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Abstract
In this thesis we develop an innovative method for the Information Retrieval
Entity Search task. In particular, we propose a new approach that exploits
graph embedding techniques and clustering in order to create the documents
necessary for the retrieval. The main difference with the state-of-the-art
implementation is that we create a document for a set of related entities instead
of a single document for each single entity. For the documents creation and
evaluation phases we use DBpedia, a standard dataset for entity search task.
This dataset is constituted by RDF triples that describe entities properties
and that allow us to consider all the stored knowledge as a graph. It is on
this graph that we use a graph embedding technique that creates a vector
representation for each node considering, not only the entity properties, but
also the information concerning its neighborhood and relationships with other
entities. These embeddings are then grouped through clustering to obtain sets
of similar entities that we use as our documents. For the retrieval we develop
two classes of systems: one that uses only the cluster approach, the other that
merges the cluster method together with the state-of-the-art one. The main
advantage of proposed implementation is that our systems could return to the
user not only entities that directly match the user query, but also relevant
entities that are not explicitly mentioned. We execute two different type of
evaluation: average evaluation and topic-based evaluation. From the average
evaluation we see that, in general, some of our systems turn out to be promising
and obtain better results compared to the state-of-the art method; from the
topic-based evaluation we see that some of our systems outperform the classic
one in some specific topics while in others we obtain very similar performances.

Keywords – Entity Search, Information Retrieval, Graph Embeddings
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1 Introduction
When we are looking for information, it is now customary to open a search
engine in our mobile phones or computers and type, in the specific search bar,
that query we think best represents our research. This process has become
part of people’s everyday life and it almost never leads us to think about the
mechanism behind that allows us to achieve all this. The information retrieval
is the field that study this process, it started way before the 1990s analyzing
textual documents and continue today on increasingly specific and current
issues. The analysis and the retrieval of textual documents is hence the basic
method on which subsequent research has been developed and it remains the
reference system today. This method is characterized by the use of a collection
of documents, where each document contains text written in natural language.
The goal of the information retrieval is to obtain the most relevant documents
for the user information need. This approach has the advantage of facilitating
the user in making his request because he can use the common language and
does not need to know any programming language or the structure of the data
that contains the documents. In recent years, however, we are witnessing a
change of tendency that leads us from documents to entities, this is due to
the fact that nowadays the 40% of the users queries mention entities [10, 9].
If we think about the researches we usually carry out, in fact, it is easy to
see that what we often require are information that concern people, places,
concepts that can be intuitively associated with concrete entities of the real
world. The task of searching these entities takes the name of Entity Search
task. In order to give to the user an effective answer it is necessary to have a
collection of entities, the dataset on which we execute the retrieval. Usually
these datasets are expressed through a knowledge representation model called
Resource Description Framework (RDF) that is composed by triples, each
triple is composed by three components: subject, predicate and object. Thanks
to its structure, this type of representation can be seen as a graph, where
subjects and objects are nodes, while predicates are edges. In order to bring
the search for entities back to the traditional retrieval method, it is necessary
to create documents starting from the entities of the dataset. Traditional
text retrieval methods rely on a collection of documents as information base
therefore, in order to exploit the same approaches, we have to express our
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knowledge through documents. In particular we have to create a collection
of documents based on entities information in order to use it as our base for
the retrieval process. The difficulty of this process lies in the way documents
are created. Currently the state-of-the-art methods [10, 32, 6] generates a
single document for each entity. This document is created mainly using two
approaches: text-based approach and structured-based approach. While the
first one simply merges all the information concerning a single entity into a
document, the second one takes into account also the type of information that
we are storing through the creation of a fielded document. Documents creation
constitute hence the main difference between textual and entity retrieval. The
main issue with state-of-the-art methods is that they consider only information
regarding entities themselves, without considering the context in which they
are placed. The innovative approach that we want to introduce in this thesis
wants to overcome this problem considering also the entity context.

In our thesis we exploit graph embedding techniques and clustering as
basis for the document creation phase. In particular we use graph embeddings
to obtain a vector representation for each single entity. These embeddings
are generated through the Node2Vec method based on neural network [18],
which differs from other algorithms, such as DeepWalk [35] or Line [43], in
how it explores the RDF graph in order to generate the input data for the
training phase. The embedding features of the vectors returned by Node2Vec
contain therefore information concerning the context of the entities and their
relationships. The clustering phase exploits these representations in order
to create sets of correlated and similar entities that become the documents
necessary for the retrieval. The advantage of using this new approach is that
it is not simply based on word matching between user query and documents
such as the state-of-the-art method, but it allows us to retrieve also entities
that are not explicitly mentioned but that are relevant for the topic. This
could be done through graph embedding techniques and clustering because
our documents contain not a single entity but a set of related ones. It is in
fact reasonable to think that if two entities are highly connected, both of them
could be considered relevant for a specific topic.

Wanting to outline the steps involved in our approach implementation:
we firstly create a database for the storage of all the RDF triples, then we
represent each entity with a numeric vector obtained from the embedding
process. Once obtained our entities embeddings, we execute a clustering on
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these vectors and use these clusters as documents in the retrieval phase. The
retrieval phase uses the classic BM25 method and returns a ranked list of
clusters from which we extract the entities necessary for the final ranked list
generation. We implement also systems that use both our approach and the
classic one. Finally, we perform an analysis of these systems considering both
the average and topic-based evaluation. This phase is executed using DBpedia,
a standard dataset for entity search task. From the evaluation studies, some of
our systems turn out to be promising and obtain results comparable to the one
of the state-of-the-art method. In particular we see that these systems perform
better in some specific topic, while in other they obtain the same result of the
classic method.

This thesis is organized as follows: in Chapter 2, we give an overview on
information retrieval, on entity search and on graph embedding techniques; in
Chapter 3, we describe our proposed solution in all its phases; in Chapter 4,
we describe the experimental setup, we perform an analysis of our systems
performances through both a quantitative and a qualitative evaluation, and
we discuss the obtained results; we conclude and outline future directions in
Chapter 5.
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2 Background
Thanks to the spread of the internet connections and the use of mobile phone,
an increasing number of people have had access to the web and in particular
to search engines. Everyday more than 4 billion searches are done to the most
popular retrieval systems because it has become the fastest and simplest way
to answer our questions [12]. This trend brought more attention to information
retrieval systems, which have to be continuously updated and optimized. In
the last years, indeed, the focus of information retrieval is increasingly shifting
to entity search, i.e. the research of specific objects or facts that belongs to
our real-world [37].

In this chapter we discuss about text information retrieval in Section 2.1
describing its phases. In Section 2.2 we describe Entity search,the DBpedia
dataset and we present the state-of-the-art methods for ad-hoc entity search
task. In Section 2.3 we discuss about Graph Embeddings presenting the state-
of-the-art methods.

2.1 Text Information Retrieval
The information retrieval is the field that concerned with the management
and research of information, indeed as defined by Salton in [41]: Information
retrieval is a field concerned with the structure, analysis, organization, storage,
searching, and retrieval of information. Around the 90s the launch of the
Text REtrieval Conference (TREC), co-sponsored by the National Institute
of Standards Technology and U.S Department of Defense as part of the
TIPSTER Text Program [45], contributed to the development of Information
Retrieval. This convention greatly affected the research and development of
the information retrieval providing extensive text collection for the large-scale
evaluation of the retrieval systems. Every year a task is selected and discussed,
in particular from 90s to nowadays we can see that the focus of each meeting
has changed and grown together with the optimization of old techniques, the
discover of new ones and the introduction of new needs. Summarizing briefly
the main tracks that lay the groundwork for Entity Retrieval [3]:

• 1992 - TREC;

• 1999 - TREC Question Answering Track;
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• 2009 - INEX Entity Ranking and TREC Entity Track;

• 2012 - TREC Knowledge Base Acceleration Track.

The main advantage of the information retrieval system is the simplicity of the
query formulation; the user can be unaware of the complexity or structure of
the data storage and he does not need to be an expert with the knowledge of
specific technical query language. A user generally expresses his information
need through a text, usually in natural language, and the information retrieval
system tries to match this request with an information object. In this process
we can identify three main components: the information need express through
a query, the retrieval system and the information object.

From the TREC overview [3, 45] we can see that traditionally the retrieval
mainly concerns the research of information inside a set of documents from
which it obtains a list of ordered pages that are supposed to be of major interest
for the user. Driven by the motto "users want answers, not documents" a new
front of IR was introduced with the TREC Question Answering Track [3];
here the structure of both the query and results has been modified: the first
became a question formulated in natural language, while the second became a
short answer. In the 2009 conference it was firstly introduced the entity search
which we will describe in more detail in the next section, briefly it consists in
the research of specific objects or facts that belongs to the real-world. With
this track and the use of entities as the main information objects we have
had an increase in the reliance on structured data sources called knowledge
bases, leading this trend to became the main track of the conference of the
2012. This last mentioned conference aims at developing technologies that can
expand and maintain these entity information structures.

2.1.1 IR Phases

The Information Retrieval process, as shown in Figure 2.1, is composed mostly
of four parts:

1. Acquisition;

2. Indexing;

3. Retrieval;

4. Evaluation.
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Figure 2.1: U model of an information retrieval process and its component
and phases. In particular it reports the acquisition phase execute before
retrieval, the Information Retrieval System (IRS) and the last evaluation phase
that covers all the process.

The first phase describes the process of query and document acquisition, in
particular the digitization of textual documents and the representation of
the user information need through a query. In the second phase the system
processes documents analysing their form and content in order to create a
structured representation that is more useful for our retrieval purposes. This
is supported by the use of a specific data structure called Inverted Index which
connects a term with the documents in which it appears. This structure is used
by the retrieval system which, first of all, executes a lexical manipulation on the
user query and then does a match between this form of query and the inverted
index through a specific retrieval model in order to find the most relevant
documents. At the end of the all retrieval process there is the evaluation,
whose aim is to rate the efficiency and the effectiveness of the system. This
is done using different type of measures. Thanks to these measures and the
possibility of reproducing some scientific studies we can make a comparison
between different systems and different retrieval models, using the results to
improve them.

2.1.1.1 Indexing

The processing of documents is executed in the indexing phase. This phase
consist of five sub-parts, shown in Figure 2.2, that are not always all
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Figure 2.2: The five different phases of the indexing process.

implemented:

• Lexical Analysis;

• Stop words removal;

• Stemming;

• Terms composition;

• Weights assignment.

In the lexical analysis the documents are examined in order to find the various
tokens contained within them. In case of textual documents the tokens are
the terms and they can be identified thanks to separator characters like white
spaces and punctuation marks. After this phase a stop word removal is done.
A word is a stop word if it has poor information content, namely those words
that are very common in a language or that are function words; generally
these are: propositions, articles, etc. It would be better to remove them as
little as possible in order to maintain flexibility and recognize also phrases
with a high frequency of stop words like: To be or not to be. Once we have
our words we can observe that some of them only differ for their inflection or
derivation while their semantic meaning remains the same. We can think on
reducing these words into the same one, for example removing their suffixes
and maintaining the root of the word, called stem, evaluating their frequency
for the index creation. This process takes the name of Stemming. Instead of
reducing words into a single one we can also think of composing terms that
usually appear together, this process can help to make stemming less generic.
For example instead of using the single stem: "comput" we can give more
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information about the context composing it with the stem: "data" obtaining:
"data comput. The last phase of indexing is the weights assignment. Here we
associate to each word a value that represents its importance in each document
where it appears. Indeed it is logic to think that not all the words in a document
describe its information meaning with the same effectiveness. The weight we
assign could be of two types: binary or frequency based. The binary value
simply identifies if the word is present in the document while the frequency
identifies the number of word occurrences in the document (Term Frequency -
TF) or in the collection (Inverse Document Frequency - IDF).

2.1.1.2 Retrieval

The retrieval phase exploits the information obtained from the indexing in
order to give at the user the documents that come closest the information
need of the user. In particular it uses term frequency at the base of more
complex statistical models in order to give to each document a score that
represents its relevance respect to the user query.

Historically the first information retrieval model was the Boolean model. In
this system the user information need, expressed by a query, it is associated
with the set of documents that make that interrogation true. This model
does not rank the resulting documents because it simply assign a value of 1,
marking as relevant, those ones that match the query, and a value of 0, marking
as not relevant, those one that do not match the query. This model has two
main issues: one is that the user needs to know boolean operations and a
somehow structured language in order to use correctly the system and obtain
the information required; the second is that the returned list of documents is
not ordered so we need a further external step called Coordination level that
returns a ranking list basing on a measure of how much a query is true for a
specific document.

The necessity of having a ranked list of documents in response to a query
and the necessity of giving different weights to documents’ terms relying on
their frequencies bring to the development of another model called Vector
Space Model. This model represents each document like a vector of dimension
t where t is the number of index terms and dij represents the weight of the
j-th term in the i-th document Di:

Di = (di1, di2, ..., dij, ..., dit)
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The same structure is associated to the query and the terms that compose it:

Q = (q1, q2, ..., qj, ..., qt)

where t is the number of index terms and qj represents the weight of the j-th
term in the query. In the real case, for both the document and the query, t is
the number of terms of all the collection.

Representing documents and query as vectors allows us to compare this
two elements through a measure of similarity called cosine similarity. This
measure is defined as:

Cosine(Di, Q) =

∑
j(dij · qj)√∑
j d

2
ij ·

∑
j q

2
j

and takes value 0 if the two vectors has no common terms or features, value 1
if the two vectors are identical.

Once the model has been chosen, the weighting scheme to be adopted
remains to be decided. Most common ones are those based on term frequency
and inverse document frequency. The first one reflects the importance of a
term in a specific document while the second one reflects the importance of a
term in the collection. For the IDF we can notice that a term that is present in
many documents will be less significant for the description of the information
content of the documents. The term frequency associated to the term k in the
document Di with j between 1 and t is defined as:

tfik =
fik∑
j fij

where fij is the number of occurrences of the term tj in the document Di

and
∑

j fij is the sum of the frequencies of all the terms in the document Di.
Usually the lengths of the various documents can be very different one to each
other therefore, in order to reduce the impact of terms that appear many time
in a document just because of its dimension, it is preferable to use TF in a
logarithmic form like:

tfik =
log(fik + 1)∑
j log(fik + 1)

where the factor "+1" is a correction factor used to avoid the undefined value
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obtained for fik = 0. The inverse document frequency instead is defined as:

idfk = log

(
N

nk

)
where N is the number of documents and nk is the total number of documents
in which the term k is present.
Using this two measures we can now define a weighting scheme for documents
and queries. For documents we have:

dik = log(fik + 1) · log
(
N

nk

)
while for queries we have:

qk = log(fk + 1) · log
(
N

nk

)
Noting that IR systems rely on probability because we do not know with

certainty if a document is relevant for a query or not and we only search for a
best match between them; in the 70s a new type of model was proposed: the
Probabilistic Model. Here the idea is to design a weighting scheme based on
a probability distribution. The most common probabilistic model used is the
BM25 described in the paper [40].

2.1.1.3 Evaluation

From the phases described above we notice that a high flexibility is provided
choosing which parts of indexing to implement and which kind of retrieval
model to use. This peculiarity leads us to ask ourselves which kind of retrieval
pipeline is best suited to our needs and so can give us better results and
performances. We would like to make different experiments with different
choices in retrieval phases and compare them.

The standard de-facto for the evaluation process is the Cranfield paradigm.
It was developed in the 60s by Cyril Cleverdon, a librarian of the College
of Aeronautics in Cranfield. He execute two experiments, one following the
other and call respectively: Cranfield 1 and Cranfield 2. With the first one
Cleverdon wanted to evaluate the most common retrieval systems. In order to
do this he chose 3 indexers to index 18000 articles with all the retrieval systems,
than he chose 1500 queries, based on the known item search task, to formulate
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and evaluate on the 4 indexes. The known item search task aims to identify a
unique document that is surely relevant for the query. 400 of the 1500 queries
were then verified by experts in order to ensure that they were questions that
the users would really do. He evaluated the time spent for the research and if
it was successful or not. The 35% of the research were unsuccessful, probably
due to the indexing phase. This was the first example of Failure Analysis in IR.
With the second experiment Cleverdon therefore wanted to repeat the process
in a more structured manner. He chose the documents and the queries for the
retrieval and built preliminary a collection for the experiment. The notion of
collection was introduced now for the first time. The Collection is the set of
documents on which we execute the retrieval. Formally a collection is defined
as a triple: C = {D,T,RJ} where C is the experimental collection, D is the set
of documents, T is the set of topics and RJ is the set of relevance judgments.
In order to obtain the set of relevance judgments a method called Pooling can
be used. This process selects a subset of documents to evaluate and use this
one to measure the effectiveness of the retrieval systems. The pooling exploits
the concept of run for the selection of the subset of documents. A run is
formally defined as [2]:

Let:
D = {d1, d2, ..., dn} be a set of documents
T = {t1, t2, ..., tm} be a set of topic
Given a natural number N ∈ N+ called run length, a run is defined
as the function:

R : T → DN

t 7→ rt = (d1, d2, ..., dN)

such as ∀t ∈ T , ∀j,k ∈ [1, N ] | j 6= k ⇒ rt[j] 6= rt[k] where rt[j] is
the j-th element in the vector rt

The approach plans to consider a set of run computed for a specific topic
and select the first top-k documents of each one: depth of the pool. Than
it creates a set from the union of these documents and assigns a relevance
judgment to each one choosing from a specific set. This set could be binary
and in this case we have two possible values for the relevance: relevant and
not relevant, or multigraded and in this case we could have many possible
values that can be for example: not relevant, partially relevant, fairly relevant
and highly relevant. After the collection building he finally wanted to execute
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the experiment analyzing the indexing methods properties. The collection for
Cranfield 2 was composed of documents and queries that users would really
use, in particular it was made of 1400 documents and 221 questions. With this
experiment Cleverdon also introduce two measures for the evaluation that are
the Precision and the Recall. The Recall measure is defined as:

Recall =
Drr

Drc

where Drr is the number of relevant retrieved documents while Drc is the
number of relevant documents in the collection also known as Recall Base.
The term Drc can be calculated as:

Drc = Drr +Drn

where Drn is the number of relevant but not retrieved documents. Recall
defines how many relevant documents have been retrieved in response to a
specific query compared to the totality of relevant documents in the collection.
The Precision measure is defined as:

Precision =
Drr

Drq

where Drq is the number of documents, both relevant and not relevant,
retrieved by the query and can be defined as:

Drq = Drr +Dnr

with Dnr indicating the number of non-relevant document that are been
retrieved by the query. The Precision then indicates the number of relevant
document retrieved in response to a specific query compare to the totality of
retrieved documents.

The Cranfield paradigm therefore modeled a research task building a
specific test collection that can be reuse in different experimental context
enabling the reproduction of experiments and their comparison. In order to
evaluate a retrieval system we have to:

• Select a set of documents that is relevant for the task.

• Select a set of topics that truly represents the information needs of the
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users.

• Define the relevance judgments used to mark documents as relevant or
not for a specific topic.

Regarding the evaluation measures, others have been developed after the
Cranfield experiment such as: E-measure, F-measure, prec@k, 11pt-AP, AP,
MAP, CG, DCG and nDCG. We will give just a short overview of the most
used ones.

The Average Precision (AP) is a measure that, compare to the previous
one, gives more importance to those runs that put relevant document in top
position (namely with a high rank), so it is called a Top Heavy measure. This
is a good effect because often we want our system to give us back relevant
documents as the first ones on the returned list. This measure is defined as:

given a topic t ∈ T , a recall base RBt, REL = {nr,r} and a run rt

of length N ∈ N+ such that:

∀i ∈ [1, N ], r̃t =

0 if r̂t[i] = nr

1 if r̂t[i] = r

AP =
1

RBt

N∑
k=1

r̃t[k]

∑k
h=1 r̃t[h]

k

where T is the set of queries concerning the same information needs, REL is a
set of relevant judgments that, in this case, are binary (they can only assume
two types of values: non relevant or relevant) and the run rt is the ranked
list of documents resulting from the retrieval process. We can see from the
definition that the division by k allow us to weight relevant documents with
higher rank more than those with lower rank.

The Mean Average Precision (MAP) is based on the AP with the
difference that this measure allows us to make an evaluation of the run on all
the topics of the collection and not just only on a single one. It is defined as:

MAP(R) =

∑
t∈T AP(rt)

|T |

While these two measures are defined using binary relevance judgments,
the DCG and nDCG are defined for multi-graded relevance judgments. In
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multi-graded relevance the weight associated to each document can take more
than two values, for example they could be:

• Highly Relevant (HR) → 3

• Fairly Relevant (FR) → 2

• Partially Relevant (PR) → 1

• Not Relevant (NR) → 0

The Discounted Cumulative Gain (DCG) is a multi-graded top heavy
measure that is based on the measure of Discounted Gain (DG) which use
a discounting function to progressively reduce the weight of the documents
going from those with high rank to those with low rank. The DG is defined
as:

given a run R(t) of length N ∈ N+ and a logarithmic base b ∈ N+,
∀k ∈ [1, N ]:

dgbrt [k] =

r̃t[k] if k < b

r̃t[k]
logb k

otherwise

Another advantage from the discounting function is that it allows to modify
the DG depending on the type of task we want to evaluate; for example if we
are dealing with a Web Search we would choose b=10 that is the standard
number of pages returned in this kind of search while if we are dealing with a
mobile phone we will use a smaller value of b because in the screen we could
see lesser pages. Then the DCG is:

DCG[j] =

j∑
k=1

dgbrt [k]

We can observe that this measure can take each kind of value and it is not
included between 0 and 1, so a process of normalization can be added, obtaining
a new kind of measure called Normalized Discounted Cumulative Gain
(nDCG). The normalization process it is done using the notion of Ideal Run.
This run is the one with the best rank of documents, formally: the ideal run
I(t) = it is the one that satisfies these constraints:

1. recall base: ∀t ∈ T, |{j ∈ [1, N ] | GT(t, it[j]) � min(REL)}| = RBt
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2. ranking: ∀t ∈ T, ∀j, k ∈ [1, N ] | j < k ⇒ ît[j] � ît[k]

Than we can define the nDCG like:

nDCGb[j] =

∑j
k=1 dg

b
rt [k]∑j

k=1 dg
b
it [k]

Thanks to this normalization we can use this measure to compare different
run on the same topic or to calculate the mean of nDCG values for the same
run on different topics.

2.2 Entity Search
As defined by Balog in [3]: "Entity-oriented search is the search paradigm
of organizing and accessing information centered around entities, and their
attributes and relationships" and "an entity is an object or concept in the real
world that can be distinctly identified". In the last years the importance of
entity search has become even greater due to the fact that 40% of the queries
made by users mention specific entities [19, 27, 37]. Usually a user formulates a
query in natural language and keywords searching for a specific thing, person or
fact that can be logically gathered in the concept of entity, an example of this
type of search is represented in Figure 2.3 where in the right side of the page
it is possible to see the returned Entity Card associated to the entity searched
"Michael Schumacher". Entities are connected to each other by relationships
and are described by means of their properties.

2.2.1 Entity

From a machine perspective an entity can be seen as [3]: "a uniquely identifiable
object or thing characterized by its name(s), type(s) and relationships to other
entities". For information retrieval purposes we consider as entities only those
present in a set called entity catalog. Giving a more technical definition, from
[3]: "An entity catalog is a collection of entries, where each entry is identified
by a unique ID and contains the name of the corresponding entry".

We can identify two types of entity:

• Named entities: it is an object that can be defined by its proper noun.

• Concepts: it is an abstract object that represents a concept in a specific
field such as physics, math, philosophy or others.
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Figure 2.3: Illustration of an entity search in Google. It is possible to see
the classic sites result and on the right the entity card associated to the entity
searched: Michael Schumacher.

Usually an entity is characterized by a set of properties that specifies some of
its aspects. These properties are:

• Entity ID: that uniquely identifies the entity which we are referring to.

• Name(s): common name in the real world associated to that entity. It
does not uniquely identified the entity, in fact in the same catalog there
can be multiple different entities with the same name. These names are
called surface forms or aliases. The presence of this kind of situations
can became a problem for the machine, which cannot easily resolve the
ambiguity.

• Type(s): category to which the entity belong. These categories can be
considered as a set grouping together all the entities that has similar
properties. An example of type can be "doctor".

• Attributes: attributes related to the entity that give a more specific
and complete vision of the object we are considering.

• Relationships: connections between our entity and others. These are
usually represented by a verb that specify the type of connection that
exists between the two considered entities.
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2.2.1.1 Entity property representation

All the information about entities has to be represented somehow in order
to take all the advantages this knowledge can brought to our search system.
This information can be represented in a semi-structured or structured form,
in particular we have two type of representation: knowledge repository and
knowledge base.

From [3] a Knowledge repository (KR): "is a catalog of entities that
contains entity type information, and (optionally) descriptions or properties of
entities, in a semi-structured or structured format". In order to maintain this
information in a structured way a knowledge representation model is used, this
model is called Resource Description Framework (RDF) [3]. This model allow
us to describe entities with their properties and in particular relationships
thorough triples. Each triple is represented by a subject (the first entity), a
predicate (the relationship) and an object (the second entity). We will discuss
RDF more in details in Section 2.2.2. The RDF triples represent some facts
or assertions and in particular all the triples involving an entity represents the
entity itself. All the assertions can be organized in a structure called Knowledge
base.

From [3] a Knowledge Base (KB): "is a structured knowledge repository
that contains a set of facts (assertions) about entities". Thanks to this
definition and the Figure 2.4 we can observe that a KB is a KR but the
reverse is not true. The representation of the entities through this kind of
structure allow us to see each entity like node and each relationship between
entities like edges of a graph that takes the name of Knowledge Graph
(KG). Another structure involved in entities representation, connection and
description is the Ontology. This may seem similar to the KB so we will give
an explanation of the difference between the two of them. While the KB
aims to give a detailed description of all the entities in our dataset (bottom-
up approach), the Ontology gives a representation of the world of interest, in
particular focusing on concepts and relationship between instances (top-down
approach) [3]. From this derives that the instance level, the one on which our
objects rely, may not be involved in ontology, while it is fully described in
the KB. Ontologies are based on blocks that are: classes, objects, relations,
attributes, restrictions on relations and rules/axioms [3].
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Figure 2.4: Relationship between knowledge repository and knowledge base
taken from [3]. The entity properties marked with * are mandatory.

Figure 2.5: Examples of RDF triples taken from [3]. In the leftmost column
the subjects, in the middle column the predicates, in the rightmost column the
objects.

2.2.2 Resource Description Framework

In relational model there is a clear separation between data and metadata but
sometimes it would be useful to merge these two components maintaining a
format that results machine readable and flexible [46]. The RDF language was
created to accomplish with these requests. It is a representational language
based on directed labeled graph. It allows us to represent resources that
could be entities (objects), entity types (class) or relations [3]. Each entity
is identified through an Uniform Resource Identifier (URI) and it is contained
in one or more triples in the form: Subject - Predicate - Object. The subject is
the resource, the predicate is the relationship or the property while the object
is another resource (URI) or a literal as shown in Figure 2.5. The triples
represents the factual statements of the Knowledge Base and, like mentioned
before, this base could be seen as a large, directed, labeled graph called RDF
Graph as shown in Figure 2.6. In this case each subject/object is represented
as a node while each predicate is represented as an edge. In RDF also the
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Figure 2.6: Excerpt of the RDF graph related to the entity Michael
Schumacher taken from [3]. URIs are represented by rounded rectangles,
literals by shaded rectangles.

statements themselves are resources so graph edges can connect not only nodes
but also edges, generating an hyper-graph. The RDF base, according to [46],
can be formally described as a tuple < I, P >, where I ⊆ U is a set of
individuals in the infinite set of resources U , P ⊆ I×U×I is a set of properties
and I ∩ {URI(p) | p ∈ P}= ∅. In order to control, handle, describe the RDF
structure the W3C introduced the RDF Schema (RDFS). This provides a
vocabulary of constructs that allows the classification and definition of all the
information related to RDF data. In particular it defines classes for different
instances, constraints for resources properties, differentiation between property
and non-property resources, etc. [46].

2.2.3 DBpedia

DBpedia is a database version of Wikipedia; it is the results of a continuous
process, supported by a community of people, that aims to retrieve all the
information contained in Wikipedia pages storing them in RDF format. This
database has some interesting feature such as the fact that new versions are
periodically released and that it is available in many different languages. In
order to describe how DBpedia is created and which is its structure we have
to describe firstly Wikipedia pages parts and content. A Wikipedia page is
composed mainly by five different parts [3] as shown in Figure 2.7:

I. Title: this is the title of the page and it represents also the name of the
corresponding DBpedia entity in the database. In particular the triples
generated are characterized by the prefix dbr reported in Figure 2.8.

II. Lead section: this is the top part of the page which contains in turn:
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Figure 2.7: Wikipedia page structure taken from [3].
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Figure 2.8: URI namespaces mostly used in DBpedia taken from [3].

(a) Disambiguation links: a link that refers to a disambiguation page
that the user can consult in case the entity currently displayed is
not the one he/she wanted;

(b) Infobox: a table containing a summary of the main information
related to the instance that is described in the page. It is an
important part of the page because it provides us most of the
information regarding the relationship between entities;

(c) Introductory text: a first brief introduction to the page that gives
some general information.

III. Table of contents: this is an index of the content of the section of the
page.

IV. Body content: this is the main part of the page containing the real
information about the instance described.

V. Appendices and bottom matter: this is the lower part containing the
links to references (a), to other external links (b) and to all the categories
to which the instance of the page is associated (c). These category links
give the user the possibility to navigate through other similar or related
pages.

For DBpedia creation some extractors have been created. They can be
categorized into four types [3, 24]:



22 2.2 Entity Search

• Raw infobox extraction: in infobox all the entity information is
represented as property-value pairs and these pairs are translated into
DBpedia predicates. In particular the triples generated are characterized
by the prefix dbp as shown in Figure 2.8.

• Mapping-based infobox extraction: this type of extraction wants to
overcome the inconsistency problem of infoboxes. In Wikipedia pages
these tables have often different templates one from the others and it
could happen that they use different terms to express the same type
of concept. The mapping-based extraction tries to standardize the
predicates generated to enforce consistency. The triples generated are
characterized by the prefix dbo as shown in Figure 2.8.

• Feature extraction: this is a set of extractors, each one specialized
in extracting a specific single feature from the Wikipedia page like:
homepage, external links, abstracts, categories, etc.

• Statistical extraction: these are a group of extractors that uses statistical
tools to get information useful for computational linguistics tasks.

Being DBpedia based in RDF format, it has its manually created ontology
based on Wikipedia infoboxes. It is organized in a hierarchy of classes each
one described by a set of properties that can assume some specific already
defined values, an excerpt from the DBpedia ontology is represented in Figure
2.9.

2.2.4 Evaluation

When we talk about Evaluation in Information Retrieval we commonly refer
to the Cranfield paradigm explained in Section 2.1.1.3. This approach is
the de-facto standard paradigm for evaluation. As said by Blanco et al. in
[9]: "Cranfield methodology measures retrieval effectiveness by the means of
a fixed documents collection, a set of queries, a set of relevance assessments
denoting which documents are (not) relevant for a query, and a number of well-
understood and defined metrics, such as precision and recall". This system is
also used for evaluation in entity search task, indeed the retrieval process
remains the same as in textual information retrieval, with the difference that
in this case the documents used are created in such a way as to contain all the
information related to the entities.
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Figure 2.9: Excerpt from DBpedia ontology taken from [3]. Classes are
represented by rounded rectangles where arrows with solid lines indicate
subclass relationships (from subclass to superclass). Properties are denoted
by the dashed arrows with black labels. Value types are shown in gray boxes.
Unless specifically indicated, classes/values are in the dbo namespace, see
Figure 2.8.
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Figure 2.10: Structure of entity-search process taken from [3].

2.2.4.1 Tasks

In this thesis we focus on the task of ad-hoc entity retrieval which
aims to answer information needs relayed to a particular entity expressed in
unconstrained natural language and resolved using a collection of structured
data [32]. In order to do this the retrieval systems has to identify the entities
described by the natural language query of the user, identify the entities in
the documents of the collection and find a match between these two elements.
The structure of this process and the elements involved are represented in
Figure 2.10. During the execution of this process three main challenges are
encountered [4]:

1. Information need representation: the user query is formulated in natural
language so the system has only an implicit description of the entities it
has to find in its collection of documents.

2. Entity representation: often in entity search we have two different type of
data: structured and unstructured. The unstructured part is composed
of the content written as text in the documents, while the structured part
is that contained in the knowledge base and that describe relationships
between entities and their properties. The challenge is to find the best
way to integrate this two different type of information.

3. Matching: once we have query and documents entities we have to match
them, so we have to ensure that the two representations coincide or at
least get closer in order to obtain an efficient retrieval.

Another problem that arises from the use of this new approach is the lack
of human-readable description of relationship and properties of the entities
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retrieved [5]. Despite these difficulties, the introduction of entities in the
information retrieval world it is very useful because it can enrich the traditional
document retrieval with entity information or associations, it can help the user
to express its information need and it can be use to provide context information
and recommendation [3].

2.2.4.2 Dataset and Ground Truth

In order to examine how documents are generated for ad-hoc entity retrieval
we first have to describe which are the most used datasets currently and how
they are structured. In most cases researcher used the "Billion Triple Challenge
2009" (BTC) [21] dataset created for the Semantic Web Challenge [8] in 2009
that contains 1.14 billion RDF statements [32]. Here the data are encoded in
NQuads format [21] which can be represented as:

<subject> <predicate> <object> <context>

Where:

• Subject: that represents the entity.

• Predicate: that represents the relationship between subject and object.

• Object: that represents a property or another entity. In case of a
property we call this component literal.

• Context: that represents the URI of the graph that provides context
information of other fields.

This concept is similar to the one described by RDF triples with the difference
of the additional field: context. Also the DBpedia dataset described in Section
2.2.3 is becoming increasingly used in the research word.

Starting from these we create entity representation, as described in the next
Section 2.2.4.3, and relevant assessments. Relevant assessments are generally
constructed with a manual approach. In the case of the BTC dataset they are
supplied together with the data, but in some cases they are generated from
scratch as in [28, 9]. In [28] they are been made using a pooling strategy,
in particular they take from the resulting runs the top 5 documents of each
and merge together creating a set of different documents. Than they judge
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each document in the set giving an assessment that can take the assessment:
relevant or not relevant.

It is interesting to see instead the approach used in [9]. Blanco et al.
exploit the Amazon Mechanical Turk (MTurk) crowdsourcing marketplace [1].
This marketplace hires workers distributed allover the world to perform tasks,
processes, jobs virtually commissioned by applicants. The researchers select
50 queries from the Yahoo! Search Tiny Sample v1.0 dataset that contains
thousands of real queries from Yahoo’s US query log provided by Yahoo!
Webscope program [47]. Each query is randomly selected, it has been asked
by at least three different users and it has been manually checked that at
least 1 real answer for that query exists. At this point at each worker has
been presented the query and a human-readable version of the RDF triples
identifying an entity, without incorporating the explicit name of it, and he/she
were asked to decide if the representation is irrelevant, somewhat relevant or
relevant for that specific query. After collecting all the results researchers
assigned an assessments for each document basing on the majority of the
votes. It has also been incorporated some gold-win and gold-loose case, that
was known a-priori from the authors if they are relevant or not, in order to
measure the quality of the assessments. If a worker miss the majority of the
gold-win case its assessments were rejected being deemed unreliable.

2.2.4.3 Entity Representations

While with the textual information retrieval we associate a portion of text to a
document, with entity retrieval we have to define how this document is created
and this usually depends on the original dataset we are using. There are
several state-of-the-art methods applied for Entity Search task [6, 11, 32, 10].
The general approach plans to build documents, called Pseudo Documents or
Virtual Documents, from the chosen data set which is usually in RDF format.
From this dataset all the triples with the same subject are identified and
concatenated forming the new document used for the indexing phase of the
retrieval process. In this way the built document will represent a specific entity
enclosing all the information correlated to it and we will have one document for
each entity. In the process of document production many different strategies
could be chosen such as the choice to insert just the triple with a specific
predicate or a specific object.
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Starting from the datasets presented in Section 2.2.4.2 we have now several
ways to construct our documents, but in all cases we have to obtain a
meaningful representation of the entity in order to achieve good performance
in the retrieval phase. The most used methods can be divided into two main
categories: Text-based approaches and Structured-based approaches. The
Text-based approaches plan to create a document concatenating all the triples
or NQuads belonging to the same entity, i.e. having the same subject, in a
Bag-Of-Words approach.

The Structured-based approach instead create a fielded representation for
each entity where different fields are associated to different predicates. This
choice for fields could led to management problems when there are many
different predicates, so sometimes these are grouped into bigger categories
based on predicates types [34] or importance [39]. This reduction makes
field weights more tractable even if it limits the semantic expressiveness
of the document [32]. In both the approaches a filtering phase could be
implemented before the document creation, deciding which information we
want to insert in our representation. Lets see we some specific examples how
these representations are generated:

• In [28] the authors created a profile for each entity and associated this
profile with a document. In particular they used the text-based approach
merging all the lines that has the same subject field, so the same URI of
the entity.

• In [9] the authors report several methods used by different research
groups. Most of them created documents using the text-based approach
while one group used a structured-based approach based on the context
of the entity. In this latter case documents are created using a labeled
tree data model with the entity as the root and the attributes and values
as the nodes on quads that has the same subject and context. This
paper also integrates entity representations with information about their
relationships obtained through the analysis of the total graph.

• In [10] Blanco and other researchers used a structured-based approach.
They inserted in the same entity profile all the quads sharing the same
subject and associated a field to each predicate assigning different weights
to each one of them. If multiple values with same subject and predicate
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Figure 2.11: Graphical representations of entity models: (Left) Unstructured
Entity Model, (Middle) Structured Entity Model using Predicate-folding,
(Right) Hierarchical Entity Model [32].

were encountered they were simply concatenated in the same document.
This allowed them to use a fielded version of the retrieval model BM25
called BM25F that weights query terms differently depending on the
field considered [33].

• Neumayer et al. in [32] tried to overcome the problem of loss of
expressiveness which occurs with the use of categories in the structured-
based approach considering a 2-level hierarchy entity representation. In
particular they associated to the first level all the predicates types and
to the the second level all the individual predicates of the type of the
first level as shown in Figure 2.11.

2.2.5 Systems

In this section we present the state-of-the-art systems for the ad-hoc entity
search task illustrating how they are implemented and which are their
performances. In particular, we focus on three papers that are [10, 32, 6].
When describing these works we consider five fundamental features that are:
the dataset, the document creation process, the retrieval model, the queries
and the evaluation measures.

2.2.5.1 Effective and Efficient Entity Search in RDF Data

In [10] the authors presents a new method for entity search over RDF data.
This method is based on a variant of the BM25F ranking function and exploit
the advantages given by a set of new indexes structures for the retrieval and
ranking of documents.
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Figure 2.12: Manually selected list of important and unimportant properties.
URIs are abbreviated using known prefixes provided by the prefix.cc web
service [10].

Figure 2.13: Representation of a sample of data in RDF format [10].

Dataset: as dataset they used the Billion Triple Challenge 2009 dataset
described in Section 2.2.4.2.
Document creation: they considered all the datatype-properties sharing
the same subject URI as a virtual document. As datatype-properties they
meant all the quads having literals in the object position. If multiple values
for the same subject and predicate existed they were merged together in the
document. This document was then divided in fields considering each unique
predicate as a separate field. This approach, however, led to an excessive
number of parameters in practice so the authors decided to manually classify
the properties into three categories: important, neutral and unimportant as
illustrated in Figure 2.12.

Retrieval: in the indexing phase they removed stop-words using a list of
389 common English terms and replaced delimiters with white spaces. They
used three different index structures: a horizontal index (see Figure 2.14),
a vertical index (see Figure 2.15) and a r-vertical index (see Figure 2.16).

The first one simply represented RDF triples; there are three fields: one
for the subject, one for the predicate and one for the object or token. The
second one used a field for each property occurring in the data. For ranking
proposal we want to distinguish fields through their weights so the third index
uses as fields the weights values: important, neutral, unimportant. In this
case then they used three fields, one for each relevance weight. Regarding the
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Figure 2.14: Representation of the horizontal index of the data in Figure 2.13.
On the left column the three fields corresponding to the three components of
RDf triples [10].

Figure 2.15: Representation of the vertical index of the data in Figure 2.13.
On the left column the fields corresponding to the various types of properties
of RDf triples [10].

Figure 2.16: Representation of a r-vertical index of the data in Figure 2.13.
On the left column the three fields corresponding to the three assessment
values: unimportant, neutral and important [10].
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Figure 2.17: Manually selected list of important and unimportant domains
[10].

retrieval model Blanco et al. used a modified version of the classic BM25F
[39]. While the standard BM25F requires information of all fields lengths for
its calculation, the proposed version simplifies this aspect using as the length
of all fields the size of the document; moreover due to the fact that usually
the normalization component promotes short objects in RDF collections they
mitigated the problem selecting a threshold beyond which all documents
assume the same max length of 10. Finally they taken into account the class
to which each document belong (unimportant, neutral, important) considering
the document weight into the computation of the final retrieval score as:

score(Q,D) = ωD · scoreBM25F(Q,D)

where ωD is the document weight, scoreBM25F is the score returned by the
BM25F model depending on the query Q and the document D. In practice
the weight was not assigned to each individual document but the authors
manually classify a small number of domains into the tree before mentioned
classes as shown in Figure 2.17 where all other domains are considered neutral.
Moreover they assigned a separate weight to the subject because it has a special
role as the identifier of the resource. Concluding they executed the following
pipeline:

• Two rounds parameter tuning: the first round choosing a default
configuration and tuning the performance of each one of the features
individually. The second round, given an ordered list of the parameters
they checked the model performance adding a new parameter at a time.
This allowed them to determine the best configuration.

• 2-fold cross validation: they split the query set into two halves both
used for tuning parameters. The first one through a linear search
and the second one through the promising directions algorithm [39].
This algorithm plans to execute a linear search over each parameter
starting with an initial set of parameter values, then it computes the
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Figure 2.18: Cross-validated results comparing Blanco et al. ranking
function against the BM25 baseline and the best performing submission at
SemSearch 2010 (percentage improvements are relative to SemSearch 2010)
[10].

promising direction identifying the vector that goes from the initial
set of parameters to the best found values. The algorithm finally
explores the parameter space over this vector and repeat this process
until convergence to a local minimum or when a maximum number of
iteration is executed.

The query set: consist of 92 queries selected from the query logs of Microsoft
Live Search and Yahoo! Search (see [20] for details). To this set a spell
corrector was used in order to fix any user error.
As evaluation measures: they used MAP and nDCG. They compare their
results with standard BM25 and the best performing submission at SemSearch
2010 [20], checking for statistical significant differences against the baseline
using Wilcoxons signed rank test (significance level set to 0.01), obtaining the
ones represented in Figure 2.18.

2.2.5.2 On the Modeling of Entities for Ad-Hoc Entity Search in
the Web of Data

In [32] the authors developed a new way of representing entities considering
predicates grouped into two level of hierarchy in order to exploit both
information regarding predicates types and individual predicates. They
then compared this new hierarchical entity model with the standard one:
unstructured and structured.
Dataset: as dataset they used the Billion Triple Challenge 2009 dataset
described in Section 2.2.4.2.
Document creation: they considered the approach based on two-level
hierarchical model described in Section 2.2.4.3 and executed a preprocessing
on entity triples. This preprocessing consist of replacing each object containing
an entity URI within the collection with the name of the entity itself, otherwise
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it just replaces it with terms extracted from the relative part of the URI.
Retrieval: they executed the retrieval first on the baseline methods and than
compared it with the hierarchical one. For the unstructured baseline method
they considered three different set of experiments: "ALL", "field type-only" and
"ALL-but-field type". In the first one they considered all four predicate types:
Name, Attributes, OutRelations and InRealtions. In the second they used only
a single predicate at a time and in the last one they omitted one of the types
in turn. For the structured baseline method they considered three different
set of experiments. In the first they assigned equal weights on all types, in
the second one they assigned most of the weights to Name and Attributes
types in equal proportion, in the last one they assigned most of the weights
to Name and Attributes types taking into account also relations. Note that
using a single predicate type makes the structured model equivalent to the
unstructured model. For the hierarchical model they firstly evaluated it on
each of the predicate types and then on using combination of multiple field
types. In the first case they also used different weighting scheme for individual
predicates.
The query set: consist of 92 and 50 keyword queries for the years 2010 and 2011
respectively. They are the obtained from web search engine logs as described
in 2.2.4.2.
As evaluation measures: they used the standard IR evaluation metrics:
MAP, P@10 and nDCG. The obtained results for the unstructured baseline
are shown in Figure 2.19, the ones obtained from the structured baseline are
shown in Figure 2.20 and the ones obtained from the hierarchical model are
shown in Figure 2.21 for the use of single predicate and in Figure 2.22 for the
use of multiple predicates.

2.2.5.3 Example Based Entity Search in the Web of Data

In [6] Balog and Neumayer evaluated and compared a set of baseline methods
for entity retrieval and executed an analysis on topics pointing out the features
that makes this dataset challenging.
Dataset:they used the DBpedia dataset described in Section 2.2.3.
Document creation: they indexed all the entities with predicate of the type
"label" and used both unstructured and structured approaches for the entity
representations. In particular for the structured method they considered the
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Figure 2.19: Results of the retrieval for the unstructured entity model.
Significance calculated against the first line [32].

Figure 2.20: Results of the retrieval for the structured entity model.
Significance calculated against the ALL setting of the unstructured entity
model of Figure 2.19 [32].

Figure 2.21: Results of the retrieval for the hierarchical entity model [32].
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Figure 2.22: Results of the retrieval for the hierarchical entity model.
Significance calculated against the structured entity model of Figure 2.20 [32].

Figure 2.23: Queries used for the evaluation [6]

1000 most frequent predicates as fields and tested both a representation with
a single field, where there is a single content field collapsing all the predicates,
and a query-term specific field weighting.
Retrieval: For the comparison they considered two baseline methods: one
based on language modeling and one based on BM25. Specifically they used:
LM [50], MLM-tc with title and content fields (with weights respectively: 0.2
and 0.8) [33], MLM-all with all the fields considered with equal weight [33],
PRMS: the Probabilistic Retrieval Model for Semistructured Data, BM25 with
standard parameters settings (k1 = 1.2, b = 0.8)) [39], BM25F-tc with title
and content fields (with weights respectively: 0.2 and 0.8) [39] and BM25F-all
considering all fields with equal weights.
The query set: consisted of many different queries taken from different
benchmarking evaluation campaigns (see Figure 2.23).

• INEX-XER: they took 55 queries whose aim was to retrieve Wikipedia
pages from a web corpus. They mapped the Wikipedia pages into the
corresponding DBpedia entities.

• TREC Entity: they took 17 queries of the 20 original ones because they
showed no relevant results from DBpedia.

• SemSearch ES: they took 130 queries, the ones with relevant results from
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Figure 2.24: Results and baseline comparison. Significance for rows 2-4 is
tested against row 1; for rows 6-7 tested against row 5 [6].

DBpedia, out of the total of 142 queries.

• SemSearch LS: they took 43 queries, the ones with relevant results from
DBpedia, out of the original 50 queries whose aim was to retrieve a group
of entities that match certain query criteria.

• QALD-2: they took 140 from the set generated collapsing both the
training (100 queries) and the testing (100 queries) set of the campaign.
In particular they took those queries that have answers in the DBpedia
dataset.

• INEX-LD: they took all the 100 queries of the campaign mapping
relevant Wikipedia pages to DBpedia entities.

For all of these queries they applied a preprocessing phase in which they
removed all the additional markup, type information etc. and considered only
the keyword part. They also made the relevance to be binary, they normalised
every URIs to conform the one used in DBpedia dataset and filtered out URIs
that are not DBpedia entities.
As evaluation measures: they used the standard IR evaluation metrics:
MAP and P@10. They compared the results from the various different systems
obtaining the ones represented in 2.24.

2.2.5.4 Comparisons

Summarizing what we saw in the previous Section 2.2.5 we would like to make
some comments onto the results obtained by those methods [10, 32, 6]. Blanco
et al. obtained a result that improves 50% over the classic BM25 and 42%
over the best run of the SemSearch’10 using MAP as shown in Figure 2.18.
Observing the queries in details they could assert that their system does poorly
on:
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1. Long queries.

2. Queries with one relevant result that comes from a domain that the
authors marked as unimportant.

3. Queries that has not directly relevant resource in the BTC dataset.

while they do well on:

1. Short queries highly selective.

2. Queries with one relevant result that they managed to find.

Neumayer et al. through their experiments stated that the combination of
multiple predicates types failed in the unstructured case and that incorporating
relations did not improve the system with respect to using just names or
attributes alone as shown in Figure 2.19. This can be justified by the fact
that there is more textual content for predicates type than for name or
attribute and therefore the focus results moved from the entity itself. For
the structured approach instead they asserted that relations can contribute
to overall performance as shown in Figure 2.20. Both the unstructured and
structured approaches suffer from a limitation: they abandon a part of the
semantics behind the data. The hierarchical model proposed tries to consider
this semantics and the results shows that modeling individual predicates is
more effective than merging their contents into a flat representation as shown
in Figure 2.21 and Figure 2.22. When they combine multiple predicates indeed
they obtains better results than the unstructured entity model but they do not
outperform structured entity model.

Balog et al., unlike the previous two papers, made a comparison between
queries in order to evaluate each systems with respect to a specific subset of
the query set as shown in Figure 2.24. They could see that different query
sets exhibit different levels of difficulty. The easiest one are the SemSearch
ES queries because they request a specific entity through its name. The
most difficult one are those expressed in natural language such as TREC
Entity, QALD-2 and INEX-LD. Others that are list-type queries are of medium
difficulty because they formulate their information need by a mixture of
keywords and natural language, such as INEX-XER and SemSearch LS. They
also observed that there is not a specific model that outperform the others and
that shows a significant improvement.
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Figure 2.25: Summary of the results of papers [10, 32, 6]. In the first column
the type of document representation use for each paper, in the second column
the system considered. In the third column we have the best result for each
paper that has used the BTC dataset while in the fourth column the best
result for each paper that used DBpedia dataset.

We can summarize all previous results into a table, see Figure 2.25,
where on columns we have the two different collections used (Billion Triple
Challenge 2010 and Dbpedia) and on rows we have the three papers with their
proposed methods classified by the type of document representation they use
(unstructured, structured or hierarchical). Into the table we report, in terms
of MAP, the best result that each paper obtained on its dataset.

2.3 Graph Embedding Techniques
Non Euclidean data structures like graphs can represent more complex
elements, in particular their structure and features, with more accuracy than
Euclidean one. A graph could be seen as a data model that represent real-
world entities and relationships, it can be useful for many real applications
like: the World Wide Web or social networks [51]. It is interesting to integrate
this model with new machine learning methods, this is the reason why the
Geometric Deep Learning field was born. The Geometric Deep Learning is the
machine learning field that studies new ways to extend deep learning in order to
use graph structures. Its aim is to exploit them in order to improve machine
learning tasks for network analysis like: node classification, link prediction,
visualization, etc. [51, 43]. This can be done by representing graph nodes or
edges through numerical vectors. This approach moreover allows us to take
advantage of all the vector space theory and operations.
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One of the first neural network implemented for building word vector
representations was the one by Bengio [7]. Starting from here there have
been several other implementations like the one of Mikolov [30] and mainly
the skip-gram model at the base of word2vec approach described in [29]. The
initial idea of Bengio was to represent words into a continuous space with a
reduced number of parameters in order to make them more usable and easy
to manipulate. To obtain these, he developed a feedforward neural network
with a linear projection layer and a non-linear hidden layer. This network
allowed him to calculate a distributed representation of word, called word
embeddings, together with a probability function for word sequences in term
of these representation namely their statistical language model [29].

We can therefore say that graph embeddings aim to represent the topology
and structure of a graph through vectors or a set of vectors. This representation
is considered good if it includes all the domain knowledge related to the
graph. The fact that these representations are in a compressed form allows
us for better computational performance than previous graph models based
on adjacency matrix which have dimension |V | × |V |, with |V | the number of
vertices of the graph, and therefore could become very huge even in medium-
sized graph making matrix multiplication too expensive and complex [31].
Moreover representing embeddings in a vector space allows us to use all vector
space theory and operations which have a richer toolset of approaches [31, 18].
These methods for learning word representations have two other important
features: one is that they are transductive so they can only predict instances
that are already been observed in the graph at training time and the second
one is that they are obtained separately from the supervised task so they can
be used in different tasks [49].

2.3.1 Word2Vec

The adoption of the neural networks for the automatic learning of embeddings,
after Bengio [7], become the state-of-the-art in word vector representation
process. The majority of the systems nowadays is based on the skip-gram
model introduced by Mikolov in [29]. This model is composed by three layer
as shown in Figure 2.26:

1. Input layer

2. Hidden layer
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Figure 2.26: Word2Vec model architecture taken from [29].

3. Output layer

The input of the neural network is the representation of a word expressed
through a one-hot vector, which has dimension |D| equal to the number of
words in the vocabulary of reference and contains a 1 in the corresponding
position of the word itself. This input is passed through the input layer to the
hidden layer. The hidden layer is composed by a matrix with as many rows as
the number of words in the vocabulary and as many columns as the number of
feature through which we want to represent our words. The number of features
correspond to the number of neurons of the network. When multiplied by the
input vector the matrix simply returns the row associated to that word, so we
can look at this as a look up table (see Figure 2.27). We can therefore see that
the rows are in effect the representations of the words we want to obtain. The
output layer is a softmax regression classifier used to predict neighbor words
in the sentence with respect to the input one. In order to optimize the network
a gradient descent algorithm is executed, but this could slowdown the train in
large network so two types of improvements were introduced later in [31]: a
modified version of the objective function called Negative Sampling and a sub-
sampling approach for frequent words. The first one is a modified version of the
Noise Contrastive Estimation that turn out to be faster in training and better
in creating vector representations for frequent words [31, 49]. The second one
consist of a sub-sampling of the input words in relation to their frequency.
This sampling aims to reduce the imbalance between frequent and rare words
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Figure 2.27: Example of matrix multiplication in the hidden layer with 3
features (neurons) and 5 words in the vocabulary. We represent our word with
a one-hot vector with a 1 in the position of the word in the vocabulary. We
can see that this multiplication return the embedding of the input word.

considering that frequent words representations do not change significantly
after training on millions of examples.

The task for which the network is trained is: given a word in input, the
probability for each word in the vocabulary to be the nearby one the input.
This train is done passing pairs of words taken from a context of a phrase
and updating matrix weights in order to make the network predict from the
first word the second one. The context is chosen setting a parameter called
Window that identifies the number of words to consider before and after the
input one (see Figure 2.28). In particular what we obtain is a distribution
probability of all the words of the vocabulary with respect to the input word.
This task is called Fake task because in our case the aim is not this but instead
the embedding realization.

2.3.2 DeepWalk

With the introduction of this new approach based on neural networks
researchers began to think of a way to exploit it in combination with data
structures such as graphs. DeepWalk was though for this purpose, it extends
the skip-gram model generating a kind of context in the input graph, similar
to the one of phrases used in Word2Vec in order to predict the context
of the graph. More specifically here the context is composed by random
walks generated on the graph, the words representations correspond to nodes
representations and the context to predict is the context of the node in the
graph [49]. As Perozzi says in [35] "DeepWalk is a novel approach for learning
latent representations of vertices in a network. These latent representations
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Figure 2.28: Example of an input phrase. For the word pair creation we set
a window of two words near the input one from which we select the words for
the input samplings. The word in orange is the input word while the words
rounded by a rectangular box are the one in the window candidate for the
pairs.

encode social relations in a continuous vector space, which is easily exploited by
statistical models.". The target embeddings we want to obtain with DeepWalk
are then Latent representation, namely vectors containing information about
not only node connections but also neighborhood similarities and community
memberships that are not explicit in the graph. Analyzing the functioning of
this algorithm in more detail we are going to describe its main two components:

1. Context generation

2. Embedding computation

The main task of the first part of the algorithm is to generate a context in a
graph. A context on a graph, maintaining a similarity with textual sentences,
could be seen as a sequence of nodes instead of a sequence of words. This
sequence is a random walk of a specific length t generated from a chosen node
and can be defined, according to [35], as:

We denote a random walk rooted at vertex vi as Wvi . It is a
stochastic process with random variables W 1

vi
, W 2

vi
, ..., W k

vi
such

that W k+1
vi

is a vertex chosen at random from the neighbors of
vertex vk.
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These random walks are generated a specific number of times γ for each node
in the graph. Once we have obtained random walks we can use them for
embedding computation. The second part is based on skip-gram algorithm
using random walk as the usual sequence of words and creating windows
context for training pairs generation starting from this sequence of nodes. Here,
instead of predicting words close to the input one, we are going to predict nodes
that are close to the input one.

2.3.3 Line

While graph embeddings algorithms we seen until now create vectors that
incorporate features based on local structures, the LINE algorithm aim to
keep in consideration also global structures. In particular with classic random
walk generation we take into account topological features of nodes nearby the
starting one leaving out those one that are less explicit in our graph. To get
a better representation of the nodes, however, we might want to consider also
features related to the node neighborhood. In order to do this, Tang in [43]
introduce a new objective function whose aim is to create similar embeddings
for nodes that has similar context, because two nodes can be consider similar
not only if they are connected one to the other but also if they share the same
context. In this way also nodes that are not connected but share the same
neighbors have similar embeddings.

For the objective function creation Tang consider the fact that a node can
have two roles: one that is the vertex itself and one that is a specific context
of other vertices [43]. This two type of proximities are combined together in
this way:

1. Train the network considering 1-st order proximity.

2. Train the network considering 2-nd order proximity.

3. Concatenate, for each vertex, the two embeddings obtained from these
two methods.

2.3.4 Node2Vec

The same idea to take into account also similarities between the nodes given
by their context has been studied by Grover in [18] with their algorithm called
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Figure 2.29: Example of a portion of a graph. In red we can see the BFS
strategy while in blue we can see the DFS strategy. u is the starting node of
the walk.

Node2Vec. Node2Vec is the state-of-the-art general-purpose scalable feature
learning method for network analysis [51, 18]. It uses a sample strategy similar
to the one of DeepWalk with the exception that in this case the random
walk is generated following some probabilities related to visited and unvisited
node of the graph during the walk. Using this algorithm we obtained vector
representations that maximize the likelihood of preserving neighborhoods of
nodes in a d-dimensional feature space [18], where as neighborhoods we
consider all the nodes generated through the random walk. In addition to
create a representation of nodes, this algorithm allows also for the creation of
edges embeddings extending the operations to pair of nodes instead of a single
node.

The approaches seen so far propose efficient algorithms that have a rigid
notion of neighborhood and so they turn out to be rather insensitive to the
connectivity pattern of the network. Node2Vec implementation instead wants
to identify two specific kind of relationships between the nodes of the graph
that it received in input:

• Homophily: with homophily we mean all those nodes that are highly
connected one to each other and then belong to the same community or
cluster [16, 48]. In Figure 2.29 we can see that nodes u and s1 belongs
to the same network community and so they fall into this first case.

• Structural roles: with structural roles we mean all those nodes that have
similar structural roles in the network [23]. In Figure 2.29 we can see
that nodes u and s6 act as hubs of their communities and then they fall
into the second case.

These aspects can be identified by two different traversal algorithm: Breadth-
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first Sampling (BFS) and Depth-first Sampling (DFS). The first one,
represented in red in Figure 2.29, aims to explore nodes near the starting
one, in particular it explores nodes that are immediate neighbors of it. The
second one, represented in blue in Figure 2.29, aims to explore consecutive
nodes with increasing distances from the source one.

Node2Vec consider these two graph traversal strategies into its objective
function defining it as:

max
f

∑
u∈V

logPr(NS(u) | f(u))

where:

• f is a function mapping from nodes to feature representations: f : V →
Rd with d the number of dimensions of the feature representation.

• u ∈ V is the source node.

• NS(u) is a network neighborhood of node u generated through the
sampling strategy S.

This function, as said by Grover in [18]: aims to "maximise the log-probability
of observing a network neighborhood NS(u) for a node u conditioned on its
feature representation given by f". The authors makes two assumptions in
order to simplify this function [18]:

1. Conditional independence. They assume that the likelihood of observing
a neighborhood node is independent of observing any other neighborhood
node given the representation of the source. In this way they could
factorize the likelihood into:

Pr(NS(u) | f(u)) =
∏

ni∈NS(u)

Pr(ni | f(u))

2. Symmetry in feature space. A source node and neighborhood node
have symmetric effect over each other in feature space. Thanks to this
assumption we can model the conditional likelihood over every source-
neighborhood node pair as a softmax unit parametrized by a dot product
of their features:

Pr(ni | f(u)) =
exp(f(ni) · f(u))∑
v∈V exp(f(u) · f(u))



46 2.3 Graph Embedding Techniques

Than the objective function can be rewritten as:

max
f

∑
u∈V

− logZu +
∑

ni∈NS(u)

f(ni) · f(u)


In order to make the computation less expensive the authors decided also
to approximate the per-node partition function Zu =

∑
v∈V exp(f(u) · f(v))

using negative sampling [31] and the objective function using stochastic
gradient ascent. While previous papers used a notion of neighborhood
related to a sliding window on consecutive words, in Node2Vec many different
neighborhood are computed from the same source u.

Let see how random walks are generated in order to detect different
structural features of the nodes of the graph. Formally [18]:

given a source node u, denoting ci the i-th node of the walk of
fixed length l starting with cO = u. Nodes ci are generated by the
following distribution:

P (ci = x | ci−1 = v) =


πvx

Z
if (v, x) ∈ E

0 otherwise

where πvx is the unnormalized transition probability between nodes
v and x, and Z is the normalizing constant.

In Node2Vec they would like to use a mixture of both BFS and DFS strategy,
so they set the unnormalized transition probability as:

πvx = αpq · ωvx

where :

αpq(t, x) =


1
p

if dtx = 0

1 if dtx = 1

1
q

if dtx = 2

with dtx denoting the shortest path distance between nodes t and x. Suppose
that we have just passed from node t to node v through the edge (t, v), as shown
in Figure 2.30. Now the algorithm has to decide the next step evaluating
πvx on edges (v, x) from v. This choice is led by p and q parameters. The
p parameter controls the likelihood of immediately revisiting a node in the
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Figure 2.30: Illustration of the random walk procedure in Node2Vec. The
walk just transitioned from t to v and is now evaluating its next step out of
node v. Edge labels indicate search biases α [18].

walk, encouraging a moderate exploration and avoiding 2-hop redundancy. The
q parameters indeed allows the search to differentiate between inward and
outward nodes: if q > 1 the walk remains close to the node t encouraging a
local exploration, if q < 1 the walk is allowed to get away from the source
encouraging the visit of nodes further away.

Although this algorithm proved to be efficient and effective for the learning
of feature vectors of nodes and edges in graph data structure Zouh in
[51] underlined some issues that incur when using the Node2Vec Standford
implementation available in [25, 26]:

1. Their python and C++ implementation is not scalable and works well
only in small graph that can fit into a single machine.

2. Their SPARK implementation is scalable and more efficient thanks to
the execution of in-memory operations and caching, but has a significant
overhead both in time and space and goes out of memory due to
RDDs management and shuffle phase. Moreover it brought to vector
representation that has poor quality because it limits the number of
possible random walk to 30 for each node in order to save memory for
storing the transition probabilities.
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3 Solution Design
In our approach we create entity representations that consider the structure
of the context in which entities are contained. As described in Section 2.3.4
we create these representations starting from a RDF graph where we consider
the graph neighborhood of the entity node as its context. We think that
considering also entities related to the ones we want to retrieve can enrich the
representation of the single one, giving a semantic context that helps to retrieve
relevant entities that are not explicitly mentioned in the user information need.
For example, if we are talking about "Chefs with a show on the Food Network."
we are not explicitly asking for a specific chef we know having a tv show, but
our system it’s able to retrieve many of the entities requested because we
can assume they belong to the same subgraph and therefore sharing the same
context. Our pipeline is composed of five parts as shown in Figure 3.1:

1. Entity representations. In this phase we generate a vector
representation for each entity considering its properties and its context
information. We want to obtain these vectors of features because
they have mathematical properties that allow us to execute operations
considering words similarity. In particular we use a graph embedding
technique that produce, for each entity, a single vector representation
that takes into account the entity context through an exploration of its
neighborhood in the RDF graph. It is these embeddings that allow us
to mathematically represent the entities semantic contexts necessary for
the next clustering phase.

2. Clustering. In this phase we execute clustering on embedding vectors.
This technique allow us to define semantic contexts by grouping together
highly correlated and similar entities. This is done considering the
distances between vectors. The more two entities represent different
concepts the more their vectors are distant and therefore higher is the
probability that they belong to two different clusters.

3. Documents creation. In this phase we want to bring back our
approach to the classical text retrieval one based on documents retrieval.
In order to do this we want to create "virtual documents" by associating
each of them with a cluster of entities. In this way our documents identify
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Figure 3.1: Pipeline of the thesis. From RDF triples we obtain entities
representations. We use these embeddings to execute a clustering in order to
group them by similarity. These clusters are used as a reference for document
creation, so our document is in effect made of all the entities contained in a
cluster. These documents represent then our collection for the retrieval part
of the process which returns a ranked list of them. From this list we finally
extract a ranked list of entities in answer to the user information need.

a specific semantic field, such as: "football", "chefs", "politicians".

4. Ranking system. In this phase we use the classic text retrieval
technique on our collection of documents i.e. collection of clusters. In
this way we obtain a ranked list of fields where we find in higher positions
clusters that are more semantically close to the user request.

5. Entity retrieval. Through its demand, the user wants to get a list of
relevant entities, it is therefore necessary to create it starting from our
virtual documents ranked list. In this last phase, we implement different
approaches for this purpose. In particular we create this final list starting
from the ranked list of clusters and the ranked list of entities obtained
through the state-of-the-art method.

Summing up: we first of all create entity vector representations through graph
embeddings techniques, than we use these representations in a clustering process
to obtain documents for the retrieval phase. Then, we use information retrieval
systems and fusion methods with the state-of-the-art entity retrieval process
to obtain a ranked list of entities.

3.1 Entity representations
The starting point of the creation of our entity representations is a RDF
graph. As described in Section 2.2.2, this graph is generated considering
each RDF triple of the form subject-predicate-object as a sequence of node-
edge-node. In this way we associate a node to each entity and we represent
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Figure 3.2: Entity subgraph, taken from DBpedia dataset, that refers to
the Entity Schumacher and a part of its neighborhood. Represented by green
rounded rectangles entities, by green arrows relationships between entities, by
orange rectangles literals, by orange arrows predicates between entities and
literals. In green the entity graph.

relationships through edges. In our approach we consider as input for the
embedding algorithm a subgraph of the one just presented. Before describing
our subgraph creation we firstly want to introduce what we call an "entity
graph" in a classic RDF graph (see Figure 3.2). We define as Entity graph the
subgraph constituted by all those nodes that represent entities (thus excluding
literals) and all those edges that represent relationships connecting them. In
Figure 3.2 the entity graph is represented in green. Our subgraph is an entity
graph.

3.1.1 Entities Embeddings

The subgraph determined in the previous section is the input of the graph
embedding process. For the entities vector representations we use the
Node2Vec implementation presented by Elior Cohen in [13]. We choose this
implementation because it added the support for big graphs that can not be
found in the original Node2Vec Python version of the SNAP framework [25].
This support is obtained allowing for a parallel computation of the random
walks of the algorithm. Eliorc Node2Vec accepts several different parameters,
the most important ones are:

1. Embedding dimension: the number of features that we want to use for
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our entity representation (default = 128).

2. Walk length: the number of entities (nodes) that we want to traverse in
each computed random walk. It represent the length of our "context" or
"neighborhood" (default = 80).

3. Number of walks: is the number of walks that we want to generate
starting from the same chosen vertex of the graph (default = 10).

4. P: the hyper parameter p of the algorithm (default = 1).

5. Q: the hyper parameter q of the algorithm (default = 1).

6. Weight_key: for the weighted graph it defines the key for the weight
attribute (default = "weight").

7. Workers: the number of workers that we want to use for the parallel
computation of random walks (default = 1).

8. Temp_folder : the path of the folder in which saving a shared memory
copy of the graph. This folder is use for graphs that are too big to fit in
memory during the algorithm execution.

Since Node2Vec internally recalls the Word2Vec gensim implementation ([38,
17]) it is also possible to set Word2Vec parameters such as:

1. Window size: the number of words to consider before and after the input
one in the training phase. This is the window defined in Section 2.3.1.

2. Min_count: a threshold defined in order to ignore words with a frequency
lower than min_count.

3. Batch_words: the number of words to be pass to a worker for parallel
computation.

Let’s remember that in our case the words of Word2Vec are node identifiers.
We set the following parameters:

• Embedding dimension = 64

• Walk length = 4

• Number of walks = 20
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Figure 3.3: Output file containing embeddings. In the first line we have the
number of embeddings and their dimensions (in this case 64 features). In the
following lines the vector representations of three entities, in particular the
ones with node ID: 7530, 3640, 564 (first number of the row).

• Workers = 50

• Window size = 10

• Min_count = 1

• Batch_words = 4

For all the other values we use the default value. Once executed Node2Vec we
obtain an embedding for each node/entity of our subgraph (see Figure 3.3).

For embeddings we also try to use the SNAP SPARK implementation but
we abandoned it due to memory problems described in Section 2.3.4.

3.2 Clustering
For the creation of virtual documents that exploits entity embeddings
properties we use clustering techniques. The idea behind this choice is to
create a document that contains more than one related and similar entities
because, in this way, it is possible to return to the user also entities that
are not explicitly mentioned in the user information need but that are still
relevant for his/her request. In order to do this we execute clustering on
those entity representations returned by the embedding phase. For this phase
we use the K-MeansSort algorithm with 700 clusters because it is easy to
initialize, it obtains good results and it is highly scalable. This last feature is
essential because it allows us to use it with big graphs. This algorithm is a
modified version of the classic K-Means. In particular it modifies the way in
which the algorithm decides to which class assign points. The main aims of
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K-MeansSort is to speedup this decision process. In order to do this it exploits
the triangle inequality and the means sorting in order to reduce the number of
comparison to be made between distances calculated between points and means
[36]. Looking in detail into the algorithm, lets consider the triangle inequality
d(µi, µj) ≤ d(p, µi)+d(p, µj) where d stands for the distance, µi stands for the
mean of the i-th class (cluster) and p stands for the point. Manipulating this
equation we can obtain the inequality d(µi, µj) ≥ d(µi, µj)−d(p, µi). From this
we can conclude that if d(µi, µj) ≥ 2d(p, µi) it stands that d(p, µj) ≥ d(p, µi)

without computing d(p, µj). The algorithm then precomputes the distance
d(µi, µj) for each pairs of means before iteration and then check if the previous
condition is verified. If this is true the algorithm skip all the following
calculations passing to the next cluster, otherwise it has to update its distance
from the nearest cluster calculating d(p, µj). A further speedup is done sorting
the means in order of increasing distance and then, for each point, compare
the distance d(p, µc) of the point from the cluster with the other sorted means.
If the means we are considering is far enough from the actual point distance
we can skip all remaining means and continue with the next point.

For the implementation of this phase we use a framework called ELKI
[42, 15] which gives tools for the implementation of data mining algorithm,
in particular for Clustering methods. Indeed ELKI is an open source data
mining software written in Java, it implements mostly research algorithms,
in particular those related to unsupervised methods in cluster analysis and
outlier detection. As said in [15]: "This framework offers data index structures
such as the R*-tree that can provide major performance gains". This framework
provides highly scalable algorithms characterized by the independence between
data, parsers, database, distance functions, etc. that allows you to more easily
evaluate and compare these methods. The main design goals of this framework,
as reported in [15], are:

• Extensibility: ELKI has a modular design that allows different
combinations of data types, distance functions, algorithms, input
formats, index structures and evaluations methods.

• Contributions: the modular design described in the previous point allows
people to make even small and different contributions. These contributes
help ELKI to grow.

• Completeness: authors try to continuously improve and integrate the
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Figure 3.4: Representation of the process for document creation.

framework with as much published and credited works.

• Fairness: in order to obtain the most reliable comparisons possible, the
contributors try to implement algorithms and other components as good
as possible. This is done also making public all the source code for
external improvements.

• Performance: the performances are improved thanks to modular
architecture of ELKI and its index structures.

In our implementation we choose 700 clusters on a qualitative evaluation
basis. We execute several versions of the K-MeansSort algorithm with different
number of clusters, then we choose the best value looking at the total number
of clusters obtained and at clusters coherence and completeness.

3.3 Documents creation
Once we get clusters, we can create all those virtual documents that become the
collection for our retrieval phase. In order to do this, our approach associates
to each semantic field, identified by a cluster, a document. In details the
process consists of five phases (see Figure 3.4):

1. Select a cluster.

2. Take cluster entities one after the other.

3. For each entity we select the corresponding RDF triples that are all those
triples that have that entity as subject or object.

4. We process the triples obtained above in order to get information in
natural language by removing namespaces, replacing "_" with white
space, removing "<>" of RDF triples and "" of literals.
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5. The information obtained are merged in a textual file that represents the
document associated to the cluster at hand.

Our documents collection is then obtained repeating the entire process for each
cluster.

3.4 Ranking System
Once obtained the virtual documents we can proceed with the retrieval process.
The aim of this phase is to apply the classic text retrieval technique to our
virtual documents in order to obtain a ranked list of clusters. In this way we
can identify which are the semantic field, i.e. clusters, that are more relevant
for the user information need and then, in the next phase, execute a reranking
of the entities inside these fields. For this phase we use the software Terrier
[44], which is an open source search engine written in Java and developed by
the University of Glasgow. This software implements state-of-the-art indexing
and retrieval functionalities and provide a platform for the development and
the evaluation of large-scale retrieval applications. As reported in the website
[44], the main feature of this platform are:

• Efficient: it provides several indexing strategies such as multi-pass, large-
scale single-pass, real-time.

• Effective: it provides state-of-the-art retrieval approaches such as
divergence from randomness, BM25, support for supervised ranking
models.

• Flexible: it allows for indexing and batch retrieval for all known TREC
test collections.

• Multi-lingual: it can support collections written in languages other than
English.

• Extensible: it follows a plugin architecture so it is easy to extend with
new retrieval techniques and ranking features.

• Interactive: the results obtained from the retrieval can be viewed through
a desktop search application, JSP web intarfaces or a website search
application.
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As described in Section 2.1.1.1 the indexing phase is composed of many
different steps, in this thesis we use:

1. For the Lexical Analysis: the default English Tokeniser provided by
Terrier.

2. For the Stop words removal: the default English stopword-list provided
by Terrier.

3. For the Stemming: the Porter Stemmer.

We index all the virtual documents of the collection and then execute the
retrieval using the BM25 model. Through this process we obtain a ranked list
of documents i.e. a ranked list of clusters. The final phase uses this list in
order to create a ranked list of entities to return to the user.

3.5 Entity Retrieval
Once obtained the ranked list of virtual documents we implement seven
alternative methods in order to produce a ranked list of entities. In particular
in three of these methods we firstly execute a reranking of the entities within
each cluster and then we combine these entities for the creation of the final
ranking to be returned to the user. For the reranking of the entities it is
necessary to create a new collection composed of a document for each entity
as it is done in the state-of-the-art methods. This because we want to rank
all the entities inside a virtual documents, through the classic text retrieval
method, considering each one independently. Once obtained the run with
reranked entities we can reconstruct the final ranked list. This is done through
the process shown in Figure 3.5 and described in Algorithm 1. All our first

Algorithm 1 Combination Algorithm
1: while exist clusterLine in clusterRun do
2: rerankedEntitiesRun = openFile(topicID, clusterID)
3: while rerankedEntitiesLine do
4: if numEntity < maxEntity AND score > 0 then
5: finalRun.write(rerankedEntity)
6: end if
7: end while
8: end while

three methods rely on a common procedure: we take the first row of the
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Figure 3.5: Final run creation process. In the first step we take one line from
clusters run. In the second step we execute the reranking of the entities inside
that cluster we selected on that topic we selected. In the third step we merge
the results from each line of clusters run in order to create the final run.

cluster run together with its topic ID, cluster ID and score (line 1); we take
the corresponding reranked entities run file containing the reranking of the
entities in cluster ID for topic ID (line 2) and insert them into the final run
(line 5). In particular, we insert maxEntity entities with score > 0, from
the reranked entities run, for each line of the cluster run (line 4). The value
of maxEntity is chosen through a qualitative evaluation basis. We execute
several versions of combination algorithms with different values of maxEntity,
then we choose the best value. What changes from one approach to another is
the way in which we insert the entities into the final run. The different entities
composition approaches are:

1. Simple completion (SICO) (see Figure 3.6): this approach takes a fixed
number of entities from each reranked entities run. In particular we look
at the corresponding reranked entities run and take a fixed number of
entities (maxEntity) with score > 0 inserting them in the final run in
the same order in which they appear in the reranked entities run. With
this approach we preserve both clusters and entities ranking.
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2. Sum completion (SUMCO) (see Figure 3.7): this approach executes the
same process as the one described in SICO with two differences. The
first one is that all the entities of the same topic are ordered through
their scores before being insert into the final run. The second difference
is that we do not use the entity score of the reranked entities run alone
but we add to it the score of the cluster that contains the entity. This
become the final score of the final run.

3. Weighted completion (WECO) (see Figure 3.8): this approach calculates
the final score as:

finalScore = (entityScore + clusterScore) ∗ similarity

where similarity is the cosine similarity measure defined in [41]. In this
case the similarity is computed between the cluster mean, that is a vector
representing the centroid of the cluster to which the entity belongs, and
the entity embedding vector. An entity that is positioned near the mean
of the cluster to which it belongs, probably results to be very inherent to
the topic associated to that cluster and highly related to other entities
within the same set. In this way we consider how much an entity is
representative for its cluster. Entities that are more representative for the
cluster have the highest score and then are considered more important
for retrieval purposes.

For comparison purposes we also implement the state-of-the-art method that
does not use clustering but simply creates a document for each entity. In order
to incorporate advantages from both the processes: the classic state-of-the-art
method and our approach, we implement four fusion methods. These methods
consist of five phases as shown in Figure 3.9 and described in Algorithm 2.
As we can see from the line 1 of the algorithm, we take the first row of the
run returned by the classic method together with its topic ID, entity ID and
score. We compare this score with a threshold we call: minScore (line 2). This
threshold is fixed in order to avoid the insertion of entities with low score into
the final run. If this condition is satisfied we insert into the final run the entity
of the classic run we are considering (line 3). In line 4 we check if the rank of
the entity is less than a threshold we called maxRank. This threshold is fixed
considering the number of entities, taken from classic run, we want to enrich
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Figure 3.6: Third phase of Figure 3.5 in detail. From the reranked entities
run of the clusterD we take the first 3 entities and merge them into final run.
From the reranked entities run of the clusterA we take the first 3 entities and
merge them into final run after the ones of clusterD in order to keep the ranking
of both clusters and entities.

Algorithm 2 Fusion Algorithm
1: while exist classicLine in classicRun do
2: if score > minScore then
3: finalRun.write(classicEntity)
4: if rank < maxRank then
5: clusterID = searchCluster(classicEntityID)
6: rerankedEntitiesRun = openFile(classicTopicID, clusterID)
7: while rerankedRunLine AND numEntity < maxEntity do
8: finalRun.write(rerankedEntity)
9: end while

10: end if
11: end if
12: end while
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Figure 3.7: Third phase of Figure 3.5 in detail. From the reranked entities
run of the clusterD we take the first 3 entities and for each one we sum its
score with the score of clusterD on topic1. From the reranked entities run of
the clusterA we take the first 3 entities and for each one we sum its score with
the score of clusterA on topic1. After the processing of all the lines of clusters
run corresponding to topic1, the entities are sorted by their new final score and
then merged into the final run. The same process is repeated for each topic.
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Figure 3.8: Third phase of Figure 3.5 in detail. From the reranked entities
run of the clusterD we take the first 3 entities, for each entity we sum its score
with the score of clusterD on topic1 and we multiply the result for the entity
similarity. From the reranked entities run of the clusterA we take the first 3
entities, for each entity we sum its score with the score of clusterA on topic1.
After the processing of all the lines of clusters run corresponding to topic1, the
entities are sorted by their new final score and then merged in final run. The
same process is repeated for each topic.

Figure 3.9: Example of a fusion process. In the phase I we take a line from
the classic run file. For that line we check if score > minScore. If it is true we
add to final run the line taken at point I and follow with point IV otherwise
we restart from I. After III we check if rank < maxRank. If it is true we
add other entities from the corresponding reranked entities run, otherwise we
restart from I. After adding entities in point V we restart from point I.
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with entities taken from reranked entities run. In this case we enrich all the
entities with rank between 0 and maxRank with new entities. In line 5 and
6 we firstly retrieve the cluster corresponding to the classic entity and then
we retrieve the reranked entities run of that cluster on classic topic. In line 7
we select the number of new entities we want to add to the final run and in
line 8 we insert them. The values of minScore,maxRank and maxEntity are
chosen through qualitative evaluation. We execute several versions of fusion
algorithms with different values of minScore, maxRank and maxEntity, then
we choose the best value looking at the evaluation results. The four fusion
methods we implement rely on the same Algorithm described above, they only
differ from the way in which they choose and merge entities from the reranked
entities run into the final run. For the new entities insertion we use four
different approaches:

1. Simple fusion (SIFU) (see Figure 3.10): we add a fixed number of entities
taken from the corresponding reranked entities run. In this way we
keep the ranking given by both the classical method and our reranking
method.

2. Sort fusion (SOFU) (see Figure 3.11): we execute the same process
described for SIFU with the difference that, before writing the entities
into the final run, we collect all the entities of the same topic and sort
them. The sorting is performed based on the score of each entity. In this
way we keep only entities ranking losing classical ranking.

3. 1000 length fusion (LEFU) (see Figure 3.12): we execute the same
process described for SOFU with the difference that instead of checking
if the score entity is greater than a threshold, we simply insert a total of
1000 entities in the final run for each topic.

4. Sum fusion (SUMFU) (see Figure 3.13): we execute the same process as
described for SOFU with the difference that we use as the final score for
the entity:

finalScore = classicScore + entityRerankScore

where classicScore is the score of the entity of the classic run and
entityRerankScore is the score of the entity inside its reranked entities
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Figure 3.10: Fifth phase of Figure 3.9 in detail. From the reranked entities
run of the cluster to which entityA belongs we take the first 3 entities and
merge them into the final run. In this way the entities order of both classical
and reranking methods is kept.

Figure 3.11: Fifth phase of Figure 3.9 in detail. From the reranked entities
run of the cluster to which entityA belongs we take the first 3 entities. After
the processing of all the lines of classic run corresponding to topic1, the entities
are sorted by their score and then merged into the final run. The same process
is repeated for each topic.

run.

We have to make two further considerations:

• During this phase we have also to process special characters inside each
line due to a malfunction in the management of the encoding by Terrier.

• At the end of each process we check for duplicates inside the final run
and in case of positive outcome we keep only the entity with higher score
among all those identified.
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Figure 3.12: Fifth phase of Figure 3.9 in detail. From the reranked entities
run of the cluster to which entityA belongs we take the first 3 entities. For each
topic we select 1000 entities. After the processing of all the lines of classic run
corresponding to topic1, the entities are sorted by their score and then merged
into the final run. The same process is repeated for each topic.

Figure 3.13: Fifth phase of Figure 3.9 in detail. From the reranked entities
run of the cluster to which entityA belongs we take the first 3 entities and for
each one we sum its score with the score of entityA on topic1 taken at phase I.
After the processing of all the lines of classic run corresponding to topic1, the
entities are sorted by their new final score and then merged in final run. The
same process is repeated for each topic.
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4 Evaluation
After the realization of our combination and fusion systems we evaluate the
results achieved. In particular we do two types of evaluation: quantitative
and qualitative (i.e. topic-based). In the quantitative evaluation we make
some general considerations about the effectiveness of the proposed systems,
considering measures as MAP, nDCG, P@5 and P@10. In the qualitative
evaluation we look at how the effectiveness of each system is correlated to
the topic (query) through a study on the form in which the it is formulated
(with witch terms) and on the type and number of entities requested. In
particular this evaluation can give us information about the coherence and
the completeness of our virtual documents making a comparison between the
ideal answer, the user would like to receive, and the real one. This analysis
highlights also those problems related to the computation of the final score of
each entity and their sorting. We report all the numerical values in details in
the appendix in order to avoid cluttering and to increase readability.

4.1 Experimental setup
In this section we want to describe in detail the portion of dataset used, the
queries, the relevance judgments and the process for documents creation.

4.1.1 Dataset

We consider the DBpedia dataset described in Section 2.2.3, in particular we
use the English part of the 2015-10 version available at [14]. This dataset
contains 6.2 million entities, 1.1 billion facts and an ontology of 739 types.
The parts we have considered are:

1. Infobox properties unredirected: containing all the information described
into Wikipedia infoboxes. This file allows us to reconstruct the
connection between entities because it contains references to other
Wikipedia pages that in our context represent entities.

2. Labels: containing all the titles associated to Wikipedia pages that in
our context represent entities names.
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3. Short abstracts: containing all the brief descriptions of the content of
Wikipedia pages. These information allow us to better understand what
is described in the entire page.

In particular we use files in Terse RDF Triple Language (turtle) format which
allows us to express data represented through RDF data model.

In accordance with what was done by Hasibi et al. in [22], we take all
the triples that have both a title and a short abstract (label and comment as
predicates). To do this we create a database on which we firstly save the three
files (infoboxes properties unredirected, labels and short abstracts) using three
different tables composed all by three columns: subject, predicate and object;
and subsequently we identify through SQL JOIN operations which entities
have both a label and a short abstract. These entities are therefore stored
in a separate table (nodes table) in which we associate each entity IRI with
a numeric ID. In this way we reduce our dataset dimensions obtaining 4.6
millions of entities from the original 6 millions. As described in Section 2.2.2
we can see these triples as a RDF graph with 4.6 millions of nodes. For space
and time constraints and computations limits we decide to further reduce our
mini world of interest selecting a specific subgraph of the one just identified.

For the creation of this subgraph, we firstly take from the relevance
judgments (qrels) provided by the DBpedia dataset those assessments relative
to the TREC entity campaign. We choose this subset of relevance judgments
because it is the smallest one, indeed it consists of 1575 assessments. The
assessments are in the form:

texitCampaign-topic Q0 <dbpedia:Entity> Relevance_Judgment

and we extract, from our subset, all the entities present in the 3-rd column of
qrels with any relevance judgment (0 - not relevant, 1 - partially relevant, 2 -
highly relevant). To select from our database only these entities we must first
perform string preprocessing in order to make the "<dbpedia:Entity>" string
compatible with the entity name (IRI) "http://dbpedia.org/resource/Entity"
stored in the node table. Once identified these entities in the DBpedia RDF
graph, we exploit their relationships to expand our subgraph by adding another
level of entities. We select the entities directly connected with the one in the
qrels set. Using the example in Figure 3.2 we can suppose to have in our qrels
the quadruple:
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Figure 4.1: Example of queries from the TREC entity campaign.

TREC_Entity-15 Q0 <dbpedia:Michael_Schumacher> 2

In this case we select the entity "Michael_Schumacher" as the entity of level
0 in the subgraph, then we expand this graph with the entities connected to
it such as: "Benetton_Formula", "Ralf_Schumacher", "West_Germany" and
"Scuderia_Ferrari". These new entities belong to the level 1 of our graph.
The final subgraph is then constituted of these entities as nodes and their
relationships as edges.

Someone could think that the choice of considering as a collection a
subgraph of entities taken by the relevance judgments can be limiting because
we rely on entities that we know are relevant for our topics but this is not true.
This set of entities does not unduly affect the outcome of the retrieval process
because we do not take just those entities that are marked as relevant but also
those not relevant leading to a balanced subset of entities.

4.1.2 Topics and relevance judgments

As relevance judgments we use those provided by the DBpedia dataset that are
relative to the TREC entity campaign. These assessments are 1575 and use
as relevance weights for the entities: 0 for not relevant, 1 for partially relevant
and 2 for highly relevant. As set of queries for the retrieval phase, we choose
those corresponding to the relevance judgments just mentioned. These queries
are 17, are expressed in natural language and focus on specific relationships
between entities. An example of queries can be seen in Figure 4.1. These topics
require entities without explicitly mentioning them, instead, they describe a
specific relationship that uniquely identifies one or a set of target entities.:

<top>
<num><Topic_ID></num><title>
question
</title>
</top>
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4.1.3 Documents creation

In this phase we create those documents necessary for the retrieval phase. In
order to do this, as described in Section 3.3, we take one cluster at a time,
we consider all the entities that belong to it and we take for each entity all
its information contained in the database described in Section 4.1.1. Once
obtained all the information, we merge them into a single virtual document.

This is the part with higher computational cost in terms of time because it
requires access to the database and the execution of nested queries. These
queries extract all information needed from the three tables described in
Section 4.1.1, in particular we have to take the label, short abstract and infobox
properties of the entities of our subgraph described in Section 4.1.1.

The generated document is serialized in TREC format:
<DOC>

<DOCNO><Cluster_ID></DOCNO>

text
</DOC>

A real example can be seen in Figure 4.2.

4.2 Average evaluation
In Figure 4.3 and Figure 4.4 we represent through a box-and-whisker plot
the values of MAP, average nDCG, average P@5 and average P@10 for the
combination systems (SICO, SUMCO, WECO) and the fusion systems (SIFU,
SOFU, LEFU, SUMFU). Each box in the two plots represents with its bottom
line the value of the first quartile (namely the middle value between the smallest
number and the median), with its top line the value of the third quartile
(namely the middle value between the bigger value and the median), with
the horizontal line inside the box the median. The two vertical lines (namely
whiskers) connect the bottom line with the minimum and the top line with
the maximum. Minimum and maximum are calculated through:

minimum = Q3 + 1.5 ∗ IQR

maximum = Q1− 1.5 ∗ IQR

where Q3 and Q1 are respectively the third and the first quartile, IQR is
the interquantile range (namely the difference between the third and the first
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Figure 4.2: Representation of the document associated to cluster 0. We can
observe the first entity "Top Trumps (TV series)" with all its information in
the following lines, in particular label "Top Trumps (TV series)" and comment
"Top Trumps was a 10-part British television series based on the famous card
game. It aired on Channel...". We can also observe the second entity of the
cluster "Cartagena (board game)" concatenated after the first one.
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quartile). From this type of plot we can have information on the dispersion of
the data because the more the box and the whiskers are symmetric the more
the probability distribution is symmetric. Considering a single box, the points
distributed in vertical on its central axis represent the single value obtained
for each query, namely inner points. If a point comes out from the whiskers it
is called outlier.

From the representations of the inner points in Figure 4.3, we can notice
that, while most of them are contained in the box, there are some topics
(outliers) where the systems obtain very good results. In Figure 4.3 we can
also observe that BM25 obtains better results in all these measures even though
the performance are comparable on average. For what concern our systems we
can notice that SUMCO (in gray) proved to be the better one obtaining better
results in all the measures, WECO (in yellow) follows and SICO (in blue) is
the worst one. From these results we can deduce that the final score used
for WECO is not optimal for our retrieval purpose while the one of SUMCO
works better. In general we can also said that ordering the reranked entities by
score before writing them into the final run, as done by SUMCO and WECO,
allow us to obtain a better ranked list with respect to the SICO method where
this is not done. This can be justified by the fact that in SICO we create
the final run by progressively inserting maxEntity entities for each cluster,
maintaining their original ordering. However, it may be that the next cluster
contains some entities that are more relevant than thus of the previous one; in
this case these entities would be shifted lower than their ideal position leading
to worse performance.

In order to improve the effectiveness of combination systems we implement
the fusion systems as described in Section 3.5. Comparing Figure 4.3 with
Figure 4.4 we can see that fusion systems obtain better results with respect
to combination systems because we exploit BM25 run, that we know having
better performance, as basis for our approaches. Looking at Figure 4.4 in
detail we can observe that LEFU (in gray) turns out to be the best method
for MAP and average nDCG measures, while it obtains the same performance
of BM25 in average P@5 and average P@10. This behavior can be due to the
choice of which entities to insert into the final run of LEFU. Resuming what
described in Section 3.5, the LEFU system selects, for each entity of the classic
retrieval run, a fixed number of entities from the reranked entities run of the
cluster to which the classic entity belongs. In particular this system repeats
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Figure 4.3: Boxplot of the MAP, average nDCG, average P@5 and average
P@10 values for the combination systems. The bottom line of each box
represents the first quartile, the top line represents the third quartile and
the horizontal line inside the box the median. The points distributed on each
system vertical axis are the specific values for each topic. We can see that
BM25 outperforms our methods in all measures. SUMCO is the best systems
among our approaches and SICO the worst one. The values are reported in
Table A1.1 of the Appendix.
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Figure 4.4: Boxplot of the MAP, average nDCG, average P@5 and average
P@10 values for the fusion systems. The bottom line of each box represents
the first quartile, the top line represents the third quartile and the horizontal
line inside the box the median. The points distributed on each system vertical
axis are the specific values for each topic. We can see that for MAP and nDCG
the LEFU systems is the better one; for P@10 SIFU is the better one. The
values are reported in Table A1.2 of the Appendix.

this approach until we insert 1000 entities for each topic. Let us consider the
case in which:

• there is a partially relevant entity in the classic run;

• the entity above belongs to a cluster in which there is also a relevant
entity.

With LEFU we obtain the partially relevant entity, we access the reranked
entities run of the corresponding cluster and take the relevant entity in order
to add it to the final run. With the other three methods this is not possible
if the partially relevant entity has a score lower than the minScore threshold.
In this case we do not access the corresponding cluster and thus we do not
insert the relevant entity in the final run.

As we have seen in Section 3.5, in the fusion systems we select a threshold
called maxEntity that defines the number of entities, from the reranked
entities run, we want to add into the final run for each entity of the classic run.
We execute some tests adding different number of entities in the fusion process
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Figure 4.5: Representation of MAP for fusion systems with the addition of 14
entities or 5 entities and representation of MAP for BM25. In all the systems
the addition of 5 entities turns out to be better. We can see that our LEFU
method, with the addition of 5 entities, has the best performance. The values
are reported in Table A1.3 of the Appendix.

in order to select the best value of maxEntity. In particular, we represent in
Figures from 4.5 to 4.8 the MAP, average nDCG, average P@5 and average
P@10 values obtained with the addition of 14 entities and 5 entities. We can
see that in almost all cases adding a small number of entities turns out to be
better.

An explanation to this behavior can be given through two considerations.
The first consideration is that adding a big number of entities correspond into
the addition of a little number of relevant ones and a big number of non relevant
ones (noise). In fact the inclusion of entities from cluster run into the final run
often leads to a shift of the relevant entities retrieved by BM25 in positions
with a lower rank, worsening the performance of the system.

The second consideration is on the relevance judgments creation through
the pooling technique. This technique relies on the judgment of a portion of
retrieved entities, the ones that constitutes the pool. The pool is constituted
by the retrieved entities that belong to the top-k rank of the runs retrieved
by classic systems. Many entities that can be considered relevant are not
considered in the pooling process and therefore result non relevant at the end
of the evaluation process even though they may be. In particular the DBpedia
dataset contains a big number of entities that are very similar one to each
other, as the ones shown in Figure 4.9. In this Figure we can observe that in
DBpedia we have a single different entity for each football team belonging to a
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Figure 4.6: Representation of average nDCG for fusion systems with the
addition of 14 entities or 5 entities and representation of average nDCG for
BM25. In all systems, except for SOFU, the addition of 5 entities turns out
to be better. We can see that our LEFU method, with the addition of 5
entities, has the best performance. The values are reported in Table A1.3 of
the Appendix.

Figure 4.7: Representation of average P@5 for fusion systems with the
addition of 14 entities or 5 entities and representation of average P@5 for
BM25. In all systems, except for SIFU, we obtain the same performance for
both the addition of 14 and 5 entities. The values are reported in Table A1.3
of the Appendix.
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Figure 4.8: Representation of average P@10 for fusion systems with the
addition of 14 entities or 5 entities and representation of average P@10 for
BM25. In SOFU and LEFU we obtain the same results both adding 14 or 5
entities. SUMFU obtains the worst results while SIFU with 5 entities obtains
the better result. The values are reported in Table A1.3 of the Appendix.

Figure 4.9: Example of similar entities present in DBpedia. In particular
these entities are taken from cluster 681.

specific year. In this case only few of these entities have been considered during
pooling and then judged, even though we maybe want to consider as relevant
also the other teams of other years. As a real example of this consideration, in
Figure 4.18 we can observe that only a small subset of the entities in Figure 4.9
have been judged in the pooling process. One way to overcome this problem
can be to consider these entities like as one, creating a new unified entity that
contains all the relevant information. This approach however could not be
used without changing even the relevance judgment because the new created
entities would not have an equivalent in the assessed entities. We therefore
deduce that it would be necessary also to aggregate the same entities in the
relevance judgment leading to a complete reconstruction of the set.
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Figure 4.10: Representation of AP for SICO and BM25. Every point
represents the AP value of a specific topic. We can see that the only topic
in which our system performs better is TREC_Entity-15. The AP values are
reported in the Tables from A1.4 to A1.20 of the Appendix.

4.3 Topic-based evaluation
In order to execute a more specific study on our systems results, we perform
a topic-based evaluation. In this evaluation we can observe some interesting
aspects of the retrieval in relation to the topic on which it is performed. In
Figures from 4.10 to 4.12 we can see a representation of the AP measure
obtained for each topic in the case of combination systems and BM25. We can
observe that, in mostly of the topics, BM25 obtains better results than our
methods, but there are still some topics in which we perform better such as
TREC_Entity-15 with SICO and WECO, TREC_Entity-9 with SUMCO and
TREC_Entity-1 with WECO.

The same study has been done for fusion systems which results are
represented in Figures from 4.13 to 4.16. In these cases we have that our
systems obtain results very close to the ones of BM25 for most of the topics
with the exception of TREC_Entity-11, TREC_Entity-14 and TREC_Entity-
18 for SIFU: TREC_Entity-14 for SOFU; TREC_Entity-12, TREC_Entity-
14 and TREC_Entity-6 for SUMFU and TREC_Entity-10 for LEFU. Even if
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Figure 4.11: Representation of AP for SUMCO and BM25. Every point
represents the AP value of a specific topic. We can see that the only topic
in which our system performs better is TREC_Entity-9. The AP values are
reported in the Tables from A1.4 to A1.20 of the Appendix.

Figure 4.12: Representation of AP for WECO and BM25. Every point
represents the AP value of a specific topic. We can see that the only two topics
in which our system performs better are TREC_Entity-1 and TREC_Entity-
15. The AP values are reported in the Tables from A1.4 to A1.20 of the
Appendix.
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Figure 4.13: Representation of AP for SIFU and BM25. Every point
represents the AP value of a specific topic. The AP values are reported in
the Tables from A1.21 to A1.37 of the Appendix.

SUMFU results to be the worst system in average measures we can see that
it performs well for the three specific topic mentioned above, obtaining results
that distance themselves from those of BM25 more than the ones of the other
methods.

As described in the Section above it may occur that some of the entities
retrieved by our systems were not retrieved in the pooling process and therefore
result not relevant for a topic. In Figure 4.17 we can see a representation
obtained for TREC_Entity-15 topic. This topic ask for "Universities that are
members of the SEC conference for football." and it is an example in which we
find the situation presented above. For this query we can see that the relevant
entities from the relevance judgments are the ones shown in Figure 4.18 but
it reasonable to say that even entities like the ones in Figure 4.9 should be
considered as relevant. The run returned by SUMFU can be seen in Figure
4.19 where we can notice that entities like:

<dbpedia:2007_All-SEC_football_team>

are retrieved but not considered relevant and therefore this worsens the
performance of SUMFU. Making a comparison with the run returned by BM25,
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Figure 4.14: Representation of AP for SOFU and BM25. Every point
represents the AP value of a specific topic. The AP values are reported in
the Tables from A1.21 to A1.37 of the Appendix.

Figure 4.15: Representation of AP for SUMFU and BM25. Every point
represents the AP value of a specific topic. The AP values are reported in the
Tables from A1.21 to A1.37 of the Appendix.
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Figure 4.16: Representation of AP for LEFU and BM25. Every point
represents the AP value of a specific topic. We can see that our system obtains
the same results of BM25 for most of the topics with the exception of the topic
10 in which we obtain better results. The AP values are reported in the Tables
from A1.21 to A1.37 of the Appendix.
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Figure 4.17: Representation of AP, P@5, P@10 and nDCG for combination
systems for topic 15. We can see that we obtain good results in P@5 and in
P@10. Our systems perform better also in AP while BM25 performs better in
nDCG. The AP values are reported in the Table A1.15 of the Appendix.

shown in Figure 4.20, we can see that it retrieved only one relevant entity in
the top 15 ones but it also retrieved many entities that could be considered as
relevant.

Continuing the analysis of individual topics, from Figure 4.21 and Figure
4.22 we can see that for TREC_Entity-16 the results obtained from all the
systems are equal to zero. This happens because the relevant entities for query:
"Sponsors of the Mancuso quilt festivals." are just two: "Brother_Industries"
and "Janome" (see Figure 4.23). Therefore it results very difficult for our
systems to retrieve those specific entities among all the others in the collection.
This task is made even more difficult by the fact that in "Janome" and
"Brother_Industries" documents there is no reference to any of the words of the
query and therefore systems such as BM25, that works on words matching, fails
to retrieve the relevant entities. For TREC_Entity-16 not even our methods
succeed in retrieval because both "Janome" and "Brother_Industries" entities
are contained into two clusters that rely on "Companies" scope and therefore
do not contain references to "quilt festival" which turns out to be a topic weakly
connected to ours.

Other considerations can be made for TREC_Entity-4 whose performance
are shown in Figure 4.24 for combination systems. We can see that in particular
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Figure 4.18: Portion of the relevance assessments of the topic 15. In
particular it shows only the name and weight of relevant entities.

Figure 4.19: Top 15 entities retrieved from the SUMFU system for the topic
15. In orange we highlighted the entities marked as relevant in the relevance
assessments, in blue an entity that could be considered relevant but that it is
not.
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Figure 4.20: Top 15 entities retrieved from the BM25 system for the topic
15. In orange we highlighted the entities marked as relevant in the relevance
assessments, in blue the entities that could be considered relevant but that
they are not.

Figure 4.21: Representation of
AP, P@5, P@10 and nDCG for
combination systems for topic 16. The
values are reported in Table A1.16 of
the Appendix, but in this case we can
see that all the systems do not achieve
any result in all measures.

Figure 4.22: Representation of AP,
P@5, P@10 and nDCG for fusion
systems for topic 16. The values
are reported in Table A1.33 of the
Appendix, but in this case we can see
that all the systems do not achieve any
result in all measures.

Figure 4.23: Portion of the relevance assessments of the topic 15. In
particular it shows only the name and weight of relevant entities.
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Figure 4.24: Representation of AP, P@5, P@10 and nDCG for combination
systems for topic 4. We can see that all the systems obtain zero results in
P@5 and P@10, while BM25 obtains the best nDCG result. The values are
reported in Table A1.6 of the Appendix.

for AP, P@5 and P@10, we obtain very poor results. This could be due to the
fact that the query "Professional sports teams in Philadelphia." is very general
and therefore it becomes difficult for our systems to understand whose are the
entities to retrieve. In studying this topic we can also observe that, for how
the fusion process is structured, our systems highly relies on BM25 ranked list
and therefore our fusion runs present a high number of entities which contain
both the word "sport" and "Philadelphia" when the information need of the
user should be mainly focused on "teams".

Observing Figure 4.25 for TREC_Entity-17 we can say that SUMFU
method obtains very good results in measures P@5 and P@10, and obtains
comparable results in AP and nDCG. Looking at the run in Figure 4.26 in
detail, we observe that there are many relevant entities (in orange) such as
"Sugar_Rush_(Food_Network)", "Duff_Goldman" and "Aarti_Sequeira", that
thanks to our clustering approach are not only retrieved but also ranked
in high positions. In blue we can see also the entities "Richard_Blais"
and "Michael_Allemeier", that are not judged as relevant in the pooling
phase but that are anyway relevant for this query. Making a comparison
with the run obtained through BM25 shown in Figure 4.27, we can notice
that with our fusion methods we retrieved many relevant entities (in
green) such as "Nadia_Giosia", "Chef_at_Home", "Martie_Duncan" and
"The_Food_Network_Adward", that are not present in the BM25 run while
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Figure 4.25: Representation of AP, P@5, P@10 and nDCG for fusion systems
for topic 17. We can see that SUMFU performs very well in P@5 and P@10
while all the systems obtain similar results for AP and nDCG. The values are
reported in Table A1.34 of the Appendix.

all the entities retrieved by the classic method are all present in our SUMFU
run (in Figure 4.26 we display only the first 25 entities, but the run contains
also the other entities of BM25 at lower rank).
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Figure 4.26: Top 25 entities retrieved from the SUMFU system for the topic
17. In orange we highlighted the entities marked as relevant in the relevance
assessments, in blue the entities that could be considered relevant but that
they are not and in green the relevant entities that are not retrieved from the
BM25 run shown in Figure 4.27.

Figure 4.27: Top 25 entities retrieved from the BM25 system for the topic
17. In orange we highlighted the entities marked as relevant in the relevance
assessments, in yellow the relevant entities that are not retrieved from the
SUMFU run shown in Figure 4.26.
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5 Discussion and Conclusion
In this thesis we proposed a new method for the Entity Search task, whose
aim is to retrieve specific entities starting from the user’s information need. In
particular, as a collection we used the entities of the DBpedia dataset. In order
to execute retrieval and obtain entities, we firstly generated virtual documents
starting from the dataset. For the document creation we exploited graph
embeddings and clustering. Through graph embeddings we represented each
entity and all the information related to it with a numeric vector of features.
These numeric vectors were then used for the next phase of clustering. The idea
was to aggregate similar and highly correlated entities inside the same cluster
and than use those clusters as documents for the Entity Retrieval. For this
phase we use the BM25 model obtaining a ranked list of clusters. From this list
we finally want to extract the individual entities to return to the user, therefore
we implemented seven methods for this purpose. Our approaches can be
divided into two main groups: combination systems and fusion systems. The
combination systems are those methods that simply manipulate entities inside
each cluster in order to generate the final ranked list of entities. The fusion
systems are those methods that exploit both the ranked list of clusters and
the ranked list returned by the state-of-the-art approach in order to generate
the final ranked list of entities.

In the evaluation of our approaches we have seen that combination systems
obtains results that are always worse than the ones of BM25 even though there
are some topics in which they perform better. Fusion systems, on the other
hand, obtains results that are very similar to those of BM25. In particular
LEFU system turns out to be the best in both MAP and nDCG measures,
while SIFU turns out to be the best in P@10. Analyzing these results we
notice that the performances are highly affected by the cluster creation. If
these sets are too generic, we will have many non relevant entities that during
the composition or fusion phase will be included into the final run. If the
clusters are too specific, we will consequently have a loss of relevant entities.
These entities will not appear in our cluster and therefore they will not be
included into the final run. Also the way in which we assembles entities it is
fundamental for the success of the retrieval because it affects the order in which
entities appear. In combination systems we have to insert a number of entities
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that facilitates both the insertion of correlated entities and the preservation of
clusters rank. If we insert too many entities it is very likely that some of them
are not relevant to the topic and therefore we will have a shift of the relevant
entities of the second cluster to a lower rank. If we insert too few entities it
is very likely that we miss to insert some relevant entities into the final run.
The reordering in some of the combination systems was made for this purpose,
in order to obtain a ranking based on the entities scores. Despite this, the
systems still have poor performances and obtain results comparable with the
ones of BM25 only in the fusion systems.

In fusion approaches we have seen that we obtain results very similar the
ones of BM25 because we highly rely on its run during the fusion phase. We
maintain good results in some specific topic while in other we obtain exactly
the same values as the ones of BM25. This is due to the fact that if we insert
many entities with a very low rank they are shifted down into the ranked
list obtaining a final run that for the higher ranks is the same of BM25. In
Chapter 4 we also see that in many cases we retrieve entities that are actually
very related to the ones marked as relevant in the relevance judgment but that
aren’t considered as such, leading to a deterioration in performances.

In conclusion, we have seen that our approaches turns out to be promising
in Entity Search task because they are able to enrich the retrieval with entities
that are generally not detected by state-of-the-art systems and that are relevant
and highly correlated to the topic.

5.1 Future Work
Further research should be carried out to improve our combination and fusion
systems through a more detailed analysis on the choice of parameter settings,
explore the use of fuzzy clustering, explore the effects of the aggregation of
similar entities and improve combination and fusion phases.

Regarding the first point, further studies are needed to perform an in depth
analysis on the setting of both graph embeddings and clustering parameters.
The first in order to obtain better entities representations through a more
effective traversal of nodes and edges of the graph. The second in order
to obtain better clusters both as regards their completeness and consistency.
Regarding the second point, it would be interesting to explore fuzzy clustering
because it would allow for a more faithfully representation of the reality. It
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is in fact natural to think that an entity can belong to more than one cluster.
Making an example, if we have a chef holding a TV show it would be reasonable
to think that this entity belongs in both "chef " cluster and "TV personality"
cluster. Regarding the third point, aggregate similar entities into a new one
could overcome the pooling problem described in the previous Chapter. In this
way we would in fact obtain a new entity containing all the useful information
of the other similar ones. This approach requires a corresponding change in
the set of relevance judgments, which must be subjected to the same process
in order to obtain a match between entities in the evaluation phase. Regarding
the fourth point, in order to improve our systems performances, it would be
also useful to implement more sophisticated ways to add entities into the final
run. In particular, further studies are needed to better understand how, how
many and which entities to insert into the final run considering their rank,
score, and belonging cluster.
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Appendix

A1 Tables
In this section we report all the tables containing the resulting values of
combination and fusion system for all the measures MAP, nDCG, P@5, P@10
and all the topics.

MAP nDCG P@5 P@10
SICO 0,0757 0,2104 0,2118 0,1529

SUMCO 0,1159 0,2557 0,2471 0,1941
WECO 0,0907 0,2321 0,2353 0,1647
BM25 0,2086 0,4188 0,3529 0,2588

Table A1.1: Numeric results for MAP, average nDCG, average P@5 and
average P@10 measures for combination systems.

MAP nDCG P@5 P@10
SIFU 0,1950 0,3703 0,3529 0,2882
SOFU 0,2029 0,3732 0,3529 0,2588
LEFU 0,2093 0,4210 0,3529 0,2588

SUMFU 0,1596 0,3480 0,2824 0,2294
BM25 0,2086 0,4188 0,3529 0,2588

Table A1.2: Numeric results for MAP, average nDCG, average P@5 and
average P@10 measures for fusion systems and BM25.

SIFU SOFU LEFU SUMFU
14 5 14 5 14 5 14 5

MAP 0,1805 0,1950 0,2022 0,2029 0,2070 0,2093 0,1399 0,1596
nDCG 0,3635 0,3703 0,3787 0,3732 0,4029 0,4210 0,3407 0,3480
P@5 0,3412 0,3529 0,3529 0,3529 0,3529 0,3529 0,2824 0,2824
P@10 0,2588 0,2882 0,2588 0,2588 0,2588 0,2588 0,2235 0,2294

Table A1.3: Numeric results for MAP, average nDCG, average P@5 and
average P@10 measures for fusion systems with the addition of 14 entities or
5 entities.
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Table A1.4: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 1.

Table A1.5: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 2.

Table A1.6: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 4.

Table A1.7: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 5.
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Table A1.8: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 6.

Table A1.9: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 7.

Table A1.10: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 9.

Table A1.11: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 10.
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Table A1.12: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 11.

Table A1.13: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 12.

Table A1.14: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 14.

Table A1.15: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 15.
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Table A1.16: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 16.

Table A1.17: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 17.

Table A1.18: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 18.

Table A1.19: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 19.
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Table A1.20: Numeric results for AP, P@5, P@10 and nDCG measures for
combination systems for topic 20.

Table A1.21: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 1.

Table A1.22: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 2.

Table A1.23: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 4.
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Table A1.24: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 5.

Table A1.25: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 6.

Table A1.26: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 7.

Table A1.27: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 9.
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Table A1.28: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 10.

Table A1.29: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 11.

Table A1.30: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 12.

Table A1.31: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 14.
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Table A1.32: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 15.

Table A1.33: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 16.

Table A1.34: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 17.

Table A1.35: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 18.
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Table A1.36: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 19.

Table A1.37: Numeric results for AP, P@5, P@10 and nDCG measures for
fusion systems for topic 20.


