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Abstract

In recent times, we have witnessed a very important growth in the field of quantum computing.

Efforts on the experimental side are directed towards obtaining a fully functional quantum

computer that obeys DiVincenzo’s criteria, and the true capabilities of such a machine are

not yet fully known. Similar to this machine that can be programmed as wished, a quantum

simulator can be initialised to solve a specific problem or a small piece from a greater problem, by

evolving and measuring the state of the qubits used. This is the framework in which this thesis

project, at the Trapped Ion Quantum Technologies group at Stockholm University, takes place.

The work concerns a quantum simulator built on a linear quadrupole trap, which confines 88Sr+

ions in a well-defined region of space. The goal is to simulate, using Zemax OpticStudio, and

build an optical setup capable of addressing single ions with the 674 nm laser, and performing

single-qubit, multi-qubit and entangling operations on a few-qubit ion string.
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Introduction

Most of the physical laws we use to describe the behaviour of slow and heavy objects in everyday

life lose their validity when applied to atomic-scale objects. So far, the most accurate description

of phenomena, such as the fact that the electron does not have a well-defined position in space,

is given by the quantum theory, a branch of physics that underwent great development in

the early 20th century. Studying how the atomic scale systems evolve precisely over time by

interacting with each other and the environment requires an enormous computational effort.

The platforms available today for these types of simulations are predominantly machines that,

from a hardware point of view, are largely based on the laws of quantum theory - suffice it

to say that semiconductor theory is fundamentally quantum mechanics. However, the type of

information that is handled by these computers is purely classical, based on binary systems

and classical logic. More generally, all the devices that we find in our daily life are executing

algorithms that can be executed on a universal Turing machine, which in turn follows the rules

of classical physics (introduction of [1]). Why not try to model these very complex phenomena

with the main protagonists of the phenomena themselves, the atoms? In more general terms, is it

possible to use quantum mechanical objects to simulate other less-accessible quantum systems?

Richard Feynman, in 1982, not only asked himself this very question, but also gave to it a

positive answer. He proposed harnessing quantum physics to build a different kind of computer,

able to work directly on the wave functions of quantum systems. A historical phrase that is

often recalled from one of his speeches [2] is the following:

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem, because

it doesn’t look so easy.

R.P. Feynman, 1982

Certainly, it is not the easiest thing to do. In the years before the 1980s, experiments where

it might be possible to precisely control the state of individual atoms with light were consid-

ered unfeasible. This scepticism was mainly due to the microscopic size of the objects to be

manipulated, and can be summed up by a sentence uttered by Erwin Schrödinger [3]:

We never experiment with just one electron or atom or (small) molecule. In thought-

experiments we sometimes assume that we do; this invariably entails ridiculous con-

sequences... we are not experimenting with single particles, any more than we can

raise Ichthyosauria in the zoo.

E. Schrödinger, 1952

i
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However, a few years later in 1989, Wolfgang Paul won the Nobel Prize by suggesting a method

for trapping charged particles using variable electric fields [4]. Shortly afterwards, the field of

quantum computation began to take hold [5] and one can consider Paul’s achievement as one

of the milestones on its development. Nowadays, several research fields [1] are active in the

realisation of quantum computers, and they are based on a variety of different technologies

including superconducting circuits, topological devices, photons, neutral atoms, quantum dots,

NV-centers and others [6, 7, 8, 9].

A quantum computer [10] stores the information in a register consisting of quantum objects

(qubits). These machines are capable of implementing quantum algorithms with limited errors,

corresponding to the quantum mechanical time evolution of the register itself under the action

of quantum gates. Problems that are exponentially hard to solve on a classical computer include

prime number factorisation and efficient database search, for which possible quantum algorithms

exist already [11]. The quantum algorithm to perform prime number factorisation is known as

Shor’s algorithm [12, 13] (theory and practical implementation) and is almost exponentially

faster, in the computation time, than the best known classical factoring algorithm [14]. Richard

Feynman also said in a lesson later:

We are to be even more ridiculous later and consider bits written on one atom instead

of the present 1011 atoms. Such nonsense is very entertaining to professors like me.

I hope you will find it interesting and entertaining also.

R.P. Feynman, 1986

and this is one of the first moments where it is thought that a quantum computer should be used

to overcome the paradigms of classical computation in terms of bits. Quantum computers that

cannot implement a universal set of quantum gates and have not error-correction capabilities

are instead referred to as quantum simulators [15], as they can still solve some specific problems

very efficiently. In particular, quantum simulators consist of highly controllable quantum systems

used to simulate [16, 17, 18] other, less accessible ones. With quantum simulators, the concept

of computation with qubits is relaxed to a more generic encoding of a problem in a quantum

register. To conclude this discussion, the box below is intended to give a coarser and more

technical understanding of the memory storage required for simulating quantum systems with

classical computers.

The qubit (described later in Subsection 1.3.1 more in detail) is the fundamental unit

of quantum computation and can be described by a complex wave function of the form

|ψ⟩ = α |0⟩ + β |1⟩. In order to study the evolution of a wave function of this kind in a

classical computer can be done by firstly storing both complex wave function coefficients α

and β and subsequently evolving them according to time-evolution operators. We illustrate

this problem in absence of decoherence and with pure states, i.e. in an ideal case. Scaling

the problem to a n × n lattice of qubits, the number of coefficients to be stored amounts

to 2n
2
for the general case: n2 entries with a local dimension of d = 2 (two states of the

qubit) for each. With both 8 bits and 8 qubits, 256 combinations of 1 and 0 can be realised,
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the difference being that in the second case the 8 qubits can encode them simultaneously,

whereas the bits can only represent only one of these combinations [19]. For each coefficient

of the overall lattice wave-function to be stored in double precision, one needs 64 bits both

for real and imaginary part, so 2n
2+4 Bytes. We report some examples for the memory

demand in the following table:

lattice dimension 1× 1 4× 4 8× 8

coefficients 2 65.5× 103 18× 1018

state vector 32 B 1 MB 295 EB

In the last case one would require a memory space that is about 850 times larger than

the one available at CERN [20]. For a lattice with n = 17 the number of bits required to

represent all the coefficients of the wave function exceeds the number of atoms in the visible

universe by several orders of magnitude, placing an important limit on feasibility. A generic

time evolution requires then computationally heavy linear algebra operations.

In 2000, the physicist David DiVincenzo has defined seven criteria that every quantum

computer must meet to be defined as such [21, 22]. These principles have always been the

beacon for all scientists trying to build a quantum computer, and we illustrate them below while

also introducing some insights regarding the platform based on trapped ions:

1. A scalable physical system with well characterised qubits.

Quantum computers based on trapped single ions are among the most promising. In

general, the qubits used in such architectures are well characterised via electronic states

[23, 24] and in our experiment realised through the 5S1/2 → 4D5/2 quadrupole transition

of a 88Sr+ ion. The biggest challenge facing trapped ions is their scalability, although

several proposals have been made in this respect [25, 26]. With trapped ion technology,

there have also been recent advances in the area of quantum error correction, by means of

ion shuttling techniques [27].

2. The ability to initialise the state of the qubits to a simple fiducial state, such as |000 . . .⟩.
In the field of quantum information, the fidelity F is a measure of distance between two

quantum states (i.e. the experimentally prepared and ideally prepared state. P. 409 of

[1]). F > 0.99 can be achieved preparing the ions in a well-defined electronic state with

optical pumping. To be properly initialised, they also need to be cooled to their motional

ground state and we will discuss in detail the procedure in Section 2.3.

3. Long relevant decoherence times, much longer than the gate operation time.

A quantum wave-function is said to be in a coherent superposition (|ψ⟩ = α |↑⟩+ β |↓⟩) of
states if there exist an observable (σ̂x) that, if applied to one state, can turn it to another

one present in the superposition (σ̂x |↑⟩ = |↓⟩). For a qubit state like |ψ⟩, its decoherence
time corresponds to the time at which the off-diagonal terms of its density matrix vanish

to zero. The decoherence happens due to interactions of the qubit with the environment,
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and places an important limit on the capabilities of a quantum computer. In trapped ions,

long decoherence times have been reached, even longer than one hour for a particular ion

species [28].

4. A “universal” set of quantum gates.

If an arbitrary interaction between any number of qubits can be broken down into a

certain set of operations, this set is called universal. In Boolean algebra, the NAND has

the property of functional completeness, meaning that any Boolean expression can be re-

cast by an equivalent expression using only NAND operations. In quantum computing,

it can be shown that all quantum algorithms can be implemented as a sequence of single

qubit and a specific two-qubit operations, thus forming a universal set of quantum gates

[29]. Two qubit operations can be for example the controlled-NOT (CNOT) gate [30] or

the Mølmer-Sørensen (MS) gate [31, 32]. The MS gate is specific for the case of trapped

ions.

5. A qubit-specific measurement capability.

We detect the qubit state through Dehmelt’s electron shelving technique, explained in Sec-

tion 2.2. In a nutshell, one of the two qubit states is excited with laser light to a short-lived

auxiliary level from where it decays back to the initial state and emits fluorescence pho-

tons. The second qubit state stays untouched and does not emit photons. The fluorescence

is then detected via a photo-multiplier tube (PMT) or a camera (Subsection 2.2.1).

And the last two are more related to the branch of quantum communications and networks.

6 The ability to interconvert stationary and flying qubits.

In Quantum Key Distribution (QKD) protocols, photons are used as carriers of the qubit

information. The quantum information has to be efficiently transported from the flying

photons to the stationary qubit, the ion.

7 The ability faithfully to transmit flying qubits between specified locations.

Photons carrying quantum information can be efficiently transferred between different

spatial locations through fibers or in free-space.

Not all the possibilities that quantum computers can offer are explored yet. While still significant

improvements have to be made to realise a fault tolerant device, we are within a phase called

Noisy Intermediate-Scale Quantum era (NISQ) [33].

The experimental platform at Stockholm University is based on 88Sr+ confined in a linear

Paul trap. For us, each of the ions belonging to a chain can encode a qubit. The quantum

state of each single qubit has to be precisely manipulated. The purpose of this six months thesis

project mainly concerns DiVincenzo’s fourth criterion and thus a system for the addressing of a

chain of ions is described. The task was to use the software Zemax OpticStudio as a reference

point to simulate and study different optical setups for addressing qubits with 674 nm laser

light, to perform single- and multi-qubit gates. Moreover, it will be shown how the components
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needed are characterised and then implemented in the actual experiment to achieve the final aim.

During the time span of the project, it was possible to test addressed off-resonant single-qubit

gates. The thesis is structured as follows:

Chapter 1 The first chapter is related to the theoretical background. Some atomic physics concepts

will be briefly introduced and are mainly related to atom-light interaction, along with an

explanation of how a Paul trap is able to keep ions stable in a region of space. The last

section is devoted to a brief introduction to quantum information concepts.

Chapter 2 In the second chapter, the experimental apparatus is introduced with more technical de-

tails on lasers and ion loading. The single-ion addressing apparatus is described and

characterised.

Chapter 3 In the last chapter, first results obtained with the new addressing system are presented.

It will be described how the addressing quality is optimised and how a single qubit off-

resonant gates can be performed on a three ion chain.
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Chapter 1

Theoretical background

In this chapter, some important theoretical concepts are illustrated with the aim of allowing

the reader to understand the experiments carried out. The physics of Radio Frequency (RF)

traps and a summary of the electronic structure of atomic and singly-ionised strontium are

given in Section 1.1. Although the description of the trap is more experimental, this topic is

included in order to better motivate the emergence of motional degrees of freedom (theory and

experiment will be overlaid for a moment). A final discussion is then made on how the light

couples to the ion in Section 1.2, and how the different interactions can be exploited to perform

quantum computing operations with trapped ions in Section 1.3.

1.1 Trapped ions

In 1953, Wolfgang Paul built the first quadrupolar 3D ion trap [4, 34], with which he later

won the Nobel Prize in 1989. This is based on the use of time-varying electric fields to trap

charged particles. It should be noted that this is not the only way to trap particles, as different

architectures exist (linear, multiple, digital, spherical ion traps), and in others magnetic fields

are also used for the confinement (Penning trap [35]).

1.1.1 The ion trap

A macroscopic linear quadrupolar trap (also named as RF trap or Paul trap), confines charged

particles in a potential minimum at room temperature using time-varying electric fields. Its

physics is well established and there exist several extensive reviews in the literature, such as

[36]. The working principle can be initially grasped with the analogy of a ball in a saddle. A

ball will start to roll along the negative curvature of the potential landscape if the latter has a

saddle shape. This obvious behaviour can be modified by rotating the saddle around the vertical

axis that crosses the saddle point. In fact, the inertial mass of the ball introduces a delay in

the movement at the right rotation frequency. The curvature changes are so rapid that the ball

will be stationary at one point. However, what happens in a real Paul trap is slightly different,

since the potential is not rotating, but rather oscillating: slopes become valleys and vice-versa.

Let us now consider an electric potential of approximately quadrupolar shape in the centre

1
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Figure 1.1: A rendering of the Paul trap implemented in our experiment. The electrodes are
made of gold-plated titanium [37]. End-cap electrodes are placed at the side of the trap and are
easily recognisable by their pointed shape. A hole is drilled in the centre of these to allow laser
beams to pass through. The RF signal is instead delivered through the four trapezoid-shaped
blades. Pictures are taken from [38].

of the trapping region, such as a generic harmonic potential of the form:

Φ = Φ(x, y, z) = Φ0(αx
2 + βy2 + γz2), (1.1)

where Φ0 is the field amplitude, and α, β, γ are geometric coefficients related to the trap design.

A first major obstacle to the confinement of ions with a similar potential is related to Earnshaw’s

theorem. The latter states that is not possible to create a potential minimum where the ions can

be trapped, by using only static electric fields. To be in equilibrium at a potential minimum,

the particle must feel a restoring force that brings it back to its original equilibrium position

every time it moves away from it. For a charged particle, this means that the electric field lines

have to be directed towards the equilibrium point, and the divergence of the electric field at this

point must be negative (the equilibrium point is a sink). The first Maxwell equation forbids it.

The last imposes that the field must be divergenceless in the absence of a free charge density

ρ = 0, and this is the case in an empty trap. The first Maxwell equation has the same structure

as the Laplace equation:

∇ ·E = ∇ · (−∇Φ) = ∇2Φ = 0, (1.2)

which imposes a condition on the geometric coefficients in Eq. (1.1):

α+ β + γ = 0. (1.3)

Thus, from the latter one can understand that with only a static field it is not possible to create

any confinement: at least in one direction the potential must be anti-trapping, prompting the

ion to rapidly escape. If instead this quadrupolar potential is varied it gives rise to a force,

which averaged in time is able to push the ion towards the centre of the trap. To realise this

dynamical trapping in practice, one can either choose α = β = 1, γ = −2 which gives rise to a

3D trap, or α = −β = 1, γ = 0 which is instead referred to as the linear Paul trap.

The experiment reported here employs a linear Paul trap (see Figure 1.1) which consists
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of four gold-plated titanium blades and two end-cap electrodes. The confinement in the plane

perpendicular to the trapping axis is generated by a combination of a static and oscillating

quadrupole field: U(t) = UST + URF cos (ΩRFt). The oscillating field is provided by RF voltages

applied to a pair of diagonal blades, while the other two are grounded. This potential extends

homogeneously along the length of the blades and an additional DC voltage in the axial direction

UDC is required for three-dimensional trapping. Thus, considering all contributions, the potential

takes the following form [39]:

Φ =
U(t)
2r20

(x2 − y2) +
κUDC

2z20
(2z2 − x2 − y2), (1.4)

where r0 = 0.57mm [37] is the minimum distance between the trapping axis and the blade

electrodes, z0 = 2.25mm [37] is the minimum distance between the center of the trap and the

end-cap electrodes and κ is a geometric factor (κ ≈ 0.04 in our trap [40, 39]).

The behavior of the ion inside the trap can further be investigated by studying the equations

of motion along the three axis, given the potential in Eq. (1.4). For a singly charged ion 88Sr+,

the equation of motion along the x axis can be written as:

F = mẍ = eE = −edΦ
dx

= −ex
(UST + URF cos(ΩRFt)

r20
− κUDC

z20

)
,

(1.5)

and by performing the substitution τ = ΩRF/2, Eq (1.5) can be cast to a generic expression of

the Mathieu equations [41]. One then obtains for the three dimensions:

d2x

dτ2
+ (ax − 2qx cos(2τ))x = 0, (1.6)

d2y

dτ2
− (ay − 2qy cos(2τ))y = 0, (1.7)

d2z

dτ2
+

2κ|e|UDC

mz20
z = 0, (1.8)

where the following coefficients have been introduced:

ax =
4|e|
mΩ2

RF

(UST

r20
− κUDC

z20

)
, ax =

4|e|
mΩ2

RF

(UST

r20
+
κUDC

z20

)
, qx = −qy =

2|e|URF

mz20Ω
2
RF

. (1.9)

The coefficients in Eq. (1.9) are referred to as stability parameters, because a charged particle

can experience an average confining force only if these two are inside certain boundaries [42, 43].

In fact, considering that in a linear trap z0 ≫ r0 one approximates a ≈ 0 and a stable trapping

is possible only for 0 < q < 0.9. The dependence on the ratio |e|/m allows also tuning of the

stability parameters (depending respectively on the two voltages) in order to trap only isotopes

with a pre-defined charge-to-mass ratio. Solving Eq. (1.6), Eq. (1.7) and Eq. (1.8), one obtains
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ions oscillating at the following motional frequencies in each of the three axis:

ωx =
ΩRF

2

√
q2x
2

+ ax, ωy =
ΩRF

2

√
q2y
2

− ay, ωz =

√
2κ|e|UDC

mz20
. (1.10)

In the experiment, the trap is typically operated at a ≈ 0 and q ≈ 0.3, resulting in trapping

frequencies of ωx = ωy ∼ 2π × 1.7MHz and ωz = 2π × 840 kHz [40]. As a final remark, the trap

operates in an ultra-high vacuum regime (< 1×10−10mbar) in order to minimize the interaction

between the trapped ion qubits and background atoms.

1.1.2 Quantum harmonic oscillator

The Hamiltonian describing the behaviour of a single ion in a one-dimensional (e.g. the x axis)

harmonic potential consists of the ion’s kinetic energy and its potential energy:

Hx
m =

p2x
2m

+
1

2
mω2

xq
2
x →

(a)
Ĥx

m =
p̂2x
2m

+
1

2
mω2

xq̂
2
x, (1.11)

where in (a) the quantisation technique has been used, introduced by Paul Dirac in 1927 to

promote the particle’s position and momentum to operators. In the same framework, one can

further express the two operators newly introduced in terms of the harmonic oscillator ladder

operators of annihilation â and creation â†. These two, act on the infinite-dimensional Hilbert

space H∞ of ”number representation”, called Fock space F ⊂ H∞. An element of this space

has the form |n⟩ ∈ F , describing the presence of n phonons or quanta of motion. Two elements

of this space are orthogonal to each other. The two operators â and â† obey the following

eigenvalue equations:

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , â |n⟩ = √

n |n− 1⟩ . (1.12)

The number operator is defined as N̂ = â†â, whose eigenvalues correspond to the number of

phonons present in the trap, i.e. N̂ |n⟩ = n |n⟩. As previously described, the newly introduced

lowering and raising operators lead to the useful representation of p̂x and q̂x:

q̂x :=

√
ℏ

2mωx
(â† + â), (1.13)

p̂x := i

√
ℏmωx

2
(â† − â). (1.14)

In this way the quantum Hamiltonian in three-dimensions becomes:

Ĥm =
∑
i

Ĥi
m =

∑
i

ℏωi

(
N̂i +

1

2

)
i = {x, y, z}. (1.15)

The centre of mass of the ion string undergoes a quantized motion in each of the three directions,

with the frequencies calculated in Eq. (1.10). More in general, N ions have 3N motional degrees

of freedom, thus a linear chain has 3N eigenmodes of motion with their respective eigenfre-
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quencies. All these modes can be treated as harmonic oscillator modes. The excitation of these

motional modes, possible in the Lamb-Dicke regime (described in Subsection 1.2.3), allows the

transfer of information, which is shared by all ions in the string, between not nearest neighbour

ions. In this way, entanglement gates can be implemented [31, 32]. Motional modes are usually

referred as ”quantum buses” to recall their capability to transfer information.

1.1.3 Atomic structure of strontium

Strontium is an alkaline earth metal with 50 neutrons, 38 protons and 38 electrons and an

electronic configuration of [Kr]5s2. In Figure 1.2, the relevant electronic transitions of the

atomic strontium are illustrated.
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Figure 1.2: Energy levels of 88Sr, relevant for the photoionisation process.

In the experiment, this atomic species is sent through the trap and an electron is removed

via a double-step process of photoionisation. The level at the end of this process (4d2 + 5p2)

is doubly excited, meaning that both electrons are still part of the atom (bound), but their

combined energy is greater than the first ionisation limit. This state is also called autoionising,

and from here one electron falls back to the ground state while the other is ejected into the

continuum of unbound states above the first ionisation limit.

At this point, only one electron will be present in the outer shell, and the strontium ion has

thus an electronic structure similar to the one of hydrogen. The energy levels can be derived (for

a more in depth discussion see section Single ion theory from [45]) simplifying the problem from

a multi-body one to a nucleus-electron two-body problem. In the latter, the valence electron is

confined in a spherically symmetric potential with charge Z = +2 (the remaining 36 electrons

form closed shells and shield the nuclear charge) and in the external ion-trapping potential. The

nuclear spin of this isotope is zero (number of neutrons and protons both even), so it has no

hyperfine splitting. The energy levels are further split into 2j+1 Zeeman sub-levels mj , ranging

from −J to J, by means of a permanent magnet generating a magnetic field of B = 3.6G

(implemented in [46]).

Starting at the bottom of figure Figure 1.3, the use of all transitions is now described, and de-

tails on how they are experimentally driven can be found in Section 2.1. Two Zeeman sub-levels

of the metastable state 4D5/2 and of the ground state 5S1/2 are identified as the logical qubit

states |0⟩ and |1⟩ respectively. These two states are connected through a quadrupole transition

(with no P levels in between), which means that the latter has a long lifetime (Table 1.1) and

consequently makes this ion a good candidate as an optical qubit. With respect to the bare

transition frequency at B = 0, the presence of the magnetic field induces shifts in energy levels
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Figure 1.3: Relevant energy levels, including the natural decay rates Γ/2π [44, 23]. Zeeman
sub-levels are not shown for clearer visualisation. The notation used is nlx 2S+1LJ, where nlx is
the configuration of the outermost orbital (principal quantum number, orbital quantum number
and number of electrons in that orbital). Instead, S, L and J are respectively the absolute value
of the total electron spin, the total orbital angular momentum and the total angular momentum
of the atom (ion). To describe the transitions in the thesis, a more compact notation nLJ is
adopted.

Transition λ

5S0 ↔ 5P1 460.8620 nm
5P1 ↔ 5D2 405.2 nm

5S1/2 ↔ 4D5/2 674.2064 nm

5S1/2 ↔ 5P1/2 421.6711 nm

5P1/2 ↔ 4D3/2 1092.7860 nm

5P3/2 ↔ 4D5/2 1033.0158 nm

Table 1.1: Wavelengths of atomic and singly-ionised strontium (some low-lying levels) [47, 44,
23].

and consequent shifts in the transition frequencies. Considering, for example, the two sub-levels

mj(D5/2) and mj(S1/2), the shift ∆B can be calculated as:

∆B

h
= BµB

[
gJ(D5/2)mj(D5/2)− gJ(S1/2)mj(S1/2)

]
, (1.16)

where µB is the Bohr magneton, h is the Planck constant and gJ the Landé factor related to a

specific energy level:

gJ = 1 +
J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)
. (1.17)
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Thus, depending on the chosen Zeeman sub-levels, the 5S1/2 ↔ 4D5/2 transition may be more or

less sensitive to fluctuations in the external magnetic field. The usual setting ismj(S1/2) = −1/2

and mj(D5/2) = −5/2, but the longest coherence time has been measured with the less sensitive

transition between mj(S1/2) = −1/2 and mj(D5/2) = −1/2. From 5S1/2, the broad-linewidth

transition to 5P1/2 (at 422 nm) is also being laser-excited, in order to perform state detection

(Section 2.2) and Doppler cooling (Subsection 2.3.1). From 5P1/2 the electron does not always

return to the ground state 5S1/2; rather, there is a 6% [48] probability that it will end up in the

metastable state 4D3/2 (dark state). To prevent the electron to be trapped in 4D3/2 for long, the

”repump” transition (at 1092 nm) from 4D3/2 is used, to bring the ion back to the cooling cycle.

Lastly, the transition from 4D5/2 to 5P3/2 (”quench” transition) is used to speed up the resolved

Sideband Cooling (SBC), a sub-Doppler cooling technique described in Subsection 2.3.2. This

laser is also used to initialize the qubit via optical pumping to the |1⟩ quantum state; in fact,

after Doppler cooling the ion ends up in a mixture of the states mJ = −1/2 (|1⟩) and mJ = 1/2.

All the population in mJ = 1/2 is then transferred to one of the 4D5/2 sub-levels, and with the

1033 nm light subsequently pumped to the ground state. After ≈ 10− 20 pump cycles, the ion

ends up in |1⟩ with near unit probability.

In addition to low-lying levels, Rydberg energy levels are often used in our laboratory. A

two-photon excitation scheme is used to bring the population from either of the metastable 4D

states to Rydberg S or D states with n ≈ 46 [49]. Having discussed how ions can be trapped and

what energy levels they consist of, we are now ready to study their interaction with coherent

light.

1.2 Interactions

The following paragraphs introduce the Hamiltonian regulating the behavior of an ion trapped in

a harmonic potential and coherently manipulated by laser light. First, the manipulation of bare

electronic states will be described in Subsection 1.2.1, then motional states will be considered

and the coupling to electronic degrees of freedom will be discussed in Subsection 1.2.2. This

framework is useful for understanding the quantum operations that are implemented in the rest

of the thesis.

1.2.1 Light interacting with a free two-level ion

In the following, a two-level system encoding a qubit is interacting with a laser beam. As a first

step in the construction of the overall Hamiltonian, one wants to describe the contribution of the

internal electronic structure of the ion. The latter is considered as a two-level system between

|g⟩ and |e⟩, separated in energy by ℏω0 = ℏ(ωe − ωg) and at a well-defined position in space.

This framework is also justified by the fact that in the laboratory light is coupled in resonance

only to two internal levels (well enough that couplings to other levels can be neglected, thanks

to narrow linewidth lasers). Any operator connected to a two-level system can be mapped onto
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the spin-1/2 operator basis. In fact, recognizing that:

1̂2 = |g⟩ ⟨g|+ |e⟩ ⟨e| ,
σ̂x = |e⟩ ⟨g|+ |g⟩ ⟨e| ,
σ̂y = i(|e⟩ ⟨g| − |g⟩ ⟨e|),
σ̂z = |e⟩ ⟨e| − |g⟩ ⟨g| ,

the two-level quantum Hamiltonian can be written as

Ĥa = ℏωg |g⟩ ⟨g|+ ℏωe |e⟩ ⟨e|

= ℏ
(ωe + ωg)

2
(|g⟩ ⟨g|+ |e⟩ ⟨e|) + ℏ

(ωe − ωg)

2
(|e⟩ ⟨e| − |g⟩ ⟨g|)

(a)
= ℏ

ω0

2
σ̂z,

(1.18)

where in (a) the energy has been renormalised to suppress the state-independent contribution.

A monochromatic laser light field, close to the resonance ωℓ ≈ ω0 of the |g⟩ ↔ |e⟩ transition
and with a optical phase ϕℓ, can be expressed as E(t) = E0 cos (ωℓt+ ϕℓ). Through minimal

coupling, both electric dipole, electric quadrupole and even Raman stimulated transitions can

be described by the same atom-light Hamiltonian [36]:

Ĥaℓ(t) = ℏΩσ̂x cos (ωℓt+ ϕℓ), (1.19)

where the coupling strength Ω is the Rabi frequency. The mechanism of the optical qubit used in

our experiment between 5S1/2 and 4D5/2 (quadrupole transition) is defined by the interaction of

the atomic quadrupole moment with the electric field gradient which is represented in Eq. (1.19).

The Rabi frequency is then [50]:

Ω =
e|E0|
ℏ

√
15Γ

4cαk3
Λ(mg,me)g∆mj

(ϕ, γ), (1.20)

and it is related to the rate at which population is exchanged between |g⟩ and |e⟩ (every t =

π/Ω a spin flip happens). In the last equation, E0 is related to the laser intensity E0 ∝
√
I,

α ≈ 1/137 is the fine-structure constant and Γ is the natural linewidth of the excited state |e⟩.
Furthermore, Λ(mg,me) is the Clebsch-Gordon coefficient of the transition with Zeeman sub-

levels mg (magnetic quantum number) and me and the factor g∆mj
(ϕ, γ) contains the geometric

dependence of the Rabi frequency, where ϕ denotes the angle between the laser beam and the

magnetic field and γ describes the angle between a linear polarisation and the magnetic field

vector projected onto the plane of incidence [50]. The complete Hamiltonian is then the following

Ĥ = Ĥa + Ĥaℓ(t) = ℏ
ω0

2
σ̂z + ℏΩσ̂x cos (ωℓt+ ϕℓ). (1.21)

At this point, to study the dynamics introduced by the atom-laser Hamiltonian it is con-

venient to move to the Dirac interaction picture. This hybrid representation is useful to solve

problems where the overall Hamiltonian can be rewritten as the sum of a time-independent part
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and a time-dependent perturbation, as in Eq. (1.21). The dynamics induced by the unperturbed

part of the Hamiltonian are detached from those introduced by the time-dependent perturba-

tion, and its solution is generally known. The transformation to the interaction Hamiltonian is

performed via

Ĥint = Û†
aĤÛa,

where Ûa = e−iĤat/ℏ is the time evolution operator for the time-independent part. Calling

∆ = ω0 − ωℓ the detuning between the frequencies of the laser to the atomic transition, the

interaction Hamiltonian takes the following form:

Ĥint = ℏ
Ω

2
(σ̂x cos (∆t+ ϕℓ) + σ̂y sin (∆t+ ϕℓ))

= ℏ
Ω

2

(
σ̂+e

−i(∆t+ϕℓ) + σ̂−e
i(∆t+ϕℓ)

)
,

(1.22)

where two new operators have been introduced:

σ̂+ =
σ̂x + iσ̂y

2
,

σ̂− =
σ̂x − iσ̂y

2
.

The former operator pushes the ion’s valence electron to the excited level |e⟩, while the latter

kicks it down to the ground state |g⟩. In Eq. (1.22) the Rotating Wave Approximation (RWA)

has been performed, i.e. the sum of frequency terms ∝ (ωℓ + ω0)t oscillating much faster than

the time scale given by the induced dynamics at ωℓ is neglected. In the end, the time-evolved

quantum state following an interaction Û1 = e−iĤintt/ℏ can be written as

|ψ(t)⟩ = ÛaÛ1Û†
a |ψ(0)⟩ .

A distinction must now be made between two cases:

- On-resonance excitation (∆ = 0): A laser beam on resonance causes a coherent pop-

ulation exchange between the two energy levels |g⟩ and |e⟩ and can be described by the

following unitary operation:

Û1 = e−iĤintt/ℏ =

(
cos
(
θ
2

)
−ie−iϕℓ sin

(
θ
2

)
−ie+iϕℓ sin

(
θ
2

)
cos
(
θ
2

) )
, (1.23)

where it is convenient to define θ = Ωt as the pulse area, quantifying how much the state is

being rotated in a time t around a generic axis on the Bloch sphere (see Subsection 1.3.1)

σ̂ = σ̂x cos (ϕℓ)+σ̂y sin (ϕℓ) defined by the phase of the light ϕℓ. The pulse area also depends

on the Rabi frequency, which accounts for the light intensity and coupling efficiency to the

corresponding transition. A pulse with duration t = π/Ω is referred to as a π−pulse. This

pulse corresponds in fact to a rotation of 180° on the Bloch sphere: from the south to the

north pole of Figure 1.8. One can also notice how in this case the matrix in Eq. (1.23) takes

the form of a NOT gate. The continuous application of a laser beam induces a continuous
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population exchange between the two levels called Rabi oscillations or Rabi flops.

- Off-resonance excitation (∆ ̸= 0): With laser light detuned from the resonance of the

transition there can still be a population exchange between |g⟩ and |e⟩, but suppressed in

comparison with the resonant case (see Figure 1.4). By solving the optical Bloch equations

(a clear reference with the density matrix formalism can be found at p. 68 of [51]), one

finds that the behavior of the probability pe (ρ̃22 in the reference) of finding the electron

in the excited state is governed by the following equation:

pe(t) =
Ω2

Ω2
eff

sin2
(
Ωefft

2

)
. (1.24)

π 2π 3π 4π

Ωt

0.0

0.2

0.4

0.6

0.8

1.0

p
e
(t

)

∆/Ω = 0

∆/Ω = 1

∆/Ω = 2

Figure 1.4: Probability of finding the electron in the excited state pe(t) versus time,
at different detuning ∆ from the resonance. One may notice how even a non-resonant
excitation is capable of generating population transfer between the two energy levels.

Oscillations are performed at the generalised Rabi frequency Ωeff =
√
Ω2 +∆2 where Ω

is the Rabi frequency at resonance. For large detunings ∆ ≫ Ω, the oscillations are

suppressed (see Figure 1.4) to a reduced amplitude pe(t) ∝ 1/∆2.
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Figure 1.5: Light shift δ of the resonance frequency ω0 of a transition depending on the
detuning ∆ = ω0 − ωℓ. For red-detuned light (frequency of the laser light lower than the
one of the transition) the resonance frequency is shifted to a higher frequency, while for
blue-detuned light the resonance frequency is shifted to a lower frequency. In case the
light is at resonance with the transition (∆ = 0) no light shift occurs.

In addition, a non-resonant light field (detuned by ∆) will shift the atomic energy levels

from their original position (AC-Stark shift), as reported in Figure 1.5. To describe this

effect, the starting point is again Eq. (1.21). By performing similar steps to those required

to obtain Eq. (1.22) considering this time a transformation to a rotating frame with Ûa =
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e−iωℓσ̂zt/ℏ, one can compute the new eigenergies from the following Hamiltonian:

ĤAC
int = −ℏ

∆

2
σ̂z + ℏ

Ω

2
σ̂x. (1.25)

By setting |ĤAC
int − λ1|= 0 one obtains λ± = ±ℏ

2

√
Ω2 +∆2. These last two eigenvalues

represent the amount of shift that energy levels undergo as a result of the AC-Stark effect:

δ = λ± − λ±(Ω = 0) = ±Ω2

4∆
, (1.26)

in the case of large detunings ∆2 ≫ Ω2. For this reason, the eigenvalues have been

approximated with a first order Taylor expansion of the square root λ± ≈ ±∆
2

(
1 + Ω2

2∆2

)
.

The sign of the detuning determines the sign of the shift of the levels. As an example, a

red-detuned laser ∆ < 0 widens the transition, shifting the upper level upwards and the

lower level downwards (see Figure 1.5). The overall AC-Stark shift gained in this case

amounts to:

δAC =
Ω2

2∆
. (1.27)

So far, the treatment has involved a system with only two levels, but computing the Stark

shift in real atoms/ions is more difficult due to off-resonant coupling to all the other energy

levels, which for more precise calculation also have to be taken into account. Thanks to the

AC-Stark effect, the phase of the qubit will evolve linearly in the pulse duration, allowing

us to perform single-qubit manipulations. To see this, from the Hamiltonian in Eq. (1.25)

always in the case of large detunings |∆|≫ Ω, one can arrive at the following form:

ĤAC
eff = ℏ

δAC

2
σ̂z, (1.28)

with the related unitary operation

Û1 = e−iĤAC
eff t/ℏ =

(
e−i

δAC
2

t 0

0 ei
δAC
2

t

)
. (1.29)

Eq. (1.29) is a phase gate (as reported in Eq. (1.46)), in which the qubit phase ϕ rotates

linearly in δAC and in time around the z axis (very similar to the operator that will

be presented in Eq. (1.46)). This AC-Stark effect is a key ingredient for single-qubit

operations, as will be discussed in Section 3.2.

1.2.2 Light interacting with a harmonically confined ion

The motion of the ion within the trap potential can be described by the quantum harmonic

oscillator (see Subsection 1.1.2). This motion affects the interaction between the trapped ion

and the laser light, and now the quantum harmonic oscillator and the (free) two-level atom are

combined to derive a more thorough description of the system. The latter can be described by
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Figure 1.6: The motional and the electronic degrees of freedom are coupled. The axis of quan-
tisation can be identified along i = x, y, z.

a Hamiltonian operator that takes into account the following contributions:

Ĥ = Ĥm + Ĥa︸ ︷︷ ︸
Ĥ0

+Ĥaℓ(t) = Ĥ0 + Ĥ1, (1.30)

where Ĥm accounts for the motion in the trap (Eq. (1.15)), Ĥa for the energy stored in the

electronic internal levels of the ion (Eq. (1.18)) and Ĥaℓ for the interactions between light and

the ion itself. Since the ion is now moving, one must also take into account its spatial position,

and for this reason, the Schrödinger position operators r̂S = (x̂S , ŷS , ẑS) and the wave-vector

norm k are inserted in the interaction part (Eq. (1.19)). The calculations can be simplified by

considering a monochromatic wave with wave vector lying along the x axis. In this case, the

perturbing Hamiltonian is the following:

Ĥaℓ(t) = ℏΩσ̂x cos (kx̂S − ωℓt− ϕℓ). (1.31)

The transformed Hamiltonian in the interaction picture Ĥint(t) = Û†
0Ĥaℓ(t)Û0, considering Û0 =

e−itĤ0/ℏ gets the form

Ĥint(t) = ℏ
Ω

2
(σ̂+e

iω0t + σ̂−e
−iω0t)eitĤm/ℏ

(
ei(kx̂S−ωℓt+ϕℓ) + e−i(kx̂S−ωℓt+ϕℓ)

)
e−itĤm/ℏ, (1.32)

and can be simplified further by neglecting the fast oscillating parts (after expanding the prod-

ucts) and leaving the one which rotates at ∆ = ω − ω0 (RWA):

Ĥint(t) = ℏ
Ω

2

(
σ̂+e

i(kx̂S−∆t+ϕℓ) + h.c.
)
. (1.33)

The position operator x̂S can be expressed in terms of q̂x(t), introduced in Eq. (1.13), and so

by means of the annihilation and creation operators:

kx̂S = kq̂x(t) = η(â(t) + â†(t)), (1.34)

where η = |k|cos (θ)x0 = |k|cos (θ)
√

ℏ/2mωx is the Lamb-Dicke parameter. The latter includes

the angle θ formed between the impinging light and the ion’s direction of motion. The final

Hamiltonian that regulates the interaction between a trapped ion in motion and laser light is
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then

Ĥint(t) = ℏ
Ω

2

(
σ̂+e

i(η(â(t)+â†(t))−∆t+ϕℓ) + h.c.
)
. (1.35)

1.2.3 Lamb-Dicke regime
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Figure 1.7: Ladder scheme. The carrier transition, driven with a laser not detuned from the
atomic resonance, couples the two states |g⟩ ↔ |e⟩ without affecting the motional state. Starting
from state |g⟩, with blue (red) detuned light ∆ = +ωx (∆ = −ωx) a phonon is added (removed)
while the internal electronic state is excited |g⟩ ↔ |e⟩.

If the extent of the motional wave packet is small compared to the laser wavelength, then

an ion is said to be in the Lamb-Dicke regime. Considering N̂ to be the number state operator

introduced in Subsection 1.1.2, this regime holds as long as η2(2⟨N̂⟩ + 1) ≪ 1 and is feasible

for Doppler-cooled trapped ions whenever the average number of phonons is ⟨N̂⟩ ≲ 20. In the

Lamb-Dicke regime, the exponent in Eq. (1.35) can be expanded to first order in the Lamb-Dicke

parameter:

Ĥint(t) = ℏ
Ω0

2

(
σ̂+e

−i(∆t+ϕℓ)
[
1 + iη(âe−iωxt + â†eiωxt) +O(η2)

]
+ h.c.

)
, (1.36)

where the interaction strength is re-scaled by the trap parameter Ω0 = Ω/(1 + q/2) (reported

in Eq. (1.9)) [52] and where the time dependence of the creation and annihilation operators

has been made explicit in terms of the trap frequency. Depending on the detuning ∆ from the

resonance at ω0, three different transitions of special interest can be identified in Eq.(1.36) (see

also Figure 1.7):

• Carrier transition (∆ = 0). This Hamiltonian gives rise to transitions of the type

|g⟩ ⊗ |n⟩ ↔ |e⟩ ⊗ |n⟩ (resonant light does not cause a change of the number of phonons in

the system), with Rabi frequency Ωn,n = Ω0(1− η2n):

Ĥcar = ℏ
Ωn,n

2
(σ̂+e

−iϕℓ + σ̂−e
iϕℓ). (1.37)

One may notice that this Hamiltonian has already been introduced in Eq. (1.22), and that

for higher number of phonons n≫ 1 the Rabi frequency becomes smaller.

• Red sideband transition (∆ = −ωx). The result of light with a detuned frequency by
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a value equal to the trap frequency with respect to the atomic frequency is the excitation

of a transition of the type |g⟩ ⊗ |n⟩ ↔ |e⟩ ⊗ |n− 1⟩. Starting from a state |g⟩, a quantum

of motion is removed from the system. The Rabi frequency in this case amounts to

Ωn−1,n = Ω0
√
nη, and the Hamiltonian takes the following form:

Ĥrsb = iℏη
Ωn−1,n

2
(σ̂+âe

−iϕℓ + σ̂−â
†eiϕℓ). (1.38)

This resonance, together with spontaneous decay, is used to perform sideband cooling.

This process is described in Subsection 2.3.2 and is useful to cool an ion down to its

motional ground state, with ⟨n⟩ ≈ 0.

• Blue sideband transition (∆ = +ωx). By exciting this transition a quantum of motion

is added to the system |g⟩⊗|n⟩ ↔ |e⟩⊗|n+ 1⟩. This excitation is used to prepare arbitrary

Fock states of the type |n⟩: after cooling the ion first to its motional ground state |g⟩⊗|0⟩,
one can apply n times a π pulse on the blue sideband followed by a π pulse on the carrier

to return to |g⟩ again with n phonons being added, reaching in the end |g⟩ |n⟩. The Rabi

frequency is Ωn+1,n = Ω0

√
n+ 1η, and the Hamiltonian for this process reads:

Ĥbsb = iℏη
Ωn+1,n

2
(σ̂+â

†e−iϕℓ + σ̂−âe
iϕℓ). (1.39)

In the Lamb-Dicke regime, transitions that change the phonon number by more than one unit

are strongly suppressed. In the case of multiple ions confined in the same trapping potential,

they influence each other due to their Coulomb interaction. This results in 3N modes, describing

the motion of the ion chain in all 3 dimensions. The sideband transitions, as described above,

allow one to convert the spin excitation of an ion into a collective motion of the ion chain and

to transfer this excitation to any other ion that shares the motional mode. In other words, the

motion acts as a bus system, which mediates the interaction between multiple ions in a chain.

1.3 Quantum computation concepts

The purpose of this thesis is to realise a system capable of manipulating individual quantum

states of trapped ions. This work opens the door to future quantum information and simulation

experiments. The aim of this chapter is thus to introduce the reader to few basic quantum

information concepts. There are numerous texts that deal with the subject in greater depth,

such as [1].

1.3.1 Pure states

The quantum bit (qubit) is the fundamental and smallest unit of quantum computation. The

qubit is defined as a generic two-level (or more, in which case one speaks of quantum dits, or

qudits [53]) quantum system, and for this reason it can be encoded in different platforms. For

example, the polarisation of a photon or the magnetic flux of a superconducting device can

be used to encode qubits. As previously introduced, in our experiment the qubit is encoded
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Figure 1.8: Bloch sphere. The vector of a qubit is represented in red, and can reach anywhere
on the surface of the sphere. The only information on the Bloch sphere that can be encoded
by a bit is the equivalent of |0⟩ or |1⟩. Generally, the Bloch sphere tool is used to visualise
single-qubit operations.

between two energy levels of the strontium fine structure. The nature of these objects can solely

be explained by the laws of quantum mechanics. The classical counterpart, the bit is also in a

sense encodable in any two-level (0 or 1) system (e.g. between two discrete voltage levels of a

transistor). The difference between the two, is that in the case of the bit the two levels are two

mutually exclusive states, whereas with the qubit these two can both be “occupied at the same

time”. The two states of the qubit are usually indicated using the Dirac notation as |0⟩ or |1⟩,
or equivalently |↑⟩ or |↓⟩. The qubit and its properties are described by its wave-function |ψ⟩.
A wave-function representing the pure state of a qubit can be written as:

|ψ⟩ = c|0⟩ |0⟩+ c|1⟩ |1⟩ . (1.40)

where c|0⟩ and c|1⟩ are two complex coefficients. The complex vector space spanned by |ψ⟩ is

generally referred to as Hilbert space H, i.e. |ψ⟩ ∈ H. The projection postulate from quantum

mechanics states that, after the measurement of |ψ⟩ of Eq. (1.40), the system can be either found

in |0⟩ with probability p|0⟩ = |c|0⟩|2 or |1⟩ with probability p|1⟩ = |c|1⟩|2. Thus, the normalization

condition p|0⟩ + p|1⟩ = 1 must hold and those probabilities can be only estimated by doing

repeated measurements. If N measurements are made, the error that is assigned to the estimate

of p|0⟩ and p|1⟩ is the quantum projection noise:

∆p|0⟩ =

√
p|0⟩(1− p|0⟩)

N
, ∆p|1⟩ =

√
p|1⟩(1− p|1⟩)

N
. (1.41)

Considering the two states as vectors |0⟩ = (1, 0)T and |1⟩ = (0, 1)T , one can rely on a graphic

visualisation of the pure state, provided by the Bloch sphere (see Figure 1.8). The qubit state

|ψ⟩ can also be defined in terms of the angles ϕ and θ relative to its projection on the x and z

axis respectively:

|ψ⟩ = eiγ
[
cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|0⟩
]

(1.42)
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where γ is a global phase that can be set to 0 right away as it does not contribute to the

probabilities p|0⟩ and p|1⟩. As an example, for ϕ = 0 and θ = π/2 one has the quantum

superposition:

|ψ⟩ = |0⟩+ |1⟩√
2

=
1√
2

(
1

1

)
= |+⟩ , (1.43)

usually referred as |+⟩, a state producing with the same probability |0⟩ or |1⟩ as outcomes

of its measurement. Performing gates on a qubit means manipulating its quantum state, by

rotating the red arrow in Figure 1.8 on the surface of the Bloch sphere. Considering Û to be an

operator describing a single-qubit quantum gate, then Û |ψ⟩ = |ψ′⟩ is nothing but a matrix-vector

multiplication, during which |ψ′⟩ = c′|0⟩ |0⟩+ c′|1⟩ |1⟩ the amplitude coefficients are changed. The

only condition on Û is that it must be unitary (Û†Û = 1) to guarantee a reversible computation,

i.e. Û† |ψ′⟩ = |ψ⟩. The rotations around the three axes x, y, z are described through the three

Pauli matrices, forming a basis for the space of 2× 2 Hermitian matrices:

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
, (1.44)

whose eigenstates are respectively |+⟩, |−⟩, |R⟩, |L⟩, |0⟩, |1⟩, i.e. the vectors pointing at the

intersection of each axes with the Bloch sphere (some are represented in Figure 1.8). The

Pauli matrices give rise to three useful classes of unitary matrices when they are exponentiated,

as they become rotation operators. In general, a rotation by θ around an arbitrary vector

n⃗ = (nx, ny, nz) can be described by the following operator (p. 174 of [1]):

Ûn⃗(θ) = e−i θ
2
n⃗·σ⃗ = cos

(
θ

2

)
1 − i sin

(
θ

2

)
(nxσ̂x + nyσ̂y + nzσ̂z), (1.45)

and, more importantly, an arbitrary single qubit rotation can be decomposed in the following

two operators:

Ûz(θ) = e−i θ
2
σz =

(
e−i θ

2 0

0 ei
θ
2

)
, (1.46)

Ûϕ(θ, ϕ) = e−iĤintt/ℏ =

(
cos
(
θ
2

)
−ie−iϕ sin

(
θ
2

)
−ie+iϕ sin

(
θ
2

)
cos
(
θ
2

) )
, (1.47)

where the first operator identifies as a clockwise rotation of an angle θ around the z axis, and

the second as a clockwise rotation of an angle θ around an arbitrary axis at an angle ϕ from the

x− y plane.
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Experimental setup

In this chapter, the experimental apparatus is introduced. The laser systems are illustrated

in Section 2.1 (referring to Figure 1.3. For a more in-depth discussion, especially for the Rydberg

part one can read [37]). To slow down the ion in the trap and to initialise it to its motional ground

state, Doppler cooling and Resolved Sideband Cooling (SBC) are implemented in the experiment

and will be described in Section 2.3. Subsequently, the core of this thesis project is introduced

and characterised in its parts, namely the new single-ion addressing system in Section 2.4. The

operation of the addressing system is a result of this thesis work. Its description is included in

this chapter as it is currently implemented in the experiment.

2.1 Laser system

2.1.1 Optical access

The trap is mounted inside a octagonal chamber, maintained in an ultra-high vacuum regime

by an ion pump. The structure has a total of seven viewports and three flanges. The viewports

are coated for the different wavelengths used [37]. The way in which the trap is placed inside it,

allows access to three different optical axes: one along the axis (axial axis) of the trap through

a hole in each of the end-cap electrodes, one perpendicular to the ion chain (radial axis) and a

last one at a certain angle in the vertical plane (angled axis), again with respect to the extension

axis of the chain. Thus, seven of the ten openings are used to interact with ions, while the

remaining for other scopes such as the RF supply or the turbopump. The following descriptions

are referring to Figure 2.1.

1. The axial axis, which is perpendicular to the direction of the atomic strontium flow, is

primarily used for the photoionisation process. This choice is made because the Doppler

effect is small in this direction. The axial beam of ”qubit” laser light at 674 nm also passes

through the end-cap electrodes, and interacts with all ions in the chain. This makes it

possible to perform global operations on the chain such as on-resonance qubit rotations.

Global operations with this laser beam are limited by the fact that there is a maximum

momentum transfer with axial movement of the centre of mass of the chain. Since the axial

confinement is the weakest among the three axes, the motion along this axis is the one

17
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Figure 2.1: Spatial location of laser beams inside the trap. The three main axes, angled axial
and radial, are shown. The colours of the beams are chosen to comply with the description of
the energy levels in Figure 1.3.

prevailing within the trap. As a consequence, the Lamb-Dicke parameter is large and it

therefore becomes complex to drive the sidebands and perform sideband cooling (explained

later in Subsection 2.3.2). Moreover, along this axis coherent operations have the shortest

coherence time within our setup, and this will be also highlighted in Section 3.2.

2. In the side of the chamber where the ion-addressing system is placed, a high numerical

aperture objective lens is mounted. Thus, the radial axis is well suited for single-ion

addressing. The objective collects the fluorescence at 422 nm emitted by the ions, directing

it towards an Electron Multiplying Charge Coupled Device (EMCCD) camera, and as its

focal plane coincides with the ion chain it allows to perform arbitrary operations on single

ions, with a radial beam at 674 nm. Since future qubit operations will also be performed on

Rydberg states, the objective lens was replaced in this work with one having an additional

305 nm infrared light coating.

3. The angled axis reaches the ions from a viewport located at ≈ 45° on the vertical plane

formed with the chain axis. Light passes through this access for laser cooling, at wave-

lengths of 422 nm 1033 nm and 1092 nm. Thanks to the special angle, the momentum of

the photons has a projection along each axis, allowing laser cooling in three directions

with a single beam.

2.1.2 Ionisation lasers and ion loading

To obtain and trap strontium ions, a flux of neutral 88Sr atoms can be supplied in two different

ways in the center of the trap, and subsequently ionized by photo-ionization. Although it is not

the loading process used at present, it is worth mentioning the first method, in which one oven
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is used to heat up to T ≈ 600K the strontium source leaning against it. The heating leads to

a cloud of hot atoms, which will diffuse through the chamber to be trapped. To heat up the

oven and load an ion takes approximately 15min. The main drawback of this technique is that

it remains warm for several minutes after being switched off, introducing non-negligible black-

body radiation. It can be noticed how in this time frame, the frequency of the Rabi oscillations

on low-lying levels shifts. Measurements are back to normal only after another 15min. Pulsed

laser ablation loading, implemented by Andreas Pöschl in his master thesis [38] is an alternative

to loading from a thermal oven. The atomic flux can be generated almost instantaneously after

one strong laser pulse hits the target surface. Moreover, the ablation loading can be activated

on-demand and does not heat up the environment around the center of the trap.

The photoionisation process described in Figure 1.2 is also chosen by taking into account

the easy commercial availability of lasers at the required wavelengths. The first excitation is

given by a laser1 which provides around 15mW of light at 461 nm. The second step is driven

by a standard laser2 set at 30mW of light in output. These lasers hit the ions with a power of

≈ 150 µW, that is enough for fast loading (i.e. with < 5 ablation pulses). The two lasers are

coupled into the same optical fiber to have them spatially overlapped. Having a narrow linewidth

for this two photo-ionisation process is not necessary and so they are not being stabilised to any

cavity. It is enough to read the 461 nm light with a wavemeter and change manually the voltage

of the piezo of the laser grating, in order to achieve the correct wavelength. A cloud of ions is

usually loaded in the trap with less than five ablation pulses. To achieve the desired number

of ions, a switch changes the power supply of one of the blades from a 1.5V battery to a 55V

power supply. In this way, the trap potential is altered and the excess ions are pushed out of

the trap along with the hot ions orbiting the centre and not sufficiently cooled.

2.1.3 Manipulation lasers

The light for fluorescence detection and for Doppler cooling is provided by a commercial diode

laser3 at 422 nm. The latter, together with the light at 1092 nm and the one at 1033 nm provided

by two commercial lasers4,5 is stabilized with the Pound-Drever-Hall (PDH) technique to a

medium finesse F ≈ 1000 cavity. The qubit laser6 at 674 nm is stabilized with the PDH technique

to a high finesse F ≈ 100000 cavity, allowing for a linewidth of 2π × 1 kHz. A description is

now made of how a single 674 nm beam is split into 3 beams, each reaching the centre of the

trap from the 3 different axes. The laser light generated on the laser table is coupled to a fiber

to reach the experimental table. Referring to Figure 2.2, a Faraday optical isolator is installed

to avoid back-reflections being coupled back into the fiber and interfering with the Fiber Noise

Cancellation (FNC) setup placed upstream. By rotating the λ/2 plates before the PBSs it is

possible to decide how much light will be transmitted and reflected, thus changing the powers

1Toptica DL 100 pro
2RGB Lasersystem Lambda beam 405 nm
3Toptica DL 100 pro, 50 mW output power
4Toptica DL 100 pro, 120 mW output power
5Toptica DL 100 pro, 80 mW output power
6Toptica DL 100 pro, 500 mW output power



Chapter 2. Experimental setup 20

in the three arms. All the 3 AOMs7 are setup in a double pass configuration and for this reason

the frequency shift gained on the 1st diffraction order is double the frequency of the modulator.

This arrangement is chosen in order to cancel out the dependence of the deflection angle on the

RF frequency applied, and thus avoid alignment issues. In general, the purpose of the 5 lenses

present in the setup is to maximize coupling efficiency into the fibers and diffraction efficiencies

of the AOMs.
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Figure 2.2: A sketch of the splitting optical system. Light on the laser table is coupled to a
fiber and reaches the table where the experiment is mounted. With polarisation optics the light
intensity is deliberately divided on the three axes. The setup is flexible and allows for different
powers according to need.

2.2 Quantum state detection

5s 2S1/2

5p 2P1/2

4d 2D5/2Detection
422 nm

5S1/2

5P1/2

4D5/2

Optical qubit
674 nm

Detection
422 nm

‘shelved’ 
electron

5p 2P1/2

4d 2D5/2

5s 2S1/2

Figure 2.3: Quantum state detection through the electron shelving technique. When the electron
is in the ground state, fluorescence light at 422 nm will excite the transition to the short-lived
P state. Photons are scattered due to spontaneous emission and the ion is visible (the quantum
state associated is thus |1⟩). If instead the electron is in the D state, the detection transition
does not scatter any photon and the corresponding quantum state is |0⟩.

The quantum state of the ions must be reliably determined during each instant of the ex-

7Gooch & Housego 3200-125, λ = 470 nm− 690 nm, fRF,c = 200MHz, ∆fRF = 50MHz
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perimental sequences. Via the 5S1/2 ↔ 5P1/2 transition, a single ion can scatter several millions

of photons per second (p. 13 of [38]) and a sufficient fraction of them should be enough to

be detected even by a detector with a low quantum efficiency. The technique involved in the

quantum state detection is called electron shelving [36] and is implemented to distinguish an

ion in state 4D5/2 from an ion in states 5S1/2 or 4D3/2 (see Figure 2.3). It works as follows:

if the electron is in the 5S1/2 state, it will be excited to 5P1/2 and the ion will spontaneously

emit photons in all directions. The ion in this state is visible, and for this reason is usually

referred to as being in the optical qubit state |1⟩. If instead the electron is in the 4D5/2 state

then it will not scatter photons and the ion will appear ’dark’. For this reason, this state will be

assigned to |0⟩. Two different detection techniques are used in our experiment and rely on the

electron shelving method just described. The commonly used one is based on a photo-multiplier

tube8 (PMT), which collects the fluorescence light emitted by one or more ions present in the

trap. The photons scattered during the electron shelving measurements by the ion, are focussed

through an aspherical lens (covering ≈ 2.1% of the solid angle) onto a photo-multiplier tube

(PMT). In principle, measuring for a time of 500 µs (a time exceeding the lifetimes of all the

electronics states except the 4D metastable states and the ground state) allows to distinguish

between |0⟩ and |1⟩ with ≈ 99.9% of efficiency [49]. As an example, in Figure 2.6 a detection

time of 800 µs is used. The second detection method is instead based on an Electron Multiply-

ing Charge Coupled Device (EMCCD) camera9 and some time was spent on writing functional

software to acquire signals from individual ions in the chain. Since measurements in quantum

mechanics are inherently probabilistic, each measurement that is made is the result of an N

number of measurements. In experimental jargon, N is also referred to as the number of cycles.

The averaged result of the measurements is associated with the error introduced in Eq. (1.41).

Pulsed-type laser light is used for rapid measurements.

2.2.1 EMCCD camera detection

A threshold based detection with the PMT works well for one or two ions, but cannot determine

the quantum state of an ion string. In general, this method cannot give spatial information of

individual ions. For this purpose, a back-lit EMCCD camera is used to spatially resolve the ions

and study their individual excitations. The same technique, i.e. electron shelving, is used in

this context for each ion individually. Since the spatial extension of a cold ions’ wave function

(< 30 nm for an ion in motion) is typically smaller than the wavelength of the fluorescence light

(≈ 422 nm for our ion species), single ions show up as bright dots with a size determined by

the resolution limit of the imaging optics. Once the new apparatus was mounted, the pixel-

distance conversion between the ions had to be recalibrated. This is because, although very

similar to the one previously installed, the magnification of the new objective lens is different

after replacement. In addition, in this thesis work, it was also necessary to replace two lenses

in the imaging apparatus. With this change, the simulated distances are better respected and

thus aberrations have consequently been reduced and the spacing between ions improved (it

8Hamamatsu Photonics H10682-210
9Andor iXon3 897: 512× 512 active pixels, 16 µm× 16 µm pixel size, 90% QE at 674 nm.
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(a) Fluorescence from three ions measured with the
EMCCD camera and averaged over an experimental
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Figure 2.4: (a) A picture of three ions, obtained averaging 5100 images taken in an experimental
sequence. As explained in Subsection 2.2.1, this imaged is used to locate the position of ions in
the sensor. (b) The histogram with the averaged brightness of the ROIs around one of the three
ions for each collected image. The data is taken from the central ions of (a), which underwent
Rabi oscillations.

is important to note that this is decisive for the analysis of the quantum state of individual

ions). No further details on the imaging system optics will be given. To estimate the distance

between two ions on the EMCCD camera, the actual distance between them in the trap and the

magnification of the imaging system should be known. Numerical calculations of the distance

of two (or more) trapped ions for a given axial confinement is calculated following [50, 54]. As

explained in Subsection 1.2.2, in the Lamb-Dicke regime the separation between the resonance

frequency and the motional sideband is exactly equal to the trap frequency. Therefore, by

measuring the gap between the carrier frequency and the one of the axial motional sideband

is possible to estimate ωz. After loading two ions we measure an axial trapping frequency of

ωz = 2π × 1.0254MHz. A theoretical spacing of dreal = 4.24 µm is computed between the two

ions. Subsequently, 200 images of the two stationary ions are collected with the camera and the

pixels of all of them are averaged in time. From the resulting image, the distance in pixels is

found to be dpixels = 96 µm. The magnification M is then given by

M =
dpixels
dreal

≈ 22.6. (2.1)

The ion chain can be moved along the longitudinal axis by varying the voltage of the end-cap

electrodes along the trap axis UDC . Therefore, it is interesting to know the distance by which

they are shuttled, following a 1V change of either of the voltage. Adopting a method similar

to that used to compute the magnification, it can be estimated that a 1V change of one of

the two end-cap electrodes corresponds to ≈ 0.13 µm of ion displacement in the trap. In the

future, it can be measured more accurately by means of a linear regression. This will be useful

in Section 2.4.2 to determine the laser beam spot-size using just a single ion.

The procedure used to measure the quantum state of each ion is now described. A Python

code post-processes the images taken during an experimental acquisition. As a first step, the

position of the ions is found. For this, all the images acquired are averaged in time and the x-y

location of the N (in the case of N ions) brightest pixels is saved. Then, for each image saved
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during the acquisition, a region of interest (ROI) of 3× 3 pixels is averaged around for each of

the N positions found previously. The ROI dimension can be changed and is set to 3 × 3, as

this roughly correspond to the spatial extension in pixels of the ion, and is not including light

collected from neighboring ions. If the value of this average is above a certain threshold then the

ion is in the quantum state |1⟩, otherwise it is in |0⟩. After saving all the average brightnesses of

each ROI, a histogram is fitted Figure 2.4 (b) with a double-Gaussian profile. The point where

the two distributions cross will be taken as the threshold for the quantum state detection in

order to minimise the labeling error of each data point. A higher single-shot readout fidelity

can be reached with a further optimisation of the imaging optics and with the implementation

of more complex algorithm [55].

2.3 Laser cooling

It is not possible to trap an ion in the minimum of a potential without first reducing its kinetic

energy. Moreover, in order to reliably perform reproducible qubit manipulations the ion needs to

be close to its motional ground state. A direct consequence of the confinement, together with the

momentum-position uncertainty principle, is that ions cannot be completely at rest. There exist

a number of different techniques to reduce their kinetic energy, but only inelastic scattering of

laser light makes it possible to cool ions to their motional ground-state. Two techniques under

the umbrella of laser cooling [56] are implemented in our experiment: Doppler and resolved

sideband cooling (SBC). The two processes just introduced are crucial at the beginning of each

experiment run.

2.3.1 Doppler cooling

Doppler cooling is the most commonly used method in laser cooling [57] and also the first step

of the cooling process in our experiment. Unless other techniques are implemented, without

Doppler cooling it would not be feasible to slow down the motion of the ions during loading.

The Doppler effect is the change in frequency of a wave in relation to an objective who is

moving relative to the wave source at a velocity v. To carry out this type of laser cooling, the

5S1/2 ↔ 5P1/2 transition is driven in our experiment. If laser light is shone with a frequency

tuned slightly below (red detuned) the one of this electronic transition and the ion is at rest,

nothing will happen. On the other hand, especially due to the ionization process, the ion is very

energetic and moves very fast in the trap. In this case, when the ion is directed towards the laser

beam, the Doppler effect will compensate for the missing frequency gap to drive the transition:

an absorption event happens and the atom loses a momentum equal to the one of the photon.

An ion moving with a velocity v with respect to the source will experience a frequency shift on

the incoming light due to the Doppler effect and will absorb a photon only if

ω0 = ωℓ

(
1± v

c

)
(2.2)
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Figure 2.5: Scheme for SBC. A closed cooling cycle can be achieved with light at 674 nm and
1033 nm. Starting from a generic |g⟩ ⊗ |n⟩, red detuned light at 674 nm couples the transition
to |e⟩ ⊗ |n− 1⟩. Subsequently, a laser beam 1033 nm is used to drive the level 4D5/2 ↔ 5P3/2.
Thanks to the shorter lifetime of 5P3/2 the population decays quickly into |g⟩ ⊗ |n− 1⟩. The
procedure is repeated until |g⟩ ⊗ |0⟩ is reached.

is satisfied. The atom, being now in the excited state, will emit a photon in a arbitrary direction

(spontaneous emission) to return to its energy-efficient configuration. The net effect after many

of these events, due to the fact that the momentum of the absorbed photon is given up again

along a random direction, is that the kinetic energy of the ion is reduced to the Doppler limit,

or that there is no average momentum gain. The minimum temperature that can be reached

(in the case where ωz ≪ ΓD) is also defined as the Doppler limit:

TD =
ℏΓD

2kB
= 0.48mK, (2.3)

where it has been considered that the cooling transition, red-detuned from 5S1/2 ↔ 5P1/2 has a

broad linewidth, as reported in Table 1.1. Knowing that laser cooling gives in general a thermal

distribution of phonon states [58], one can also compute the mean oscillation quantum number

along the three quantisation axis from the following equation:

⟨Ei⟩ =
(
⟨ni⟩+

1

2

)
ℏωi =

ℏΓD

2
⇒ ⟨ni⟩ =

1

2

(
ΓD

ωi
− 1

)
. (2.4)

Considering the trapping frequencies listed at the end of Subsection 1.1.1, easily reachable

number of phonons are ⟨nx⟩ = ⟨ny⟩ ≈ 5, and ⟨nz⟩ ≈ 11. Usually, Doppler cooling is carried out

for 1ms. At the end of this process ⟨nz⟩ ≈ 16 and ⟨nx⟩ = ⟨ny⟩ ≈ 12 have been measured [49].

2.3.2 Resolved sideband cooling

By means of Doppler cooling alone is not possible to reach the ion’s motional ground state,

since the Doppler limit (Eq. (2.4)) sets a fundamental boundary on the minimum temperature

achievable. However, with Doppler cooling is possible to cool the ion down to the Lamb-Dicke

regime, where the motional sidebands are resolved from the carrier (Subsection 1.2.3). The

assumption made here is that the ion is in a state like |g⟩ ⊗ |n⟩, i.e. in the electronic level at

lower energy |g⟩ and with n motional phonons. With slightly red-detuned 674 nm light, the

ion is brought into |e⟩ ⊗ |n− 1⟩, which subsequently decays into |g⟩ ⊗ |n− 1⟩. The last decay
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is sped up by coupling the 5S1/2 ↔ 4D5/2 transition with the ”quench” laser at 1033 nm (see

Figure 2.6). In fact, an electron in 5P3/2 has a radiative lifetime of 6.653(71) ns compared to

the one of the 4D5/2 state which amounts to 0.3945(23) s [47]. A phonon is lost at each iteration

of this process, and by repeating it several times the motional ground state can be reached. On

the left-hand side of Figure 2.6, one can see how at the end of the SBC cycle (blue curve), it

is no longer possible to drive the red sidebands. Note how the coupling to the red sideband,

Ωn,n−1 = Ω0η
√
n, tends to 0 with when n → 0. After this procedure, the measured mean

phonon numbers are ⟨nx⟩ = ⟨ny⟩ ≈ 0.2 and ⟨nz⟩ ≈ 0.05. In part (b) of Figure 2.6 it is shown

how longer coherence times in the Rabi oscillations of an ion with fewer phonons can be reached.

The information exchanged with the environment can be quantified in terms of energy. A less

energetic ion is then exchanging less information and thus the coherence time is extended as a

consequence of this. As a final remark, the measurement shown in Figure 2.6 are made with the

angled beam.
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Figure 2.6: (a) A graph showing the red sidebands. They can be driven (red curve) only if the
ion is not in the motional ground-state. The blue dots correspond to the motional sidebands
when the ion is at n = 0. Since the frequency scan (AOM3 in Figure 2.2) is done with the
angled beam, the two sidebands correspond to the two oscillation modes along x and y. (b)
Rabi oscillation with SBC and without. The coherence times, considered as the point when the
population reaches 1/e are τ1 = 417(23) µs and τ2 = 1578(69) µs in the two cases.

2.4 Single-ion addressing system

The quantum state of each individual ion has to be manipulated very precisely in order to

perform high-fidelity single qubit operations. To do so, two solutions exist. In one approach,

the ions are shuttled in the trap by changing the voltage on the end-cap electrodes UDC . In this

way, the ions are moved into the tight focus of a fixed laser beam. However this method has

some drawbacks and limitations. For example, shuttling the ion in the trap adds phonons to

the system and with such system only one ion can be addressed at a time. In a second approach

instead, the laser beam is deflected such that it is focussed on the selected ion. The way the

addressing was done prior to this thesis project involved the use of two different parallel laser

beams directed towards the centre of the trap, and the ions are moved around in it, following
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Figure 2.7: A sketch of the addressing setup that will be describe in the next paragraphs. The
most important component is the AOD itself, which is powered by two different sources for the
reason explained in Section 2.4.3

the first method. In this thesis project, the second approach is adopted, and the laser beam is

deflected thanks to an acousto-optic deflector (AOD). Referring to Figure 2.7, the collimated

light coming out from the fiber coupler has a diameter of 820 µm and is directed towards the first

AOM10 by means of two mirrors. The reason why this component is included in the system is to

compensate for the 80MHz shift introduced downstream by the AOD. It is in fact not possible

to carry out this compensation with the double pass setup for the radial beam in Figure 2.2

as AOM1 would have to operate outside its bandwidth. The polarisation selected by means of

the λ/2 plate is vertical, as specified in the modulator datasheet to maximise the diffraction

efficiency.

In the following sections, the requirements that the single-ion addressing setup must meet are

illustrated. A simulation with Zemax OpticStudio is presented in the first section. Considering

the setup mounted in a different optical table rather than on the experiment, the characterisa-

tions of the objective lens and the AOD are reported in Subsection 2.4.2 and in Subsection 2.4.3.

The performance of the system in carrying out off-resonant qubit gates will be examined in Chap-

ter 3. A picture of the final setup mounted on the experiment can be found in Figure 3.1.

2.4.1 Zemax simulation

Constraints on the single-ion addressing are mainly dictated by the type of research to be done

by the group in the future. It must also be taken into account that another apparatus for

single-Rydberg-ion addressing will be mounted in the same area of the experiment, so spacing

issues are an important concern. Since the objective has also an imaging purpose, the optical

path for collecting the light fluorescence is partially overlapping with the one of the addressing

and this limits the available space even more. Moreover, the addressing setup must be able to

precisely manipulate the individual qubits in a chain of at least 10 ions. To avoid cross-talking

between nearest neighboring ions the spot size must be below 3 µm (considering a trap operated

10Gooch & Housego 3080-125, λ = 515 nm− 633 nm, fRF,c = 80MHz, ∆fRF = 25MHz
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Figure 2.8: The 3D layout of the final addressing setup simulated with Zemax OpticStudio and
described in Subsection 2.4.1.

under normal conditions). At the same time, the objective’s aperture should be illuminated as

much as possible in order to reduce the dimension of the Airy disk, with the restriction that the

beam does not get clipped at the maximal and minimal deflection angle. The idea is therefore

to simulate with Zemax OpticStudio a setup that is able to meet all these requirements.

Referring to Figure 2.8, the first component is a 1 cm thick piece of TeO2 crystal and rep-

resents the AOD birefringent crystal. From here, three light fields depart at three deflection

angles that can be provided by the AOD (0°, 0.7° and 1.4°) when driven by three different RF

frequencies. The beams are defined by their entrance pupil diameter with an aperture of 840 µm,

that corresponds roughly to the measured spot size of the Gaussian beam before the AOD in

the real setup. The maximal deflection angle is 1.4°, which corresponds to a 2.8° scan angle that

is close to the one specified on the AOD’s datasheet of 3.08°. At d1 = 16.9mm an aspherical

lens11 is placed in order to expand the beam and match the aperture of the objective lens as

much as possible. The objective itself is placed at d2 = 465.7mm from the lens. One may notice

how d1 ≈ f so that the AOD aperture can be imaged on the objective lens, and thus prevent

the laser beam from clipping on the optics at large deflection angles. The optimisation of the

distances in the simulation is made by fixing the distance between the fused silica viewport and

the ion position to d4 = 47mm ([37, 38] and old lab-books). For completeness, the optimised

distance between the last surface of the objective lens and the viewport is d3 = 21.5mm. This

simulation returns a similar spot-size for the three beams of 2.6 µm and an addressing range of

128 µm. We expect that with this design all the requirements will be met.

2.4.2 Objective lens characterisation

One single objective lens is used both for imaging and addressing the ions with the light for

qubit manipulation (red light at 674 nm) and for Rydberg excitations (ultraviolet). In Figure 2.8

the objective is the ensemble of lenses on the right, and it can also be seen in the long exposure

(Figure 6) when is invested by red light. The objective lens was designed by Markus Hennrich and

it consists of four 2-inches lenses. It can collect light with a numerical aperture of NA = 0.24

and is placed outside the vacuum chamber, focusing light on the ions through a fused silica

viewport. Thanks to its special design, the spherical aberrations introduced by the viewport

are compensating for the one introduced by the objective. During the characterisation of the

objective lens, it has been noticed how the silicon viewport introduces also a focusing effect.

11Thorlabs AC080-016-A, f = 16mm
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For imaging, it is very important that the lenses perform close to the limit imposed by the

diffraction (Section 2.4.2). This is the only way to ensure that the optical instrument is able to

produce images with a resolution close to the theoretical limit of the instrument, which in turn

is designed to clearly resolve individual ions.

The transmission efficiency of the lenses ensemble is also measured. Lenses have a refractive

index not perfectly equal to one and this results in a first contribution to the incomplete trans-

mission of the beam. The transmission coefficient is made smaller due to effects like Fresnel

reflections and absorption of not perfectly transparent materials. Thus, measuring the efficiency

consists in computing the ratio between the input power and the output power of laser beams

passing through the objective. The estimates are for beams hitting the centre, the left and the

right side of it. They amount to respectively 92%, 95%, 96%. The efficiency on the border is

higher due to the fact that there is less glass in the path of the light, and thus less absorption.

This lens will also be used to address the ions with UV light at 305 nm, and the measured

efficiency at this wavelength amounts to 88% in the centre.

Diffraction limit

We now characterise the imaging capabilities of the objective. This is done by measuring how

well it can resolve two close-lying objects placed in the object plane. The German physicist

Ernst Abbe realized that the resolution of an imaging instrument is not constrained by the

quality of the instrument, but by the wavelength of light used and the aperture of its optics [59].

Diffraction effects come into play each time an obstacle is placed in the path of the light, selecting

only a portion of the wavefront. The nature of diffraction patterns depends on the properties

of the gap, and as this approaches the wavelength of the wave, the distortion becomes even

more obvious. Because the high frequency components that give an image its sharpness are lost

due to this phenomenon, this leads to a fundamental limitation in instrument resolution: the

diffraction limit.

The Modulation Transfer Function (MTF) is used to describe the contrast, or modulation of

an image, meaning how well patterns of different periodicities (e.g. a series of alternating light

and dark bars of equal width) can be resolved by an imaging system [60]. For each of them the

modulation M (or visibility), is given by

M =
Imax − Imin

Imax + Imin
, (2.5)

where Imax is the maximal brightness of a line and Imin is the one of the space in between

(see Figure 2.9). Since the modulation is dependent on the resolution of the optical system

M = M(v), this is linked to the distance between the lines being imaged v. Thus, the MTF is

a function of the spatial frequency, where the spatial frequency v is given by the line pairs per

millimeters in the object. The MTF then takes the form:

MTF [%] =
M(v)

M(0)
· 100, (2.6)
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Figure 2.9: The best image acquired of the 1951 USAF resolution target. This image was used
to determine the MTF of the objective with the viewport. The illumination is not perfectly
uniform due to the finite refresh time of the camera and to the moving opaque tape. The
sagittal lines correspond to the horizontal, the tangential the vertical, and only the data coming
from group 6 and 7 is used to compute the MTF.

whereM(v) is the modulation of a pattern with spatial frequency v andM(0) is the modulation

of the overall background of the image (that can be considered in a good approximation equal

to unity). From the simulation made with Zemax OpticStudio of the setup is possible to extract

the diffraction-limited MTF.

The 1951 USAF test target (Figure 2.9) is used to measure experimentally the MTF curve.

The target is placed on the focal point of the objective lens, that corresponds to the position

where ions will be in the actual experiment. Ideally, one should use use an incoherent light

source, and after filtering out the wavelength of interest implement the Köhler illumination

method to evenly illuminate the target. In our case, laser light at 674 nm and a mobile piece of

opaque tape have been used. A fast rotation of the tape immediately after the collimator causes

the light to be scattered at different angles. After this, a f = 25mm aspherical lens collects the

light coming from different directions to evenly illuminate the specimen from behind. A small

pixel-size camera12 is placed at the point where the image is expected to be formed after the

objective lens. The final picture taken in this process is shown in Figure 2.9.

Even the smallest pattern in the target, 7th cluster in group seven (spatial frequency of 228.1

lines per mm) can be resolved with an acceptable contrast as reported in Figure 2.10. Eq. (2.6)

is used to compute the values for the families in group six and seven the results are shown

in Figure 2.10. From this, one can infere that our imaging system is almost diffraction limited.

A contribution to the discrepancy is undoubtedly linked to the less than ideal illumination

of the target. The illumination dis-uniformity can be noted in Figure 2.9 since a gradient of

illumination from top to bottom is ’visible’ in group four. This effect is less noticeable on groups

with denser lines, as group six or seven, but still present. This is considered in the computation

12Allied Vision Alvium 1800 U-1240m, (1.85µm× 1.85µm) pixel size.
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(a) Line graphs for group seven of Figure 2.9.
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Figure 2.10: (a) Line graphs from group seven in the original greyscale image shown in Figure 2.9.
One can easily spot the minima and the maxima of all the different six families, and also the
smallest one can be clearly resolved. (b) Comparison between measurements and the simulation
done with Zemax OpticStudio. Only the data coming from group six and seven are used to
compute the MTF.

of the uncertainty associated to each measurement. In fact, the standard error for the peaks is

the same for each group and takes the following form:

σpeak =

√√√√ 1

Nf

∑
f

∑
p

(hp − ⟨hp⟩f )2
Np

, σnadir =

√√√√ 1

Nf

∑
f

∑
n

(hn − ⟨hn⟩f )2
Nn

, (2.7)

where Nf = 6 is the number of families in a group, hp (hn) is the height of a peak (nadir), and

⟨hp⟩f (⟨hn⟩f ) is the average height of the peaks (nadirs) calculated on each family. For the final

error on the MTF (Eq. (2.6)) the usual error propagation formula is used. As a final remark

the fluorescence of the ions is not at 674 nm, but rather at 422 nm. Measurements were made

at 674 nm as this was the only light available, but since good results are obtained in terms of

resolution, a reduction in the wavelength can slightly improve them. Effects due to diffraction

are in fact less present at smaller wavelengths.

Spot-size

To avoid cross-talking between nearest neighboring ions the spot size must be below 3 µm. Part

of the characterisation involves an estimate of this quantity, which is given by taking into account

the propagation law of a Gaussian beam reported in Eq. (2.10).

A small pixel-sized camera13 is mounted on a unidirectional translation stage equipped with

a micrometer screw, after the objective and roughly around its focal point (Figure 2.11, left).

Right after the collimator, a neutral density filter and a gradient attenuator lower the laser

power in order not to saturate the camera sensor. The camera is displaced with the micrometer

screw along the optical axis and the gradient attenuator is rotated so as to get close to the point

where pixels are saturated. Every 10 µm an image of the laser beam spot is saved. Each of them

13Allied Vision Alvium 1800 U-1240m, (1.85µm× 1.85µm) pixel size.
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Figure 2.11: (a) The smallest measure of the beam size. Each square is a pixel of the CMOS
sensor of the camera used during the characterisation. The spot size looks acceptable in terms
of aberrations and a higher resolution camera could improve the measurement. (b) Gaussian
beam propagation around the beam waist. The uncertainty on the x-axis is related to errors in
the position measurement and follows a triangular distribution with a = 1 µm and the one on
the y-axis is the result of the two-dimensional Gaussian fits at each position.

is being fitted with a two-dimensional elliptical Gaussian function of the form:

f(x, y) = A+B · e
− (x−x0)

2

2σ2
x

− (y−y0)
2

2σ2
y . (2.8)

We do so in order to be able to detect any spherical aberration or astigmatism. The Gaussian

beam radius in any position along the optical axis is given by the radial distance at which the

intensity falls to 1/e2 ·Imax. From the two-dimensional Gaussian fit at each position z, the beam

radius can be estimated as:

ω(z) =
FWHM(z)

2
√
2 ln 2

. (2.9)

From the theory of Gaussian optics, the beam radius propagates along the optical axis according

to the following function:

w(z) = w0

√
1 +

[
(z − z0)λM2

πw2
0

]2
, (2.10)

where z0 indicates the waist position, i.e. the place where the beam radius has its minimum ω0.

M2 is a dimensionless parameter known as the beam propagation ratio, and it gives an estimate

of the discrepancy of the beam under examination from a Gaussian beam. Thus, we fit this

function both for the x and y axes, obtaining the results summarized in Table 2.1. The spot

sizes found are enough to reduce the cross-talking to the minimum.

2.4.3 AOD characterisation

The device used for deflecting the laser beam and address different ions in the 1D ion crystal is

an acousto-optic deflector (AOD) [61]. A brief but comprehensive introduction to this device is

now given. The operating principle is based on non-linear optical effects that arise when a crystal
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2w0 [µm] z0 [µm] M2

x−axis 2.0(18) 0.4(3) 4(3)
y−axis 1.8(16) 0.2(4) 3(3)

Simulation 2.6 0 1

Table 2.1: Final measurements and simulated with Zemax OpticStudio. ω0 is the waist radius, z0
is the position of the waist and M2 is the beam propagation factor. A value of M2 close to unity
indicates that the beam is similar to a Gaussian beam. However, higher values are obtained from
the fit, but as can also be seen from Fig. the beam is astigmatic, i.e. it propagates differently
along the two axes. This may be caused by the fact that the beam under investigation passes
through a long optical setup and is the result of two first orders of diffraction. The measurements
are compatible with the simulation result.

is excited by RF waves at frequency fRF through a piezoelectric transducer. This oscillatory

motion generates a refractive index wave in the crystal, which acts as a sinusoidal grating for

the laser light passing through. In this way, the beam will be diffracted into several orders. The

working principle of such acousto-optic devices can also be seen in the form of a ’precise collision’

between the phonons of the RF acoustic wave and the photons of the laser beam passing through

the crystal. For this reason, the output photon of the 1st order of diffraction will have a different

direction and a frequency shift of ∆fshift,1st = fRF. To do resonance operations on the ions, this

shift can be compensated with one AOM placed upstream. In any case, the shifted beam can

always be used to do off-resonant operations on the qubits. In our implementation, we place the

1st order of diffraction on the optical axis and optimise for it in terms of diffraction efficiency

(Section 2.4.3). The other orders are either blocked or have negligible intensities (less than 1%

with respect to 1st order) or fall outside the addressing range. The angle of deflection of the first

order depends on the applied frequency fRF. The maximum achievable scan span angle of the

first order of diffraction, depends on the bandwidth ∆fRF, on the speed of the acoustic wave va

and on the wavelength λ used according to the law:

θscan,th =
λ(fRF,c +∆fRF)

va
− λ(fRF,c −∆fRF)

va
=
λ∆fRF

va
. (2.11)

The AOD14 implemented in our setup is a shear-mode on-axis deflector based on a TeO2

crystal, thus having an acoustic wave speed of va = 617m s−1. Its center frequency is fRF,c =

80MHz with a bandwidth of ∆fRF = 40MHz According to Eq. (2.11) then θscan = 2.5° which
is close to the one we measured of θscan ≈ 2.8°. The type of crystal and the material employed

are the main characteristics that give the AOD its deflection properties. As an example, the

compensation AOM is also based on a TeO2 crystal, but put in a longitudinal mode. This means

that va = 4200m s−1, and considering ∆fRF = 25MHz the deflection angle is largely reduced.

This is the substantial difference between an AOM and an AOD. On the other hand, a lower

acoustic velocity results in a slower deflection of the beam itself as the acoustic wave takes longer

to pass through the crystal.

For an incoming Gaussian beam, in the hypothesis that its divergence is much smaller com-

pared to the one of the acoustic wave [61], the maximum number of resolvable angular positions

14ISOMET D55-T80S-2, λ = 750 nm− 850 nm, fRF,c = 80MHz, ∆fRF = 40MHz
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Figure 2.12: Diffraction efficiency as a function of the applied RF frequency. The optimization
was carried out so as to have more or less the same efficiency at the limits of the bandwidth.

can be determined as:

N = ∆fRF · τacc, (2.12)

which is also known as the time-bandwidth product. In the last equation τacc is the access time,

that in the datasheet is specified to be 11.3 µs. This time is the one required by the acoustic wave

to pass the whole active aperture of the AOD (2mmH × 7mmL) at va. In the end, N = 450

spots can be resolved in principle by the deflector used. Eq. (2.12) is showing the trade-off

between having a very fast deflector and one able to resolve a high number of angular positions.

Details on how the AOD is powered with RF signals can be found in Section 2.4.3.

Diffraction efficiency

The diffraction efficiency is a crucial parameter for the power of the laser light reaching the ions.

The most commonly way of defining diffraction efficiency consists of the ratio of the power in

the first order of diffraction P1st to the input power Pin:

η [%] =
P1st

Pin
· 100. (2.13)

An ideal deflector should be able to guarantee the highest possible diffraction efficiency, constant

over the entire frequency spectrum ∆fRF. To maximise η, the laser needs to enter the crystal

at its Bragg angle:

θBragg =
λfRF

2va
. (2.14)

It should be noted that this is proportional to fRF, and this results in a roll-off of diffraction

efficiency as the frequency is varied. In our case, θBragg ≈ 3° at fRF,c, and the first thing that

has been tried was to optimise η at this frequency. However, this results in an efficiency profile

with a peak at the centre (η ≈ 55%) frequency and very low values (η ≈ 20%) at the extreme

of the bandwidth. We therefore optimise the efficiency by having more or less the same value at

the bandwidth limits but with an overall lower diffraction efficiency. The final measured profile

is reported in Figure 2.12 (a).

The diffraction efficiency also depends on the RF power applied. The effect that can be seen

is that diffraction efficiency increases with RF power, up to a point where it saturates. The
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final profile is reported in Figure 2.12. As specified by the manufacturer, the point at which the

saturation starts is the nominal power (Pn = 0.5mW), and when the power of 1W is exceeded

there is a potential risk of permanent damage to the crystal. After assembling the setup in the

experiment and optimising the signal on the ions, the diffraction efficiency was measured again

and noticeable changes were observed. η value has a rapid decrease (from ≈ 40% to ≈ 20%) in

the frequency range between ≈ 65MHz and ≈ 73MHz. Even trying to re-optimise the efficiency

of the AOD does not achieve the profile in Figure 2.12 (a). A way to overcome the problem, but

which results in a lower diffraction efficiency (overall ≈ 20%) consists in driving the AOD with

a power of 100mW, far below nominal power.

Polarization requirements

During signal optimisation on ions, we ran into a problem related to signal stability. Whenever

we changed the attenuation or frequency of the RF signal feeding the AOD, the population

signal on the ion did not change abruptly. Rather, it fluctuated widely until it stabilised almost

completely after a dozen seconds. By analyzing the polarisation of the light coming out of

the AOD with a free-space polarimeter15, we noticed how at each change of the AOD, the

polarisation first jumped abruptly on the Poincaré sphere and then precessed on its surface. The

characteristic times of the precession motion correspond approximately to the observed signal

fluctuations. At this time the AOD was powered by a Direct Digital Synthesizers (DDS)16,

connected to the laboratory PC to run experimental sequences. It has been found that the

Pulse box switches off all the DDS outputs each time a data point is collected. This introduces

thermal fluctuations in the AOD that results in polarisation fluctuations on the beam directed

towards the trap. To overcome this problem, we decided to install a TTL switch17 that, as soon

as the pulse box turns off its outputs, powers the AOD with a constant 80MHz source18 at the

same RF power. In this way, the polarisation fluctuations are almost completely removed.

2.4.4 Characterisation of the addressing

With the apparatus mounted on an optical bench, it is possible to characterise the addressing

range, and to study the feasibility of an input with a superposition of different RF signal at

different frequencies. Similarly to how spot size was measured, we place the small pixel-sized

camera19 in the focus of the objective lens and measure the displacement of the beam along the

axis of the chain from fRF = 60MHz to fRF = 100MHz.
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Figure 2.13: A portion of the CMOS camera sensor depicting 2 beam spots. An addressing
range of 130 µm is measured by simultaneously powering the AOD with two frequencies: 60MHz
(left pixels excitation) and 100MHz (right pixels excitation) corresponding to limits of the AOD
frequency bandwidth. Additional excitations emerge due to non-linear effects in the AOD crystal
and one of them is clearly visible in the centre.

Addressing range and multi-frequency input

The addressing range determines the number of ions that can be manipulated by the system. We

use the Artiq ”Phaser”20 module instead of a normal DDS to carry out this measurement. This

version with upconversion would in principle not allow RF signals to be used outside the window

300MHz − 3.8GHz but we have been able to lower the frequency window and thus cover the

whole bandwidth of the AOD. Subsequently, a simple code was written to drive the oscillator

in the first channel at 60MHz and at 100MHz simultaneously. In this way, the addressing

range is measured with the camera and amounts to 130 µm (128 µm is the value obtained in the

simulations described in Subsection 2.4.1). Considering numerical calculations for the spacing

between ions [54] in a chain at an axial trapping frequency of ωz = 2π×200 kHz (achievable with

a suitable combination of the end-cap electrodes voltage), it is in principle possible to control 30

ions individually. Further excitations emerge due to non-linear effects in the AOD crystal and

one of them is clearly visible in Figure 2.13. In some quantum information processing contexts,
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Figure 2.14: A portion of the CMOS camera sensor depicting 10 beam spots, generated by
powering the AOD with ten different RF frequencies: from 60MHz to 100MHz in steps of
4MHz.

15Thorlabs PAX1000VIS, 400 nm− 700 nm
16DDS5 from the Pulse box
17TTL signal corresponding to TTL30 on the Pulse box
18DDS11 from the Artiq box
19Allied Vision Alvium 1800 U-1240m, (1.85µm× 1.85µm) pixel size.
20The Phaser (with RF upconversion) is a FPGA-based dual channel Single Arbitrary Waveform Generator

(SAWG) that allows us to work with 5 oscillators per channel.
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it is also necessary to perform operations on several qubits simultaneously. With the ”Phaser”

it is possible to use the 10 oscillators simultaneously and an example is shown in Figure 2.14.

The output signals from the two channels is combined via a splitter21 and then amplified in two

stages22,23. The spot size is acceptable at each of the frequencies. Since this configuration will

be used only in the future to address up to 10 ions, no further analysis was carried out. All

the constraints imposed for this new single-ion addressing system are satisfied, and we are now

ready to discuss results obtained by performing quantum operations on single ions.

21Mini-Circuits ZSFC-2-1-S+
22Mini-Circuits ZFL-500HLN+, +20 dB, +15V DC
23Mini-Circuits ZHL-1-2W-S+,- +33 dB, +24V DC
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Results

We are ready to work with a very precise sensor available in the laboratory: the strontium

ion. In this chapter, some of the first results acquired with the single-ion addressing system

are presented. In Section 2.4, it was described how the single-ion addressing setup has been

designed and assembled. Subsequently, the setup has been characterised in order to be sure that

all requirements are met. After this characterisation, the single-ion addressing system is ready

to be installed on the actual trapped-ion experiment. The addressing optimisation procedure is

explained in Section 3.1. Finally, it is shown in Section 3.2 how single-qubit off-resonant gates

are performed on a three-ion chain.

3.1 Setup installation

The first step was to fix the breadboard in place and roughly centre the divergent beam with

the radial viewport. Subsequently, the objective lens is installed and its position optimised in

such a way that as little clipping as possible is observed on the output at the opposite side of

the vacuum chamber. The output beam is a circle with a horizontal cut at both poles, due to

clipping on the housing of the trap. By maximising the size and regularity of the circle exiting

the trap, the focus of the Gaussian beam is placed close to the centre of the trap. From this point

onwards, a single trapped ion and the PMT (Section 2.2) are used to optimise the addressing,

starting with maximum power in the radial beam (by changing the attenuation in dB of AOM1

in Figure 2.2)). In addition to being able to select the intensity of the beam, the duration t of

the pulses can be controlled. The ion is illuminated by pulsed light at 674 nm and if the beam

is broad and not centred with respect to the ion position, quantum jumps can be observed.

Initially, the main optical adjustment for the beam to perfectly hit the ion consists of moving

the objective lens along the optical axis, i.e. back and forth with respect to the viewport. This

also leads to a misalignment with respect to the imaging optics, which is then adjusted at a later

stage. By moving the objective back and forth one can notice an increase in repetition rate of

the quantum jumps, which in the end leads to a signal corresponding to a coherent excitation.

Coherent excitation in turn corresponds to Rabi oscillations between the two levels, having a

definite frequency Ω. Once small changes of the objective lens along the z axis result in large

discrepancies in the signal, the two mirrors placed after the PBS (see Figure 2.7) are moved.

37
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AOD

AOM

Figure 3.1: A picture of the final setup. All the optics are mounted on a breadboard so that it
can be characterised on another optical table, and then mounted in the experiment when the
characterisation is complete. The setup is compact in such a way that it also leaves room close
by for the organization of other optical apparatus (such as single-ion addressing at Rydberg
states). The white line indicates very roughly the path that light takes in the optical setup.
Light enters via the collimator at the bottom right, continues by making a first U-turn and
then enters the λ/2 plate and the first compensation AOM. The diffraction orders are reflected
towards the AOD by other two mirrors, and both 0th order and order +2nd are blocked by two
blades mounted under the black aluminum foil (placed to avoid dangerous reflections outside
the setup). The beam is diffracted again inside the AOD crystal and the 0th order is blocked.
The 1st order is instead propagated through the f = 16mm aspherical lens and in this way the
beam is expanded to match the objective lens aperture (not in the picture).

The aim of this optimisation is to have a maximum excitation of the ion to the |0⟩ (4D5/2) level,

as this corresponds exactly to a π flip in a time t. As soon as the signal is saturated for a certain

laser beam power and a certain t, the intensity of the beam is attenuated and t is lowered. From

a cruder point of view, we are looking for faster π flips with lower laser power. This is directly

related to having a spot size better centred on the ion. The procedure is iterated until, following

an attenuation of the laser beam or a decrease in t, the signal cannot be improved (i.e. no

shorter π times can be reached with a maximum excitation to |0⟩).
For finer adjustments it was also useful to move the ion along the trap axis, varying the volt-

age of one of the two end-cap electrodes and looking at the shape of the excitation (Figure 3.2).

Thus, an ion is loaded in the trap and the potential of the right electrode (by looking at the trap

from the direction where the radial beam is coming from) is varied in the range 1640V−1780V.

The result of the ion excitation while passing through the beam focus is presented in Figure 3.2.

As can be seen from Eq. (1.24) (setting ∆ = 0 for the resonant case), the resonance excitation

is directly proportional to Ω2, which in turn depends directly on the intensity I ∝ |E0|2 of the

beam. The beam intensity in its focus should have a Gaussian profile. By following a procedure

similar to that used in the estimation of the spot size with the camera (Section 2.4.2), we fit the
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Figure 3.2: Scan of the endcaps trap potential. The voltage of the rightmost electrode (with
respect to the direction the radial beam is reaching the trap) is varied in the range 1640V −
1780V. The pulse duration and power are optimised for the excitation not to saturate, as only
in this case one can be sure that possible features in the profile are not related to saturation.
The line connecting the points is placed to guide the eye in reading the graph.

data with a 1D Gaussian obtaining FWHM = 20.7(2)V. Taking into consideration the factor

that converts a voltage displacement into a distance, estimated in Subsection 2.2.1, we obtain

2ω0 = 2.3(5) µm, a spot size compatible with the ones reported in Table 2.1. Symmetric features

present on the left and right side of the central peak in Figure 3.2 are related to the first bright

fringe of the Airy disc. Asymmetric components are instead related to optical aberrations.

3.2 Single qubit off-resonant gate

In this section we explain and demonstrate experimentally how to perform off-resonant gates on

a qubit, exploiting the AC-Stark shift [62]. Both resonant and off-resonant laser pulses (with

respect to the optical qubit transition) are needed to successfully perform these gates. We

provide the former with the global axial beam, and the latter with the addressed radial beam.

Considering a chain of ions, the procedure is the following:
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Figure 3.3: Off-resonant manipulation scheme. A first π/2 pulse with the resonant axial beam
is performed on the ion chain. Then, with the off-resonant beam one or more ions are shifted in
phase by ϕ = π. As a last step, another π/2 pulse is carried out and the ions untouched by the
off-resonant beam will go back to the initial state (red arrow). On the other hand, ions with the
phase shifted by ϕ = π (blue arrow) will reach the other pole of the Bloch sphere.

• Ions are prepared in the state |ψ⟩ = |1⟩ via optical pumping and a π/2 resonant global
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pulse with the axial beam for a duration of t1 = π/2 · Ω is performed. In this case the

quantum states are moved from |1⟩ to the equator of the Bloch sphere (left of Figure 3.3);

• With the tightly focussed laser beam from the radial direction, an off-resonant pulse is

applied on the desired ion (or on multiple ions simultaneously) such that the AC-Stark

shift rotates the qubit vector by ϕ = π on the equator. Since ϕ = δAC · t2, the time t2

(Ramsey time) must be properly optimized (centre of Figure 3.3) for a π shift;

• A final π/2 resonant global pulse with the axial beam for a duration of t3 = t1 is shone

on the ions. The optical phase of this beam is shifted by π with respect to the one of the

initial pulse. In this way, ions that were not hit by the off-resonant pulse return to |1⟩,
while those that underwent the π shift end up in |0⟩.

The testing of this protocol and the characterisation of cross-talking are carried out on a three-

ion chain. Thus, three ions are loaded into the trap to form a crystal. To ensure that the π/2

pulses interact equally along a string of ions, they are sent to the ions via the global beam

installed along the axial axis. The axial laser beam frequency is optimised to be in resonance

and the time for a π shift is measured to be 2t1 = 70.40 µs. Then, the radial beam is detuned

by ∆ = −8MHz and centred with the central ion in the chain. The encoding of the optical

qubit is done via Zeeman sub-levels, and since there are multiple of them, it is important to

choose the ∆ detuning accurately. In particular, the ∆ value is chosen so that the coupling

is out of resonance with the transition in the chosen Zeeman manifold, but still wanting this

coupling to be the one that makes the greatest contribution to the oscillations. A closer study

of the different transitions could lead to the choice of a different, more optimal detuning value.

The time t2 is optimised so that the phase shift in the central ion makes a π phase lap around

the z axis: t2 = 40 µs. As introduced in Subsection 2.4.3, each frequency shift in the AOD

corresponds to a frequency shift in the laser light and thus to a further detuning from the

electromagnetic transition. This shift is actively compensated for by varying the frequency of

the AOM1 accordingly, to keep always a 8MHz detuning. After optimising the signal for the

central ion, an AOD frequency sweep is performed and the result is shown in Figure 3.4.

3.2.1 Cross-talk

ε(1) ε(2) ε(3)
2.9(1)% 3.0(1)% 3.1(1)%

.

Table 3.1: Addressing quality ε(n) in a three ions chain, computed with Eq. (3.2). The Rabi
frequencies used are those output from the fits of Eq. (3.2).

When carrying out quantum simulations or more general computation, it is important that

the quantum states of individual ions can be manipulated without affecting those of their first

neighbours. The largest contribution to this effect is caused by cross-talk between first neighbour

ions. A smaller cross-talking corresponds to a better addressing quality. In turn, cross-talking

may be due to a too large spot size of the focussed beam, or to optical aberrations causing
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Figure 3.4: Frequency sweep of the AOD on a three ions chain. The position of the laser beam
at 422 nm for fluorescence detection was not aligned with the centre of the trap, and this is the
main reason why the peak on the left is lower than the others. The data shown were collected
with the EMCCD camera. The difference in frequency between the peaks centers is 1.23MHz.
The line connecting the points is placed to guide the eye in reading the graph.

unwanted excitations on other ions. The figure of merit used to evaluate the addressing quality

ε(n) of ion n is the following:

ε(n) [%] = max

(
Ωn±1

Ωn

)
· 100, (3.1)

where Ωi corresponds to the Rabi frequency measured for the i-th ion. Rabi oscillation mea-

surements have the same π times of the resonant excitation optimised for the data obtained

in Figure 3.4. The radial beam is deflected in such a way as to induce Rabi oscillations on each

of the three ions individually. The time for a ϕ = π shift is optimised for the central ion and

again amounts to t2 = 40 µs. The results of the Rabi oscillations for each of the three ions are

shown in Figure 3.5. From the latter figure, an exponential damping of the oscillations can be

seen and this is due to a non-optimal coherence time along the axial axis. One reason for this

is that along the trap axis the ions are weakly confined and consequently the axial oscillation

modes are populated by a higher number of phonons. A greater exchange of information with

the environment therefore causes a decrease in the coherence time. For this reason, fits are not

performed with the function introduced in Eq. (1.24), as the latter assumes a null number of

phonons in the ion under consideration. A more suitable function to describe Rabi oscillations

in general in the presence of a statistical mixture of states with different numbers of phonons

was derived at p. 117 of [63], and reads as follows:

pe(t) =
1

2

[
1− cos (Ωt) + (Ω⟨N̂⟩η2t) cos (Ωt)

1 + (Ω⟨N̂⟩η2t)2

]
, (3.2)

where Ω is the Rabi frequency of the oscillations, ⟨N̂⟩ is the expectation value of the number op-

erator (number of phonons present in the system) and η is the Lamb-Dicke parameter (calculable

via Equation 1.34). The parameter ⟨N̂⟩ = 16 is set in accordance with what is measured in [49]

and what is expected in terms of the number of phonons from a string with only Doppler-cooled

ions. A new measurement with relative error of the number of phonons would lead to a more
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Figure 3.5: Rabi oscillations1 for the central ion in a three ion chain. The protocol followed
for these measurements is the one explained in Section 3.2. Briefly, the global axial beam is
performing on each ion a π/2 pulse, and then a second π/2 pulse with an optical phase shift
of π with respect to the first pulse. In between the two, the off-resonant radial beam induces
an AC-Stark shift which corresponds to a π lap around the z axis. The ions that are being
hit by the off-resonant light will reach |0⟩ on the Bloch sphere, while the other goes back to
|1⟩ after the second π/2 pulse. Each point along the x-axis corresponds to a different duration
of t1 (and consequently t3), i.e. a different application time of the π/2 pulse. The oscillations
have two decaying exponential envelopes due to the sub-optimal coherence time along the axial
axis. The type of pulses that are normally carried out in quantum computation are mainly π
pulses or π/2-pulses, and these are guaranteed by the setup with minimal cross-talking (limited
within three complete oscillations on each of the three ions). Error bars are calculated with the
quantum error projection noise in Eq. (1.41) on a number of N = 100 measurements per point.

reliable estimate of the Rabi frequency of the oscillations and consequently to a better estimate

of the addressing quality following Eq. (3.1). Instead, η = 0.07 is fixed to the value calculated

with Eq. (1.34) for 674 nm, ωz = 2π × 1MHz of axial confinement and cos (θ) = 1 (the angle

between the axial beam and the axial direction of motion is close to 0). By comparing the Rabi

frequencies resulting from the fits and by using Eq. (3.1) we arrive at a final estimate of the

addressing quality, reported in Table 3.1.



Summary and outlooks

The goal of this work was to have, within six months, a single-ion addressing system mounted

in the trapped ions experiment at room temperature. This system should have been able to

perform single-qubit gates in a chain of n ions. The first step was to get to grips with the Zemax

OpticStudio software. A system capable of having a focused beam with a spot size smaller than

3 µm was simulated taking into account spatial constraints. The system should be also able to

manipulate individually at least 10 ions in a string.

After working on the simulation, trying to comply with all the constraints imposed, the

components of the setup were characterised precisely. In the first period, the objective lens was

tested in terms of spot size, transmission efficiency and imaging capability. From this component,

no irregularities were noted as focusing and imaging capabilities turned out to be as expected.

This is a testament to the careful design of the objective lens on the part of Markus Hennrich.

During the addressing calibration phase, the objective lens mount was modified to bring the

last lens in the objective lens even closer to the viewport, thus moving the focus further inland

and respecting the simulation distances. Prior to this project, the optical imaging system was

not optimised and aberrations were clearly visible in the CCD camera image. This prevented

three ions from being clearly distinguished. Some time was spent optimising this part of the

experiment, simulating a section of it and considering different lenses. No further details are

given as this is not the main topic of the thesis, but the result was a greater magnification

and thus a better separation between neighbouring ions. The other fundamental component

characterised was the AOD. The latter had been purchased before the start of the project, but

due to shipping problems it arrived exactly halfway through the project. The obtained diffraction

efficiency profile does not completely match the one specified in the datasheet, although a lot of

time was spent on its optimisation. During the characterisation, the diffraction efficiency profile

specified by the company is almost constant along the RF bandwidth, while the one measured

drops slightly for frequencies close to the edges of the bandwidth.

The biggest challenge faced in this thesis project was the one related to thermal drifts of the

AOD. As described in Section 2.4.3, during the signal optimisation process, it was noticed that

the signal oscillated as a result of changes in the RF signal in the AOD. Further analysis led to

the assumption that these were introduced by the Pulse box, in particular by the way it was

delivering the RF signal. As soon as the way of supplying the RF signal was changed, using a

constant signal from the Artiq box and an RF switch, the problem was curbed. Again by means

of the Artiq box and the “Phaser” module, it was also possible to see how the deflector behaves

when fed with a superposition of different RF signals at different frequencies. In the future, this
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could be used to do simultaneous single-ion addressing on 10 ions and carry out new quantum

simulations.

In conclusion, the objective of this thesis project has been achieved. Some problems with the

Pulse box put the characterisation for longer chains and two-qubit entanglement gates (Mølmer-

Sørensen [31, 32]) on hold prematurely. The next steps, as soon as the problems are contained,

will certainly involve a better characterisation of the single ion-addressing system on longer ion

chains. New studies on how particular motional mode excitations propagate within the chain

can also be carried out (on the same flow of ideas contained in this article [64]), or even study

protocols of motion teleportation within the ion chain.
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Figure 6: 40 seconds exposure in which the expanded beam at 674 nm can be seen.

Figure 7: 40 seconds exposure of the entire setup. The diffraction orders of the AOM and of
the AOD can be seen on the left. Both pictures are taken by opening the shutter for 40 seconds
and moving a lens cleaning tissue along the beam path.
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