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Abstract

Although astrophysical observations put strong constraints on the graviton mass in late
Universe, there is still room for gravitons to acquire an heavy mass during its early stages.
In this thesis we study the effect of a massive graviton on the Stochastic Gravitational
Wave Background (SGWB) of Cosmological origin. At early time we consider a scenario
where graviton mass during inflation originates, in an effective field theory approach, from
a primordial mechanism of spontaneous symmetry breaking of space-diffeomorphisms; at
late time instead it is considered a recent theory of massive gravity developed by De Fe-
lice and Mukohyama which minimally modifies the de Rham-Gabadadze-Tolley (dRGT)
theory, and where the assumption of a Lorentz symmetry violation allows the propaga-
tion of only two tensor massive modes and ensures the stability of the solution on a
Friedmann—Lemaitre-Robertson-Walker (FLRW) background. Whereas the light graviton
mass in late time modifies the graviton geodesics during its propagation, the heavy mass
at early times strongly affects the primordial tensor power spectrum, pushing it toward a
more blue tilt. Both these effects may leave distinct signatures on the angular correlators
of the SGWB energy density. The analysis of the angular power spectrum is firstly per-
formed analytically, and then numerically exploiting the publicly available code Cosmic
Linear Anisotropy Solving System (CLASS), revealing different visible signatures arising
from the graviton mass on early and late times on the large and medium scales between
£ ~ 2 and ¢ ~ 100; this multipole domain overlaps with the range of scales where future
interferometers as LISA and ET are expected to work, opening the doors for an exciting
future. We have also explored the role of the graviton mass on the three-point function
of the SGWB energy density, focusing both on primary and secondary non-Gaussianity
effects.
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Introduction

Since the detection of the gravitational wave GW150914 from the merging of two black
holes by the LIGO and VIRGO collaboration [I], the interest of the scientific community in
gravitational waves has rapidly increased. The scenario is really promising for the years to
come, when new interferometers, as LISA [I1], Einstein Telescope [12], etc., are expected to
reach the right sensitivity to detect gravitational waves of cosmological origin [14] [15] [16].
A detection of such gravitational waves would be a crucial test for any mechanism of
generation of primordial perturbations, and especially for any inflationary model [16].
However it is likely that such detection of a cosmological SGWB will require the ability to
distinguish it from the astrophysical background, which arises from the superposition of
signals emitted by a number of unresolved sources. Among many techniques developed to
distinguish between the various background, an important tool in this context is the study
of its statistics, relying on the hope that future interferometers will allow for a sufficient
angular resolution to detect anisotropies of the background. This discussion has been
largely investigated yet in [59], but this is not the end of the story. Indeed, one of the most
important implication of the GW150914 detection concerns the constraints on the speed of
propagation of the gravitational waves. As they seems to propagate approximately at the
speed of light, this turns out to be a very strict constraint on the graviton mass, which must
be then approximately null. However a little not vanishing value is still not completely
ruled out by this event, that set

m<7.7x107% eV/c2

More recent and more stringent constraints were posed in later years from the study of
planetary orbits (as INPOP17b [2]) and binary pulsars (as PSR J0737—3039A [3] and
further developments in [6]), giving the current constraint

m<2x10728eV/c2.

In light of this constraint, there is still some room for massive gravitons. Actually there
is much more. Astrophysical observations indeed can only investigate epochs very close to
the present time with respect to the age of the Universe. Therefore, to be precise, it is only
fair the say that the above bounds apply on gravitons generated during recent times. Next,
one may be tempted to extend these bounds to all the history of the Universe, but this
would be a strong assumption. Indeed, due to the expansion, the Universe went through a
wide range of energies; while today we see the CMB temperature around the eV scale, it is
commonly assumed that the Universe was around 10'% GeV during inflation. It’s then very
unlikely that the same theory of gravitation applies to the whole energy range, and strong
deviations from GR are expected at primordial times, when the Universe was hotter. For
this reason we cannot apply the above bound to gravitons generated during inflation, for
which we really don’t have any direct observation yet. Hence it is still open the possibility
that gravitons acquire an heavy mass during inflation of the order of the energy driving
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Introduction

the accelerated expansion, that is the Hubble rate. In order to avoid possible confusion
between the two masses, we will refer with late (time) mass the tiny mass m characterizing
graviton after the end of inflation, and early (time) mass the huge mass mg, they posses
during this period. Whereas it was studied in literature how these masses modify the
angular correlators for CMB anisotropies (see for example [60, 611, 62 122]), much work
has still to be done in the SGWB case, whew the path to study angular correlators has been
well traced in [59]. Also on the gravitational wave background, the graviton masses may
leave different and distinguishable signatures on the angular correlators which may become
visible with future interferometers. The aim of this Thesis is to capture and characterize
those signatures arising from the early and late time masses which are expected to fall in
the range of sensitivity of interferometers like LISA and ET.

First of all one needs to contextualize the theoretical framework. As just said, we
consider two different regimes of the Universe governed by two different and unconnected
theories of gravity. The idea of massive gravity was firstly proposed by Fierz and Pauli [13]
in 1939. Soon after its publication, it was shown that this theoy suffers of ghost instabilitiy
[26], called Boulware-Deser ghost; moreover, two independent works of van Dam, Veltman
[27] and Zakharov [28] showed that the massless limit of this theory is discontinuos: this
is the so called vDVZ discontibuity. For this reason theories of massive gravity were put
aside until 2010, when the illuminating works of de Rham, Gabadadze and Tolley (dRGT)
[38, 29] shed to light the existence of ghost free theories of massive gravity. While the
dRGT theory admits a Friedmann-Lemaitre-Robertson-Walker (FLRW) solution [30], it
was shown that all the homogeneous and isotropic background are unstable in the general
dRGT because of the appearance of ghosts at non linear level [3I]. There are several
ways to cirvumvent this issue, as adding extra degrees of freedom [32], or considering its
bi-gravity counterpart [33]. In this thesis we rather consider a theory of Lorentz-violating
massive gravity recently proposed by De Felice and Mukohyama [56], where only two
tensor degrees of freedom are propagated at any pertubative order, and where no ghosts
or discontinuities appear. The theoretical framework of the Universe at early times is
nicely described combining the tools of massive gravity theories with those of the Effective
Field Theories of Inflation(EFTI). The Stiickelberg formalism was already introduced in
the EFTI where the inflaton dynamics is mimicked by a Goldstone boson which acts
as a Stiickelberg field for the broken time-reparametrization invariance (see [43] [45] for
a detailed review). On top of that one may investigate the possibility to break space-
reparametrizations as well. This scenario gives rise, in a bottom-up approach, to a new
graviton mass term whose relative weight depends on the “amount” of violation of space-
diffeomorphism invariance. The mechanism of spontaneous symmetry breaking introduces
further three new Goldstone bosons [47, [46], corresponding to one scalar and two vector
extra modes and recovering the total five degrees of freedom carried by a massive graviton.
Within this wide scenario we consider two different branches. In one case the Goldstone
bosons becomes so massive to be washed out during the expansion of the Universe; in the
other all the extra modes are produced and propagate across the Universe until inflation
ends. Both these branches provide distinctive features on the primordial power spectra
which are the initial conditions for our problem.

We assume that the graviton population of the SGWB was formed contextually with the
primordial metric perturbations. Then, once they were produced, they evolved propagating
across the perturbed Universe. The evolution of the graviton distribution function is
described by the Boltzmann equation on a linearly perturbed FLRW background (non
linear effects will be only considered in the last chapter in the squeezed limit configuration
for the three-point correlator), while the evolution of metric perturbations are controlled
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Introduction

by the Einstein field equations. This approach is very similar to the one which is usually
adopted in literature to analyze the CMB anisotropy [70, 63, 114]. The greatest difference
between the two cases, besides the obvious observation that photons are massless, stands
on the fact that the graviton population is expected to be collisionless, since the relevant
collisions that gravitons can undergo are thought to be effective above the Planck energy
scale. As a consequence, gravitons are not thermally distributed, and there are no clues
about the functional structure of their distribution function. As will be seen later, this
feature results in angular anisotropies that have an order one dependence on the GW
frequency. This is in contrast with the CMB case, where the photon distribution density
follows the well known Bose-Einstein distribution [66, 70, [63], for which this dependence
only arises at second order in perturbation theory. The statistical analysis of the two
and three-point correlation functions is performed at first perturbative order in harmonic
space. Cosmological SGWB inherits its anisotropies both at its production and during
its propagation across the perturbed Universe, providing respectively an initial condition
contribution and scalar or tensor sourced terms. As a consequence of the non vanishing
graviton mass at late times, both these effects lead to a graviton frequency dependence of
the anisotropies, which instead is there only in the initial condition term in the massless
case. In order to solve the system of differential equations, the explicit expressions for
metric perturbations are needed. Since the model of massive gravity considered for late
time Universe does not propagate extra scalar or vector modes, no deviation from GR are
expected in these sectors, while the Einstein equations for tensor perturbations account
for a new mass term.

The evaluation of the three-point function represents a crucial tool to test models,
since non-Gaussianity is an unavoidable prediction which characterizes many mechanisms
of generation of perturbations. Moreover, the three-point correlators are expected to receive
no contributions from astrophysical sources; indeed, in light of the central limit theorem,
it seems reasonable to expect the SGWB produced by incoherent astrophysical sources
to be gaussian-distributed. Therefore, a measurement of non-Gaussianity would be a
measurement of large scale coherency that would suggest a cosmological origin of the
signal. These arguments support the three-point correlation functions as the preferred
channel to select a cosmological signal of gravitational waves, and this is the reason why
non-Gaussianity is so important. In theories of massive gravity there is the possibility to
generate a non vanishing three-point correlation function between scalar and tensor modes
[47]. This possibility however is not taken into account in this Thesis, but it could be
an open opportunity for later works. Two cases in which non-Gaussianity can arise are
analyzed. In the first case departure from Gaussianity is taken as an initial condition
on the primordial perturbations, and in particular the attention is given to the so called
local ansatz [48]. This is the simplest possible deviation from Gaussianity, where the
primordial stochastic variable is expressed as a non-linear combination of an auxiliary
gaussian variable. Then, a case of secondary non-Gaussianity is analyzed. This is the case
when, even starting from a gaussian random field, non-Gaussian effects arise because the
modes propagate through a perturbed Universe and combine together giving rise to a non-
linear evolution described by General Relativity. The formulation pioneered by Weinberg
[106] allows to evaluate the bispectra and the non-linear coefficient of the distribution in the
simplest squeezed limit configuration, that is the situation where one of the three modes
happens to have a much larger wavelength then the other two. Typically one assumes
the two short wavelength modes to be inside the horizon, while the long wavelength mode
remains outside, in such a way that they can be considered as independent modes, and
the effects of the long-mode emerge, through an appropriate coordinate transformation, in
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Introduction

the propagation of the short-modes only at second order. Of course, in all the mentioned
analysis, particular attention is given to the effects and corrections arising from the non
vanishing graviton mass. The work is organized as follows:

The first chapter is dedicated to a brief technical review on the motivations and the
construction of theories o massive gravity. The aim of this introductory chapter is to pose a
solid theoretical background to our arguments and to convince the reader of the consistency
of these theories of modified gravity. Obviously this is far from being a complete discussion
of the topic. This arguments open the room to the next Chapter , where the application
of massive gravity to cosmological models is discussed. Both the mentioned cases of massive
gravity during and after inflation are analyzed with the purpose to build the power spectra
of the primordial fluctuations.

In Chapter , the collisionless Boltzmann equation for the gravition probability dis-
tribution density is built taking into account for a late time graviton mass contribution and
solved at first order in perturbation theory. In order to connect with observable quantities,
in Section the graviton distribution is linked to the graviton energy density. Finally
the solution is expanded in harmonic space and splitted in three different contributions
sourced by scalar or tensor perturbations, or arising from an intrinsic perturbation in the
initial configuration.

In Chapter the angular power spectrum is computed exploiting the solution of the
Einstein field equation for the scalar and tensor transfer functions.

Chapter focuses on the analysis of non-Gaussianity, considering firstly a primor-
dial source of non-Gaussianity in the local ansatz, and then a secondary source of non-
Gaussianity arising at second order in perturbation theory from the propagation across the
perturbed Universe.

Finally, in Chapter @, we turn back to observations and show the numerical prediction
for the angular power spectra computed in the previous chapters.

Units and Notation

It is useful at this point to clarify some of the notations that will be used later on. We
adopt the convention for the metric signature (—, +, 4, +) and work in natural units such
that i = ¢ = ky = 1. Tt is useful to take in mind the following valueql] and conversion
factors

1Mpc = 1.56x 1038 GeV~!
Mp = 1.22x10YGeV,
Hy = 21hx107*2GeV =3.28h x 10~*Mpc 1,
no = 1.416 x 10* Mpc,
Teg = 112.8Mpc,

where 79 and 7., denotes the conformal time today and at the epoch of matter-radiation
equality respectively. The following rules for symmetrized and antisymmetrized indices on
a generic tensor field A, are used

1
Ay = 5 (A + Avp),
Apy = Ap— Ay

!These values are taken from the Plank collaboration [I09] and the ones used in the publicly available
code CLASS [I11].



Introduction

Moreover we will indifferently denote vectors both with a superscript arrow and the bold no-
tation, that is k = k. We denote the contraction of two partial derivatives as [J = g,,, 010",
V? = gij(?i@j , while, for conciseness, we will sometimes denote the partial derivative with
the usual comma notation, that is 9;4 = A ;. Finally, we will denote with a dot the partial
derivative with respect to the coordinate time ¢, and with a prime the partial derivative
with respect to the conformal time 7. For a generic quantity A this means

. 0A
A= A==,
t’ on
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Chapter 1

Introduction to massive gravity

Within the framework of General Relativity (GR), the graviton is normally taken to be a
massless spin-2 boson. Massive gravity extends this picture introducing a new dimension-
ful mass parameter m for gravitons. A leading principle in constructing massive gravity
theories is that they should recover GR in the massless limit m — 0. In the next chapters
we will always verify that the massless limit recovers the expected results described by GR.

Motivations for massive gravity

Experimental bounds to the graviton mass derives from many observations, but they still
leave room for a non-vanishing mass. Motivations for massive gravity can be found from:

e Gravitational waves: the graviton mass affects gravitational waves in two ways. The
first intuitive effect is a modification of the speed of propagation of the wave. The
graviton speed of propagation is obtained from the dispersion relation linking the
frequency w and the wavelength A (or equivalently the wavenumber k) of the grav-
itational wave. The dispersion relation gets an additional contributions from the
graviton mass according to

m2ct

hQ
This relation is indeed consistent with the definition of the energy carried by the

graviton hw. The graviton group velocity v, can be read from this expression by the
definition

w? = 2k +

(1.1)

2.5

vgzjz:c—;;ﬁ;+'--<c. (1.2)
As discussed in the introduction, this drop in the speed of propagation allows us to
put contraints on the graviton mass. Moreover equation tells us further that
the graviton group velocity is frequency dependent, and that, when m is nonzero, low
frequency gravitational waves travel more slowly than high frequency waves. This
introduces a frequency dependent phase delay in the gravitational waveform, from
which the LIGO and VIRGO collaboration placed the bound [5]

m < 7.7x107%eV/c2 (1.3)

Second, a mass introduces new polarization states. Massless spin-2 particle have
indeed two transverse polarization states, while massive spin-2 particles have five.
This feature should be visible, for example, in the rate of spin-down of binary pul-
sars [4]. This rate is expected to be larger for massive gravity, because the system

1



CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

can radiate gravitational waves into the additional polarization states. As already
mentioned, recent developments in experimental precision in measuring this effect
have the bound [3] 6]

m < 2x107%8eV/c2, (1.4)

e Gravitational force: from the point of view of particle physics, a massive intermediate
boson should also modify the laws of gravitation. Within the Newtonian approxi-
mation, we expect to recover the Newton’s law at small distances, while the mass
should induce a damping in the gravitational force for distances larger then the
graviton Compton wavelength A\; = i/mec. The most reasonable potential which
reproduces this trend is the Yukawa potential

6_7’/ Ag
V(r)=GM , (1.5)

r

where M denotes the mass of the source inducing the gravitational field, and G the
Newton constant. Moreover the new polarization states bring new additional forces,
often called fifth forces. All these contributions can be tested with solar system tests
of planetary motion.

e Cosmic acceleration: in the last decades we have found a several number of proofs
of the fact that the Universe is accelerating [9]. Within GR, this expansion can be
explained assuming the existence of a cosmological constant A modifying the Einstein
equations and entering as an additional contribution to the energy density p in the
Friedman equations as (we consider for simplicity a negligible curvature)

8rG . 881G Ac?
B A
with H the Hubble parameter. The cosmological constant brings a constant con-
tribution to the expansion rate, and then an exponential grow in the scale factor.
Physically speaking, A can be interpreted as the vacuum energy density, which re-
ceives contributions from an intrinsic vacuum energy (usually called “bare”) and from
the vacuum energy of each particle fields:

Poe = Pt + Y aimi, (1.7)
7

H> (1.6)

where 7 runs over all the particle species in our model and «; are numerical coeffi-
cients. Experimental data suggest it has the value p?% ~ (10712GeV)* [17]. This
little value has to be compared with the huge amount of vacuum energy provided
by the heaviest particle species, the top quark, with mass m; ~ 170GeV/c?. This
requires a fine cancellation between the bare vaccum contribution and the particle
mass contributions to give the correct observed value p%%, which goes under the name
of “cosmological constant problem” (see [18] for further details). Massive gravity is
able to provide alternative explanations for the Universe accelerated expansion. It
is possible indeed for massive gravitons to degravitate a large cosmological constant
[19], i.e. to decouple gravity from the vacuum energy on large scales as a consequence
of the Yukawa suppression factor , such that we have an effect of screening of
the cosmological constant; in massive gravity we might not see the full strength of
the cosmological constant. Another possible scenario in massive gravity is called
“self-acceleration”, where gravitons, due to the self-interactions, form a condensate

whose energy density drives the cosmic acceleration [20]
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1.1. Fundamentals of massive gravity

1.1 Fundamentals of massive gravity

For the sake of completeness we want to give some basic arguments which lead to the
construction of theories of massive gravity. This introduction is not intended to be an
exhaustive explanation of the subject, but rather a short discussion aiming to show how
we can build a viable and consistent theory of massive gravity. If one is interested in
further details, we recommend to look at [2I] and [22], which are the main references for
this section.

As said above, massive gravity is a modification of GR which consists in the introduction
of a new graviton mass parameter. In order for the theory to be consistent we must always
verify the massless limit m — 0 to be a smooth limit, and that physical predictions converge
to those of GR in this limit. In order to understand how to correctly perform this limit, it
is instructive to start from the case of a spin-1 massive vector boson.

1.1.1 Consistent m — 0 limit: the Stiickelberg trick
The free theory of a massive spin-1 particle A, is described by the Proca Lagrangian

1
4

with J# an external conserved current (d,J* = 0) and F,, = 0,A, — 0, A, the field-
strength tensor. The limit m — 0 cannot be performed simply imposing m = 0 inside the
Proca Lagrangian, because in this case the number of degrees of freedom would discon-
tinuously change from 3, in the massive theory, to 2, in the massless one, and we would
then effectively describe two different theories. This occurs because the massless theory
enjoys an additional U(1) gauge symmetry transforming the field as A, — A, + J,A. In
this transformation we have the freedom to choose the parameter \ to fix one of the three
degrees of freedom.

The correct massless limit is instead performed by decoupling the third degrees of
freedom from the system (for this reason it is usually called decoupling limit). To achieve
this situation one follows the so-called Stiickelberg trick: we introduce a new scalar field 7
in such a way that the new theory enjoys a new U (1) symmetry but still being dynamically
equivalent to the old theory. The Stiickelberg field is then introduced via the replacement

1
L=—-F,F"— §m2AMA“ + A, J*, (1.8)

o,
A, — A, + 11—, 1.9
Nreplace ’ m ( )
It worth stressing that this is not a gauge transformation, but a field redefinition leading to
a new dynamically equivalent theory. After this substitution the Proca Lagrangian reads
1 T J*

1
L= =2 Fu P = S(0,m)° — mad, A" +m? A4, + A, T — (1.10)

and one can verify that this theory is symmetric under the gauge transformation
Ay — Ay 4O, T — T —mA. (1.11)

By fixing the gauge m = 0, we recover the original massive theory . This implies
that the two theories are dynamically equivalent, and they both describe three degrees of
freedom of a massive spin-1 particle in four dimensions. In the last expression one can
appreciate the appearing of a new canonically normalized kinetic term for the scalar field
7, which remains untouched in the limit m — 0, where the Lagrangian is

1 1
L=—FuF" - 5(a/ﬂr)2 + A, JH. (1.12)

3



CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

This theory still describes three propagating degrees of freedom where 7 is completely
decoupled from the system. The Stiickelberg trick makes clear that gauge symmetries are
nothing but redundancies of the theory. Any theory indeed can be made a gauge theory by
introducing redundant variables, that are the Stiickelberg fields. Having understood how
to perform the massless limit, we can now focus on the spin-2 case.

1.1.2 Ghost modes

As we will see in the subsequent sections, a problem one usually has to deal with in building
a massive theory of gravity is the appearance of ghost instabilities. In this section we want
to explain rapidly when and why this issue arises.

In simple, a ghost is a field which enters in the Lagrangian with the wrong sign in the
kinetic term. Let’s for example consider the situation of two scalar fields ¢ and x, with x
a ghost field:

£ = 5000 + (O + Jrec® ) = V(60 (113)

It’s corresponding Hamiltonian is

M= % <q52 + (@-d))z) - % (2 + (000% + M2 X2) + V(. X). (1.14)

As one can immediately notice, the wrong sign in the kinetic of the ghost field implies
that the energy is not bounded from below, which is a disaster for the construction of
the ground state of the theory and the Fock space. From a quantum mechanics point of
view, the potential V' (¢, x) describes processes where the vacuum spontaneously generate
¢ and x particles. Energy conservation imposes that the energy of particles must be
grater the the ghost mass; therefore these processes of creation of particles have an infinite
phase space allowed, and then also the decay rate is infinite. A possible loophole of these
arguments is to say that our theory is trustable only below a certain cut-off scale E., . If
E.o. < mgnost, decay processes are just artifacts arising from using the Lagrangian
beyond its regime of validity, where some new physics is expected to become relevant.
Another example of ghost instability particularly relevant for our later discussion is the
class of Ostrogradsky ghosts, which arise when higher derivative terms are present in the
Lagrangian and in the equation of motion. For instance, let’s consider the following simple

example )
TP VA i e
£ =—5(00)° = 5650~ V(0). (1.15)

A posteriori, one can verify that this Lagrangian is equivalent to
1 2 Lo o
£ = —5(06) +60x + A —V(9), (1.16)

where y is another new scalar field. Indeed we can integrate out the field x solving the
equation of motion, which are simply

1
X = —pquﬁ. (1.17)

Inserting this solution inside (1.16)) one immediately recovers (1.15)). Now, performing the
field redefinition ¢ = ¢ — x, the new Lagrangian becomes

L= (067 + 5007 + 50~ V(5 ). (1.18)

4



1.1. Fundamentals of massive gravity

In this form the ghost degree of freedom is manifest, since the field x enters with the wrong
sign in the kinetic term. Notice further that the field redefinition has produced a mass
term for the ghost field

Mghost = A. (1.19)

1.1.3 Massless spin-2

The Lagrangian of a massless spin-2 particle can be constructed by hand in such a way to
reproduce the linearized Einstein equations [24]

Ohuw + 0,0,h — 0,07 hyoe — 0,07 hye = —LTW, (1.20)
2Mp
with h = n*"h,,, Mp the Planck mass and T}, the stress-energy tensor, which plays the
role of an external source. The field h,, arises instead as a linear deviation of the physical
metric g, from the flat Minkowski metric 7, that is g, = 7. +M1§1hu,,. A Lagrangian
which brings as equations of motion is

by THY

1
_ - v B
L= =gl ash™ + =y

(1.21)

where the Lichnerowicz operator " g is defined by its action on a symmetric tensor as

1
EVhas = —3 (Dt = 20301 + udoh + 1y (0aDsh™ — OR))
1 ayo
= -5 €0 0O P (1.22)

and enjoys the following properties (they are easy to verify using the expression of the
Lichnerowicz operator in terms of the Levi-Civita tensors)

W _evp  _ opr wv
Mo = EM e = EM5 = €91,

O EMPT = EMeBy,xg = 0, (1.23)

with x, an arbitrary 1-form.
The action (1.21)) is invariant under linear diffeomorphisms

Py = By + 0u&s + 8,8, (1.24)

that is the generalization of a gauge transformation to the rank-2 tensor A, .
At the non-linear level instead, Einstein gravity is described by the Hilbert-Einstein
action

M2
ShuE = TP /d4x\/—gR, (1.25)

with R the Ricci scalar. The invariance under (|1.24)) is replaced by invariance under general
coordinate transformations, or diffeomorphisms, x — y = y(z), which transform the metric

according to
ox? 0x°
, G (y) = 22 g . 1.2
G (%) = G (Y) g 0y % (z(y)) (1.26)

Like in the spin-1 case, we expect that a mass term inside the action would spoil the
invariance of the theory under diffeomorphisms.
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CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

1.1.4 Non-interacting massive spin-2 field

In order to insert a mass term for gravitons, we start from the linearized theory . In
order to respect Lorentz invariance and to fulfill the correct mass dimension, we need an
operator which is second order in the field and with all Lorentz indices contracted. The
only possibilityﬂ is then the so called Fierz-Pauli action

Dy T
oMp

The normalization of the mass term is chosen in such a way that the propagating degrees
of freedom have mass m.

One can easily convince himself that the new mass term spoils the invariance under
linear diffeomorphisms. Following the above discussion, gauge symmetry is erased by
introducing a Stiickelberg field. To respect the Lorentz structure, this must be a vector
field with one index, and then

1 v « 1 v
Lrp=—hu€",gh A gmz (hy "™ — h?) + (1.27)

1
hy — by — — (0B, + 0, By,). (1.28)
replace m
The multiplicative factor 1/m is chosen in such a way to produce a canonically normalized
kinetic term in the Lagrangian. Defining for convenience the field-strength tensor ), =
0By, — 0, By, up to quadratic order, the action becomes
1 1 L, m . y m? »
Lrp = —Zhwé’“l’aﬁho‘ﬁ = g Fw " & By (0l = ) = == (hy W — h?)
h TH By 0, TH
2M P mM P '

In this case however, after the replacement , we are still not able to perform the
decoupling limit, because the scalar degree of freedom with O-helicity is still encoded inside
the auxiliary massive vector field B,,. This is exactly the same situation we described in
Section . In order to isolate the scalar degree of freedom we introduce another
Stiickelberg field through

(1.29)

M
Bt — gty &7 (1.30)

replace m
where O = n*”0,m. All in all, the linearized Fierz—Pauli action in terms of h,, and the
Stiickelberg fields A, and 7 is obtained from (1.27) performing the Stiickelberg replace-

ments

20, B,y 20,0,m

h hyw — 1.31
#l/repﬁe i m m2 ’ ( )
and it becomes
1 2% af 1 1% m pv v 1 % v
Lrp = —Zhwé’ aﬁh — éFWF + ZBZ,((?”h —0"h) + Z&ﬂr(auh —d"h)
2 v v v
m hTH B,0,TH 0,md, TH
——(hu " — h? e 2y 1.32
8 (P )+ 2Mp mMp m2Mp (132)
which, after integration by parts, reads
1 v 1
Lrp = —7hu € gh* — %aMBV(hW — ") = Jhyu (99”7 — D™ )
1 m? h,T*  B,0,T"" 0,70, T"
——F F" — —(h, W — h? et - - =K . 1.33
g M 8 (s )+ 2Mp mMp m2Mp (1.33)

'Here we are arbitrary choosing the coefficients the terms h? and h,,h*”. This is indeed the only
possible choice if we want to avoid ghost instabilities. Below we will give a brief motivation for this fact
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1.1. Fundamentals of massive gravity

In this form the kinetic term for the field 7 is hidden inside the mixing with h,,. In order
to extract the physical propagating degrees of freedom described by this theory we would
like to diagonalize this mixing. This can be obtained by performing the shift

huu = i’/;ﬂ/ + TNuv - (134)
This way the linearized Fierz-Pauli action is
1 1 3 1 ~ =
Lrp = —Zhwé“”aﬂhaﬁ = gFw " =50, )% — ng(hiV — h?)
3 3 = 1 - ~
tom?r? 4 Sminh = Sm(h = b0, By + 3mda A
hy, THY 7T B,0, 7"  0,m0, T (1.35)
2Mp 2Mp mMp m2Mp '

This decomposition allows us to identify the degrees of freedom (dofs) present in the
massive gravity at linear level. The theory describes an helicity-2 state B/W with two dofs,
an helicity-1 mode B, with again two dofs, and an helicity-0 mode 7w with one dof, leading
to a total of five dofs, as expected for a massive spin-2 field in four dimensions.

At this point we are able to perform the massless limit m — 0. Provided that the
external mass source satisfies m_lauT # — 0 as m — 0, the Fierz-Pauli Lagrangian in the
decoupling limit becomes

huwTH 7T
: 1.
oMp | 2Mp (1.36)

As expected, all the five dofs are still present in the massless limit and they happen to be
all decoupled from each other.

1 1 3. 9
Lrp= —Zhwé‘“”aﬁh‘lﬁ = gFw " = 2(0m)* +

Ghost modes: when we introduced the Fierz-Pauli mass term inside the lagrangian
(1.27)), we implicitly chose the relative coefficient between the terms h? and by h# . This
was done because one can show that any other choice would have brought to ghost in-
stabilities, that is instabilities arising from the fact that the theory turns out to be not
bounded from below. This situation can occur whenever our theory contains kinetic terms
with the wrong sign or terms in the potential with higher order of derivatives (see [25] for
a more detailed explanation). In order to understand this statement, let us consider the
most generic case, introducing two arbitrary coefficients o and g such that the Fierz-Pauli
Lagrangian is
by, THY
2Mp
Applying as usual the Stiickelberg procedure and introducing the new field by the replace-
ment , the part of the Lagrangian which does not vanish in the massless limit is

1 a—p
m—0 _ _ * 12% af v o v _
L = 4h;w5 ol hyw (0#0" 7 + (o — B)n*Onr) 52

The last term is dangerous for the stability of the theory because it involves an operator
with higher order derivatives. This term brings the appearance of a new ghost field whose
mass is found to be, retracing the steps outlined in ((1.1.2)),

1 v « 1 v
L=~ huwe"gh p_ §m2 (ahuht™ — BR?) +

[0}

(1.37)

(On)2. (1.38)

3 m?

Mihost = 2a—3 (1.39)

which diverges in the Fierz-Pauli potential, where o = . This is then the only viable
potential which avoid ghost instabilities.



CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

vDVZ Discontinuity: in Fierz-Pauli Lagrangian (|1.36)), the coupling

7T

— 14
I (1.40)

still survives in the decoupling limit. This leads to an apparent discrepancy with the GR
prediction, which cannot be recovered in the limit m — 0, since GR does not contain the m
degree of freedom. This issue goes under the name “van Dam-Veltman-Zakharov (vDVZ)
discontinuity”. The solution to this problem was proposed by Vainshteinis, and it basically
consists in the fact that the free theory is a bad approximation of GR in a regime that
becomes larger and larger as we send m — 0 (we will briefly return to this problem in
Section . If the reader is interested in more details, we suggest to look at [2I] and

[25]).

1.2 Non-linear formulations of massive gravity

We now turn to the construction of a more realistic theory of interacting massive gravity,
whose action assumes the most general form

Mp

S[guu] = 9

2
/ d*z/—g <R — n;Z/I(g‘“',nW)> + Smatter 9w V] (1.41)

where U(g"”,mu,) denotes a generic potential containing contractions of the dynamical
metric g,,, and the Minkowski metric 7),,,, which should reproduce the Fierz-Pauli potential
at first order in the expansion of the physical metric. At higher order the guess of the
potential is more subtle. Boulware and Deser [26] have shown that a simple covariant
generalization of the Fierz-Pauli potential

1
U= §g'uygpg(H,upHucr - H;pro),
Huu = Guv — Nuv (142)

is not a viable solution, since it is plagued by ghost instabilities. The most general form of
a BD-ghost free potential was given by de Rham, Gabadadze and Tolley in [29], and now
goes under the name of dRGT theory:

1
Ugrar = — Y onLn [K(g",7p0)]

n=0

K(g,n)l =5 — Vg nav, (1.43)

with «, free coefficients and the mass terms given by

LolK] = 4!

L:[K] = 3![K],

LoK] = 2!([K]* = [K7]),

L3K] = [K]® = 3[K][K?] + 2[K7),

L4K] = [K]* = 6[K]2[K?] + 3[K2)2 + 8[K][K3] — 6[K1], (1.44)

with [K] = KJ,.
For later discussions, it is crucial to mention that this theory admit an analogous
formulation in the vielbein language. The idea in passing through the vielbein formalism

8



1.2.  Non-linear formulations of massive gravity

consist in realizing that the square root structure of the dRGT potential can be linked to
the definition of the vielbein variable

Guv = NAB eﬁef, (1.45)
with A, B flat indices. Then in the vielbein formalism, the dRGT action is proven to be
23]

M? MZm2 & fom
SarGT = TP d'z(det ) R[e] - Fé Zn! (4 —n)!

n=0

X /€A1A2A3A41A1 A AT A et /\.../\eA4, (1.46)

with the vielbein one-form e = eﬁdm”, and the identity vielbein 14 = 5;?d1:", which can
be seen as the vielbein one-form for the flat background metric.

1.2.1 Counting degrees of freedom

In order to verify that this form of the potential provides a consistent ghost-free theory we
will exploit the Arnowitt-Deser-Misne (ADM) split of the physical metric. In the ADM 3+1
approach to gravity [36], we foliate the spacetime with space-like hypersurfaces identifying
a natural time-direction. The line element gets decomposed as

ds® = Guvdatdz”

= —N2dt* 4 v;;(da’ + N'dt)(da? + N7dt), (1.47)

where N is called the lapse function and N* the shift vectors. With this new decomposition
the action is written as
M3

S:2

2
/ d'aN /7 <R3 +[K)? - [K?) - %M(N, Nl,%-j)> : (1.48)
where I3 denotes the Ricci scalar in three dimension for the spatial metric v;; and Kj; is
the extrinsic curvature

L.

where the dot denotes the usual time derivative 4;; = dyv;; and D; stands for the covariant
derivative with respect to the spatial metric ;;. Moreover in ((1.48)) it was used the usual
notation for the contraction of the indices, but be aware that in this decomposition indices

are contracted with the metric v;;, that is [K] = ¥ K;;. Defining a three-dimensional
momenta 7;; associated to the spatial metric field as
5L g g
w = T = A(KY — Ky, (1.50)
Yij

the action ([1.48]) can be recast in the so called first order form (see equation (3.13) of [36])

Slyij, m] = /d4$ (777 = NC°(v,m) — NiC'(v,m) — m*Hyp (v, 7, N, N;)],  (1.51)
with

1 > 1
c® = —Rs+ " <7T”7rij - 271'2)

C' = 2D; (j;) . (1.52)

9




CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

Varying the action with respect to v;; and m;; we find twelve first order differential equa-
tions for the twelve variables, since both the metric tensor field and the associated mo-
menta are symmetric tensors in three dimensions, and thus they both contain six variables.
Therefore we need twelve initial condition to uniquely specify the dynamics of the system,
corresponding to the six propagating degrees of freedom encoded in 7;;. Actually this is
not the real picture, because we might have external constraints which remove some dofs.
This is indeed the case of GR with m = 0, where the coefficients CY and C? enter as energy
and momentum constraints respectively.

In the massive theory, we can minimize the variation of the action with respect to the
lapse function (here for convenience we define N° = N) and the shift vectors to obtain

g . 59
(N) (n. . ld i\ —
gy, (’y'lj’ﬂ- 7N’N) 5N“

~ ON®
The solution of this equations will give the expressions for N* in terms of the potential
H,,, but no constraints will be placed on the initial data. As a result, in this massive
theory of gravity we effectively have 6 degrees of freedom, corresponding to five dofs of a
massive graviton and a BD ghost dof.

However, for a particular choice of the potential H,,, the equations might not
have solutions. To fix the idea, imagine to be able to solve only three of the four above
equations

N = N'(y;;, 79, N). (1.54)

This allows us to eliminate the shifts from the action ([1.51]), which then assumes the general
form

S = /d45L‘ (Wij")/ij — ’}:[m(’)/ij,ﬂ'ij,N)> . (1.55)

If H,, is a linear function of the lapse N, then it can be expanded in the form H,, =
f(ij, @) + N C (vij, ™). Then the equation of motion for N brings an additional con-
straint which reduces the total number of dofs to five, corresponding to the massive graviton
degrees of freedomﬂ

Luckily, the solution proposed by C. de Rham enjoys this feature. This can
be seen working for example in minisuperspace [37], where the lapse N is taken to be
homogeneous and the shifts N* are null. Therefore the metric has the form

ds? = —NQ(t)dt2 + a’ (t)éijd:cida;j, (156)

and the action is automatically written in the form . If we want to reproduce the
situation depicted above, in order to have the constraint, the action must be linear in the
lapse IN. If this is not the case, then BD-ghosts unavoidably arise. This test provides a
quick and simple check to see whether our theory describes BD-ghost degrees of freedom.
The existence of such constraint is a necessary but not sufficient condition for the safety of
the theory, because the existence of the constraint in minisuperspace does not guarantee
that the constraint exists beyond the minisuperspace. In minisuperspace the first order

form of the action ([1.51)) becomes

M3

5=

. 2
/dt (mra — N12M123a — mQM}%Z/{m.S.(N, a, 7ra)> , (1.57)

2Actually one should also verify that this constraint is a second order constraint, that is its time
derivative is null after applying the equations of motion and the first order constraints.
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1.2.  Non-linear formulations of massive gravity

where T, = 6M3N"'aa. We just said that the naive covariantization (1.42)) of the Fierz-
Pauli potential is not a viable solution. Indeed, inserting the explicit expression of the
metric in minisuperspace one obtains

3(a2 — 1)(202 — 1)) L 3ale® - 1) (1.58)

Un.s. = N ( da N

which contains a non-linear term in N, pointing out the appearance of BD-ghost degrees
of freedom.

Conversely, the ghost free potential gives rise to linear potentials. For example,
the mass term with ag =1, a3 4 = 0 is

Usrar = 3(a — 1)a®> + N(a — 1)(2a — 1)a, (1.59)

which is clearly linear in IV, and then it provides a consistent ghost free theory.

1.2.2 Decoupling limit

From now on we will focus on the theory with potential . What we want to
show is that the theory provides a smooth massless limit which recover GR predictions.
Following the Stiickelberg procedure for gravity, it is useful to recast the theory in a way
where diffeomorphisms are restored. Diffeomorphism invariance is broken by the potential,
and it can be restored introducing four new Stiickelberg scalar fields ¢®. We then perform
the replacement

mu@—la;enabam“@mb- (1.60)

and the metric fluctuation becomes
Hyw = guw — nabamb“@uaﬁb- (1.61)
Then the action turns out to be invariant under a global symmetry in the field space
¢* = Ao, (1.62)

and under coordinate transformations where g,,, transforms as a tensor and ¢ as a scalar,
that is
Oy® OyP
Guv — @wgaﬁ(x(y))v " — " (z(y))- (1.63)

This implies further that also the fluctuation H,, transforms as a rank-2 tensor.
Let us now turn to the discussion of our theory (1.41)). We introduce first order per-

turbations around a Lorentz invariant background (which is the physically relevant choice
if we want to recover the predictions of GR in solar system experiments)

hyuw Ba
Gpar = T = O =

(1.64)

With the choice of a Lorentz invariant background, the action is invariant under simulta-
neous Lorentz transformations of the Stiickelberg fields and the coordinates

¢ — AL, zh = AF (1.65)
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CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

This means that also B® must transform as a four-vector under Lorentz transformations,
and then we will usually write B#. The metric perturbation is

H,uu = guu_naba,uﬁbaauqbb
g n 20(:By) | 20,0,
Mp mMp m2Mp

OuBa  0u0am af 0,Bg 0,0pm
<mMp+m2]\4p>77 (mMp+m2Mp ’ (1.66)

where the second line remembers the Stiickelberg replacement in the Fierz-Pauli theory
(11.31))

Interaction scales

Non-linearities in the potential will manifest themselves as interaction terms for the helicity
-2, -1, -0 fields (respectively h,,, B, and 7). The generic form of the interaction terms
can be guessed by dimensional analysis, having in mind that at low energies the dominant
contributions come from the interactions at the lowest energy scale. Therefore dimensional
analysis suggests that any interaction term should come in the form

) h \" OB \"? 00 \""
(int) ~ 2M2 _ 1.
EnhﬂBv”w m P <Mp> (mMP> <m2MP> ( 67)
at the scale
Ay = (m'PMp)/P, (1.68)

with
_np+2ng+3n; —4

np+ng+ng—2°

(1.69)

Interactions of the form ((1.67)) have indeed mass dimension four and respect Lorentz invari-
ance as long as all the indices are contracted. Since m < Mp, larger values of p correspond
to interactions at lower scales.

Interactions at As: As is the lowest possible energy scale at which interactions can
occur, and it is realized when ny = np = 0 and n,; = 3, that is by terms like

)~ %(8677)3. (1.70)
5
The appearance of higher order derivatives is a signal of the presence of Ostrogradsky ghost
instability. In order to avoid this dangerous situation, the ghost-free potentials were
constructed in such a way that the interactions at As scale give rise to vanishing equations
of motion, so that the equations of motion for 7 remain second order.

Interactions at As: In this case we have infinite ways to realize the interaction terms,
but they are restricted to the forms

(int) L} 00m) !

~N — 7'(' —_—

1,0,nx Ag(n”_l) ( ) ) A3

(0B)*(80m)" (1.71)

and always give rise to second order equations of motion. We have then infinite possible
interactions at energies above Ag, but these are sub-dominant at low energies, and then in
the following we will focus just on the Ag interactions.
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1.2.  Non-linear formulations of massive gravity

In this case the A3 decoupling limit is
m — 0, Mp — oo, As = (m*Mp)'/3 fixed. (1.72)

The full computation of the A3z decoupling limit massive lagrangian is quite long and it
goes beyond the purposes of this introduction; if interested, one can find the full calculation
explained in [2]]. Basically one should apply the full Stukelberg replacement inside
the Fierz-Pauli action and expand the inverse metric and the determinant in powers of h.
We just report the result

Dy TH

cD.L. = Ehw[h,uua 7T] + ‘CBT('[B,UJ ﬂ-] + 2MP . (1'73)
For our purposes, we are only interested in the scalar-tensor sector
hy/TH
Ly = £h7r[h;u/7 71—} + OMp
1 1 2a0 + 3 az + 4o
_ v afB v 1 2 3 3 4 3
= € ogh® 4 gh <2a2XfW> TX}J + Angw))
hy/TH
) 1.74
2Mp (1.74)
where the X tensors are defined as
XM = gHm) — 11,
X = ([ = [P])e) — 2([IIy — (I%)y),
X = (] - 311 HHZ] +2[I1°])6f
=3([IPIL) — 2T (I1%)) — [T + 2(I1°))), (1.75)

with I, = n#90,0, 7. In this expression the helicity-2 and -0 modes are mixed. In order to
diagonalize the kinetic terms of this sector of the theory we perform the field redefinition

2ai9 4+ 3a3

0,0, (1.76)
203 H

h,uu = B,uzz + ™ —

which extend the field shift ((1.34)) we introduced in the Fierz-Pauli theory adding additional
non-linear interaction terms. As shown in [38], this shift lead to

Lu = —gheh—20m? -2 25: AC(G’;L)I + (0 + devg) oy X Db
+hg;§;w + 277321]:4]% — 2+ 3a3)%, (1.77)
where the constants ¢, are given by
cg = 5(2 + 3a3)
cy = g ((2 + 3@3)2 +4(as + 4044)2)
c; = %(2—1—3042)(043—1—4044). (1.78)
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The Lagrangian terms Lga1 are known as Galileon interactions [42] and thy are explicitly
given by

LY = (om?[my]
£ = (om)?(I? - [m2)
£ = (om)?([I? - 3[[I] + 2[11%)). (1.79)

The upper index (n) refers to the order in 7 of each term. £3) is called the cubic Galileon,
LW the quartic Galileon, and £ the quintic Galileon.

1.2.3 Vainshtein mechanism

Vainshtein developed a mechanism to solve the apparent vDVZ discontinuity. The coupling
between the helicity-0 mode and matter in massive gravity produces a Vainshtein screening
mechanism around a non trivial background. We want now to show explicitly how this
mechanism works in the simplest case of a coupling between the cubic Galileon and matter:

1 1. 7T
—— — O —_—, 1.
: 33 (0’0 + 5 (1.80)

Let’s then perturb this theory around a generic background 7:

L=—=(0n)+

=7+ 0. (1.81)

Up to quadratic order, the action for the perturbation has the form

0*n 9 T
Defining the factor
0*n
Z ~14 —, (1.83)
A3

we can normalize the kinetic term to its canonical form performing the shift ¢ = ¢/v/Z,
obtaining

A~

2 oT

L~ (0p)* + AT (1.84)
This procedure has produced a new coupling between the helicity-0 mode and the matter
component. When the background is large, that is 9*7 > A3, then Z > 1, and the
coupling to matter gets largely suppressed. Recalling the discussion at the end of Section
, this was the dangerous term which did not vanish in the decoupling limit of the free
theory, spoiling then the compatibility with GR. Non-linear interactions instead cause the
coupling between helicity-0 mode and matter to become suppressed in the strong coupling
regime. On the other hand, helicity-2 states behave as in GR, since their interactions come
in at a much higher scales.

1.2.4 Boulware-Deser ghost

Our new understanding about the Vainshtein mechanism allows us to make a last comment
about the issue concerning Boulware-Deser ghost degrees of freedom. We have just said in
Section ([1.2.2)) that interactions at the scale A5 come with a Lagrangian contribution

1 3
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1.2.  Non-linear formulations of massive gravity

and with the appearance of ghost degrees of freedom as a manifestation of the presence of
higher order derivatives. Expanding 7 around a background

T=T+ ¢, (1.86)
the Lagrangian for ¢ has the form
o0
L~ (0p)* + <Ag )(0&,0)2. (1.87)

The fluctuation ¢ appears with higher derivatives in the Lagrangian, leading to a ghost
mass A
mzhost ~ (8857?) . (188)

This of course holds as long as 007 < Ag such that we are allowed to neglect interactions
at larger scales. If the mass of the ghost were large, then we could neglect the ghost degree
of freedom in a low energy effective theory, assuming that this theory is not trustalbe at
energies comparable to mghost because new physics might arise in the full theory. However
the mass of the ghost is background dependent, and it decreases while the back-
ground becomes larger. Unluckily this is the necessary condition we found above to trigger
the Vainshtein mechanism. These arguments show that the vDVZ discontinuity and the
BD-ghost problems cannot be solved simultaneously. This is the reason why building a
ghost-free theory of massive gravity (such as the theory with the ghost-free potential
(1.43))) is so important. The Fierz-Pauli theory is shown to be ghost free at quadratic order
as long as the tuning condition o = (§ in is satisfied. However, the situation becomes
critical at non-linear level, where the massive spin-2 field is coupled to gravity, and the BD
ghost cannot be avoided.

After this long digression, we will now move the discussion to define our theory of mas-
sive gravitons in a cosmological Universe and in particular to understand how cosmological
perturbations propagates in this framework.
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Chapter 2

Massive gravity in Cosmology

In our scenario we consider gravitational waves generated during the inflationary period,
when the Universe was presumably about 10'° GeV hot. After their formation, being
decoupled from any other particle species, they freely streamed across the Universe until
today, at energies around the eV scale, when they eventually reach our interferometers.
As just said, given the large range of energies involved in this scenario, it would be too
hasty to formulate a unique theory of gravity describing the whole energy domain. For this
reason two regimes are distinguished in this work: an high-energy regime during inflation,
and a low-energy regime characterizing the entire period of propagation of graviton, from
the end of inflation until today. In this Chapter we use the tools of massive gravity to
study the evolution of cosmological perturbations at late time. After the pioneering work
by de Rham, Gabadadze and Tolley (dRGT), it was clear that there exist viable theories of
massive gravity which avoid the appearance of ghost modes. This was briefly summarised
in the previous chapter. The next step is to test these theories on different backgrounds;
in particular, for cosmological purposes, it is useful to apply them on a isotropic and
homogeneous FLRW background metric. While the original theory defined on a FLRW
physical background and a Minkowski fiducial metric does not allow for flat or closed
Universes [40], these possibilities are erased if we consider a FLRW fiducial metric as well
[39]. However, in the same work [39] it is shown that, at linear level, only the two tensor
modes are propagated, while the helicity-0 and -1 modes remain non-dynamical. Soon
after, De Felice, Gumrukcuoglu and Mukohyama argued, in an independent work [41],
that all homogeneous and isotropic solutions of the dRGT theory in nonlinear massive
gravity are unstable due to the appearance of ghost at non-linear level. Different viable
solutions have been proposed so far either by abandoning the hypothesis of a homogeneous
and isotropic background or adding new extra physical scalar or metric fields (the second
case opens to the scenario of bigravity theories). But not everything is lost. In Section
of this chapter we review the new theory of Lorentz-violating massive gravity proposed by
De Felice and Mukohyama [56], which is a viable solution of the problem constructed in
such a way to propagate two only tensor degrees of freedom at fully non-linear level and
that shares the same FLRW background equations of motion of the dRGT theory. This
last feature allows to see this theory, called Minimal theory of massive gravity, as a stable
non-linear completion of the dRGT solution.

Concerning the study of cosmological perturbation in the early Universe we followed
a different approach. In this case there is the additional inflaton field to account for,
and the Effective Field Theory approach seems more suitable to address the problem.
In this context the graviton mass enters through a mechanism of spontaneous symmetry
breaking of space-diffeomorphism invariance. The most simple way to realize this situation
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2.1. MG during inflation from Space-time Symmetry Breaking

is to introduce three extra scalar field acquiring an explicit coordinate-dependent vacuum
expectation values during inflation. Excitation around the vacuum give rise to massless
Goldstone bosons, which are nothing but the Stiickelberg fields restoring the space-time
broken symmetries. We distinguish two cases; one where the new Goldstone bosons are so
massive to be exponentially suppressed by the accelerated expansion of the Universe [46],
and another where the new fields are dynamical and propagate the extra helicity-0 and
helicity-1 modes of massive gravitons [47]. These two situations are described in Sections

(2.1) and ([2.2) respectively.

2.1 MG during inflation from Space-time Symmetry Break-
ing

In the past years the powerful tool of effective field theory has been successfully applied to
the study of single field inflation (EFTI) [43] 44, [45]. General Relativity is a gauge theory
build upon invariance under general diffeomorfisms

= ot(xV). (2.1)
During inflation time-reparametrization invariance
t st E(z) (2.2)

must be broken, because of the existence of an inflationary clock which controls how much
time is left before inflation ends. Besides time-reparametrization symmetry breaking, since
we don’t have much information about the Universe at high energies, it is interesting to
investigate the possibility that the Universe undergoes a spontaneous space-diffeomorphism
symmetry breaking during inflation, that is

ot 2t ). (2.3)

Space diffeomorphisms are broken whenever there is a field that during inflation acquires
a non vanishing vev depending on the spatial coordinates. We then present a model,
studied in [46], where besides the time-reparametrization symmetry broken by the inflaton,
all the space-rotation symmetries are spontaneously broken during inflation. Let’s start
considering a spatially flat background with the spatial metric

ds%:g) = a2(5abe§a)e§-b)d:ni da?, (2.4)
ga) the vielbein representing the local SO(3) symmetry , where
the indices 4, j are space indices (curved indices), while a, b are the indices of the internal
group (flat indices). In this framework, the local SO(3) invariance is broken by the choice
of a preferred rigid spatial frame, as el(-a) = 0. The minimal prescription to achieve this
configuration is to introduce three new scalar fields responsible for the space-symmetry
breaking. Analogously to the case of the inflaton, during the slow roll phase the theory
spontaneously select a vacuum expectation value for the new three fields which breaks the
local SO(3) symmetry, that is

with a the scale factor and e

" = 6%x’. (2.5)

Excitation around the vacuum generate three massless Goldstone bosons 7%, which are
nothing but the Stiickelberg fields restoring, at non linear level, the symmetry under local
space rotations. This is parametrized as

o = (ﬁlxi + 7%, (2.6)

17



CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

Concerning the internal group, it is natural to assume some symmetries to restrict the
structures of the possible operators entering in the action. We then impose the rotational
SO(3) symmetry and the rescaling symmetry in the internal group

= A7 b, % = . (2.7)

The usefulness of these symmetries will be clear in a while. As shown above, the breaking
of spatial diffeomorphism manifestly appears with a new graviton mass term. Adapting
the notation

Zab 5 5cd Zaczbd

ZabE Ny a , b gzabz
g 8#90 8 SO ) Z 22

(2.8)
introduced in [53], the most general action for the inflaton ¢ and the metric g"” with
broken spatial rotations can be written as

1 1 9 }
S = /d%\/fg [QM]%R = 59" 0,00, = V() - ng%mj(aZab)Q ., (2.9)

with my a new parameter with mass dimension [m4] = [M] denoting the graviton mass
during inflation, while the dots stand for higher order terms in the Stiickelberg fields 7® and
the metric g"¥. For the shortness of notation it was further defined (§29°)2 = §,.0,q 2% Z¢.
The numerical factor 9/8 in the last term is just a normalization factor introduced for
later convenience. Speaking about the graviton mass, one can think that a certain relation
between m, and the inflaton ¢ exists, in such a way that the energy scale of the graviton
mass is about the scale of inflation, that is approximately 10'° = 10'3GeV. At the exit of
inflation, the inflaton field start decaying, and contextually the value of the graviton mass
rapidly decreases going beneath the current astrophysical bounds. Even in absence of any
functional dependence between the two, it is reasonable to maintain this mass scale, since
it is the only energy scale characterizing the inflationary period. Notice further that by
construction, the new term §Z% does not contribute to the background energy momentum
tensor, such that the background inflationary dynamics is completely governed by the
inflaton ¢ as in the standard single field model paradigm.

The inheritance of the mechanism of spontaneous symmetry breaking is visible in the
appearance of three Nambu-Goldstone bosons 7% in the third term in the action. As one
is used to do in the Higgs mechanism, it is possible to define a unitary gauge where these
Goldstone boson are eaten by gravitons (the spatial part of the metric), setting then 7% = 0.
This way gravitons develop one helicity-0 and two helicity-1 extra modes. However, thanks
to Lorentz symmetry violation, the appearance of the extra modes can be avoided. Let’s
decompose the Stiickelberg fields in the helicity basis

Tt = p(m)é?xj + w®(2) 827, (2.10)

where p(z) is the helicity-0 mode and w?(x), with a and b antisymmetric indices, the two
helicity-1 modes. Considering long wavelength perturbations such that

dip < Hp, Oiw™ < Hw®, (2.11)

one can see that these perturbations can be reabsorbed through an infinitesimal symmetry
transformation at leading order in gradient expansion. Then, the three extra modes
originating from symmetry breaking are not dynamical. Nonetheless, as will be clear in
the following, they provide the source for a graviton mass term.
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2.1. MG during inflation from Space-time Symmetry Breaking

The same term contains interactions between gravitational perturbations and the Nambu-
Goldstone bosons. However at high energies gravity decouple and these interactions can
be neglected during inflation. In this regime the “decoupling limit” one can expand the
mass term in the action at second order in w-fluctuations and obtain

1 .
Sy = ZA4/d4ZL‘ <87;7TJ61'7TJ + 3(87;7'((1)2> ~ A4k27TZ7TZ, (2-12)

with A = Mpmg,. At lowest operator dimension, the symmetry pattern of our theory
prevents the possibility for Goldstone bosons to have a kinetic term. This contribution
must then be searched in higher order terms like g"¥8,,62%9,0Z% , which provides

Sy~ A ()% + A2K2(71)2. (2.13)

In order to isolate a canonically normalized kinetic term one must redefine m — Akx?; this
way the three Nambu Goldstone bosons enhance their mass to m2 ~ A%. Assuming that
inflation and massive gravity are governed by the same underlying physics at high energies,
then it is natural to identify the energy scale of the graviton mass with the energy scale
of the mixing between gravity and inflation. This energy scale is encoded in the kinetic
interaction term between the inflaton and the metric perturbation. In the same way we
introduced the three fields ¢® for broken spatial rotations, one can regard the inflaton ¢ as
the field which breaks time-reparametrization invariance selecting a preferred rest frame
during inflation. The simplest choice is to consider that the inflaton acquires an explicit
time-dependent background wvev, as

B(t) =, (2.14)
while excitation around the vev are parametrized by a new Stiickelberg field m which non-
linearly recovers time diffeomorphism invariance

o(t,x) =t +n(z). (2.15)

Consider the (kinetic) inflaton sector of the action (2.9). At the background level it can
be rewritten in the following useful way

1- .
Sp = /d"‘m\/—g §¢2goo = —/d43:\/—gM123Hg00, (2.16)

where in the second step it was used the relation d)Q = —2M12;,H of the standard inflationary
paradigm. To reintroduce the Goldstone boson , let’s follow this procedure [44]. Under
a broken time-diffeomorphism ¢ — # = t + £°(x), the time-time component of the metric
transforms as

039 930
00 ~00/ ~, _ v
(@) = @) = S S g (), (217)
In terms of the transformed field, the action is
S0 = [aey g - @) 200 g ) (219)
o - grr oin 9zvY ‘ '

The Goldstone boson enters when we promote the shift £° to a field through the substitution
(x(z)) —» —7 (), (2.19)
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

thanks to which the action is

At +7(x)) ot + m(x))
ozt oxv

= /d4x\/—gM]23H(t + ) [(147)%¢g% + 201 + 7)9mg + amangij} . (2.20)

Sy = /d4x\/ng%H(t+7r(:r))

g (x)

where for the ease of notation the tilde has been dropped. The estimation of the mixing
energy scale is very important in this context, since at energies above this threshold the dy-
namics of the Goldstone boson 7 and the metric fluctuations decouple. Indeed in equation
it is clear that the quadratic terms which mix 7 and g,, contain fewer derivatives
than the kinetic term of 7, so that they can be neglected above some high energy scale
expressed by the coefficients of the mixing operators. Canonical normalization of the ki-
netic term requires the field redefinition 7, = MpH 27, while in order to re-introduce the
correct mass dimension of the metric fluctuation fields it is need to define §g%° = Mpdg"°.
After these redefinitions the mixing term reads

MEHT6g™ ~ HY 7,66, (2.21)

And then finally the mixing energy is

Emix ~ HY2 ~ €/2H, (2.22)
where € = —H /H? is the usual slow-roll parameter. ‘
Therefore, for what stated above, m? ~ A%2. ~ H. In the end, the masses of the

g mix
Nambu-Goldstone bosons are estimated as m2 ~ MpH?/? >> H?. Therefore any excitation
of this boson exponentially decays away during inflation because the Universe was not hot
enough to source fluctuations of the 7'-fields. From the point of view of the EFTI one can
think to integrate out the heavy fields and neglect higher order corrections in such a way
that the three Nambu-Goldstone bosons can be completely neglected.

To be precise, the above discussion presented in [46] shows that extra modes are non-
dynamical in the long wavelength regime. This situation is however more general. The
fact that extra modes of the graviton are not produced in this model at any scale is more
rigorously demonstrated in [62], where the full Hamiltonian analysis of the action
reveals the presence of two only degrees of freedom (the helicity-2 ones).

2.1.1 Cosmological perturbations

Let’s consider a first order perturbed spacetime around a flat FLRW background which in
full generality is described by the following metric elementsﬂ

goo = —a(n)?[1—20(n, 7))
goi = a(n)’wi(n, ),
gij = am)?{[1+29(n,5)]6; + xi;j(n, D)}, (2.23)

where a(n) is the scale factor in conformal time 7, ® and ¥ two scalar perturbations, while
wi = 0w + wy,

1
Xij = (8@ - 352-]-V2> X"+ 0xG + 9ixi + Xijs (2.24)

'This decomposition is allowed because the SO(3) symmetry of the background spacetime is still
unbroken.
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2.1. MG during inflation from Space-time Symmetry Breaking

with 6% xi; = 0. The superscript ” denotes the scalar components, while the superscript L
stands for the vector parts, and “T"” for the transverse and traceless tensor perturbation.
Let us anticipate that in the subsequent chapters, in order to simplify the computations, it
will be often used a particular gauge choice, the Poisson gauge, which simplifies the picture
demanding one vector and two scalar metric perturbations to be vanishing. In particular
it provides

Ww'=0
Poisson gauge: ¢ x” =0, (2.25)
X} =0.

However, for the time being, the most useful gauge to adopt is the so called unitary gauge,
where the perturbations of all Stiickelberg fields are turned off.

Tensor-type perturbations
Let’s consider a perturbed metric of the form
ds® = a*(n) [—dn* + (0ij + xu;) da'da’] (2.26)
Xi = 9 =0.

The aim of this section is to investigate the contribution of the new term in (2.9) arising
from the broken spatial SO(3) symmetry to the tensor metric perturbations. With this
goal in mind it is useful to expand

_ Zab zcd Zab zcd zef
(5Zab)2 = 75ac5bd - 6Téaeécf(sbd
Zab chzef Zhl
+9T5bd6ﬂ(5aeéch‘ (227)

Since we want to focus on the metric tensor fluctuations, in the decoupling limit we can
forget about any contribution involving a Stiickelberg field 7®. This way the expression
for Z% greatly simplifies toE|

2% = ¢ gD e g = a2 ) (9 + ) (2.28)

while the trace must be taken contracting Z® with the Kronecker delta, because the
indices a and b live in the flat internal group, and are then raised and lowered with the
flat Minkowski metric; then

Z = 7%y = g 0,0 " 0ppq = g%, = 3. (2.29)

This way one can easily evaluate separately each contribution to (2.27)). Picking up just
the terms which are quadratic in the fluctuation XUEI’ one finds

Z7%achba =~ 9 ab ~ Xi5X", (2.30)
ZabZCdZef5ae5Cf5bd ~ g% gbC g%, ~ SXZ»inj, (2.31)
ZabZCdZethl5ac5bd5ch5ﬂ ~ 00940 ~ 6xii X" - (2.32)

2In this section we use the symbol ~ to denote a relation which holds in the decoupling limit neglecting
all the Nambu-Goldstone boson contributions

3Linear terms in the action do not bring any contribution to the equations of motion, while higher
order terms are suppressed in amplitude as long as the perturbative regime holds
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

Summing up all these contributions equation (2.27) evaluates to

B 1 B 18v. v 54y v 1 .
(6Z“b)2%§ [Xin”— ngx + ng = i (2.33)

As last step, one can expand the Ricci scalar as in [52] to obtain the final expression of the
quadratic action for tensor modes in conformal time

M? .. i
5P =5 / d*wa®(n) [xXix" = (K + a® (mmg) xijx] (2:34)

The consequences of spatial SO(3) symmetry breaking are manifest in the fact that tensor
modes acquire a new mass contribution. As done for the inflaton, one can solve the
equations of motion for the tensor modes and compute the primordial power spectrum.
The Euler-Lagrange equations for the action are

Xi; (1K) + 2Hx; (0, k) + (k2 +m2a®)xi;(n, k) = 0. (2.35)

As before, it is convenient to decompose the field x;; into its Fourier modes projecting the
solutions into the two helicity-2 states:

3
W) = [ G ¥ eontene (2.36)

A==£2

with A the polarization index and eg\j (k) the polarization tensors satisfying

ai=key=0, k) ="k =(-k), e =20 (2.37)
Fourier modes can be expanded in the basis of positive and negative frequency solutions
as

xalk,n) = (2m)*2 [opx(k,m) + 02 Ix(kym)* | (2.38)

where bﬁ is the annihilation operator, and the positive frequency modes satisfy the Klein-
Gordon normalization )
*/ * ! G

— = —. 2.39

XEXE = XXk = 53 (2.39)

Notice that in this decomposition the only quantity which contain a time-dependence is

the mode x(k,n). Therefore, defining the rescaled field h(k,n) = a(n)x(k,n), equation
(2.35) becomes

"
B (k) + <k2 - % + a2m§> h(k,n) = 0. (2.40)

If we consider that inflation had been taking place with a quasi de Sitter expansion, the
relation between conformal time and the scale factor is simply found as

dn — 67H(1+6)tdt
1
= —— 2.41
g aH(1+e) (2:41)

where H denotes the nearly constant Hubble parameter during the inflationary period;
then the factor a” /a evaluates to

a"(n) _ 32 (1 n 36> . (2.42)
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This way ([2.40) becomes

2_ 1
21
W' (k) + |k — " 4] h(k,n) =0, (2.43)
2
where the new quantity v? = % + 3¢ — % is introduced for later convenience in such a way

to reproduce the Bessel equation whose solution is
Ak, m) = N/=71 [ex (k) HS (~kn) + ca(R)HP) (ko) (2.44)

with H 51)(—k‘17) the Hankel function of the first species and order v, and N a normaliza-
tion factor which is set to N = /327G = 2/Mp by the normalization condition (2.39).
Consistency with the Bunch-Davies vacuum choice in the regime kn > 1 demands ca = 0
and ¢; = TWei(VJF%)%. At the end of the day, the solution reads

NZs

. 1\ 7w
(k) = Y e DR HD (<), (2.45)

which for the original field x(k,n) is, at first order in slow-roll parameter expansion,

x(k,n) = —W@“”*é)g\/—nffﬁl)(—kn)- (2.46)
P

Hence the dimensionless power spectrum for tensor perturbations is

PAk) = ki)l
)\ - 27_(_2 X 777
H? E\3 E\|?
_ LANPTYaS
2mM?% (aH) Hy (aH) ’ (247)
with
4 2
y:g 1—9<”ng—36). (2.48)

If we are interested in the primordial power spectrum generated during inflation, that is
when the considered scale crossed the horizon for the first time, we must consider the above
expression in the super-horizon regime, that is kn < 1. In this regime the Hankel function
has the following limiting expression

HWM(2) Zzl \/zei(g)y—i <£Eg§) 27V, (2.49)

Substituting this result in the above expression, the primordial tensor power spectrum

becomes )
22v=3[% (T'(v) E\"T
k)= — 2.50
P = i (r@ () (2.50)
with the tensor spectral index defined by
4 (m
np=3-2r=3|1-— 1—§ m—?)e . (2.51)

23
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This expression generalizes the results of [34], [35] for a quasi-de Sitter expansion; one can
verify indeed that the solutions match in the limit ¢ — 0. Notice that if

m2

the tensor power spectrum acquires a blue tilt which could be a smoking gun for both the
inflationary period and massive gravity during the early universe. The blue tilt becomes
unavoidable in the limiting case of a pure de Sitter stage, where the slow roll parameter
vanishes. As a confirmation of this results, one can see that in the limit of small masses
(mg /H? < 1) ad pure de Sitter inflation, equation (2.50) recovers the ones shown in section
(5.1) of ref. [16] in the limit for ¢z = 1, that is

EQ ]{7 nr
k)= —— [ — 2.53
P = 5 (1) (2.59
with
2m?
= ——== 2.54

and k., a reference scale defined by k. = (aH)j... evaluated at the time of horizon crossing.

Scalar-type perturbations

Consistent with the Hamiltonian analysis of [62], no scalar degrees of freedom are expected
to emerge in the gravity sector. Indeed the only gauge invariant scalar quantity described
by the theory is found to be (see the Appendix of ref. [62] for a full calculation of the
second order action)

d¢
=0+ HY,
‘ ¢

(2.55)
which is usually called gauge invariant curvature perturbation, and ¥ turns out to be a
Lagrange multiplier for the theory. Scalar type perturbations are then directly linked to
inflaton fluctuations §¢, which are the only source to the energy momentum tensor during
inflation. As already pointed out, the term proportional to (§Z%°)? in the action is
decoupled from the inflaton sector. The inflaton dynamics is then completely untouched
by symmetry breaking of the group SO(3). Therefore one can safely use the well known
results for single field inflation widely studied in literature (see [75], 63, [54] for a review).
For this reason we will not go through all the details, but just mention the most important
results. In Section we will learn how to relate this quantity to the scalar metric
perturbations. For the time being we are just interested in evaluating the dimensionless
power spectrum of primordial curvature perturbations. One can show further that the
above relation on super horizon scales and in Poisson gauge [75] simplifies to

c~u%? (2.56)

¢

such that we are able to relate the power spectrum of the curvature perturbations to the
power spectrum of the inflaton fluctuations in the the following way

k3 H?
Pe= By ¢2| o° = 2A42 15¢)° . (2.57)
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2.1. MG during inflation from Space-time Symmetry Breaking

What is left to investigate then is the time evolution of the fluctuations of the inflaton field
0¢. This is encoded in the solution of the Euler-Lagrange equations for the action ([2.9)),
which are [75]

3 0%V (¢)

_ oV
6p(x,t) + 3Hop(x,t) — %&b(x,t) o o

dp
As done for the tensor case, it is convenient to define a rescaled field 6¢ = a(t)d¢, which

in light of the prescription of second quantization can be written as

> P’k ik-x * T _—ik-x

do(x,t) = e [uk(t)ake + ug(t)ae ] . (2.59)
Passing to conformal time the equations of motion in Fourier space are

o a” 202V(¢)
uy + [k: Y +a 962

At this point one should recognize the equation (2.40|) for tensor modes. Therefore one
can use the same solution with a proper redefinition of the indices, that is

5 = 20 (2.58)

— 667‘[2:| u = 0. (2.60)

3
H kE\27"
0pr|= — 2.61
b= (o) (2:61)
and V()
3 1
- — v~ — 3¢, v = = 1. 2.62
5~V 3e M= g5 a¢2<< (2.62)
Finally the dimensionless power spectrum of the curvature perturbation is
H? E\"
=—|— 2.63
P 8w2M2e (aH> ’ (263)
with the scalar spectral index defined by
_dlnP(k) B

Vector-type perturbations

Expanding the action (2.9)) at second order in vector perturbations as in [62] one finds, in
Fourier space,

g _Mz% Bk dt 1k2 3ottt — 1202yttt 4 kg by L
= — 1 a’w; W —RTaTx; W+ RTax; X

vector 4 1
1 ,
—m2a3w-lw“> . (2.65)

It is clear then that the modes x** are not dynamical, since they don’t have any kinetic

term; then their equations of motion simply give the constraint
1
S; = anﬁ. (2.66)
Once we insert this expression inside the vector action, it is straightforward to realize that
the kinetic term for the modes Xl-l cancels out as well. We indeed have

vector 16 g

M3 :
S —P/dSkdt m2adwitwt?, (2.67)
Hence no propagating vector modes are present in the theory, as in the GR case.
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

2.2 MG during inflation with propagating extra modes

In the past years the powerful tool of effective field theory has been successfully applied to
the study of single field inflation (EFTI). General Relativity is a gauge theory build upon
invariance under general diffeomorfisms

= xt(a¥). (2.68)
During inflation time-reparametrization invariance
t — t+&(xM) (2.69)

must be broken, because of the existence of an inflationary clock which controls how much
time is left before inflation ends. In single field models there is just one clock, which must
be related to the dynamics of the inflaton field. From a larger perspective, at high energies
gravity should decouple from the Universe, such that space-time diffeomorfisms reduces to
an exact global symmetry. As soon as inflation starts, time reparametrization invariance
breaks down giving rise to a massless Goldstone boson 7. In the context of particle physics,
the Goldstone boson equivalence theorem states that the amplitude for a process with the
exchange of a longitudinally polarized massive boson is equivalent to an amplitude where
the massive boson is replaced by a Goldstone boson. Consequence of this theorem, later
applied to EFTT in ref. [44], is that the high energy dynamics of the inflaton field should
be well described by the Goldstone m dynamics.

Besides time-reparametrization symmetry breaking, since we don’t have much informa-
tion about the Universe at high energies, it is interesting to investigate the possibility that
the Universe undergoes a spontaneous space-diffeomorphism symmetry breaking during
inflation, that is

ot 2t ). (2.70)

Space diffeomorphisms are broken whenever there is a field during inflation that acquire
a non vanishing vev depending on the spatial coordinates. Therefore our model considers
a situation where all the space-time diffeomorphisms are spontaneously broken during
inflation. This configuration is achieved if the fields responsible for the breaking select a
preferred direction or depend explicitly on space-time coordinates.

One can describe this situation following two different approaches. In the first approach
one makes the hypothesis that there exist a gauge transformation where all the Goldstone
boson emerging from the symmetry breaking can be set to zero. This is the so called
“unitary gauge”, and its viability demands that there are at most four Goldstone bosons
which acquire a non vanishing vev. This is because a gauge transformation allows us to fix
at most four functions of the coordinates; in doing so, no further gauge choice can be made
on the perturbed metri(ﬁ. Therefore, being a symmetric and transverse rank 2 tensor,
the metric contains up to six degrees of freedom. This is indeed the expected number of
degrees of freedom encoded in a propagating massive spin-2 particle. From the point of
view of particle theory, a process similar to the Higgs mechanism is in place: the massless
Goldstone bosons are eaten up by the graviton, which then becomes a massive gauge boson.
At the end of the day, in this gauge all the propagating degrees of freedom are encoded
inside the metric, which then should account for all the transverse (one helicity-2 state)
and longitudinal polarizations (one helicity-1 and two helicity-0 states) of gravitons.

4More specifically, in the general treatment of GR, one usually introduce the de Donder gauge to remove
four degrees of freedom from the metric (see ref. [68] for further details). In this case this condition cannot
be applied since a gauge choice has just been made on the coordinates in such a way to eliminate the
Goldstone bosons
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2.2. MG during inflation with propagating extra modes

While the unitary gauge provides a simple geometrical understanding of the additional
propagating degrees of freedom, for the purposes of this thesis is convenient to consider
the Goldstone bosons arising from space-time diffeomorphisms symmetry breaking as new
propagating modes of our theory. The simplest choice one can make to introduce a preferred
referential frame, is to align the coordinates with the background values of four new scalar
fields

o =t, ¢ = ax'. (2.71)

These are respectively the clock and the rules which break space-time reparametrization
invariance during the inflationary period. The parameter « indicates the amount of space-
reparametrization breaking. In order to restore the full diffeomorphism invariance of the
theory, following the Stiickelberg trick outlined in section , one introduces four Stiick-
elberg fields 7 and o*

X =t+m, ¢ = a(:ci + O'i), (2.72)

which must transform in such a way that the fields ¢° and ¢’ result invariant under space-
time diffeomorphisms. In order to preserve homogeneity and isotropy of the Universe, we
impose the additional symmetries of the fields under global rotations and translations

¢' — Ohg/ P — ¢+ (2.73)

with O; € SO(3) global. Moreover, in EFTT it is natural to assume the additional approx-
imate time-shift symmetry
¢° — ¢+ (2.74)

in order to prevent the coefficients of the action from being time-dependent. This way
any new operator one can add to the Hilbert-Einstein action cannot involve the fields
o* (u=0,1,2,3) without their derivatives. The most general diffeomorphisms invariant
action describing our system then is

1 L
Sz/d“x\ﬁ—g [2M1%R+F(X,YZ,Z”) , (2.75)
with

X = 0,0°0,¢°g",
V' = 0,0°0,¢'g",
70 = 9,0'9,¢"g". (2.76)

and F' an arbitrary function respecting the internal symmetry group of space rotations.
Actually the arbitrariness on the choice of the function F is restricted by the fact the slow
roll parameters must satisfy some conditions in order to be able to realize inflation. We
consider a flat FLRW backgroung metric in conformal time

g = a*(n)diag(—1,1,1,1), (2.77)

with a(n) the scale factor. By definition, the energy momentum tensor is

v~ .2 08 _
T gegm
= guwF —2(Fx0,0°0,¢° + Fy:0,0°0,¢" + F:;0,6'0,¢7). (2.78)
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

In this expression it was introduced the useful notation to indicate the partial derivative
of the function F' with a subscript, that is Fx = 0F/0X. Evaluated on the background

Ty = guF — 2(Fx0,0) + aFyi0),61, + 0*F ;6,087 (2.79)

where the bar denotes the quantities evaluated on the background. Moreover, thanks to
isotropy of the background

Fyi =0, Fyij = Fz6". (2.80)
Then one has
T = —p=F+2Fy
2
T = Psi=(F- 2%152)5;. (2.81)
The Friedmann background equations equations are
2 2
9 a a® | = _
= —5p=——+(F+2F
/ a? a? - a? -
= —— 3P)=— F—Fx —3—5Fy). 2.82
H 6M]%(p+ ) 3M1%( x —3—5F7) (2.82)

These expressions allow to evaluate the slow roll parameter € as

H H' Fx+%F; 3XFy— ZF
==t g X2 2N 277 (2.83)
H? H? F+2Fx —F +2XFx
where in the last step the background values
_ . _ 2514
X=-1, Y'=0, 79=35 (2.84)
a?(n)
have been used. In order to realize a phase of flat slow roll one should verify ¢ < 1, that
in terms of the function F' means
dinF dInF
(dlnX’ dan) <t (2.85)

It is interesting at this point to learn some physics about this model. The slow roll param-
eter € is related to the speed of ticks of the inflationary clock. In order to reproduce a quasi
de Sitter expansion, the ticks should run very slowly. The occurrence of this situation is
controlled by the logarithmic derivative of the function F' with respect to X and Z. This
is because in our model we actually have two clocks, one encoded in X through the field
#° responsible of the time-reparametrization symmetry breaking, and one inside Z, since,
even if it is related to space-diffeomorphisms breaking, Z% has an explicit time dependence
through the scale factor a(n). In order to ensure that the slow roll period lasts for enough
amount of time, one should further require the parameter n to be very small, that is

é _9 6pxz+Qsz+2ZQFZ2
H T 3R -7k

n= < 1. (2.86)

The parameter 1 controls the time variation of the inflationary tick, and the condition
1 < 1 ensures that the rhythm of the clock does not change rapidly in time, in such a way
to have a sufficiently long period of inflation.
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2.2. MG during inflation with propagating extra modes

2.2.1 Quadratic action for Stiickelberg fields

In full generality, besides the expected interactions between the Stiickelberg fields 7 and
o', the minimal coupling with the metric in the action provides also interaction
terms between these fields and the metric perturbations dgog, dgo; and dg;;. However,
on very high energies E = k/a > H, interaction terms turn out to be negligible. This
fact is explicitly shown to hold for scalar modes in Section . In this limit the local
space-time diffeomorphisms of GR reduce to the global symmetries of Lorentz boosts and
translations of SR, while the Stiickelberg fields become massless Goldstone boson with
negligible interactions with the other fields. Therefore only self interactions betweeen m
and o’ should be accounted for in the action for the Stiickelberg fields. On a linearly
perturbed FLRW background, considering just the terms related to the graviton degrees
of freedom

X = 0.6°0,6%" = —(1+7)>+ 8”;? L3
Y = 0,0°0,0'g" = —a(l+#)5" + 50,0} + i),
.. . . . 2 P . . . . . . P
70 = 9,00, g" = —a25' + %(«W F 00T + ol + OpoiOyol + 4. (2.87)

Notice further that at first order
inj = FZ (51] + ’Yij)- (2.88)
Then, the action for the graviton degrees of freedom up to second order is
1 o1
S = / dzat §M%R + Fx0X + Fz(0ij +7i)027 + 5 (Fx20X0X+
2Fx 720X 07 + Fy20Y8Y + (Fzz0u0, + Fzzéijékl)(SZijéZkl)]

1 . oimd' 1
- /d% at | SMER+ Fx (—7%2 = ”) + 5P (27 + 7))

(0%

2 2
+Fy <—a2<'72 + 2 (Opo'Oro" + %j’}’”)) + Fxyz (—22;(8i01)ﬁ>

_ o2 . 1. 1\ 2
+Fy2% (—0"Z — 7o' + —2(8’7r + 8k8kal))
a

+;TL4(8%UJ + &0 + 00" Opo? +47) (00! + 0o + 0,070, 0" + M)

X (Fzzéikéﬂ —+ F225ij5kl):| R (2.89)

where all the velocity terms were neglected, since first derivatives in the action do not
contribute to the equations of motion. At this point it is useful to split the three Goldstone
bosons ¢ into a vector and a scalar component through the decomposition

dior,

(2.90)
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Rearranging some terms in the above action, one can easily separate a scalar, a vector,
and a tensor sector

2 i
_ _ _ _ ot — Oywd'm

Fo{Ch /d4xa3 |:(—Fx+2FX2) i+ (FX+26L2FY2> Za2

R _ 2 _ 0;01,0"
a2 (—Fy+ B2) 62 1 a2 (Fy + 2% (Fyy + By ) 202008
2 a? a?
2 2 . 7
a? . o 0;60'mw

2%
S
I

_ F . _ 2 _ 9:0%.0:0;
/d4x aSa? [(—FZ + ;2> Ghoir + <FZ + 2‘;‘2FZZ> JUTCL;UZT] . (2.92)

sM = /d41‘8 [Mz% (%ﬂ” - W) +8a (le + ZZ) %ﬂ”} - (2.93)

2a4

The above expressions show clearly that this model propagates six dynamical degrees of
freedom: two scalar modes, two helicities from a transverse vector, and two helicities from
a traceless transfer tensor fluctuation. These are indeed the degrees of freedom carried
by a massive graviton. Notice further that the two scalar modes interact in a non trivial
way controlled by the amount of space-diffeomorphism breaking through the parameter a.
This interaction introduce a second order correction to the curvature perturbation and,
ultimately, to the primordial scalar power spectrum.

In single field models of inflation it is useful to introduce the gauge invariant curvature
perturbation (. One would like then to find a relation between ( and the scalar field .
The rigorous way to do that (see refs. [44, [43] [45]) is to perform a time diffeomorphism to
go form the so called 7w-gauge, where the gauge is chosen in such a way that the spatial
metric becomes g;; = a®8;;, to the (-gauge, where the spatial metric is g;; = a2624(5ij and
7 = 0. This condition is realized by performing the gauge transformation z# — z# — &
with €0 = 7 and &€ = 0. At the same time the metric in the m-gauge transforms with the
Lie derivative according to

G () = g (@) + Ze g) + 0, (2.94)
gﬁguu = guz/,)\f/\ + g)\ufuﬂ\ + gu)fzf)\a (2'95>

where ngJ denotes the unperturbed FLRW metric. Hence

Gij = a*;j + 2aamd;;, (2.96)
which immediately identifies
(&, t) = —H(t)m(Z,1). (2.97)

However our model has two inflationary clocks, and non-adiabatic contributions can arise.
Since the second clock originates from the space-diffeomorphism symmetry breaking, it is
natural to expect that these terms are controlled by the parameter . At lowest order, the
full solution is (see ref. [47])

H — OZQF}/Q 2 — — é-L
GRS Ep— 2y — Fyo)——e | . 2.98
C(Z,t) CMZEH K x+ 52 >7r+a( VA Y2)\/_7v2 (2.98)

As a confirmation, one can verify, exploiting the Friedman equations, that the last expres-
sion reduces to (2.97) in the limit a — 0.
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2.2. MG during inflation with propagating extra modes

2.2.2 Primordial power spectra form extra modes
Scalar Power Spectrum

In we have seen that the gauge invariant curvature perturbation ((&,t) receive
contributions from both the Goldstone bosons 7 and ¢. In order to evaluate its power
spectrum one needs to derive and solve the equations of motion for the Goldstone bosons.
It is convenient then to introduce two new re-scaled field 7, &

- = F. F
F= \/2(—FX +2Fy2) T, &= a\/2 < LG a§> oL, (2.99)

2a2

such that the scalar sector of the action (2.91]) is canonically normalized as

a? a?

LAV V246 + aley/— V2 m} (2.100)

with the sound speed ¢/, and the interaction coefficients A;/, defined by

2 :Fx:ka2p3iz/2a2 A = 2pxz/a2

77r }E’X_2F‘X2 _ \/(*Fx+2FX2)(Fy2{2a2*Fz/a?)
2 :FZ+2a2FZZ/a2—|—2a2FZ2/a2 Ay = —Fyz/a
7 Fy — Fy2/2 2v/ (= Fx + 2Fx2)(Fy2/2a% — Fz/a2)

Since we are assuming a tiny violation of space-diffeomorphism invariance, one can treat the
parameter « as a small perturbative parameter and expand perturbatively the two point
correlator making advantage of the in-in formalism to take into account of the interaction
terms. At zero order then, only the field @ sources the curvature perturbations. The
equations of motion for the re-scaled field 7 are given by the Euler-Lagrange equation of

the action (2.100]), which are

. . V2
#+3H#A — ci—m =0. (2.101)
a
Passing to conformal time and defining the new variable u(n) = a(n)7(k,n) the equations

of motion becomes .
A

uj, + [cikQ - a} uy, = 0. (2.102)
a

At this point one can recognize again the form of the equation (2.40) for massless tensor
modes and with the replacement k& — c;k. Therefore we can straightforwardly consider
the solution

njw

—v
i~ — L <’“> , (2.103)
V23 k3 \aH
with 3/2—v = —e. Notice the difference with respect to . Here indeed, the symmetry
pattern of the theory forbid the presence of any mass term and non-derivative interaction.
Moreover in the present case we are working in the decoupling limit, where interactions
between Goldstone bosons and metric fluctuations are neglected; this prevents from the
presence of the additional term in . Therefore, in light of the considerations outlined
in Section , on super-horizon scales these solution remain completely frozen at the
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

value of the horizon crossing, that is when k& = aH. Therefore the primordial power

spectrum is
272 .

(i ey ) = (27)°0° (K + ko) = 5P, (2.104)
1
= —= 2.1
07 4x2c3” (2.105)

with Hy = H(n;) the Hubble parameter evaluated at the time when a certain mode with
wavenumber k crossed the horizon. Now one can turn back to the power spectrum of the
original field 7 by simply dividing for the multiplicative factor in (2.99)

Hj Hj

73 pry — — = = = .
07 8m2c3(—Fx + 2Fx2)  8m2c3(—Fx — a2Fy2/2a?)

(2.106)

Notice that in the limit o@ < 1, where we restore space-diffeomorphisms invariance, given
the Einstein equation Fx = M]%H , one recovers the prediction for the power spectrum of
a massless single field inflation. Indeed

H} B 1

Pola < 1) ~ : = .
ol ) 8m2cq(—HM3) 82 Me

(2.107)

Contributions to the power spectrum arising from the interaction terms can be com-
puted with the in-in formalism [120]. At first order in the o parameter no contribution to
the two point correlator is expected, since the action does not contain any mass-like
interaction term. The leading correction to the power spectrum is then given by

n m
Min Min

with 7, the time when the interaction is turned on, and

@y _ @ &’k (0).1(0) / &’k _(0) .1(0)
%int (77) - (Hn)3 |:>‘1/ (27'(')3 ko_k 7T—k (n) + )\2 (277)3 kﬂ-k o-—k (77) . (2109)

Then one decomposes the Goldstone bosons 7, o into Fourier modes and inserts the solution
of the equation of motion for the two fields. The computation has been already done in
[47], with the resultﬂ

(LP _ 3042)\1Nk [BA2 — M (B3Ng + 6y + 11 — In(64))]
Py 2
with vg the Euler gamma function and Nj the number of e-folds the Universe expanded
from the time of horizon crossing of mode with wavenumber k until the end of inflation.

Notice that this new contribution does not depend on the scale k. In the limit for large
N} the most dominant contribution is

oP 9042)\%N,?
Py A
For small values of o, we have a simple relation between the gauge invariant curvature
perturbation and the Goldstone boson 7. This, in the end, leads to the power spectrum of

curvature perturbation
H} 9’ AN}
k) ~ k 1- k) 2.112
Pelk) 8m2Mzecy < 2 ( )

: (2.110)

(2.111)

5For simplicity it is considered the case ¢ = ¢o.
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2.2. MG during inflation with propagating extra modes

This is a quite interesting result, because it suggests the possibility of discriminating be-
tween the massive and massless case in physical observations. Indeed the factor N, ,3 intro-
duces a new k-dependence in the primordial power spectrum which modifies the value of
the primordial scalar spectral index. Indeed, making explicit the scale dependence,

H? k7 9a2\2 N2
k) ————— | — 1 - — k) 2.11
Pelk) 8m2Mzecy (aH) ( 2 > (2.113)

By definition, the number of e-folds at the horizon-crossing time is

fena Qend
N = H(t)dt =1n <) , (2.114)
tk a
with t; and t.,q the coordinate time at the horizon crossing of the mode k& and at the
end of inflation respectively, while acpg = a(tend), ax = a(tg). Since the term with IV, ,? is
already at second order in alpha-expansion, we can evaluate Ny at zero order in slow-roll
parameter expansion. This means that ay = k/H and

N,§:2ln< K > (2.115)

Qend
The last factor of equation (2.113)) can be seen as the first order Taylor expansion of an
exponential function. Inserting the above result one easily obtains

18222

H? E\ >/ & z
k) ———— | — 2.116
Pek) > G e, <aH> (aendH> ’ (2.116)
and finally the scalar spectral index is
dInP(k 18a\?
ng—1= ;HIE) = 2+ % (2.117)

™

Hence, the most important result is that the scalar power spectrum may acquire a blue
tilt depending on the “amount” of violation of space-diffeomorphism invariance. This is
similar to what it was shown in Section , where the primordial tensor power spectrum
becomes blue for large values of the early time graviton mass. Moreover, both in the tensor
and scalar cases, the primordial spectra becomes unavoidably blue in the limit of pure de
Sitter stages during Inflation, where the slow-roll parameter € vanishes.

Remember that in deriving the second order action ([2.91)), couplings between the Gold-
stone bosons and metric perturbations were neglected. In a sense, we are perturbing the
fields over an unperturbed background. To eliminate this inconsistency one should take
into account the perturbed metric around a FLRW background as in . As long as
we are interested in the m-spectrum at the zero order expansion in « parameter, the only
relevant difference arises from the term
aﬂr 8%

a2

X =0,0°0,0%" = —(1+7)*(1+2®)+ (1+2¥)

81‘7T8i7i'

= —1-27—20— 7" — 47 + ——
a

+... (2118)

where terms of third order in perturbations are understood inside the dots. This way the
quadratic action for the rescaled Goldstone boson 7 at zero order in o becomes

1/, FOR
S(ﬂ) — /d4$ a3 |:§ <’/:['2 . Cgr 817('? 7T> . C7|—7'T(I):|7 (2119)

a
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with B
4F
Cr = it S— (2.120)
V2(=Fx + 2Fx2)
The equations of motion for this action are
. . \vg: .
T+ 3HT — a5 = —cr®. (2.121)
a

As long as we are interested in the primordial power spectrum on super-horizon scales, the
time derivative of the scalar metric fluctuation can be neglected. Hence we are back to the
same equation , supporting the consistency of the previous analysis and our choice
of neglecting the coupling between Goldstone bosons and metric perturbations.

Tensor Power Spectrum

In the tensor sector we have two propagating helicity-2 degrees of freedom with an addi-
tional mass term. This is the expected result of having introduced a non vanishing mass
for gravitons. The equation of motions for this action were already studied in Section
; in particular, the above action reproduces the one in equation (2.34) with a new
redefinition of the mass parameter

5 8 Oé2 B 4
= — | =F —F . 2.122
my Mz% <a2 7+ a Zz> ( )

Hence the dimensionless power spectrum can be straightforwardly read from (2.50]), that

_221/73H2 F(l/) 2 k nr

with a new definition of the parameters

2

9 m

2 _ g
vi= 43— oy (2.124)
np=3-20=3|1— 15553 (2.125)

As a last comment, we mention how these effects reflect on the tensor-to-scalar ratio.
Because of the mass term, the scalar power spectrum decreases according to , while
the tensor power spectrum acquires a non negligible time dependence encoded in the slow
roll parameter n. Explicitly

2
P 22vtlec T'(v E\"Tt2
T ,PfT: 902 )2 N2 ( (3)> <H> ) (2.126)
¢ <1_ QAT k:> I'(3) a

2
Cr

where Pr = P1o +P_o = 2P, is the total tensor power spectrum, and the tensor spectral
index np is defined in. This is a quite interesting result, since it shows our prediction
for deviation from the usual single field inflation consistency relation. Notice that in
the massless limit np = —2¢ + o(e?) and any time dependence of the ratio r goes away.
Moreover, the usual single field inflation scenario is recovered taking the limit o — 1 and
¢ — 1. In this case, considering further v ~ 3/2, we recover the expected consistency
relation for slow roll inflation

r = 16e. (2.127)
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2.83. The minimal theory of massive gravity after inflation

2.3 The minimal theory of massive gravity after inflation

In recent years, much effort in theoretical cosmology has been put in finding a viable
theory of massive gravity in a Lorentz invariant way. These theories necessarily provide
the graviton to have five physical degrees of freedom, but they are plagued by instabilities
when applied on background space-times relevant for cosmology, as the FLRW one [55].
In this section we present a recent model developed by De Felice and Mukohyama [56], 57|
which modifies GR in a minimal way without any extra scalar and vector propagating
degree of freedom. The absence of the extra modes assures that the theory is stable in
a FLRW background. It is worth to stress again that this theory is not in conflict with
the one outlined in Section ; We are looking at a very large range of energies, and it
is really hard (if not impossible) to think that a unique theory would be able to describe
gravitational interaction on such a wide domain. Therefore we are effectively describing
this interaction in two limiting regimes through two different theories which are completely
independent, and they are not required to match at certain energy scales as one usually
does in building a low energy effective field theory.

In order to avoid the propagation of extra modes one has to give up Lorentz invariance.
Lorentz violation is naturally confined in the gravity sector, and vanishes in the limit of zero
graviton mass; on the matter sector, Lorentz violation induced by graviton loops should be
suppressed by a factor m?/ M]%, where m is the graviton mass after inflation. Notice that
this mass does not need to coincide with the one possessed by gravitons during inflation
(mg), since we are picturing the history of the Universe with two not communicating
gravitational theories. In fact, for gravitons propagating across the Universe, we have
recent astrophysical observations which tightly bound the value of the graviton mass to
m < 10728 eV, which we should always have in mind. In the following, in order to highlight
this important difference we will adopt two different notation to refer to the graviton mass:
myg for the graviton mass during inflation, and m for the graviton mass after inflation. In
the following we review the main steps to build the minimal theory of massive gravity
(MTMG thereafter); it is useful to proceed by steps, starting from a precursor theory and
then applying some constraint to derive the final theory.

The precursor theory

Since the fundamental feature of this theory is to avoid propagation of extra modes, it is
convenient to work in the ADM formalism [58] which allows a simple degrees of freedom
counting. The basic variables of the theory are then the lapse N, the shift vector N?, and
the three-dimensional vielbeins ejl which allow to write the three-dimensional metric as

Yij = 51J€@I€}'], (2.128)

where I,J € {1,2,3} are flat indices, while i,j € {1,2,3} are curved indices. Out of
these variables, we can define a four-dimensional vielbein in such a way to put the four-
dimensional metric in the usual form

Guw = NABELED, (2.129)
with
goo = —N? + 5 N' N7, g* =—-N"2,
90i = gio = Vi N7, g% =g¢" = N'/N?,
Gij = Yig» g =~% — (N'NI/N?).
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This situation is realized choosing

N 07
A pu— .
Ifl= (e o ) (2130)

which is usually called ADM vielbein. In full generality, a four-dimensional vielbein has
16 independent components; our particular choice of the ADM vielbein contains just 13 of
them, since three components, related to the boost parameters, are identically set to zero.
Therefore the particular choice of automatically select a preferred frame and thus
explicitly breaks local Lorentz symmetry. Besides these dynamical quantities, the theory
introduces a new four-dimensional non dynamical vielbein E;f‘ out of non dynamical lapse
M, shift M® and three dimensional vielbein EJI . In analogy with the dynamical vielbein,
the non dynamical counterpart is chosen in the form

M 07
’A — .
128 (g w1 ). (2131)

which defines a new non-dynamical metric as

foo = —N*+73;M'M,
foi = fio ="M,
fis = Yij- (2.132)
with
Fij = 01 Bl E]. (2.133)

The dual basis e]I' and E% is introduce in such a way that the three-dimensional vielbeins
satisfy

elel = oL, ek eK = 5’ (2.134)
ELEY =6t EFE] =6, (2.135)

while for the four-dimensional vielbeins

e 68—53, e eA—(S” (2.136)
E;j‘E’g = 0%, Elf‘E =00 (2.137)

The precursor theory is then defined as a minimal modification of the dRGT action ,
by simply inserting the ADM vielbeins as the physical vielbeins, and substituting
the fiducial ones in place of the identity vielbeins. This allows to define the theory
of massive gravity on a generic background metric encoded in the choice of the fiducial
variables, and eventually on a FLRW background. Therefore

M}
Spre = Sararlel, Bj] = =L / d*z/—gRl[g 22 / d*zen, L, (2.138)
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where p denotes a graviton mass parameter, while R[g] specifies the Ricci scalar for the
physical metri g,,, and

Ly = iE“ Y7 e spep B ES ESEY,
L = e casepBEEESED.
Ly = ié“ Y7 e aep E; ESeSel,
L3 = éewp “eascpEylebeSel,

Ly = ie“ VP ¢ gpepe;, eneSel.

(2.139)

One then can easily verify that our particular choice of the Lorentz symmetry breaking
ADM vielbeins leads to

M2 i

Spre = 7}) d4${Nﬁ(R[7] + KinU — K2)
—cop®/AM — e1p®/A(N + MY, )
- M
—cop® /7 [NYI T+ - (7 v, 7 =v7v, I)]
—cap? /(M + NX, 1) - cuﬂNﬁ}. (2.140)

with . .
XIJEejEJj, YIJEEIjer, (2.141)

and the extrinsic curvature defined by

1

i = 5y (Y5 = 2DGN; ~(01s¢e”; = DNy, K = Kijy¥, (2.142)

Ki J)) = N J

where Dy is the spatial covariant derivative compatible with ~;;

Hamiltonian Analysis of the precursor theory Contrary to the dRGT case, the
mass term of the precursor modified theory has a linear dependence on the lapses and no-
dependence on the shift-vectors. This allows us to take N and N* as Lagrange multipliers
and fix four variables, leaving the theory with nine degrees of freedom e’ ;- In order to
perform the physical degrees of freedom counting it is convenient to pass to the Hamiltonian

formalism. The canonical momenta conjugate to the vielbeins variables are

;08 M2N ./~ 0K ,
Ny = = S [ e 2k R  aa, (2149)
J J

with
2

7 = TPW(KW — K~"). (2.144)

Three primary constraints are directly obtained from the symmetric property of the ex-
trinsic curvature

Qg = HﬁrfsJ}KeKk = Wije[[iejj] =0. (2.145)
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For the following discussions it is useful to write the extrinsic curvature in terms of the
canonical variable only. Contacting the definition (2.144)) with the spatial metric

T =79 = —Mi /K. (2.146)
On the other hand, one can invert (2.143)) as
1 o
7 = 55”erj. (2.147)
Contacting again with the three-dimensional metric and comparing with (2.146)), lead to
1.
K= —51112@11.. (2.148)

Inserting this expression inside (2.144]) together with (2.147]), one eventually arrives to

2 1
Kij m [’Yz’m%‘n — 3 Ymn "
1 1
= —— |6 e )t = Sl F6% ey | 2.149
ﬁMFQ) [V(k(ﬂg)l T €y 2’Ykl K €r, Vij ( )

The Hamiltonian density of the precursor theory can be now introduced as the Legendre
transform of the Lagrangian density (2.140)), that is

o M?2 g _
Hoe = /T = ZP{NVARN] + K K = K2) = con®y/3M

M
—c1 VAN + MY 7) = cop® /A |:NYII +5 (' -1y, I)]

2
—03u2\f'y(M +NX, 1) - cuﬁNﬁ}. (2.150)
Using the above relations, one can work out some term to find
iy 4 1 =
iKY - K* = NIV [%m%n - 2%'ﬂmn] T, (2.151)
) ; 2N 1 iy . ,
LIy = MR |:'7im’7jn - 2%ﬂmn] 7™ — 2~y NI D;m®, (2.152)

Summing up these results and rearranging all the terms in a more suitable way, the Hamil-
tonian of the precursor theory together with primary constraints isﬁ

H{) = /d4x [_NRO — N'R; + pu*MH; + OZMNQ[MM]:| : (2.153)
with
1 1
0 0 VR[] 7 5

Ri = R{H = 29D,

Ho =/ (1 + eV ") + 7 (3 Xy +ea)

M= VA [y T+ S (Y =Y )] e

QIMN] _ e?/[HjI(SIN _ eNij}cSIM. (2.154)

5For the ease of notation, here and in the following the units are fixed such that M2 = 2.
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As already pointed out, since the the precursor Hamiltonian is linear in the lapse N and
in the shift N?, they can be treated as Lagrange multiplier, whilem

Ro ~ 0, Ri ~ (2.155)

are two additional primary constraints.

Secondary constraints
Secondary constraints may naturally arise by imposing the time conservation of primary
constraints on the constrained surface:

YMN] _ ] olMN] ()L 2.156

Q {Q 9 pre}P ( )
. IR

0 { 05 pre}P + ) ) ( )

Ri={R;,, H)! =~ 2.158

{ pre},P ( )

where {, -}p denotes the Poisson bracket operator. Three secondary constraints arise from
the first equation. Indeed

) SQIMN] 5H(1) SQIMN] 5H(1)
[MN] — [ g3 LA . pre | 2.159
< / x[ sl I oI, el (2.159)

Working out each operator one at a time, one finds

sQMN s 1
sel, ST 2.4

A . v
(’Yik’Y]l - 2’75712) HJ’HLkere[l(SE SN,

SQIMNI 1 k [sMI_N NI_M
Both these equations vanish whenever 4™ eN]Z. = 0, which means when the condition
yIMN ~ 0, yMN — sMLy, N (2.161)

is satisfied. Now one may wonder how many constraints can be derived from (2.157))
and (2.158]). For this purpose one can compute the Poisson brackets among the primary
constraints Ry and R;. Since

{Ro(z), Ro(y)} = 0,
{R(x), Rj(y)} =0,

{Ro(x), Ri(y)}#0,

Ro /d%[Ni{RO,RZ-} + 2 M{Ro, Ha} + ann{Ro, Q[MN}}] ~ —0/Ro, (2.162)

@.
%

/d%[ — N{R;, Ro} + 2 M{Ri, H1} + aprn{R1, QMN] }} ~ 0. (2.163)

“In this context the symbol ~ denotes the weak equivalence sign, that is an equivalence which holds
only on the constrained surface of the phase space.
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

Then equation (2.162) can be solved to fix one of the three components of the shift N*
in terms of the other variables. In the same way one of the equations fixes the
lapse N. This leaves with two equations which provide for two additional secondary con-
straints, which we symbolically denote with C, (t = 1,2). In the end the total precursor
Hamiltonian is
H) = /d% [—NRO — N'R; + 2MH; + apn QMM 4 B YN 4 XTC}} . (2.164)
All in all, we found 7 primary constraints (Rg, R;, QIMN ]), and 5 secondary constraints
(Y[MN ],éT). By computing the Poisson brackets among all these quantities, one can
straightforwardly realize that all these constraints are of second class. Therefore we end up
with 12 second class constraints which provide the cancellation of twelve degrees of freedom
from the Hamiltonian phase space. Since the lapse N and the shift N are interpreted as
Lagrange multiplier, this is given by the variables e! ; and g ;» which account for a total of

18 degrees of freedom. Finally, the number of physical degrees of freedom of the precursor
theory is (18 — 12) = 3.

The minimal theory

So far, breaking Lorentz symmetry with the precursor Hamiltonian has removed two modes
from the dRGT theory, leaving three only physical degrees of freedom. Our aim now is
to remove an additional degree of freedom, while keeping the same background equation
of motion of the dRGT theory. The MTMG is defined in the Hamiltonian language by
imposing the four constraints

Co~0, C=0, (2.165)

with
Ci ~ {R{T, H b, (2.166)
Co ~ {RG", Hi} — 1> Ho, (2.167)

and
H, = / dBrp?MH,. (2.168)

One can verify that the previous two constraints C, are linear combinations of C;, such that
only two new constraints are applied to the minimal theory with respect to the precursor
one. In the end, this reduces the total number of physical degrees of freedom to two, which
are the two tensor transverse and traceless modest] The Hamiltonian of the minimal theory
is then

Hyrme = / dP*z [-NRo — N'R; + p* MH; + XCo + N'C; +
oy QN 4 BMNY[MN]} , (2.169)

with N, N*, X\, A", aarn, Bars 14 Lagrange multipliers. Notice that on the constrained sur-
face the Hamiltonian reduces to Hyrprg &~ Hi. The definitions (2.154]) allow to compute

8Rigorously speaking, it was shown that the total number of physical degrees of freedom must not be
greater the two. However, one can consider the Hamiltonian equations of motion for secondary constraints
and realize that no tertiary constraint arise. This prove that the above ones are all the constraints provided
by the minimal theory.
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2.83. The minimal theory of massive gravity after inflation

explicitly the constraints Cy and C;. In particular one can expand the Hamiltonian density

= \/AE;* [cleli + %Ejj(elie‘]j —ef ;€ T + ey (2.170)
and compute

IRG () 1 TASLB, j lyyi km 53

W = 2\[ YikVjl — 2%]’Ykl () €s€p 11, om0 (X_Y)v (2~171)
SREE () 5AM’ymeAk 3

—t == = /yvuDi| ———= | °(x—y), 2.172
sy VR ) oY) (2172)

OH1(x p m
sl = [VA (@b + el 5of i)+ oy ol ), (2T
;S‘;((Z)) = 0, (2.174)
OHy = [\[ (01(51 + CQ(YL 51 — )) + Cng } leJjatELl. (2.175)

This way the constraints Cp; can be written as

1 .
Co = MW’ |:2(7ikEJk€Ij + B el — Y, el — yH I} , (2.176)

C; = —p DI (MWTHY; Koppel ek, (2.177)
where for convenience there were introduced the following definitions
w;? = Vi [e16] + co(Yie 567 = Y1 )] + e X7, (2.178)
Vi
1
HP T = S0, (2.179)

Metric formulation At this point one can turn back to the Lagrangian formalism of this
new theory retracing backward the steps shown above to go to the Hamiltonian formalism.
The calculation are a bit lengthy and cumbersome because of the additional constraints Cy
and C;, but there are no new physically meaningful arguments to learn in this procedure.
For these steps are omitted in this text, but the reader is encouraged to look at [57]
if interested in more details. In few words, starting from , one should invert the
Hamiltonian equations for e! ; to obtain an expression for g ;- Then the Lagrangian density
is found as the Legendre transform of the Hamiltonian density, as done in . For
later discussions it is convenient to turn to the metric formulation of the Lagrangian. For
this purpose let’s introduce two time dependent external fields

N - 1 .
Yij = 61BN B, &= ME/EI].. (2.180)

Then we define the tensor K and its inverse )" as
KL = 35, Kk =em., (2.181)
These condition are satisfied if the two tensor admit the vielbein representations
KM = E,meM Vm—=emEM (2.182)

n’
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or, in metric formulation, if

K = ( ry—ly>m, Y= < W—1>m, (2.183)
Then the following tensor is introduced
ij_ VA ilyed | ~dlgci iged | A dlgeiy _ oz ij
oY = Ve a(Y'K) + 9K + o KK ++7°KY) = 237 ¢ + 2e3y (2.184)

together with the four constraints

g[@f +eo(KC — KpCa)] + sV b, (2185)

1 L
Co = /L2M{*Kij@”—
ep = —eM{[ler + k)T + 7 ikch,) — e +esdl ), (2186)

and the full action of MTMG is, reinserting the Plank mass Mp,

M\’ 1 )
SMTMG = pre"’/d%N\f <)\> <%’k’7jl - 2%’]’%1) SR
M2
TN / d*z /7 [ACo — (DuX')C}'] + Stnat, (2.187)

with
2 4
_ P E : 4 )
Spre = SGR 9 - /d 3781)

M?2 .
Scr = 2P/d4xN\/’7 [R["}/] —l—Ki]‘K” —Kﬂ ,

Si = —pPav/AN + MK),
1 po ~ 1]
S = —5ule2V/AQRNK + MK? — M),
Sy = —pPesA(M + NY),
S = —ier/AN, (2.188)

and Spat the action related to a matter component in the Universe. In the following we will
abandon the full general treatment and specialize this theory to the case of a homogeneous
and isotropic FLRW background.

2.3.1 MTMG on a FLRW background

The symmetric properties of homogeneity and isotropy of the background demands g% =
¢ = N* = 0, while Vij = a25ij and y;; = C~L2(5i]’ with a and a the scale factors for the
dynamical and fiducial three-dimensional metrics respectively. These relations allow to
explicitly express the tensor IC; and its inverse as

. a . . a .
K=(3)0 V= <a) 5, (2.189)
while the external field f; and the extrinsic curvature become
CJZ = Hféj-, Ki]‘ = a2H<5ij, (2.190)
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with
a a
H=— H: = .
aN’ F=aMm

Defining for convenience the quantity X = a/a, the tensor ©% admits a simple expression

(2.191)

s
oY =2 (1 X% + 202X + c3), (2.192)
and then the constraint Cy reduces to
Co = 32 M [H(C1X2 + 260X + ¢3) — Hp(e1 X3 + 26, X2 + c;»,X)}. (2.193)

At this point the Friedmann background equations can be derived as the Einstein equations
for the action ([2.187]). Since the GR sector is untouched by the theory, it is fair to think
that no new contributions should appear in the Einstein tensor. On the contrary, the
constraints imposed upon the theory enter in a non-trivial way into the energy-momentum
tensor defined as
2 0 2 1)
/—aql ) — ———
V=555 m=TN VA OgH
where L£,, contains all the terms inside (2.187)) but the GR-contribution. Raising indices
with the metric (2.129)), one finds for the time component

1 6

(V=9Lm), (2.194)

T = _gﬁ(\/fgﬁm) = —Pg = Px — P> (2.195)
M

py = & (1 XP 436, X% 4 8¢ X + ca), (2.196)

3MEu>M [ M
Py = — g]’l\j} M8N (01X2 + 2c9 X + 63)2)\2 +

+H(c1 X%+ 200X +¢3)A|, (2.197)
10

P = gw(\/jgﬁmat)y (2.198)

where p, denotes the energy density contribution arising from the precursor action, while
px accounts for the contribution from the additional constraints. With this arguments the
Friedmann equation is written as

Eo =3M3H? — pp — pr — pg = 0. (2.199)

Moreover, varying the action with respect to A, one obtains a further constraint on the
equations of motions
dSvutma

B, = 2OMTMG _
A oN

- [MZM)\(chQ + 205X + ¢3) + AN(H — Hp X)| (1 X2 + 262X + c3). (2.200)

For the purposes of this review, it is not necessary to go through the whole dynamics
of the action . What we really care the most is to understand how cosmological
perturbations evolve and propagate across the Universe. For all the details the reader
can look at [57]. Let’s just mention that the Friedmann equation can be coupled with its
derivative together with the Bianchi identity and to give A =0 and p) = P, = 0.
Then equation separates between two branches of solutions.
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

- Self-accelerating branch: The variation of the action with respect to A is solved by
a1 X?+2cX +¢3=0, (2.201)

which implies X = constant and

:U'QM2
Py = 5 P (cy —3ca X% — 2¢1X?3) = constant, (2.202)
: 2 . 0 [N(c2X? + 23X + cq)|u? M3
Pyt = — = — L 2.203
9% Na3' 5y oN oo (2209
P
w, = —2=-1. (2.204)
Pyg

Then, at the background level, the new contributions arising from the additional
constraints behave like a pure cosmological constant.

- Normal branch: after having set A = 0, this branch corresponds to the solution of

(2.200) for which
H = XH;y. (2.205)

Since this time X is not required to be constant, even the energy density p, can
change in time, highlighting a different behavior with respect to the self-accelerating
branch. From it is possible to isolate a cosmological constant component pp
and a time dependent dark component px in the following way

Pg = PATPX,
2M2
po= L, (2.206)
,U,QMQ
px = 5 P (3c5X + 3 X? 4+ 1 XP). (2.207)

2.3.2 Cosmological perturbations in MTMG

The evolution equations for the perturbed fields are obtained by varying the action
expanded at second order in perturbation theory. In ref. [57] it is shown that the mentioned
action does not bring significant differences with respect to the GR case in the scalar and
vector sectors. This is quite expected, since the MTMG does not allow the propagation
of extra graviton modes. For this reason we will skip the discussion about these modes,
assuming that both scalars and vectors evolve exactly as in GR, and focusing on the
tensor case. Notice firstly that no contributions are expected to arise from the Lagrange
multipliers A and A;. Indeed the only possibilities one has to build a scalar out of a tensor
field, are to contract its free indices with the metric v;; or with its momentum k' (ie.
with spatial derivatives in coordinate space). Since by definition tensor perturbations are
transfer and traceless, both these contraction vanish. For the same reasons we cannot
build a vector field out of a transverse and traceless tensor. Moreover one can prove that
the constraints Cp and C;* do not receive any contribution from tensor perturbations, such
that these terms can be safely forgotten when writing down the quadratic action for tensor
modes. This is instead derived by expanding at second order each term of the precursor
action. Therefore, without any computation, we already learn that this theory provides
the same equation of motion for tensor modes of the dRGT theory, since only the precursor
sector of the full theory is involved. Before expanding these terms it is necessary to write
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2.83. The minimal theory of massive gravity after inflation

down the spatial vielbeins perturbed up to second order. Their expression can be derived
from the definition ([2.128]), which, at second order in perturbation theory, demands

1
ij = a®(8ij + xij + 50" XimXjn) = dryefe;. (2.208)
In order to derive the expression of the vielbein, we start with the ansat7’]
te =a ((5]1 + 045”“)(/{]- — ﬂdlkém”)(kmxin> , (2.209)

and solve ([2.208]) for the arbitrary coefficients o and 5. One can verify that, up to second
order, the above relation is satisfied by & = 1/2 and 8 = 1/8, which leads to

1 1
el,=a <5§ + Qakakj + Séf’fémnxmxm> : (2.210)

Being the fiducial metric unperturbed, the inverse fiducial vielbein is simply F Ij = d_lcﬂ',
and then it is easy to compute the tensor

1 1
]C:;' = EMmeMn =x! <(5,T + i(skakn + 8(5mk(5a5XakXﬁn>

K = Kt=x"1 (3 + ;Xijxij> . (2.211)
It is possible now to take its inverse by think of a simple Taylor expansion
yro = EymeM =X (5;;1 - %W‘fxm - éamkaaﬁXakX5n>

Y = Wi=X <3 + ;xijx"j> : (2.212)

As consistency check one can verify that KmY? = 6™ and KKl = X72(67 + 6™Fxp +
%(5’”’“5“ XkiXnj) = Amk~ i are satisfied. With these ingredients it is possible now to ex-
pand each term of the precursor action. Considering only quadratic terms in the tensor
perturbations one obtains

X1 g 203N iy
Sl = —M261(I3X3M <8XUXU> = _N 3 Cer3XinUa
203 N MX! g 23N .
Sy = _/1«2 X202 <4+4> Xz’jXZ] =_£ 3 CQX2 (1+7")Xin”7
2a3N B
S = - 3 c3 X xijx"
S, = 0. (2.213)

To be honest, we have been a bit fast in evaluating the terms S3 and Sy, that need some
more computations because of the determinant of the perturbed spatial metric, which
actually may receive contributions from tensor perturbations. However, this is not the
case, as we will prove now. Let’s rewrite for convenience of notation

Yij = a*Fij = a*(8;5 + hij). (2.214)

“Notice indeed that, since xi; is symmetric and traceless, the third term of equation (2.209) is the
only independent combination of two filed fluctuations we can build, as one can realize by permuting the
indices of the Kronecker deltas
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Denoting 4 = det#, the determinant of the perturbed metric can be expanded in Taylor
series as 5 o

_ Yy 1 v 3

7y = det(d;;) + hz’j%m:sij +5hijhklm|m=% +o(h”). (2.215)
Using the well known property of the determinant In(det A) = tr (In A), with A a generic
squared matrix, one can verify that

;Zj =779, (2.216)
while the trivial condition A~'A = 1 implies
g;f; = oFal, gzz = ki, (2.217)
Finally evaluates to
¥ =1+ hi;o" + %hijhkl (76 — gikott). (2.218)

Replacing h;; = xij + %5mnxz-mxjn) and exploiting the properties of tensor perturbations,
this equation becomes

- 1 1 »
y=1+ 5)@]‘)(” + 5(—)(1‘]‘)(”) =1, (2.219)
and this proves the statement /vy = a’.
Turning back to the quadratic action, nothing new happens in the GR-sector, which
get expanded as usual as shown in [52]. In the end, summing up all the above terms, one
can write the quadratic action for tensor perturbations as

M2 YT Oy OF g
S = SP/ AN’ [X}J\;; - kxz;2 X mPan | (2.220)

where the effective mass for tensor modes after inflation is defined as
1
m? = §p2X [caX + c3 +rX (a1 X + )], (2.221)

and is valid in both the self accelerating and normal branches. Setting N =1 in a FLRW
Universe and and passing to conformal time, the action becomes

2
S = % / d'z a® [xix7" — (K + a®m®)xijx ] , (2-222)
which is exactly the same equation with a different mass parameter. Then its solution
can be taken on the same form of the one found in Section by just replacing the
correct definition of the mass. Notice that the mass parameter entering inside the equations
of motion p is different from the Lagrange parameter m. In the following, when we speak
about the graviton mass after inflation, we refer to the parameter u, which plays the role
of an effective mass.
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Chapter 3

Anisotropies in the SGWB with
massive gravitons

The aim of this chapter is to study the origin of the anisotropies in the graviton popula-
tion, and in particular how a possible not vanishing mass can affect the population. This
work will focus only on the SGWB from cosmological origin, relying on the possibility,
that we may reach with future interferometers, to distinguish them from the astrophysical
GW background, which gets contributions from a huge population of unresolved sources.
A way to discriminate between the two is shown in [65]; basically the distinction is based
on a frequency separation, since the emitted frequency of any astrophysical source is con-
strained by its angular velocity. As one does for the CMB, the stochastic nature that
characterizes the background of cosmological gravitational waves legitimizes the definition
of a distribution function describing the graviton population, and to study the anisotropies
of this distribution through an approach based on the Boltzmann equation. This equation
indeed encodes the time evolution of the distribution function of a given particle species ac-
counting for the Universe expansion and any possible interaction which can occur between
the particle species and the thermal plasma. On the contrary, what distinguish gravitons
from photons is the fact that they are collisionless and not thermally distributed. The
latter feature results in a frequency dependence of the angular anisotropies which instead
appears only at second order in the case of the CMB. Restricting the analysis to GWs at
those scales that can be probed by our detectors, it is reasonable to focus only on large
cosmological scales (usually one considers those scales which re-enter the horizon at late
time, at least after the beginning of the matter domination in the Universe). This scales’
selection provides a hierarchy ¢ > k between the GW comoving momentum ¢ and the
comoving momentum k of the large scales perturbations, since primordial GWs are sup-
posed to carry an energy comparable with the energy scale of the Universe at the time they
were formed. On the other hand, small scale perturbations are averaged out during the
propagation of the GW, and thus they give no sensible contribution to the anisotropies.
The path to follow is the same of the case of the CMB, as it is already outlined in many
texts [70, [67]. Firstly, in section , we derive the collisionless Boltzmann equation for
the graviton distribution function by considering just the contribution coming from the
Liouville operator. Then, in section , we solve the Boltzmann equation through a per-
turbative approach, expanding the graviton distribution function around the backgroung
FRW solution up to first order. As we will see, the first order solution is characterized by
spatial fluctuations. In section we show how to relate these fluctuations to physical
observables, and in particular to the fluctuation in the energy density of the GWs.

Besides the energy density fluctuations, we are mostly interested in the produced
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anisotropy, since it is the real physical quantity we face with while dealing with inter-
ferometer observations. For this reason in the last section of this chapter we prepare
the field for the later studies of the n-point correlation functions. In particular we project
the fluctuations on the orthonormal the basis of spherical harmonics, since, as we will see,
they represent the preferential basis when working with angular correlators.

3.1 Boltzmann equation for massive gravitons

The statistical nature of the GWs generated by cosmological processes allows to define a
graviton distribution function, from which one can eventually extrapolate any desired ob-
servable that characterizes the graviton population. Since the typical graviton production
mechanisms we have in mind had been taking place below the Plank energy scale, and
then during an epoch where the quantum gravitational effects are thought to be not very
significant, the initial graviton population is not expected to be thermal, which on the
contrary is the case of photons. This fact forbids us to give any guess about the shape of
distribution function, which then will be treated in full generality as a function f(z*, p*)
with an implicit dependence on both the position z# and the momentum p* = dz#/d\,
with A an affine parameter that parametrizes the GW geodesics. The evolution of the
distribution function is governed by the Boltzmann equation:

LIf1 =M+ ZIF M- (3.1)

The collision term C[f(\)] takes into account any interaction between gravitons and the
thermal plasma. Since the thermal bath is mainly composed by photons, the graviton-
photons interaction is thought to bring the dominant contribution to the collision term.
However in [64] it has been proved that this interaction provides a very small contribution to
the CMB anisotropy, and we can then neglect it for our purposes. Moreover, as explained
in [68], a consistent definition of graviton beyond the framework of the quantum field
theories is possible provided the possibility of gravitons’ self-interactions. Nevertheless,
these collisions are expected to be driven by a weak interaction whose coupling constant kK =
2M,; 1'is many order of magnitude smaller then the typical coupling constants describing
the other standard model interactions. Therefore any graviton self-interaction happens to
be even more suppressed, and then can be neglected in our computations. The emissivity
term Z[f(\)] instead considers both cosmological and astrophysical processes. However, as
long as we focus on the stochastic GW background of cosmological origin, we can forget
about the latter contribution, and treat the former as an initial condition on the distribution
function. After these considerations we only remain with the Liouville operator £ = d/d\
describing the collisionless time evolution of the graviton distribution:

G_dd_, (3.2)

d\x  didn
Since the first factor on the right hand side is by definition the time component of the
physical momentum p*, which in general is non vanishing, we can express the collisionless
Boltzmann equation on a flat perturbed FLRW universe as

df 8f 9fddt  dfdg  Of d’

dn ~ on  Oxidn  Oqdn  Onidny
where 7 = p identifies the direction of propagation of the GW, while ¢ = |pla is the
modulus of the comoving momentum ¢, defined by

9ip'p’ = 2 (3.4)

(3.3)
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and the metric g, is the usual perturbed metric on a FLRW background in the Poisson
gauge
ds* = a*(n) [—e*®dn® + (e 2 6ij + xij) da'da’] . (3.5)

Equation (3.3]) contains many terms which arise from graviton relativistic dynamics, which
then deserves a bit of attention. Denoting with m the mass charge of gravitons, we can
exploit the mass-shell condition[]

2
q
P’ = guwp"p” = goo(p")* + e —m? (3.6)

to obtain an expression for the time and spatial components of the physical momentum

—® s 2 1/2 -
e q e
p° = — <a2 + m2> = £, (3.7)
. . 1
pt = —52 nte¥ (1 — 2Xklnknl> ) (3.8)

having defined the graviton energy as

q2
E=\|=5+m?. (3.9)

These results immediately allow us to express the factor dz’/dn appearing in (3.3)):

d' _p' 4 i gie Lo ko
1—-Z . 3.10
dn  po ab"° g XkLTE T (3.10)

One can appreciate the physical meaning of this equation remembering that the scalar per-
turbations ® and ¥ in the Poisson gauge acquire the meaning of gravitational potentials,
and both have negative values on overdense regions as the effect of the gravitational red-
shift. Therefore is telling us that gravitons are slowed down while traveling through
overdense regions. However, since the zero-order distribution function of graviton is sup-
posed to be isotropic and homogeneous, as it is defined on a FLRW background spacetime,
the spatial derivative of the distribution function is at least a first-order term, and then we
can safely retain only the zero-order contribution of inside the Boltzmann equation.

Concerning the next term in , we can evaluate the factor dg/dn exploiting the
geodesic equation for gravitons that, by a simple reparametrization in terms of the confor-
mal time, can be written as:

0 v
Lo By, (3.11)

Remembering (3.7), and defining H = a'/a, we can straightforwardly compute the first
term

dp® d® E E % dE
- et P e e dE (3.12)
dn dn a a a dn

such that the geodesic equation can now be rearranged in terms of the time derivative of

the graviton energy:

dE Ao
— =HE+E— —TY
i HE + ay T

LoV
PP qe?, (3.13)
p

IThe negative sign in front of the mass term comes from the conventional choice of using the mostly
positive signature metric.
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In Appendix we have derived the linearly perturbed Christoffel symbols. We can now
specialize the results to our present case, where hog = —2® and h;; = —2Wd;; + Xij,
while the mixed space-time components of the metric are all vanishing. Therefore the
Christoffel symbols with fixed time upper index, up to first order, are:

Yy =H+d, Y, = 0,9,

1
Fz] = Hoi; + 5)(;]- - \I//5ij + Hxij — 2H;; @ — 2H0;; P, (3.14)

and the last terms of (3.13)) read:

19, plae® = (H+@)E

Y. p' 'ae® fniﬁiq),
A I
I o T ap \ Mt o SXn'm’ ), (3.15)

where all terms beyond the first order have been neglected. Summing up all the components

we geth

E ) 2
d—:E d -9 18@—(]— H—U + Xlnn]
dn dn !
i s oL j

Lastly, differentiating the mass-shell condition (3.6 we obtain

EdE =pdp = 2 ¢
=pap = ?dq - ?da’ (3.18)

in such a way that we are now able to transform the time derivative of the energy E in a
time derivative of the (modulus of the) comoving momentum ¢. Indeed, inserting the last
result inside (3.17)), we easily arrive to

dq ;o Lo, i

For what concerns the last term of the Boltzmann equation instead, we can safely
assume that it is an higher order contribution. Indeed we can consider that df/dn® is
a term of first order simply relying again on the fact that the distribution function f is
defined on a flat FLRW background spacetime. On the other hand the factor dn’/dn is of
first order as well, because in absence of perturbations any particle would pursue a straight
path, then vanishing the derivative term. It’s only because of the gravitational potentials
® and ¥ and the tensor modes y that a particle could deviate from its path; but this
dependence on the perturbation modes immediately implies that this term could give non
vanishing contributions at least at first order. All in all this whole last term turns out to
be at least at second order.

?Notice that the Oi-component must be counted twice, and that the total derivative of the scalar
potential ® appearing in (3.13)) can be decomposed as

Ao 9P  dz' 0P ., q .
o T arar - C T apn o (3.16)

where the result (3.10]) at zero order has been used in the second equality
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3.2. Formal solution

At the end of the day, the results found so far, in particular (3.10) and (3.19), allows
us to express the collisionless Boltzmann equation (3.3]) in the more explicit form:
of of

q . ’ ol 1 / i T
an + En’@f + |V — ?nlaﬂ’ - iXijnan 99 = 0. (3.20)

This result extends in a natural way the analysis of [63] performed for a scalar perturbed
FLRW Universe. In order to appreciate the predictions of this result, we immediately
notice that equation recovers the collisionless Boltzmann equation for photons in
the limit where ' = g/a. It is easy to see that the ratio aF/q corresponds indeed to
the graviton phase velocity (which is always grater the the light velocity), and that it
approaches to the light velocity as the graviton mass m goes to zero. Denoting as v the
graviton group Velocityﬂ defined by the relation p = ymwv and recalling the definition of
the relativistic factor v = (1 — v?)~1/2, we can evaluate the ratio as

1
2,2\ T2 -
q a‘m 1

< (1 =(1 =, 3.21

() (emm) - 62
where in the second step we used the definition of the physical momentum p = q/a = ymu.
As stated above, the first equality shows clearly that the massless limit sends the ratio
q/aF, and thus the graviton velocity, to one, recovering then the collisionless Boltzmann
equation for photons.

N|=

3.2 Formal solution

As we are perturbing the spacetime around the FLRW background, we can decompose the
distribution function in an isotropic and homogeneous part and a perturbed one. At first
order this decomposition reads:

. o . o of . .
fn, 2 q,n') = flq) +5fV(m, 2", q,n') = flq) - qa'gf(m z',q,n"). (3.22)

Inserting this decomposition inside (3.20)), we can solve perturbatively the Boltzmann
equation order by order. As expected, at zero order it gives

of =0. (3.23)
an

From this equation we can already learn some interesting physics of gravitons. Indeed
the equation is solved by any distribution function of the type f = f(g). Hence the
the physical momentum of each graviton is expected to scale as a~!, while the number
density n o [ d®pf(q) gets diluted as a=3 by the Universe expansion. This fact is directly
supported by , which at zero order implies ¢ being time independent, and then the
mentioned scaling for the physical momentum p. These features are shared by photons as
well, even though they are thermally distributed. Therefore we see that the scaling of the
momentum with the scale factor a does not rely on the distribution being thermal, but it is
instead a consequence of the free propagation through an expanding FLRW Universe. As
one can see from equation , metric perturbations (as possible collision terms) break
the free streaming of gravitons introducing a time dependence on its comoving momentum.

3In the following we will refer to the group velocity simply as the graviton velocity, while we specify
the phase velocity when we will deal with it.
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CHAPTER 3. ANISOTROPIES IN THE SGWB WITH MASSIVE GRAVITONS

The first order Boltzmann equation instead becomes an equation for the anisotropy
T'(n, ', q,n’), that is:

or q ;OU i i
— + —= - = 3.24
87} (lEn 8.’132 S(n7xJQ7n)7 ( )
where P )
S(n,z',q,n') =0 — a—nif)ﬂ) — §X§jninj (3.25)
q

denotes the source function that takes into account all the effects arising from the metric
perturbations. Moreover notice that the the g-dependence of the source function is only
contained inside the ratio aE'/q. This dependence vanishes in the massless case, where the
ratio turns out to be equal to 1. In order to solve this equation, it is convenient to pass
to the momentum space operating a Fourier transform over the spatial coordinates on the
anisotropy and source term:

r / @k RED(n, K, q, 1) (3.26)
= [ ——=e¢ n )
(27_[_)3 777 7q7 )
Bk s -
S= | —=e*TS(n,k,q,n 3.27
| G s R, (3.27)
with g .
S(n, k,q, n) =0 — ikua—fb — ixgjninj. (3.28)
q
This way the first order Boltzmann equation in momentum space reads:
. q
I'" +ikpy—I =S8 3.29
+1 ps , ( )

having defined p = k - f the cosine angle between the wave vector k of each Fourier mode
and the direction of propagation 7 of the GW. Equation (3.29) is a first order differential
equation, whose general solution can be written as

n , , . -
D(nkqi) = [ dife™™ 0D [DGY g, 2030/ = i) + S0 Ew)] - (3.30)
Min

where, to simplify the notation, we have defined

n
) = [0, o) = 2 (331)
n a

accounting for a generic time dependence of the graviton velocity v(n, ¢). Physically speak-
ing, I(n,n’) is the distance traveled by gravitons from the time 1’ to 7 ﬂ Again in the
massless limit this distance turns out to be simply the difference between the two extreme
values of the conformal time, as expected for photons. Notice the delta function multiply-
ing the first term in that ensures the right initial condition when 1 = 7;,. One can

4One can further convince himself of this fact by considering the line element of a massive particle
ds® = —dr* = gudatdz” = —a’dn® + o*dl®,

with 7 the proper time of the particle. This expression can be rearranged in favor of the spatial distance

2 ;2 dr® g2 -2\ 2,2
dl* =dn l—m =dn (1—7 )—vdn.
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3.2. Formal solution

easily convince himself that the above solution is the correct one by simply performing the
integration on the delta factor

7 7 ikpl K ikpl(n,n 7
T(n, k, q,7) = T(1in, k, q, 1) e~ Frl0nmin) 4 / dn e ki) S (0 K, 1), (3.32)
MNin

and evaluating its derivative with respect to the conformal timeﬂ
T = —ikpoT (i, k, g, 2)e ™ FH0mm) 4§ (), &, e ket ()

n . . .
ikuaqE/ dnf e ) S (0! kR, (3.33)

which straightforwardly verifies if we remember that I(n,n) = 0.

Now we would like to rewrite the formal solution in such a way to isolate the boundary
conditions contribution from the ones describing the effects of the propagation of gravitons.
For this purpose it is useful to work out the ®-dependence appearing in inside the
source term as follows:

. . , . n He—tkul(nm’)

_ dn/e_Zk“l(n’n )'L'k,UzU_ICD(n/, kf) — _/ dn,67,U_2‘b(77/, k)
Nin Mlin 677

. ’ = n ; / 8 |:U_2®(77,7 E)i|

_ 7€—zk,ul(77,'r] )U_Q(I)(n/7 k‘) Zm+/ dn/e—lk#l("?:n )T

. n . / 7
= v 2®(n, k) + [ dnfe ki >{v‘2<1>(n’, k)o(n" — nin)

TMin
o [v2a(y. )|
+— . 3.34
o (3:34)
The monopole term v~=2®(n, /2) gives an isotropic contribution. Since our final purpose is
to compute the angular power spectrum of the anisotropies, this term can be disregarded,
and we can now express the formal solution in Fourier space in the form:

—

. n . . .
I'(n, k,q,7) 2/ dn'e’k”l("’"){ [F(n’,k,qﬁfz)Jrv’QfI’(n'?k)} 5(11" — nin)
Nin

+ on’ " on'

8[‘11(77’,’5)+U*2¢(77/’E)} 1 injw} (3.35)

The term multiplying the delta function is a boundary term that keeps memory of the ini-
tial conditions. In the massless case this is the only one that preserves the dependence on
the GW’s frequency q. Moreover, while the other term contain the dependence on the prop-
agation direction only through the cosine angle y = k-, in principle the same dependence
in I'(nn, E, q,n) could be more general. However, being that term an initial condition term,
the presence on such a dependence would imply the existence of an anisotropic mechanism
of production of GW during primordial times across the whole Universe that would spoil
the assumption of an exact FLRW background spacetime. For this reason in the following
we will disregard the dependence on the director 7 in the initial condition term, that is
we assume L'y, = T'(9in, E, q). Notice further that a non vanishing graviton mass does not

5For ease of notation, the functional dependence of the graviton velocity v(n, ¢) is here understood
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CHAPTER 3. ANISOTROPIES IN THE SGWB WITH MASSIVE GRAVITONS

introduce any additional directional dependence, as velocity correction terms only enter
with the modulus of the comoving momentum gq.
The form of equation (3.35]) suggests to divide the solution as

T(n,k,q,7) = T1(n,k,q,7) + Cs(n, k, q,7) + Tr(n, k, ¢, 1), (3.36)

where the subscripts 1,5 and T denote respectively the Initial, Scalar and Tensor sourced
terms, defined by

Li(n,k, q,n) = e FHOmT (n, K, q), (3.37)
Ts(n, k,q,7 / Tethul(n’)
MNin
N o (W', K) + v, F)]
XqU (I)(n 7]“)5(77 - nm) =+ 8?7/ ) (3 38)
5 i [N OXi k
oty Foa ) = =5 [ et Xt 1) Qg ) (3.39)

As we will see, this decomposition will reveal itself very useful under the assumption that
the three terms are not cross-correlated. In the end this assumption will result in three
different sets of angular power spectra.

3.3 Energy density perturbations

The scalar and tensor metric perturbations give rise to fluctuations on the probability den-
sity distribution of the graviton population. These inhomogeneities, as we will see in this
section, then reflect in perturbations of the SGWB energy density we may detect nowadays.
This fact selects the energy density as the privileged channel to discover anisotropies and
inhomogeneities in the SGWB, and lead us to the study of its perturbations. We define
the SGWB energy density as

paw(m: ) = [ dpEfn.7.q.0)
q | L
_/ag g—km?f(no,a:,q,n)
4 2.9
a’m . o
= /dlanM/l—l— 7z /d2nf(n0,x,q,n). (3.40)

Defining the spectral energy density

¢ a2m2 )
QGW ,:E',q = —/1+ /d ﬁf ,f,q,ﬁ, 3.41
(10, %, q) P p— 2 (10 ) (3.41)

where perito = 37{2Mg /a? denotes the present critical energy density, the SGWB energy
density can be written in the more compact form

paw (o, &) = pcrit,o/dlanGW(no,ﬁ q). (3.42)

For the sake of convenience it is common to introduce the quantity waw (no, Z, g, m,n)

defined by
QGW (7707 fa Q) = / dQﬁWGW (f7 q, ﬁ)v (343)
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3.8. Energy density perturbations

that is
4 2,,,2
A q a=m A
wGW(WOa% Q7n) = a4p 0 1+ qQ f(7707$7 Q7n>
crit,
4 2,2 £
q a*m? [ - 9f (10, q) o
= 1+ |:f 0,49) — 4 r vazaQ7nZ
a4pcrit,0 q2 (77 ) 8(] (77 )

4 2.9 7
q a*m* - d1n f(no, q) ; i
-4 i+ R AU 08
a4pcrit,0 q2 f(noa Q) |: alnq (7707 T ,q,n )

6(“0(770753:7 q, ﬁ):|

wew (no, q) (3.44)

= wew (10, q) [1 +

where in the last step we have separated the expression of wgw (%, ¢, 72) in an homogeneous
component
4 2,2

q a*m? -
, 3.45
a4pcrit,0 q2 d (Q) ( )

wew (10, q) =

and an inhomogeneous one

dw(no, @, q,7) _ dln f(q)

= L'(no, z*, ¢, nY), 3.46
o Y (10, x*,q,n") (3.46)

6GW(7707 f? q, ﬁ) =

which is usually called SGWB energy density contrast. With this decomposition we can
compute the homogeneous contribution to the total spectral energy density as

Qew (0, q) = /d2fleW(7707Q) = drwaw (Mo, q), (3.47)

while, inverting (3.45]), the homogeneous part of the density distribution function can be

written as
2

Jf-(q) _ a4pc7‘it70 a m2

47rq4 q2
In order to write explicitly the SGWB density contrast, we consider its logarithmic deriva-
tive

-1/2
Qew (Mo, q)- (3.48)

2

_ a2m _
Oln f(q) _ 4_1aln[1+ q2} dIn Qaw (10, 9)

dlng 2 Olng Olngq
2\ 1L 0
q 9In Qew (o, 9)
=—4 1 . 3.49
* < * a2m2> * Jdlng (3.49)

Notice that the second term is a correction arising from a non vanishing graviton mass,
and it is the only term carrying information about the mass. In the massless limit indeed
this expression recover the result for the massless case shown in [59]. In the end the SGWB
energy density contrast is

L. d1ln Q , 2
5GW(7707xaqa TL) = [4_ GW(nO q> - <1+ I

-1
dlng a2m2> ] L(no,2’,q,n").  (3.50)

This expression clearly shows how the energy density contrast of the SGWB is related
to the anisotropies generated by the metric perturbations. Any experimental measure of
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CHAPTER 3. ANISOTROPIES IN THE SGWB WITH MASSIVE GRAVITONS

this contrast in the background of gravitational waves energy density would unequivocally
confirm the presence of such a mechanism of production of perturbation.

Really we can do even more. The detection of the energy density contrast would give us
information about the amplitude of primordial fluctuations, but how about their statistical
properties? Indeed many models of production of anisotropies in the SGWB have been
already proposed and studied, and we would like to have some arguments to establish their
viability. A possible and powerful way to perform this selection is to study the statistical
properties of the generated anisotropies. In particular we are interested in the correlation
functions of the energy density contrast dwamw, which, thanks to the relation , can
be more easily studied in terms of correlators of the fluctuations I'. With this purpose in
mind, in the following of this chapter we will pose the basis for a statistical analysis of
the SGWB; in particular we want to arrange the most convenient mathematical set up to
apply to our analysis, which is to expand the fluctuations in multipoles.

3.4 Multipole expansion

As we will understand more deeply in chapter , the statistical features characterizing the
pattern of fluctuations I'(72) on the sky are encoded inside the angular n-point correlation
function

(D(1)T(A2) . . . D)), (3.51)

where the brackets stand for the ensemble average. Actually it is worth mentioning that
experimentally what we can observe is instead a spatial average over regions of the sky,
since we have only one possible realization of our Universe. The best we can do is to is to
study widely separated regions of the Universe that are causally disconnected, and consider
them as different measurement from the same ensemble. By averaging over a sufficiently
large volume, we expect the spatial average to approach the ensemble one. What we are
doing then, in order to reconcile observations with theoretical predictions, is substituting
a spatial average with an ensemble one. This assumption goes under the name of Ergodic
hypothesis [67], and it is usually taken as an axiom in cosmology. Therefore in the following
we will exploit this assumption and spatial and ensemble averages will be regarded as the
same.

Unfortunately, in general angular correlation functions of the fluctuations at different
angular scales seem not to be uncorrelated, and this would provide a huge complication
in the statistical analysis of anisotropy. Hence it turns out to be useful to expand the
fluctuation in multipoles in the basis of spherical harmonics Yy, (), which represents
a complete set of eigenfunctions of the Laplace equation defined on the surface of a sphere.
Since we are going to use intensively the properties of spherical harmonics, we found
appropriate to give a brief review of their features in a dedicate Appendix . With the
normalization condition f dQﬁngY;m, = Oypr Oy, the expansion reads

V4
D) =32 37 ConYon(), T = [ k(@)Y (a) (3.52)

L m=—{

As we will see, the angular spectra built from the coefficients I'p,, at different angular
scales, that is at different £, turns out to be uncorrelated if the perturbations are Gaussian
fields (this comment will be more clear with the knowledge of chapter ([4)). Even non-
Gaussian fields are reasonably expected to be uncorrelated as long as the departure from
Gaussianity is weak. The aim of this procedure is to relate the abstract anisotropy I' to
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3.4. Multipole expansion

the observable coefficients I'y,,. Expanding in momentum space, they are written

* N d3k i_‘,f g ~ - ~ 7 ~
Fgm = /d2n}/€m(n) / We F |:F1(777 ka q, TL) + FS(”) ka q, ’I’L) + FT(T], kv q, n)

= Lom,g + Dom,s + Dom 1 (3.53)

This way we have divided the problem in three different pieces, which we are now going to
face separately one at a time.

3.4.1 Initial condition term

The above discussion about the 7 dependence of the initial condition term simplifies this
contribution to

Ek g - ; .

o1 :/(2)3(31’” L (%in, k, q)/dané (R)e fzkul(no,nm)j (3.54)
i

where 79 denotes the present conformal time and zy our location within the chosen coor-

dinate system, that may be possibly set as the origin of the coordinate system. We can

rewrite the second integral remembering that u = k- n and by expanding the complex

phase as

MR — 57 (=) (20 + 1)jo (oo, i) Pl 7)
l

=dry Z ) Ge[kL(10: 1in) Yo () Yo (K), (3.55)

{ m=—¢

with j, and P, respectively the spherical Bessel function and the Legendre polynomial of
degree £. This way, exploiting the normalization condition of the spherical harmonics, one
readily arrives to

. d3k ik - £ /TN -
Com,1 =47f(—2)£/ (%)gek T (Mins k, )Y (K) e[kl (10, Nin)]- (3.56)

3.4.2 Scalar sourced term

Differently from the initial condition term, the scalar and tensor sourced terms are inte-
grated contributions taking into account the whole period of propagation of the GW. As
stated in the introduction of this chapter, small scale perturbations (k > ¢q) get indeed
diluted by the expansion of the Universe and averaged out during the graviton propaga-
tion. This allows to focus only on large scales perturbations, namely k < ¢, that re-enter
the horizon at late time, at least after the epoch of matter-radiation equality. These
large scale modes remain in linear regime even today, and this allows us to write them
as the combination of a stochastic variable (E), representing the primordial value of the
scalar perturbation set by the primordial mechanisms (as inflation) that establish the ini-
tial conditions, times a transfer function T'(n, k)ﬁ that describes the time evolution of the
perturbation itself:

®(n, k) = To(n, k)C(k),  W(n,k) = Tu(n, k)¢(k). (3.57)

5Notice that the transfer function depends just on the scale of the wavenumber, and not on its direction.
This is indeed the case because an anisotropic evolution would spoil either the assumption of a FLRW
background or the first order expansion.
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CHAPTER 3. ANISOTROPIES IN THE SGWB WITH MASSIVE GRAVITONS

As just said, the main mechanism responsible for the production of the SGWB is thought
to be the inflation. In this mechanism there exists a preferential quantity in use to charac-
terize the primordial scalar perturbation, that is the gauge invariant primordial curvature
perturbation ¢ defined by

5
¢ = <I>+7—L§, (3.58)

with p the total energy density; this quantity indeed remains constant on super-horizon
scales in absence of isocurvature perturbations, whose contribution is strongly constrained
from CMB observations [98]|. This feature turns out to be very useful in our particular
case, and this is why it is common to take the primordial curvature perturbation as the
stochastic variable ¢ describing the primordial value of the scalar perturbations (see [67]
for further details). Having introduced this new decomposition, the scalar sourced term
becomes:

L Fog.) = [ dife B0 Tyt K)C(R), (359)

Nin

where we have defined

0 [T\I!(n/7 k) + U_2Tq>(77/7 k)] )

Ts(n' k,q) = v *To(n, k)S(1' — nin) + o

(3.60)

Following the steps outlined in the previous section, we decompose the scalar sourced
anisotropy in spherical harmonics and evaluate the coefficients as:

d3k B . . 10 i , -
Tim,s = /(27r)36k O/dzm@n(n)/7 dn/ e 0T (of e, q)(F)

in

d3]€ - 1o “ -
= an()” [ s [ Vi, (e [t 1)) T 1<)

in

3 7o — A
= 47r(—i)e/ (;lw]; eik'mOC(k)}/éfn(k){v2Tq>(nm,k)jg [kL(no,n")] +

’ -2 /
+ /770 dif e~ mlm0m") 0 [Ta (o . K) -51/) La (o, b) }a (3.61)
; Ui

in

where in the second step we have used again (3.55)) combined with the spherical harmonics
normalization condition. Notice that the first end second term resemble respectively the
Sachs-Wolfe and Integrated Sachs-Wolfe contribution of CMB with the additional velocity
correction.

3.4.3 Tensor sourced term

The spherical harmonics formalism can now be applied to the last term concerning the
contribution due to the propagation of GWs across large-scale tensor perturbations. Com-
bining (3.53]) and (3.39)), the tensor spherical harmonics coefficients can be evaluated as:

2 LN dSk ik-Zo o ~
Fﬁm,T = d nYVEm(n) € FT(T/Uv ka q, n)

(2m)?
Pk gz " : anind dxi(n', k
= — / d*nY, (7) / e / dne~Hltm 1) =2 X]a(:/’ ) (3.62)
Nin
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3.4. Multipole expansion

Gravitational waves have in general two polarization states, that we represent in the circular
right and left-handed basis:

€ij4+ +i€;; €ii 1+ — 1€;;
XZ] :XR€Z]7R+XL€Z]7L :XR 1.]7“!‘\/5 27, X +XL 74]7“1‘\/5 7/.]7><’ (363)

where we have introduced the polarization tensors e;;. Since tensor perturbations are
defined to be symmetric, traceless and tranverse, these properties in momentum space are
conserved inside the polarization tensor by

€ij = €ji,
et =0,
ke = (0,0,0). (3.64)

As outlined in the scalar sourced case, we can encode the dynamical evolution of the tensor
perturbations inside a transfer function x(n, k) (equal for both the polarization states),
which indeed evolves the primordial value of a stochastic variable £ (E) set by inflation (or
any GW production mechanisms at work at early times):

vo=xmkak  A=RL, (3.65)
that allows to compactly write the tensor perturbation as
Xi = > einlk)x(n k)E(k). (3.66)
A=R,L

This time the integration over the director n seems more involved because of the presence
of the factor n'n’ inside the integrand; thus we cannot proceed as before by exploiting
the decomposition of the complex exponential. In order to understand the meaning of the
subsequent computational steps, we briefly outline the path to follow: in the first place we
will try compute the coefficient I'p (1, /2, q,n) for a fixed direction k of the wave number of
the scalar perturbations; as we will explicitly see, a suitable choice of the k direction allows
a decomposition of the GW propagation director n which greatly simplify the problem.
However the measure d?n of the integral in refers to any possible director n without
any fixed orientation E; in order to solve this mismatch we will apply a rotation (provided
by a matrix S(€)) on the integral over d?n in such a way to orient the the director  to
reproduce the situation with the fixed direction k. In this new basis we will be then able
to adopt the expression of I'7 (7o, E, q,n) found at the beginning with that fixed direction.
Having posed the basis of the computations, let’s start by fixing the direction of the wave
vector. The easiest choice is to orient k along the z-axis, such that the symmetric, traceless
and transverse conditions on the polarization tensors straightforwardly lead to the explicit
expressions

1 100 1 010

iivlk,)=—10-10], iixk)=—1100], 3.67
eij+(kz) VCH B eijx (k) VoH O (3.67)

from which one can easily verify that the only non vanishing entries of the tensor modes
are

X11 = —xa22 = x(n; k)—&(k) —;gR(k)

EL(k) — €r(k)
21 '

(3.68)
x12 = x21 = x(n, k) (3.69)
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Now we introduce a polar coordinate system over which the director vector of GW propa-
gation decomposes as

iv= (1= 17, €05 0 /1= 12 50 B, pin ) (3.70)

where the subscript k,n reminds that we are working in a basis where k is oriented along
the z-axis. Notice that the expression is correctly normalized to 1 and that when
f is parallel to k (i.e pgn = 1) it gives back 7 = (0,0,1), as expected. With these new
ingredients we are now able to evaluate the integrand of :

nind 1- M2 n . .
5 X;j = — k, (cos2 ¢k,nX/11 + sin? ¢k,nX/22 + 2 cos ¢, p, sin qbk’nxlm)
1—p2 s s . .
BN [mzf() (e2n0 1 =2nn)
RAGER0] ( Yidkon _ —2z'¢kn)]
(& ’ & ’
4
L=t 2idy N L o2k 7
= X 0, k) [P gaR) + e (R)] (371)

This way the problem of finding the spherical harmonic coefficients I, is solved for a
fixed direction k by

. L—pd. 1. L -
FT(WOyky(LQk:,n) — _Tk’ |:€2’l¢k,n§R(k) +e 21¢k,7b§L(k):| X
To .
X / dnx/ (i, ke~ ket (3.72)
Tin
dSk ik-Z * 7
T = [ €™ [ 0@ . Foa. 20). (373)

At this point, as anticipated, we have the mismatch between the innermost integral variable
of and the fixed orientation of k in . The latter is indeed valid only when the
wave vector is oriented along the z-axis, while the former is an integration over the solid
angle around a director 7 which is not fixed by any choice, and takes its general expression
inside its integrand (that is it does not satisfy the decomposition (3.70)). This conflict can
then be solved by rotating the integrand of the [ d?Q,, into a basis in which the direction
n respect the mentioned decomposition (3.70)). With this purpose in mind we introduce
the rotation matrix

cos B cos ¢, — sin ¢y, sin Oy cos ¢y

S(Qk) = | cosbsing, cosdy sinbgsingg |, (3.74)
— sin 6y, 0 cos 0y,
such that:
R 0 sin 6, cos ¢, sin 0, ,, cos P, p,
E=SQ) 0], sinf,sing, | =S(Q) | sinbypsingr, | . (3.75)
1 COS ¢Pp, COS P.n

Since the rotation matrix has unitary determinant (by definition a rotation matrix does
not change the volume of the measure in the phase space), the measure d?Q, = dQQk,n
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remains unchanged under rotation. On the contrary the spherical harmonics transform
according to:

‘
Yin( Q) = 3 Dy (S()) ¥ (). (3.76)
m/=—/
where it has been introduced the Wigner rotation matrix as in Appendix (B)
47
(£) — _1) *

in terms of the spin-weighted spherical harmonics

. - m |[C+m)(l—m)(20+1) | 2
Yo (@) = (1) \/ A (0 4+ s)! (0 — s)! sin®* <2k) x

l—s
l—s 14 + s —r—s _im r+s—m ek
xZ%( . > <r+s—m> (-1)* Mk cot?r T (2> (3.78)

This way the solution (3.73]) transforms into

Pk ipa :
Ty = / = LS

—L

DY (5(%)) / Vi Q)T (0s By @, Qo). (3.79)

Now we see that the dangerous mismatch has been solved, and we are then able to compute
the innermost integral by adopting the expression (3.72]) for & fixed along the z-axis:

2

= | QY (2 g, Q) = — [ P Vi () [ e
J = d k:,anEm/( k,n)FT(nmka% k,n)— d k,nyvém/( k,n) 4

] . . o 7o .
X {GM’“"&%(M +62’¢’“'"§L(k)]/ dny (n, k)e~"Frtlmom), (3.80)
MNin

Using the relation (B.4)) between spherical harmonics and the Legendre polynomials, one
can verify (see [46]) that

. 2
(1— p2)ed = 4\/£YQ,\ (A = +2). (3.81)
This way
2 70 .
T =~/ 1—75r / AV () / dnx! (1, k)e™ et (o)
Nin
% [ Yaon(E) + Yo, o€ (F) (3.82)

The mathematical results of integration of products of spherical harmonics [46] provide

(£ +2)! jo(=)
(0—2)! 22’

. 15
/ Ao Yy Yoroe o = (_z')”fsm’vig\/s(% +1) (3.83)

such that the innermost integral becomes

10

J= [ dnX(n, k)(—i)f\/ﬁlﬂ(% +1)

Nin

(£ +2)'1 jo(kl(n0,m))
(¢ —2)14 k212(no, n)

X {5m,72 r(k) + 5m,,_25L(E)} . (3.84)
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Turning back to the angular coefficient, we can directly insert this result into (3.79) and
obtain

o, = (—z‘)‘\/47r(2e+ plet2)! / (dgkg e / " (. k)jZk(M
L(

(—=2)t ) (2m) i 212(no, n)

x{D,‘nQ(S(Q >>§Ri’“>+p><s<ﬂk>> 4)}. (3.85)

In the end, inserting the relation (3.77) of the Wigner rotation matrix elements in terms
of the spin-weighted spherical harmonics, we finally end up with:

o [ [ PR g [T k
Comr = A (—i)* Eg — 2;! / (2#)36 k /m dnx’'(n, )W
fR(]g) * (Qk)ngl(E)}’ (3.86)

which can be written more conveniently in terms of a transfer function as done for the
scalar sourced term:

: d k z_‘-f
Cop,r = 47(— )2/ RETE (K, 0o, Mins q)

@
><{ Vi (WER(R) + 2V (QIELR} (3.87)
with
¢ (110, ins Ky q) = Eﬁj;;:i/m dnx’(n,k)m- (3.88)
’ Nin )

3.4.4 Summary of the three contributions

In conclusion of this chapter we briefly summarize the results obtained in the previous
sections. First of all we have decomposed the perturbation modes as

@(n, F) = Tq><n,><> W(n, k) = Tu(n, k)C(F)
xis (0, B) = x(1, k) [em(R)ER(R) + e (€L ()] (3.89)

Then we broke up the anisotropy I'(n, k, q,n) in three different contributions and expanded
them in the spherical harmonics basis as

l
¢t m=—/
Com =Tomr + Lom,s + Lomr. (3.91)
For the three terms we found
AV d*k ik-TON K (D s 7
Ffm,[ = 471‘(-’6) (27T)3 € }/Km(k).jf[kl(n()v nzn)]r(nlna k:a Q)v
N d*k ik-Zovx (NS 7
Ffmvs = 47T(_Z) (27_‘_)36 }/Zm(k)n (770’ Nin,s k, Q)C(k),
N d*k ik-Zo
Pong = dm(=i)" [ 55e™ DL Y (@QET (o, mons by (3.92)

A==+2
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3.5. Isocurvature perturbations

where in the last equation (3.92)) we have adopted the more compact convention such that
A = 2 for right polarization and A = —2 for left polarization. The linear transfer functions
appearing in the scalar and tensor sourced terms are respectively defined by

T (105 Mins by @) = v 2Ta(Min, k) e [k (N0, Min)]

w9 [Ty(n, k) + v 2Te(n, k)] .
+/ dn Luln )av ol ﬂjz [kl (o, m)]
T _ e e, ge(kL(no, )
Te (Mo Min, k,q) = (6—2)!4/,%” dn x'( 7k)ma (3.93)

with v = v(n, q) = q/aF the graviton group velocity.

3.5 Isocurvature perturbations

In single slow-roll inflationary models, the inflaton fluctuations seed perturbation in the
total energy density after the end of inflation. However, this mechanism involve the total
energy density, and is not capable of distinguish between different components of the
Universe. Hence only adiabatic perturbations are generated by a single slow-rolling inflaton
field. These are characterized by the condition that the relative ratios in the number
densities n between different species remain unperturbed (see [99, [100]). This is the so

called adiabatic condition
5 <”X> , (3.94)
ny

where X and Y denote two arbitrary particle species. Since any perturbation in the number
density correspond to a perturbation in the energy density, isocurvature perturbations are
related to spatial curvature perturbations through the Einstein’s equations. Defining

ox = —, (3.95)

the adiabatic condition reads (see [63] for a derivation)

1 1
— =8, = =0y = =Ouim. 3.96
4 370~ gl (3.96)

On the contrary, isocurvature perturbations change the relative number densities among

the particle species without bringing any curvature perturbationm Then they can be

parametrized by

(5nX 5ny 5)( 5Y
Sxy = - = - :
nx ny 1+wxy 14wy

(3.97)

It is convenient at this point to choose a species of reference; usually one considers the
photons as the reference species, such that

Sy =0, — 25 S, =0, -3 S, =

4’}/) 4 v 61/_

5. (3.98)

oo

3
4
Adiabatic perturbation are then defined by S, = Scgm = S, = 0. In the most general

picture, one can decompose a general perturbation in its adiabatic and the three isocurva-
ture modes. It is worth mentioning that this decomposition is not time-invariant. Indeed

“For this reason they are also called entropy perturbations.
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CHAPTER 3. ANISOTROPIES IN THE SGWB WITH MASSIVE GRAVITONS

primordial isocurvature modes can give rise, during the evolution, to an adiabatic contri-
bution if the energy densities of the various species evolve differently in time, because in
such case the balance that ensured an unpertubed total energy density is lost.

The golden channel to study isocurvature perturbations is through the CMB anisotropies,
since they leave a distinctive signature on the angular spectra which can be easily discrimi-
nate from the adiabatic contribution. Indeed, as shown in ref. [99] [100], whereas adiabatic
modes introduce a cosine oscillation in the baryon-photon fluid, the isocurvature ones en-
ters with a sine oscillatory phase. In the former case the oscillation gives rise to a first
peak in the angular power spectrum centered at ¢ ~ 220, while, if one considers only
isocurvature modes, the same peak would have been expected at ¢ ~ 330. Observations
tell us that the position of the first peak is quite well in agreement with the prediction in
absence of isocurvature modes. This argument suggests that, if they exist, isocurvature
perturbations must be subdominant with respect to the adiabatic ones. This motivates
why we neglected these kind of perturbations so far, and in the following we will pur-
sue our discussions assuming implicitly that isocurvature modes are not relevant for our
observables.
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Chapter 4

Statistical analysis of the SGWDB
from Gaussian perturbations

In the previous chapter we have derived the Boltzmann equation describing the evolution
of the graviton population and computed the anisotropy originating from three different
contributions, an initial term, a scalar sourced term and a tensor sourced one. With these
results we are now in a position to attempt a statistical analysis of the SGWB. On a
fundamental ground, the statistical features of the graviton population background relies
on the statistical properties of the stochastic variables ¢ and £). The easiest assumption
is to take the perturbations as Gaussian random fields, that is fields whose probability
density function is a normal distribution

1 _ (z—ap)?

e 202 4.1
\V2mo ( )

with o2 the variance of the distribution. This assumption is motivated, in the behalf of the
central limit theorem [73, [77], by assuming each perturbation mode being independent from
the others. The fact that many physical processes in nature, since most of them emerge as
an average effect of independent small scale processes, manifest this behavior can be seen
as a phenomenological confirmation of the reasonability of this assumption. This is indeed
the case of inflation [75], which succeeds in generating primordial perturbations on small
scales beneath the horizon, where the microphysics if effective. Moreover the Gaussian
distribution describes the ground state of quantum harmonic oscillators [83], that is the
fundamental basis with which we quantize the inflaton field [82]. Therefore a Gaussian
distribution reasonably explains also the quantum origins of perturbations.

A crucial feature of the Gaussian distribution is that its shape remains invariant under
any general linear transformation [77]. Linear transformations affect the distribution by
changing its mean value and variance, but do not spoil the shape of the distribution.
This is the reason why linear perturbations preserve the Gaussianity of the distribution
through the Universe evolution; matter of facts, in cosmology linear perturbations are
always identified with Gaussian random fields, while higher order terms are regarded as
non-Gaussian corrections. These arguments encourage us to pursue, in a first study, a
statistical analysis of the SGWB anisotropies considering the metric perturbation to be
Gaussian distributed. The chapter is then organized as follows.

The first section is dedicated to a brief review of the definition and the properties
of a general Gaussian random field, so that a more deep understanding about the hypothesis
underlying the Gaussian assumption can be gained.
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CHAPTER 4. STATISTICAL ANALYSIS OF THE SGWB FROM GAUSSIAN PERTURBATIONS

As we will show, in this case the only relevant statistical quantity is the 2-point cor-
relation function, or, in momentum space, the power spectrum. This is the main topic
we discuss in section , starting from its definition and features deriving from the as-
sumption of statistical isotropy. With this knowledge in mind we proceed in evaluating
the 2-point function starting from the results . This analysis largely follows the path
of [59], and naturally extends the results accounting for a non vanishing graviton mass.
Assuming that the three terms corresponding to the initial condition and the sourced terms
are not cross correlated, the final correlator will result in three different contributions whose
explicit calculation is performed by steps.

Firstly, in sections and , we evaluate the transfer functions Tg(n, k), Ty (0, k)
and x(n, k) defined in , which then will allow us to obtain an explicit expression for
the linear functions ’725’ (10, Nin, k, q) in .

Once these functions are known we will have all the ingredients to evaluate the three
contribution to the 2-point correlator, which we will perform one at a time in the last
section (|4.5)).

4.1 Gaussian random fields

Before exploring the angular power spectrum, we find useful to give a brief review of the
concept of gaussian random variable, so that the reader could possibly understand better
how sources of non gaussianity, which we will study later, could arise within a cosmological
framework. In this section we will mainly refer to [63] and [67]; for some further details
about cosmological applications of these topics we encourage to give a look at [74] as well.

A function G(a?’)lﬂ is said to be a random field if for any x it assumes random values g,
and if it exists a distribution function

F1,...,n(91, . ,gn) =F [G(fl) <4gi,... ,G(fn) < gn] (42)

well defined for any n. Each value g; that the random field may assumes at the point Z; is
said to be a representation of the field G(Z), while the the set of all the possible representa-
tion forms the ensemble. The mathematical properties of the distribution function and of
the statistical quantities we will define later on are largely described in [76]. At any point
Z; there must be defined a probability density function p;(g;) encoding the probability of
the random field G to acquire the value g; in #;. By definition the probability density
function is related to the distribution function by

pi(gi) = dﬁ;;igi) : (4.3)

As in [76], we then define the expectation value of the random field as the ensemble average

(G(3)) E/ng'pz’(gi)dgzw (4.4)

where () indicates the ensemble. Since this quantity happens to vanish in most cases when
dealing with cosmological perturbations, a more statistically relevant quantity in cosmology
is the joint probability

i (93, 95) dgidg; (4.5)

!Notice that we are restricting the coordinate space to the only spatial coordinates, since the stochastic
properties of any cosmological quantity are defined at fixed time.
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4.1. Gaussian random fields

of finding the random field G(Z;) with a value g; given that in the point z; the random field
assumes the value g;. Then we define the two point correlation function as the expectation
value of the combination G(Z;)G(Z;), that is:

§(T, 75) = (G(T)G(T5)) = /Qgigjpij(gi,gj) dgidg;. (4.6)

In the same way we can generalize this definition for the N point correlation function as

= / g1-..9gnp1,...N(91,--.,9N)dgr ... dgn. (4.7)
Q

Obviously, when the different realizations are independent, the joint probability reduces
simply to the product of each individual probability density functional (in this case the
distribution is said to be Poissonian); as a consequence if the realizations are independent
the N point correlation function reduces to the product of the expectation value of the N
random fields. Another very useful statistical quantity is the ensemble variance o, which
is essentially a measure of the deviation from a Poissonian distribution, defined by

0?(F1,T2) = (G(#1)G(i2)) — (G(F1))(G(Z2)). (4.8)

In many practical purposes, statistical analysis is often more manageable in Fourier space.
Therefore we introduce the Fourier transform of the random field as:

8

LT+ 0T 3 =, —ik-Z
a( )—/WG(k)e , G(R) _/d 2 G(F)e 7, (4.9)
and the reality condition

G*(k) = G(—Fk) (4.10)
holds.

Gaussian distribution

What has been shown so far is totally general and relevant for any distribution function
F. From now on instead give up the general discussion in order to focus our attention
on the particular case of the Normal Gaussian distribution. The physical assumption that
characterizes a Gaussian random field is that the phases of different Fourier modes are
random and uncorrelated. Therefore, on behalf of the central limit theorem, the infinite
sum of the various Fourier modes will tend to be normally distributed, and ultimately, the
integral expansion in Fourier modes will results in a Gaussian random field.

An alternative more formal, but nevertheless quite elegant, way to define a Gaussian
random field is to proceed by an axiomatic approach:

i. A Gaussian random field is a random field whose Fourier modes have no correlation
except for the reality condition (4.10f). The fact that all the modes are uncorrelated
forces the two point correlation function to be of the form

- -

(GRG(R) = (2m)*O(F - F) Po(R), (4.11)
with Pg(];) a function to be determined called power spectrum.
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ii. The odd-number correlators of any Gaussian random field vanishﬂ

(G(k)) = - = (G(k1) ... G(kany1)) = 0. (4.12)

iii. The 4-point correlators can be written in terms of the 2-point correlators by

+<é(7§1)é(/§3)><é(7:€:2)é(/§4)>
+(G (k1) G (ka)) (G (k)G (k3)), (4.13)

and in the same way we can decompose all the even-number correlators.

In other words, the Fourier coefficients of a Gaussian random field are minimally corre-
lated provided the requirement of the reality condition. As a consequence all the stochastic
properties of a Gaussian field are completely determined by its power spectrum, which then
represent the fundamental statistical quantity to study. Before investigating the structure
of the power spectrum, notice that these axioms reconstruct the expected situation for a
Gaussian random variable. Indeed the n-point correlator reproduce exactly the expression
for the n-moments of a gaussian distribution, as reported in [78]. This uniquely determines
the density probability function p;(g;) that in the end will assume the form of a normal
distribution

1 97
) = —e 207, 4.14
p(gl) \/%O’ ( )
where, in virtue of the first two axioms, the ensemble variance simplifies to
2 _ 2= = (2 d*k 7
o =0°(Z,7) = (|G(Z)|") = (27)31’0(/6), (4.15)

and turns out to be position independent thanks to the delta function in .

Let us now turn back to the problem of the evaluation of the function Pg(E). In a
cosmological framework the random field is usually taken to be statistically homogeneous
and isotropic, that is the probability densities related to each realization are invariant
under translation and rotations. Under the assumption of statistical homogeneity, the two
point correlation function in coordinate space turns out to have a simpler dependence on
coordinates, that is

£(@1, 72) = £(Z1 — 22). (4.16)
In momentum space the 2-point correlator is
(GEG(R) = / dx / i elt el ) i
= /d?’x/d?’x/f(f/ —:Z")e_i’;'fe_“;/'f/
- / B3y e iF-F)E / 43z €(2)e* 7. (4.17)

2 Actually (G(k)) is not a correlator, and in principle it could be different from zero. However, given a
random field with a non vanishing mean value, it is always possible to define a new field with zero mean
simply by shifting the old one as H(k) = G(k) — (G(k)). This is what is usually done in cosmology,
where we prefer to work with perturbation with zero mean. Any non zero-centered perturbation can be

~ -

reabsorbed in the background Universe. For this reason in this work we will always assume (G(k)) = 0.
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4.1. Gaussian random fields

Then, exploiting the integral representation of the delta function, we finally arrive to (4.11))
with the definition of the power spectrum

Ps(k) = /d3x§(f)e”z'f, (4.18)

which is nothing but the Fourier transform of the 2-point correlation function. However in
many cases it is more convenient to work with the so called dimensionless power spectrum
defined as
k‘3
272
As a last comment we want to interpret these results within the framework of quantum
field theories [84]. What we are going to argue is that a Gaussian random field can
only originate from a free theory. A powerful tool to compute the Connectedﬁ correlation
functions of any order n is the so called in-in formalism as shown in [80, 81} [88]. As usual
we divide the Hamiltonian of the system in a free term and an interacting one as

Pa(k) = — Pa(k). (4.19)

H = Hy + Hipy. (4.20)

In the interaction picture [82] we can evolve the vacuum state with a Schrodinger like
equation such that the n-point correlation function of a generic quantum field go(n,E)
becomed]]

<§0n(77)> < (nln)‘ mt( 7nin)son(n)Uint(na772'n)|0(77in)>7 (421)
where 7, denotes the initial time when the interaction is turned on; notice that the vacuum
state |0(n)) is the one of the interacting theory, but, for continuity, it must coincide with the

free vacuum at initial time, when the interaction was turned off’} The evolution operator
is defined by
_s[m Hin / d /
Uint(777 nzn) =Te Zf"in t(n) g P (422)
with 7" the time ordering operator. To first order (4.21)) reads
n
(" () = —i/ diy’ (OIT [" (n), Hine(n')] 10). (4.23)

In a free theory the only term we can treat as an interaction is the mass term H;p: o
m2p?/2, and

m N
Hini (1) = / Prp? = — / d*x / d3p d3p/ TV o (5 ) ()

_m / @p d® (2m)36% (5 + 7)o (B, 0)0 (7 ). (4.24)

The rigorous computation of the connected correlation functions descends from (4.21), but,
since we are not interested in the exact result, we will settle for just an estimate of the
first term of the commutator, that is

(©"(n)) ~ —im? /n dn’/d3pd3p’53(ﬁ+ P)OIT" () (B0 ) (@', n)[0).  (4.25)

3In accordance with the common QFT costum, we say that a correlator is “connected” if it cannot be
factorized as products of correlation function of lower order.

4For the ease of notation we are omit the dependence on the momenta, while we are making explicit
the dependence on the time fixed by our observation.

®For simplicity, if there is no chance of confusion, we will denote the free vacuum just as |0)
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The time ordering product can now be substituted by a sum of normal ordering products,
denoted by N, thanks to the Wick theorem [82]

Tle(m) .- emm)] = Nlp(m) ... o(m)]
> Nigm)e(n) - . ()]

1 contr.
+...
+ > Nlgm)etnp) - o) - o), (4.26)
all contr.
where the contraction
p(k,m)e(k' ,n') = (0l(k,n)e (K 1)[0) (4.27)

must involve different times. However, any normal ordering product where we have at
least one uncontracted field gives zero contribution once we apply it to the vacuum |0).
This is indeed the case because, in the context of second quantization, the scalar field ¢ is
written as a superposition of ladder operators. The normal ordering acts by moving the
annihilation operators on the right and the creation operators on the left, making then
those contributions to vanish. Therefore the only non trivial term of is the last
one, where all the field involved in the time ordering operator are contracted. Turning
back to , now we see that, for a free theory, the Wick theorem selects the 2-point
function as the only non vanishing one. In other term is non zero only for n = 2,
because in the other case there will always be at least one uncontracted field left. This
is indeed in accordance with the fact that the statistical properties of a Gaussian random
field are completely characterized by the two point function. Moreover one can show [87]
that any non connected correlation function can be decomposed as a sum of products
of connected functions. Since the only non vanishing connected function is the 2-point
function, then we immediately have the result that any higher-order correlator can be
written in terms of the 2-point one. Nevertheless, in the case n-odd, there is no way to
decompose the correlator in terms of 2-point functions only, and this implies than any
odd-point correlator automatically vanishes. All these results perfectly recover the axioms
(4.11), (4.12)), (4.13) that we posed to define a Gaussian random field. In the end we have
proved that Gaussianity originates from the random field being a free theory.

4.2 GW Angular Power spectrum

After this long parenthesis, let’s now turn back to the problem of evaluation of statistical
measurable quantities. In order to take contact with observations, our final purpose is to
obtain an expression for the angular correlators. Indeed, as seen in the previous section, the
intrinsic nature of the perturbations implies (I'g;,,) = 0, and therefore the only meaningful
quantity to study is the two point function, which, on the behalf of the rotational invariance,
is restricted to the form .

(LemTem ) = 0o Sy Co, (4.28)

where the quantity Cy = (|agn|?) is called spectrum of the SGWB anisotropy, and it is
the crucial quantity that encodes the information about how much fluctuations is there on
a given angular scale . Actually we should be aware that this expression holds as long
as we are neglecting explicit n-dependence inside the initial condition contribution (3.37)).
This is indeed the only term in which such an explicit dependence could possibly arise,
while in the other contributions the dependence in contained just inside the combination
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4.2. GW Angular Power spectrum

(1 = k-7 confined inside the exponential factors, as we have seen in (3.38) and (3.39). Such
an angular dependence would reflect in an overall statistical anisotropy, and ultimately
on a more general dependence of the angular correlators on the multipole indices ¢ and
m. However, for the reasons mentioned above, this work will focus only on the statisti-
cally isotropic case. As briefly said before, this assumption drops any dependence of the
spectrum Cy on the index m. One can easily convince himself that this is indeed the case
by thinking at the intuitive meaning of the indices of the monopole expansion: £ tells us
the angular scales we are considering, while m contains information about the orientation
of the spherical harmonics, that is about the direction of our observation. The assump-
tion of statistical isotropy implies that our observations of angular correlators should be
orientation-independent, that means, at the end of the day, m-independent. A more rigor-
ous proof was given by Komatsu in [79]. Statistical isotropy demands the correlators to be
invariant under rotations. Denoting with D = D(«, 3,7) a rotation matrix for the Euler
angles a, # and +, this symmetry reads

(DT(711) DT (#13) . .. DT (i)} = (D(711)D(2) . . . T(7n)). (4.29)

Remembering the multiple expansion

4
L) => > TunYem(R), (4.30)

£ m=—¢

we need to understand how the rotation matrix D applies to the spherical harmonics. As
shown in [63] [79], this transformation is given by

L

. ‘ .
DY () = Y DY) Yo (1), (4.31)
m/=—¢
where we have introduced the Wigner matrix elements D%?m = (¢, m'|D|¢,m). In the

context of quantum mechanics these matrix elements describe the rotation of an initial
state whose angular momentum is represented by the quantum number ¢ and m into a
final state where these quantum number are transformed into ¢ and m/. Inserting the
multiple expansion inside , the isotropy condition becomes

Z <F€1m1 nlml (ﬁl) e Fénmnnnmn (’fln)> = Z <Félm1 e Fenmn>
lima..bpmny lima..bpmy
l N ¢ o
x > DY %leelma (1) - D) o Voumy, (). (4.32)
mi..mj,

In order to extrapolate the n-point correlators the trick is to multiply both the right and
left side of the equation for the spherical harmonic Y/ ), and to integrate over d*n; to
reproduce the condition for the normalization of the spherical harmonics . Iterating
this procedure for i = 1,...,n, we end up with

l 0 Y4
(CormTeams - Toomn) = > Cormy - Lo, >D7(T}1m1D£n?2m2...D£nimn. (4.33)

/ ’
mi..mj,

Focusing on the 2-point function

4 {4
<F51m1F52m2> = Z <F£1m’1F€2m’2>D£nzlmlD£n22m2~ (4.34)

! ’
mpmy
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This relation is the manifestation of rotational invariance. From this equation, we now
look for a rotationally invariant representation of the angular spectrum. Let’s then take
(4.28) as an ansatz, i.e. (gt Toymy) = Coy60,050mym,- Then the relation (4.34)) becomes

(Copm Do) = Covden Y D, DY)

! /
mimi mym

, = C0,00,0,6myms- (4.35)

!
my

In the end we have shown that C; is rotationally invariant and that rotational symmetry
demands the 2-point function to be of the form of (4.28)).

Looking at the solution for the I'y,, coefficients in , we see that there are just four
statistical operators which are sensitive to the ensemble average operator defined in ,
that are T'(nin, k. q), C(K), £1(k), and Egr(k). All the other operators are deterministic
quantities either encoding the time evolution of large scale modes (transfer functions) or
projecting the GW anisotropies in the harmonic space (spherical harmonic functions).
Assuming that the four stochastic variables are statistically uncorrelated, the only non
vanishing 2-point functions, defined in relation to their dimensionless power spectra, are:

S S o2 o
(T (Nin, ks )T (Nin, k', q)) = k—zpf(q, k) (2m)38 (k — k’)

272

(CRC (R) = T Pe(k) (2m)Ps (F—F)
2 - o
EFIE () = TPk en) o (F—F) (4.36)

These expressions can now be used combined with the results (3.92)) to evaluate the angular
correlator (4.28), which, thanks to the above assumption, can be split into three different
contributions:

Cp = ée,f + ée,s + CZ,T- (4.37)

At this point one can appreciate the great benefit of having decomposed the anisotropies
in the above three terms. Moreover, since the three contributions to the coefficients I'y,,
share the same functional form, we can perform the computation for just one term, and
then easily extend the result for the other two. Let’s then consider the contribution to the
angular correlator arising from the initial condition term:

T F* = (4 2/ .~ o= d3k iE~fo d3k’., —iE/~foy* ]% Y, ]%/
< m, I K’m/,I> - ( 71') ( Z) (27_[_)36 (27‘(’)36 Zm( ) Z’m’( )

Xjé[kl(no, nin)]jf’ [kl(n07 77m)] <F(77’i7h Ea q)r(ni’m E,a q))

3 772 ~ ~
= (P [ G Pl Y ()i )

x Jelkl (10, in )] 3o [KL(100, Nin)]- (4.38)

Decomposing the integral measure as d3k = k2dkd%k and exploiting the orthonormality of
the spherical harmonics, the integral reduces to

2 7'('2
fzf; 2 Pr(a, k) Lielk o, min) )

(Com, g 1) = oSy (477) /
dk . 2
= 5%’5mm/47‘- ?Pf(qv k) [Jﬁ [kl(770> Thn)]] . (439)

Notice that, as expected, any dependence on the index m has dropped out after the im-
plementation of the orthonormality relation, since this dependence is contained only inside

72



4.8. Scalar transfer functions

the spherical harmonics. A more general dependence of the initial fluctuation I'; on the
director . would have introduced a more complex dependence of the integrand of
on the versor l%, preventing this great simplification. The initial condition spectrum is in-
creased by the presence of a non vanishing mass, since this information only enters inside
the argument of the spherical Bessel function. In particular the argument is maximized
(and then the spherical Bessel function minimized) in the massless case, where the gravi-
ton speed equals the light velocity and the distance (1, 7, ) reduces to the time difference
no — Min-

As stressed above, thanks to the fact that all the three I'y, coefficients listed in
share identical structures, we can immediately extend the last computation to the scalar
and tensor sourced contributions. All we have to take care about is to replace the spherical
Bessel function and the dimensionless power spectrum Pr(q, k) appearing in (4.39) with
the appropriate linear transfer function and power spectra for the scalar and tensor sourced
terms. This procedure straightforwardly leads to:

dk

(Com,sTirmr 5) = Oeer O 470 ?Pc(k)ms(nomm, k,q)? (4.40)

for the 2-point correlator scalar sourced term, and

. dk
Comlpm 1) = 5@@/5mm/47r/ - [Pa(k) + P—o (k)| TS (10, 1 ke, @) (4.41)

for the tensor sourced one. Notice that both these expressions do not show a graviton mass
dependence, as it is confined inside the linear transfer functions . This concludes the
problem of the evaluation of the 2-point correlators, whose angular spectra defined in
are listed below to summarize the previous computations.

~ dk .

Cos =t [ ik, m)]*Pi(a. ),
~ dk\ s 2

Crs = 4m [ —=|T7 (o, nin, k, @)1 "Pe (k),

~ dk
Cor =4 [ ST (om0 3 PACK) (1.42)
A==12

It is worth to mention one more time that all the three contribution in contain a
g-dependence. This is due to the graviton mass, which affects the linear transfer functions
by adding a graviton velocity correction. In the massless case this velocity equals the light
velocity, and then the correction factor goes to one. As a result, in the massless case,
one would find that only the initial condition term maintains the dependence on the GW
frequency inside the dimensionless power spectrum Pr(q, k).

4.3 Scalar transfer functions

In order to evaluate the scalar transfer functions, let’s consider a FLRW background space-
time perturbed by only scalar perturbations:

ds* = a*(n) [—(1 + 2®)dn? + (1 — 20)5;;dz’da? ] . (4.43)

Let’s suppose further that the energy density budget of the Universe is dominated by
relativistic and non-relativistic particles and by a cosmological constant. If we additionally
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assume that the cosmic fluid of the Universe is perfect, then we can immediately write
down the energy-momentum tensor elements remembering that that the matter content is
pressureless, while for the cosmological constant py = —pa:

T(? = _pm(1+5m) _pr(1+57’) — PA,
i 1 i
Tj <3pr(1 + 67") - pA) 5]'7 (4'44>

where 8, = 0pr,m/ pr,m represent the first order radiation or matter perturbation account-
ing for both baryonic and non baryonic particles, while v is the fluid particle velocity. The
time evolution of cosmological perturbations is governed by Einstein equations, which at
zero order lead to the background Friedman equations:

2
a
P TW[PA‘FPm‘i‘Pr]v
o+ 3Hpm =0, ol +4Hp, =0, Py =0,
a’ a® a®
= (p—=3p)=—— (4 4.45
a GMI?(p p) 6Mp2( pA"’pm)v ( )

with M, the Plank mass and H = a’/a. In order to see the effects of cosmological pertur-
bation we need to go at least at first order. The computation of the perturbed Einstein
tensor elements has been performed in Appendix (A]). For our purposes we just need to
consider the spatial terms; therefore we can specialize to our present case, where
the only non vanishing perturbed metric elements are hgg = —2® and h;; = —2¥4;;. This
way the linearized spatial Einstein equations are :

"

Q26GE = 20" 4+ AHT 4 2HY + 453 — 212D + V(D — 1) | 5 — 5'0;(D — U)
a

a? a?

6T = —— proy. (4.46)
ME I 3METTT

This equation can be split in a diagonal and in an off-diagonal contribution. The latter is
immediately solved if

o= (4.47)

An analytic solution of the diagonal part is not achievable in full generality. For this reason
we simplify the problem considering firstly the situation where the contribution to the total
energy density from radiation is dominating over the other components.

Radiation domination The solution of the Einstein equation (4.61]) during radiation
domination is well known. The reader can find this solution in many text; for example, in
ref. [70] it is shown that the solution is

Bk, n) = 30, (k) sn () (k:gfos (%) . (4.48)
7

On super-horizon (kn < 1) scales the scalar perturbation is well described by its primordial
value, while on sub-horizon scales (kn > 1) the perturbations undergo a damped oscillation
with increasing frequency.
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4.8. Scalar transfer functions

It is useful now to link the primordial value of the scalar perturbation ®;,(k) to the
gauge invariant quantity (;,(k). For this purpose one can take advantage one more time
of the linearized Einstein equations to rewrite the gauge invariant curvature perturbation
in a more convenient way. In particular, from the Einstein tensor , the time-time
component of the Einstein equation at first order reads:

1 2
67> <q> + H@’) + 2k%® = —méTO ~ (PmOm + pror). (4.49)

At early times the Universe was dominated by the ultra-relativistic component, and then,

inserting the first Friedman equation (4.45) inside (4.49)), one gets:
2MP k2

4.50
Zp, (4.50)

1
61" ~ 6t0t ~ —2 <(b + 7—[@,>

Finally this result can be used with the continuity equation of (4.45)) to rewrite (3.58) in
the desired form as follows

1)
:@—7
¢ 3(1+w)
_ 2 a = ]wj'23 2
= (I)+3(1—|—w) [a’q) +<I>(1+a2ka . (4.51)

When the radiation component dominates in the Universe, the equation of state imposes
w = 1/3. Moreover, since we are interested in physical scales that happen to be above
the horizon at the end of inflation, we can neglect their first derivatives at initial time
and contextually neglect all the terms proportional to k% as well. Applying all these
considerations to , the curvature perturbation at initial time is given by

3
Gin ~ 5 Pin, (4.52)

and the scalar metric perturbation is

B(k.) = 2sin (%) k—\} cos (

1)

w
I
WS

o\ Cin(k). (4.53)
(%)
Then, remembering the definitions (3.89):
2
Tyt = Tt = 3 9raa (k,m), (4.54)
with
: kn kn kn
n (52 — 5 con (12)
3 3 3
Graa(k,n) =3 o : (4.55)
(%)

The scalar transfer function can be rewritten in terms of observable quantities exploiting
pr(m:)a*(n;) = po and the definition of critical energy density today Per0 = 3M}%H§:

2
Trad — prad — ggrad(k: n). (4.56)

In order to easily understand the behavior of the growing rate with time, Figure (4.1))
shows the trend of the function g,qq(k,n) for a fixed scale k ~ 10*Hj.

75



CHAPTER 4. STATISTICAL ANALYSIS OF THE SGWB FROM GAUSSIAN PERTURBATIONS

1.2

1.0

0.8 1

0.6 1

0.4

Graa(n)

0.2

0.0

—0.2 1

10-! 100 10! 102
n[Mpcl

Figure 4.1: Scalar growing rate during radiation domination. This function remain approzimately
constant until the mode under consideration re-enter the horizon. This event is higlighted by a
vertical red dotted line corresponding to kn ~ /3. Once the mode has re-entered the horizon, it
soon starts decaying with an oscillating fashion.

Matter domination Scalar modes which are outside the horizion at the end of the ra-
diation domination epoch are frozen to their primordial value at the entering of the matter
domination era. This paragraph considers only such scales, since those that crossed the
horizon during the radiation era are washed out by quantum effects during the expansion
of the Universe. After the epoch of equality, the radiation component provides a negligible
contribution to the total energy density. In this case the condition (4.47) can be inserted
inside to give the desired time evolution equation for the scalar perturbations:

o'+ 3HD + (2‘; - H2> $ =0, (4.57)

whose formal solution can be found in the form
®=C1D; (a) + CQDQ(&), (4.58)

with Cy and Cs integration constants. The path to follow in order to specify the form of
each solution, D1 (a) and Ds(a), is outlined in Appendix (D]). The first solution has to be
guessed, and in particular it seems reasonable to look for a solution built as a combination
of the relevant quantities entering in , that are a and H. The easiest function we can
think to build with those quantities is ® o< a"H, with n an integer number. Inserting this
ansatz inside , we can solve the differential equation to obtain the viable values for
n. By a direct computation:

"
0=H"+3n+1)HH + 2%% (0?4 30— DH®
a” a’ 2 a’ 2 3
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4.8. Scalar transfer functions

where in the second step we directly inserted the expression for the first and second deriva-
tives of H. The third derivative of the scale factor can be obtained by deriving the last
equation of (4.45)). Since the energy density of the cosmological constant does not depend
on time, this reads:
" " 2

a a a

— =3H— — —=Hpm. 4.60
Using further the Friedman equation for the second derivative of the scale factor, (4.59)
simplifies to

"

a' @ pm 2
0= (3n+5)a AME 2 + (n? = 2)H
1 Pm 2 1
= Bn+5)g(@oa +pm) — == + (0" = 2)5(pa + pm). (4.61)

This equation can now be split in a system of two equations, one for the matter energy
density and the other for the cosmological constant energy density, that is:

(3n+5) —3+2(n?—-2) =0, for pp, (4.62)
4(3n +5) +2(n? —2) =0, for pp '
The system is immediately solved by the value n = —2. Therefore, in the end, the desired
solution we were looking for is
H
D —. 4.63
1(@) X a2 ( )

Following the arguments of [71], in Appendix @ we have shown how to find the second
solution of an homogeneous second order differential equation once the first solution is
already known. Specializing to our case, the second solution is obtained in the form

dn 3H

e /
Ds(a) o Di(a) / B Gt

where in the denominator of the integrand we have made explicit the dependence of the
scale factor on the conformal time 7 just to make clear that even the denominator is
involved by the integral operator, and cannot be simplified with the factor outside the

integral. Now we can recast the solution in a more simple form. The integral entering in
the exponential factor can be directly computed through a change of integration variable:

(4.64)

da
/dn 3H = -3 aa = —3lna, (4.65)

having set the integration constant to zero, since it would give rise to a solution proportional
to Di(a). This way, applying the same change of variables to the integral in (4.64) and
substituting the solution (4.63)), we arrive to:

Ds(a) Z—é/dn perT i / 7—[37 (4.66)

where in the last step we defined H = @' /a. Summing up, this procedure provides two
linearly independent solutions to (4.57)) of the form:

H H
Di(a) x ok Ds(a) x p da7:[3 (4.67)
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The solution Dj(a) represents a decay mode, and it happens to decay very rapidly in time,
hence it can be safely neglected. Then the scalar metric perturbation is

&=kt [dat. (4.68)
a H3

Remember that our aim is to obtain an expression for the transfer scalar functions as
defined in . In order to reach our purpose, we thus need to separate the primordial
value of the scalar perturbation from its temporal evolution. In order to evaluate the
primordial value of ® it is useful to firstly make explicit the a-dependence contained inside
the Hubble parameter H. This dependence can be directly read from the first Friedman

equation in (4.45)) rewritten as

H 1 Pm,0 VPA Qim0 NN

— _I_ Y — 1 _|_ 2 e 5 469
a  \/3M, PAT g V3M, (I =Qpo)a®  3M,V a (4.69)
with the definitions

0 _ Pmo Qm,O
m,0 = ) r QO )
Per,0 1-— m,0

(4.70)

where as usual pe o = 3M57—[2 /a? denotes the critical energy density today. Therefore,
enclosing any constant term inside the proportionality factor C'(k), the scalar perturbation

becomes:
la? —i—r <a¢ —|—r>3/2
/ 1 11
,G/ +T a3+7‘2F1< 1767 a?)

11 a
— C(k)= ,F et 4.71
) )57«“(3 "6 r> (4.71)

As mentioned at the beginning of this computation, this solution is really reliable only
when matter and the cosmological constant dominate in the Universe. This means that
this solution is valid only for n > 7¢,, while at earlier epochs one should consider the
solution . At the epoch of matter-radiation equality the two solution must match
in order to preserve the continuity of the solution. Modes that happen to be above the
sound horizon at the epoch of equality are frozen to their primordial value, and then the
matching condition easily imposes

-1

5r 1. 11 a
L O (= PR’
C(k) 9 241 <37 "6 r ) (k>
-1
. 5r F 1 1 11‘_agq gc (l{}) (4 72)
= 9 2141 37 y 67 r 3 mn . .

This result completely defines the expression for the gravitational potential ®, which can
be written as:

in(k) = Z9a,m(1) Cin(k), (4.73)
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where the normalized growing rate ga matt(7) is defined as

gam(n) = : (4.74)
2 F (%,1; %;—a%)

In the end, the expression (4.73) automatically defines the transfer functions Te and Ty

to be 5
Tp™(0.k) = Ty™ (0. k) = Soam(n)- (4.75)

The time evolution of the growing rate g(n) is completely understood only once the
explicit expression for the scale factor a(n) is given. This relation is better derived solving
the Friedman equation with respect to the coordinate time ¢, and then establishing the link
between t and the conformal time 7. Considering a ACDM model with negligible curvature
and radiation energy contribution, the Friedman equation in conformal time is

at

2742
732 = 4
¢ 303

pm’0> — Pm0 (1 + a3r) ) (4.76)

(,OA + = a
a3 3M%

Performing an integral on both sides

/a da —  [PmO /77 dr' (4.77)
acq /(14 a?r) 3Mp Jy., '

n(a) = 1eq + e g [1,1; I —m?’} LTINS [1, L ra } - (478)
HO\/ Qm,O 62 6 HO\/Qm,O 626 4

This relation cannot be inverted analytically. For this reason we attempted a numerical
approach, tabulating the values of 7(a) as a function of the scale factor a starting from
the epoch of equality; then this relation is plotted and inverted with Python to obtain the
desired expression of a(n). The results of this procedure are shown in Figure (4.2). The
form of the fitting function of the second plot was guessed by considering that during matter
domination the scale factor scales as a(n) o n?, while when A dominates a(n) oc —n~!;
then it is reasonable to use the fit function

aln) = c1 + ¢ <:0>1 +c3 <7;70>2 . (4.79)

Using the Plank data (ref. [I09] for the values of the Hubble constant today (Hy =
67.36 kms~'Mpc™!) and for the matter density parameter (€, 0 = 0.315), the optimal
parameters given by the fit function are

leads to

g = —T7.524x1073
co = 2.546 x 1074
c3 = 9.871x 1071

At this point then, the growing rate g(n) is perfectly understood and it is given, as a
function of the conformal time, by

~1 2\ 3
oF1 |5, 1 - (61 + c2 (%) +c3 <%> ) ]

gam(n) = —a . (4.80)
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Figure 4.2: Scale factor evolution in conformal time in matter and A dominated Universe. In
the upper panel it is shown the evolution of the conformal time n(a) (in Mpc) as a function of
the scale factor a, (equation ), considering as reference values r = 0.46, Q,, 0 = 0.315,
Neq = 112.8 Mpc, and acqy = (1 + 2¢4) 7' = 2.94 x 104, In the lower panel this relation is inverted
graphically simply exchanging the two axis. The fit function reproduces very well the exact function
along the whole time domain.

The result is plotted in Figure (4.3]).
To summarize the above results, the scalar metric perturbations can be written in the
following way

2 a? -1
B(kr) = k) = 5 (L4 Gk] a1 (), (4.81)
0
with
( . kn kn kn
sin ( 2t | — =L cos [ %
() - de(l)
(%)
3
g(n) =

., N L (482)
1; %; —pL (cl + ¢ (%) + c3 (%) ) ]

4.4 Tensor transfer function

The evolution equation for the tensor transfer function are obtained minimizing the action
(2) Ml% A 201 ijr 2 ) ij
Sy = e d*za [Xin — (k* +a™m?)xijx ] (4.83)
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Figure 4.3: Upper panel: solution for the growing rate g(a) as a function of the scale factor from
the exact formula (4.74). Lower panel: approzimate solution of g(n) using the previous fit function
to replace the scale factor dependence with the conformal time one.
found in Section (2.3.2)). The Euler Lagrange equations for this action are

X (k) +2Hx (1, k) + (K + m®a®)x(n, k) = 0. (4.84)

In order to solve this equation in a semi-analytical way, we firstly have to make explicit
the dependence of the scale factor a on the conformal time 7. This relation can be directly
obtained working out the Friedman equations in the two regimes

Radiation domination The last Friedman equation (4.45)) in this regime reads
a’"=0 — a(n) = can + ca. (4.85)

The integration constant ca vanishes under the requirement a(0) = 0, while ¢; is fixed by
the first Friedman equation

2 4 2
a/ (0) = Mﬂa = Ho. (486)
Therefore
a(n) = Hon. (4.87)
The Einstein equation (4.84) then becomes
2
X” + %X/ + (k‘2 + m2H§772)x =0. (4.88)

In the regime of small masses, that is m?a? < k%, equation (4.88)) immediately reproduces
the spherical Bessel equation (C.1)) with £ = 0. Therefore the solution in this regime is

x(k,m) = jo(kn) m*a® < k*. (4.89)
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In the opposite regime, i.e. m2a?® > k2, it is convenient to introduce a new variable
x = mHyn?/2. This definition sets the following rules for differentiation

d d
& omHer =
dn 0T g
d? d d?
ar = mH()% + 2mH0:L‘—dx2, (4.90)

and then the Einstein equation becomes

3 k?
X + —X 1)x=0. 4.91
X+2xX+<2mH0x+ )X (4.91)

In the large masses approximation the first term inside the parenthesis can be neglected,
and the equation is solved by

x(k,z) = clx_l/‘lJi (x) + CQ.T_l/ZLYi (). (4.92)

Requiring x(k,0) = 1, since at initial time all the modes under consideration are outside
the sound horizon, imposes co = 0. The same condition fixes the value of the constant c;.
One can see this expanding the Bessel function with the Frobenius method (see ref. [105]
for further details) in the limit for  — 0

& ey e
Ja(z) 2—0 LZ:O n!(T(n+ a+1) (5) ] ' (4.93)

Then

), (4.94)

which implies
5
¢ =241 <> . (4.95)

Turning back to the original time 7, and exploiti