation is slightly diverse. Those objects seem to be
characterized by an initial phase of very fast gas-accretion (at z < 4) and then
this process becomes less and less efficient towards lower redshift. The reasons of
such a behaviour are not well known, a possible one involve some AGN feedback
mechanisms able to sweep away the reservoir of cold gas; other explanations consider
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the effects of major mergers between the host galaxies. Nevertheless, what is found
in the context of this project is that the merger contribution to the growth of
SMBHs in this range of mass is important, quite predominant, especially at recent
epochs (Figures 6.7 and 6.8). Actually it should be treated with some adjustments:
adopting a maximal merger approach may not be convenient because it leads to
undesired situations in which ⟨MBH,merg⟩ > ⟨MBH,tot⟩, and a delay time, accounting
for the ’correct’ merging timescale, is needed to solve in part this problem.
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Chapter 7

Future

In this Chapter I am going to suggest some possible developments for the project just
outlined. From one side it would be interesting making links with other models and
simulations, that may differ in the treatment of physical inputs or in the approach used;
on the other side one should always maintain a contact with the ’real’ world, that is to
consider new available observational data.

7.1 Modification of DECODE

A first direction for future steps is surely in the perfecting of the Decode model. As
described in Chapters 2 and 3, presenting the main characteristics and functions of the
model, this latter relies on very few input elements, that are basically the halo and sub-
halo mass functions (HMF and SHMF), the stellar mass function (SMF, empirical) and
the consequent stellar mass - halo mass (SMHM) relation. In Section 2.3 I have introduced
the SMHM relation of reference in this work (RM) evaluated from the combination of
SMF data of Baldry et al. (2012) + Bernardi et al. (2017) + Tomczak et al. (2014).
Also, I have briefly discussed about a possible alternative to the latter, represented by
the SMHM relation calculated with the empirical model of Moster et al. (2018), Emerge.
The different behaviours of the two is shown in Figure 3.5 of Chapter 3. The authors of
Decode (Fu et al., personal communication) have found that another SMHM relation
could be in better agreement with observational data. In particular such a relation is
represented by a low-mass end made of a non-evolving SMF up to z ∼ 1.5 and by an
high-mass end similar to the one of the RM in this project. Indeed it seems that a Mhalo
- M⋆ relation obtained through a constant SMF towards low masses is more capable
of reproducing (mean) star formation rates compared to the ones derived by spectral
energy distributions (SEDs). On the other hand, considerations made in (Fu et al., in
preparation p.c.) for high-mass objects remain unchanged since all quantities involved
depend on major mergers, hence significant for stellar masses of M⋆ ≳ 1011 M⊙. The
new relation so built-up is represented in Figure 7.1 along with the reference SMHM
relation (in blue). The orange curve traces the new local (z = 0) stellar mass - halo
mass relation and orange shaded area its evolution across cosmic time up to z = 4. The
same, but in blue, is for the RM relation. As just said, the new relation has an almost
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null evolution up to M⋆ ∼ 109 M⊙, while at increasing masses the evolution is more
significant and tends to overlap with the situation depicted by the RM. At this point it
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Figure 7.1: Stellar mass - halo mass relations and relative evolution up to z = 4. The blue
curve and respective shaded area represents the reference relation (RM) of this project
and obtained through passages described in Section 3.2 of Chapter 3. Orange line and
shaded area are referred to a new relation introduced by Fu et al. (in preparation) to
have a better agreement with SFRs from SEDs.

would be interesting to adopt this latter SMHM relation and re-evaluate all the quantities
described in this thesis, i.e. global SMBH growing curves, merger contributions and so
on. An approximated tentative is displayed in Figure 7.2. As usual the blue curves are
representative of the global growing of supermassive black holes and to them the mean
merger contribution should be subtracted. For the moment it is just to show how the
behaviour of the tracks is changed when the new relation is used. The scaling relation
I have used to make the plot of Figure 7.2 is again a broken power law type MBH - M⋆

relation, with a low-mass slope of about α1 ∼ 1 and a much steeper one towards higher
masses, of ≈ 2. Actually the stellar mass at which such a change is made to occur is
M⋆ = 109 M⊙, hence the flatter trend regards only the very small black hole masses. In
the Figure 7.2, it appears that for SMBHs with final masses ≳ 108 M⊙ the agreement
is not bad and at the highest masses blue curves are much above the red ones (from
Shankar et al. (2009), S09) because still the merger contribution has not been taken
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Figure 7.2: Global supermassive black hole growing curves made from the new SMHM
relation, introduced in this last Chapter (Figure 7.1, in orange), and through a broken
power low MBH - M⋆. This latter has a low-mass end slope of about 1 and an high-mass
end slope nearly 2. Red dashed lines are the accretion curves by Shankar et al. (2009),
model of reference for the entire project.

into account (and there should be important). SMBHs with lower final masses do not
perfectly match the S09 curves in the range of masses between ∼ 105 and 107 M⊙, that,
according to the conversion used, are associated to stellar masses in between ∼ 109 -
1010 M⊙. By looking at Figure 7.1 this region is nearly in correspondence to the knee of
SMHM relation (orange) and in there at higher redshift the new model predicts indeed
higher stellar masses. Anyway a deeper analysis should be followed in order to find a
coherent and well-motivated solution.

7.2 Diffmah: Differentiable Model of Halo Assembly

To the side of models and simulations, a chance is represented by the employment of a
different empirical model, Diffmah, that has been implemented by Hearin et al. (2021).
In Section 3.1.1 of Chapter 3 a brief comment was made about this when discussing the
possible accretion tracks to assign to the parent dark matter halos. The recipe selected in
that occasion was to make parent halos evolve according to the formalism of van den Bosch
et al. (2014), hence through the use of mean growing tracks. The particularity of Diffmah,
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instead, is to model the growth of individual DM halos adopting a functional form so
to approximate results taken from merger trees of halos identified in both gravity-only
(Klypin et al. (2011) and Klypin et al. (2016)) and hydrodynamic simulations (TNG300-
1, Nelson et al. (2017)). Diffmah builds the evolution of cumulative peak halo mass,
Mpeak(t), i.e. the largest mass the main progenitor halo has ever attained up until the
time t. This means that Mpeak(t) is a non-decreasing function of time and eventually
it remains constant in case of mass loss. Mpeak is modelled as a power-law function of
cosmic time given by:

Mpeak(t) = M0(t/t0)α(t), (7.1)

with t0 the present age of universe, M0 = Mpeak(t0) and α(t) defined as:

α(t; τc, k, αearly, αlate) ≡ αearly + αlate − αearly
1 + exp(−k(t − τc))

. (7.2)

The parameters αearly and αlate are the asymptotic values of the power-law index at
early and late times respectively. They are related to two phases of halo growth: a fast
(early) phase during which the timescale of mass accretion is shorter than the timescale
of Hubble expansion and probably dominated by major merger; a slow (late) phase is
instead characterized by a longer timescale accretion and dominated by minor mergers
according to (Li et al. (2007)). The term τc is defined as the transition time between
the early- and late-time indices, while k controls the speed of transition between the two
regimes. These parameters essentially describe the mode with which a halo evolve: e.g.
assuming small values of τc would imply having a halo of lower final mass.
What is interesting in this case is the fact that for each object one can retrieve the
assigned time of transition, τc, that should also corresponds to the moment at which a
halo reaches its maximum virial velocity (Li et al. (2007)). This is in turn calculated as
a function of z and the halo mass Mhalo(z):

Vvir(z) =
√︄

GMhalo
Rvir

=
[︄

∆vir(z)
2

]︄1/6

[Mhalo(z)H(z)] (7.3)

with Rvir is the virial radius of the halo and H(z) is the Hubble parameter. The quantity
∆vir(z) is the density contrast between the mean density of the halo and the critical
density for closure, for which typically the fitting formula used is the one by Bryan &
Norman (1998): ∆(z) = 18π2 + 82[Ωm(z) − 1] − 39[Ωm(z) − 1]2. At the maximum value
of Vvir, a relation with the central velocity dispersion, σ, is supposed to establish. Some
literature works (Ferrarese (2002); Baes et al. (2003); Pizzella et al. (2005)) have tried to
characterize this relation, at z ∼ 0, by using the large scale circular velocities of spiral
galaxies (flat branch of rotation curves). Hence making a connection between Mhalo(z) -
σ(z) for specific evolutionary paths and then using the MBH - σ scaling relation it would
be possible to acquire information about i) growing curves of SMBH derived from this
particular situation; ii) possible connection between black holes and dark matter halos;
iii) clues on the formation and evolution of MBH - velocity dispersion scaling relation
(and processes implied).
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7.3 Question of mergers

As repeated many times the fundamental information provided by Decode is the mean
merger contribution that characterizes the population of halos with different final masses.
In turn this is used to calculate the predicted cumulative merger histories related to
supermassive black holes, once assuming stellar mass - halo mass and SMBH mass and
galaxy properties relations. In Section 6.2.2 I have also discussed about the possibility
of including a merging timescale and showed the results obtained with the inclusion of
this latter referred to galaxies (see Section 2.2.4). The mean merger contributions, hence
mean number of mergers and so on, derived in this framework can be compared to other
pieces of information supplied by different models/simulations and by the almost new
filed of research that regards gravitational waves.

Gravitational Wave Background

Supermassive black hole mergers are the principal target for long-wavelength (mHz to
nHz) gravitational waves being searched for by pulsar timing arrays (PTAs, µHz - nHz)
and by upcoming Laser Interferometer Space Antenna, LISA, in the frequency range 0.1
Hz to 0.1 mHz (Amaro-Seoane et al. (2017)). The main difficulty is to disentangle gravi-
tational wave signal (either stochastic background, GWB, or deterministic low-frequency
GWs) from other sources of noise in PTA data (Goncharov et al. (2020)). Thorough
well calibrated scaling relations, that also accounts for morphological differences (Sahu
et al. (2019a)), It would be possible to improve the GWB strain model used to look for
long-wavelength GWs in PTA and LISA data. As an example in Mapelli et al. (2012) the
use of a quadratic relation instead of a linear MBH - M⋆,bulge one changes the predicted
event rates by an order of magnitude. Indeed the GWB strain model is evaluated by
the integration of the individual characteristic strains over the SMBH Binary (SMBHB).
The GWB strain model elaborated by Chen et al. (2017) depends on the SMBH binary
merger rate d2n

dzdM , i.e. the number density of merging SMBHBs per unit of z and unit of
chirp mass M(=(m1m2)3/5/(m1+m2)1/5). During a galaxy merger, the hosted SMBHs
are pushed towards the central region of the remnant galaxy through dynamical friction
processes. This leads to the formation of a SMBH binary at parsec scales that interacts
with the surrounding stars and may enter a binary hardening phase characterized by a
binding energy between the two objects higher than the average kinetic energy of stars in
the vicinity. From that situation the binary successively enters the so called GW emis-
sion phase, that finally drives the merger. Assuming a scenario of this kind, the SMBHB
merger rate (that affects the calculation of the GWB strain) naturally depends on the
galaxy stellar mass function (SMF), galaxy pair fraction (GPF), SMBH merger time-scale
(see next) and the scaling relation between the black hole mass and host galaxy properties
(Sesana (2013)). Scaling relations allows to pass from SMF to BH mass function (BHMF)
and from GPF into BH pair fraction (as seen in Section 6.2). From the combination of
GWB strain models and future detections made available by PTAs and LISA it would be
possible to get more stringent information about BH merger rates and scaling relations
to be inserted in the present project.
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Merging timescale of SMBH

An issue not completely taken into account in the treatment of merger contribution I
made in this thesis is the merging timescale related to SMBHs. In fact, for almost all the
passages performed I consider a maximal merger contribution without the inclusion of
any delaying timescale. Only in a second moment (Section 6.2.2) I re-do the calculation
of mean mergers using galaxy merging timescales (Section 2.2.4), that is often used to
approximate the SMBH merger timescale (e.g. Chen et al. (2019)). However, the SMBH
merger timescale may be further delayed during the transition from the hardening phase
to the GW emission one, and it has been argued (Sesana & Khan (2015)) that such
transition phase is where SMBHBs spend most of their lifetime. One could estimate this
time-scale for a given binary eccentricity following the model in Sesana & Khan (2015),
if density at the black hole influence radius and the stellar velocity dispersion are known.
As an example in Biava et al. (2019), authors present a model to derive SMBH merging
timescale: through the MBH - M⋆,bulge, M⋆,bulge - Re,bulge and MBH - nbulge relations
taken from different studies they estimate Sérsic parameters of a remnant bulge hosting
a SMBHB and then use Prugniel & Simien (1997) model to calculate the density within
the black hole influence radius, ρi. With models and data of these type one can observe
how much results, presented in Section 6.2, would be changed and improved.

7.4 Future observations and applications

In this final Section I underline the necessity of collecting more and more observational
data so to obtain up-dated black hole-galaxy correlations that could also take into account
differentiation among populations of objects considered (e.g. morphology-types, active
or non active galaxies etc.). New relations may be used as a test for the model described
in this work and also for other simulations trying to reproduce realistic galaxies with
central SMBHs (e.g. Schaye et al. (2015); Mutlu-Pakdil et al. (2018); Hopkins et al.
(2018); Davé et al. (2019); Li et al. (2020)), with the additional possibility that results
can be compared to each other.
Steps forward may also be conducted in the study of scaling relations evolution. As
repeated many times in this work, first results in terms of SMBH growing curves have
been obtained assumed constant scaling relations (hence of the same type along cosmic
epochs up to z = 4). In a second moment, in Chapter 6, I have discussed about the
introduction of an eventual z-dependent term in the relations adopted (of the form ∝
(1+z)γ). Some studies have approached this issue (e.g. Park et al. (2015); Sexton et al.
(2019); Li et al. (2021)) basing on a sample of active galaxies and have suggested that
MBH - σ and MBH - M⋆,bulge relations remain almost the same as the local ones up to z ∼
0.6. Further investigations extended to higher redshift would improve the situation and
also give insights regarding BH mass function, BH merger rates and finally gravitational
wave strain models (discussed above), and all of this could help making the procedure on
which this project is based more reliable.
Finally the black hole scaling relations need to incorporate low-mass or dwarf galaxies and
also be completed with the inclusion of nuclear star clusters and globular clusters, that
probably host BHs of masses lower than ∼ 105 M⊙. These objectives would be achieved

110



7.4 – Future observations and applications

in the next few years thanks to new high-resolution observations from telescopes such as
the James Webb Space Telescope (JWST, Gardner et al. (2006); Kalirai (2018)), Multi-
conjugate adaptive optics Assisted Visible Imager and Spectrograph (MAVIS, Ellis et al.
(2020)), Advanced Telescope for High-ENergy Astrophysics (ATHENA, Barcons et al.
(2017)), the next generation Very Large Array (ngVLA, Di Francesco et al. (2019)),
Extremely Large Telescope (ELT, Batcheldor & Koekemoer (2009)), and the Square
Kilometre Array (SKA, Cembranos et al. (2020)).
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