
University of Padova

Department of Information Engineering DEI

Master Thesis in ICT FOR INTERNET AND MULTIMEDIA -
INGEGNERIA PER LE COMUNICAZIONI MULTIMEDIALI E

INTERNET

Learning sensor-agent communication with

variable quantizations

Supervisor Master Candidate
Andrea Zanella Pietro Talli
University of Padova

Co-supervisor Student ID
Federico Chiariotti 2021427
University of Padova

Academic Year
2021-2022

Date
December 12, 2022

ii

vi

Abstract

In this work the possibility of training a remote (deep) reinforcement learning system was
studied. The thesis focuses on the problem of learning to communicate relevant informa-
tion from a sensor to a reinforcement learning agent. Different quantization strategies
were tested in order to balance a trade-off between the effectiveness of the message com-
municated and the limited communication rate constraint.

vii

viii

Contents

Abstract v

List of figures xi

List of tables xiii

1 Introduction 1

2 Methods 5
2.1 Reinforcement Learning . 5

2.1.1 Exploration vs. exploitation . 6
2.2 Markov Decision Process . 7

2.2.1 The solution of the MDP and the Bellman Equation 9
2.2.2 Proper Definition of Exploration/Exploitation trade-off 11

2.3 Q-learning and Deep Q-learning . 12
2.4 Partially observable Markov Decision Process 16
2.5 Autoencoders . 18
2.6 Variational Autoencoders and compression 20
2.7 Quantization and Vector Quantization . 23
2.8 Vector Quantized Variational Autoencoders 24

2.8.1 Straight through estimation of the gradient 26
2.9 Compression and Information Bottleneck 27
2.10 Three levels of communication problems 28

3 Related Works 29
3.1 Joint source channel coding . 29
3.2 Context-Aware Cyber-Physical systems and Digital Twin 30
3.3 Control Under communication Constraints 31

4 System Model and practical implementation 33
4.1 The CartPole environment . 34
4.2 Initial tests . 35
4.3 Training the entire system with supervision 38
4.4 No oracle: the Unsupervised Scenario . 41
4.5 A finite capacity communication channel 44

4.5.1 Optimizing the Codebook . 48
4.5.2 Results on the VQ-VAE . 52
4.5.3 Training the Controller on the quantized latent representations . . 54

ix

5 Optimizing the Communication Rate 57
5.1 Codebook Size Analysis . 57
5.2 Testing the performance for three levels of communication 58
5.3 Learning-Based Adaptive Encoding . 62
5.4 Results for the technical problem . 66
5.5 Results for the semantic problem . 68
5.6 Results for the effectiveness problem . 71
5.7 Intuition behind the different levels of quantization 75

6 Conclusion 79

References 83

Acknowledgments 89

x

Listing of figures

2.1 A scheme of the interaction between RL building blocks [1] 6
2.2 A sketch of the architecture of an autoencoder [2] 19
2.3 Markov constraint on the three processes which are involved in the model 27

3.1 Block diagram of the point-to-point image transmission system: (a) com-
ponents of the conventional processing pipeline and (b) components of the
proposed deep JSCC algorithm, [3]. 30

4.1 System model considered in this project. 33
4.2 Example of two frames (a) original (b) reconstructed by the AE. 43
4.3 Forward and Backward pass using the straight through estimation of the

gradient. 46
4.4 Visual representation of the VQ-VAE architecture, [4]. 48
4.5 Training profile of the VQ-VAE for the K = 64. 54

5.1 Pipeline for testing the performance in the technical problem for different
size of codebooks K. 59

5.2 Pipeline for testing the performance of the semantic problem for different
size of codebooks K. 60

5.3 Pipeline for testing the performance of the effectiveness problem for differ-
ent size of codebooks Ki. 60

5.4 Pipeline for learning to select Kt. 64
5.5 Results for the technical problem. 66
5.6 Frequencies of the different quantizers for different values of β. 68
5.7 Results for the semantic communication problem. 69
5.8 Frequencies of the different quantizers for different values of β. 70
5.9 Results for the effectiveness communication problem and a fixed quantiza-

tion strategy. 71
5.10 Results for the effectiveness communication problem. 73
5.11 Frequencies of the different quantizers for different values of β. 74
5.12 Colormap for the average number of quantization bits and the entropy of

the actions. 76
5.13 Magnitude of the gradient of the Controller policy. 77

xi

xii

Listing of tables

4.1 Layers of the regression network. 37
4.2 Mean Square Error of the Training and Test in the regression task. 37
4.3 Layers of the Q-function network for the supervised setting. 38
4.4 Autoencoder architecture. 42
4.5 Reconstruction accuracy of the AE. 42
4.6 Layers of the VQ-VAE implemented. 53
4.7 List of parameters used for the practical implementation of the training of

the VQ-VAE. 53

5.1 PSNR and Perplexity for different sizes of the codebook. 58
5.2 Regression network architecture. 61
5.3 Policy network architecture. 61
5.4 Number of bits per feature and length of the message for different sizes

codebook. 62
5.5 Average message length and PSNR for different values of β. 67
5.6 Results average message length a MSE for different values of β. 70
5.7 Number of training episodes and average final performance for the different

size of codebook used. 72
5.8 Results for the effectiveness problem fro different values of β. 74

xiii

xiv

1
Introduction

Automation of processes in industries has become more relevant recently, exploiting the
power of Internet of Things (IoT) [5] which has become a key component. In those
scenarios mobile robots have to coordinate solving a multi-agent reinforcement learning
problem. Coordination and cooperation can be fully effective when the agents can com-
municate and exchange messages, whether they are observations about the environment
they sense or decisions (actions) they take. Especially when dealing with wireless com-
munication, optimization and efficient managing of the communication resources become
extremely important. For example, consider a controller that receives real-time updates
of the status via wireless transmission. To deal with this problem, new concepts have
been introduced such as the Age of Information (AoI) and the Urgency of Information
(UoI) [6], [7]. Those concepts are fundamental to derive some theoretical guarantees on
the minimal rate needed to update the status and provide fresh information at a certain
rate. Another valid and effective tool for optimizing multi-agent systems comes from the
Deep Reinforcement Learning and recent advances in Neural Networks. Starting with
seminal works on Deep Q-Networks by Google Deepmind [8], the usage of Deep Learning
is becoming a fundamental part in advanced Control problems. Deep Neural Networks
have been proved to be useful for learning complex functions from very high dimensional
inputs such as images or videos. This feature makes these models a suitable choice when
the message to communicate comes in form of images or videos. In this case, it is possible
to exploit Joint Source-Channel Coding schemes to optimize both for the encoding and
the communication among the communication channel [3], [9].

This work aims to bridge the gap between the communication aspects and the control

1

aspects, providing methods to optimize both sides. A deep learning architecture is used
to build different blocks which handle information processing, communication and con-
trol policies. The possibility of optimizing these blocks in order to obtain a better overall
performance of the system is studied. The focus of this work is on the communication
aspects and the different levels of analysis which can characterize this system. The com-
munication problem is analyzed from three levels of communication introduced in [10].
In particular, communication is optimized by using the same procedure for every level,
showing the versatility of this approach.

The specific system model which comprises a communication and a control problem
is formulated considering two agents. More specifically, an agent receives information
from another agent and has to adapt its behavior based on the received information. The
scenario is simplified from the general case, since an agent is only doing a communication
problem and the other agent is solving a control problem. More specifically it is possible
to name this as a remote reinforcement learning problem [11], [12]. The aim of the
project is to demonstrate and provide a method to solve efficiently the control problem
by improving the effectiveness of the information transmitted by an agent to the other.
The agent which transmits the information can be seen as a Sensor node, whereas the
receiver agent can be seen as an Actuator node. In the test accomplished, the receiver
node performs three types of tasks. These tasks allow to study the optimization of the
communication with respect to the three communication problems.

The communication channel considered is digital channel with limited capacity. In
order to obtain discrete representation at the output of the layers of a Neural Network,
a specific quantization strategy is designed and evaluated. The main idea is derived by
the work in [4], but some modifications are introduced to manage the communication
resources better. This way, the channel can be treated a the layer of a neural network
where the nodes are force to represent a deterministic discrete distribution.

Quantization is often hard in high dimensional vectors and the solutions provided by
the typical adaptive algorithm might converge to sub-optimal configurations. To deal with
this problem, quantizers with different sizes are used in order to test how the performance
of the system depends on the quantization step. Moreover, these different quantizers are
used to obtain different level of compression in the information transmitted. Compression
allows to discard information from the current state the Sensor has to communicate and
decreases the rate needed to transmit the information. Through different quantizers, it
is possible to vary the rate at which the information is transmitted. In particular, two
communication strategies are studied: a fixed quantization and a variable quantization.
The first strategy considers the transmitter as a passive node which can only work at a

2

certain rate. The second strategy considers the Sensor as an agent which can decide the
amount of information to transmit, due to the current state and the task the receiver
aims to solve. The work shows that the second strategy is able to reduce the average rate
by learning to use the most suitable quantization.

In the final part of the results, an intuition and a discussion about the communication
strategy that the Sensor learns are provided. A relationship between the communication
rate and the entropy of the actions of the receiver is inferred, providing an insight on how
an ideal system model should work.

3

4

2
Methods

In this chapter the main methods used in the developing of the model are explained and
the relevant parts are analyzed.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a well established research field which aims to adaptively
learn optimal control strategies in a wide variety of environments. An extensive intro-
duction about RL can be found in [1]. In recent years, the power of RL was proved by
solving some challenging scenarios such as games (e.g. Go and Chess) [8]. In particular,
researchers combined Deep Neural Networks [13] with the algorithmic procedure from the
RL theory to achieve very high performances in a lot of tasks. Subsequently, these tech-
niques were extended also to continuous control problems [14], proving the effectiveness
of Deep Reinforcement Learning in those scenarios.

A typical RL problem consists on 4 parts which fully describe the setting:

• An Agent: the entity aiming to solve the task

• A set of states St: exhaustive description of the system in which the agent can be

• A set of actions At: (that could depend on the state) that can be taken by the
agent

• An environment with which the agent interacts and that at each time t could
either provide rewards Rt and move the agent to a new state –depending on the
state/action pair

5

Figure 2.1: A scheme of the interaction between RL building blocks [1]

In Fig. 2.1 it is possible to see a scheme of the interaction between the building blocks
of the RL system. At each time step t the agent observes the state St and then it chooses
an action At to play. After the agent performs the action, it receives the new state St+1

and reward Rt+1 which the environment provides, given that the agent chose action At.
The goal of the agent is to maximize the cumulative rewards over time. In order to

choose the action at each time step, the agent implements a mapping from the state space
S to the action space A. This mapping represents the probability that the agent chooses
action At when observing St from the environment. In the RL terminology, this mapping
is called policy. The policy π of an agent is a probabilistic mapping π : S → Φ(A) which
represents the probability of choosing action At given the state St. The target of RL is
to learn the optimal policy π⋆ that maximizes the cumulative rewards.

2.1.1 Exploration vs. exploitation

In typical training of RL agents, the policy must be set according to certain criteria to
allow exploration and exploitation. Exploration means that the agent should try different
combinations of actions in certain states, since all the possibilities have to be tested.
Implementing an exploration behavior for the policy is crucial to avoid to learn sub-
optimal policies, which consider only a restricted set of the possible actions and not
the entire action space. On the other hand, exploitation means that the policy should
take advantage of the experience it has gained exploring different actions and states to
maximize the obtained reward. Exploitation is the opposite of exploration because the
agent has to act greedily, choosing only the best actions and thus does not explore new
possibilities. It is clear that exploration and exploitation cannot be performed together
but have to come within a trade-off. Different implementations of this trade-off exist [1],
[15].

6

2.2 Markov Decision Process

In order to mathematically formalize the problem of RL, a probabilistic modelling of the
RL system has to be introduced. The most general description of an agent transitioning
from one state to another according to some probabilities is given by a Markov Process.

A Markov process St is a stochastic process with the property that, given the value of
Xt, the values of Su for u > t are not influenced by the values of Sv for v < t [16].

This definition means that the probability of any future behavior of the process is not
altered by additional knowledge concerning its past behavior. More interesting, in order
to develop algorithms and procedures to train the agent, is the discrete-time Markov
Process. It is a Markov process whose state space is a finite or countable set and whose
time index set is T = {0, 1, 2...}. All the states St of the process respect the Markov
property which can be written as

Pr[St+1 | St] = Pr[St+1 | S1, ..., St]. (2.1)

If the states in the considered RL scenario respect the Markov property, it means that
the probability of being in state St+1 only depends on state St and knowing any previous
state does not change this probability. Thus, the state is a sufficient statistics for the
present and the past meaning that it is possible to throw away the rest of the history.
Defining a good state is fundamental to develop effective RL solutions: it typically requires
good domain expertise. Given a discrete set of states S, it is possible to define a transition
matrix P where the entry Pij is the probability to go from state i to state j

Pij = Pr[St+1 = j | St = i] ∀i ∈ S, j ∈ S. (2.2)

However, this modelling of the state transition does not consider the actions and the
rewards that are associated with those state transitions. In order to take into account all
the building blocks of the RL setting, Markov Decision Processes are introduced.

A Markov Decision Process (MDP) is a tuple ⟨S,A, P,R, γ⟩ such that:

• S is a finite set of states

• A is a finite set of actions

• P is a state transition probability matrix with entries

P a
ss′ = Pr[St+1 = s′ | St = s,At = a]

7

• R is a reward function such that

Ra
s = E[Rt+1 | St = s,At = a]

• γ ∈ [0, 1) is a discount factor

Note that in the transition probability matrix of an MDP, the next state not only
depends on the current state St but also on the chosen action At. The reward function
R is the expected value of the immediate reward Rt+1 that the agent receives from the
environment for having performed action At in state St. In order to understand the last
parameter γ, the return of the process Gt has to be defined. The return of an MDP Gt

is given by

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1. (2.3)

In RL the agent is not interested in maximizing the value of a single step, but it wants to
maximize the return Gt, since the goal of learning is to maximize the cumulative rewards.
In the definition of Gt, the parameter γ weights the present value of future rewards. Since
γ takes value in the range [0, 1), the return Gt only considers the current reward when
γ = 0, whereas it considers all the future rewards equally important as γ approaches
1. γ = 1 is not used in infinite time RL, since there could be convergence issues. In
general, this parameter allows to define a trade-off between how much an agent should
be interested in the immediate reward rather than in a long-term one.

Given the definition of MDP, the definition of stochastic policy can be introduced. A
stochastic policy π is a distribution over actions a ∈ A given that we are in a certain state
St = s

π(a | s) = Pr[At = a | St = s] (2.4)

A policy fully defines the behavior of an agent. MDP policies depend on the current
state because the states enjoy the Markov property, and thus previous states do not bring
any additional information. In the definition of a policy, the reward term is not included
since the policy can be given or be learned with a separate dedicated procedure. It is
also worth noting that, since every action is associated with a probability, it is possible
to balance the exploration/exploitation trade-off by ensuring to have non zero probability
for any action, which allows to explore every possible action.

8

2.2.1 The solution of the MDP and the Bellman Equation

In this section, a mathematical derivation of the solution of an MDP is given, further
demonstrations of these results can be found in [1] and [17]. Given an MDP ⟨S,A, P,R, γ⟩
and a policy π the sequence of states S1, S2, ... is a Markov process with transition prob-
ability matrix P π such that

P π
ss′ =

∑
a∈A

π(a | s)P a
ss′ . (2.5)

The reward process Rπ
s is given the policy π is

Rπ
s =

∑
a∈A

π(a | s)Ra
s . (2.6)

In order to solve the MDP and find the optimal policy π⋆ which maximizes the return
Gt, the state value function and the state-action value function have to be defined. The
state value function

Vπ(s) = E[Gt | St = s] (2.7)

is the expected return from state s if the agent follows policy π. The state-action value
function

Qπ(s, a) = E[Gt | St = s,At = a] (2.8)

is the expected return from state s if the agent takes action a and then follows policy π.
Using the definition of the return Gt given in Eq. (2.3) it is possible to write the value
function as the sum of two terms

Vπ(s) = E[Rt+1 + γVπ(St+1) | St = s]. (2.9)

Similarly for the Qπ(s, a) function, as it can be written

Qπ(a, s) = E[Rt+1 + γQπ(St+1, At+1) | St = s,At = a]. (2.10)

Also note that the state value function Vπ(s) and the state-action value function Qπ(s, a)

are related by the following equations

Vπ =
∑
a∈A

π(a | s)Qπ(a, s) (2.11)

9

Qπ(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′Vπ(s

′). (2.12)

Using Eq. (2.12) inside Eq. (2.11) a recursive definition of the value function is obtained
as

Vπ =
∑
a∈A

π(a | s)
(
Ra

s + γ
∑
s′∈S

P a
ss′Vπ(s

′)

)
(2.13)

On the contrary, for the state-action value function substituting Eq. (2.11) inside Eq.
(2.12) the recursive definition is given by

Qπ(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′

∑
a′∈A

π(a′ | s′)Qπ(s
′, a′) (2.14)

Let us denote P π the matrix containing all the transitions as defined in Eq. (2.5) and
Rπ the vector containing the expected rewards defined in Eq. (2.6) for every s ∈ S it
follows a matrix formulation of the recursive definition of the value function written in
eq. (2.13) which is

Vπ = Rπ + γP πVπ, (2.15)

where Vπ is the vector of all the values Vπ(s),∀s ∈ S . Eq. (2.15) admits a solution which
expresses the values as

Vπ = (I − γP π)−1Rπ. (2.16)

The latter is also known as the Bellman expectation equation as it allows to find the
expected value of the value function Vπ given a generic MDP and a fixed policy π.

However, the Bellman expectation only allows to evaluate a policy, it does not provide
any information about the optimal policy. In order to solve control problem and perform
policy improvement, the Bellman optimality equation should be introduced. To derive
the Bellman optimality equation, the optimal value function V⋆(s) is introduced as

V⋆(s) = max
π

Vπ(s), (2.17)

and the optimal state-action value function is

Q⋆(s, a) = max
π

Qπ(s, a) (2.18)

If the agent knows the optimal Q⋆(s, a) values the optimal policy follows straightforwardly,

10

the optimal policy π⋆ is

π⋆(a | s) =

1 if a = argmaxa∈AQ⋆(s, a)

0 otherwise
. (2.19)

Any MDP admits an optimal policy π⋆ as it is proved in [17]. Repeating the previous
steps done for the Bellman expectation equation and substituting the expectation opera-
tion with the maxa∈A, a recursive definition of the optimal value V⋆(s) and action-value
Q⋆(s, a) are obtained as

V⋆(s) = max
a

Ra
s + γ

∑
s′∈S

P a
ss′V⋆(s) (2.20)

Q⋆(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′ max

a′
Q⋆(s

′, a′), (2.21)

which are the Bellman optimality equations. It is worth noting that, differently from
the Bellman expectation equation, there is no closed-form solution to this system as the
maxa operator is non-linear. In order to learn these optimal values, the agent will resort
to iterative methods such as Q-learning or SARSA [1], [17].

2.2.2 Proper Definition of Exploration/Exploitation trade-off

Recalling the exploration/exploitation trade-off introduced in Sec. 2.1.1, given the defi-
nition of optimal policy provided in Eq. (2.19), it is possible to define stochastic policies
which allow to balance the exploration/exploitation trade-off. The first one introduced is
the ϵ-greedy policy which is defined as

πϵ-greedy(a | s) =

1− ϵ if a = argmaxa∈AQ(s, a)

ϵ otherwise
. (2.22)

with ϵ ∈ [0, 1]. It is worth noting that if ϵ = 0, it is a fully greedy policy and the agent
is only taking advantage of the Q values that it has learned by choosing always the action
with the maximum expected return. On the other hand, if ϵ > 0 the agent is acting
greedily 1− ϵ of times while for a fraction ϵ of times it chooses another action uniformly
between the non-optimal ones. The fact that sometimes the agent chooses non-optimal

11

actions allows exploration. Another possibility is given by the softmax policy defined as

πsoftmax(a | s) =
e

Q(s,a)
τ∑

a′∈A e
Q(s,a′)

τ

(2.23)

where τ is a temperature parameter. For τ → ∞ the policy converge to a uniform
distribution over the actions, meaning that the agent is only exploring. For τ → 0

the softmax distribution converges to the hardmax distribution where the agent is fully
exploiting and not exploring. Typically, during a training procedure of a RL agent, the
parameters ϵ and τ which controls the exploration/exploitation trade-off might change
because in the first part of the training the agent should explore more to acquire a lot of
knowledge, whereas in the final part it should only rely on the learned policy without the
need to explore anymore.

2.3 Q-learning and Deep Q-learning

Previously, it was shown how, if the optimal state-action values Q⋆(s, a) are known by
the agent, it is able to define an optimal policy. However, in the RL problems these
values are not available but have to be learned in the training procedure. One of the most
common methods which allows to learn the optimal values is Q-learning. This method is
derived by temporal difference (TD) learning and has been introduced by Watkins [18]. In
particular, Watkins showed how starting from random initial values and updating these
values according to

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(2.24)

it is possible to converge to the optimal Q⋆(s, a) values. In Eq. (2.24), the parameter α

is the learning rate and the proof holds for 0 ≤ αn < 1 and

∞∑
i=1

αi
n =∞,

∞∑
i=1

(αi
n)

2 <∞. (2.25)

Although the proof is not provided in this work, it is possible to appreciate a similarity
between the Bellman optimality equation for the Q(s, a) values and Eq. (2.24). Indeed,
in the Q-learning rule the values are iteratively updated towards the quantity Rt+1 +

γmaxaQ(St+1, a) which is the best estimation of the return Gt according to the current
values Q(s, a) available.

The procedure to learn the optimal values and thus the optimal policy through the

12

Algorithm 2.1 Q-learning algorithm
α ∈ (0, 1], ϵ ∈ (0, 1]
Initialize Q(s, a) ∀s ∈ S, a ∈ A arbitrarily
for each episode:

Initialize s
while s is not terminal:

Choose a from s using policy derived from Q (e.g. ϵ-greedy)
Take action a, observe reward r, and next state s′

Q(s, a)← Q(s, a) + α
[
r + γmaxa′ Q(s′, a′)−Q(s, a)

]
s← s′

end while
end for

Q-learning rule is described in Alg. 2.1. In the algorithm there is a for loop over all
the episodes, at the beginning of the episode the state is initialized according to some
criteria, for example a random state. After that, at each time step, the agent selects an
action according to the current Q values and an ϵ-greedy policy. After the action is taken,
the agent receives the reward r and observes the next state s′. After that, the value
corresponding to state s and action a Q(s, a) is updated using Eq. (2.24). Finally, the
next state s′ becomes the current state until the agent reaches a terminal state. For an
infinite number of episodes, the Q values converge to the optimal ones and thus the policy
of the agent converges to the optimal policy π⋆. There exist other approaches based on
Monte Carlo estimations to learn the Q values, however Q-learning performs usually very
well, has lower variance and can be implemented online without waiting the end of each
episode to update the values [1].

Despite being simple and appealing to use, Q-learning has one main drawback when
used in continuous control scenarios or high cardinality state spaces S. Q-learning is a
tabular method and the agent has to store a state-action value for every possible combina-
tion of a state s ∈ S and action a ∈ A. The number of values can grow a lot in some cases,
leading to very slow convergence and requiring a lot of examples. To solve this issue, the
Q values are replaced by a Qθ function parametrized by some parameters θ. Recently,
Deep Neural Networks have been proved to be very good for parametrizing these value
functions [19]. One of the most used algorithm is Deep Q-learning [8]. Deep Q-learning
inherits the idea from the Q-learning rule and replaces the tabular Q values with value
function approximation. Theoretical limits of RL with value function approximation are
evaluated in [1].

Considering the case where the agent knows the optimal Q⋆(s, a) values, the weights θ

13

of the neural network Qθ which parametrizes the value function should be optimized to
fit the optimal values

θ = min
θ

(Q⋆(s, a)−Qθ(s, a))
2 (2.26)

However, in the training scenario, the agent does not know the optimal values and
estimates them through the same target of Q-learning

y(s, a) = r + γmax
a′

Q(s′, a′) ≈ Q⋆(s, a). (2.27)

Eq. (2.26) expresses the fitting problem with a convex objective function leading to a
least squares optimization. An algorithm to find the optimal weights of Qθ is stochastic
gradient descent (SGD). This method is very appealing because it is known to work
very well in convex optimization [20] but also to train neural networks [21]. However, it
requires batches of samples to update weights and not only one sample as in Alg. 2.1.
In order to store batches of samples, the agent has to store a memory of the past states,
actions and rewards in a Replay memory buffer D. The memory capacity should be
larger than the batch size N because SGD requires the samples to be independent and
identically distributed, but the sequence of states and actions of RL agent are highly
correlated. Thus, the memory buffer D should be able to store a high number of samples
so that the batch can be randomly sampled from the memory reducing the correlation
between samples. Given the replay memory D = {(s0, a0, r0, s′0), (s1, a1, r1, s′1), ...} and
the network Qθ, the optimization step of the SGD procedure becomes

∆θ = −η∇θLθ = −η∇θ
1

N

N−1∑
i=0

[Qθ(si, ai)− (ri +max
a′

Q−(s′i, a
′))]2. (2.28)

where η is the learning rate of SGD. Note that the target value is estimated through Q−

and not using the Qθ. This is due to the fact that the target is an estimation of the
optimal value which does not have to be optimized. Q− is called the target network
and is initialized with the same weights of Qθ (the policy network). In Alg. 2.2, Deep
Q-learning procedure is shown. Note that the optimization procedure can start only when
enough experience (enough samples) are accumulated in D. Another thing to take care,
is to update the weights of the target network every C steps and not at every iteration of
SGD. This is because updating them too frequently can lead to instability in the training
phase. The algorithm terminates after a fixed number of episodes or after a certain
performance score is reached by the agent.

The main difficulty when using Deep Q-learning is to keep the procedure stable and

14

Algorithm 2.2 Deep Q-learning algorithm
Initialize policy network Q
Initialize target network Q−

Initialize experience replay memory D
Initialize the Agent to interact with environment
while not converged

ϵ← set the new epsilon with ϵ-decay
Choose an action a from state s using ϵ-greedy policy
Agent takes action a, observe reward r and next state s′

Store transition (s, a, r, s′, done) in the experience replay memory D
if enough experience in D

Sample a random minibatch of N transitions from D
for every transition (si, ai, ri, s

′
i, donei) in minibatch

if donei
yi = ri

else
yi = ri +maxa′∈AQ−(s′i, a

′)
end if

end for
Calculate the loss L = 1

N

∑N−1
i=0 (Q(si, ai)− yi)

2

Update Q using SGD algorithm by minimizing loss L
Every C steps, copy weights of Q to Q−

end if
end while

15

converge to an optimal value. Indeed, the two step procedure which separately updates
the policy network and the target network can be very unstable. One solution introduced
in [14] is to update the target network slowly with an Exponential Moving Average (EMA).
Given policy network Qθ with parameters θ and target network Qϕ with parameters ϕ

and a parameter β ∈ (0, 1), the parameters ϕ are updated as

ϕ← βϕ+ (1− β)θ. (2.29)

This allows the target network values to converge slowly towards the policy network values
avoiding bad updates due to sub-optimal improvements during the training procedure.

2.4 Partially observable Markov Decision Process

MDPs are a very useful description of RL problems and work very well in scenarios where
the agent has access to reliable state signals. However, sometimes the state signal provides
only a partial description of the state, mostly because of limited sensing capabilities of the
agent. Partially Observable Markov Decision Processes (POMDPs) allow for principled
decision making under conditions of uncertain sensing [22]. Starting from the definition
of an MDP, it is possible to define a POMDP as a tuple ⟨S,A,Ω, P,O,R, γ⟩ where

• S is a finite set of states

• A is a finite set of actions

• Ω is a finite set of observations

• P is a state transition probability matrix with entries

P a
ss′ = Pr[St+1 = s′ | St = s,At = a]

• O : Ω× S → [0, 1] is an observation function such that:

O(s, o) = Pr[St = s | o]

• R is a reward function such that

Ra
s = E[Rt+1 | St = s,At = a]

• γ ∈ [0, 1] is a discount factor

In other words, a POMDP has the underlying dynamic of the system governed by an
MDP, but the state is not fully observable by the agent. There are several approaches

16

to treat POMDPs, but one main issue highlighted in [23] is that standard RL algorithms
might fail. For example the authors emphasise that even when only two states are con-
fused, the performance of the RL procedure can degrade arbitrarily. However, authors
in [23] shown how, using a stochastic policy and batched version of the Q-learning, it is
possible to converge to the optimal values w.p.1. The batched version of the Q-learning
algorithm is the same as online Q-learning, but the values are updated after a batch of
M samples is acquired. The agent operates on the observation o ∈ O and does not have
access to the environment state s ∈ S. Let:

• Mk(o, a) be the number of times action a is executed in observation o within the
kth batch of size M

• nk(s | o, a) be the number of times the actual underlying state was s when the
observation-action pair was (o, a)

• n(o, o′ | a) be the number of times a transition took place from observation o to
observation o′ given action a was executed.

Then the Q(o,a) after the kth batch is collected is given by:

Qk+1(o, a) = (1− αMk(o, a)Qk(o, a) + αMk(o, a)
[∑
s∈S

n(s | o, a)
Mk(0, a)

rak(s)+

γ
∑
o′

n(o, o′ | a)
Mk(o, a)

max
a′∈A

Qk(o
′, a′)

] (2.30)

where rak(s) is the sample average of the immediate reward received on executing action
a in state s in the kth batch. Let

Fk(o, a) =
∑
s∈S

n(s | o, a)
Mk(0, a)

rak(s) + γ
∑
o′

n(o, o′ | a)
Mk(o, a)

max
a′∈A

Qk(o
′, a′)−Q⋆(o, a), (2.31)

then, if Vk(o) = maxaQk(o, a) and V⋆(o) = maxaQ⋆(o, a)

Fk(o, a) =
∑
s∈S

(n(s | o, a)
Mk(0, a)

rak(s)− P π(s | o, a)
)
Ra

s+

γ
∑
o′

n(o, o′ | a)
Mk(o, a)

[Vk(o
′)− v⋆(o

′)]+

γ
∑
o′

(n(o, o′ | a)
Mk(o, a)

− P a(o, o′ | π)
)
V⋆(o

′),

(2.32)

17

where
P a(o, o′ | π) =

∑
s

P π(s | o, a)
[∑

s′

P a(s, s′)O(o′ | s′)
]

The expected value of Fk(o, a) can be bounded by

∥E[Fk(o, a)]∥ ≤ γ ∥Vk − V⋆∥+∥∥∥∥∥E[∑
s∈S

(n(s | o, a)
Mk(o, a)

rak(s)− P π(s | o, a)
)
Ra

s

]∥∥∥∥∥+
γ

∥∥∥∥∥E[γ∑
o′

(n(o, o′ | a)
Mk(o, a)

− P a(o, o′ | π)
)
V⋆(o

′)
]∥∥∥∥∥

≤ γ ∥Vk − V⋆∥+ CϵMk ,

(2.33)

where ϵMk is the largest between

max
s,o,a

∣∣∣∣E[n(s | o, a)Mk(o, a)
rak(s)

]
− P π(s | o, a)

∣∣∣∣
and

max
s,o,a

∣∣∣∣E[n(o, o′ | a)Mk(o, a)

]
− P a(o, o′ | π)

∣∣∣∣
For any ϵ > 0, ∃Mϵ such that ϵMk < ϵ. Therefore, for the theorem of convergence of
iterative processes [23], for any ϵ > 0, with probability 1− ϵ, Qk(o, a)→ Q∞(o, a), where
|Q∞(o, a)−Q⋆(o, a) ≤ Cϵ|. Thus, the theorem ensures that, if the batch size M is large
enough, Q-learning algorithm will learn the optimal state-action values. The random
process Fk(o, a), which is the gap between the values at iteration k and the optimal
values, is converging (in probability) to zero, given that M is large enough.

Intuitively, the proof works because any action is taken infinitely often in every state
(this is ensured by the stochastic policy and the fact that every action has a non zero prob-
ability). This proof notwithstanding, it might be difficult for RL procedure to converge
in practice, but in general, the standard Deep Q-learning can be used even in POMDP.

2.5 Autoencoders

Sensory input of the RL agent can be of different types and very difficult to understand.
This is especially the case when the input is a multi-modal signal such as an image or a
video. What is more, if the sensory inputs is received by the agent through a (wireless)
communication channel, it becomes clear how being able to compress these sensory inputs

18

Figure 2.2: A sketch of the architecture of an autoencoder [2]

is extremely important. As a matter of fact, even if input signals are high-dimensional,
most of the time they do not cover the entire input space but a lower dimensional manifold.
For example, in the case of remote control, the representational domain that the sensor
has to be able to communicate to the agent comprises all the possible positions and
movements that the agent is doing.

Given this premise, the sensor is interested in learning this lower-dimensional mani-
fold. A Statistical method to achieve this scope is Principal Component Analysis (PCA)
[24], [25]. PCA is a linear method, which consists in projecting the input data into the
linear principal components of the input dataset which are the ones which maximize the
explained variance. However, a linear transformation of the data is insufficient to achieve
low dimensional representation for image or video inputs. Starting from the idea of PCA,
extensions to non-linear transformation have been found to work very well in the image
domain. Some seminal works about non-linear PCA can be found in [26] and [27]. In
particular in [27] the authors propose to use a symmetric architecture composed by two
neural networks: an Encoder and a Decoder, naming the entire architecture Autoencoder
(AE).

An autoencoder is a neural network which transforms the input signal through the
stacked layers and then reconstructs the original one in the final layer. In the typical
architecture, the layers have a smaller dimension than the input. Consequently, the
transformation obtained in the hidden layers approximate the lower dimensional manifold
the inputs can be represented with. In Fig. 2.2 a scheme of AE is shown.

In particular the main components of an AE are:

• The Input x ∈ D, where D is the dataset.

• The Encoder ENCθ(x), a neural network (parametrized by θ) which transforms

19

the input into a lower dimensional vector z

• The Latent representation z, the output of the encoder, a low dimensional vector
which represents the input.

• The Decoder DECϕ(z), a neural network (parametrized by ϕ) which reconstructs
the original input from the latent representation z.

• The Output x̂, the reconstructed input at the output of the decoder.

The AE is very efficient to train as it is possible to optimize all the parameters by
minimizing a single loss function. In particular, given an input x and the reconstructed
input x̂, the training of the AE can be performed by minimizing the Mean Square Error
(MSE) between x and x̂, leading to the following optimization problem

θ, ϕ = min
θ,ϕ

1

|D|
∑
x∈D
∥x− x̂∥22 = min

θ,ϕ

1

|D|
∑
x∈D
∥x−DECϕ(ENCθ(x))∥22. (2.34)

This optimization problem can be efficiently solved by defining the loss function

Lθ,ϕ =
1

|D|
∑
x∈D
∥x− x̂∥22. (2.35)

and minimizing it through SGD.
In order to deal with images, the layers often used in the encoder and decoder networks

are Convolutional Layers. Introduced by LeCun and Bengio in [28], convolutional
layers exploit spacial correlation of input pixels and shared weights to use a smaller
number of parameters with respect to a fully connected layer. Several contributions has
been brought during the recent years making convolutional networks an excellent tool for
image classification and visual input representation. The most important works are for
example AlexNet [29], VGGNet [30], inception layers introduced in GoogLeNet [31] and
residual layers introduced in ResNet [32].

Note that AE are generative models since they learn a latent representations of the
dataset which can be used also to generate new samples starting from random point in z.

2.6 Variational Autoencoders and compression

Autoencoders are a powerful tool which someone might exploits for different purposes,
however, the latent vector z is not properly a “compressed” version of the input image
x. Compression means represent the input x with a smaller number of bits. A formal

20

definition of the average number of bits for representing a variable x is the Shannon
entropy H(X) [33]. Given a random variable x ∈ X with p.m.f. p(x) the Shannon
entropy of x is defined as

H(X) = E[− log p(x)] =
∑
x∈X

p(x) log
1

p(x)
(2.36)

where X is used to represent the random process and x the realizations of this process.
From this definition, it is clear how the latent of an AE is not guaranteed to be a com-
pressed version of the input. Indeed ENCθ is a deterministic function of the input and
thus

H(X,Z) = H(X)− H(Z | X)︸ ︷︷ ︸
=0 (since z=ENCθ(x))

= H(Z)−H(X | Z)︸ ︷︷ ︸
≥0

(2.37)

where H(X,Z) ≥ 0 is the joint entropy and H(X | Z) is the conditional entropy. From
Eq. (2.37) it is possible to derive

H(X) ≥ H(Z) (2.38)

with equality if and only if ENCθ is a bijective function on X . Although it might be that
the latent space has a lower entropy, in the standard AE there is no guarantee of how
much smaller it is, meaning there is no way to control the compression.

In order to measure the compression, Shannon introduced the rate-distortion theory
[33]. Given a source X and a distortion measure d(x, x̂) (for example the mean squared
error), the information rate distortion function is

R(D) = min
p(x̂|x)∈ΓD

= I(X, X̂) (2.39)

where ΓD = {p(x̂ | x) : E[d(x, x̂)] ≤ D} and I(X, X̂) is the mutual information between
the process X and X̂. Since the reconstructed input DECϕ(z) = x̂ is a deterministic
function of z, it is possible to write also

I(X, X̂) ≤ I(X,Z) (2.40)

Thus, reducing the mutual information between the input and the latent space actually
reduces the rate with which the input can be encoded and thus is a proper compressed
version of the input, in the sense that it is possible to represent z with an average lower
number of bits with respect to x.

21

In order to practically optimize the rate and realize an AE where it is possible to
arbitrarily reduce the mutual information I(X,Z), it is possible to use a Variational
Autoencoder (VAE). Proposed by Kingma et al. in [34], a variational autoencoder is an
AE where the encoder is replaced by a parametrical encoding distribution pθ(z | x). In a
VAE the input is encoded into an encoding distribution, then a latent vector z is sampled
from this distribution and in the final stage, the input is reconstructed from z with the
decoder (as in AE). Below it is represented the forward pass of a VAE

x︸︷︷︸
input

→ pθ(z | x)︸ ︷︷ ︸
encoded distribution

→ z ∼ pθ(z | x)︸ ︷︷ ︸
sample z

→ x̂︸︷︷︸
reconstructed input

.

The loss function of a VAE can be written as

Lθ,ϕ = E[∥x− x̂∥22] + βDKL

(
pθ(z | x)∥p(z)

)
(2.41)

where DKL

(
pθ(z | x)∥p(z)

)
is the Kullback-Leibler divergence between the encoding dis-

tribution pθ(z | x) and a target distribution p(z). It is possible to show that

DKL

(
pθ(z | x)∥p(z)

)
= E

[
log

p(z | x)
p(z)

]
= E

[
log

p(z, x)

p(x)p(z)

]
= I(X,Z), (2.42)

which means that in Eq. (2.41) the mutual information I(X,Z) is actually minimized.
The parameter β controls the amount of compression and allows to optimize both the
reconstruction loss and the rate constraint similarly to lagrangian multiplier [35]. However,
in practice, the optimal target distribution p(z) is not known and is replaced by a prior
distribution such as the normal distribution N (0, 1) [34].

Despite being very similar to the AE, the sampling step is not differentiable, thus
when training the VAE, it is not possible to backpropagate the error as it is done in the
standard AE. To overcome this problem, it is possible to use the reparametrization trick
[34]. Instead of encoding the input into a distribution, the encoder estimates the mean
µx and the standard deviation σx of the distribution and then z is sampled as

z = µx + ϵσx, (2.43)

where ϵ ∼ N (0, 1). In this way, z is differentiable with respect to µx and σx since the
sampling of ϵ does not depend on the parameters of the encoder.

22

2.7 Quantization and Vector Quantization

In previous sections, VAEs have been proved to provide compressed representations of
high dimensional inputs. However, coding those representations to transmit them easily
through a communication channel requires some further considerations. Indeed, in the
standard formulation of VAE its latent space is a continuous vector space z ∈ RN . In order
to communicate the values of the latent space, they have to be quantized. Quantization
allows us to represent continuous intervals with a finite number of bits. There exist two
types of quantization:

• Scalar Quantization: quantize each sample of the vector at a time.

• Vector Quantization: quantize group of samples jointly.

Vector quantization (VQ) can perform better than the scalar one, as it can exploits the
correlation between the samples it is jointly quantizing. A VQ is specified by:

1. A set of decision regions or cells

Ii ⊂ RN , i = 1, ...,K where Ii ∩ Ij = for i ̸= j and
K⋃
i=1

Ii = RL

2. a set of code vectors (also called codewords)

yi ∈ RL, i = 1, ...,K

3. A quantization rule

Q : RL → {y1, ..., yK} such that Q(x) = yi if x ∈ Ii

When quantizing the vector x with the quantizer Q and the codewords yi it means that
each vector belonging to the region space Ii is represented with the vector yi. Of course
when quantized, the values of the vector are distorted by a certain amount which is

d(x, y) =
L∑

n=1

(xn − yn)
2 = ∥x− y∥22.

Given a distribution of vectors x with p.d.f. f(x) the MSE of the quantization Q is given
by

MSE =
1

L
E
[
d(x, y)

]
=

1

L

∫
RL

∥x−Q(x)∥22f(x)dx =
1

L

K∑
i=1

∫
Ii

∥x− yi∥22f(x)dx. (2.44)

23

There exist two conditions which are necessary for a quantization to be optimal. It
can be shown also that if the p.d.f. f(x) is sufficiently smooth these are also sufficient
conditions [36].

1. Nearest Neighbor Condition: given the set of vectors yi for i = 1, ...,K the
optimal portion Ii of RL is

Ii =
{
x : ∥x− yi∥22 ≤ ∥x− yj∥22 for i ̸= j

}
2. Centroid Condition: given the partitions of RL {Ii : Ii ⊂ RL , i = 1, ...,K} the

set of codewords that minimizes the distortion is

yi =

∫
Ii
xf(x)dx∫

Ii
f(x)dx

=

∫
Ii

xf(x | x ∈ Ii)dx for i = 1, ...,K

Those two conditions can be used to solve algorithmically the optimal quantization
problem. Introduced by Linde, Buzo and Gray in [37] the LBG algorithm for learning
vector quantization is a modified version of the Lloyd Max algorithm [25] which exploits
an expectation/maximization (EM) procedure to converge to a local optimal solution.

In the LBG algorithm, the two conditions mentioned are iteratively satisfied until the
regions and the codebook converges to an optimal solution. Of course, most of the times,
the p.d.f. of x is unknown and a sampled version of the procedure is used. In Alg. 2.3 the
discrete version of the LBG is given. Instead of having a distribution f(x) of the vectors,
a dataset X of them is collected and the integrals are replaced by summations over the
dataset. The termination condition D(n−1)−D(n)

D(n) < ϵ is satisfied when the distortion D

does not improve anymore, meaning that a local minima is being reached. This simple
iterative procedure is very similar to K-means clustering [25]. The reason why it converges
to a local minima and not to a global one is that vector quantization and more in general
k-means clustering is known to be a NP-hard problem, so the general approach is to use
an approximated solution.

2.8 Vector Quantized Variational Autoencoders

VQ can be useful to encode the latent space of a VAE into a discrete distribution, which is
easier to be transmitted through a communication channel. However, if the quantization is
performed after the VAE has been trained, it results in a drop in performance. This is due
to the fact that the decoder is not trained on the quantized version of the latent vectors
zq and thus might not generalize well. Also the VQ procedure optimizes the codebook

24

Algorithm 2.3 LBG algorithm
Given X = {x1, ..., xN} a set of vectors
Start an initial codebook {y(0)i , i = 1, ...,K}
Initialize distortion D(0) =∞, n = 1 and ϵ > 0
for each iteration

Compute the decision cells

I
(n)
i = {x ∈ X : ∥x− y

(n−1)
i ∥22 ≤ ∥x− y

(n−1)
j ∥22, ∀i ̸= j}

Compute the new codebook

y
(n)
i =

1

|I(n)i |

∑
x∈I(n)

i

x

Compute the distortion

D(n) =
1

|X|
∑
x∈X
∥x−Q(x)∥22

if D(n−1)−D(n)

D(n) < ϵ
Terminate

else
n← n+ 1

end if
end for

25

towards a good reconstruction of the latent vectors and not a good reconstruction of the
input.

If the decoder is trained with the quantized (discrete) version of the latent vectors, it
might learn a better decoding function than a two step procedure. Recalling the previous
forward computation pass of the VAE, when the latent space is a discrete distribution, it
becomes

x︸︷︷︸
input

→ z︸︷︷︸
encoded input

→ Q(z) = zq︸ ︷︷ ︸
quantize z

→ x̂︸︷︷︸
reconstructed input

.

where the sampling step is replaced by the quantization. Indeed, given the K centroids
yi for i = 1, ...,K the quantized version of the latent vector is

zq = yi , where i = argmin
j
∥z − yj∥22 (2.45)

The same problem as in the VAE arises backpropagating the error through the layers of
the autoencoder when the quantization step is added. Indeed, the argminj function is
not differentiable, thus some expedients are needed.

2.8.1 Straight through estimation of the gradient

Proposed by Bengio in [38], straight through estimation is a way to allow differentiation
in the backward pass of the training of a neural network. The idea is to rewrite the
quantized latent vector as

zq = z + sg(zq − z) (2.46)

where sg() indicates the stop gradient operator, meaning that the quantity sg(zq − z) is
not taken into account in the computation of the gradient. This makes it possible to
compute the gradient of the loss function with respect to z which depends only on the
parameters of the encoder θ and not the derivative with respect to zq which is obtained
through a non differentiable operation. The quantized vector is being expressed as

zq = z + q (2.47)

where q is the quantization error which does not depend on the parameters of the net-
work. Moreover, it is possible to show that the quantization error has zero mean and is
uncorrelated with the latent vector z.

Exploiting the straight through trick, it is possible to train a VAE with a quantization
layer. However, one final step is lasting in order to properly train this modified VAE.
Indeed, the codewords are not updated during the minimization of the loss function Lθ,ϕ

26

Z O S

Figure 2.3: Markov constraint on the three processes which are involved in the model

since they are excluded from the gradient estimation.
An architecture which solves this issue is presented in Vector Quantized Variational

Autoencdoers (VQ-VAE) [4]. In this VAE, the continuous (Gaussian) latent distribution
pθ(z | x) is replaced with a discrete distribution as explained before.

2.9 Compression and Information Bottleneck

In order to optimize the the performance of the system, the sensor needs to implement an
efficient and agile encoding of the observations ot. Moreover, it is fundamental that this
encoding compresses the observed frames in order to use less communication resources to
communicate the state to the agent. There exist two types of compression: lossless and
lossy compression. Obviously, in this scenario, the most suitable approach for the Sensor
is to implement a lossy encoding. The reason is that the agent can tolerate to receive less
information than the one contained in the observed images or video and still be able to
solve the problem. For example, if the agent receives a less detailed version of the state
with a lower definition, it might still be able to retrieve the correct actions to take.

In the system model considered on this project, it is possible to define three processes:
one is the process of the observations O, one is the process the encoded messages Z and one
is the process of the abstract states S. In the diagram in Fig.2.3 the markov constraint
on the three processes is represented, meaning that Z ↔ O ↔ S. The observation
process O is what the Sensor sees, Z is the encoded version of the observation and S is an
abstract representation of the state of the MDP that the agent has to solve. In general, the
observation of the Sensor is a high dimensional multimodal signal that contains more than
the information needed by the agent to solve the task. On the other hand, S represent an
abstraction of the state which represents the simplest description of the state according to
some metric. In order to compress the observation O, the sensor aims to find an encoding
distribution p(z | o) such that

p(z | o) = min
p(z|o)

I(O,Z)− βI(Z, S). (2.48)

This corresponds to the Information Bottleneck problem proposed in [39]. Finding this en-

27

coding distribution p(z | o) means optimizing the encoding distribution such that I(O,Z)

is minimal and I(Z, S) is maximal. This means that process Z discards bits of information
from O as much as possible while keeping the maximal amount of information about S.

2.10 Three levels of communication problems

The definition of the abstract process can be analyzed from different perspectives accord-
ing to the three levels of communication introduced by Shannon and Weaver in [10]. In
particular, these levels are:

• Level A. The technical problem

• Level B. The semantic problem

• Level C. The Effectiveness problem

Level A corresponds to how accurately the symbols of communication are transmitted;
this is the lower level of abstraction as the accuracy between the symbols of the sent
message and the received message is considered. Level B considers a semantic definition
of the information contained in the received message. In this case, the abstract process
is represented by the correct interpretation of the desired meaning from the received
messages. Of course, it is not trivial to define this semantic content univocally, as this
implies the existence of a shared knowledge between the sender and the receiver. The
last level, level C, is concerned with the success with which the meaning conveyed to the
receiver leads to the desired conduct on his part. This means that the communicated
messages has to allow the receiver to effectively adapt its behavior in the desired way.
Despite methods developed by Shannon apply to Level A, in [10] Weaver emphasises how
theory developed for the first level, applies to a significant degree also to level B and C.

28

3
Related Works

This chapter will concentrate on the relevant works which investigated different aspects
of the considered problem. Literature has been included to contextualize the scientific
area this work will contribute to.

3.1 Joint source channel coding

Joint source channel coding is a paradigm in the designing of communication systems
where the underlying idea is to learn an optimal source coding together with an optimal
channel coding. The separation theorem, proved by Shannon in [33], gives theoretical
guarantees that the separate optimization of source compression and channel coding can
approach the optimal performance in the asymptotic limit (size length N →∞). However,
Authors in [3] claim that there exist multiple scenarios where this limit is very difficult to
achieve in case of non-ergodic sources or channel models. In a similar work [9], Authors
stated that in many emerging scenarios, such as Internet of Things (IoT) systems, there
is no need to reconstruct the original input. For example, in [9], an identification task
based on face recognition needed to be carried out at the receiver. It has been noted that
since the task of face recognition is done through feature extraction, the receiver can work
in the feature space without implementing the decoder. Thus, deep neural networks are
employed to extract the features, then those features are encoded and transmitted on the
channel. At the receiver, the features are reconstructed and directly sent in input to a
classifier. It is clear how this procedure is aimed at learning jointly a good source coding
which can be optimized together with the channel coding scheme. The channel becomes

29

Figure 3.1: Block diagram of the point-to-point image transmission system: (a) compo-
nents of the conventional processing pipeline and (b) components of the proposed deep
JSCC algorithm, [3].

just a layer in the whole deep neural network architecture. In this work, researchers
advocate for task-based compression and coding, intending that intelligent coding schemes
can be obtained optimizing the compression subject to the task that must be performed.

In Fig. 3.1, a schematic view of the paradigm introduced by joint source channel coding
is represented. Training this architecture end-to-end can lead to better performance in
the case of task-based problems, where the receiver can use directly the latent space
representation z of the input x. One main thing pointed out by the Authors is that the
channel model might vary over time and thus using a fixed rate channel coding scheme can
suffer from the “cliff effect”. This name refers to the condition where the reconstruction
quality is not improved when the Signal to Noise Ratio (SNR) of the channel improves.

3.2 Context-Aware Cyber-Physical systems and Digital
Twin

Another relevant contribution is given by context-aware communication systems. The
context is given by some side information that the sender can acquire in different ways. For
example, there might be distributed sensors which inform a cloud server of the situation

30

of different parts of the environment. In [40], a vehicular network with a cloud service
assisting system is considered. The cloud service exploits the information coming from
the traffic measures, free parking slots and road conditions, to provide indication to the
vehicles. This system can be designed in multiple layers deciding where the context-based
decision has to be done. For example, the cloud server analyzes the environment condition
and provides only the relevant information for the vehicles to optimize their paths or to
find a parking slot. This reduces the computational burden on the vehicles, which do not
have to process all the environmental information. Another recent work proposed the idea
of Digital Twin, coming from the literature of Artificial Intelligence (AI) [41]. A digital
twin is a virtual representation of a physical system, which helps in real-time prediction,
optimization, monitoring, controlling, and improved decision-making through simulations.
Similarly to context-based systems, the underlying idea of these models is that the sender
can simulate and predict the dynamic of the physical system and thus provide to the
system only the relevant information. In the paper proposed [41], a real implementation
of a remotely controlled robotic arm is presented. The information retrieved by the digital
twin is a prediction of the movements of the physical robotic arm. The digital model is a
Long Short Term Memory (LSTM) which exploits the autoregressive nature of the (x, y, z)

coordinates of the arm position to predict the next coordinates. This can be seen as a
sequence-to-sequence prediction task in machine learning theory.

3.3 Control Under communication Constraints

Previously mentioned works provided a unified view of machine learning architectures and
communication systems. However, these powerful machine learning models often lack in
theoretical bounds on the feasibility of the problem. In [42], a characterization is given
based on information theory. Authors recognize that in a sender-receiver system, where
the receiver must accomplish a control task with respect to the received information, the
choices at the encoding might depend on the policy of the receiver. This argument holds
also for the receiver which has to adapt its control policy to subject to the information
received. The paper considers a continuous linear control problem

X0 ∈ Λ0, Xt+1 = AXt +BUt, (3.1)

which is observed through a noiseless digital communication channel. The observation
process is

Yt = CXt. (3.2)

31

The state is encoded in a message with m chosen between 2R possible messages, meaning
that R bits can be accurately transmitted through the communication channel. This
means that each state Xt is transmitted with an error which is called et. The Authors
proved that for the system to be asymptotically observable a necessary condition is that

R ≥
∑
λ(A)

max{0, log |λ(A)|}. (3.3)

The work considers two classes of encoders

• Class 1: the encoder knows the control signal Ut,

• Class 2: the encoder does not know the control signal but knows the control policy.

In the work two results for the optimal encoder, decoder and controller are derived.
Despite being a quite restrictive setting, this work provides a bound on the rate in order
to guarantee control performances. In another similar work developed in [43], a stochastic
control problem is considered deriving analogous bounds. Despite these interesting results,
the setting of the system is quite restrictive and does not generalize well to non-linear
control or to partially observable models.

32

4
System Model and practical implementation

In this chapter, the system model analyzed in this project is presented. In the first part, a
description of the setting and the building blocks is provided. Subsequently, the strategies
adopted to solve the problem are analyzed, discussing relevant choices based on literature
and implementation limits. The system model considered in this work comprises a system
with two agents which interact in the same environment. However, the interaction happens
only through a communication channel: one agent called the Sensor only senses the
environment through a camera, while the Controller agent cannot see the environment
and interacts in the environment taking actions.

In Fig. 4.1 the blocks of the system model considered are represented. The underlying
dynamic of the environment can be described with an MDP as presented in 2.2. Therefore,
the camera can not see the true state of the system, but it only observes some frames of
the environment where the agent is represented. In particular, using the same notation

Sensor Agent Environment
zt at

ot

rt

Figure 4.1: System model considered in this project.

33

used for the POMDPs in Sec 2.2, the sensor observes ot, incomplete information of the
environment. Then it must encode these frames in a message zt which is communicated
to the agent using a communication channel with finite capacity. The controller learns a
policy based only on the received messages. When the Controller takes action at in state
st it receives a reward rt. This way, the Controller can learn a policy which maximizes the
cumulative rewards as in typical RL scenarios. The Sensor chooses what to communicate
to the Controller based on the observations it senses, while the Controller takes actions
according to the messages received from the Sensor. The flow of information is similar
to the one described in the section of the information bottleneck problem in Sec. 2.9 .
Indeed, the Sensor wishes to optimize the communication resources used to communicate
to the controller. On the other hand, the Controller needs to receive a certain amount of
information about the observations in order to learn to control the agent.

4.1 The CartPole environment

In this project a “toy” control problem was considered. The Environment used is the
CartPole environment provided by the OpenAI Gym python library [44]. The control
problem consists of an inverted pendulum which has to be kept vertical and centered,
moving a Cart to the left or to the right. The state is described by four values:

• Cart Position,

• Cart Velocity,

• Pole Angle,

• Pole Angular velocity.

At the beginning of each episode, the four values are initialized at random sampling
from a uniform distribution U(−0.05, 0.05). Note that the Cart position takes values in
the range (-4.8, 4.8). At the beginning, the Cart is in the center of the scene with the pole
almost vertical and a small initial velocity. The two possible actions that the agent can
take are to push the Cart either to the left or to the right. The velocity that is reduced or
increased by the applied force is not fixed and it depends on the angle the pole is pointing.
The center of gravity of the pole varies the amount of energy needed to move the cart
underneath it. The episode terminates when the Cart exits the position range (-2.4, 2.4)
or the pole angle is not in the range (-.2095, .2095) [rad], corresponding to ±12°.

The reward function is obtained as the sum of two terms:

• A position penalty: r1 =
xmax−|x|

xmax
− 0.8,

34

• An angle penalty: r2 =
θmax−|θ|
θmax

− 0.5 .

x is the current position of the Cart, xmax = 4.8, θ is the current angle of the Pole and
θmax = 0.418[rad]. At each time step t, the environment returns a reward rt = r1 + r2

according to the current position x and angle θ. The frequency with which the agent
chooses an action is F = 50 Hz.

This environment has been proposed for the first time in [45]. The equations governing
the dynamic of the system are:

ẍ =
Ft +ml[θ2l

˙ sin θt − θẗ cos θt]− µcsgn(xt˙)
mc +m

,

θẗ =
g sin θt + cos θt

[
−Ft−mlθ2t

˙ sin θt+µcsgn(xṫ)
mc+m

]
− µpθ̇t

ml

l
[
4
3 −

m cos2 θt
mc+m

] .

In the problem considered there is no access to the four values describing the state of
the agent. In fact, the Sensor observes the environment through video frames which are
refreshed every time an action is chosen, so the video has the same frequency of F = 50 Hz.
The frame is an RGB image of size [400× 600× 3]. It is worth noting that even if there
was not any communication channel between the Sensor and the Controller, the problem
would still be a partially observable problem. Indeed, the initial values are set randomly
at the beginning of the episode, but the Sensor observes only one (static) frame. There
is no possibility to obtain information about the velocity and angular velocity. Only an
estimation on the Pole angle and Cart position can be done by the Sensor at the beginning
of the episode, thus the state is partially observable. More than one frame is needed to
estimate these velocities. However, this type of partial observability does not preclude to
control the agent from the video frames. After an initial transient, the unknown initial
conditions do not influence the system anymore.

4.2 Initial tests

To investigate the feasibility of the control problem and future design choices, some tests
are performed considering an ideal communication channel. The first test is to understand
whether it is possible to estimate the state parameters from the video frames. This is just
a test to understand if it is possible to extract relevant features from the video frames
which help the controller to solve the task. Note that this first task does not consider a
communication channel between the Sensor and the Controller. This first analysis is a

35

supervised learning task, more technically it is a regression task. The main objective of
the learning algorithm is to learn a function fθ(·) which takes in input the observations ot
for t = 0, 1, 2, ... and estimates the four-dimensional vector st = [xt, ẋt, θt, θ̇t], containing
the state parameters. Since these values are continuous, this is a regression task.

One first thing to observe is that at least two frames are needed to estimate the ve-
locity. Thus, the function fθ at time t receives in input ot and ot−1. The function fθ

is parametrized by a vector of parameters θ which has to be set to solve the following
optimization problem

θ⋆ = min
θ∈Θ

E
[
∥ŝt − st∥22

]
, (4.1)

where ŝt = fθ(ot−1, ot) is the output of the function and the estimated vector of the state
parameters. In this case, the true state st is assumed to be known as an oracle. This is
just an initial test to justify the implementation choices; this assumption will not be used
in the subsequent scenarios. A neural network is used to do the regression because of
its versatility to deal with images. In particular, convolutional layers are used to extract
relevant features from the input frames and then the final layer dimension is set to four,
since it has to match the dimension of the state vector.

The first thing to do is to acquire a dataset containing a wide variety of frames, so
that during the learning procedure the network sees a lot of data and adapts its weights
converging to a good solution. To ensure that the function is really able to estimate the
true state, for any possible policy used by the Controller, a random policy is used. This
means that between frame ot and frame ot+1 in the dataset, the Controller takes an action

at =

left, w.p.12
right, w.p.12

.

This random policy ensures that the range of the dynamics collected are not biased by
a restrictive policy which only visits certain states. A dataset containing 50000 states is
collected. This implies that the dataset contains 50000 tuples of the form (ot, ot+1, st+1).
Note that at is not considered in input in the regression task. This complicates the
problem since, at every time step, the action of the Controller applies a force (to the left
or to the right) to the CartPole. For example, it is not possible to obtain the velocity ẋt

as xt−1 − xt because the acceleration is not zero due to the action taken. However, the
acceleration is typically small if the pole does not oscillates too much and thus a good
estimation of the four state values would be possible.

The Neural Network used for the regression task has three convolutional layers and
one final linear layer. In Tab 4.1 the layers of the regression network with the respective

36

Layer Input Output Activation function
1st Conv. layer 2 channels 16 channels ReLU
2nd Conv. layer 16 channels 32 channels ReLU
3rd Conv. layer 32 channels 32 channels ReLU
Flatten layer 32× 18× 10 5760 /
Linear layer 5760 4 Linear

Table 4.1: Layers of the regression network.

MSE
Training 0,051

Test 0.059

Table 4.2: Mean Square Error of the Training and Test in the regression task.

dimensions are highlighted.
The kernel used in the three convolutional layers is a 2-dimensional 5 × 5 filter with

stride equal to 2. From Tab. 4.1 note that the number of input channels of the first
layer is 2. This is because the frames are converted from RGB images to grayscale. Thus,
two grayscale images corresponding to ot and ot+1 are given in input to the network. It
is possible to do this without loss of generality since the only object in the frame is the
CartPole and the shape is perfectly preserved when converted to grayscale. This way, it
is possible to reduce the computational burden which derives from using the frames in the
RGB space. Also the images are cropped, so that the moving CartPole is perfectly visible
but the pixel number is reduced. From a 400× 600 image, the actual size of the frame in
input to the network is 180× 360. The activation function used in between each layer is
the Rectified Linear Unit (ReLU), but in the last linear layer a linear activation function
is used in order to obtain a range of values which spans from the negative values to the
positive ones. After each convolutional layer, batch normalization is used to normalize
the input of the following layers.

The network has been trained for 1000 epochs with a batch size B = 128, randomly
sampled from 8000 samples. The optimizer used is the Adam oprimizer [46] with a learning
rate lr = 10−4. The remaining 2000 samples were used to test the performance after the
training phase. The training and test results are shown in Tab. 4.2.

It can be observed that the MSE is actually low. This can be stated by looking at the
ranges of the physical values which are between (-3,3) for the velocity and the angular
velocity, (-2.4,2.4) for the position and (-0.2,0.2) for the angle. Indeed, it is possible to
retrieve information about the dynamic of the system by looking at the video frames of

37

Layer Input Output
1st Linear layer 4 128
2nd Linear layer 128 128
3rd Linear layer 128 2

Table 4.3: Layers of the Q-function network for the supervised setting.

the environment.

4.3 Training the entire system with supervision

The result obtained in the previous section justifies the first test that was done to train the
complete system model with supervision. In this analysis, the possibility of learning a good
control policy from the estimated values is being tested. In this scenario, the regression
network is already trained and the Controller uses the state estimated by the regression
network to learn a control policy for the task. Note that there are no restrictions given by
the communication channel. In this case the link between the Sensor and the Controller
can be considered an ideal communication channel which is able to communicate values
with infinite precision.

To train the Controller, Deep Q-learning is used. To parametrize the Q-function of
the Controller a neural network is used. The policy takes in input 4 values (ŝt estimated
by the Sensor) and gives as outputs 2 Q-values which correspond to an estimation of the
expected cumulative return for the two possible actions. The network has three layers and
the technical details are listed in Tab. 4.3. The nonlinear activation function used after
layer 1 and 2 is the hyperbolic tangent activation function, whereas the linear activation
function is used at the output of the last layer.

In this setting, the information flow is the following. The Sensor sees the new frame
and it estimates the state values using the already trained regression network. After that,
the estimated state is used by the Controller as the only available state information to
learn the control policy. Thus, the estimated state is used in input to the Controller’s
Q-function to obtain the Q-values. The Controller uses a softmax policy to choose an
action using the estimated Q-values.

As explained in Sec. 2.3, training a RL agent with Deep Q-learning requires an ex-
ploration stage where the agent interacts with the environment to collect an experience
and to store it in a Replay Memory. In this part, the Controller does not use a random
policy, but it uses the softmax policy with a high temperature parameter. In this phase of
the training, the Q-network is not updated since the updating step can occur only when

38

enough experience is acquired.

Algorithm 4.1 RL training algorithm
Given the regression Network fθ(ot−1, ot)
Initialize the policy network Qθ and target network Q−

Initialize an exploration profile for the parameter β
n = 0 set the episode number to 0
for each episode

Initialize the environment to s
Obtain the observation o
Estimate the value of the state ŝ = fθ(o, o)
while s is not terminal
a← πβ(ŝ)
Take action a and observe r, s′, o′

Estimate ŝ′

Store (ŝ, a, r, ŝ′) in the Replay Memory
if Enough memory

Sample a batch B form the the Replay Memory
Update the policy network using loss function

Lθ =
∑
i∈B

1

|B|
(Qθ(ŝi, ai)− ri −max

a′
Q−(ŝ′i, a

′))2

end if
s← s′

end while
if n % 10 = 0

Update Q− using Exponential Moving Average
end if
n← n+ 1

end for

In Alg. 4.1 the training procedure to train the Controller policy is shown. The Qθ

network and Q− network are initialized in the same way, with the same weights values.
The exploration profile is a sequence of values of the parameter β of the softmax function.
To allow for exploration/exploitation trade-off, the initial value is set to 3 and then it
decreases exponentially. Given the initial value β0 = 3, the temperature value at the n-th
episode is

βn = e
−n log

6β0
Nep ,

where Nep is the total number of episodes. Changing the constant of the formula enables
to modify how long the exploration period lasts compared to the exploitation one. with

39

the respect to the exploitation one. At every episode n the parameter becomes smaller
(βn → 0 for n→∞). This implies that the Controller is exploring in the first part, whereas
near the end of the training it is exploiting and refining the policy only considering the
experience it has acquired. It is very important for the exploration profile to be smooth,
in order to ensure that the trade-off between exploration and exploitation changes slowly
and does not affect the stability of the Deep Q-learning.

At every step of the episode the controller samples an action according to the softmax
policy derived from the Qθ network. More specifically,

Pr(a | ŝ) = πβ(a | ŝ) =
eβQθ(ŝ,a)∑
a′ e

βQθ(ŝ,a′)
. (4.2)

Note that the learning procedure does not use the true state s anywhere in the estimated
values. Indeed, in the Replay Memory, the estimated current state ŝ and next state ŝ′ are
stored. The memory is implemented as a fixed capacity queue. Samples in the queue enter
and are stored until the maximum capacity is reached. When the queue is full, the oldest
tuple is discarded and a new tuple can enter the queue. This permits to maintain an
updated memory which only remembers the newest experience. In fact, as the Controller
learns, bad state action pairs (s, a), associated with low Q-values, will not be selected
anymore and there is no need to re-estimate their Q-values. Looking at Alg. 4.1, it is
possible to note that the Qθ network is updated only when there is enough memory in
the Replay Memory. This ensures that the Controller explores a little bit before updating
the weights. Moreover, sampling a batch B of i.i.d. tuples is crucial to guarantee that
SGD converges to good minima.

A detail is that only the tuples where s′ is not a terminal state are used: this fact is
not shown in the algorithmic procedure to make the pseudocode easier to be read. When
a tuple ends with a terminal state, the expected return associated with that state should
be zero as the episode terminates. However, the Qθ network is not able to recognize the
terminal state and so this case is just avoided in the updating of the policy network. This
solution might not teach to the Controller to avoid terminal states however, since states
near to terminal states are associated with low rewards, in the long run the Controller
will learn to avoid such states.

The target network is updated every 10 episodes using an exponential moving average
formula to change its weights. The parameter controlling this updating is set to 0.5. It
was seen that this was a good trade-off since lower values cause instability in the training
phase, whereas higher values require many more episodes due to slower convergence.

The agent is trained for Nep = 3000 episodes, with a Replay Memory of capacity

40

C = 10000. The minimum size to train (the condition to update the policy network) is
1000, meaning that at least 1000 should be stored in the memory before training Qθ. The
optimizer used to update the parameters of the network is SGD with a learning rate of
10−3. A good control policy was learned by the Controller which was able to control the
pole for an average of 308.2 steps. This is a good result since the target for the CartPole
control problem is to reach 200 steps.

Another thing which was noted is that it was necessary to re-train the regression net-
work every 100 episodes in order to keep it updated and able to estimate values correctly.
This is done to ensure that the regression network is able to correctly estimate all the val-
ues that the agent uses to train the policy. Otherwise, it might happen that some states
are inaccurately estimated avoiding the Controller to discriminate the action properly.

4.4 No oracle: the Unsupervised Scenario

Given the good results in the training of the Controller, it is possible to recognize that
the high-dimensionality of the observation space can be reduced using small dimensional
vectors to represent the state and still control the environment optimally. In the previous
scenario, it is possible to say that the learning of the these low dimensional representations
is done with supervision. The Sensor has access to the exact values describing the dynamic
of the environment. This case is unrealistic as in a lot of domains the Sensor is not provided
with the true state of the MDP, but it only observes a partially observable state. This
case is more realistic as in a proper environment problem the Sensor is only observing the
environment without any other knowledge about the underlying dynamic of the system.

However, the results of the supervised approach guarantee that the observations can be
encoded with a lower-dimensional signal. This signal can be learned with an unsupervised
learning approach, more specifically using a generative model to discover a low dimensional
embedding for the observations. This can be done with an Autoencoder (AE), which is
presented in Sec. 2.5. The AE is made of an Encoder and a Decoder and the middle
layer is the latent space. The Encoder can be realized similarly to the regression network
used before. The main idea is still to have two frames in input to a convololutional neural
network. After the convolutional part, a linear layer forms the latent space and then a
decoder made of deconvolutional layers is used to reconstruct the image from the linear
latent space.

In Tab. 4.4 the details of layers of the AE are shown. The three convolutional layers
are the same of the regression network: 5 × 5 1D kernel with stride equal to 2. The
latent space is set to 64: this is an arbitrary choice. The activation function is the ReLU

41

Layer Input Output
ENCODER

1st Conv. layer 2 channels 16 channels
2nd Conv. layer 16 channels 32 channels
3rd Conv. layer 32 channels 32 channels

Flatten layer 32× 18× 10 5760
Linear layer 5760 64

DECODER
Linear layer 64 5760

Unflatten layer 5760 32× 18× 10

1st Deconv. layer 32 channels 32 channels
2nd Deconv. layer 32 channels 16 channels
3rd Deconv. layer 16 channels 2 channels

Table 4.4: Autoencoder architecture.

Accuracy
Training 0.985

Test 0.973

Table 4.5: Reconstruction accuracy of the AE.

function except for the Linear layer which has a linear activation function. This enables
to exploit all the possible values of the latent space. This means that the AE will encode
two subsequent frames into a single vector with 64 values. Given z the latent vector,
it will be used by the Controller to learn a policy to control the CartPole. Note that
it is essential to encode at least two frames in the same latent vector, as the embedded
representation should resemble a description of the current dynamic which is happening
in the environment.

Training the AE can be done similarly to the regression task: couples of frames can be
collected, while the Controller acts using a random policy. Note that, as in the regression
task, the action is not given in input to the AE as in the realistic scenario the Sensor can
not access to this information. A dataset containing 10000 couples of frames is collected,
8000 are used for training the AE and 2000 are used for testing the reconstruction accuracy.
A batch size of 128 samples is used and the AE is trained for 3000 epochs. At every epoch
the batch is randomly sampled to reduce the correlation between the data which might
be correlated due to the procedure used to collect them. The optimizer used is the Adam
optimizer with a learning rate of 10−4.

In Tab. 4.5 the reconstruction accuracy obtained with the AE is reported. This

42

(a)

(b)

Figure 4.2: Example of two frames (a) original (b) reconstructed by the AE.

measure is obtained as 1 - MSE(x,x̂). More specifically, the input is x ∈ R2×180×360,
which is a matrix containing two frames corresponding to ot and ot−1. x̂ has the same
size of x and is the output of the AE. In Fig. 4.2 an example of two frames and the
corresponding reconstruction obtained with the AE is pictured. It is possible to see that
the reconstruction is accurate, so that it is possible to say that very little information is
lost when representing the pair (ot, ot−1) with zt.

Using the latter result, it is possible to train the Controller giving in input to its policy
only the embedded representation of the frames. On one side, this will reduce the size
of the neural network to use at the Controller, but it also avoids to pass all the frames
to the Controller. Hypothetically, the Sensor will sense the frames and then send to the
Controller the encoded version obtained with the Encoder of the previously trained AE.

It is possible to train the Controller using Deep Q-learning as mentioned before. The
architecture used is the same of the supervised scenario, but the size of the input layer is
64 as the size of z. The training setting is similar to the supervised case: softmax policy
with the same exploration profile. However, it has been noted that the training procedure
requires more time to converge (4000 episodes).

43

4.5 A finite capacity communication channel

The system described before, whether it is the supervised or unsupervised version, pro-
vides a very good benchmark on the possible performance of this model. However, an
application to a real scenario will need to satisfy other requirements. For example, if the
Sensor has to communicate the observations to the Controller, it must use a communica-
tion channel. Typically, this communication channel has a finite capacity. In particular,
in this work, a digital channel with a maximum number of bits per message is considered.
Defined B the maximum number of bits that it is possible to communicate through the
channel at every time step, the Sensor has to encode the observations choosing among 2B

messages. From this perspective, one might think to use the estimation of the true states
(the 4 values representing a physical description of the state) using a predefined number
of bits per value. This approach has two main drawbacks:

• The system dynamic might be unknown to the Sensor, meaning that there is not
any possibility of learning to estimate it in a supervised way.

• The system performance degrades poorly as the number of bits for representing the
values decreases.

The reason of the latter drawback is that there is no way to allocate the communication
resources (bits) in an optimal way. If the Control performance is bad, the only way possible
is to increase the number of bits used for representing the values.

The other unsupervised approach solves the issue of having to know the physical value
of the system to train the estimator, but it does not improve from the side of optimal
allocation of the limited resources. One thing which can be done is to implement a Vec-
tor Quantization (VQ) after the Encoder. In Sec 2.7, it was shown how VQ provides a
theoretical guarantee to return a (locally) optimal solution given a maximum number of
bits to represent a dataset of vectors. However, it was previously highlighted how a joint
training of the AE and quantization can lead to bad performance, since the decoder is
not trained on the quantized vectors. One way to understand this problem is to consider
two latent vectors which yield different reconstructions at the decoder, but quite simi-
lar embedded representations. The VQ will encode these latent vectors with the same
codeword, making it impossible for the decoder to return different reconstructions.

In [4], Authors proposed an architecture to train jointly the AE and the VQ by optimiz-
ing a single loss function. This model is named Vector Quantized Variational Autoencoder
(VQ-VAE). It is possible to think a VQ-VAE as a VAE with discrete latent variables. Con-
sider a VAE with a discete embedding space y ∈ RK×D where K is the size of the discrete

44

latent space. Recalling the VQ, K is the number of RD regions with a relative codeword
associated. ze is the output of the Encoder of the AE, it is the vector representing the in-
put in a continuous latent vector space. This discrete distribution is defined as a one-hot
encoding:

q(z = k | x) =

1 for k = argminj∥ze(x)− yj∥2
0 otherwise

. (4.3)

This is exactly the nearest neighbor assignment of the VQ. Note that in this case, a
deterministic distribution is used. Thus, defining a uniform prior distribution over the
latent space, the KL divergence term of the VAE is constant and equal to logK. Given a
uniform prior p(z = k) on the codewords, the probability of each codeword is 1

K leading
to

DKL(q(z = k | x), p(z = k)) = E
[
log

q(z = k | x)
p(z)

]
=

E[log q(z = k | x)]︸ ︷︷ ︸
=0

−
K∑
k=1

1

K
log

1

K
= logK.

(4.4)

The term E[log q(z = k | x)] is equal to zero since the joint probability q(x, z) is zero for
every k except one, but the log q(z = k | x) is equal to zero for q(z = k | x) = 1. It
is possible to ignore the KL term in the loss function of the VQ-VAE. This implies that
every deterministic discrete distribution over the codewords will be accepted.

The quantized latent vector can be written as

zq(x) = yk, where k = argminj∥ze(x)− yj∥2. (4.5)

The latter quantization function is not differentiable, since no gradient can be defined for
the argminj function. In the VQ-VAE paper [4], Authors proposed to use straight-through
gradient estimation to solve this issue. There exist another method to do differentiate
through a non differentiable function, which is the Grumbel-Softmax reparametrization
[47]. However, in this work the straight-through method is considered, since it is known
to converge much faster.

In Fig. 4.3, the forward and backward pass of the quantization layer is reported. In the
forward pass, ze is quantized using one of the codebook vectors yk. In particular, in the
figure it is highlighted as the quantized vector zq which is given in input to the Decoder
DEC(zq), and is written as zq = ze + q (the embedded input ze plus a term q, which
refers to the quantization noise). In particular, q = yk − ze, thus zq = ze + (yk − ze) = yk.

45

DEC(zq)

Q(ze){y1, ..., yK}

ENC(x)

zq = ze + q

yk

ze

DEC(zq)

Q(ze){y1, ..., yK}

ENC(x)

∂L
∂zq

∂L
∂ze

Figure 4.3: Forward and Backward pass using the straight through estimation of the
gradient.

However, in the procedure of the forward pass in the neural network, zq is written as

zq = ze + sg(yk − ze), (4.6)

where sg(·) is the stop gradient operator. This operator excludes the input term from the
gradient computation. This trick is similar to the reparametrization trick of the VAE and
permits to exclude the non-differentiable computation from the gradient of the neural
network. In the second picture of Fig. 4.3, the backward computation is shown: it is
possible to see that no gradient is computed with respect to yk.

This architecture enables to use the standard loss of the AE and to train the Encoder
and Decoder parameters. However, there is still one part missing out: the codebook
vectors are not updated, since they are excluded from the gradient computation. Following
the idea of the LBG algorithm, the codeword y1, ..., yK should be updated towards the
points which fall in their region. This can be done by simply reducing the distance
between the codeword yk and the point ze which is inside the region Ik. In particular the
distance which has to be reduced is

∥yk − sg(ze)∥22. (4.7)

Note how ze is the target point, so that yk is updated towards ze but ze is treated as a
constant value (using sg(·)). It is possible to jointly optimize the Encoder and Decoder
parameters and the codewords by adding Eq. (4.7) in the loss function of the AE. The

46

new loss function becomes

L = ∥x− x̂∥22 + ∥yk − sg(ze)∥22. (4.8)

Authors in [4] introduced a third term which they called commitment term to guar-
antee that ze is forced to stay near the codeword ek. This term should stabilize the
learning procedure avoiding that the latent space ze changes too rapidly with respect to
the codebook. The final loss function is made by three terms and can be written as

L = ∥x− x̂∥22 + β∥ze − sg(yk)∥22︸ ︷︷ ︸
updates the parameters of the Encoder and Decoder

+ ∥yk − sg(ze)∥22︸ ︷︷ ︸
updates the codewords

. (4.9)

The term β∥ze − sg(yk)∥22 is the commitment term and β is the commitment cost
which controls the importance of this term with respect to ∥x−x̂∥22. The Authors proposed
to use β = 0.25.

The main improvement of this architecture is the possibility to obtain a discrete latent
representation of the input x. However, when dealing with images, it can be very chal-
lenging to encode one image with one single vector. This is because the input dataset can
have a lot of diverse inputs which require many different codewords yi to allow a small
reconstruction error. To deal with this problem, authors proposed to encode the features
in output of the convolution with one codeword each. Recalling AE architecture in Tab.
4.4, it is possible to see that before the latent space there is a flatten layer which takes the
features of the convolution and creates a 1-dimensional vector containing all the values.
However, in the VQ-VAE, the output of the last convolutional layer is quantized, leading
to a latent space where each input is represented as a set of quantized features.

In Fig. 4.4, a visual representation of the architecture of the VQ-VAE is shown. It
is possible to see that the output of the convolution is a three dimensional tensor. In
details, if the last convolutional layer reduces the input image to a height H and a width
W and uses C filters, the results output for each image will be a H ×W × C matrix.
The quantization layer will quantize each one of the H ×W vectors of length C using the
codewords yi. At the decoder, a deconvolutional layer will reconstruct the input starting
from the quantized version of the image. Note that in this way the latent representation of
an image q(z | x) is a matrix containing the indexes of the codeword used for every sample
of height h = 1, ..., H and width w = 1, ...,W . Using this tensor representation might not
seem necessary. However, this reduces the size of the dictionary (codebook) that has to be
used a lot. For example, given a codebook of size K, with a 1-dimensional discrete latent
space, it is possible to represent each input x in at most K ways. However, with more

47

Figure 4.4: Visual representation of the VQ-VAE architecture, [4].

features it is possible to exploit the combinations of more codewords. This means that
the size of the discrete distribution in architecture in Fig. 4.4 is KH×W . This drastically
reduces K, but it still has many possible ways to encode the input. Dealing with small
codebooks can improve the efficiency of the system, since it reduces the communication
overhead necessary to communicate the new codewords to the Controller and also reduces
the storage resources necessary to store the dictionary of codewords.

Given this premise, the VQ-VAE is a suitable architecture which can deal with a
lot of problems related to the considered system model. Given that both the Sensor
and the Receiver know the optimal codewords discovered by the VQ-VAE, it is possible
to communicate the input x, from the Sensor to the Controller, just by sending the
sequence of indexes which corresponds to the selected codeword for every feature. A
rough estimation of the number of bits necessary to do this is H ×W log2(K). It might
be possible to further reduce the average number of bits by collecting a statistics on the
number of time each codeword is communicated and implement various entropy encoding
techniques. However, this latter approach is not investigated in this work.

4.5.1 Optimizing the Codebook

Further details about the way codewords are updated need to be discussed. At the
beginning of the training phase, the codewords are randomly initialized. Then, for each
batch of inputs of size B, a set of feature vectors {z1e , ..., zni

e } will be encoded with the

48

codeword yi. This means that the best codeword which optimizes the loss function L is

yi = min
yi∈R

ni∑
j=1

∥sg(zje)− yi∥22, (4.10)

which is a least square problem that allows a closed form solution. The new codeword
yi will be

yi =
1

ni

ni∑
j=1

zje . (4.11)

This is indeed the same updating rule of the LBG (and the K-means) algorithm. However,
this is not practical to be used in the training of a Neural Network. Typically, a NN
requires to use batches of inputs and not the entire dataset in the same iteration. This
update rule for the codeword might not work well in the batch version. Thus, Authors
in [4] and in [48] proposed to use an exponential moving average (EMA) updating rule
for the codewords. This allows the codewords to change slowly with respect to the latent
space, leading to a more stable learning dynamics. This can be implemented by using a
cluster size vector which stores all the number of times a codeword is used in the same
batch at iteration t. For the codeword yi, N (t)

i stores this value. Another vector keeps
track of the sum of the zje which are encoded with yi. At the beginning of the training
phase, N (0)

i = 0∀i ∈ {1, ...,K} and m
(0)
i = 0∀i ∈ {1, ...,K}. At every iteration t, these

values are updated as

N
(t)
i ← γN

(t−1)
i + (1− γ)n

(t)
i , (4.12)

m
(t)
i ← γm

(t−1)
i + (1− γ)

n
(t)
i∑

j=1

zje . (4.13)

After obtaining these values, the new codeword at ever iteration t is given by

y
(t)
i =

m
(t)
i

N
(t)
i

. (4.14)

Using γ = 0.99, as proposed by the Authors, maintains the update of the codewords
stable, avoiding them to collapse around a small region.

This way, the codewords are slowly converging to the optimal values, avoiding to change
too rapidly.

Another issue often faced when learning the codebook is that it may happen that not all

49

the codewords are used to encode the latent features. This issue is not investigated much
in [4], since the authors are not concerned to use a limited number of K. However, in the
problem considered in this work, using all the possible messages (all the codewords) is
highly relevant. Having codewords which are never used to encode the input means that it
might be possible to reduce the size K and thus the message length H×W×log2(K). This
is also a known problem in K-means, where the problem is typically solved using multiple
execution of the algorithm and through multiple reinitializations of the codewords. This is
impractical to be done in this context. Another way to make sure to use all the codewords
is to use the split-LBG [37]. This method consists on starting the LBG algorithm with one
codeword and updating it until convergence. Once converged to the optimal codeword,
the codeword is splitted in two by slowly perturbing the optimal codeword with a small
random ϵ. This procedure is repeated for a lot of iterations until the desired number
of codewords is obtained. This ensures that all the codwords are used but it is still
impractical to be used with batches of inputs.

It is possible to see that the main issue which causes a codeword not to be used is
that it might be initialized far from the encoding region of the Encoder. Based on some
observations made in [48] and inspired by the split-LBG version of the LBG algorithm,
a novel approach to deal with the problem of non-used codewords is proposed. This
method can be implemented in a batched training procedure and allows to mitigate this
issue. Consider a batch of inputs B = {x1, ..., xB} . At the output of the Encoder, there
will be B × H ×W feature vectors to be encoded. Then, every feature vector will be
encoded using the nearest neighbor condition. Let’s call E the tensor of size (B,H,W,C)

where all the entries are zeros except for the entry Ej,h,w,i = 1 when the feature ze of index
h,w of input xj is encoded with codeword yi. Summing the entries of E with respect to
the batch, height and width dimensions returns the vector of length K, containing the
number of feature vector encoded with each codeword. If this number is zero, it means
that the codeword has never been selected within that batch. If the batch is large enough,
all the codewords should be used within the same batch. If some codewords are not
selected, they are re-initialized near a latent point ze, selected randomly from the matrix.
Certainly, this reset of the codeword cannot be done every iteration, but it should be
done after a fixed number of iterations.

In Alg. 4.2, the training procedure of the VQ-VAE is presented. In the first part of
the algorithm, the forward pass is computed obtaining the reconstructed input. Then,
the parameters of the Encoder and Decoder are updated using the loss function L. The
codewords are updated using the previously described EMA procedure. The last part
of the algorithm shows the codeword reset introduced by this work. It is possible to

50

Algorithm 4.2 Training Algorithm of the VQ-VAE with codewords reset
Initialize the Encoder ENCθ

Initialize the Decoder DECϕ

Initialize the K codewords randomly
n← 0
for each iteration:

Sample a batch B randomly from the dataset D
ze ← ENCθ(x) ∀x ∈ B (Pass the input through the Encoder)
Select yk ∀ze (Quantize the latent vectors)
x̂← DECϕ(yk)∀yk ∈ E (Reconstruct the through the Decoder)
Update θ and ϕ according to L(x, x̂)
Update the codewords yi for i = 1, ...,K using the EMA equations
if n % 100 = 0:

Find {yj} for j ∈ U (set of unused codewords)
Sample |U| latent vectors from the current latent vectors {zje}
yj ← zje + ϵ ∀j ∈ U

end if
n← n+ 1

end for

see that the subroutine for resetting the unused codewords is done every 100 iterations;
this is because, after the reset, the VQ-VAE should adapt to the new codewords before
searching for the new unused ones. In the algorithm, U is the set containing the indexes
of the unused codewords, while ϵ is a small random vector which is added to the latent
vector to reset the codeword near that point. This is a simple method, but it has been
found to work effectively to enable the usage of all the codebook. Intuitively, resetting
the codewords near the latent vectors should make them more likely to be selected as the
encoding codeword in the following iterations. Also note that regions of the latent space
where there are more points (more latent vectors) are more likely to be selected to be the
region where the codeoword is reset. This is something useful, as the high density regions
of the latent space should be quantized with higher precision.

To track the average number of codewords used in every iteration, the Perplexity
on the codewords is tracked during the training. The perplexity PP (p(x)) of a discrete
distribution p(x) is defined as

PP (p(x)) = 2H(p) = 2−
∑

x p(x) log2 p(x) =
∏
x

p(x)−p(x). (4.15)

H(p) is the entropy of the discrete distribution p(x) and represents the average number
of bits required to encode the outcome of the random variable X. Thus, PP (p(x)) is

51

the expected number of different outcomes when observing the output of the random
variable X. A low perplexity over the distribution p(x) implies that the random variable
X is highly predictable, whereas a high perplexity means the random variable is not
predictable.

In the context of the codewords usage, it is possible to compute the perplexity among
a discrete distribution of the codewords computed during an iteration (within the batch
of samples). In particular, Nlatent = B ×H ×W the total number of codewords used in
the batch, the probability of the codeword yi is computed as

p(yi) =

Nlatent∑
j=1

δi(z
j
e)

Nlatent
for i = 1, ...,K (4.16)

where

δi(z
j
e) =

1 if zje is encoded with yi

0 otherwise
. (4.17)

Perplexity is telling something more than how many codewords are used inside the batch;
it tells how often the codewords are chosen. For example, if the perplexity is near K,
it means that every codeword is chosen approximately 1

K times, meaning that all the
codewords are used on average the same number of times. If the perplexity is low, there
is a high chance that not all the codewords are used or that some codewords are used a
lot and some others very few times. Ideally, the perplexity should be near to K, meaning
that the Encoder is equally exploiting every codeword to represent the inputs. However,
the perplexity can be lower than K even if the quantization step is using all the codewords.
This is due to the fact that some codewords might be used a lot of times whereas others
less times.

4.5.2 Results on the VQ-VAE

The VQ-VAE is trained on a dataset containing 60000 pairs of frames representing two
subsequent obervations of the environment. 50000 are used in the training, whereas 10000
are used to test the final performances.

The layers of the VQ-VAE implemented are reported in Tab 4.6. It is possible to note
that a residual layer is added at the end of the first three convolutional layers as suggested
by [4]. The pre-quantization layer is a convolutional layer which ensures that the number
of channels at the output of the Encoder is equal to the desired embedding dimension
which must match the size of the codeword vectors. Another aspect to consider carefully
is the kernel sizes. Indeed, the choice of the convolutional kernels related to the input

52

Layer Input Output Kernel Size Stride
ENCODER

1st Conv. Layer 2 channels 64 channels (11,10) (8,9)
2nd Conv. Layer 64 channels 64 channels (12,12) (10,10)
3rd Conv. Layer 64 channels 128 channels (3,3) (1,1)
Residual layer 128 channels 128 channels

Pre-Quant. layer 128 channels 64 channels (1,1) (1,1)
Quantization layer 64 channels 64 channels

DECODER
1st Deconv. Layer 64 channels 128 channels (3,3) (1,1)
2nd Deconv. Layer 128 channels 64 channels (12,12) (10,10)
3rd Deconv. Layer 64 channels 2 channels (11,10) (8,9)

Table 4.6: Layers of the VQ-VAE implemented.

Parameter Value
Learning Rate 10−3

Decay (EMA) 0.99
Commitment Cost β 0.25

Random Noise ϵ N (0, 10−4)

Number of Training Iterations 7500
embedding dimension 64

number of codewords K 64

Table 4.7: List of parameters used for the practical implementation of the training of the
VQ-VAE.

images height and width determines the number of latent features which represent the
input. If the input frames have 160×360 pixels, the latent space results to have 2×4 = 8

features.

In Tab. 4.7, the parameters used to train the VQ-VAE architecture are reported.
During the training procedure, the Peak Signal to Nosie Ratio (PSNR) and the perplexity
of the codebook is tracked. The PSNR is measured in a decibel scale (dB), the actual
form used in the project is

PSNR = 10 log10
MAX2

MSE
, (4.18)

where MAX is the maximum value that the pixel of the image can assume (in this case
MAX = 255, since the images are represented with 8 bit per pixel). The MSE is the mean
squared error between the input image and the reconstructed one. A higher value of the
PSNR implies a higher accuracy and a lower MSE between the original and reconstructed

53

Figure 4.5: Training profile of the VQ-VAE for the K = 64.

images.
In Fig. 4.5, the training curves of the VQ-VAE are shown. In the first plot, the training

PSNR is represented. In the second picture, the average perplexity within the batch is
reported. It is possible to see that, during the training phase, the PSNR might remain
stable while the perplexity is still changing. Indeed, it is possible to say that the training
has converged when the PSNR and the perplexity do not change anymore. In the second
plot, in red, the maximum perplexity value for a codebook of K = 64 codewords is shown.

The final PSNR is 31.871 dB and the final perplexity is 54.965. Despite the final
perplexity does not reach 64, it is still acceptable as a result.

4.5.3 Training the Controller on the quantized latent representa-
tions

In this section, some tests are accomplished: the main goal is to verify if the given
quantized representation is able to inform the Controller about the current state of the
system and to enable the RL algorithm to learn a control policy. A strategy similar to
the supervised and unsupervised case is used. The main difference is that now the Sensor
is able to transmit the encoded observations to the Controller, using a limited capacity
digital channel. More specifically, the number of bits required for encoding 8 features with
64 different possible values is 8×log2(64) = 48 bits. The learning pipeline of the Controller
is equal to the one presented before. The Sensor encodes two subsequent frames into 8
quantized features (the latent representation) and transmits the corresponding symbols
to the Controller. Then, the Sensor (which knows the codebook) receives the features and

54

uses this input as the available state to learn a control policy. Since the number of feature
are 8 and the embedding dimension is 64, the state at the Controller is represented by a
8× 64 = 512 dimensional vector obtained stacking the feature vectors.

The training is done for 8000 episodes, using a ϵ-greedy policy with exponentially
decaying ϵ. The softmax exploration policy has been found to lead to unstable results, so
the ϵ-greedy policy has been preferred. The same Deep Q-learning algorithm, exploiting
a policy network and a target network has been used. It was possible to reach an overall
performance similar to the unsupervised scenario. The average episode length for the
quantized latent space is 277.24.

55

56

5
Optimizing the Communication Rate

Until now, it has been shown how it is possible to solve a control problem by encoding
and quantizing the high dimensional observations. The approach has focused on a sys-
tem model which is similar to a simplified joint source channel coding architecture. The
simplification comes from the fact that a maximum rate R [bits/sample] is decided and
then a compression architecture, which uses at most R bits, is used to encode the obser-
vations at each time step t. The analysis in this chapter will concentrate on investigating
the possibility of reaching a lower rate. In particular, multiple quantizers with differ-
ent decreasing number of codewords will be exploited. This will allow to explore hybrid
strategies which take advantage of the different quantizations to dynamically encode the
input observations.

5.1 Codebook Size Analysis

To explore the effect of reducing the number of codewords for the vector quantization,
different tests are accomplished. In particular, the previously trained VQ-VAE (with 64
codewords), is used. The same Encoder and Decoder are used, but a different codebook
replaces the previous one. The way to discover the codebook is the same training pro-
cedure of the AE. However, in this case, it is possible to use the Encoder and Decoder
already trained and just learn a new set of codewords with a different size of codebook.

To practically obtain a procedure which learns a new quantization, it is possible to
use the same algorithm and loss function but excluding the parameters of the Encoder
and the Decoder from the optimization step. Recalling the loss function for training the

57

K PSNR [dB] Perplexity
2 22.44 1.839
4 24.495 3.752
8 27.894 7.214
16 30.621 14.192
32 31.438 29.875
64 31.871 54.965

Table 5.1: PSNR and Perplexity for different sizes of the codebook.

VQ-VAE, the new loss function will contain only one term:

L = ∥yk − sg(ze)∥. (5.1)

All the terms which update the Encoder and Decoder parameters can be cancelled from
the loss function. In this case, it is not essential to use an EMA update of the codewords.
Indeed, the latent space is kept fixed and does not change, so there are not stability issues
during the training.

This approach allows to obtain different quantizations for the same Encoder. In this
way, it is possible to test how the size of the codebook affects the performance. The
different sizes used are 2,4,8,16,32 and 64. Note that these are all powers of 2. Indeed,
the maximum number of bits to represent K codewords distinctly is logK. This implies
that the corresponding number of bits to represent the used codebooks are 1,2,3,4,5 and
6.

In Tab. 5.1, the PSNR and Perplexity for different sizes of the codebook are shown.

5.2 Testing the performance for three levels of commu-
nication

In this section, the three levels of communication considered in this project are analyzed.
In Sec. 2.10, the three levels of communication formulated in [10] were presented. In this
project, it is possible to test the developed encoding architecture on the three levels by
performing different tests and analysis.

• Level A. The technical problem: in this scenario, the receiver is interested in
reconstructing accurately the input observations at each time step t. The Agent ex-
ploits the trained Decoder to reconstruct the observations. This problem is exactly
the first level of communication: the PSNR between the original and the recon-

58

o Encoder Quantizer Decoder ô
ze zK

Figure 5.1: Pipeline for testing the performance in the technical problem for different size
of codebooks K.

structed observations is a measure of how well the symbols of the communication
allows to reconstruct the original message.

• Level B. The semantic problem: in this scenario, the receiver learns to re-
construct the physical state form the received features. This can be considered a
semantic problem since the receiver is interested in extracting some information
from the received message. Indeed, this information is not directly expressed in the
observations which are encoded, but it has to be retrieved from them. So, this anal-
ysis will understand whether the compressed observations still contain the semantic
information these inputs bring.

• Level C. The effectiveness problem: in this scenario, the receiver controls the
CartPole from the received features. What is tested here is whether it is possible to
learn a policy from the compressed observations. Indeed, since the compressed state
is the only information available to the receiver, this analysis will test the conduct
of the Agent based on the received message.

To analyze the three levels, the receiver should be able to perform three different
computations on the received states. For the technical problem, it uses the Decoder to
reconstruct the observations. For the semantic problem, it uses a regression network to
estimate the physical state of the system. While for the effectiveness problem, it uses a
policy network to choose an action and observe the reward.

Level A is implicitly tested when the different codebooks for the quantization are
learned. In fact, in this simplified model, there are no loss due to the channel, and so
the reconstruction performance is the same reached at the Sensor side while training the
VQ-VAE.

In Fig. 5.1, the system model to test the different quantization for the technical problem
is reported. Note that all the blocks in this case are colored in “gray” since there is no
more training in these blocks. Once the quantization codebooks has been learned, the
Receiver node uses the Decoder to reconstruct the input. The overall performance can
be evaluated measuring the PSNR between the original input o and the reconstructed ô.

59

o Encoder Quantizer Regression Net ŝ
ze zK

Figure 5.2: Pipeline for testing the performance of the semantic problem for different size
of codebooks K.

o Encoder Quantizer Controller Policy Environment
ze zK a

r

Figure 5.3: Pipeline for testing the performance of the effectiveness problem for different
size of codebooks Ki.

To obtain a measure of the effectiveness of the different quantizers for the semantic
problem, a different pipeline has to be adopted. As it is possible to see in Fig. 5.2, the
Decoder block has been replaced with a regression network, which is trained to reconstruct
the true physical state s by estimating it from the received quantized features zK . The
regression network block is colored in red because it has to be trained. The training
procedure is identical to the previously implemented ones. The true state s is assumed to
be known during the training and the MSE between the s and ŝ is used as the objective
function to be minimized during the training.

After training the regression network, it is possible to obtain an estimation of the
semantic problem performance, meaning it is possible to verify the amount of information
about the true state process s which is still available in the encoded and quantized version
of the observations.

In Fig. 5.3, the pipeline for the level C communication problem is reported. In this
case, the Controller receives the quantized features and has to learn a policy to control
the CartPole. The performance that the Controller is able to reach in this context, is
an estimation of the Level C communication paradigm. The test will show how the
quantization codebook adopted by the Sensor allows the Controller to learn a good policy
and to adapt its behavior. In this case, the training procedure considers the Controller
directly interacting with the environment. In level A and level B, there is no need to
consider the Controller policy. Indeed, in these two cases, the precision in reconstructing
the original input or a hidden information which can be retrieved by the input is tested.
On the other hand, in Level C, the behavior of the Controller is what matters and so the
interaction with the Environment is considered. To learn a policy, the Controller receives

60

Layer Input Output
1st Linear Layer 512 512
2nd Linear Layer 512 256
3rd Linear Layer 256 4

Table 5.2: Regression network architecture.

Layer Input Output
1st Linear Layer 512 512
2nd Linear Layer 512 256
3rd Linear Layer 256 2

Table 5.3: Policy network architecture.

a reward signal r, as described in the previous sections.
Note that for every K, a dedicated regression network and policy network are learned.

This implies that for every K ∈ {2, 4, 8, 16, 32, 64} a regression network f (K)(zK) and
policy π(K)(zK) are defined. The architectures for the regression network and the policy
network are similar. In particular, the same input shape can be used in both cases. The
Quantizer codebooks encode the same latent space of 64 dimensional vectors with different
number of codewords. Recall that the designed Encoder extracts 8 features at the output
of the last convolutional layer. This implies that for every different quantization, the same
final latent dimension is represented. More specifically, the feature vectors are stacked in
a single vector of size 512 (8× 64).

In Tab. 5.2, the architecture of the regression network used in the semantic problem
tests is shown. The first two layers has a ReLU activation function, whereas the last layer
has linear activation function. Note that the output layer has 4 nodes which are the 4
physical state values.

A similar architecture is used for the policy network (Tab. 5.3). The only difference
with respect to the regression network is that the number of output nodes is 2, as the
available actions to the Controller. This network estimates the Q-values corresponding
to each action given the input zK . These Q-values are then used to obtain an ϵ-greedy
policy for the Controller.

In Level B communication problem, the regression network is tested with a dataset
containing 50000 samples, iterating for 3000 epochs in a training loop with batch size
equal to 256 samples. The optimizer used is Adam with a learning rate of 10−4.

The effectiveness problem requires a RL procedure to learn a dedicated policy for each
quantization codebook. The already presented Deep Q-learning is used and the same

61

Number of codewords Bits per feature Message length (in bits)
2 1 8
4 2 16
8 3 24
16 4 32
32 5 40
64 6 48

Table 5.4: Number of bits per feature and length of the message for different sizes code-
book.

setting of Sec. 4.5.3 is used. The number of episodes varies since the convergence time
can vary depending of the codebook used. A more precise description of this phenomenon
will be given in the following sections.

5.3 Learning-Based Adaptive Encoding

In the previous scenarios, the Sensor is just a passive encoding system. It just uses the
fixed number of codewords inside a Quantizer and encodes the features to be transmitted
through the digital channel. However, by having different quantizers, it might be possible
to design different quantizing strategies at the Sensor side, in order to reduce the rate
but still guarantee an average target performance. Indeed, when a fixed codebook is used
to encode the features, the number of bits required to encode the current observation is
8× log2K.

In Tab. 5.4, the number of bits per feature and the length of the encoded message are
shown. For different sizes of the codebook, it is possible to see that the message length
increases of 8 bits every time the codebook size doubles. This means that, when the
codebook to use is decided, the message length is always the same and the average rate
is trivially equal to the message length.

In this section, a dynamic selection of the codebook to use will be implemented. This
can be done by designing a method which allows the Sensor to decide which codebook
to use among the six available for every observation. The aim of this procedure is to
learn a policy at the Sensor side and exploit all the available Quantizers. This way, it is
possible to obtain different message lengths based on the selected Quantizer and possibly
obtain an average rate which is lower than the fixed Quantizer case. The main intuition
behind this method is that the current observation can be easy or difficult to understand
by the Controller, depending on the current observation. Thus, the Sensor might learn to
compress more or less, depending on the ability of the Controller to perform the target

62

tasks. The working principle is that the current observations are distorted in different
ways by the compression scheme adopted. Hence, depending on the current time and
observations, the amount of information (relevant to the Controller task) which is lost
when compressing varies.

To be able to choose dynamically the Quantizer to use, the Sensor has to learn a policy.
This policy receives in input the current observation frames ot−1 and ot, and outputs an
action which corresponds to the codebook to use to quantize the features. It is possible to
treat the process of choosing the correct quantization codebook as an MDP. The reward
that the Sensor receives for choosing a certain codebook can vary depending on the task
the receiving node is performing. Given the three levels of communication presented
before, it is possible to define three different rewards for the Sensor MDP. In general, the
reward has to punish the Sensor for using a quantizer with a high number of codewords.
Indeed, this choice yields a higher number of bits for encoding the message. However, the
Sensor should be rewarded positively if the performance at the receiver side is good. It is
possible to define three rewards:

• Reward for the technical problem (Level A)

rt = PSNR(ot, ôt)− β log2Kt.

• Reward for the semantic problem (Level B)

rt = −MSE(st, ŝt)− β log2Kt.

• Reward for the effectiveness problem (Level C)

rt = Q(Kt)(zKt , at)− β log2Kt.

The term −β log2Kt indicates the cost that the Sensor pays for choosing the quantizer
with Kt codewords. β sets a trade-off between how much the Sensor should be interested in
the performance of the receiver with respect to the cost of the communication. Intuitively,
for a large β, only the communication cost matters and the Sensor policy will always select
the quantizer with the smaller number of codewords. For a small β, the communication
cost will be neglected by the Sensor and only the performance at the receiver will be taken
into account. Note that, for the technical problem, the PSNR between the original input
and the reconstructed one is taken as a positive reward for the Sensor policy. Indeed,
a higher PSNR indicates higher reconstruction accuracy. For the semantic problem, the
performance of the receiver is given by −MSE(st, ŝt). This time, a high value in the
mean squared error between the true state st and the estimated state ŝt indicates worse

63

ot Encoder Quantizer

Sensor Policy

Task of the Receiver
zKt

Kt−1

Kt

rt

Figure 5.4: Pipeline for learning to select Kt.

performance and thus this value is inserted in the reward with a negative sign. This
means that the Sensor receives a lower reward if the error is higher. The last scenario
considers the effectiveness problem. In this case, the Sensor receives a reward which is
given by the Q-value of the policy of the Controller. Indeed, this Q-value is an estimation
of the cumulative returns that the Controller receives for taking action at in the state zKt .
More precisely, given a discount factor γ,

Q(Kt)(zKt , at) = E
[∞∑

i=t

γi−tri

]
. (5.2)

The policy of the controller has already been trained, thus this is the best control perfor-
mance estimation available at the receiver. Note that the policy network used to obtain
the Q-value is the one trained on the selected quantizer.

In Fig. 5.4, the system model to train the Sensor policy to select the quantizer opti-
mized for the technical problem is shown. From the figure, it is possible to see that the
policy of the Sensor receives in input the observations at time t and also the previously
selected number of codewords Kt−1. This latter input is not relevant in all the levels
of communication. Indeed, the past action of the Sensor Kt−1 is not useful for the op-
timization in the technical problem and in the semantic problem. This is because the
performance at the receiver does not depend on the previously encoded frames, but just
on the distortion introduced by the quantization step in the current observations. This
information becomes relevant in the effectiveness problem, as the performance in the cur-
rent state depends on the choice done in previous steps. Ideally, the Sensor might learn
to use a higher precision (a higher number of codewords) also because the previously
sent message contained a more compressed representation. However, the same network

64

architecture is used for all the three communication problems, meaning that the Sensor
will learn to ignore this additional information in level A and B.

To learn the Sensor policy, Deep Q-learning is used. It is possible to use the same
architecture for the three levels of communication. However, the Q-values learned by the
Sensor policy represent different quantities. As a matter of facts, for the level A and B,
the RL procedure can be represented as a multi-arm bandit scenario [1]. In fact, the
future rewards do not depend on the choices performed in the current observations. This
result can be formalized using the already presented notation of MDP and setting the
discount factor γ equal to 0. In this way, the Sensor will automatically ignore the future
rewards, learning Q-values which only represent an estimation of the immediate reward.
Note from Fig. 5.4 that the only thing that is trained is the Sensor policy. The Decoder,
the regression network and the Controller policy have been trained before learning to
dynamically adapt the rate with respect to the input.

Since it is possible to evaluate the trade-off between the performance at the receiver
node and the communication constraints only for fixed values of β, the definition of
Pareto dominance is introduced. Let C be the set of all the possible configurations of the
system model. Let (φ, l̄) be a feasible point at which the system can work where φ is
the average performance at the receiver and l̄ is the average length of the message of the
communication between the transmitter and the receiver. Then a configuration x ∈ C is
Pareto dominant with respect to the configuration y ∈ C if and only if

x ⪰ y ⇐⇒ φ(x) ≥ φ(y) ∧ l̄(x) ≤ l̄(y). (5.3)

This means that the configuration x improves either the performance or the average rate
with respect to configuration y. Consider an algorithm (or a solution) A which yields a
set of feasible configurations x ∈ A. It is possible to define the Pareto frontier of the
solution A as

FA = {x ∈ A : ∀y ∈ A , y ⊁ x}. (5.4)

From this definition, the Pareto region of the solution A is introduced as

PA = {y : ∃x ∈ FA, x ⪰ y}, (5.5)

which means that PA is the set of all the configurations dominated by the Pareto frontier
FA. The last definition to be introduced is the Pareto dominance with respect to two
solutions, A and B:

A ⪰ B ⇐⇒ PB ⊆ PA. (5.6)

65

Figure 5.5: Results for the technical problem.

In words, a solution A is Pareto dominant with respect to solution B if and only if the
Pareto region of B is contained in the Pareto region of A. This means that the solution
A is able to return a set of configurations which are outside FB but inside FA. This set
of configurations is PA \ PB.

5.4 Results for the technical problem

In this section, the performance of the system model with respect to the reconstruction
of the observation at the receiver side is presented. Two tests are performed with two
quantization strategies. The first is a fixed quantization where only one of the available
quantizers is used to represent the features and then the Decoder reconstructs the input
frames. The second strategy is the dynamic strategy, where the Sensor learns the quantizer
to use, depending on the input frames. For the fixed strategy, the six quantizers are used
and evaluated over 100 episodes while using a random control policy at the Controller
side. This control policy does not influence the reconstruction task.

In Fig. 5.5, the results for the technical problem with the two quantization strategies
are shown. The fixed quantization results are represented in blue. Note that the average

66

β Average message length [bits] PSNR [dB]
0.25 43.3063 31.8023
0.5 38.955 31.5997
1 31.6596 31.1333

1.5 27.3993 30.4854
2 24.3734 29.783

2.5 20.3290 28.7065
2.75 14.9403 26.2575

3 9.743 23.8643

Table 5.5: Average message length and PSNR for different values of β.

message length for this strategy is fixed at 8×log2K. The general trend in this case is that
the PSNR increases as a higher number of codewords is employed. This is because a larger
codebook introduces a smaller quantization noise. This way, the Decoder can reconstruct
the input frames more precisely. The dotted line is plotted just to show the general trend
of the curve, but does not represent a set of feasible (message length - PSNR) pair. Since
the quantization strategy uses a fixed number of bits, there is no way to reach an average
message length in the region between the two points tested. The blue curve represents the
Pareto frontier for the fixed quantization strategy. This way, the curve which represents
the true rate-PSNR performance is the stair plot. The region under the plot is colored
since it is a feasible region. Meaning that it is possible to design a compression scheme
that works in this region.

The plot represented in pink shows the results for the dynamic Sensor policy. In
particular, the results shows seven average PSNR values obtained with seven different
values of the trade-off parameter β.

In Tab. 5.5 the results of the average message length and the average PSNR for different
values of β are shown. The values of β are arbitrarily chosen in order to allow the trade-off
between receiver performance and communication cost to be meaningful to the Sensor.
The PSNR values increase as the β decreases, this is because the Sensor chooses more
frequently the higher bits quantizer leading to an average higher accuracy. From Fig. 5.5
it is possible to see that the pink plot is always over the blue plot meaning that there
is a gain in overall performance when using the dynamic quantization strategy at the
Sensor side. This means that the adaptive quantization strategy is Pareto dominant with
respect to the fixed quantization solution. Despite the feasible region where this model
can operate is the one below the curve, the higher performance is obtained when the
system is working near the curve. The reason is that, near these values, it is possible to
guarantee the indicated performance at the receiver while using the least communication

67

Figure 5.6: Frequencies of the different quantizers for different values of β.

resources.
As the pink curve reaches the minimum and the maximum average number of bits for

the message, it is possible to see that the performance is equal to the fixed quantization
strategy. Indeed, in these cases, the Sensor policy will use respectively the minimum and
the maximum number of quantization bits every time step, reaching the same performance
of the fixed quantization strategy.

In Fig. 5.6 the frequencies of the different quantizers for different values of β are shown.
It is possible to see that the distribution of the encoding message length is biased towards
the lower lengths for higher β and towards the higher lengths for smaller β. This result
confirms the general trend which is possible to see in Fig. 5.5 and in Tab. 5.5.

5.5 Results for the semantic problem

This section analyzes the results for the semantic problem. As in the previous section,
the fixed quantization strategy and the dynamic quantization strategy are compared in
order to evaluate the results. Recall that in the semantic scenario, the reward function
for the Sensor RL problem is given by minus the MSE between the physical state and the
estimated physical state at the receiver side, minus a penalty term for the communication
resources employed. In the training and testing phase, the receiver has six regression
networks available and previously trained which estimate the physical state values given
the encoded message and the quantizer used.

In Fig. 5.7 it is possible to see the semantic communication problem results. The fixed

68

Figure 5.7: Results for the semantic communication problem.

strategy curve is reported in blue. It is possible to see that the estimation error decreases
as the message length increases. This means that a higher precision in the quantization of
the features yields also a more precise estimation. Another thing that it is worth noting is
that, among the four state values, the position x and the angle θ obtain an average lower
error with respect to the velocity ẋ and angular velocity θ̇. The reason is that, given a
noisy variable, the derivative of this variable will noisier because the errors on the original
values of the variable are added.

The pink curve represents the results obtained with the dynamic quantization strategy.
It is possible to see that the pink curve is under the blue one, meaning that using a dynamic
Sensor policy allows to improve semantic performance while keeping the communication
rate lower.

For both the plots it is possible to see that the feasible region where the system model
can operate is the region above the curve. Indeed, the (length-MSE) pairs sets a lower
bound on the estimation error which can be reached by the system. Any other sub-optimal
strategy will stay in the region above the curves.

In Tab. 5.6 it is possible to see the average message length and MSE for different
values of the trade-off parameter β. The trend is the same of the technical problem:

69

β Average message length [bits] MSE
0.0001 35.6792 0.0521
0.001 34.5910 0.0530
0.005 31.1811 0.0550
0.01 26.7286 0.0583
0.025 19.0424 0.0649
0.05 15.6087 0.0822
0.1 11.939 0.0957

Table 5.6: Results average message length a MSE for different values of β.

Figure 5.8: Frequencies of the different quantizers for different values of β.

as the communication cost increases, the average message length and the performance
decrease. In this case, the fact that the MSE increases translates in the worsening of the
performance.

In Fig. 5.8 the distributions over the different quantizers are shown. The seven bar
plot correspond to the seven values of β which have been used. As expected, it is possible
to see that, for a high communication cost, the smaller codebook quantizers are preferred.
As the communication cost lowers, a higher number of bits is employed to represent the
features. In the middle, it is possible to appreciate a distribution spread over the six
quantizers.

70

Figure 5.9: Results for the effectiveness communication problem and a fixed quantization
strategy.

5.6 Results for the effectiveness problem

In this section the results of the effectiveness communication problem are reported. To
measure the way the encoding strategy affects the Controller behavior, the performance
at the receiver is tracked measuring the episode length.

In Fig. 5.9, the results for the communication problem are reported. The figure shows
two analysis that have been accomplished. In the figure, the episode length is used as a
measure of the performance of the agent. Two curves report the average episode lengths
for different average numbers of bits.

The blue plot shows the result for the fixed quantization strategy and a dedicated policy
for every quantizer. This means that the Sensor fixed the quantizer to use and then the
Controller learns a policy through the RL procedure. Then, the results over 100 episodes
are evaluated to yield an average episode length.

The orange curve shows the performance of the Controller when the policy trained on
the quantizer with more codewords is used. In this case, the policy has been trained only
ones for the quantizer with 64 codewords ad then this policy is used with lower cardinality

71

Number of codewords Number of training episodes Average length
64 8000 277.24
32 12000 268.11
16 16000 210.68
8 20000 121.80
4 20000 27.48
2 8000 17.14

Table 5.7: Number of training episodes and average final performance for the different
size of codebook used.

dictionaries. This is possible due to the fact that the quantizer is using always the same
Encoder to extract the features. This way, using a different quantizer introduces more
distortion in the latent vectors which encode the features, but the space represented by
the features is always the same.

In the figure it is possible to see that the performance on the blue curve is always slightly
better than the orange. This result confirms the theory on POMDP. Indeed, a procedure
which learns a new policy for every different quantizer will converge to the optimal solution
for any POMDP. So, this policy trained specifically with a given quantizer will be better
than any possible policy that the system can find. These results confirm the optimality
of the solution which Q-learning find.

In Tab. 5.7, the number of episodes that have been used in the training loop of the
RL procedure are listed. It is possible to see that, in order to converge to a stable
policy (which does not improve anymore), the number of episodes to use changes with
the number of codewords in the quantizer. This phenomenon can be explained by the
fact that a lower number of quantization bits introduces more noise in the compressed
observation. A noisier state for the Controller means that the RL problem that has to
be solved is more “partially observable”. As demonstrated in Sec. 2.4, POMDP can still
be solved by Q-learning with the condition that the agent visits a state infinitely many
times. A more noisy state will introduce higher variance in the Q-value estimation and
thus the agent has to see the state a lot of times to converge near to the true Q-value. On
the other hand, if the noise in the state is smaller (less partially observable) the variance
on the estimation of the cumulative return will be smaller and the RL procedure will
converge more rapidly. However, it is possible to see that for the 2 codewords quantizer
the number of training episodes is 8000 which is smaller than the previous one. This
result can be explained by the fact that this small codebook encodes the features with a
smaller complexity. Indeed, 2 codewords for eight features means that the total number
of possible messages is 256 (28). With such a low number of states, the Q-function can

72

Figure 5.10: Results for the effectiveness communication problem.

learn the values faster even if these values are noisier. In general, it is possible to say that
the convergence speed of the training procedure is a trade-off between the complexity
and the noise that the state introduces. A higher complexity slows down the convergence,
however, less noise will still be able to guarantee less variance and faster convergence. On
the other side, higher noise introduces more variance and, even if the state exhibits less
complexity, the convergence will be delayed.

Looking a Fig. 5.10, it is possible to see that the policy trained on the higher quality
state still performs near the optimal values when used with smaller codebook quantizers.
This result allows to use the same policy for every quantization strategy and still guar-
antees near optimal performance. Moreover, the fact that this policy used the smaller
number of episodes to converge allows to reduce the training period before being able to
deploy the system.

In Fig. 5.10, the results of the variable quantization strategy are compared with the
previous results. It is possible to see that the dynamic quantization strategy reaches
higher accuracy for smaller average message lengths. In this case, the gap between the
fixed strategy and the dynamic one is a lot higher than in Level A and B. This result shows
how optimizing the system for an effective communication can obtain higher results than

73

β Average message length [bits] Average length of the episode
1 8 9.4040

0.7 11.7827 36.23
0.5 12.824 73.92
0.4 13.1104 80.81
0.33 15.8968 205.79
0.2 20.6696 254.52
0.1 34.712 266.396

Table 5.8: Results for the effectiveness problem fro different values of β.

Figure 5.11: Frequencies of the different quantizers for different values of β.

considering standard metrics such as the distortion of the reconstruction error. However,
it is important to note that this method considers the policy already trained and so this
quantization strategy can be obtained only once the Controller has learned a control
policy.

In Tab. 5.8 the performance in terms of average length of the episode is reported.
These results show the average message length with respect to the average performance
in the effectiveness communication problem.

In Fig. 5.11, the plot of the quantizer frequencies for different values of β are reported.
These results confirms the trend which was seen for the level A and B: for a higher
communication cost, the average length decreases and the policy will choose the lower
size quantizers.

74

5.7 Intuition behind the different levels of quantiza-
tion

In this section, a heuristic evaluation of the dynamic quantization of the observation is
done. In particular, given the Sensor policy κ(K | o) and the Control policy π(a | z(K))

already trained, a relationship between the number of bits used for the quantization
with respect to the Controller policy is outlined. This result is obtained by testing the
optimal dynamic quantization strategy for the effectiveness problem. This test considers
500 episodes where the system model works with the two agents (Sensor and Controller)
exploiting their policies. In particular, the Sensor uses the policy to select the number
of codewords to quantize the observation frames while the Controller uses its policy to
select the best action to take according to the received message. All the actions of the
two agents are collected and stored. Let’s call the dataset containing all the quantization
choices and the actions taken D = {(K1, a1), ..., (KN , aN)}.

After the 500 episodes, the physical state space is divided in small intervals of state.
Only two variables are used: the θ and (̇θ). Combining the two variables, it is possible
to obtain a 2D map of the state space divided in small squares (bins) according to the
intervals. In particular, 70 intervals have been considered for both the variables. The
interval considered for the angle is [-0.10, 0.10], whereas for the angular velocity is [-1.3,
1.3]. This setting creates a 2D map containing 1400 bins. Let’s define two matrices
MK and Ma. The entries of the matrix MK store the expected number of bits used to
quantized the observations for every θ and θ̇ interval:

M i,j
K =

N∑
i=1

δ(Ki) log2Ki

δ(Ki)
(5.7)

where δ(Ki) is the indicator function which is 1 if the action K1 is done inside the
state region of the bin (i, j) and 0 otherwise. log2Ki is used to obtain the number of
quantization bits which is the logarithm of the number of codewords of the quantizer
chosen.

In the matrix Ma the expected action taken is stored. Since the number of action are
two, the values 1 and 0 are used to represent the actions “left” and “right”. In the matrix
Ma, the entries are:

M i,j
a =

N∑
i=1

δ(ai)ai
δ(ai)

(5.8)

where δ(ai) is the same indicator function defined before but for the action ai. With

75

Figure 5.12: Colormap for the average number of quantization bits and the entropy of
the actions.

such a definition, it is possible to say that M i,j
a is the probability of taking action 1 in

the bin (i, j) whereas 1−M i,j
a is the probability of taking action 0. Comparing these two

matrices it is possible to discuss how the two policies behave with respect to each other.
In Fig. 5.12 there are two colormaps which represent the average number of quantiza-

tion bits and the entropy of the actions. In the first map, it is possible to see the average
number of bits used to quantize the state for every bin. In the red region, few bits are
used on average to quantize the relative observations. As the color changes to blue, a
higher number of bits are used respectively. The second map shows the entropy of the
action for every bin. The entropy H(x) of a random variable x can be obtained as

H(x) = −E[log2 p(x)] = −
∑
x

p(x) log2 p(x). (5.9)

In the case of a binary variable, as in the case of the Controller action, the entropy is
easy to obtain as

H i,j(a) = −M i,j
a log2M

i,j
a − (1−M i,j

a) log2(1−M i,j
a), (5.10)

where H i,j(a) is the action entropy relative to the bin (i, j).
The entropy of a random variable represents the uncertainty of the outcome of that

variable. Indeed, Eq. 5.9 for a binary variable with probability p has a maximum for
p = 1

2 and is equal to 0 for p = 0 and p = 1. The maximum of the entropy corresponds to

76

Figure 5.13: Magnitude of the gradient of the Controller policy.

the most uncertain case where the variable can be either 1 or 0 with the same probability.
It is possible to say that Fig. 5.12 shows how the communication resources are allocated
with respect to the confidence on the action to take. Intuitively, in a region where the
Controller knows with high confidence (high action probability) the action to take, the
Sensor can learn to compress more the observation. This means that, even if less details
are available to the Controller, it will still be able to take the correct action. On the other
hand, if the Controller is uncertain about the action to take (the two actions have similar
probabilities) the Sensor should provide a more precise representation of the observations
and thus use more communication resources. However, the uncertainty on the action
might not fully depend on the amount of information that is lost when quantizing the
features, but it could be due to the partial observations collected by the Sensor. This
uncertainty cannot be alleviated by sending more precise features. Another quantity that
can be used to discuss the Sensor policy choices is the derivative of the Controller policy.

In Fig. 5.13, the magnitude of the policy with respect to the angular velocity and the
angle is shown. The intuition behind this figure is that, in the regions that the gradient
norm is higher, the action is changing rapidly from one interval to the other. Similarly to
the entropy, this means that the Controller is not certain about the action to take in this
state. Hence, noise introduced by the quantization procedure can confuse the Controller.

77

The ideal policy of the Sensor should provide lower noise in the states where the gradient
is higher and can tolerate higher noise in the state where the Controller policy is constant.

78

6
Conclusion

In this project a remote reinforcement learning problem has been implemented in a specific
control problem. In particular, the interaction between a remote Sensor which is able to
observe the Environment and a Controller which can take actions in the Environment has
been studied. The problem consisted on communicating sequences of frames from Sensor
to the Controller through a digital communication channel with limited capacity. In the
first analysis methods for implementing encoding of the observations have been proposed.
Tests on the possibility of learning compact representation of the input observations were
accomplished by means of an Autoencoder. Subsequent tests demonstrated how it is possi-
ble to learn a Control policy using the encoded frames and highlighted the Reinforcement
Learning procedure to discover this policy. These tests demonstrated that it is possible
to build such a system model and proved the feasibility of certain performance without
the channel.

After this, a digital communication channel with limited capacity has been introduced,
inducing a bottleneck on the amount of information that is possible to send from the Sen-
sor to the Receiver. A quantization step has been introduced to ensure that the encoded
frames were easily communicated through the channel. Two types of quantization strate-
gies have been proposed implemented: a fixed quantization and a dynamic quantization.

Once obtained this versatile compression system, three communication levels have been
analyzed. The first is the technical problem which considers the possibility of reconstruct-
ing the original message at the receiver. The PSNR between the original observations
and the ones reconstructed at the receiver has been used as a performance metric. A gen-
eral trend observed is that the reconstruction accuracy increases as more bits are used to

79

quantize the encoded observations. A less trivial result, is that the dynamic quantization
strategy that the Sensor learns to allocate the quantization bits efficiently, outperforms
the fixed quantization strategy.

The second level of communication considered is the semantic communication. In
particular, the possibility to communicate relevant information about a process which can
be retrieved by the receiver. Even for this case, it is possible to reduce the communication
rate while maintaining good average performance with respect to the fixed quantization
strategy. This can be explained by the fact that the loss of semantic information due
to the quantization is not equal for all the frames. With a dynamic quantization it is
possible to achieve an operational rate which is optimized to the regression task which
the receiver has to solve.

The third communication problem studied is the real remote reinforcement learning
setting. In this scenario, the Controller has to control the CartPole keeping it vertical
for as many steps as possible. The only information available to the receiver is the
compressed frame that the Sensor communicates. Two fixed quantization performance
are evaluated, considering the condition where the policy is retrained for every quantizer
or just for the higher quality one. Then, a comparison with the dynamic quantization
strategy is given. A great improve in the performance can be obtained when using the
different quantizers to encode the system. Recalling the arguments about the information
bottleneck, it is possible to say that the dynamic quantization improves the bottleneck,
reducing the redundant information and letting pass only the relevant one.

A final heuristic study has been done to visualize the Sensor policy in the Level C
communication scenario. This analysis proposed some insights about how the policy of
the Sensor is related to the policy of the Controller. In particular, it has been proved how
the communication resources are minimal in regions with low action entropy, showing that
the Controller can still retrieve the action correctly even with low resolution information.
On the other hand, more communication resources are allocated in the region of higher
action entropy. In the latter case, there is no superposition between the Sensor policy
and the action entropy, but only a general trend is observed.

To conclude, this work proposed a reinforcement learning method to optimize commu-
nication in a remote reinforcement learning scenario. The framework provided is general
and allows to optimize the rate for multiple levels of communication by designing specific
reward signals. This project has been developed in a simulated environment without
a real communication channel between the Sensor and the Controller. Further analysis
might consider more realistic scenario where the communication channel might affect the
overall performance due to packet losses. On the simulation part, another aspect to inves-

80

tigate could be the possibility of jointly training the different building block of the system
model, merging the proposed algorithmic procedures in a single one.

81

82

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[2] MATLAB. Reconstruct inputs to detect anomalies, remove noise, and generate
images and text. [Online]. Available: https://www.mathworks.com/discovery/
autoencoder.html

[3] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding
for wireless image transmission,” IEEE Transactions on Cognitive Communications
and Networking, vol. 5, no. 3, pp. 567–579, 2019.

[4] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[5] J. Cheng, W. Chen, F. Tao, and C.-L. Lin, “Industrial iot in 5g environment towards
smart manufacturing,” Journal of Industrial Information Integration, vol. 10, pp.
10–19, 2018.

[6] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one
update?” in 2012 Proceedings IEEE INFOCOM. IEEE, 2012, pp. 2731–2735.

[7] X. Zheng, S. Zhou, and Z. Niu, “Urgency of information for context-aware timely
status updates in remote control systems,” IEEE Transactions on Wireless Com-
munications, vol. 19, no. 11, pp. 7237–7250, 2020.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[9] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Deep joint source-channel coding
for wireless image retrieval,” in ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 5070–5074.

[10] W. Weaver, “Recent contributions to the mathematical theory of communication,”
ETC: a review of general semantics, pp. 261–281, 1953.

83

https://www.mathworks.com/discovery/autoencoder.html
https://www.mathworks.com/discovery/autoencoder.html

[11] Y. Cui, B. Hou, Q. Wu, B. Ren, S. Wang, and L. Jiao, “Remote sensing object
tracking with deep reinforcement learning under occlusion,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2021.

[12] X. Shen, B. Liu, Y. Zhou, J. Zhao, and M. Liu, “Remote sensing image captioning
via variational autoencoder and reinforcement learning,” Knowledge-Based Systems,
vol. 203, p. 105920, 2020.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[15] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in reinforcement
learning with deep predictive models,” arXiv preprint arXiv:1507.00814, 2015.

[16] M. Pinsky and S. Karlin, An introduction to stochastic modeling. Academic press,
2010.

[17] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lectures on artifi-
cial intelligence and machine learning, vol. 4, no. 1, pp. 1–103, 2010.

[18] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3, pp.
279–292, 1992.

[19] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep re-
inforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, 2017.

[20] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the
trade. Springer, 2012, pp. 421–436.

[22] M. T. Spaan, “Partially observable markov decision processes,” in Reinforcement
Learning. Springer, 2012, pp. 387–414.

[23] T. Jaakkola, M. Jordan, and S. Singh, “Convergence of stochastic iterative dy-
namic programming algorithms,” Advances in neural information processing sys-
tems, vol. 6, 1993.

84

[24] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent
developments,” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 374, no. 2065, p. 20150202, 2016.

[25] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning.
Springer, 2006, vol. 4, no. 4.

[26] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neu-
ral networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[27] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[28] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and time
series,” The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995,
1995.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp.
84–90, 2017.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[33] C. E. Shannon, “A mathematical theory of communication,” The Bell system tech-
nical journal, vol. 27, no. 3, pp. 379–423, 1948.

[34] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[35] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained
variational framework,” 2016.

85

[36] A. Trushkin, “Sufficient conditions for uniqueness of a locally optimal quantizer for
a class of convex error weighting functions,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 187–198, 1982.

[37] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,” IEEE
Transactions on communications, vol. 28, no. 1, pp. 84–95, 1980.

[38] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradi-
ents through stochastic neurons for conditional computation,” arXiv preprint
arXiv:1308.3432, 2013.

[39] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,”
arXiv preprint physics/0004057, 2000.

[40] J. Wan, D. Zhang, S. Zhao, L. T. Yang, and J. Lloret, “Context-aware vehicular
cyber-physical systems with cloud support: architecture, challenges, and solutions,”
IEEE Communications Magazine, vol. 52, no. 8, pp. 106–113, 2014.

[41] M. Groshev, C. Guimarães, J. Martín-Pérez, and A. de la Oliva, “Toward intelligent
cyber-physical systems: Digital twin meets artificial intelligence,” IEEE Communi-
cations Magazine, vol. 59, no. 8, pp. 14–20, 2021.

[42] S. Tatikonda and S. Mitter, “Control under communication constraints,” IEEE
Transactions on automatic control, vol. 49, no. 7, pp. 1056–1068, 2004.

[43] S. Tatikonda, A. Sahai, and S. Mitter, “Stochastic linear control over a commu-
nication channel,” IEEE transactions on Automatic Control, vol. 49, no. 9, pp.
1549–1561, 2004.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

[45] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements
that can solve difficult learning control problems,” IEEE transactions on systems,
man, and cybernetics, no. 5, pp. 834–846, 1983.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Pro-
ceedings of the 3rd International Conference on Learning Representations (ICLR),
2015.

[47] Y. Takida, T. Shibuya, W. Liao, C.-H. Lai, J. Ohmura, T. Uesaka, N. Murata,
S. Takahashi, T. Kumakura, and Y. Mitsufuji, “Sq-vae: Variational bayes on

86

discrete representation with self-annealed stochastic quantization,” arXiv preprint
arXiv:2205.07547, 2022.

[48] A. Łańcucki, J. Chorowski, G. Sanchez, R. Marxer, N. Chen, H. J. Dolfing, S. Khu-
rana, T. Alumäe, and A. Laurent, “Robust training of vector quantized bottleneck
models,” in 2020 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2020, pp. 1–7.

87

88

Acknowledgments

I would like to thank Professor Andrea Zanella for the opportunity to work on this project,
learning a lot about these interesting topics. Also, I am very thankful to Federico Chiari-
otti and Francesco Pase for the time they dedicated to me and the support they gave me
to take the project forward. I would like to thank my parents and my sister for helping
and encouraging me during my studies. Finally I would like to express my thanks to my
girlfriend Beatrice who supported me during the years at the University.

89

	Abstract
	List of figures
	List of tables
	Introduction
	Methods
	Reinforcement Learning
	Exploration vs. exploitation

	Markov Decision Process
	The solution of the MDP and the Bellman Equation
	Proper Definition of Exploration/Exploitation trade-off

	Q-learning and Deep Q-learning
	Partially observable Markov Decision Process
	Autoencoders
	Variational Autoencoders and compression
	Quantization and Vector Quantization
	Vector Quantized Variational Autoencoders
	Straight through estimation of the gradient

	Compression and Information Bottleneck
	Three levels of communication problems

	Related Works
	Joint source channel coding
	Context-Aware Cyber-Physical systems and Digital Twin
	Control Under communication Constraints

	System Model and practical implementation
	The CartPole environment
	Initial tests
	Training the entire system with supervision
	No oracle: the Unsupervised Scenario
	A finite capacity communication channel
	Optimizing the Codebook
	Results on the VQ-VAE
	Training the Controller on the quantized latent representations

	Optimizing the Communication Rate
	Codebook Size Analysis
	Testing the performance for three levels of communication
	Learning-Based Adaptive Encoding
	Results for the technical problem
	Results for the semantic problem
	Results for the effectiveness problem
	Intuition behind the different levels of quantization

	Conclusion
	References
	Acknowledgments

