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Abstract

Although astrophysical observations put strong constraints on the graviton mass in late
Universe, there is still room for gravitons to acquire an heavy mass during its early stages.
In this thesis we study the effect of a massive graviton on the Stochastic Gravitational
Wave Background (SGWB) of Cosmological origin. At early time we consider a scenario
where graviton mass during inflation originates, in an effective field theory approach, from
a primordial mechanism of spontaneous symmetry breaking of space-diffeomorphisms; at
late time instead it is considered a recent theory of massive gravity developed by De Fe-
lice and Mukohyama which minimally modifies the de Rham-Gabadadze-Tolley (dRGT)
theory, and where the assumption of a Lorentz symmetry violation allows the propaga-
tion of only two tensor massive modes and ensures the stability of the solution on a
Friedmann–Lemaître–Robertson–Walker (FLRW) background. Whereas the light graviton
mass in late time modifies the graviton geodesics during its propagation, the heavy mass
at early times strongly affects the primordial tensor power spectrum, pushing it toward a
more blue tilt. Both these effects may leave distinct signatures on the angular correlators
of the SGWB energy density. The analysis of the angular power spectrum is firstly per-
formed analytically, and then numerically exploiting the publicly available code Cosmic
Linear Anisotropy Solving System (CLASS), revealing different visible signatures arising
from the graviton mass on early and late times on the large and medium scales between
` ∼ 2 and ` ∼ 100; this multipole domain overlaps with the range of scales where future
interferometers as LISA and ET are expected to work, opening the doors for an exciting
future. We have also explored the role of the graviton mass on the three-point function
of the SGWB energy density, focusing both on primary and secondary non-Gaussianity
effects.
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Introduction

Since the detection of the gravitational wave GW150914 from the merging of two black
holes by the LIGO and VIRGO collaboration [1], the interest of the scientific community in
gravitational waves has rapidly increased. The scenario is really promising for the years to
come, when new interferometers, as LISA [11], Einstein Telescope [12], etc., are expected to
reach the right sensitivity to detect gravitational waves of cosmological origin [14, 15, 16].
A detection of such gravitational waves would be a crucial test for any mechanism of
generation of primordial perturbations, and especially for any inflationary model [16].
However it is likely that such detection of a cosmological SGWB will require the ability to
distinguish it from the astrophysical background, which arises from the superposition of
signals emitted by a number of unresolved sources. Among many techniques developed to
distinguish between the various background, an important tool in this context is the study
of its statistics, relying on the hope that future interferometers will allow for a sufficient
angular resolution to detect anisotropies of the background. This discussion has been
largely investigated yet in [59], but this is not the end of the story. Indeed, one of the most
important implication of the GW150914 detection concerns the constraints on the speed of
propagation of the gravitational waves. As they seems to propagate approximately at the
speed of light, this turns out to be a very strict constraint on the graviton mass, which must
be then approximately null. However a little not vanishing value is still not completely
ruled out by this event, that set

m < 7.7× 10−23 eV/c2.

More recent and more stringent constraints were posed in later years from the study of
planetary orbits (as INPOP17b [2]) and binary pulsars (as PSR J0737−3039A [3] and
further developments in [6]), giving the current constraint

m < 2× 10−28 eV/c2.

In light of this constraint, there is still some room for massive gravitons. Actually there
is much more. Astrophysical observations indeed can only investigate epochs very close to
the present time with respect to the age of the Universe. Therefore, to be precise, it is only
fair the say that the above bounds apply on gravitons generated during recent times. Next,
one may be tempted to extend these bounds to all the history of the Universe, but this
would be a strong assumption. Indeed, due to the expansion, the Universe went through a
wide range of energies; while today we see the CMB temperature around the eV scale, it is
commonly assumed that the Universe was around 1015 GeV during inflation. It’s then very
unlikely that the same theory of gravitation applies to the whole energy range, and strong
deviations from GR are expected at primordial times, when the Universe was hotter. For
this reason we cannot apply the above bound to gravitons generated during inflation, for
which we really don’t have any direct observation yet. Hence it is still open the possibility
that gravitons acquire an heavy mass during inflation of the order of the energy driving
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Introduction

the accelerated expansion, that is the Hubble rate. In order to avoid possible confusion
between the two masses, we will refer with late (time) mass the tiny mass m characterizing
graviton after the end of inflation, and early (time) mass the huge mass mg they posses
during this period. Whereas it was studied in literature how these masses modify the
angular correlators for CMB anisotropies (see for example [60, 61, 62, 122]), much work
has still to be done in the SGWB case, whew the path to study angular correlators has been
well traced in [59]. Also on the gravitational wave background, the graviton masses may
leave different and distinguishable signatures on the angular correlators which may become
visible with future interferometers. The aim of this Thesis is to capture and characterize
those signatures arising from the early and late time masses which are expected to fall in
the range of sensitivity of interferometers like LISA and ET.

First of all one needs to contextualize the theoretical framework. As just said, we
consider two different regimes of the Universe governed by two different and unconnected
theories of gravity. The idea of massive gravity was firstly proposed by Fierz and Pauli [13]
in 1939. Soon after its publication, it was shown that this theoy suffers of ghost instabilitiy
[26], called Boulware-Deser ghost; moreover, two independent works of van Dam, Veltman
[27] and Zakharov [28] showed that the massless limit of this theory is discontinuos: this
is the so called vDVZ discontibuity. For this reason theories of massive gravity were put
aside until 2010, when the illuminating works of de Rham, Gabadadze and Tolley (dRGT)
[38, 29] shed to light the existence of ghost free theories of massive gravity. While the
dRGT theory admits a Friedmann–Lemaître–Robertson–Walker (FLRW) solution [30], it
was shown that all the homogeneous and isotropic background are unstable in the general
dRGT because of the appearance of ghosts at non linear level [31]. There are several
ways to cirvumvent this issue, as adding extra degrees of freedom [32], or considering its
bi-gravity counterpart [33]. In this thesis we rather consider a theory of Lorentz-violating
massive gravity recently proposed by De Felice and Mukohyama [56], where only two
tensor degrees of freedom are propagated at any pertubative order, and where no ghosts
or discontinuities appear. The theoretical framework of the Universe at early times is
nicely described combining the tools of massive gravity theories with those of the Effective
Field Theories of Inflation(EFTI). The Stückelberg formalism was already introduced in
the EFTI where the inflaton dynamics is mimicked by a Goldstone boson which acts
as a Stückelberg field for the broken time-reparametrization invariance (see [43, 45] for
a detailed review). On top of that one may investigate the possibility to break space-
reparametrizations as well. This scenario gives rise, in a bottom-up approach, to a new
graviton mass term whose relative weight depends on the “amount” of violation of space-
diffeomorphism invariance. The mechanism of spontaneous symmetry breaking introduces
further three new Goldstone bosons [47, 46], corresponding to one scalar and two vector
extra modes and recovering the total five degrees of freedom carried by a massive graviton.
Within this wide scenario we consider two different branches. In one case the Goldstone
bosons becomes so massive to be washed out during the expansion of the Universe; in the
other all the extra modes are produced and propagate across the Universe until inflation
ends. Both these branches provide distinctive features on the primordial power spectra
which are the initial conditions for our problem.

We assume that the graviton population of the SGWB was formed contextually with the
primordial metric perturbations. Then, once they were produced, they evolved propagating
across the perturbed Universe. The evolution of the graviton distribution function is
described by the Boltzmann equation on a linearly perturbed FLRW background (non
linear effects will be only considered in the last chapter in the squeezed limit configuration
for the three-point correlator), while the evolution of metric perturbations are controlled
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Introduction

by the Einstein field equations. This approach is very similar to the one which is usually
adopted in literature to analyze the CMB anisotropy [70, 63, 114]. The greatest difference
between the two cases, besides the obvious observation that photons are massless, stands
on the fact that the graviton population is expected to be collisionless, since the relevant
collisions that gravitons can undergo are thought to be effective above the Planck energy
scale. As a consequence, gravitons are not thermally distributed, and there are no clues
about the functional structure of their distribution function. As will be seen later, this
feature results in angular anisotropies that have an order one dependence on the GW
frequency. This is in contrast with the CMB case, where the photon distribution density
follows the well known Bose-Einstein distribution [66, 70, 63], for which this dependence
only arises at second order in perturbation theory. The statistical analysis of the two
and three-point correlation functions is performed at first perturbative order in harmonic
space. Cosmological SGWB inherits its anisotropies both at its production and during
its propagation across the perturbed Universe, providing respectively an initial condition
contribution and scalar or tensor sourced terms. As a consequence of the non vanishing
graviton mass at late times, both these effects lead to a graviton frequency dependence of
the anisotropies, which instead is there only in the initial condition term in the massless
case. In order to solve the system of differential equations, the explicit expressions for
metric perturbations are needed. Since the model of massive gravity considered for late
time Universe does not propagate extra scalar or vector modes, no deviation from GR are
expected in these sectors, while the Einstein equations for tensor perturbations account
for a new mass term.

The evaluation of the three-point function represents a crucial tool to test models,
since non-Gaussianity is an unavoidable prediction which characterizes many mechanisms
of generation of perturbations. Moreover, the three-point correlators are expected to receive
no contributions from astrophysical sources; indeed, in light of the central limit theorem,
it seems reasonable to expect the SGWB produced by incoherent astrophysical sources
to be gaussian-distributed. Therefore, a measurement of non-Gaussianity would be a
measurement of large scale coherency that would suggest a cosmological origin of the
signal. These arguments support the three-point correlation functions as the preferred
channel to select a cosmological signal of gravitational waves, and this is the reason why
non-Gaussianity is so important. In theories of massive gravity there is the possibility to
generate a non vanishing three-point correlation function between scalar and tensor modes
[47]. This possibility however is not taken into account in this Thesis, but it could be
an open opportunity for later works. Two cases in which non-Gaussianity can arise are
analyzed. In the first case departure from Gaussianity is taken as an initial condition
on the primordial perturbations, and in particular the attention is given to the so called
local ansatz [48]. This is the simplest possible deviation from Gaussianity, where the
primordial stochastic variable is expressed as a non-linear combination of an auxiliary
gaussian variable. Then, a case of secondary non-Gaussianity is analyzed. This is the case
when, even starting from a gaussian random field, non-Gaussian effects arise because the
modes propagate through a perturbed Universe and combine together giving rise to a non-
linear evolution described by General Relativity. The formulation pioneered by Weinberg
[106] allows to evaluate the bispectra and the non-linear coefficient of the distribution in the
simplest squeezed limit configuration, that is the situation where one of the three modes
happens to have a much larger wavelength then the other two. Typically one assumes
the two short wavelength modes to be inside the horizon, while the long wavelength mode
remains outside, in such a way that they can be considered as independent modes, and
the effects of the long-mode emerge, through an appropriate coordinate transformation, in
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the propagation of the short-modes only at second order. Of course, in all the mentioned
analysis, particular attention is given to the effects and corrections arising from the non
vanishing graviton mass. The work is organized as follows:

The first chapter is dedicated to a brief technical review on the motivations and the
construction of theories o massive gravity. The aim of this introductory chapter is to pose a
solid theoretical background to our arguments and to convince the reader of the consistency
of these theories of modified gravity. Obviously this is far from being a complete discussion
of the topic. This arguments open the room to the next Chapter (2), where the application
of massive gravity to cosmological models is discussed. Both the mentioned cases of massive
gravity during and after inflation are analyzed with the purpose to build the power spectra
of the primordial fluctuations.

In Chapter (3), the collisionless Boltzmann equation for the gravition probability dis-
tribution density is built taking into account for a late time graviton mass contribution and
solved at first order in perturbation theory. In order to connect with observable quantities,
in Section (3.3) the graviton distribution is linked to the graviton energy density. Finally
the solution is expanded in harmonic space and splitted in three different contributions
sourced by scalar or tensor perturbations, or arising from an intrinsic perturbation in the
initial configuration.

In Chapter (4) the angular power spectrum is computed exploiting the solution of the
Einstein field equation for the scalar and tensor transfer functions.

Chapter (5) focuses on the analysis of non-Gaussianity, considering firstly a primor-
dial source of non-Gaussianity in the local ansatz, and then a secondary source of non-
Gaussianity arising at second order in perturbation theory from the propagation across the
perturbed Universe.

Finally, in Chapter (6), we turn back to observations and show the numerical prediction
for the angular power spectra computed in the previous chapters.

Units and Notation

It is useful at this point to clarify some of the notations that will be used later on. We
adopt the convention for the metric signature (−,+,+,+) and work in natural units such
that h̄ = c = kb = 1. It is useful to take in mind the following values1 and conversion
factors

1Mpc = 1.56× 1038 GeV−1 ,
MP = 1.22× 1019 GeV,
H0 = 2.1h× 10−42 GeV = 3.28h× 10−4 Mpc−1,
η0 = 1.416× 104 Mpc,
ηeq = 112.8Mpc,

where η0 and ηeq denotes the conformal time today and at the epoch of matter-radiation
equality respectively. The following rules for symmetrized and antisymmetrized indices on
a generic tensor field Aµν are used

A(µν) =
1

2
(Aµν +Aνµ),

A[µν] = Aµν −Aνµ .

1These values are taken from the Plank collaboration [109] and the ones used in the publicly available
code CLASS [111].
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Moreover we will indifferently denote vectors both with a superscript arrow and the bold no-
tation, that is ~k = k. We denote the contraction of two partial derivatives as � = gµν∂

µ∂ν ,
∇2 = gij∂

i∂j , while, for conciseness, we will sometimes denote the partial derivative with
the usual comma notation, that is ∂iA = A,i. Finally, we will denote with a dot the partial
derivative with respect to the coordinate time t, and with a prime the partial derivative
with respect to the conformal time η. For a generic quantity A this means

Ȧ ≡ ∂A

∂t
, A′ ≡ ∂A

∂η
.
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Chapter 1

Introduction to massive gravity

Within the framework of General Relativity (GR), the graviton is normally taken to be a
massless spin-2 boson. Massive gravity extends this picture introducing a new dimension-
ful mass parameter m for gravitons. A leading principle in constructing massive gravity
theories is that they should recover GR in the massless limit m→ 0. In the next chapters
we will always verify that the massless limit recovers the expected results described by GR.

Motivations for massive gravity

Experimental bounds to the graviton mass derives from many observations, but they still
leave room for a non-vanishing mass. Motivations for massive gravity can be found from:

• Gravitational waves: the graviton mass affects gravitational waves in two ways. The
first intuitive effect is a modification of the speed of propagation of the wave. The
graviton speed of propagation is obtained from the dispersion relation linking the
frequency ω and the wavelength λ (or equivalently the wavenumber k) of the grav-
itational wave. The dispersion relation gets an additional contributions from the
graviton mass according to

ω2 = c2k2 +
m2c4

h̄2 . (1.1)

This relation is indeed consistent with the definition of the energy carried by the
graviton h̄ω. The graviton group velocity vg can be read from this expression by the
definition

vg ≡
dω

dk
= c− m2c5

2h̄2ω2
+ · · · < c. (1.2)

As discussed in the introduction, this drop in the speed of propagation allows us to
put contraints on the graviton mass. Moreover equation (1.2) tells us further that
the graviton group velocity is frequency dependent, and that, when m is nonzero, low
frequency gravitational waves travel more slowly than high frequency waves. This
introduces a frequency dependent phase delay in the gravitational waveform, from
which the LIGO and VIRGO collaboration placed the bound [5]

m < 7.7× 10−23eV/c2. (1.3)

Second, a mass introduces new polarization states. Massless spin-2 particle have
indeed two transverse polarization states, while massive spin-2 particles have five.
This feature should be visible, for example, in the rate of spin-down of binary pul-
sars [4]. This rate is expected to be larger for massive gravity, because the system
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CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

can radiate gravitational waves into the additional polarization states. As already
mentioned, recent developments in experimental precision in measuring this effect
have the bound [3, 6]

m < 2× 10−28eV/c2. (1.4)

• Gravitational force: from the point of view of particle physics, a massive intermediate
boson should also modify the laws of gravitation. Within the Newtonian approxi-
mation, we expect to recover the Newton’s law at small distances, while the mass
should induce a damping in the gravitational force for distances larger then the
graviton Compton wavelength λg = h̄/mc. The most reasonable potential which
reproduces this trend is the Yukawa potential

V (r) = GM
e−r/λg

r
, (1.5)

where M denotes the mass of the source inducing the gravitational field, and G the
Newton constant. Moreover the new polarization states bring new additional forces,
often called fifth forces. All these contributions can be tested with solar system tests
of planetary motion.

• Cosmic acceleration: in the last decades we have found a several number of proofs
of the fact that the Universe is accelerating [9]. Within GR, this expansion can be
explained assuming the existence of a cosmological constant Λ modifying the Einstein
equations and entering as an additional contribution to the energy density ρ in the
Friedman equations as (we consider for simplicity a negligible curvature)

H2 =
8πG

3
ρ̃ =

8πG

3
ρ+

Λc2

3
, (1.6)

with H the Hubble parameter. The cosmological constant brings a constant con-
tribution to the expansion rate, and then an exponential grow in the scale factor.
Physically speaking, Λ can be interpreted as the vacuum energy density, which re-
ceives contributions from an intrinsic vacuum energy (usually called “bare”) and from
the vacuum energy of each particle fields:

ρobsvac = ρbarevac +
∑
i

αim
4
i , (1.7)

where i runs over all the particle species in our model and αi are numerical coeffi-
cients. Experimental data suggest it has the value ρobsvac ∼ (10−12GeV )4 [17]. This
little value has to be compared with the huge amount of vacuum energy provided
by the heaviest particle species, the top quark, with mass mt ∼ 170GeV/c2. This
requires a fine cancellation between the bare vaccum contribution and the particle
mass contributions to give the correct observed value ρobsvac which goes under the name
of “cosmological constant problem” (see [18] for further details). Massive gravity is
able to provide alternative explanations for the Universe accelerated expansion. It
is possible indeed for massive gravitons to degravitate a large cosmological constant
[19], i.e. to decouple gravity from the vacuum energy on large scales as a consequence
of the Yukawa suppression factor (1.5), such that we have an effect of screening of
the cosmological constant; in massive gravity we might not see the full strength of
the cosmological constant. Another possible scenario in massive gravity is called
“self-acceleration”, where gravitons, due to the self-interactions, form a condensate
whose energy density drives the cosmic acceleration [20]
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1.1. Fundamentals of massive gravity

1.1 Fundamentals of massive gravity

For the sake of completeness we want to give some basic arguments which lead to the
construction of theories of massive gravity. This introduction is not intended to be an
exhaustive explanation of the subject, but rather a short discussion aiming to show how
we can build a viable and consistent theory of massive gravity. If one is interested in
further details, we recommend to look at [21] and [22], which are the main references for
this section.

As said above, massive gravity is a modification of GR which consists in the introduction
of a new graviton mass parameter. In order for the theory to be consistent we must always
verify the massless limitm→ 0 to be a smooth limit, and that physical predictions converge
to those of GR in this limit. In order to understand how to correctly perform this limit, it
is instructive to start from the case of a spin-1 massive vector boson.

1.1.1 Consistent m→ 0 limit: the Stückelberg trick

The free theory of a massive spin-1 particle Aµ is described by the Proca Lagrangian

L = −1

4
FµνF

µν − 1

2
m2AµA

µ +AµJ
µ, (1.8)

with Jµ an external conserved current (∂µJµ = 0) and Fµν = ∂µAν − ∂νAµ the field-
strength tensor. The limit m→ 0 cannot be performed simply imposing m = 0 inside the
Proca Lagrangian, because in this case the number of degrees of freedom would discon-
tinuously change from 3, in the massive theory, to 2, in the massless one, and we would
then effectively describe two different theories. This occurs because the massless theory
enjoys an additional U(1) gauge symmetry transforming the field as Aµ → Aµ + ∂µλ. In
this transformation we have the freedom to choose the parameter λ to fix one of the three
degrees of freedom.

The correct massless limit is instead performed by decoupling the third degrees of
freedom from the system (for this reason it is usually called decoupling limit). To achieve
this situation one follows the so-called Stückelberg trick : we introduce a new scalar field π
in such a way that the new theory enjoys a new U(1) symmetry but still being dynamically
equivalent to the old theory. The Stückelberg field is then introduced via the replacement

Aµ −→
replace

Aµ +
∂µπ

m
. (1.9)

It worth stressing that this is not a gauge transformation, but a field redefinition leading to
a new dynamically equivalent theory. After this substitution the Proca Lagrangian reads

L = −1

4
FµνF

µν − 1

2
(∂µπ)2 −mπ∂µAµ +m2AµAµ +AµJ

µ − π∂µJ
µ

m
, (1.10)

and one can verify that this theory is symmetric under the gauge transformation

Aµ → Aµ + ∂µλ, π → π −mλ. (1.11)

By fixing the gauge π = 0, we recover the original massive theory (1.8). This implies
that the two theories are dynamically equivalent, and they both describe three degrees of
freedom of a massive spin-1 particle in four dimensions. In the last expression one can
appreciate the appearing of a new canonically normalized kinetic term for the scalar field
π, which remains untouched in the limit m→ 0, where the Lagrangian is

L = −1

4
FµνF

µν − 1

2
(∂µπ)2 +AµJ

µ. (1.12)
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CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

This theory still describes three propagating degrees of freedom where π is completely
decoupled from the system. The Stückelberg trick makes clear that gauge symmetries are
nothing but redundancies of the theory. Any theory indeed can be made a gauge theory by
introducing redundant variables, that are the Stückelberg fields. Having understood how
to perform the massless limit, we can now focus on the spin-2 case.

1.1.2 Ghost modes

As we will see in the subsequent sections, a problem one usually has to deal with in building
a massive theory of gravity is the appearance of ghost instabilities. In this section we want
to explain rapidly when and why this issue arises.

In simple, a ghost is a field which enters in the Lagrangian with the wrong sign in the
kinetic term. Let’s for example consider the situation of two scalar fields φ and χ, with χ
a ghost field:

L = −1

2
(∂φ)2 +

(
1

2
(∂χ)2 +

1

2
m2

ghostχ
2

)
− V (φ, χ). (1.13)

It’s corresponding Hamiltonian is

H =
1

2

(
φ̇2 + (∂iφ)2

)
− 1

2

(
χ̇2 + (∂iχ)2 +m2

ghostχ
2
)

+ V (φ, χ). (1.14)

As one can immediately notice, the wrong sign in the kinetic of the ghost field implies
that the energy is not bounded from below, which is a disaster for the construction of
the ground state of the theory and the Fock space. From a quantum mechanics point of
view, the potential V (φ, χ) describes processes where the vacuum spontaneously generate
φ and χ particles. Energy conservation imposes that the energy of particles must be
grater the the ghost mass; therefore these processes of creation of particles have an infinite
phase space allowed, and then also the decay rate is infinite. A possible loophole of these
arguments is to say that our theory is trustable only below a certain cut-off scale Ec.o.. If
Ec.o. < mghost, decay processes are just artifacts arising from using the Lagrangian (1.13)
beyond its regime of validity, where some new physics is expected to become relevant.

Another example of ghost instability particularly relevant for our later discussion is the
class of Ostrogradsky ghosts, which arise when higher derivative terms are present in the
Lagrangian and in the equation of motion. For instance, let’s consider the following simple
example

L = −1

2
(∂φ)2 − 1

2
φ
�2

Λ2
φ− V (φ). (1.15)

A posteriori, one can verify that this Lagrangian is equivalent to

L = −1

2
(∂φ)2 + φ�χ+

1

2
Λ2χ2 − V (φ), (1.16)

where χ is another new scalar field. Indeed we can integrate out the field χ solving the
equation of motion, which are simply

χ = − 1

Λ2
�2φ. (1.17)

Inserting this solution inside (1.16) one immediately recovers (1.15). Now, performing the
field redefinition φ = φ̃− χ, the new Lagrangian becomes

L = −1

2
(∂φ̃)2 +

1

2
(∂χ)2 +

1

2
Λ2χ2 − V (φ̃− χ). (1.18)
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1.1. Fundamentals of massive gravity

In this form the ghost degree of freedom is manifest, since the field χ enters with the wrong
sign in the kinetic term. Notice further that the field redefinition has produced a mass
term for the ghost field

mghost = Λ. (1.19)

1.1.3 Massless spin-2

The Lagrangian of a massless spin-2 particle can be constructed by hand in such a way to
reproduce the linearized Einstein equations [24]

�hµν + ∂µ∂νh− ∂µ∂σhνσ − ∂ν∂σhµσ = − 1

2MP
Tµν , (1.20)

with h ≡ ηµνhµν , MP the Planck mass and Tµν the stress-energy tensor, which plays the
role of an external source. The field hµν arises instead as a linear deviation of the physical
metric gµν from the flat Minkowski metric ηµν , that is gµν = ηµν +M−1

P hµν . A Lagrangian
which brings (1.20) as equations of motion is

L = −1

4
hµνEµναβh

αβ +
hµνT

µν

2MP
, (1.21)

where the Lichnerowicz operator Eµναβ is defined by its action on a symmetric tensor as

Eαβµνhαβ = −1

2

(
�hµν − 2∂λ∂(µh

λ
ν) + ∂µ∂νh+ ηµν(∂α∂βh

αβ −�h)
)

= −1

2
εαγσµ ενβλσ∂γ∂

λhβα. (1.22)

and enjoys the following properties (they are easy to verify using the expression of the
Lichnerowicz operator in terms of the Levi-Civita tensors)

Eµνρσ = Eνµρσ = Eµνσρ = E µν
ρσ ,

∂µEµνρσ = Eµναβ∂αχβ = 0, (1.23)

with χµ an arbitrary 1-form.
The action (1.21) is invariant under linear diffeomorphisms

hµν → hµν + ∂µξν + ∂νξµ, (1.24)

that is the generalization of a gauge transformation to the rank-2 tensor hµν .
At the non-linear level instead, Einstein gravity is described by the Hilbert-Einstein

action

SHE =
M2
P

2

∫
d4x
√
−gR, (1.25)

with R the Ricci scalar. The invariance under (1.24) is replaced by invariance under general
coordinate transformations, or diffeomorphisms, x→ y = y(x), which transform the metric
according to

gµν(x)→ g̃µν(y) =
∂xρ

∂yµ
∂xσ

∂yν
gρσ(x(y)). (1.26)

Like in the spin-1 case, we expect that a mass term inside the action would spoil the
invariance of the theory under diffeomorphisms.
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CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

1.1.4 Non-interacting massive spin-2 field

In order to insert a mass term for gravitons, we start from the linearized theory (1.21). In
order to respect Lorentz invariance and to fulfill the correct mass dimension, we need an
operator which is second order in the field and with all Lorentz indices contracted. The
only possibility1 is then the so called Fierz-Pauli action

LFP = −1

4
hµνEµναβh

αβ − 1

8
m2
(
hµνh

µν − h2
)

+
hµνT

µν

2MP
. (1.27)

The normalization of the mass term is chosen in such a way that the propagating degrees
of freedom have mass m.

One can easily convince himself that the new mass term spoils the invariance under
linear diffeomorphisms. Following the above discussion, gauge symmetry is erased by
introducing a Stückelberg field. To respect the Lorentz structure, this must be a vector
field with one index, and then

hµν −→
replace

hµν −
1

m
(∂µBν + ∂νBµ). (1.28)

The multiplicative factor 1/m is chosen in such a way to produce a canonically normalized
kinetic term in the Lagrangian. Defining for convenience the field-strength tensor Fµν ≡
∂µBν − ∂νBµ, up to quadratic order, the action becomes

LFP = −1

4
hµνEµναβh

αβ − 1

8
FµνF

µν +
m

4
Bν(∂µh

µν − ∂νh)− m2

8
(hµνh

µν − h2)

+
hµνT

µν

2MP
− Bν∂µT

µν

mMP
. (1.29)

In this case however, after the replacement (1.28), we are still not able to perform the
decoupling limit, because the scalar degree of freedom with 0-helicity is still encoded inside
the auxiliary massive vector field Bµ. This is exactly the same situation we described in
Section (1.1.1). In order to isolate the scalar degree of freedom we introduce another
Stückelberg field through

Bµ −→
replace

Bµ +
∂µπ

m
, (1.30)

where ∂µπ = ηµν∂νπ. All in all, the linearized Fierz–Pauli action in terms of hµν and the
Stückelberg fields Aµ and π is obtained from (1.27) performing the Stückelberg replace-
ments

hµν −→
replace

hµν −
2∂(µBν)

m
− 2∂µ∂νπ

m2
, (1.31)

and it becomes

LFP = −1

4
hµνEµναβh

αβ − 1

8
FµνF

µν +
m

4
Bν(∂µh

µν − ∂νh) +
1

4
∂νπ(∂µh

µν − ∂νh)

−m
2

8
(hµνh

µν − h2) +
hµνT

µν

2MP
− Bν∂µT

µν

mMP
− ∂νπ∂µT

µν

m2MP
. (1.32)

which, after integration by parts, reads

LFP = −1

4
hµνEµναβh

αβ − m

4
∂µBν(hµν − hηµν)− 1

4
hµν(∂µ∂νπ −�πηµν)

−1

8
FµνF

µν − m2

8
(hµνh

µν − h2) +
hµνT

µν

2MP
− Bν∂µT

µν

mMP
− ∂νπ∂µT

µν

m2MP
. (1.33)

1Here we are arbitrary choosing the coefficients the terms h2 and hµνh
µν . This is indeed the only

possible choice if we want to avoid ghost instabilities. Below we will give a brief motivation for this fact
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1.1. Fundamentals of massive gravity

In this form the kinetic term for the field π is hidden inside the mixing with hµν . In order
to extract the physical propagating degrees of freedom described by this theory we would
like to diagonalize this mixing. This can be obtained by performing the shift

hµν = h̃µν + πηµν . (1.34)

This way the linearized Fierz-Pauli action is

LFP = −1

4
hµνEµναβh

αβ − 1

8
FµνF

µν − 3

4
(∂µπ)2 − 1

8
m2(h̃2

µν − h̃2)

+
3

2
m2π2 +

3

2
m2πh̃− 1

2
m(h̃µν − h̃ηµν)∂(µBν) + 3mπ∂αA

α

+
hµνT

µν

2MP
+

πT

2MP
− Bν∂µT

µν

mMP
− ∂νπ∂µT

µν

m2MP
. (1.35)

This decomposition allows us to identify the degrees of freedom (dofs) present in the
massive gravity at linear level. The theory describes an helicity-2 state h̃µν with two dofs,
an helicity-1 mode Bµ with again two dofs, and an helicity-0 mode π with one dof, leading
to a total of five dofs, as expected for a massive spin-2 field in four dimensions.

At this point we are able to perform the massless limit m → 0. Provided that the
external mass source satisfies m−1∂µT

µν → 0 as m→ 0, the Fierz-Pauli Lagrangian in the
decoupling limit becomes

LFP = −1

4
hµνEµναβh

αβ − 1

8
FµνF

µν − 3

4
(∂π)2 +

h̃µνT
µν

2MP
+

πT

2MP
. (1.36)

As expected, all the five dofs are still present in the massless limit and they happen to be
all decoupled from each other.

Ghost modes: when we introduced the Fierz-Pauli mass term inside the lagrangian
(1.27), we implicitly chose the relative coefficient between the terms h2 and hµνhµν . This
was done because one can show that any other choice would have brought to ghost in-
stabilities, that is instabilities arising from the fact that the theory turns out to be not
bounded from below. This situation can occur whenever our theory contains kinetic terms
with the wrong sign or terms in the potential with higher order of derivatives (see [25] for
a more detailed explanation). In order to understand this statement, let us consider the
most generic case, introducing two arbitrary coefficients α and β such that the Fierz-Pauli
Lagrangian is

L = −1

4
hµνEµναβh

αβ − 1

8
m2
(
αhµνh

µν − βh2
)

+
hµνT

µν

2MP
. (1.37)

Applying as usual the Stückelberg procedure and introducing the new field by the replace-
ment (1.31), the part of the Lagrangian which does not vanish in the massless limit is

Lm→0 = −1

4
hµνEµναβh

αβ − hµν (∂µ∂νπ + (α− β)ηµν�π)− α− β
2m2

(�π)2. (1.38)

The last term is dangerous for the stability of the theory because it involves an operator
with higher order derivatives. This term brings the appearance of a new ghost field whose
mass is found to be, retracing the steps outlined in (1.1.2),

m2
ghost =

3

2

m2

α− β
, (1.39)

which diverges in the Fierz-Pauli potential, where α = β. This is then the only viable
potential which avoid ghost instabilities.
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CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

vDVZ Discontinuity: in Fierz-Pauli Lagrangian (1.36), the coupling

πT

2MP
(1.40)

still survives in the decoupling limit. This leads to an apparent discrepancy with the GR
prediction, which cannot be recovered in the limit m→ 0, since GR does not contain the π
degree of freedom. This issue goes under the name “van Dam-Veltman-Zakharov (vDVZ)
discontinuity”. The solution to this problem was proposed by Vainshteinis, and it basically
consists in the fact that the free theory is a bad approximation of GR in a regime that
becomes larger and larger as we send m → 0 (we will briefly return to this problem in
Section (1.2.3). If the reader is interested in more details, we suggest to look at [21] and
[25]).

1.2 Non-linear formulations of massive gravity

We now turn to the construction of a more realistic theory of interacting massive gravity,
whose action assumes the most general form

S[gµν ] =
M2
P

2

∫
d4x
√
−g
(
R− m2

2
U(gµν , ηµν)

)
+ Smatter[gµν , ψ], (1.41)

where U(gµν , ηµν) denotes a generic potential containing contractions of the dynamical
metric gµν and the Minkowski metric ηµν which should reproduce the Fierz-Pauli potential
at first order in the expansion of the physical metric. At higher order the guess of the
potential is more subtle. Boulware and Deser [26] have shown that a simple covariant
generalization of the Fierz-Pauli potential

U =
1

2
gµνgρσ(HµρHνσ −HµνHρσ),

Hµν ≡ gµν − ηµν (1.42)

is not a viable solution, since it is plagued by ghost instabilities. The most general form of
a BD-ghost free potential was given by de Rham, Gabadadze and Tolley in [29], and now
goes under the name of dRGT theory:

UdRGT = −
4∑

n=0

αnLn [K(gµν , ηρσ)] ,

K(g, η)µν ≡ δµν −
√
gµαηαν , (1.43)

with αn free coefficients and the mass terms given by

L0[K] = 4!

L1[K] = 3! [K],

L2[K] = 2!
(
[K]2 − [K2]

)
,

L3[K] = [K]3 − 3[K][K2] + 2[K3],

L4[K] = [K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4], (1.44)

with [K] ≡ Kµµ.
For later discussions, it is crucial to mention that this theory admit an analogous

formulation in the vielbein language. The idea in passing through the vielbein formalism
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1.2. Non-linear formulations of massive gravity

consist in realizing that the square root structure of the dRGT potential can be linked to
the definition of the vielbein variable

gµν = ηAB e
A
µ e

B
ν , (1.45)

with A,B flat indices. Then in the vielbein formalism, the dRGT action is proven to be
[23]

SdRGT =
M2
P

2

∫
d4x(det e)R[e]−

M2
Pm

2

8

4∑
n=0

αn
n! (4− n)!

×
∫
ε̃A1A2A3A41

A1 ∧ . . . ∧ 1An ∧ eAn+1 ∧ . . . ∧ eA4 , (1.46)

with the vielbein one-form eA ≡ eAµ dx
µ, and the identity vielbein 1A ≡ δAµ dx

µ, which can
be seen as the vielbein one-form for the flat background metric.

1.2.1 Counting degrees of freedom

In order to verify that this form of the potential provides a consistent ghost-free theory we
will exploit the Arnowitt-Deser-Misne (ADM) split of the physical metric. In the ADM 3+1
approach to gravity [36], we foliate the spacetime with space-like hypersurfaces identifying
a natural time-direction. The line element gets decomposed as

ds2 = gµνdx
µdxν

= −N2dt2 + γij(dx
i +N idt)(dxj +N jdt), (1.47)

where N is called the lapse function and N i the shift vectors. With this new decomposition
the action is written as

S =
M2
P

2

∫
d4xN

√
γ

(
R3 + [K]2 − [K2]− m2

2
U(N,N i, γij)

)
, (1.48)

where R3 denotes the Ricci scalar in three dimension for the spatial metric γij and Kij is
the extrinsic curvature

Kij ≡
1

2N

(
γ̇ij − 2D(iNj)

)
, (1.49)

where the dot denotes the usual time derivative γ̇ij = ∂tγij and Di stands for the covariant
derivative with respect to the spatial metric γij . Moreover in (1.48) it was used the usual
notation for the contraction of the indices, but be aware that in this decomposition indices
are contracted with the metric γij , that is [K] ≡ γijKij . Defining a three-dimensional
momenta πij associated to the spatial metric field as

πij ≡ δLHE
δγ̇ij

=
√
γ(Kij −Kγij), (1.50)

the action (1.48) can be recast in the so called first order form (see equation (3.13) of [36])

S[γij , π
ij ] =

∫
d4x

[
πij γ̇

ij −NC0(γ, π)−NiC
i(γ, π)−m2Hm(γ, π,N,Ni)

]
, (1.51)

with

C0 = −R3 +
1

γ

(
πijπij −

1

2
π2

)
Ci = 2Dj

(
πij
√
γ

)
. (1.52)
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CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

Varying the action with respect to γij and πij we find twelve first order differential equa-
tions for the twelve variables, since both the metric tensor field and the associated mo-
menta are symmetric tensors in three dimensions, and thus they both contain six variables.
Therefore we need twelve initial condition to uniquely specify the dynamics of the system,
corresponding to the six propagating degrees of freedom encoded in γij . Actually this is
not the real picture, because we might have external constraints which remove some dofs.
This is indeed the case of GR with m = 0, where the coefficients C0 and Ci enter as energy
and momentum constraints respectively.

In the massive theory, we can minimize the variation of the action with respect to the
lapse function (here for convenience we define N0 ≡ N) and the shift vectors to obtain

E(N)
µ (γij , π

ij , N,N i) ≡ δS

δNµ
= Cµ(γij , π

ij)−m2 δ

δNµ
Hm(N,N i, γij , π

ij). (1.53)

The solution of this equations will give the expressions for Nµ in terms of the potential
Hm, but no constraints will be placed on the initial data. As a result, in this massive
theory of gravity we effectively have 6 degrees of freedom, corresponding to five dofs of a
massive graviton and a BD ghost dof.

However, for a particular choice of the potential Hm, the equations (1.53) might not
have solutions. To fix the idea, imagine to be able to solve only three of the four above
equations

N i = N i(γij , π
ij , N). (1.54)

This allows us to eliminate the shifts from the action (1.51), which then assumes the general
form

S =

∫
d4x

(
πij γ̇

ij − H̃m(γij , π
ij , N)

)
. (1.55)

If H̃m is a linear function of the lapse N , then it can be expanded in the form H̃m =
f(γij , π

ij) + NC̃(γij , π
ij). Then the equation of motion for N brings an additional con-

straint which reduces the total number of dofs to five, corresponding to the massive graviton
degrees of freedom2.

Luckily, the solution (1.43) proposed by C. de Rham enjoys this feature. This can
be seen working for example in minisuperspace [37], where the lapse N is taken to be
homogeneous and the shifts N i are null. Therefore the metric has the form

ds2 = −N2(t)dt2 + a2(t)δijdx
idxj , (1.56)

and the action is automatically written in the form (1.55). If we want to reproduce the
situation depicted above, in order to have the constraint, the action must be linear in the
lapse N . If this is not the case, then BD-ghosts unavoidably arise. This test provides a
quick and simple check to see whether our theory describes BD-ghost degrees of freedom.
The existence of such constraint is a necessary but not sufficient condition for the safety of
the theory, because the existence of the constraint in minisuperspace does not guarantee
that the constraint exists beyond the minisuperspace. In minisuperspace the first order
form of the action (1.51) becomes

S =
M2
P

2

∫
dt

(
ȧπa −N

π2
a

12M2
Pa
−m2M2

PUm.s.(N, a, πa)
)
, (1.57)

2Actually one should also verify that this constraint is a second order constraint, that is its time
derivative is null after applying the equations of motion and the first order constraints.
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1.2. Non-linear formulations of massive gravity

where πa ≡ 6M2
PN

−1aȧ. We just said that the naive covariantization (1.42) of the Fierz-
Pauli potential is not a viable solution. Indeed, inserting the explicit expression of the
metric in minisuperspace one obtains

Um.s. = N

(
3(a2 − 1)(2a2 − 1)

4a

)
+

3a(a2 − 1)

N
, (1.58)

which contains a non-linear term in N , pointing out the appearance of BD-ghost degrees
of freedom.

Conversely, the ghost free potential (1.43) gives rise to linear potentials. For example,
the mass term with α2 = 1, α3,4 = 0 is

UdRGT = 3(a− 1)a2 +N(a− 1)(2a− 1)a, (1.59)

which is clearly linear in N , and then it provides a consistent ghost free theory.

1.2.2 Decoupling limit

From now on we will focus on the theory (1.41) with potential (1.43). What we want to
show is that the theory provides a smooth massless limit which recover GR predictions.
Following the Stückelberg procedure for gravity, it is useful to recast the theory in a way
where diffeomorphisms are restored. Diffeomorphism invariance is broken by the potential,
and it can be restored introducing four new Stückelberg scalar fields φa. We then perform
the replacement

ηµν −→
replace

ηab∂µφ
a∂νφ

b. (1.60)

and the metric fluctuation becomes

Hµν = gµν − ηab∂µφa∂νφb. (1.61)

Then the action turns out to be invariant under a global symmetry in the field space

φa → Λabφ
b, (1.62)

and under coordinate transformations where gµν transforms as a tensor and φa as a scalar,
that is

gµν →
∂yα

∂xµ
∂yβ

∂xν
gαβ(x(y)), φa → φa(x(y)). (1.63)

This implies further that also the fluctuation Hµν transforms as a rank-2 tensor.
Let us now turn to the discussion of our theory (1.41). We introduce first order per-

turbations around a Lorentz invariant background (which is the physically relevant choice
if we want to recover the predictions of GR in solar system experiments)

gµν = ηµν +
hµν
MP

, φa = xa − Ba

mMP
. (1.64)

With the choice of a Lorentz invariant background, the action is invariant under simulta-
neous Lorentz transformations of the Stückelberg fields and the coordinates

φa → Λabφ
b, xµ → Λµνx

ν . (1.65)
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This means that also Ba must transform as a four-vector under Lorentz transformations,
and then we will usually write Bµ. The metric perturbation is

Hµν = gµν − ηab∂µφa∂νφb

=
hµν
MP

+
2∂(µBν)

mMP
+

2∂µ∂νπ

m2MP

−
(
∂µBα
mMP

+
∂µ∂απ

m2MP

)
ηαβ

(
∂νBβ
mMP

+
∂ν∂βπ

m2MP

)
, (1.66)

where the second line remembers the Stückelberg replacement in the Fierz-Pauli theory
(1.31)

Interaction scales

Non-linearities in the potential will manifest themselves as interaction terms for the helicity
-2, -1, -0 fields (respectively hµν , Bµ and π). The generic form of the interaction terms
can be guessed by dimensional analysis, having in mind that at low energies the dominant
contributions come from the interactions at the lowest energy scale. Therefore dimensional
analysis suggests that any interaction term should come in the form

L(int)
nh,nB ,nπ

∼ m2M2
P

(
h

MP

)nh ( ∂B

mMP

)nB ( ∂∂π

m2MP

)nπ
(1.67)

at the scale
Λp = (m1−pMP )1/p, (1.68)

with
p =

nh + 2nB + 3nπ − 4

nh + nB + nπ − 2
. (1.69)

Interactions of the form (1.67) have indeed mass dimension four and respect Lorentz invari-
ance as long as all the indices are contracted. Since m�MP , larger values of p correspond
to interactions at lower scales.

Interactions at Λ5: Λ5 is the lowest possible energy scale at which interactions can
occur, and it is realized when nh = nB = 0 and nπ = 3, that is by terms like

L(int)
0,0,3 ∼

1

Λ5
5

(∂∂π)3. (1.70)

The appearance of higher order derivatives is a signal of the presence of Ostrogradsky ghost
instability. In order to avoid this dangerous situation, the ghost-free potentials (1.43) were
constructed in such a way that the interactions at Λ5 scale give rise to vanishing equations
of motion, so that the equations of motion for π remain second order.

Interactions at Λ3: In this case we have infinite ways to realize the interaction terms,
but they are restricted to the forms

L(int)
1,0,nπ

∼ 1

Λ
3(nπ−1)
3

h(∂∂π)nπ ,
1

Λ3
(∂B)2(∂∂π)nπ , (1.71)

and always give rise to second order equations of motion. We have then infinite possible
interactions at energies above Λ3, but these are sub-dominant at low energies, and then in
the following we will focus just on the Λ3 interactions.
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1.2. Non-linear formulations of massive gravity

In this case the Λ3 decoupling limit is

m→ 0, MP →∞, Λ3 = (m2MP )1/3 fixed. (1.72)

The full computation of the Λ3 decoupling limit massive lagrangian is quite long and it
goes beyond the purposes of this introduction; if interested, one can find the full calculation
explained in [21]. Basically one should apply the full Stukelberg replacement (1.66) inside
the Fierz-Pauli action and expand the inverse metric and the determinant in powers of h.
We just report the result

LD.L. = Lhπ[hµν , π] + LBπ[Bµ, π] +
hµνT

µν

2MP
. (1.73)

For our purposes, we are only interested in the scalar-tensor sector

Lst = Lhπ[hµν , π] +
hµνT

µν

2MP

= −1

4
hµνEµναβh

αβ +
1

8
hµν

(
2α2X

(1)
µν +

2α2 + 3α3

Λ3
3

X(2)
µν +

α3 + 4α4

Λ6
3

X(3)
µν

)
+
hµνT

µν

2MP
, (1.74)

where the X tensors are defined as

X(1)µ
ν ≡ δµν [Π]−Πµ

ν ,

X(2)µ
ν ≡ ([Π]2 − [Π2])δµν − 2([Π]Πµ

ν − (Π2)µν ),

X(3)µ
ν ≡ ([Π]3 − 3[Π][Π2] + 2[Π3])δµν

−3([Π2]Πµ
ν − 2[Π](Π2)µν − [Π2]Πµ

ν + 2(Π3)µν ), (1.75)

with Πµ
ν ≡ ηµα∂α∂νπ. In this expression the helicity-2 and -0 modes are mixed. In order to

diagonalize the kinetic terms of this sector of the theory we perform the field redefinition

hµν = h̃µν + πηµν −
2α2 + 3α3

2Λ3
3

∂µπ∂νπ, (1.76)

which extend the field shift (1.34) we introduced in the Fierz-Pauli theory adding additional
non-linear interaction terms. As shown in [38], this shift lead to

Lst = −1

4
h̃E h̃− 3

4
(∂π)2 − 3

4

5∑
n=3

cn

Λ
(n)
Gal

+ (α3 + 4α4)h̃µνX
(3),µν

+
h̃µνT

µν

2MP
+

πT

2m2M2
P

− (2 + 3α3)
∂µπ∂νπT

µν

2m2M2
P

, (1.77)

where the constants cn are given by

c3 =
1

2
(2 + 3α3)

c4 =
3

2

(
(2 + 3α3)2 + 4(α3 + 4α4)2

)
c5 =

5

24
(2 + 3α2)(α3 + 4α4). (1.78)
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CHAPTER 1. INTRODUCTION TO MASSIVE GRAVITY

The Lagrangian terms LGal are known as Galileon interactions [42] and thy are explicitly
given by

L(3)
Gal = (∂π)2[Π]

L(4)
Gal = (∂π)2([Π]2 − [Π2])

L(5)
Gal = (∂π)2([Π]3 − 3[Π][Π2] + 2[Π3]). (1.79)

The upper index (n) refers to the order in π of each term. L(3) is called the cubic Galileon,
L(4) the quartic Galileon, and L(5) the quintic Galileon.

1.2.3 Vainshtein mechanism

Vainshtein developed a mechanism to solve the apparent vDVZ discontinuity. The coupling
between the helicity-0 mode and matter in massive gravity produces a Vainshtein screening
mechanism around a non trivial background. We want now to show explicitly how this
mechanism works in the simplest case of a coupling between the cubic Galileon and matter:

L = −1

2
(∂π)2 +

1

Λ3
3

(∂π)2�π +
πT

2MP
. (1.80)

Let’s then perturb this theory around a generic background π̄:

π = π̄ + ϕ. (1.81)

Up to quadratic order, the action for the perturbation has the form

L ∼
(

1 +
∂2π̄

Λ3
3

)
(∂ϕ)2 +

ϕT

MP
. (1.82)

Defining the factor

Z ∼ 1 +
∂2π̄

Λ3
3

, (1.83)

we can normalize the kinetic term to its canonical form performing the shift ϕ̂ = ϕ/
√
Z,

obtaining

L ∼ (∂ϕ)2 +
ϕ̂T√
ZMP

. (1.84)

This procedure has produced a new coupling between the helicity-0 mode and the matter
component. When the background is large, that is ∂2π̄ � Λ3

3, then Z � 1, and the
coupling to matter gets largely suppressed. Recalling the discussion at the end of Section
(1.1.4), this was the dangerous term which did not vanish in the decoupling limit of the free
theory, spoiling then the compatibility with GR. Non-linear interactions instead cause the
coupling between helicity-0 mode and matter to become suppressed in the strong coupling
regime. On the other hand, helicity-2 states behave as in GR, since their interactions come
in at a much higher scales.

1.2.4 Boulware-Deser ghost

Our new understanding about the Vainshtein mechanism allows us to make a last comment
about the issue concerning Boulware-Deser ghost degrees of freedom. We have just said in
Section (1.2.2) that interactions at the scale Λ5 come with a Lagrangian contribution

∼ 1

m4MP
(∂∂π)3. (1.85)
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1.2. Non-linear formulations of massive gravity

and with the appearance of ghost degrees of freedom as a manifestation of the presence of
higher order derivatives. Expanding π around a background

π = π̄ + ϕ, (1.86)

the Lagrangian for ϕ has the form

L ∼ (∂ϕ)2 +
(∂∂π̄)

Λ5
5

(∂∂ϕ)2. (1.87)

The fluctuation ϕ appears with higher derivatives in the Lagrangian, leading to a ghost
mass

m2
ghost ∼

Λ5
5

(∂∂π̄)
. (1.88)

This of course holds as long as ∂∂π̄ ≤ Λ3
5 such that we are allowed to neglect interactions

at larger scales. If the mass of the ghost were large, then we could neglect the ghost degree
of freedom in a low energy effective theory, assuming that this theory is not trustalbe at
energies comparable to mghost because new physics might arise in the full theory. However
the mass of the ghost (1.87) is background dependent, and it decreases while the back-
ground becomes larger. Unluckily this is the necessary condition we found above to trigger
the Vainshtein mechanism. These arguments show that the vDVZ discontinuity and the
BD-ghost problems cannot be solved simultaneously. This is the reason why building a
ghost-free theory of massive gravity (such as the theory (1.41) with the ghost-free potential
(1.43)) is so important. The Fierz-Pauli theory is shown to be ghost free at quadratic order
as long as the tuning condition α = β in (1.37) is satisfied. However, the situation becomes
critical at non-linear level, where the massive spin-2 field is coupled to gravity, and the BD
ghost cannot be avoided.

After this long digression, we will now move the discussion to define our theory of mas-
sive gravitons in a cosmological Universe and in particular to understand how cosmological
perturbations propagates in this framework.
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Chapter 2

Massive gravity in Cosmology

In our scenario we consider gravitational waves generated during the inflationary period,
when the Universe was presumably about 1015 GeV hot. After their formation, being
decoupled from any other particle species, they freely streamed across the Universe until
today, at energies around the eV scale, when they eventually reach our interferometers.
As just said, given the large range of energies involved in this scenario, it would be too
hasty to formulate a unique theory of gravity describing the whole energy domain. For this
reason two regimes are distinguished in this work: an high-energy regime during inflation,
and a low-energy regime characterizing the entire period of propagation of graviton, from
the end of inflation until today. In this Chapter we use the tools of massive gravity to
study the evolution of cosmological perturbations at late time. After the pioneering work
by de Rham, Gabadadze and Tolley (dRGT), it was clear that there exist viable theories of
massive gravity which avoid the appearance of ghost modes. This was briefly summarised
in the previous chapter. The next step is to test these theories on different backgrounds;
in particular, for cosmological purposes, it is useful to apply them on a isotropic and
homogeneous FLRW background metric. While the original theory defined on a FLRW
physical background and a Minkowski fiducial metric does not allow for flat or closed
Universes [40], these possibilities are erased if we consider a FLRW fiducial metric as well
[39]. However, in the same work [39] it is shown that, at linear level, only the two tensor
modes are propagated, while the helicity-0 and -1 modes remain non-dynamical. Soon
after, De Felice, Gumrukcuoglu and Mukohyama argued, in an independent work [41],
that all homogeneous and isotropic solutions of the dRGT theory in nonlinear massive
gravity are unstable due to the appearance of ghost at non-linear level. Different viable
solutions have been proposed so far either by abandoning the hypothesis of a homogeneous
and isotropic background or adding new extra physical scalar or metric fields (the second
case opens to the scenario of bigravity theories). But not everything is lost. In Section (2.3)
of this chapter we review the new theory of Lorentz-violating massive gravity proposed by
De Felice and Mukohyama [56], which is a viable solution of the problem constructed in
such a way to propagate two only tensor degrees of freedom at fully non-linear level and
that shares the same FLRW background equations of motion of the dRGT theory. This
last feature allows to see this theory, called Minimal theory of massive gravity, as a stable
non-linear completion of the dRGT solution.

Concerning the study of cosmological perturbation in the early Universe we followed
a different approach. In this case there is the additional inflaton field to account for,
and the Effective Field Theory approach seems more suitable to address the problem.
In this context the graviton mass enters through a mechanism of spontaneous symmetry
breaking of space-diffeomorphism invariance. The most simple way to realize this situation
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2.1. MG during inflation from Space-time Symmetry Breaking

is to introduce three extra scalar field acquiring an explicit coordinate-dependent vacuum
expectation values during inflation. Excitation around the vacuum give rise to massless
Goldstone bosons, which are nothing but the Stückelberg fields restoring the space-time
broken symmetries. We distinguish two cases; one where the new Goldstone bosons are so
massive to be exponentially suppressed by the accelerated expansion of the Universe [46],
and another where the new fields are dynamical and propagate the extra helicity-0 and
helicity-1 modes of massive gravitons [47]. These two situations are described in Sections
(2.1) and (2.2) respectively.

2.1 MG during inflation from Space-time Symmetry Break-
ing

In the past years the powerful tool of effective field theory has been successfully applied to
the study of single field inflation (EFTI) [43, 44, 45]. General Relativity is a gauge theory
build upon invariance under general diffeomorfisms

xµ → x,µ(xν). (2.1)

During inflation time-reparametrization invariance

t → t+ ξ(xµ) (2.2)

must be broken, because of the existence of an inflationary clock which controls how much
time is left before inflation ends. Besides time-reparametrization symmetry breaking, since
we don’t have much information about the Universe at high energies, it is interesting to
investigate the possibility that the Universe undergoes a spontaneous space-diffeomorphism
symmetry breaking during inflation, that is

xi → x
′i(t, xj). (2.3)

Space diffeomorphisms are broken whenever there is a field that during inflation acquires
a non vanishing vev depending on the spatial coordinates. We then present a model,
studied in [46], where besides the time-reparametrization symmetry broken by the inflaton,
all the space-rotation symmetries are spontaneously broken during inflation. Let’s start
considering a spatially flat background with the spatial metric

ds2
(3) = a2δabe

(a)
i e

(b)
j dxi dxj , (2.4)

with a the scale factor and e(a)
i the vielbein representing the local SO(3) symmetry , where

the indices i, j are space indices (curved indices), while a, b are the indices of the internal
group (flat indices). In this framework, the local SO(3) invariance is broken by the choice
of a preferred rigid spatial frame, as e(a)

i = δai . The minimal prescription to achieve this
configuration is to introduce three new scalar fields responsible for the space-symmetry
breaking. Analogously to the case of the inflaton, during the slow roll phase the theory
spontaneously select a vacuum expectation value for the new three fields which breaks the
local SO(3) symmetry, that is

ϕa = δai x
i. (2.5)

Excitation around the vacuum generate three massless Goldstone bosons πa, which are
nothing but the Stückelberg fields restoring, at non linear level, the symmetry under local
space rotations. This is parametrized as

ϕa = δai x
i + πa. (2.6)
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

Concerning the internal group, it is natural to assume some symmetries to restrict the
structures of the possible operators entering in the action. We then impose the rotational
SO(3) symmetry and the rescaling symmetry in the internal group

ϕa → Λabϕ
b, ϕa → λϕa. (2.7)

The usefulness of these symmetries will be clear in a while. As shown above, the breaking
of spatial diffeomorphism manifestly appears with a new graviton mass term. Adapting
the notation

Zab ≡ gµν∂µϕa∂νϕb, δ̄Zab ≡ Zab

Z
− 3

δcdZ
acZbd

Z2
(2.8)

introduced in [53], the most general action for the inflaton φ and the metric gµν with
broken spatial rotations can be written as

S =

∫
d4x
√
−g

[
1

2
M2
PR−

1

2
gµν∂µφ∂νφ− V (φ)− 9

8
M2
Pm

2
g(δ̄Z

ab)2 + . . .

]
, (2.9)

with mg a new parameter with mass dimension [mg] = [M ] denoting the graviton mass
during inflation, while the dots stand for higher order terms in the Stückelberg fields πa and
the metric gµν . For the shortness of notation it was further defined (δ̄Zab)2 = δacδbdZ

abZcd.
The numerical factor 9/8 in the last term is just a normalization factor introduced for
later convenience. Speaking about the graviton mass, one can think that a certain relation
between mg and the inflaton φ exists, in such a way that the energy scale of the graviton
mass is about the scale of inflation, that is approximately 1015 ÷ 1013GeV. At the exit of
inflation, the inflaton field start decaying, and contextually the value of the graviton mass
rapidly decreases going beneath the current astrophysical bounds. Even in absence of any
functional dependence between the two, it is reasonable to maintain this mass scale, since
it is the only energy scale characterizing the inflationary period. Notice further that by
construction, the new term δ̄Zab does not contribute to the background energy momentum
tensor, such that the background inflationary dynamics is completely governed by the
inflaton φ as in the standard single field model paradigm.

The inheritance of the mechanism of spontaneous symmetry breaking is visible in the
appearance of three Nambu-Goldstone bosons πa in the third term in the action. As one
is used to do in the Higgs mechanism, it is possible to define a unitary gauge where these
Goldstone boson are eaten by gravitons (the spatial part of the metric), setting then πa = 0.
This way gravitons develop one helicity-0 and two helicity-1 extra modes. However, thanks
to Lorentz symmetry violation, the appearance of the extra modes can be avoided. Let’s
decompose the Stückelberg fields in the helicity basis

πa = ρ(x)δaj x
j + ωab(x)δbjx

j , (2.10)

where ρ(x) is the helicity-0 mode and ωab(x), with a and b antisymmetric indices, the two
helicity-1 modes. Considering long wavelength perturbations such that

∂iρ� Hρ, ∂iω
ab � Hωab, (2.11)

one can see that these perturbations can be reabsorbed through an infinitesimal symmetry
transformation (2.7) at leading order in gradient expansion. Then, the three extra modes
originating from symmetry breaking are not dynamical. Nonetheless, as will be clear in
the following, they provide the source for a graviton mass term.
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2.1. MG during inflation from Space-time Symmetry Breaking

The same term contains interactions between gravitational perturbations and the Nambu-
Goldstone bosons. However at high energies gravity decouple and these interactions can
be neglected during inflation. In this regime the “decoupling limit” one can expand the
mass term in the action at second order in π-fluctuations and obtain

Sπ =
9

4
Λ4

∫
d4x

(
∂iπ

j∂iπ
j +

1

3
(∂iπ

a)2

)
∼ Λ4k2πiπi, (2.12)

with Λ ≡ MPmg. At lowest operator dimension, the symmetry pattern of our theory
prevents the possibility for Goldstone bosons to have a kinetic term. This contribution
must then be searched in higher order terms like gµν∂µδ̄Zij∂ν δ̄Zij , which provides

Sπ ∼ Λ4k2(πi)2 + Λ2k2(π̇i)2. (2.13)

In order to isolate a canonically normalized kinetic term one must redefine π → Λkπi; this
way the three Nambu Goldstone bosons enhance their mass to m2

π ∼ Λ2. Assuming that
inflation and massive gravity are governed by the same underlying physics at high energies,
then it is natural to identify the energy scale of the graviton mass with the energy scale
of the mixing between gravity and inflation. This energy scale is encoded in the kinetic
interaction term between the inflaton and the metric perturbation. In the same way we
introduced the three fields ϕa for broken spatial rotations, one can regard the inflaton φ as
the field which breaks time-reparametrization invariance selecting a preferred rest frame
during inflation. The simplest choice is to consider that the inflaton acquires an explicit
time-dependent background vev, as

φ̄(t) = t, (2.14)

while excitation around the vev are parametrized by a new Stückelberg field π which non-
linearly recovers time diffeomorphism invariance

φ(t, x) = t+ π(x). (2.15)

Consider the (kinetic) inflaton sector of the action (2.9). At the background level it can
be rewritten in the following useful way

Sφ =

∫
d4x
√
−g 1

2
˙̄φ2g00 = −

∫
d4x
√
−gM2

P Ḣg
00, (2.16)

where in the second step it was used the relation φ̇2 = −2M2
P Ḣ of the standard inflationary

paradigm. To reintroduce the Goldstone boson π, let’s follow this procedure [44]. Under
a broken time-diffeomorphism t → t̃ = t + ξ0(x), the time-time component of the metric
transforms as

g00(x)→ g̃00(x̃(x)) =
∂x̃0

∂xµ
∂x̃0

∂xν
gµν(x). (2.17)

In terms of the transformed field, the action is

Sφ =

∫
d4x̃
√
−g̃M2

P Ḣ(t̃− ξ0(x(x̃))
∂x0

∂x̃µ
∂x0

∂x̃ν
g̃µν(x̃(x)). (2.18)

The Goldstone boson enters when we promote the shift ξ0 to a field through the substitution

ξ0(x(x̃))→ −π̃(x̃), (2.19)
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

thanks to which the action is

Sφ =

∫
d4x
√
−gM2

P Ḣ(t+ π(x))
∂(t+ π(x))

∂xµ
∂(t+ π(x))

∂xν
gµν(x)

=

∫
d4x
√
−gM2

P Ḣ(t+ π)
[
(1 + π̇)2g00 + 2(1 + π̇)∂iπg

0i + ∂iπ∂jπg
ij
]
, (2.20)

where for the ease of notation the tilde has been dropped. The estimation of the mixing
energy scale is very important in this context, since at energies above this threshold the dy-
namics of the Goldstone boson π and the metric fluctuations decouple. Indeed in equation
(2.20) it is clear that the quadratic terms which mix π and gµν contain fewer derivatives
than the kinetic term of π, so that they can be neglected above some high energy scale
expressed by the coefficients of the mixing operators. Canonical normalization of the ki-
netic term requires the field redefinition πc = MP Ḣ

1/2π, while in order to re-introduce the
correct mass dimension of the metric fluctuation fields it is need to define δg00

c = MP δg
00.

After these redefinitions the mixing term reads

M2
P Ḣπ̇δg

00 ∼ Ḣ1/2π̇cδg
00
c . (2.21)

And then finally the mixing energy is

Emix ∼ Ḣ1/2 ∼ ε1/2H, (2.22)

where ε = −Ḣ/H2 is the usual slow-roll parameter.
Therefore, for what stated above, m2

g ∼ Λ2
mix ∼ Ḣ. In the end, the masses of the

Nambu-Goldstone bosons are estimated asm2
π ∼MP Ḣ

1/2 � H2. Therefore any excitation
of this boson exponentially decays away during inflation because the Universe was not hot
enough to source fluctuations of the πi-fields. From the point of view of the EFTI one can
think to integrate out the heavy fields and neglect higher order corrections in such a way
that the three Nambu-Goldstone bosons can be completely neglected.

To be precise, the above discussion presented in [46] shows that extra modes are non-
dynamical in the long wavelength regime. This situation is however more general. The
fact that extra modes of the graviton are not produced in this model at any scale is more
rigorously demonstrated in [62], where the full Hamiltonian analysis of the action (2.9)
reveals the presence of two only degrees of freedom (the helicity-2 ones).

2.1.1 Cosmological perturbations

Let’s consider a first order perturbed spacetime around a flat FLRW background which in
full generality is described by the following metric elements1

g00 = −a(η)2 [1− 2Φ(η, ~x)]

g0i = a(η)2ωi(η, ~x),

gij = a(η)2 {[1 + 2Ψ(η, ~x)] δij + χij(η, ~x)} , (2.23)

where a(η) is the scale factor in conformal time η, Φ and Ψ two scalar perturbations, while

ωi = ∂iω
′′ + ω⊥i ,

χij =

(
∂i∂j −

1

3
δij∇2

)
χ′′ + ∂iχ

⊥
j + ∂jχ

⊥
i + χTij , (2.24)

1This decomposition is allowed because the SO(3) symmetry of the background spacetime is still
unbroken.
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2.1. MG during inflation from Space-time Symmetry Breaking

with δijχij = 0. The superscript ′′ denotes the scalar components, while the superscript ⊥
stands for the vector parts, and “T ′′ for the transverse and traceless tensor perturbation.
Let us anticipate that in the subsequent chapters, in order to simplify the computations, it
will be often used a particular gauge choice, the Poisson gauge, which simplifies the picture
demanding one vector and two scalar metric perturbations to be vanishing. In particular
it provides

Poisson gauge:


ω′′ = 0,
χ′′ = 0,
χ⊥i = 0.

(2.25)

However, for the time being, the most useful gauge to adopt is the so called unitary gauge,
where the perturbations of all Stückelberg fields are turned off.

Tensor-type perturbations

Let’s consider a perturbed metric of the form

ds2 = a2(η)
[
−dη2 + (δij + χij) dx

idxj
]
, (2.26)

χii = ∂iχ
i
j = 0.

The aim of this section is to investigate the contribution of the new term in (2.9) arising
from the broken spatial SO(3) symmetry to the tensor metric perturbations. With this
goal in mind it is useful to expand

(δ̄Zab)2 =
ZabZcd

Z2
δacδbd − 6

ZabZcdZef

Z3
δaeδcfδbd

+9
ZabZcdZefZhl

Z4
δbdδflδaeδch. (2.27)

Since we want to focus on the metric tensor fluctuations, in the decoupling limit we can
forget about any contribution involving a Stückelberg field πa. This way the expression
for Zab greatly simplifies to2

Zab = gµν∂µϕ
a∂νϕ

b ≈ gab = a−2(η)
(
δab + χab

)
, (2.28)

while the trace must be taken contracting Zab with the Kronecker delta, because the
indices a and b live in the flat internal group, and are then raised and lowered with the
flat Minkowski metric; then

Z = Zabδab = gµν∂µϕ
a∂νϕa ≈ gaa ≈ 3. (2.29)

This way one can easily evaluate separately each contribution to (2.27). Picking up just
the terms which are quadratic in the fluctuation χij3, one finds

ZabZcdδacδbd ≈ gabgab ≈ χijχij , (2.30)
ZabZcdZefδaeδcfδbd ≈ gab g

b
c g

c
a ≈ 3χijχ

ij , (2.31)
ZabZcdZefZhlδacδbdδchδfl ≈ gabgbcg

cdgda ≈ 6χijχ
ij . (2.32)

2In this section we use the symbol ≈ to denote a relation which holds in the decoupling limit neglecting
all the Nambu-Goldstone boson contributions

3Linear terms in the action do not bring any contribution to the equations of motion, while higher
order terms are suppressed in amplitude as long as the perturbative regime holds
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Summing up all these contributions equation (2.27) evaluates to

(δ̄Zab)2 ≈ 1

9

[
χijχ

ij − 18χijχ
ij

3
+

54χijχ
ij

9

]
=

1

9
χijχ

ij . (2.33)

As last step, one can expand the Ricci scalar as in [52] to obtain the final expression of the
quadratic action for tensor modes in conformal time

S
(2)
T =

M2
P

8

∫
d4xa2(η)

[
χ′ijχ

ij ′ − (k2 + a2(η)m2
g)χijχ

ij
]
. (2.34)

The consequences of spatial SO(3) symmetry breaking are manifest in the fact that tensor
modes acquire a new mass contribution. As done for the inflaton, one can solve the
equations of motion for the tensor modes and compute the primordial power spectrum.
The Euler-Lagrange equations for the action (2.34) are

χ
′′
ij(η,k) + 2Hχ′ij(η,k) + (k2 +m2

ga
2)χij(η,k) = 0. (2.35)

As before, it is convenient to decompose the field χij into its Fourier modes projecting the
solutions into the two helicity-2 states:

χij(x) =

∫
d3k

(2π)3

∑
λ=±2

ελij(k)χλ(k, η)eik·x, (2.36)

with λ the polarization index and ελij(k) the polarization tensors satisfying

ελii = kiελij = 0, ελ∗ij (k) = ε−λij (k) = ελij(−k), ελijε
−λ′
ij = 2δλ,λ′ . (2.37)

Fourier modes can be expanded in the basis of positive and negative frequency solutions
as

χλ(k, η) = (2π)3/2
[
bλkχ(k, η) + bλ †−k χ(k, η)∗

]
, (2.38)

where bλk is the annihilation operator, and the positive frequency modes satisfy the Klein-
Gordon normalization

χkχ
∗′
k − χ∗kχ′k =

i

2a2
. (2.39)

Notice that in this decomposition the only quantity which contain a time-dependence is
the mode χ(k, η). Therefore, defining the rescaled field h(k, η) = a(η)χ(k, η), equation
(2.35) becomes

h′′(k, η) +

(
k2 − a′′

a
+ a2m2

g

)
h(k, η) = 0. (2.40)

If we consider that inflation had been taking place with a quasi de Sitter expansion, the
relation between conformal time and the scale factor is simply found as

dη = e−H(1+ε)tdt

η = − 1

aH(1 + ε)
, (2.41)

where H denotes the nearly constant Hubble parameter during the inflationary period;
then the factor a′′/a evaluates to

a′′(η)

a(η)
=

2

η2

(
1 +

3

2
ε

)
. (2.42)

22



2.1. MG during inflation from Space-time Symmetry Breaking

This way (2.40) becomes

h′′(k, η) +

[
k2 −

ν2 − 1
4

η2

]
h(k, η) = 0, (2.43)

where the new quantity ν2 = 9
4 + 3ε− m2

g

H2 is introduced for later convenience in such a way
to reproduce the Bessel equation whose solution is

h(k, η) = N
√
−η
[
c1(k)H(1)

ν (−kη) + c2(k)H(2)
ν (−kη)

]
, (2.44)

with H(1)
ν (−kη) the Hankel function of the first species and order ν, and N a normaliza-

tion factor which is set to N =
√

32πG = 2/MP by the normalization condition (2.39).
Consistency with the Bunch-Davies vacuum choice in the regime kη � 1 demands c2 = 0

and c1 =
√
π

2 e
i(ν+ 1

2
)π
2 . At the end of the day, the solution reads

h(k, η) =

√
π

MP
ei(ν+ 1

2
)π
2
√
−ηH(1)

ν (−kη), (2.45)

which for the original field χ(k, η) is, at first order in slow-roll parameter expansion,

χ(k, η) = −
√
πHη

MP
ei(ν+ 1

2
)π
2
√
−ηH(1)

ν (−kη). (2.46)

Hence the dimensionless power spectrum for tensor perturbations is

Pλ(k) =
k3

2π2
|χ(k, η)|2

=
H̄2

2πM2
P

(
k

aH

)3 ∣∣∣∣H(1)
ν

(
k

aH

)∣∣∣∣2 , (2.47)

with

ν =
3

2

√√√√1− 4

9

(
m2
g

H2
− 3ε

)
. (2.48)

If we are interested in the primordial power spectrum generated during inflation, that is
when the considered scale crossed the horizon for the first time, we must consider the above
expression in the super-horizon regime, that is kη � 1. In this regime the Hankel function
has the following limiting expression

H(1)
ν (z) ∼

z�1

√
2

π
e−i(

π
2 )2ν−

3
2

(
Γ(ν)

Γ(3
2)

)
z−ν . (2.49)

Substituting this result in the above expression, the primordial tensor power spectrum
becomes

Pλ(k) =
22ν−3H2

π2M2
P

(
Γ(ν)

Γ(3
2)

)2(
k

aH

)nT
, (2.50)

with the tensor spectral index defined by

nT ≡ 3− 2ν = 3

1−

√√√√1− 4

9

(
m2
g

H2
− 3ε

) . (2.51)
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This expression generalizes the results of [34, 35] for a quasi-de Sitter expansion; one can
verify indeed that the solutions match in the limit ε→ 0. Notice that if

m2
g

H2
> 3ε, (2.52)

the tensor power spectrum acquires a blue tilt which could be a smoking gun for both the
inflationary period and massive gravity during the early universe. The blue tilt becomes
unavoidable in the limiting case of a pure de Sitter stage, where the slow roll parameter
vanishes. As a confirmation of this results, one can see that in the limit of small masses
(m2

g/H
2 � 1) ad pure de Sitter inflation, equation (2.50) recovers the ones shown in section

(5.1) of ref. [16] in the limit for cT = 1, that is

Pλ(k) =
H̄2

2π2M2
P

(
k

k∗

)nT
, (2.53)

with

nT =
2

3

m2
g

H̄2
, (2.54)

and k∗ a reference scale defined by k∗ = (aH)h.c. evaluated at the time of horizon crossing.

Scalar-type perturbations

Consistent with the Hamiltonian analysis of [62], no scalar degrees of freedom are expected
to emerge in the gravity sector. Indeed the only gauge invariant scalar quantity described
by the theory is found to be (see the Appendix of ref. [62] for a full calculation of the
second order action)

ζ ≡ Φ +H
δφ

φ̇
, (2.55)

which is usually called gauge invariant curvature perturbation, and Ψ turns out to be a
Lagrange multiplier for the theory. Scalar type perturbations are then directly linked to
inflaton fluctuations δφ, which are the only source to the energy momentum tensor during
inflation. As already pointed out, the term proportional to (δ̄Zab)2 in the action (2.9) is
decoupled from the inflaton sector. The inflaton dynamics is then completely untouched
by symmetry breaking of the group SO(3). Therefore one can safely use the well known
results for single field inflation widely studied in literature (see [75, 63, 54] for a review).
For this reason we will not go through all the details, but just mention the most important
results. In Section (4.3) we will learn how to relate this quantity to the scalar metric
perturbations. For the time being we are just interested in evaluating the dimensionless
power spectrum of primordial curvature perturbations. One can show further that the
above relation on super horizon scales and in Poisson gauge [75] simplifies to

ζ ' Hδφ

φ̇
, (2.56)

such that we are able to relate the power spectrum of the curvature perturbations to the
power spectrum of the inflaton fluctuations in the the following way

Pζ =
k3

2π2

H2

φ̇2
|δφ|2 =

k3

4π2M2
P ε
|δφ|2 . (2.57)
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2.1. MG during inflation from Space-time Symmetry Breaking

What is left to investigate then is the time evolution of the fluctuations of the inflaton field
δφ. This is encoded in the solution of the Euler-Lagrange equations for the action (2.9),
which are [75]

δ̈φ(x, t) + 3H ˙δφ(x, t)− ∇
a2
δφ(x, t) +

∂2V (φ)

∂φ2
δφ = 2Ψ

∂V (φ)

∂φ
. (2.58)

As done for the tensor case, it is convenient to define a rescaled field δ̂φ = a(t)δφ, which
in light of the prescription of second quantization can be written as

δ̂φ(x, t) =

∫
d3k

(2π)3

[
uk(t)ake

ik·x + u∗k(t)a
†
ke
−ik·x

]
. (2.59)

Passing to conformal time the equations of motion in Fourier space are

u′′k +

[
k2 − a′′

a
+ a2∂

2V (φ)

∂φ2
− 6εH2

]
uk = 0. (2.60)

At this point one should recognize the equation (2.40) for tensor modes. Therefore one
can use the same solution with a proper redefinition of the indices, that is

|δφk|=
H√
2k3

(
k

aH

) 3
2
−ν
, (2.61)

and
3

2
− ν ' ηv − 3ε, ηv ≡

1

3H2

∂2V (φ)

∂φ2
� 1. (2.62)

Finally the dimensionless power spectrum of the curvature perturbation is

Pζ =
H2

8π2M2
P ε

(
k

aH

)ns
, (2.63)

with the scalar spectral index defined by

ns − 1 ≡ d lnP(k)

d ln k
= 3− 2ν = 2ηv − 6ε. (2.64)

Vector-type perturbations

Expanding the action (2.9) at second order in vector perturbations as in [62] one finds, in
Fourier space,

S
(2)
vector =

M2
P

4

∫
d3k dt

(
1

4
k2a3ω̇⊥i ω̇

⊥ i − k2a2χ⊥i ω̇
⊥ i + k2aχ⊥i χ

⊥ i

−1

4
m2
ga

3ω⊥i ω
⊥ i
)
. (2.65)

It is clear then that the modes χ⊥ i are not dynamical, since they don’t have any kinetic
term; then their equations of motion simply give the constraint

Si =
1

2
aω̇⊥i . (2.66)

Once we insert this expression inside the vector action, it is straightforward to realize that
the kinetic term for the modes χ⊥i cancels out as well. We indeed have

S
(2)
vector = −

M2
P

16

∫
d3k dtm2

ga
3ω⊥i ω

⊥ i. (2.67)

Hence no propagating vector modes are present in the theory, as in the GR case.
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2.2 MG during inflation with propagating extra modes

In the past years the powerful tool of effective field theory has been successfully applied to
the study of single field inflation (EFTI). General Relativity is a gauge theory build upon
invariance under general diffeomorfisms

xµ → x,µ(xν). (2.68)

During inflation time-reparametrization invariance

t → t+ ξ(xµ) (2.69)

must be broken, because of the existence of an inflationary clock which controls how much
time is left before inflation ends. In single field models there is just one clock, which must
be related to the dynamics of the inflaton field. From a larger perspective, at high energies
gravity should decouple from the Universe, such that space-time diffeomorfisms reduces to
an exact global symmetry. As soon as inflation starts, time reparametrization invariance
breaks down giving rise to a massless Goldstone boson π. In the context of particle physics,
the Goldstone boson equivalence theorem states that the amplitude for a process with the
exchange of a longitudinally polarized massive boson is equivalent to an amplitude where
the massive boson is replaced by a Goldstone boson. Consequence of this theorem, later
applied to EFTI in ref. [44], is that the high energy dynamics of the inflaton field should
be well described by the Goldstone π dynamics.

Besides time-reparametrization symmetry breaking, since we don’t have much informa-
tion about the Universe at high energies, it is interesting to investigate the possibility that
the Universe undergoes a spontaneous space-diffeomorphism symmetry breaking during
inflation, that is

xi → x
′i(t, xj). (2.70)

Space diffeomorphisms are broken whenever there is a field during inflation that acquire
a non vanishing vev depending on the spatial coordinates. Therefore our model considers
a situation where all the space-time diffeomorphisms are spontaneously broken during
inflation. This configuration is achieved if the fields responsible for the breaking select a
preferred direction or depend explicitly on space-time coordinates.

One can describe this situation following two different approaches. In the first approach
one makes the hypothesis that there exist a gauge transformation where all the Goldstone
boson emerging from the symmetry breaking can be set to zero. This is the so called
“unitary gauge”, and its viability demands that there are at most four Goldstone bosons
which acquire a non vanishing vev. This is because a gauge transformation allows us to fix
at most four functions of the coordinates; in doing so, no further gauge choice can be made
on the perturbed metric4. Therefore, being a symmetric and transverse rank 2 tensor,
the metric contains up to six degrees of freedom. This is indeed the expected number of
degrees of freedom encoded in a propagating massive spin-2 particle. From the point of
view of particle theory, a process similar to the Higgs mechanism is in place: the massless
Goldstone bosons are eaten up by the graviton, which then becomes a massive gauge boson.
At the end of the day, in this gauge all the propagating degrees of freedom are encoded
inside the metric, which then should account for all the transverse (one helicity-2 state)
and longitudinal polarizations (one helicity-1 and two helicity-0 states) of gravitons.

4More specifically, in the general treatment of GR, one usually introduce the de Donder gauge to remove
four degrees of freedom from the metric (see ref. [68] for further details). In this case this condition cannot
be applied since a gauge choice has just been made on the coordinates in such a way to eliminate the
Goldstone bosons
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2.2. MG during inflation with propagating extra modes

While the unitary gauge provides a simple geometrical understanding of the additional
propagating degrees of freedom, for the purposes of this thesis is convenient to consider
the Goldstone bosons arising from space-time diffeomorphisms symmetry breaking as new
propagating modes of our theory. The simplest choice one can make to introduce a preferred
referential frame, is to align the coordinates with the background values of four new scalar
fields

φ̄0 = t, φ̄i = αxi. (2.71)

These are respectively the clock and the rules which break space-time reparametrization
invariance during the inflationary period. The parameter α indicates the amount of space-
reparametrization breaking. In order to restore the full diffeomorphism invariance of the
theory, following the Stückelberg trick outlined in section (1.1), one introduces four Stück-
elberg fields π and σi

φ0 = t+ π, φi = α(xi + σi), (2.72)

which must transform in such a way that the fields φ0 and φi result invariant under space-
time diffeomorphisms. In order to preserve homogeneity and isotropy of the Universe, we
impose the additional symmetries of the fields under global rotations and translations

φi → Oijφ
j φi → φi + ci, (2.73)

with Oij ∈ SO(3) global. Moreover, in EFTI it is natural to assume the additional approx-
imate time-shift symmetry

φ0 → φ0 + c0 (2.74)

in order to prevent the coefficients of the action from being time-dependent. This way
any new operator one can add to the Hilbert-Einstein action cannot involve the fields
φµ (µ = 0, 1, 2, 3) without their derivatives. The most general diffeomorphisms invariant
action describing our system then is

S =

∫
d4x
√
−g
[

1

2
M2
PR+ F

(
X,Y i, Zij

)]
, (2.75)

with

X = ∂µφ
0∂νφ

0gµν ,

Y i = ∂µφ
0∂νφ

igµν ,

Zij = ∂µφ
i∂νφ

jgµν . (2.76)

and F an arbitrary function respecting the internal symmetry group of space rotations.
Actually the arbitrariness on the choice of the function F is restricted by the fact the slow
roll parameters must satisfy some conditions in order to be able to realize inflation. We
consider a flat FLRW backgroung metric in conformal time

gµν = a2(η)diag(−1, 1, 1, 1), (2.77)

with a(η) the scale factor. By definition, the energy momentum tensor is

Tµν ≡ − 2√
−g

δS

δgµν
=

= gµνF − 2(FX∂µφ
0∂νφ

0 + FY i∂µφ
0∂νφ

i + FZij∂µφ
i∂νφ

j). (2.78)
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In this expression it was introduced the useful notation to indicate the partial derivative
of the function F with a subscript, that is FX ≡ ∂F/∂X. Evaluated on the background

T̄µν = gµνF̄ − 2(F̄Xδ
0
µδ

0
ν + αF̄Y iδ

0
µδ
i
ν + α2F̄Zijδ

i
µδ
j
ν), (2.79)

where the bar denotes the quantities evaluated on the background. Moreover, thanks to
isotropy of the background

F̄Y i = 0, F̄Zij = F̄Zδ
ij . (2.80)

Then one has

T̄ 0
0 = −ρ = F̄ + 2F̄X

T̄ ij = Pδij = (F̄ − 2
α2

a2
F̄Z)δij . (2.81)

The Friedmann background equations equations are

H2 =
a2

3M2
P

ρ = − a2

3M2
P

(F̄ + 2F̄X),

H′ = − a2

6M2
P

(ρ+ 3P ) = − a2

3M2
P

(F̄ − F̄X − 3
α2

a2
F̄Z). (2.82)

These expressions allow to evaluate the slow roll parameter ε as

ε ≡ − Ḣ

H2
= −H

′

H2
+ 1 = 3

F̄X + α2

a2
F̄Z

F̄ + 2F̄X
=

3X̄F̄X − Z̄F̄Z
−F̄ + 2X̄F̄X

, (2.83)

where in the last step the background values

X̄ = −1, Ȳ i = 0, Z̄ij =
α2δij

a2(η)
(2.84)

have been used. In order to realize a phase of flat slow roll one should verify ε � 1, that
in terms of the function F means(

d lnF

d lnX
,
d lnF

d lnZ

)
� 1. (2.85)

It is interesting at this point to learn some physics about this model. The slow roll param-
eter ε is related to the speed of ticks of the inflationary clock. In order to reproduce a quasi
de Sitter expansion, the ticks should run very slowly. The occurrence of this situation is
controlled by the logarithmic derivative of the function F with respect to X and Z. This
is because in our model we actually have two clocks, one encoded in X through the field
φ̄0 responsible of the time-reparametrization symmetry breaking, and one inside Z, since,
even if it is related to space-diffeomorphisms breaking, Z̄ij has an explicit time dependence
through the scale factor a(η). In order to ensure that the slow roll period lasts for enough
amount of time, one should further require the parameter η to be very small, that is

η ≡ ε̇

εH
= 2ε+

6F̄XZ + 2Z̄F̄Z + 2Z̄2F̄Z2

−3F̄X − Z̄F̄Z
� 1. (2.86)

The parameter η controls the time variation of the inflationary tick, and the condition
η � 1 ensures that the rhythm of the clock does not change rapidly in time, in such a way
to have a sufficiently long period of inflation.
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2.2.1 Quadratic action for Stückelberg fields

In full generality, besides the expected interactions between the Stückelberg fields π and
σi, the minimal coupling with the metric in the action (2.75) provides also interaction
terms between these fields and the metric perturbations δg00, δg0i and δgij . However,
on very high energies E = k/a � H, interaction terms turn out to be negligible. This
fact is explicitly shown to hold for scalar modes in Section (2.2.2). In this limit the local
space-time diffeomorphisms of GR reduce to the global symmetries of Lorentz boosts and
translations of SR, while the Stückelberg fields become massless Goldstone boson with
negligible interactions with the other fields. Therefore only self interactions betweeen π
and σi should be accounted for in the action for the Stückelberg fields. On a linearly
perturbed FLRW background, considering just the terms related to the graviton degrees
of freedom

X = ∂µφ
0∂νφ

0gµν = −(1 + π̇)2 +
∂iπ∂

iπ

a2
,

Y i = ∂µφ
0∂νφ

igµν = −α(1 + π̇)σ̇i +
α

a2
∂jπ(δij + ∂jσ

i),

Zij = ∂µφ
i∂νφ

jgµν = −α2σ̇i +
α2

a2
(δij + ∂iσj + ∂jσi + ∂kσ

i∂kσ
j + γij). (2.87)

Notice further that at first order

F̄Zij = F̄Z (δij + γij). (2.88)

Then, the action for the graviton degrees of freedom up to second order is

S =

∫
d4x a4

[
1

2
M2
PR+ FXδX + FZ(δij + γij)δZ

ij +
1

2
(FX2δXδX+

+2FXZδXδZ + FY 2δY δY + (FZZδikδjl + FZ2δijδkl)δZ
ijδZkl

)]
=

∫
d4x a4

[
1

2
M2
PR+ F̄X

(
−π̇2 +

∂iπ∂
iπ

a2

)
+

1

2
F̄X2

(
2π̇ + π̇2)2

)
+F̄Z

(
−α2σ̇2 +

α2

a2
(∂kσ

i∂kσ
i + γijγ

ij)

)
+ F̄XZ

(
−2

α2

a2
(∂iσ

i)π̇

)
+F̄Y 2

α2

2

(
−σ̇i − π̇σ̇i +

1

a2
(∂iπ + ∂k∂

kσi)

)2

+
α4

2a4
(∂iσj + ∂jσi + ∂mσ

i∂mσ
j + γij)(∂kσl + ∂lσk + ∂nσ

k∂nσ
l + γkl)

×(F̄ZZδikδjl + F̄Z2δijδkl)

]
, (2.89)

where all the velocity terms were neglected, since first derivatives in the action do not
contribute to the equations of motion. At this point it is useful to split the three Goldstone
bosons σi into a vector and a scalar component through the decomposition

σi = σiT +
∂iσL√
−∇2

. (2.90)
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Rearranging some terms in the above action, one can easily separate a scalar, a vector,
and a tensor sector

S(S) =

∫
d4x a3

[(
−F̄X + 2F̄X2

)
π̇2 +

(
F̄X +

α2

2a2
F̄Y 2

)
∂iπ∂

iπ

a2

+α2

(
−F̄Z +

F̄Y 2

2

)
σ̇2
L + α2

(
F̄Z + 2

α2

a2
(F̄ZZ + F̄Z2)

)
∂iσL∂

iσL
a2

+4
α2

a2
F̄XZ

√
−∇2π̇σL −

α2

a2

∂iσ̇L∂
iπ√

−∇2

]
, (2.91)

S(V ) =

∫
d4x a3α2

[(
−F̄Z +

F̄Y 2

2

)
σ̇iT σ̇i,T +

(
F̄Z + 2

α2

a2
F̄ZZ

)
∂jσ

i
T∂jσi,T
a2

]
, (2.92)

S(T ) =

∫
d4x

a3

8

[
M2
P

(
γ̇ij γ̇

ij − ∂kγij∂
kγij

a2

)
+ 8α2

(
F̄Z
a2

+
α2F̄ZZ

2a4

)
γijγ

ij

]
. (2.93)

The above expressions show clearly that this model propagates six dynamical degrees of
freedom: two scalar modes, two helicities from a transverse vector, and two helicities from
a traceless transfer tensor fluctuation. These are indeed the degrees of freedom carried
by a massive graviton. Notice further that the two scalar modes interact in a non trivial
way controlled by the amount of space-diffeomorphism breaking through the parameter α.
This interaction introduce a second order correction to the curvature perturbation and,
ultimately, to the primordial scalar power spectrum.

In single field models of inflation it is useful to introduce the gauge invariant curvature
perturbation ζ. One would like then to find a relation between ζ and the scalar field π.
The rigorous way to do that (see refs. [44, 43, 45]) is to perform a time diffeomorphism to
go form the so called π-gauge, where the gauge is chosen in such a way that the spatial
metric becomes gij = a2δij , to the ζ-gauge, where the spatial metric is gij = a2e2ζδij and
π = 0. This condition is realized by performing the gauge transformation xµ → xµ − ξµ
with ξ0 = π and ξi = 0. At the same time the metric in the π-gauge transforms with the
Lie derivative according to

g̃µν(x) = gµν(x) + Lξ g
(0)
µν + o(ξ2), (2.94)

Lξgµν = gµν,λξ
λ + gλνξ

, λ
µ + gµλξ

, λ
ν , (2.95)

where g(0)
µν denotes the unperturbed FLRW metric. Hence

g̃ij = a2δij + 2aȧπδij , (2.96)

which immediately identifies

ζ(~x, t) = −H(t)π(~x, t). (2.97)

However our model has two inflationary clocks, and non-adiabatic contributions can arise.
Since the second clock originates from the space-diffeomorphism symmetry breaking, it is
natural to expect that these terms are controlled by the parameter α. At lowest order, the
full solution is (see ref. [47])

ζ(~x, t) =
H

−M2
P Ḣ

[(
−F̄X +

α2F̄Y 2

2a2

)
π + α2(2F̄Z − F̄Y 2)

σ̇L√
−∇2

]
. (2.98)

As a confirmation, one can verify, exploiting the Friedman equations, that the last expres-
sion reduces to (2.97) in the limit α→ 0.
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2.2.2 Primordial power spectra form extra modes

Scalar Power Spectrum

In (2.98) we have seen that the gauge invariant curvature perturbation ζ(~x, t) receive
contributions from both the Goldstone bosons π and σ. In order to evaluate its power
spectrum one needs to derive and solve the equations of motion for the Goldstone bosons.
It is convenient then to introduce two new re-scaled field π̂, σ̂

π̂ =
√

2(−F̄X + 2F̄X2)π, σ̂ = α

√
2

(
F̄Y 2

2a2
− F̄Z
a2

)
σL, (2.99)

such that the scalar sector of the action (2.91) is canonically normalized as

S(S) =

∫
d4x a3

[1

2

(
˙̂π2 − c2

π

∂iπ̂∂
iπ̂

a2

)
+

1

2
a2

(
˙̂σ2 − c2

σ

∂iσ̂∂
iσ̂

a2

)
+

+αλ1

√
−∇2 ˙̂πσ̂ + αλ2

√
−∇2 ˙̂σπ̂

]
, (2.100)

with the sound speed cπ/σ and the interaction coefficients λπ/σ defined by

c2
π =

F̄X + α2F̄Y 2/2a2

F̄X − 2F̄X2

λ1 =
2F̄XZ/a

2√
(−F̄X + 2F̄X2)(F̄Y 2/2a2 − F̄Z/a2)

c2
σ =

F̄Z + 2α2F̄ZZ/a
2 + 2α2F̄Z2/a2

FZ − FY 2/2
λ2 =

−F̄Y 2/a2

2
√

(−F̄X + 2F̄X2)(F̄Y 2/2a2 − F̄Z/a2)

Since we are assuming a tiny violation of space-diffeomorphism invariance, one can treat the
parameter α as a small perturbative parameter and expand perturbatively the two point
correlator making advantage of the in-in formalism to take into account of the interaction
terms. At zero order then, only the field π sources the curvature perturbations. The
equations of motion for the re-scaled field π̂ are given by the Euler-Lagrange equation of
the action (2.100), which are

¨̂π + 3H ˙̂π − c2
π

∇2

a2
π = 0. (2.101)

Passing to conformal time and defining the new variable uk(η) = a(η)π̂(k, η) the equations
of motion becomes

u′′k +

[
c2
πk

2 − a′′

a

]
uk = 0. (2.102)

At this point one can recognize again the form of the equation (2.40) for massless tensor
modes and with the replacement k → cπk. Therefore we can straightforwardly consider
the solution

|π̂k| '
H√
2c3
πk

3

(
k

aH

) 3
2
−ν
, (2.103)

with 3/2−ν = −ε. Notice the difference with respect to (2.64). Here indeed, the symmetry
pattern of the theory forbid the presence of any mass term and non-derivative interaction.
Moreover in the present case we are working in the decoupling limit, where interactions
between Goldstone bosons and metric fluctuations are neglected; this prevents from the
presence of the additional term in (2.60). Therefore, in light of the considerations outlined
in Section (2.1.1), on super-horizon scales these solution remain completely frozen at the
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CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

value of the horizon crossing, that is when k = aH. Therefore the primordial power
spectrum is

〈π̂k1 π̂k2〉 = (2π)3δ3(k1 + k2)
2π2

k3
1

P̂0, (2.104)

P̂0 =
H2
k

4π2c3
π

, (2.105)

with Hk = H(ηk) the Hubble parameter evaluated at the time when a certain mode with
wavenumber k crossed the horizon. Now one can turn back to the power spectrum of the
original field π by simply dividing for the multiplicative factor in (2.99)

P0 =
H2
k

8π2c3
π(−F̄X + 2F̄X2)

=
H2
k

8π2c3
π(−F̄X − α2F̄Y 2/2a2)

. (2.106)

Notice that in the limit α � 1, where we restore space-diffeomorphisms invariance, given
the Einstein equation F̄X = M2

P Ḣ, one recovers the prediction for the power spectrum of
a massless single field inflation. Indeed

P0(α� 1) '
H2
k

8π2cπ(−ḢkM
2
P )

=
1

8π2cπM2
P ε
. (2.107)

Contributions to the power spectrum arising from the interaction terms can be com-
puted with the in-in formalism [120]. At first order in the α parameter no contribution to
the two point correlator is expected, since the action (2.100) does not contain any mass-like
interaction term. The leading correction to the power spectrum is then given by

δ〈π̂k1 π̂k2(η)〉 = −
∫ η

ηin

dη1

∫ η1

ηin

dη2

〈 [[
π̂

(0)
k1
π̂

(0)
k2

(η),H(2)
int (η1)

]
,H(2)

int (η2)
] 〉
, (2.108)

with ηin the time when the interaction is turned on, and

H(2)
int (η) =

α

(Hη)3

[
λ1

∫
d3k

(2π)3
k σ̂

(0)
k π̂

′ (0)
−k (η) + λ2

∫
d3k

(2π)3
k π̂

(0)
k σ̂

′ (0)
−k (η)

]
. (2.109)

Then one decomposes the Goldstone bosons π, σ into Fourier modes and inserts the solution
of the equation of motion for the two fields. The computation has been already done in
[47], with the result5

δP
P0

=
3α2λ1Nk [3λ2 − λ1(3Nk + 6γE + 11− ln(64))]

c2
π

, (2.110)

with γE the Euler gamma function and Nk the number of e-folds the Universe expanded
from the time of horizon crossing of mode with wavenumber k until the end of inflation.
Notice that this new contribution does not depend on the scale k. In the limit for large
Nk the most dominant contribution is

δP
P0

= −
9α2λ2

1N
2
k

c2
π

. (2.111)

For small values of α, we have a simple relation between the gauge invariant curvature
perturbation and the Goldstone boson π. This, in the end, leads to the power spectrum of
curvature perturbation

Pζ(k) '
H2
k

8π2M2
P εcπ

(
1−

9α2λ2
1N

2
k

c2
π

)
. (2.112)

5For simplicity it is considered the case cπ = cσ.
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This is a quite interesting result, because it suggests the possibility of discriminating be-
tween the massive and massless case in physical observations. Indeed the factor N2

k intro-
duces a new k-dependence in the primordial power spectrum which modifies the value of
the primordial scalar spectral index. Indeed, making explicit the scale dependence,

Pζ(k) ' H2

8π2M2
P εcπ

(
k

aH

)−2ε(
1−

9α2λ2
1N

2
k

c2
π

)
. (2.113)

By definition, the number of e-folds at the horizon-crossing time is

Nk =

∫ tend

tk

H(t)dt = ln

(
aend
ak

)
, (2.114)

with tk and tend the coordinate time at the horizon crossing of the mode k and at the
end of inflation respectively, while aend = a(tend), ak = a(tk). Since the term with N2

k is
already at second order in alpha-expansion, we can evaluate Nk at zero order in slow-roll
parameter expansion. This means that ak = k/H̄ and

N2
k = −2 ln

(
k

aend H̄

)
. (2.115)

The last factor of equation (2.113) can be seen as the first order Taylor expansion of an
exponential function. Inserting the above result one easily obtains

Pζ(k) ' H2

8π2M2
P εcπ

(
k

aH

)−2ε( k

aendH

) 18α2λ21
c2π

, (2.116)

and finally the scalar spectral index is

ns − 1 ≡ d lnP(k)

d ln k
= −2ε+

18α2λ2
1

c2
π

. (2.117)

Hence, the most important result is that the scalar power spectrum may acquire a blue
tilt depending on the “amount” of violation of space-diffeomorphism invariance. This is
similar to what it was shown in Section (2.1.1), where the primordial tensor power spectrum
becomes blue for large values of the early time graviton mass. Moreover, both in the tensor
and scalar cases, the primordial spectra becomes unavoidably blue in the limit of pure de
Sitter stages during Inflation, where the slow-roll parameter ε vanishes.

Remember that in deriving the second order action (2.91), couplings between the Gold-
stone bosons and metric perturbations were neglected. In a sense, we are perturbing the
fields over an unperturbed background. To eliminate this inconsistency one should take
into account the perturbed metric around a FLRW background as in (2.23). As long as
we are interested in the π-spectrum at the zero order expansion in α parameter, the only
relevant difference arises from the term

X = ∂µφ
0∂νφ

0gµν = −(1 + π̇)2(1 + 2Φ) +
∂iπ∂

iπ

a2
(1 + 2Ψ)

= −1− 2π̇ − 2Φ− π̇2 − 4π̇Φ +
∂iπ∂

iπ

a2
+ . . . (2.118)

where terms of third order in perturbations are understood inside the dots. This way the
quadratic action for the rescaled Goldstone boson π̂ at zero order in α becomes

S(π) =

∫
d4x a3

[1

2

(
˙̂π2 − c2

π

∂iπ̂∂
iπ̂

a2

)
− cππ̇Φ

]
, (2.119)
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with

cπ =
4F̄X√

2(−F̄X + 2F̄X2)
. (2.120)

The equations of motion for this action are

¨̂π + 3H ˙̂π − c2
π

∇2

a2
π = −cπΦ̇. (2.121)

As long as we are interested in the primordial power spectrum on super-horizon scales, the
time derivative of the scalar metric fluctuation can be neglected. Hence we are back to the
same equation (2.101), supporting the consistency of the previous analysis and our choice
of neglecting the coupling between Goldstone bosons and metric perturbations.

Tensor Power Spectrum

In the tensor sector we have two propagating helicity-2 degrees of freedom with an addi-
tional mass term. This is the expected result of having introduced a non vanishing mass
for gravitons. The equation of motions for this action were already studied in Section
(2.1.1); in particular, the above action reproduces the one in equation (2.34) with a new
redefinition of the mass parameter

m2
g =

8

M2
P

(
α2

a2
F̄Z +

α4

2a4
F̄ZZ

)
. (2.122)

Hence the dimensionless power spectrum can be straightforwardly read from (2.50), that
is

Pλ(k) =
22ν−3H2

π2M2
P

(
Γ(ν)

Γ(3
2)

)2(
k

aH

)nT
, (2.123)

with a new definition of the parameters

ν2 =
9

4
+ 3ε−

m2
g

H2
, (2.124)

nT ≡ 3− 2ν = 3

1−

√√√√1− 4

9

(
m2
g

H2
− 3ε

) . (2.125)

As a last comment, we mention how these effects reflect on the tensor-to-scalar ratio.
Because of the mass term, the scalar power spectrum decreases according to (2.112), while
the tensor power spectrum acquires a non negligible time dependence encoded in the slow
roll parameter η. Explicitly

r ≡ PT
Pζ

=
22ν+1εcπ(

1−
9α2λ2

1N
2
k

c2
π

) (Γ(ν)

Γ(3
2)

)2(
k

aH

)nT+2ε

, (2.126)

where PT = P+2 +P−2 = 2Pλ is the total tensor power spectrum, and the tensor spectral
index nT is defined in(2.51). This is a quite interesting result, since it shows our prediction
for deviation from the usual single field inflation consistency relation. Notice that in
the massless limit nT = −2ε + o(ε2) and any time dependence of the ratio r goes away.
Moreover, the usual single field inflation scenario is recovered taking the limit α→ 1 and
cπ → 1. In this case, considering further ν ' 3/2, we recover the expected consistency
relation for slow roll inflation

r = 16ε. (2.127)
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2.3. The minimal theory of massive gravity after inflation

2.3 The minimal theory of massive gravity after inflation

In recent years, much effort in theoretical cosmology has been put in finding a viable
theory of massive gravity in a Lorentz invariant way. These theories necessarily provide
the graviton to have five physical degrees of freedom, but they are plagued by instabilities
when applied on background space-times relevant for cosmology, as the FLRW one [55].
In this section we present a recent model developed by De Felice and Mukohyama [56, 57]
which modifies GR in a minimal way without any extra scalar and vector propagating
degree of freedom. The absence of the extra modes assures that the theory is stable in
a FLRW background. It is worth to stress again that this theory is not in conflict with
the one outlined in Section (2.1); We are looking at a very large range of energies, and it
is really hard (if not impossible) to think that a unique theory would be able to describe
gravitational interaction on such a wide domain. Therefore we are effectively describing
this interaction in two limiting regimes through two different theories which are completely
independent, and they are not required to match at certain energy scales as one usually
does in building a low energy effective field theory.

In order to avoid the propagation of extra modes one has to give up Lorentz invariance.
Lorentz violation is naturally confined in the gravity sector, and vanishes in the limit of zero
graviton mass; on the matter sector, Lorentz violation induced by graviton loops should be
suppressed by a factor m2/M2

P , where m is the graviton mass after inflation. Notice that
this mass does not need to coincide with the one possessed by gravitons during inflation
(mg), since we are picturing the history of the Universe with two not communicating
gravitational theories. In fact, for gravitons propagating across the Universe, we have
recent astrophysical observations which tightly bound the value of the graviton mass to
m ≤ 10−28 eV, which we should always have in mind. In the following, in order to highlight
this important difference we will adopt two different notation to refer to the graviton mass:
mg for the graviton mass during inflation, and m for the graviton mass after inflation. In
the following we review the main steps to build the minimal theory of massive gravity
(MTMG thereafter); it is useful to proceed by steps, starting from a precursor theory and
then applying some constraint to derive the final theory.

The precursor theory

Since the fundamental feature of this theory is to avoid propagation of extra modes, it is
convenient to work in the ADM formalism [58] which allows a simple degrees of freedom
counting. The basic variables of the theory are then the lapse N , the shift vector N i, and
the three-dimensional vielbeins eIj which allow to write the three-dimensional metric as

γij = δIJe
I
i e
J
j , (2.128)

where I, J ∈ {1, 2, 3} are flat indices, while i, j ∈ {1, 2, 3} are curved indices. Out of
these variables, we can define a four-dimensional vielbein in such a way to put the four-
dimensional metric in the usual form

gµν = ηAB e
A
µ e
B
ν , (2.129)

with

g00 = −N2 + γijN
iN j , g00 = −N−2,

g0i = gi0 = γijN
j , g0i = gi0 = N i/N2,

gij = γij , gij = γij − (N iN j/N2).
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This situation is realized choosing

‖eAµ ‖=
(

N ~0T

eIiN
i eIj

)
, (2.130)

which is usually called ADM vielbein. In full generality, a four-dimensional vielbein has
16 independent components; our particular choice of the ADM vielbein contains just 13 of
them, since three components, related to the boost parameters, are identically set to zero.
Therefore the particular choice of (2.130) automatically select a preferred frame and thus
explicitly breaks local Lorentz symmetry. Besides these dynamical quantities, the theory
introduces a new four-dimensional non dynamical vielbein EAµ out of non dynamical lapse
M , shift M i and three dimensional vielbein EIj . In analogy with the dynamical vielbein,
the non dynamical counterpart is chosen in the form

‖EAµ ‖=
(

M ~0T

EIiM
i EIj

)
, (2.131)

which defines a new non-dynamical metric as

f00 = −N2 + γ̃ijM
iM j ,

f0i = fi0 = γ̃ijM
j ,

fij = γ̃ij . (2.132)

with

γ̃ij = δIJE
I
i E

J
j . (2.133)

The dual basis ejI and EjI is introduce in such a way that the three-dimensional vielbeins
satisfy

eIke
k
J = δIJ , eKi e

j
K = δij , (2.134)

EIkE
k
J = δIJ , EKi E

j
K = δji , (2.135)

while for the four-dimensional vielbeins

eAµ e
µ
B = δAB , eAµ e

ν
A = δνµ, (2.136)

EAµ E
µ
B = δAB , EAµ E

ν
A = δνµ. (2.137)

The precursor theory is then defined as a minimal modification of the dRGT action (1.46),
by simply inserting the ADM vielbeins (2.130) as the physical vielbeins, and substituting
the fiducial ones (2.131) in place of the identity vielbeins. This allows to define the theory
of massive gravity on a generic background metric encoded in the choice of the fiducial
variables, and eventually on a FLRW background. Therefore

Spre = SdRGT [eIi , E
J
j ] =

M2
P

2

∫
d4x
√
−gR[g] +

M2
P

2
µ2

4∑
n=0

∫
d4xcnLn, (2.138)
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where µ denotes a graviton mass parameter, while R[g] specifies the Ricci scalar for the
physical metri gµν , and

L0 =
1

24
εµνρσεABCDE

A
µ E
B
ν E
C
ρE
D
σ ,

L1 =
1

6
εµνρσεABCDE

A
µ E
B
ν E
C
ρ e
D
σ ,

L2 =
1

4
εµνρσεABCDE

A
µ E
B
ν e
C
ρe
D
σ ,

L3 =
1

6
εµνρσεABCDE

A
µ e
B
ν e
C
ρe
D
σ ,

L4 =
1

24
εµνρσεABCDe

A
µ e
B
ν e
C
ρe
D
σ .

(2.139)

One then can easily verify that our particular choice of the Lorentz symmetry breaking
ADM vielbeins leads to

Spre =
M2
P

2

∫
d4x
{
N
√
γ(R[γ] +KijK

ij −K2)

−c0µ
2
√
γ̃M − c1µ

2
√
γ̃(N +MY J

I )

−c2µ
2
√
γ̃

[
NY I

I +
M

2
(Y I
I Y J

I − Y J
I Y I

J )

]
−c3µ

2√γ(M +NX I
I )− c4µ

2N
√
γ
}
. (2.140)

with
X J
I ≡ e

j
I E

J
j , Y J

I ≡ E j
I e

J
j , (2.141)

and the extrinsic curvature defined by

Kij ≡
1

2N
(γ̇ij − 2D(iNj)) =

1

N
(δIJ ė

I
ie
J
j −D(iNj)), K = Kijγ

ij , (2.142)

where DI is the spatial covariant derivative compatible with γij

Hamiltonian Analysis of the precursor theory Contrary to the dRGT case, the
mass term of the precursor modified theory has a linear dependence on the lapses and no-
dependence on the shift-vectors. This allows us to take N and N i as Lagrange multipliers
and fix four variables, leaving the theory with nine degrees of freedom eIj . In order to
perform the physical degrees of freedom counting it is convenient to pass to the Hamiltonian
formalism. The canonical momenta conjugate to the vielbeins variables are

Π j
I ≡

δSpre

δėIj
=
M2
PN
√
γ

2

∫
d4x [2Kmn − 2Kγmn]

δKmn

δėIj
= 2πjkδIJe

J
k, (2.143)

with

πij =
M2
P

2

√
γ(Kij −Kγij). (2.144)

Three primary constraints are directly obtained from the symmetric property of the ex-
trinsic curvature

Q[I,J ] ≡ Πk
[IδJ ]Ke

K
k = πije

[i
I e

j]
J = 0. (2.145)
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For the following discussions it is useful to write the extrinsic curvature in terms of the
canonical variable only. Contacting the definition (2.144) with the spatial metric

π ≡ πijγij = −M2
P

√
γK. (2.146)

On the other hand, one can invert (2.143) as

πij =
1

2
δIJΠ i

I e
j
J . (2.147)

Contacting again with the three-dimensional metric and comparing with (2.146), lead to

K = −1

2
Π i
I e

I
i. (2.148)

Inserting this expression inside (2.144) together with (2.147), one eventually arrives to

Kij =
2

√
γM2

P

[
γimγjn −

1

2
γijγmn

]
πmn

=
1

√
γM2

P

[
γ(k(iγj)lΠ

k
I δ

IJe l
J −

1

2
γklΠ

k
K δKLe l

L γij

]
. (2.149)

The Hamiltonian density of the precursor theory can be now introduced as the Legendre
transform of the Lagrangian density (2.140), that is

Hpre = ė i
I ΠI

i −
M2
P

2

{
N
√
γ(R[γ] +KijK

ij −K2)− c0µ
2
√
γ̃M

−c1µ
2
√
γ̃(N +MY J

I )− c2µ
2
√
γ̃

[
NY I

I +
M

2
(Y I
I Y J

I − Y J
I Y I

J )

]
−c3µ

2√γ(M +NX I
I )− c4µ

2N
√
γ
}
. (2.150)

Using the above relations, one can work out some term to find

KijK
ij −K2 =

4

γM4
P

[
γimγjn −

1

2
γijγmn

]
πijπmn, (2.151)

ėIiΠ
i
I =

2N
√
γM2

P

[
γimγjn −

1

2
γijγmn

]
πijπmn − 2γjkN

jDiπ
ik. (2.152)

Summing up these results and rearranging all the terms in a more suitable way, the Hamil-
tonian of the precursor theory together with primary constraints is6

H(1)
pre =

∫
d4x

[
−NR0 −N iRi + µ2MH1 + αMNQ[MM ]

]
, (2.153)

with

R0 = RGR0 − µ2H0, RGR0 =
√
γR[γ]− 1

√
γ

(
γnlγmk −

1

2
γnmγkl

)
πnmπkl,

Ri = RGRi = 2γikDjπ
kj ,

H0 =
√
γ̃
(
c1 + c2Y

I
I

)
+
√
γ
(
c3X

I
I + c4

)
,

H1 =
√
γ̃
[
c1Y

I
I +

c2

2

(
Y I
I Y J

J − Y J
I Y I

J

)]
+ c3
√
γ,

Q[MN ] = eMj Πj
Iδ
IN − eNjΠ

j
Iδ
IM . (2.154)

6For the ease of notation, here and in the following the units are fixed such that M2
P = 2.
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As already pointed out, since the the precursor Hamiltonian is linear in the lapse N and
in the shift N i, they can be treated as Lagrange multiplier, while7

R0 ≈ 0, Ri ≈ 0 (2.155)

are two additional primary constraints.

Secondary constraints
Secondary constraints may naturally arise by imposing the time conservation of primary
constraints on the constrained surface:

Q̇[MN ] =
{
Q[MN ], H(1)

pre

}
P
≈ 0 (2.156)

Ṙ0 =
{
R0, H

(1)
pre

}
P

+
∂R0

∂t
≈ 0, (2.157)

Ṙi =
{
Ri, H(1)

pre

}
P
≈ 0, (2.158)

where {·, ·}P denotes the Poisson bracket operator. Three secondary constraints arise from
the first equation. Indeed

Q̇[MN ] =

∫
d3x

[
δQ[MN ]

δeIi

δH
(1)
pre

δΠ i
I

− δQ[MN ]

δΠ i
I

δH
(1)
pre

δeIi

]
. (2.159)

Working out each operator one at a time, one finds

δQ[MN ]

δeIi

δH
(1)
pre

δΠ i
I

=
1

2
√
γ

(
γikγ

jl − 1

2
γji γ

l
k

)
Π i
J Π k

L eJje
I
lδ

[M
I δN ]L.

δQ[MN ]

δΠ i
I

=
1

2
γkm
[
δMIeNk − δNIeMk

]
. (2.160)

Both these equations vanish whenever δL[Me
N ]
i = 0, which means when the condition

Y [MN ] ≈ 0, YMN = δMLY N
L (2.161)

is satisfied. Now one may wonder how many constraints can be derived from (2.157)
and (2.158). For this purpose one can compute the Poisson brackets among the primary
constraints R0 and Ri. Since

{R0(x),R0(y)} ≈ 0,

{Rj(x),Rj(y)} ≈ 0,

{R0(x),Ri(y)}/≈0,

then

Ṙ0 ≈
∫
d3x
[
N i{R0,Ri}+ µ2M{R0,H1}+ αMN{R0,Q[MN ]}

]
≈ −∂tR0, (2.162)

Ṙi ≈
∫
d3x
[
−N{Ri,R0}+ µ2M{Ri,H1}+ αMN{R1,Q[MN ]}

]
≈ 0. (2.163)

7In this context the symbol ≈ denotes the weak equivalence sign, that is an equivalence which holds
only on the constrained surface of the phase space.
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Then equation (2.162) can be solved to fix one of the three components of the shift N i

in terms of the other variables. In the same way one of the equations (2.163) fixes the
lapse N . This leaves with two equations which provide for two additional secondary con-
straints, which we symbolically denote with C̃τ (τ = 1, 2). In the end the total precursor
Hamiltonian is

H(2)
pre =

∫
d3x

[
−NR0 −N iRi + µ2MH1 + αMNQ[MN ] + βMNY

[MN ] + λ̃τ C̃τ
]
. (2.164)

All in all, we found 7 primary constraints (R0,Ri,Q[MN ]), and 5 secondary constraints
(Y [MN ], C̃τ ). By computing the Poisson brackets among all these quantities, one can
straightforwardly realize that all these constraints are of second class. Therefore we end up
with 12 second class constraints which provide the cancellation of twelve degrees of freedom
from the Hamiltonian phase space. Since the lapse N and the shift N i are interpreted as
Lagrange multiplier, this is given by the variables eIj and ΠI

j , which account for a total of
18 degrees of freedom. Finally, the number of physical degrees of freedom of the precursor
theory is 1

2(18− 12) = 3.

The minimal theory

So far, breaking Lorentz symmetry with the precursor Hamiltonian has removed two modes
from the dRGT theory, leaving three only physical degrees of freedom. Our aim now is
to remove an additional degree of freedom, while keeping the same background equation
of motion of the dRGT theory. The MTMG is defined in the Hamiltonian language by
imposing the four constraints

C0 ≈ 0, Ci ≈ 0, (2.165)

with

Ci ≈ {RGRi , H1}, (2.166)

C0 ≈ {RGR0 , H1} − µ2∂tH0, (2.167)

and
H1 =

∫
d3xµ2MH1. (2.168)

One can verify that the previous two constraints C̃τ are linear combinations of Ci, such that
only two new constraints are applied to the minimal theory with respect to the precursor
one. In the end, this reduces the total number of physical degrees of freedom to two, which
are the two tensor transverse and traceless modes8. The Hamiltonian of the minimal theory
is then

HMTMG =

∫
d3x

[
−NR0 −N iRi + µ2MH1 + λC0 + λiCi +

+αMNQ[MN ] + βMNY
[MN ]

]
, (2.169)

with N,N i, λ, λi, αMN , βMB 14 Lagrange multipliers. Notice that on the constrained sur-
face the Hamiltonian reduces to HMTMG ≈ H1. The definitions (2.154) allow to compute

8Rigorously speaking, it was shown that the total number of physical degrees of freedom must not be
greater the two. However, one can consider the Hamiltonian equations of motion for secondary constraints
and realize that no tertiary constraint arise. This prove that the above ones are all the constraints provided
by the minimal theory.
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explicitly the constraints C0 and Ci. In particular one can expand the Hamiltonian density

H1 =
√
γ̃E i

I

[
c1e

I
i +

c2

2
E j
J (eIie

J
j − eIjeJi)

]
+ c3
√
γ (2.170)

and compute

δRGR0 (x)

δΠm
M (y)

=
1

2
√
γ

(
γikγjl −

1

2
γijγkl

)
δIAδLBe j

A e l
B Π i

I δLMγ
kmδ3(x− y), (2.171)

δRGRi (x)

δΠm
M (y)

=
√
γγikDj

(
δAMγjme k

A√
γ

)
δ3(x− y), (2.172)

δH1(x)

δeMm (y)
=

[√
γ̃
(
c1δ

J
I + c2(Y L

L δJI − Y J
I )
)

+ c3
√
γX J

I

]
δIME

m
J δ3(x− y), (2.173)

δH1(x)

δΠm
M (y)

= 0, (2.174)

∂tH0 =
[√

γ̃
(
c1δ

J
I + c2(Y L

L δJI − Y J
I )
)

+ c3
√
γX J

I

]
γjlEJj∂tE

L
l. (2.175)

This way the constraints C0,i can be written as

C0 = µ2MW J
I

[
1

2
(γikE

k
J eIj + γjkE

k
J eIi − γijY I

J )πij −√γH(f) I
J

]
, (2.176)

Ci = −µ2√γDj(MW IJI Y K
J δKLe

I
ie
L
j , (2.177)

where for convenience there were introduced the following definitions

W J
I ≡

√
γ̃
√
γ

[
c1δ

J
I + c2(Y K

K δJI − Y J
I )
]

+ c3X
J
I , (2.178)

H
(f) I
J ≡ 1

M
E l
J ∂tE

I
l. (2.179)

Metric formulation At this point one can turn back to the Lagrangian formalism of this
new theory retracing backward the steps shown above to go to the Hamiltonian formalism.
The calculation are a bit lengthy and cumbersome because of the additional constraints C0

and Ci, but there are no new physically meaningful arguments to learn in this procedure.
For these steps are omitted in this text, but the reader is encouraged to look at [57]
if interested in more details. In few words, starting from (2.169), one should invert the
Hamiltonian equations for eIi to obtain an expression for ΠI

i. Then the Lagrangian density
is found as the Legendre transform of the Hamiltonian density, as done in (2.150). For
later discussions it is convenient to turn to the metric formulation of the Lagrangian. For
this purpose let’s introduce two time dependent external fields

γ̃ij = δIJE
I
iE

J
j , ζ̃ij =

1

M
E i
I E

I
j . (2.180)

Then we define the tensor Kmn and its inverse Ymn as

Kml Kln = γ̃msγsn, Yml Kln = δmn . (2.181)

These condition are satisfied if the two tensor admit the vielbein representations

Kmn = E m
M eMn, Ymn = e m

M EMn, (2.182)
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or, in metric formulation, if

Kmn =
(√

γ̃−1γ
)m
n
, Ymn =

(√
γ̃γ−1

)m
n
. (2.183)

Then the following tensor is introduced

Θij =

√
γ̃
√
γ

{
c1(γilKjl + γjlKil) + c2[K(γilKjl + γjlKil)− 2γ̃ij

}
+ 2c3γ

ij (2.184)

together with the four constraints

C̄0 = µ2M
{1

2
KijΘ

ij −
√
γ̃
√
γ

[ciζ̃ + c2(Kζ̃ −Kmn ζ̃nm)] + c3Ymn ζ̃nm
}
, (2.185)

Cni = −µ2M
{

[
1

2
(c1 + c2K)(Kni + γmnγliKlm)− c2γ̃

nlγli] + c3δ
n
i

}
, (2.186)

and the full action of MTMG is, reinserting the Plank mass MP ,

SMTMG = Spre +
M2
P

2

∫
d4xN

√
γ

(
µ2

4

M

N
λ

)2(
γikγjl −

1

2
γijγkl

)
ΘijΘkl

−
M2
P

2

∫
d4x
√
γ
[
λC̄0 − (Dnλi)Cni

]
+ Smat, (2.187)

with

Spre = SGR +
M2
P

2

4∑
i=1

∫
d4xSi,

SGR =
M2
P

2

∫
d4xN

√
γ
[
R[γ] +KijK

ij −K2
]
,

S1 = −µ2c1

√
γ̃(N +MK),

S2 = −1

2
µ2c2

√
γ̃(2NK +MK2 −Mγ̃ijγij),

S3 = −µ2c3
√
γ(M +NY),

S4 = −µ2c4
√
γN, (2.188)

and Smat the action related to a matter component in the Universe. In the following we will
abandon the full general treatment and specialize this theory to the case of a homogeneous
and isotropic FLRW background.

2.3.1 MTMG on a FLRW background

The symmetric properties of homogeneity and isotropy of the background demands g0i =
gi0 = N i = 0, while γij = a2δij and γ̃ij = ã2δij with a and ã the scale factors for the
dynamical and fiducial three-dimensional metrics respectively. These relations allow to
explicitly express the tensor Kij and its inverse as

Kij =
(a
ã

)
δij , Y ij =

(
ã

a

)
δij , (2.189)

while the external field ζ̃ij and the extrinsic curvature become

ζij = Hfδ
i
j , Kij = a2Hδij , (2.190)
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with

H ≡ ȧ

aN
, Hf ≡

˙̃a

ãM
. (2.191)

Defining for convenience the quantity X ≡ ã/a, the tensor Θij admits a simple expression

Θij = 2
δij

a2

(
c1X

2 + 2c2X + c3

)
, (2.192)

and then the constraint C̄0 reduces to

C̄0 = 3µ2M
[
H(c1X

2 + 2c2X + c3)−Hf (c1X
3 + 2c2X

2 + c3X)
]
. (2.193)

At this point the Friedmann background equations can be derived as the Einstein equations
for the action (2.187). Since the GR sector is untouched by the theory, it is fair to think
that no new contributions should appear in the Einstein tensor. On the contrary, the
constraints imposed upon the theory enter in a non-trivial way into the energy-momentum
tensor defined as

Tµν = − 2√
−g

δ

δgµν
(
√
−gLm) = − 2

N
√
γ

δ

δgµν
(
√
−gLm), (2.194)

where Lm contains all the terms inside (2.187) but the GR-contribution. Raising indices
with the metric (2.129), one finds for the time component

T 0
0 = − 1

a3

δ

δN
(
√
−gLm) = −ρg − ρλ − ρm, (2.195)

ρg =
µ2M

2
(c1X

3 + 3c2X
2 + 3c3X + c4), (2.196)

ρλ = −
3M2

Pµ
2M

2N

[µ2M

8N
(c1X

2 + 2c2X + c3)2λ2 +

+H(c1X
2 + 2c2X + c3)λ

]
, (2.197)

ρm =
1

a3

δ

δN
(
√
−gLmat), (2.198)

where ρg denotes the energy density contribution arising from the precursor action, while
ρλ accounts for the contribution from the additional constraints. With this arguments the
Friedmann equation is written as

E0 ≡ 3M2
PH

2 − ρm − ρλ − ρg = 0. (2.199)

Moreover, varying the action with respect to λ, one obtains a further constraint on the
equations of motions

Eλ ≡ δSMTMG

δλ
= 0

=
[
µ2Mλ(c1X

2 + 2c2X + c3) + 4N(H −HfX)
]
(c1X

2 + 2c2X + c3). (2.200)

For the purposes of this review, it is not necessary to go through the whole dynamics
of the action (2.187). What we really care the most is to understand how cosmological
perturbations evolve and propagate across the Universe. For all the details the reader
can look at [57]. Let’s just mention that the Friedmann equation can be coupled with its
derivative together with the Bianchi identity and (2.200) to give λ = 0 and ρλ = Pλ = 0.
Then equation (2.200) separates between two branches of solutions.

43



CHAPTER 2. MASSIVE GRAVITY IN COSMOLOGY

- Self-accelerating branch: The variation of the action with respect to λ is solved by

c1X
2 + 2c2X + c3 = 0, (2.201)

which implies X = constant and

ρg =
µ2M2

P

2
(c4 − 3c2X

2 − 2c1X
3) = constant, (2.202)

Pgδ
i
j = − 2

Na3
γik

δ

δγkj
= −

[N(c2X
2 + 2c3X + c4)]µ2M2

P

2N
δij , (2.203)

wg ≡
Pg
ρg

= −1. (2.204)

Then, at the background level, the new contributions arising from the additional
constraints behave like a pure cosmological constant.

- Normal branch: after having set λ = 0, this branch corresponds to the solution of
(2.200) for which

H = XHf . (2.205)

Since this time X is not required to be constant, even the energy density ρg can
change in time, highlighting a different behavior with respect to the self-accelerating
branch. From (2.196) it is possible to isolate a cosmological constant component ρΛ

and a time dependent dark component ρX in the following way

ρg = ρΛ + ρX ,

ρΛ =
c4µ

2M2
P

2
, (2.206)

ρX =
µ2M2

P

2
(3c3X + 3c2X

2 + c1X
3). (2.207)

2.3.2 Cosmological perturbations in MTMG

The evolution equations for the perturbed fields are obtained by varying the action (2.187)
expanded at second order in perturbation theory. In ref. [57] it is shown that the mentioned
action does not bring significant differences with respect to the GR case in the scalar and
vector sectors. This is quite expected, since the MTMG does not allow the propagation
of extra graviton modes. For this reason we will skip the discussion about these modes,
assuming that both scalars and vectors evolve exactly as in GR, and focusing on the
tensor case. Notice firstly that no contributions are expected to arise from the Lagrange
multipliers λ and λi. Indeed the only possibilities one has to build a scalar out of a tensor
field, are to contract its free indices with the metric γij or with its momentum ki (i.e.
with spatial derivatives in coordinate space). Since by definition tensor perturbations are
transfer and traceless, both these contraction vanish. For the same reasons we cannot
build a vector field out of a transverse and traceless tensor. Moreover one can prove that
the constraints C0 and Cni do not receive any contribution from tensor perturbations, such
that these terms can be safely forgotten when writing down the quadratic action for tensor
modes. This is instead derived by expanding at second order each term of the precursor
action. Therefore, without any computation, we already learn that this theory provides
the same equation of motion for tensor modes of the dRGT theory, since only the precursor
sector of the full theory is involved. Before expanding these terms it is necessary to write
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down the spatial vielbeins perturbed up to second order. Their expression can be derived
from the definition (2.128), which, at second order in perturbation theory, demands

γij = a2(δij + χij +
1

2
δmnχimχjn) = δIJe

I
i e
J
j . (2.208)

In order to derive the expression of the vielbein, we start with the ansatz9

eIj = a
(
δIj + αδIkχkj − βδIkδmnχkmχin

)
, (2.209)

and solve (2.208) for the arbitrary coefficients α and β. One can verify that, up to second
order, the above relation is satisfied by α = 1/2 and β = 1/8, which leads to

eIj = a

(
δIj +

1

2
δIkχkj +

1

8
δIkδmnχkmχin

)
. (2.210)

Being the fiducial metric unperturbed, the inverse fiducial vielbein is simply E j
I = ã−1δjI ,

and then it is easy to compute the tensor

Kmn = E m
M eMn = X−1

(
δmn +

1

2
δmkχkn +

1

8
δmkδαβχαkχβn

)
K = Knn = X−1

(
3 +

1

8
χijχ

ij

)
. (2.211)

It is possible now to take its inverse by think of a simple Taylor expansion

Ymn = E m
M eMn = X

(
δmn −

1

2
δmkχkn +

1

8
δmkδαβχαkχβn

)
Y = Ynn = X

(
3 +

1

8
χijχ

ij

)
. (2.212)

As consistency check one can verify that Kmn Ynr = δmr and Kml Kln = X−2(δmn + δmkχnk +
1
2δ
mkδijχkiχnj) = γ̃mkγnk are satisfied. With these ingredients it is possible now to ex-

pand each term of the precursor action. Considering only quadratic terms in the tensor
perturbations one obtains

S1 = −µ2c1a
3X3M

(
X−1

8
χijχ

ij

)
= −µ

2a3N

8
c1rX

3χijχ
ij ,

S2 = −µ
2a3

2
X2c2

(
N

4
+
MX−1

4

)
χijχ

ij = −µ
2a3N

8
c2X

2 (1 + r)χijχ
ij ,

S3 = −µ
2a3N

8
c3Xχijχ

ij

S4 = 0. (2.213)

To be honest, we have been a bit fast in evaluating the terms S3 and S4, that need some
more computations because of the determinant of the perturbed spatial metric, which
actually may receive contributions from tensor perturbations. However, this is not the
case, as we will prove now. Let’s rewrite for convenience of notation

γij ≡ a2γ̄ij = a2(δij + hij). (2.214)
9Notice indeed that, since χij is symmetric and traceless, the third term of equation (2.209) is the

only independent combination of two filed fluctuations we can build, as one can realize by permuting the
indices of the Kronecker deltas
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Denoting γ̄ = det γ̄, the determinant of the perturbed metric can be expanded in Taylor
series as

γ̄ = det(δij) + hij
∂γ̄

∂γ̄ij
|γ̄ij=δij+

1

2!
hijhkl

∂2γ̄

∂γ̄ij∂γ̄kl
|γ̄ij=δij+o(h

3). (2.215)

Using the well known property of the determinant ln(detA) = tr (lnA), with A a generic
squared matrix, one can verify that

∂γ̄

∂γ̄ij
= γ̄ γ̄ij , (2.216)

while the trivial condition A−1A = 1 implies

∂γ̄kl
∂γ̄ij

= δki δ
l
j ,

∂γ̄kl

∂γ̄ij
= −γ̄kiγ̄lj . (2.217)

Finally (2.215) evaluates to

γ̄ = 1 + hijδ
ij +

1

2
hijhkl

(
δijδkl − δikδjl

)
. (2.218)

Replacing hij = χij + 1
2δ
mnχimχjn) and exploiting the properties of tensor perturbations,

this equation becomes

γ̄ = 1 +
1

2
χijχ

ij +
1

2
(−χijχij) = 1, (2.219)

and this proves the statement √γ = a3.
Turning back to the quadratic action, nothing new happens in the GR-sector, which

get expanded as usual as shown in [52]. In the end, summing up all the above terms, one
can write the quadratic action for tensor perturbations as

S
(2)
T =

M2
P

8

∫
d4xNa3

[
χ̇ijχ̇

ij

N2
− ∂kχij∂

kχij

a2
−m2χijχ

ij

]
, (2.220)

where the effective mass for tensor modes after inflation is defined as

m2 =
1

2
µ2X [c2X + c3 + rX(c1X + c2)] , (2.221)

and is valid in both the self accelerating and normal branches. Setting N = 1 in a FLRW
Universe and and passing to conformal time, the action becomes

S
(2)
T =

M2
P

8

∫
d4x a2

[
χ′ijχ

ij ′ − (k2 + a2m2)χijχ
ij
]
, (2.222)

which is exactly the same equation (2.34) with a different mass parameter. Then its solution
can be taken on the same form of the one found in Section (2.1.1) by just replacing the
correct definition of the mass. Notice that the mass parameter entering inside the equations
of motion µ is different from the Lagrange parameter m. In the following, when we speak
about the graviton mass after inflation, we refer to the parameter µ, which plays the role
of an effective mass.

46



Chapter 3

Anisotropies in the SGWB with
massive gravitons

The aim of this chapter is to study the origin of the anisotropies in the graviton popula-
tion, and in particular how a possible not vanishing mass can affect the population. This
work will focus only on the SGWB from cosmological origin, relying on the possibility,
that we may reach with future interferometers, to distinguish them from the astrophysical
GW background, which gets contributions from a huge population of unresolved sources.
A way to discriminate between the two is shown in [65]; basically the distinction is based
on a frequency separation, since the emitted frequency of any astrophysical source is con-
strained by its angular velocity. As one does for the CMB, the stochastic nature that
characterizes the background of cosmological gravitational waves legitimizes the definition
of a distribution function describing the graviton population, and to study the anisotropies
of this distribution through an approach based on the Boltzmann equation. This equation
indeed encodes the time evolution of the distribution function of a given particle species ac-
counting for the Universe expansion and any possible interaction which can occur between
the particle species and the thermal plasma. On the contrary, what distinguish gravitons
from photons is the fact that they are collisionless and not thermally distributed. The
latter feature results in a frequency dependence of the angular anisotropies which instead
appears only at second order in the case of the CMB. Restricting the analysis to GWs at
those scales that can be probed by our detectors, it is reasonable to focus only on large
cosmological scales (usually one considers those scales which re-enter the horizon at late
time, at least after the beginning of the matter domination in the Universe). This scales’
selection provides a hierarchy q � k between the GW comoving momentum q and the
comoving momentum k of the large scales perturbations, since primordial GWs are sup-
posed to carry an energy comparable with the energy scale of the Universe at the time they
were formed. On the other hand, small scale perturbations are averaged out during the
propagation of the GW, and thus they give no sensible contribution to the anisotropies.
The path to follow is the same of the case of the CMB, as it is already outlined in many
texts [70, 67]. Firstly, in section (3.1), we derive the collisionless Boltzmann equation for
the graviton distribution function by considering just the contribution coming from the
Liouville operator. Then, in section (3.2), we solve the Boltzmann equation through a per-
turbative approach, expanding the graviton distribution function around the backgroung
FRW solution up to first order. As we will see, the first order solution is characterized by
spatial fluctuations. In section (3.3) we show how to relate these fluctuations to physical
observables, and in particular to the fluctuation in the energy density of the GWs.

Besides the energy density fluctuations, we are mostly interested in the produced
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anisotropy, since it is the real physical quantity we face with while dealing with inter-
ferometer observations. For this reason in the last section (3.4) of this chapter we prepare
the field for the later studies of the n-point correlation functions. In particular we project
the fluctuations on the orthonormal the basis of spherical harmonics, since, as we will see,
they represent the preferential basis when working with angular correlators.

3.1 Boltzmann equation for massive gravitons

The statistical nature of the GWs generated by cosmological processes allows to define a
graviton distribution function, from which one can eventually extrapolate any desired ob-
servable that characterizes the graviton population. Since the typical graviton production
mechanisms we have in mind had been taking place below the Plank energy scale, and
then during an epoch where the quantum gravitational effects are thought to be not very
significant, the initial graviton population is not expected to be thermal, which on the
contrary is the case of photons. This fact forbids us to give any guess about the shape of
distribution function, which then will be treated in full generality as a function f(xµ, pµ)
with an implicit dependence on both the position xµ and the momentum pµ = dxµ/dλ,
with λ an affine parameter that parametrizes the GW geodesics. The evolution of the
distribution function is governed by the Boltzmann equation:

L[f ] = C[f(λ)] + I[f(λ)]. (3.1)

The collision term C[f(λ)] takes into account any interaction between gravitons and the
thermal plasma. Since the thermal bath is mainly composed by photons, the graviton-
photons interaction is thought to bring the dominant contribution to the collision term.
However in [64] it has been proved that this interaction provides a very small contribution to
the CMB anisotropy, and we can then neglect it for our purposes. Moreover, as explained
in [68], a consistent definition of graviton beyond the framework of the quantum field
theories is possible provided the possibility of gravitons’ self-interactions. Nevertheless,
these collisions are expected to be driven by a weak interaction whose coupling constant κ =
2M−1

p is many order of magnitude smaller then the typical coupling constants describing
the other standard model interactions. Therefore any graviton self-interaction happens to
be even more suppressed, and then can be neglected in our computations. The emissivity
term I[f(λ)] instead considers both cosmological and astrophysical processes. However, as
long as we focus on the stochastic GW background of cosmological origin, we can forget
about the latter contribution, and treat the former as an initial condition on the distribution
function. After these considerations we only remain with the Liouville operator L ≡ d/dλ
describing the collisionless time evolution of the graviton distribution:

df

dλ
=
dη

dλ

df

dη
= 0. (3.2)

Since the first factor on the right hand side is by definition the time component of the
physical momentum pµ, which in general is non vanishing, we can express the collisionless
Boltzmann equation on a flat perturbed FLRW universe as

df

dη
=
∂f

∂η
+
∂f

∂xi
dxi

dη
+
∂f

∂q

dq

dη
+
∂f

∂ni
dni

dη
= 0, (3.3)

where n̂ ≡ p̂ identifies the direction of propagation of the GW, while q ≡ |~p|a is the
modulus of the comoving momentum ~q, defined by

gijp
ipj =

q2

a2
, (3.4)
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and the metric gµν is the usual perturbed metric on a FLRW background in the Poisson
gauge

ds2 = a2(η)
[
−e2Φdη2 +

(
e−2Ψδij + χij

)
dxidxj

]
. (3.5)

Equation (3.3) contains many terms which arise from graviton relativistic dynamics, which
then deserves a bit of attention. Denoting with m the mass charge of gravitons, we can
exploit the mass-shell condition1

p2 = gµνp
µpν = g00(p0)2 +

q2

a2
= −m2 (3.6)

to obtain an expression for the time and spatial components of the physical momentum

p0 =
e−Φ

a

(
q2

a2
+m2

)1/2

≡ e−Φ

a
E, (3.7)

pi =
q

a2
nieΨ

(
1− 1

2
χkln

knl
)
, (3.8)

having defined the graviton energy as

E =

√
q2

a2
+m2. (3.9)

These results immediately allow us to express the factor dxi/dη appearing in (3.3):

dxi

dη
=
pi

p0
=

q

aE
nieΨ+Φ

(
1− 1

2
χkln

knl
)
. (3.10)

One can appreciate the physical meaning of this equation remembering that the scalar per-
turbations Φ and Ψ in the Poisson gauge acquire the meaning of gravitational potentials,
and both have negative values on overdense regions as the effect of the gravitational red-
shift. Therefore (3.10) is telling us that gravitons are slowed down while traveling through
overdense regions. However, since the zero-order distribution function of graviton is sup-
posed to be isotropic and homogeneous, as it is defined on a FLRW background spacetime,
the spatial derivative of the distribution function is at least a first-order term, and then we
can safely retain only the zero-order contribution of (3.10) inside the Boltzmann equation.

Concerning the next term in (3.3), we can evaluate the factor dq/dη exploiting the
geodesic equation for gravitons that, by a simple reparametrization in terms of the confor-
mal time, can be written as:

dp0

dη
+ Γ0

µν

pµpν

p0
= 0. (3.11)

Remembering (3.7), and defining H ≡ a′/a, we can straightforwardly compute the first
term

dp0

dη
= −dΦ

dη

E

a
e−Φ − HE

a
e−Φ +

e−Φ

a

dE

dη
, (3.12)

such that the geodesic equation can now be rearranged in terms of the time derivative of
the graviton energy:

dE

dη
= HE + E

dΦ

dη
− Γ0

µν

pµpν

p0
aeΦ. (3.13)

1The negative sign in front of the mass term comes from the conventional choice of using the mostly
positive signature metric.
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In Appendix (A) we have derived the linearly perturbed Christoffel symbols. We can now
specialize the results (A.7) to our present case, where h00 = −2Φ and hij = −2Ψδij + χij ,
while the mixed space-time components of the metric are all vanishing. Therefore the
Christoffel symbols with fixed time upper index, up to first order, are:

Γ0
00 = H+ Φ′, Γ0

0i = ∂iΦ,

Γ0
ij = Hδij +

1

2
χ′ij −Ψ′δij +Hχij − 2HδijΦ− 2HδijΨ, (3.14)

and the last terms of (3.13) read:

Γ0
00 p

0aeΦ = (H+ Φ′)E,

Γ0
0i p

iaeΦ =
q

a
ni∂iΦ,

Γ0
ij

pipj

p0
aeΦ =

q2

a2E

(
H−Ψ′ +

1

2
χ′ijn

inj
)
, (3.15)

where all terms beyond the first order have been neglected. Summing up all the components
we get2:

dE

dη
= E

(
dΦ

dη
− Φ′

)
− 2

q

a
ni∂iΦ−

q2

a2E

[
H−Ψ′ +

1

2
χ′ijn

inj
]

= −q
a
ni∂iΦ−

q2

a2E

[
H−Ψ′ +

1

2
χ′ijn

inj
]
. (3.17)

Lastly, differentiating the mass-shell condition (3.6) we obtain

E dE = p dp =
q

a2
dq − q2

a3
da, (3.18)

in such a way that we are now able to transform the time derivative of the energy E in a
time derivative of the (modulus of the) comoving momentum q. Indeed, inserting the last
result inside (3.17), we easily arrive to

dq

dη
= q

[
Ψ′ − aE

q
ni∂iΦ−

1

2
χ′ijn

inj
]
. (3.19)

For what concerns the last term of the Boltzmann equation (3.3) instead, we can safely
assume that it is an higher order contribution. Indeed we can consider that df/dni is
a term of first order simply relying again on the fact that the distribution function f is
defined on a flat FLRW background spacetime. On the other hand the factor dni/dη is of
first order as well, because in absence of perturbations any particle would pursue a straight
path, then vanishing the derivative term. It’s only because of the gravitational potentials
Φ and Ψ and the tensor modes χ that a particle could deviate from its path; but this
dependence on the perturbation modes immediately implies that this term could give non
vanishing contributions at least at first order. All in all this whole last term turns out to
be at least at second order.

2Notice that the 0i-component must be counted twice, and that the total derivative of the scalar
potential Φ appearing in (3.13) can be decomposed as

dΦ

dη
=
∂Φ

∂η
+
dxi

dη

∂Φ

∂xi
= Φ′ +

q

aE
ni∂iΦ, (3.16)

where the result (3.10) at zero order has been used in the second equality
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At the end of the day, the results found so far, in particular (3.10) and (3.19), allows
us to express the collisionless Boltzmann equation (3.3) in the more explicit form:

∂f

∂η
+

q

aE
ni∂if +

[
Ψ′ − aE

q
ni∂iΦ−

1

2
χ′ijn

inj
]
q
∂f

∂q
= 0. (3.20)

This result extends in a natural way the analysis of [63] performed for a scalar perturbed
FLRW Universe. In order to appreciate the predictions of this result, we immediately
notice that equation (3.20) recovers the collisionless Boltzmann equation for photons in
the limit where E = q/a. It is easy to see that the ratio aE/q corresponds indeed to
the graviton phase velocity (which is always grater the the light velocity), and that it
approaches to the light velocity as the graviton mass m goes to zero. Denoting as v the
graviton group velocity3 defined by the relation p = γmv and recalling the definition of
the relativistic factor γ = (1− v2)−1/2, we can evaluate the ratio as

q

aE
=

(
1 +

a2m2

q2

)− 1
2

=

(
1 +

1

γ2v2

)− 1
2

= v, (3.21)

where in the second step we used the definition of the physical momentum p = q/a = γmv.
As stated above, the first equality shows clearly that the massless limit sends the ratio
q/aE, and thus the graviton velocity, to one, recovering then the collisionless Boltzmann
equation for photons.

3.2 Formal solution

As we are perturbing the spacetime around the FLRW background, we can decompose the
distribution function in an isotropic and homogeneous part and a perturbed one. At first
order this decomposition reads:

f(η, xi, q, ni) = f̄(q) + δf (1)(η, xi, q, ni) = f̄(q)− q∂f̄
∂q

Γ(η, xi, q, ni). (3.22)

Inserting this decomposition inside (3.20), we can solve perturbatively the Boltzmann
equation order by order. As expected, at zero order it gives

∂f̄

∂η
= 0. (3.23)

From this equation we can already learn some interesting physics of gravitons. Indeed
the equation is solved by any distribution function of the type f = f̄(q). Hence the
the physical momentum of each graviton is expected to scale as a−1, while the number
density n ∝

∫
d3pf̄(q) gets diluted as a−3 by the Universe expansion. This fact is directly

supported by (3.19), which at zero order implies q being time independent, and then the
mentioned scaling for the physical momentum p. These features are shared by photons as
well, even though they are thermally distributed. Therefore we see that the scaling of the
momentum with the scale factor a does not rely on the distribution being thermal, but it is
instead a consequence of the free propagation through an expanding FLRW Universe. As
one can see from equation (3.19), metric perturbations (as possible collision terms) break
the free streaming of gravitons introducing a time dependence on its comoving momentum.

3In the following we will refer to the group velocity simply as the graviton velocity, while we specify
the phase velocity when we will deal with it.
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The first order Boltzmann equation instead becomes an equation for the anisotropy
Γ(η, xi, q, ni), that is:

∂Γ

∂η
+

q

aE
ni
∂Γ

∂xi
= S(η, xi, q, ni), (3.24)

where
S(η, xi, q, ni) = Ψ′ − aE

q
ni∂iΦ−

1

2
χ′ijn

inj (3.25)

denotes the source function that takes into account all the effects arising from the metric
perturbations. Moreover notice that the the q-dependence of the source function is only
contained inside the ratio aE/q. This dependence vanishes in the massless case, where the
ratio turns out to be equal to 1. In order to solve this equation, it is convenient to pass
to the momentum space operating a Fourier transform over the spatial coordinates on the
anisotropy and source term:

Γ ≡
∫

d3k

(2π)3
ei
~k·~xΓ(η,~k, q, n̂), (3.26)

S ≡
∫

d3k

(2π)3
ei
~k·~xS(η,~k, q, n̂), (3.27)

with
S(η,~k, q, n̂) = Ψ′ − ikµaE

q
Φ− 1

2
χ′ijn

inj . (3.28)

This way the first order Boltzmann equation in momentum space reads:

Γ′ + ikµ
q

aE
Γ = S, (3.29)

having defined µ ≡ k̂ · n̂ the cosine angle between the wave vector ~k of each Fourier mode
and the direction of propagation n̂ of the GW. Equation (3.29) is a first order differential
equation, whose general solution can be written as

Γ(η,~k, q, n̂) =

∫ η

ηin

dη′e−ikµl(η,η
′)
[
Γ(η′,~k, q, n̂)δ(η′ − ηin) + S(η′,~k, n̂)

]
, (3.30)

where, to simplify the notation, we have defined

l(η, η′) ≡
∫ η

η′
dη′′v(η′′, q), v(η, q) ≡ q

aE
, (3.31)

accounting for a generic time dependence of the graviton velocity v(η, q). Physically speak-
ing, l(η, η′) is the distance traveled by gravitons from the time η′ to η 4. Again in the
massless limit this distance turns out to be simply the difference between the two extreme
values of the conformal time, as expected for photons. Notice the delta function multiply-
ing the first term in (3.30) that ensures the right initial condition when η = ηin. One can

4One can further convince himself of this fact by considering the line element of a massive particle

ds2 = −dτ2 = gµνdx
µdxν = −a2dη2 + a2dl2,

with τ the proper time of the particle. This expression can be rearranged in favor of the spatial distance

dl2 = dη2
(

1− dτ2

a2dη2

)
= dη2

(
1− γ−2) = v2dη2.
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3.2. Formal solution

easily convince himself that the above solution is the correct one by simply performing the
integration on the delta factor

Γ(η,~k, q, n̂) = Γ(ηin,~k, q, n̂)e−ikµl(η,ηin) +

∫ η

ηin

dη′e−ikµl(η,η
′)S(η′,~k, n̂), (3.32)

and evaluating its derivative with respect to the conformal time5

Γ′ = −ikµvΓ(ηin,~k, q, n̂)e−ikµl(η,ηin) + S(η,~k, n̂)e−ikµl(η,η)

−ikµ q

aE

∫ η

ηin

dη′e−ikµv(η,η′)S(η′,~k, n̂), (3.33)

which straightforwardly verifies (3.29) if we remember that l(η, η) = 0.
Now we would like to rewrite the formal solution in such a way to isolate the boundary

conditions contribution from the ones describing the effects of the propagation of gravitons.
For this purpose it is useful to work out the Φ-dependence appearing in (3.30) inside the
source term as follows:

−
∫ η

ηin

dη′e−ikµl(η,η
′)ikµv−1Φ(η′,~k) = −

∫ η

ηin

dη′
∂e−ikµl(η,η

′)

∂η′
v−2Φ(η′,~k)

= −e−ikµl(η,η′)v−2Φ(η′,~k)|ηηin+

∫ η

ηin

dη′e−ikµl(η,η
′)
∂
[
v−2Φ(η′,~k)

]
∂η′

= −v−2Φ(η,~k) +

∫ η

ηin

dη′e−ikµl(η,η
′)

{
v−2Φ(η′,~k)δ(η′ − ηin)

+
∂
[
v−2Φ(η′,~k)

]
∂η′

}
. (3.34)

The monopole term v−2Φ(η,~k) gives an isotropic contribution. Since our final purpose is
to compute the angular power spectrum of the anisotropies, this term can be disregarded,
and we can now express the formal solution in Fourier space in the form:

Γ(η,~k, q, n̂) =

∫ η

ηin

dη′e−ikµl(η,η
′)

{[
Γ(η′,~k, q, n̂) + v−2Φ(η′,~k)

]
δ(η′ − ηin)

+
∂
[
Ψ(η′,~k) + v−2Φ(η′,~k)

]
∂η′

− 1

2
ninj

∂χij(η
′,~k)

∂η′

}
. (3.35)

The term multiplying the delta function is a boundary term that keeps memory of the ini-
tial conditions. In the massless case this is the only one that preserves the dependence on
the GW’s frequency q. Moreover, while the other term contain the dependence on the prop-
agation direction only through the cosine angle µ ≡ k̂ · n̂, in principle the same dependence
in Γ(ηin,~k, q, n̂) could be more general. However, being that term an initial condition term,
the presence on such a dependence would imply the existence of an anisotropic mechanism
of production of GW during primordial times across the whole Universe that would spoil
the assumption of an exact FLRW background spacetime. For this reason in the following
we will disregard the dependence on the director n̂ in the initial condition term, that is
we assume Γin = Γ(ηin,~k, q). Notice further that a non vanishing graviton mass does not

5For ease of notation, the functional dependence of the graviton velocity v(η, q) is here understood
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introduce any additional directional dependence, as velocity correction terms only enter
with the modulus of the comoving momentum q.

The form of equation (3.35) suggests to divide the solution as

Γ(η,~k, q, n̂) ≡ ΓI(η,~k, q, n̂) + ΓS(η,~k, q, n̂) + ΓT (η,~k, q, n̂), (3.36)

where the subscripts I,S and T denote respectively the Initial, Scalar and Tensor sourced
terms, defined by

ΓI(η,~k, q, n̂) = e−ikµl(η,ηin)Γ(ηin,~k, q), (3.37)

ΓS(η,~k, q, n̂) =

∫ η

ηin

dη′e−ikµl(η,η
′) ×

×

{
v−2Φ(η′,~k)δ(η′ − ηin) +

∂
[
Ψ(η′,~k) + v−2Φ(η′,~k)

]
∂η′

}
, (3.38)

ΓT (η,~k, q, n̂) = −n
inj

2

∫ η

ηin

dη′e−ikµl(η,η
′)∂χij(η

′,~k)

∂η′
. (3.39)

As we will see, this decomposition will reveal itself very useful under the assumption that
the three terms are not cross-correlated. In the end this assumption will result in three
different sets of angular power spectra.

3.3 Energy density perturbations

The scalar and tensor metric perturbations give rise to fluctuations on the probability den-
sity distribution of the graviton population. These inhomogeneities, as we will see in this
section, then reflect in perturbations of the SGWB energy density we may detect nowadays.
This fact selects the energy density as the privileged channel to discover anisotropies and
inhomogeneities in the SGWB, and lead us to the study of its perturbations. We define
the SGWB energy density as

ρGW (η0, ~x) ≡
∫
d3pEf(η0, ~x, q, n̂)

=

∫
d3q

a3

√
q2

a2
+m2f(η0, ~x, q, n̂)

=

∫
d ln q

q4

a4

√
1 +

a2m2

q2

∫
d2n̂f(η0, ~x, q, n̂). (3.40)

Defining the spectral energy density

ΩGW (η0, ~x, q) ≡
q4

a4ρcrit,0

√
1 +

a2m2

q2

∫
d2n̂f(η0, ~x, q, n̂), (3.41)

where ρcrit,0 = 3H2M2
p /a

2 denotes the present critical energy density, the SGWB energy
density can be written in the more compact form

ρGW (η0, ~x) = ρcrit,0

∫
d ln qΩGW (η0, ~x, q). (3.42)

For the sake of convenience it is common to introduce the quantity ωGW (η0, ~x, q,m, n̂)
defined by

ΩGW (η0, ~x, q) ≡
∫
d2n̂ ωGW (~x, q, n̂), (3.43)
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that is

ωGW (η0, ~x, q, n̂) ≡ q4

a4ρcrit,0

√
1 +

a2m2

q2
f(η0, ~x, q, n̂)

=
q4

a4ρcrit,0

√
1 +

a2m2

q2

[
f̄(η0, q)− q

∂f̄(η0, q)

∂q
Γ(η0, x

i, q, ni)

]

=
q4

a4ρcrit,0

√
1 +

a2m2

q2
f̄(η0, q)

[
1− ∂ ln f̄(η0, q)

∂ ln q
Γ(η0, x

i, q, ni)

]
≡ ω̄GW (η0, q)

[
1 +

δω(η0, ~x, q, n̂)

ω̄GW (η0, q)

]
, (3.44)

where in the last step we have separated the expression of ωGW (~x, q, n̂) in an homogeneous
component

ω̄GW (η0, q) ≡
q4

a4ρcrit,0

√
1 +

a2m2

q2
f̄(q), (3.45)

and an inhomogeneous one

δGW (η0, ~x, q, n̂) ≡ δω(η0, ~x, q, n̂)

ω̄GW (η0, q)
= −∂ ln f̄(q)

∂ ln q
Γ(η0, x

i, q, ni), (3.46)

which is usually called SGWB energy density contrast. With this decomposition we can
compute the homogeneous contribution to the total spectral energy density as

Ω̄GW (η0, q) ≡
∫
d2n̂ ω̄GW (η0, q) = 4πω̄GW (η0, q), (3.47)

while, inverting (3.45), the homogeneous part of the density distribution function can be
written as

f̄(q) =
a4ρcrit,0

4πq4

[
1 +

a2m2

q2

]−1/2

Ω̄GW (η0, q). (3.48)

In order to write explicitly the SGWB density contrast, we consider its logarithmic deriva-
tive

∂ ln f̄(q)

∂ ln q
= −4− 1

2

∂ ln
[
1 + a2m2

q2

]
∂ ln q

+
∂ ln Ω̄GW (η0, q)

∂ ln q

= −4 +

(
1 +

q2

a2m2

)−1

+
∂ ln Ω̄GW (η0, q)

∂ ln q
. (3.49)

Notice that the second term is a correction arising from a non vanishing graviton mass,
and it is the only term carrying information about the mass. In the massless limit indeed
this expression recover the result for the massless case shown in [59]. In the end the SGWB
energy density contrast is

δGW (η0, ~x, q, n̂) =

[
4− ∂ ln Ω̄GW (η0, q)

∂ ln q
−
(

1 +
q2

a2m2

)−1
]

Γ(η0, x
i, q, ni). (3.50)

This expression clearly shows how the energy density contrast of the SGWB is related
to the anisotropies generated by the metric perturbations. Any experimental measure of
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this contrast in the background of gravitational waves energy density would unequivocally
confirm the presence of such a mechanism of production of perturbation.

Really we can do even more. The detection of the energy density contrast would give us
information about the amplitude of primordial fluctuations, but how about their statistical
properties? Indeed many models of production of anisotropies in the SGWB have been
already proposed and studied, and we would like to have some arguments to establish their
viability. A possible and powerful way to perform this selection is to study the statistical
properties of the generated anisotropies. In particular we are interested in the correlation
functions of the energy density contrast δωGW , which, thanks to the relation (3.50), can
be more easily studied in terms of correlators of the fluctuations Γ. With this purpose in
mind, in the following of this chapter we will pose the basis for a statistical analysis of
the SGWB; in particular we want to arrange the most convenient mathematical set up to
apply to our analysis, which is to expand the fluctuations in multipoles.

3.4 Multipole expansion

As we will understand more deeply in chapter (4), the statistical features characterizing the
pattern of fluctuations Γ(n̂) on the sky are encoded inside the angular n-point correlation
function

〈Γ(n̂1)Γ(n̂2) . . .Γ(n̂n)〉, (3.51)

where the brackets stand for the ensemble average. Actually it is worth mentioning that
experimentally what we can observe is instead a spatial average over regions of the sky,
since we have only one possible realization of our Universe. The best we can do is to is to
study widely separated regions of the Universe that are causally disconnected, and consider
them as different measurement from the same ensemble. By averaging over a sufficiently
large volume, we expect the spatial average to approach the ensemble one. What we are
doing then, in order to reconcile observations with theoretical predictions, is substituting
a spatial average with an ensemble one. This assumption goes under the name of Ergodic
hypothesis [67], and it is usually taken as an axiom in cosmology. Therefore in the following
we will exploit this assumption and spatial and ensemble averages will be regarded as the
same.

Unfortunately, in general angular correlation functions of the fluctuations at different
angular scales seem not to be uncorrelated, and this would provide a huge complication
in the statistical analysis of anisotropy. Hence it turns out to be useful to expand the
fluctuation (3.35) in multipoles in the basis of spherical harmonics Y`m(n̂), which represents
a complete set of eigenfunctions of the Laplace equation defined on the surface of a sphere.
Since we are going to use intensively the properties of spherical harmonics, we found
appropriate to give a brief review of their features in a dedicate Appendix (B). With the
normalization condition

∫
d2n̂Y`mY

∗
`′m′ = δ``′δmm′ , the expansion reads

Γ(n̂) =
∑
`

∑̀
m=−`

Γ`mY`m(n̂), Γ`m =

∫
d2nΓ(n̂)Y ∗`m(n̂). (3.52)

As we will see, the angular spectra built from the coefficients Γ`m at different angular
scales, that is at different `, turns out to be uncorrelated if the perturbations are Gaussian
fields (this comment will be more clear with the knowledge of chapter (4)). Even non-
Gaussian fields are reasonably expected to be uncorrelated as long as the departure from
Gaussianity is weak. The aim of this procedure is to relate the abstract anisotropy Γ to
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the observable coefficients Γ`m. Expanding in momentum space, they are written

Γ`m =

∫
d2nY ∗`m(n̂)

∫
d3k

(2π)3
ei
~k·~x
[
ΓI(η,~k, q, n̂) + ΓS(η,~k, q, n̂) + ΓT (η,~k, q, n̂)

]
≡ Γ`m,I + Γ`m,S + Γ`m,T . (3.53)

This way we have divided the problem in three different pieces, which we are now going to
face separately one at a time.

3.4.1 Initial condition term

The above discussion about the n̂ dependence of the initial condition term simplifies this
contribution to

Γ`m,I =

∫
d3k

(2π)3
ei
~k· ~x0Γ(ηin,~k, q)

∫
d2nY ∗`m(n̂)e−ikµl(η0,ηin), (3.54)

where η0 denotes the present conformal time and x0 our location within the chosen coor-
dinate system, that may be possibly set as the origin of the coordinate system. We can
rewrite the second integral remembering that µ = k̂ · n̂ and by expanding the complex
phase as

e−ikl(η0,ηin)k̂·n̂ =
∑
l

(−i)`(2`+ 1)j` [kl(η0, ηin)]P`(k̂ · n̂)

= 4π
∑
`

∑̀
m=−`

(−i)`j`[kl(η0, ηin)]Y`m(n̂)Y ∗`m(k̂), (3.55)

with j` and P` respectively the spherical Bessel function and the Legendre polynomial of
degree `. This way, exploiting the normalization condition of the spherical harmonics, one
readily arrives to

Γ`m,I = 4π(−i)`
∫

d3k

(2π)3
ei
~k· ~x0Γ(ηin,~k, q)Y

∗
`m(k̂)j`[kl(η0, ηin)]. (3.56)

3.4.2 Scalar sourced term

Differently from the initial condition term, the scalar and tensor sourced terms are inte-
grated contributions taking into account the whole period of propagation of the GW. As
stated in the introduction of this chapter, small scale perturbations (k � q) get indeed
diluted by the expansion of the Universe and averaged out during the graviton propaga-
tion. This allows to focus only on large scales perturbations, namely k � q, that re-enter
the horizon at late time, at least after the epoch of matter-radiation equality. These
large scale modes remain in linear regime even today, and this allows us to write them
as the combination of a stochastic variable ζ(~k), representing the primordial value of the
scalar perturbation set by the primordial mechanisms (as inflation) that establish the ini-
tial conditions, times a transfer function T (η, k)6 that describes the time evolution of the
perturbation itself:

Φ(η,~k) = TΦ(η, k)ζ(~k), Ψ(η,~k) = TΨ(η, k)ζ(~k). (3.57)
6Notice that the transfer function depends just on the scale of the wavenumber, and not on its direction.

This is indeed the case because an anisotropic evolution would spoil either the assumption of a FLRW
background or the first order expansion.
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As just said, the main mechanism responsible for the production of the SGWB is thought
to be the inflation. In this mechanism there exists a preferential quantity in use to charac-
terize the primordial scalar perturbation, that is the gauge invariant primordial curvature
perturbation ζ defined by

ζ ≡ Φ +Hδρ
ρ′
, (3.58)

with ρ the total energy density; this quantity indeed remains constant on super-horizon
scales in absence of isocurvature perturbations, whose contribution is strongly constrained
from CMB observations [98]. This feature turns out to be very useful in our particular
case, and this is why it is common to take the primordial curvature perturbation as the
stochastic variable ζ describing the primordial value of the scalar perturbations (see [67]
for further details). Having introduced this new decomposition, the scalar sourced term
becomes:

ΓS(η,~k, q, n̂) =

∫ η0

ηin

dη′e−ikµl(η,η
′)TS(η′, k)ζ(~k), (3.59)

where we have defined

TS(η′, k, q) = v−2TΦ(η′, k)δ(η′ − ηin) +
∂
[
TΨ(η′, k) + v−2TΦ(η′, k)

]
∂η′

. (3.60)

Following the steps outlined in the previous section, we decompose the scalar sourced
anisotropy in spherical harmonics and evaluate the coefficients as:

Γ`m,S =

∫
d3k

(2π)3
ei
~k·~x0

∫
d2nY ∗`m(n̂)

∫ η0

ηin

dη′e−ikµl(η0,η
′)TS(η′, k, q)ζ(~k)

= 4π(−i)`
∫

d3k

(2π)3
ei
~k·~x0

∫ η0

ηin

dη′Y ∗`m(k̂)j`
[
kl(η0, η

′)
]
TS(η′, k, q)ζ(~k)

= 4π(−i)`
∫

d3k

(2π)3
ei
~k·~x0ζ(~k)Y ∗`m(k̂)

{
v−2TΦ(ηin, k)j`

[
kl(η0, η

′)
]

+

+

∫ η0

ηin

dη′e−ikµl(η0,η
′)∂
[
TΨ(η′, k) + v−2TΦ(η′, k)

]
∂η′

}
, (3.61)

where in the second step we have used again (3.55) combined with the spherical harmonics
normalization condition. Notice that the first end second term resemble respectively the
Sachs-Wolfe and Integrated Sachs-Wolfe contribution of CMB with the additional velocity
correction.

3.4.3 Tensor sourced term

The spherical harmonics formalism can now be applied to the last term concerning the
contribution due to the propagation of GWs across large-scale tensor perturbations. Com-
bining (3.53) and (3.39), the tensor spherical harmonics coefficients can be evaluated as:

Γ`m,T =

∫
d2nY ∗`m(n̂)

∫
d3k

(2π)3
ei
~k·~x0ΓT (η0,~k, q, n̂)

= −
∫
d2nY ∗`m(n̂)

∫
d3k

(2π)3
ei
~k·~x0

∫ η

ηin

dη′e−ikµl(η0,η
′)n

inj

2

∂χij(η
′,~k)

∂η′
. (3.62)
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Gravitational waves have in general two polarization states, that we represent in the circular
right and left-handed basis:

χij = χReij,R + χLeij,L = χR
eij,+ + ieij,×√

2
+ χL

eij,+ − ieij,×√
2

, (3.63)

where we have introduced the polarization tensors eij . Since tensor perturbations are
defined to be symmetric, traceless and tranverse, these properties in momentum space are
conserved inside the polarization tensor by

eij = eji,

eii = 0,

kjeij = (0, 0, 0). (3.64)

As outlined in the scalar sourced case, we can encode the dynamical evolution of the tensor
perturbations inside a transfer function χ(η, k) (equal for both the polarization states),
which indeed evolves the primordial value of a stochastic variable ξ(~k) set by inflation (or
any GW production mechanisms at work at early times):

χλ = χ(η, k)ξλ(~k) λ = R,L , (3.65)

that allows to compactly write the tensor perturbation as

χij =
∑
λ=R,L

eij,λ(k̂)χ(η, k)ξλ(~k). (3.66)

This time the integration over the director n̂ seems more involved because of the presence
of the factor ninj inside the integrand; thus we cannot proceed as before by exploiting
the decomposition of the complex exponential. In order to understand the meaning of the
subsequent computational steps, we briefly outline the path to follow: in the first place we
will try compute the coefficient ΓT (η0,~k, q, n̂) for a fixed direction k̂ of the wave number of
the scalar perturbations; as we will explicitly see, a suitable choice of the k̂ direction allows
a decomposition of the GW propagation director n̂ which greatly simplify the problem.
However the measure d2n̂ of the integral in (3.62) refers to any possible director n̂ without
any fixed orientation ~k; in order to solve this mismatch we will apply a rotation (provided
by a matrix S(Ωk)) on the integral over d2n in such a way to orient the the director n̂ to
reproduce the situation with the fixed direction k̂. In this new basis we will be then able
to adopt the expression of ΓT (η0,~k, q, n̂) found at the beginning with that fixed direction.
Having posed the basis of the computations, let’s start by fixing the direction of the wave
vector. The easiest choice is to orient k̂ along the z-axis, such that the symmetric, traceless
and transverse conditions on the polarization tensors straightforwardly lead to the explicit
expressions

eij,+(k̂z) =
1√
2

 1 0 0
0 −1 0
0 0 0

 , eij,×(k̂z) =
1√
2

 0 1 0
1 0 0
0 0 0

 , (3.67)

from which one can easily verify that the only non vanishing entries of the tensor modes
are

χ11 = −χ22 = χ(η, k)
ξL(~k) + ξR(~k)

2
(3.68)

χ12 = χ21 = χ(η, k)
ξL(~k)− ξR(~k)

2i
. (3.69)
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Now we introduce a polar coordinate system over which the director vector of GW propa-
gation decomposes as

n̂ =
(√

1− µ2
k,n cosφk,n,

√
1− µ2

k,n sinφk,n, µk,n

)
, (3.70)

where the subscript k, n reminds that we are working in a basis where ~k is oriented along
the z-axis. Notice that the expression (3.70) is correctly normalized to 1 and that when
n̂ is parallel to k̂ (i.e µk,n = 1) it gives back n̂ = (0, 0, 1), as expected. With these new
ingredients we are now able to evaluate the integrand of (3.62):

ninj

2
χ′ij =

1− µ2
k,n

2

(
cos2 φk,nχ

′
11 + sin2 φk,nχ

′
22 + 2 cosφk,n sinφk,nχ

′
12

)
=

1− µ2
k,n

2
χ′(η, k)

[
ξL(~k) + ξR(~k)

4

(
e2iφk,n + e−2iφk,n

)
−ξL(~k)− ξR(~k)

4

(
e2iφk,n − e−2iφk,n

)]

=
1− µ2

k,n

4
χ′(η, k)

[
e2iφk,nξR(~k) + e−2iφk,nξL(~k)

]
. (3.71)

This way the problem of finding the spherical harmonic coefficients Γ`m is solved for a
fixed direction k̂ by

ΓT (η0,~k, q,Ωk,n) = −
1− µ2

k,n

4

[
e2iφk,nξR(~k) + e−2iφk,nξL(~k)

]
×

×
∫ η0

ηin

dηχ′(η, k)e−ikµl(η0,η), (3.72)

Γ`m,T =

∫
d3k

(2π)3
ei
~k·~x0

∫
d2ΩnY

∗
`m(Ωn)ΓT (η0,~k, q,Ωn). (3.73)

At this point, as anticipated, we have the mismatch between the innermost integral variable
of (3.73) and the fixed orientation of k̂ in (3.72). The latter is indeed valid only when the
wave vector is oriented along the z-axis, while the former is an integration over the solid
angle around a director n̂ which is not fixed by any choice, and takes its general expression
inside its integrand (that is it does not satisfy the decomposition (3.70)). This conflict can
then be solved by rotating the integrand of the

∫
d2Ωn into a basis in which the direction

n̂ respect the mentioned decomposition (3.70). With this purpose in mind we introduce
the rotation matrix

S(Ωk) ≡

 cos θk cosφk − sinφk sin θk cosφk
cos θk sinφk cosφk sin θk sinφk
− sin θk 0 cos θk

 , (3.74)

such that:

k̂ = S(Ωk)

 0
0
1

 ,

 sin θn cosφn
sin θn sinφn

cosφn

 = S(Ωk)

 sin θk,n cosφk,n
sin θk,n sinφk,n

cosφk,n

 . (3.75)

Since the rotation matrix has unitary determinant (by definition a rotation matrix does
not change the volume of the measure in the phase space), the measure d2Ωn = d2Ωk,n
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remains unchanged under rotation. On the contrary the spherical harmonics transform
according to:

Y ∗`m(Ωn) =
∑̀
m′=−`

D
(`)
mm′(S(Ωk))Y

∗
`m′(Ωk,n), (3.76)

where it has been introduced the Wigner rotation matrix as in Appendix (B)

D(`)
ms(S(Ωk)) ≡

√
4π

2`+ 1
(−1)s −sY

∗
`m(Ωk) (3.77)

in terms of the spin-weighted spherical harmonics

−sY
∗
`m (Ωk) ≡ (−1)m

√
(`+m)! (`−m)! (2`+ 1)

4π(`+ s)! (`− s)!
sin2`

(
θk
2

)
×

×
`−s∑
r=0

(
`− s
r

)(
`+ s

r + s−m

)
(−1)`−r−seimφk cot2r+s−m

(
θk
2

)
. (3.78)

This way the solution (3.73) transforms into

Γ`m,T =

∫
d3k

(2π)3
ei
~k·~x0

∑̀
m′=−`

D
(`)
mm′(S(Ωk))

∫
d2Ωk,nY

∗
`m′(Ωk,n)ΓT (η0,~k, q,Ωk,n). (3.79)

Now we see that the dangerous mismatch has been solved, and we are then able to compute
the innermost integral by adopting the expression (3.72) for k̂ fixed along the z-axis:

J ≡
∫
d2Ωk,nY

∗
`m′(Ωk,n)ΓT (η0,~k, q,Ωk,n) = −

∫
d2Ωk,nY

∗
`m′(Ωk,n)

(
1− µ2

k,n

4

)

×
[
e2iφk,nξR(~k) + e−2iφk,nξL(~k)

] ∫ η0

ηin

dηχ′(η, k)e−ikµkl(η0,η). (3.80)

Using the relation (B.4) between spherical harmonics and the Legendre polynomials, one
can verify (see [46]) that

(1− µ2)eiλφ = 4

√
2π

15
Y2λ (λ = ±2). (3.81)

This way

J = −
√

2π

15

∫
d2Ωk,nY

∗
`m′(Ωk,n)

∫ η0

ηin

dηχ′(η, k)e−ikµkl(η0,η)

×
[
Y2,2ξR(~k) + Y2,−2ξL(~k)

]
. (3.82)

The mathematical results of integration of products of spherical harmonics [46] provide∫
dΩk,nY

∗
`,m′Y2±2e

−iµk,nx = (−i)`−2δm′,±2

√
15

8
(2`+ 1)

(`+ 2)!

(`− 2)!

j`(x)

x2
, (3.83)

such that the innermost integral becomes

J =

∫ η0

ηin

dηχ′(η, k)(−i)`
√

4π(2`+ 1)
(`+ 2)!

(`− 2)!

1

4

j`(kl(η0, η))

k2l2(η0, η)

×
{
δm′,2 ξR(~k) + δm′,−2 ξL(~k)

}
. (3.84)
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Turning back to the angular coefficient, we can directly insert this result into (3.79) and
obtain

Γ`m,T = (−i)`
√

4π(2`+ 1)
(`+ 2)!

(`− 2)!

∫
d3k

(2π)3
ei
~k·~x0

∫ η0

ηin

dηχ′(η, k)
j`(kl(η0, η))

k2l2(η0, η)

×

{
D

(`)
m2(S(Ωk))

ξR(~k)

4
+D

(`)
m2(S(Ωk))

ξL(~k)

4

}
. (3.85)

In the end, inserting the relation (3.77) of the Wigner rotation matrix elements in terms
of the spin-weighted spherical harmonics, we finally end up with:

Γ`m,T = 4π(−i)`
√

(`+ 2)!

(`− 2)!

∫
d3k

(2π)3
ei
~k·~x0

∫ η0

ηin

dηχ′(η, k)
j`(kl(η0, η))

k2l2(η0, η)

×

{
−2Y

∗
`m(Ωk)

ξR(~k)

4
+ 2Y

∗
`m(Ωk)

ξL(~k)

4

}
, (3.86)

which can be written more conveniently in terms of a transfer function as done for the
scalar sourced term:

Γ`m,T = 4π(−i)`
∫

d3k

(2π)3
ei
~k·~x0T T` (k, η0, ηin, q)

×
{
−2Y

∗
`m(Ωk)ξR(~k) + 2Y

∗
`m(Ωk)ξL(~k)

}
, (3.87)

with

T T` (η0, ηin, k, q) ≡

√
(`+ 2)!

(`− 2)!

1

4

∫ η0

ηin

dηχ′(η, k)
j`(kl(η0, η))

k2l2(η0, η)
. (3.88)

3.4.4 Summary of the three contributions

In conclusion of this chapter we briefly summarize the results obtained in the previous
sections. First of all we have decomposed the perturbation modes as

Φ(η,~k) = TΦ(η, k)ζ(~k), Ψ(η,~k) = TΨ(η, k)ζ(~k)

χij(η,~k) = χ(η, k)
[
eij,R(k̂)ξR(~k) + eij,L(k̂)ξL(~k)

]
. (3.89)

Then we broke up the anisotropy Γ(η,~k, q, n̂) in three different contributions and expanded
them in the spherical harmonics basis as

Γ(n̂) =
∑
`

∑̀
m=−`

Γ`mY`m(n̂), Γ`m =

∫
d2nΓ(n̂)Y ∗`m(n̂), (3.90)

Γ`m ≡ Γ`m,I + Γ`m,S + Γ`m,T . (3.91)

For the three terms we found

Γ`m,I = 4π(−i)`
∫

d3k

(2π)3
ei
~k· ~x0Y ∗`m(k̂)j`[kl(η0, ηin)]Γ(ηin,~k, q),

Γ`m,S = 4π(−i)`
∫

d3k

(2π)3
ei
~k·~x0Y ∗`m(k̂)T S` (η0, ηin, k, q)ζ(~k),

Γ`m,T = 4π(−i)`
∫

d3k

(2π)3
ei
~k·~x0

∑
λ=±2

−λY
∗
`m(Ωk)ξλ(~k)T T` (η0, ηin, k, q). (3.92)
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where in the last equation (3.92) we have adopted the more compact convention such that
λ = 2 for right polarization and λ = −2 for left polarization. The linear transfer functions
appearing in the scalar and tensor sourced terms are respectively defined by

T S` (η0, ηin, k, q) ≡ v−2TΦ(ηin, k)j` [kl(η0, ηin)]

+

∫ η0

ηin

dη
∂
[
TΨ(η, k) + v−2TΦ(η, k)

]
∂η

j` [kl(η0, η)] ,

T T` (η0, ηin, k, q) ≡

√
(`+ 2)!

(`− 2)!

1

4

∫ η0

ηin

dη χ′(η, k)
j`(kl(η0, η))

k2l2(η0, η)
, (3.93)

with v ≡ v(η, q) = q/aE the graviton group velocity.

3.5 Isocurvature perturbations

In single slow-roll inflationary models, the inflaton fluctuations seed perturbation in the
total energy density after the end of inflation. However, this mechanism involve the total
energy density, and is not capable of distinguish between different components of the
Universe. Hence only adiabatic perturbations are generated by a single slow-rolling inflaton
field. These are characterized by the condition that the relative ratios in the number
densities n between different species remain unperturbed (see [99, 100]). This is the so
called adiabatic condition

δ

(
nX
nY

)
, (3.94)

whereX and Y denote two arbitrary particle species. Since any perturbation in the number
density correspond to a perturbation in the energy density, isocurvature perturbations are
related to spatial curvature perturbations through the Einstein’s equations. Defining

δX ≡
δρX
ρX

, (3.95)

the adiabatic condition reads (see [63] for a derivation)

1

4
δγ =

1

4
δν =

1

3
δb =

1

3
δcdm. (3.96)

On the contrary, isocurvature perturbations change the relative number densities among
the particle species without bringing any curvature perturbation7. Then they can be
parametrized by

SX,Y =
δnX
nX
− δnY

nY
=

δX
1 + wX

− δY
1 + wY

. (3.97)

It is convenient at this point to choose a species of reference; usually one considers the
photons as the reference species, such that

Sb ≡ δb −
3

4
δγ , Sc ≡ δc −

3

4
δγ , Sν ≡

3

4
δν −

3

4
δγ . (3.98)

Adiabatic perturbation are then defined by Sb = Scdm = Sν = 0. In the most general
picture, one can decompose a general perturbation in its adiabatic and the three isocurva-
ture modes. It is worth mentioning that this decomposition is not time-invariant. Indeed

7For this reason they are also called entropy perturbations.
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primordial isocurvature modes can give rise, during the evolution, to an adiabatic contri-
bution if the energy densities of the various species evolve differently in time, because in
such case the balance that ensured an unpertubed total energy density is lost.

The golden channel to study isocurvature perturbations is through the CMB anisotropies,
since they leave a distinctive signature on the angular spectra which can be easily discrimi-
nate from the adiabatic contribution. Indeed, as shown in ref. [99, 100], whereas adiabatic
modes introduce a cosine oscillation in the baryon-photon fluid, the isocurvature ones en-
ters with a sine oscillatory phase. In the former case the oscillation gives rise to a first
peak in the angular power spectrum centered at ` ' 220, while, if one considers only
isocurvature modes, the same peak would have been expected at ` ' 330. Observations
tell us that the position of the first peak is quite well in agreement with the prediction in
absence of isocurvature modes. This argument suggests that, if they exist, isocurvature
perturbations must be subdominant with respect to the adiabatic ones. This motivates
why we neglected these kind of perturbations so far, and in the following we will pur-
sue our discussions assuming implicitly that isocurvature modes are not relevant for our
observables.
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Chapter 4

Statistical analysis of the SGWB
from Gaussian perturbations

In the previous chapter we have derived the Boltzmann equation describing the evolution
of the graviton population and computed the anisotropy originating from three different
contributions, an initial term, a scalar sourced term and a tensor sourced one. With these
results we are now in a position to attempt a statistical analysis of the SGWB. On a
fundamental ground, the statistical features of the graviton population background relies
on the statistical properties of the stochastic variables ζ and ξλ. The easiest assumption
is to take the perturbations as Gaussian random fields, that is fields whose probability
density function is a normal distribution

1√
2πσ

e−
(x−x0)

2

2σ2 , (4.1)

with σ2 the variance of the distribution. This assumption is motivated, in the behalf of the
central limit theorem [73, 77], by assuming each perturbation mode being independent from
the others. The fact that many physical processes in nature, since most of them emerge as
an average effect of independent small scale processes, manifest this behavior can be seen
as a phenomenological confirmation of the reasonability of this assumption. This is indeed
the case of inflation [75], which succeeds in generating primordial perturbations on small
scales beneath the horizon, where the microphysics if effective. Moreover the Gaussian
distribution describes the ground state of quantum harmonic oscillators [83], that is the
fundamental basis with which we quantize the inflaton field [82]. Therefore a Gaussian
distribution reasonably explains also the quantum origins of perturbations.

A crucial feature of the Gaussian distribution is that its shape remains invariant under
any general linear transformation [77]. Linear transformations affect the distribution by
changing its mean value and variance, but do not spoil the shape of the distribution.
This is the reason why linear perturbations preserve the Gaussianity of the distribution
through the Universe evolution; matter of facts, in cosmology linear perturbations are
always identified with Gaussian random fields, while higher order terms are regarded as
non-Gaussian corrections. These arguments encourage us to pursue, in a first study, a
statistical analysis of the SGWB anisotropies considering the metric perturbation to be
Gaussian distributed. The chapter is then organized as follows.

The first section (4.1) is dedicated to a brief review of the definition and the properties
of a general Gaussian random field, so that a more deep understanding about the hypothesis
underlying the Gaussian assumption can be gained.
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As we will show, in this case the only relevant statistical quantity is the 2-point cor-
relation function, or, in momentum space, the power spectrum. This is the main topic
we discuss in section (4.2), starting from its definition and features deriving from the as-
sumption of statistical isotropy. With this knowledge in mind we proceed in evaluating
the 2-point function starting from the results (3.92). This analysis largely follows the path
of [59], and naturally extends the results accounting for a non vanishing graviton mass.
Assuming that the three terms corresponding to the initial condition and the sourced terms
are not cross correlated, the final correlator will result in three different contributions whose
explicit calculation is performed by steps.

Firstly, in sections (4.3) and (4.4), we evaluate the transfer functions TΦ(η, k), TΨ(η, k)
and χ(η, k) defined in (3.89), which then will allow us to obtain an explicit expression for
the linear functions T S,T` (η0, ηin, k, q) in (3.93).

Once these functions are known we will have all the ingredients to evaluate the three
contribution to the 2-point correlator, which we will perform one at a time in the last
section (4.5).

4.1 Gaussian random fields

Before exploring the angular power spectrum, we find useful to give a brief review of the
concept of gaussian random variable, so that the reader could possibly understand better
how sources of non gaussianity, which we will study later, could arise within a cosmological
framework. In this section we will mainly refer to [63] and [67]; for some further details
about cosmological applications of these topics we encourage to give a look at [74] as well.

A function G(~x)1 is said to be a random field if for any x it assumes random values g,
and if it exists a distribution function

F1,...,n(g1, . . . , gn) = F [G(~x1) < g1, . . . , G(~xn) < gn] (4.2)

well defined for any n. Each value gi that the random field may assumes at the point ~xi is
said to be a representation of the field G(~x), while the the set of all the possible representa-
tion forms the ensemble. The mathematical properties of the distribution function and of
the statistical quantities we will define later on are largely described in [76]. At any point
~xi there must be defined a probability density function pi(gi) encoding the probability of
the random field G to acquire the value gi in ~xi. By definition the probability density
function is related to the distribution function by

pi(gi) =
dFi(gi)

dgi
. (4.3)

As in [76], we then define the expectation value of the random field as the ensemble average

〈G(~xi)〉 ≡
∫

Ω
gipi(gi) dgi, (4.4)

where Ω indicates the ensemble. Since this quantity happens to vanish in most cases when
dealing with cosmological perturbations, a more statistically relevant quantity in cosmology
is the joint probability

pij(gi, gj) dgidgj (4.5)

1Notice that we are restricting the coordinate space to the only spatial coordinates, since the stochastic
properties of any cosmological quantity are defined at fixed time.
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of finding the random field G(~xi) with a value gi given that in the point xj the random field
assumes the value gj . Then we define the two point correlation function as the expectation
value of the combination G(~xi)G(~xj), that is:

ξ(~xi, ~xj) ≡ 〈G(~xi)G(~xj)〉 ≡
∫

Ω
gigjpij(gi, gj) dgidgj . (4.6)

In the same way we can generalize this definition for the N point correlation function as

ξ(N)(~x1, . . . , ~xN ) ≡ 〈G(~x1), . . . , G(~xN )〉

≡
∫

Ω
g1 . . . gNp1,...,N (g1, . . . , gN )dg1 . . . dgN . (4.7)

Obviously, when the different realizations are independent, the joint probability reduces
simply to the product of each individual probability density functional (in this case the
distribution is said to be Poissonian); as a consequence if the realizations are independent
the N point correlation function reduces to the product of the expectation value of the N
random fields. Another very useful statistical quantity is the ensemble variance σ, which
is essentially a measure of the deviation from a Poissonian distribution, defined by

σ2(~x1, ~x2) ≡ 〈G(~x1)G(~x2)〉 − 〈G(~x1)〉〈G(~x2)〉. (4.8)

In many practical purposes, statistical analysis is often more manageable in Fourier space.
Therefore we introduce the Fourier transform of the random field as:

G(~x) =

∫
d3k

(2π)3
G̃(~k)ei

~k·~x, G̃(~k) =

∫
d3xG(~x)e−i

~k·~x, (4.9)

and the reality condition
G̃∗(k) = G̃(−k) (4.10)

holds.

Gaussian distribution

What has been shown so far is totally general and relevant for any distribution function
F . From now on instead give up the general discussion in order to focus our attention
on the particular case of the Normal Gaussian distribution. The physical assumption that
characterizes a Gaussian random field is that the phases of different Fourier modes are
random and uncorrelated. Therefore, on behalf of the central limit theorem, the infinite
sum of the various Fourier modes will tend to be normally distributed, and ultimately, the
integral expansion in Fourier modes will results in a Gaussian random field.

An alternative more formal, but nevertheless quite elegant, way to define a Gaussian
random field is to proceed by an axiomatic approach:

i. A Gaussian random field is a random field whose Fourier modes have no correlation
except for the reality condition (4.10). The fact that all the modes are uncorrelated
forces the two point correlation function to be of the form

〈G̃(~k)G̃∗(~k′)〉 = (2π)3δ(3)(~k − ~k′)PG(~k), (4.11)

with PG(~k) a function to be determined called power spectrum.
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ii. The odd-number correlators of any Gaussian random field vanish2

〈G̃(~k)〉 = · · · = 〈G̃(~k1) . . . G̃(~k2n+1)〉 = 0. (4.12)

iii. The 4-point correlators can be written in terms of the 2-point correlators by

〈G̃(~k1)G̃(~k2)G̃(~k3)G̃(~k4)〉 = 〈G̃(~k1)G̃(~k2)〉〈G̃(~k3)G̃(~k4)〉
+〈G̃(~k1)G̃(~k3)〉〈G̃(~k2)G̃(~k4)〉
+〈G̃(~k1)G̃(~k4)〉〈G̃(~k2)G̃(~k3)〉, (4.13)

and in the same way we can decompose all the even-number correlators.

In other words, the Fourier coefficients of a Gaussian random field are minimally corre-
lated provided the requirement of the reality condition. As a consequence all the stochastic
properties of a Gaussian field are completely determined by its power spectrum, which then
represent the fundamental statistical quantity to study. Before investigating the structure
of the power spectrum, notice that these axioms reconstruct the expected situation for a
Gaussian random variable. Indeed the n-point correlator reproduce exactly the expression
for the n-moments of a gaussian distribution, as reported in [78]. This uniquely determines
the density probability function pi(gi) that in the end will assume the form of a normal
distribution

p(gi) =
1√
2πσ

e−
g2i
2σ2 , (4.14)

where, in virtue of the first two axioms, the ensemble variance simplifies to

σ2 ≡ σ2(~x, ~x) = 〈|G(~x)|2〉 =

∫
d3k

(2π)3
PG(~k), (4.15)

and turns out to be position independent thanks to the delta function in (4.11).
Let us now turn back to the problem of the evaluation of the function PG(~k). In a

cosmological framework the random field is usually taken to be statistically homogeneous
and isotropic, that is the probability densities related to each realization are invariant
under translation and rotations. Under the assumption of statistical homogeneity, the two
point correlation function in coordinate space turns out to have a simpler dependence on
coordinates, that is

ξ(~x1, ~x2) = ξ(~x1 − ~x2). (4.16)

In momentum space the 2-point correlator is

〈G̃(~k)G̃(~k′)〉 =

∫
d3x

∫
d3x′〈G(~x)G(~x′)〉e−i~k·~xe−i~k′·~x′

=

∫
d3x

∫
d3x′ξ(~x′ − ~x)e−i

~k·~xe−i
~k′·~x′

=

∫
d3x e−i(

~k−~k′)·~x
∫
d3z ξ(~z)ei

~k′·~z. (4.17)

2Actually 〈G̃(~k)〉 is not a correlator, and in principle it could be different from zero. However, given a
random field with a non vanishing mean value, it is always possible to define a new field with zero mean
simply by shifting the old one as H̃(~k) ≡ G̃(~k) − 〈G̃(~k)〉. This is what is usually done in cosmology,
where we prefer to work with perturbation with zero mean. Any non zero-centered perturbation can be
reabsorbed in the background Universe. For this reason in this work we will always assume 〈G̃(~k)〉 = 0.
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Then, exploiting the integral representation of the delta function, we finally arrive to (4.11)
with the definition of the power spectrum

PG(~k) ≡
∫
d3x ξ(~x)e−i

~k·~x, (4.18)

which is nothing but the Fourier transform of the 2-point correlation function. However in
many cases it is more convenient to work with the so called dimensionless power spectrum
defined as

PG(~k) ≡ k3

2π2
PG(~k). (4.19)

As a last comment we want to interpret these results within the framework of quantum
field theories [84]. What we are going to argue is that a Gaussian random field can
only originate from a free theory. A powerful tool to compute the connected3 correlation
functions of any order n is the so called in-in formalism as shown in [80, 81, 88]. As usual
we divide the Hamiltonian of the system in a free term and an interacting one as

H = H0 +Hint. (4.20)

In the interaction picture [82] we can evolve the vacuum state with a Schrodinger like
equation such that the n-point correlation function of a generic quantum field ϕ(η,~k)
becomes4

〈ϕn(η)〉 = 〈0(ηin)|U−1
int (η, ηin)ϕn(η)Uint(η, ηin)|0(ηin)〉, (4.21)

where ηin denotes the initial time when the interaction is turned on; notice that the vacuum
state |0(η)〉 is the one of the interacting theory, but, for continuity, it must coincide with the
free vacuum at initial time, when the interaction was turned off5. The evolution operator
is defined by

Uint(η, ηin) = T e
−i
∫ η
ηin

Hint(η
′)dη′

, (4.22)

with T the time ordering operator. To first order (4.21) reads

〈ϕn(η)〉 = −i
∫ η

ηin

dη′ 〈0|T
[
ϕn(η), Hint(η

′)
]
|0〉. (4.23)

In a free theory the only term we can treat as an interaction is the mass term Hint ∝
m2ϕ2/2, and

Hint(η) =
m2

2

∫
d3xϕ2 =

m2

2

∫
d3x

∫
d3p d3p′ei(~p+

~p′)·~xϕ(~p, η)ϕ(~p′, η)

=
m2

2

∫
d3p d3p′(2π)3δ3(~p+ ~p′)ϕ(~p, η)ϕ(~p′, η). (4.24)

The rigorous computation of the connected correlation functions descends from (4.21), but,
since we are not interested in the exact result, we will settle for just an estimate of the
first term of the commutator, that is

〈ϕn(η)〉 ∼ −im2

∫ η

ηin

dη′
∫
d3p d3p′δ3(~p+ ~p′)〈0|Tϕn(η)ϕ(~p, η′)ϕ(~p′, η′)|0〉. (4.25)

3In accordance with the common QFT costum, we say that a correlator is “connected” if it cannot be
factorized as products of correlation function of lower order.

4For the ease of notation we are omit the dependence on the momenta, while we are making explicit
the dependence on the time fixed by our observation.

5For simplicity, if there is no chance of confusion, we will denote the free vacuum just as |0〉
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The time ordering product can now be substituted by a sum of normal ordering products,
denoted by N , thanks to the Wick theorem [82]

T [ϕ(η1) . . . ϕ(ηn)] = N [ϕ(η1) . . . ϕ(ηn)]

+
∑

1 contr.

N [ϕ(η1)ϕ(η2) . . . ϕ(ηn)]

+ . . .

+
∑

all contr.

N [ϕ(η1)ϕ(η2) . . . ϕ(ηi) . . . ϕ(ηn)], (4.26)

where the contraction

ϕ(~k, η)ϕ(~k′, η′) = 〈0|ϕ(~k, η)ϕ(~k′, η′)|0〉 (4.27)

must involve different times. However, any normal ordering product where we have at
least one uncontracted field gives zero contribution once we apply it to the vacuum |0〉.
This is indeed the case because, in the context of second quantization, the scalar field ϕ is
written as a superposition of ladder operators. The normal ordering acts by moving the
annihilation operators on the right and the creation operators on the left, making then
those contributions to vanish. Therefore the only non trivial term of (4.26) is the last
one, where all the field involved in the time ordering operator are contracted. Turning
back to (4.25), now we see that, for a free theory, the Wick theorem selects the 2-point
function as the only non vanishing one. In other term (4.25) is non zero only for n = 2,
because in the other case there will always be at least one uncontracted field left. This
is indeed in accordance with the fact that the statistical properties of a Gaussian random
field are completely characterized by the two point function. Moreover one can show [87]
that any non connected correlation function can be decomposed as a sum of products
of connected functions. Since the only non vanishing connected function is the 2-point
function, then we immediately have the result that any higher-order correlator can be
written in terms of the 2-point one. Nevertheless, in the case n-odd, there is no way to
decompose the correlator in terms of 2-point functions only, and this implies than any
odd -point correlator automatically vanishes. All these results perfectly recover the axioms
(4.11), (4.12), (4.13) that we posed to define a Gaussian random field. In the end we have
proved that Gaussianity originates from the random field being a free theory.

4.2 GW Angular Power spectrum

After this long parenthesis, let’s now turn back to the problem of evaluation of statistical
measurable quantities. In order to take contact with observations, our final purpose is to
obtain an expression for the angular correlators. Indeed, as seen in the previous section, the
intrinsic nature of the perturbations implies 〈Γ`m〉 = 0, and therefore the only meaningful
quantity to study is the two point function, which, on the behalf of the rotational invariance,
is restricted to the form

〈Γ`mΓ`′m′〉 ≡ δ``′δmm′C̃`, (4.28)

where the quantity C̃` = 〈|a`m|2〉 is called spectrum of the SGWB anisotropy, and it is
the crucial quantity that encodes the information about how much fluctuations is there on
a given angular scale `. Actually we should be aware that this expression holds as long
as we are neglecting explicit n̂-dependence inside the initial condition contribution (3.37).
This is indeed the only term in which such an explicit dependence could possibly arise,
while in the other contributions the dependence in contained just inside the combination
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µ = k̂ · n̂ confined inside the exponential factors, as we have seen in (3.38) and (3.39). Such
an angular dependence would reflect in an overall statistical anisotropy, and ultimately
on a more general dependence of the angular correlators on the multipole indices ` and
m. However, for the reasons mentioned above, this work will focus only on the statisti-
cally isotropic case. As briefly said before, this assumption drops any dependence of the
spectrum C̃` on the index m. One can easily convince himself that this is indeed the case
by thinking at the intuitive meaning of the indices of the monopole expansion: ` tells us
the angular scales we are considering, while m contains information about the orientation
of the spherical harmonics, that is about the direction of our observation. The assump-
tion of statistical isotropy implies that our observations of angular correlators should be
orientation-independent, that means, at the end of the day, m-independent. A more rigor-
ous proof was given by Komatsu in [79]. Statistical isotropy demands the correlators to be
invariant under rotations. Denoting with D = D(α, β, γ) a rotation matrix for the Euler
angles α, β and γ, this symmetry reads

〈DΓ(n̂1)DΓ(n̂2) . . . DΓ(n̂n)〉 = 〈Γ(n̂1)Γ(n̂2) . . .Γ(n̂n)〉. (4.29)

Remembering the multiple expansion

Γ(n̂) =
∑
`

∑̀
m=−`

Γ`mY`m(n̂), (4.30)

we need to understand how the rotation matrix D applies to the spherical harmonics. As
shown in [63, 79], this transformation is given by

DY`m(n̂) =
∑̀
m′=−`

D
(`)
m′mY`m′(n̂), (4.31)

where we have introduced the Wigner matrix elements D(`)
m′m = 〈`,m′|D|`,m〉. In the

context of quantum mechanics these matrix elements describe the rotation of an initial
state whose angular momentum is represented by the quantum number ` and m into a
final state where these quantum number are transformed into ` and m′. Inserting the
multiple expansion inside (4.29), the isotropy condition becomes∑

`1m1...`nmn

〈Γ`1m1Y`1m1(n̂1) . . .Γ`nmnY`nmn(n̂n)〉 =
∑

`1m1...`nmn

〈Γ`1m1 . . .Γ`nmn〉

×
∑

m′1...m
′
n

D
(`)
m′1m1

Y`1m′1(n̂1) . . . D
(`)
m′nmn

Y`nm′n(n̂n). (4.32)

In order to extrapolate the n-point correlators the trick is to multiply both the right and
left side of the equation for the spherical harmonic Y ∗LiMi

and to integrate over d2n̂i to
reproduce the condition for the normalization of the spherical harmonics (B.7). Iterating
this procedure for i = 1, . . . , n, we end up with

〈Γ`1m1Γ`2m2 . . .Γ`nmn〉 =
∑

m′1...m
′
n

〈Γ`1m′1 . . .Γ`nm′n〉D
(`)
m′1m1

D
(`)
m′2m2

. . . D
(`)
m′nmn

. (4.33)

Focusing on the 2-point function

〈Γ`1m1Γ`2m2〉 =
∑
m′1m

′
2

〈Γ`1m′1Γ`2m′2〉D
(`)
m′1m1

D
(`)
m′2m2

. (4.34)
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This relation is the manifestation of rotational invariance. From this equation, we now
look for a rotationally invariant representation of the angular spectrum. Let’s then take
(4.28) as an ansatz, i.e. 〈Γ`1m′1Γ`2m′2〉 = C̃`1δ`1`2δm1m2 . Then the relation (4.34) becomes

〈Γ`1m1Γ`2m2〉 = C̃`1δ`1`2
∑
m′1

D
(`)
m′1m1

D
(`)
m′2m2

= C̃`1δ`1`2δm1m2 . (4.35)

In the end we have shown that C̃` is rotationally invariant and that rotational symmetry
demands the 2-point function to be of the form of (4.28).

Looking at the solution for the Γ`m coefficients in (3.92), we see that there are just four
statistical operators which are sensitive to the ensemble average operator defined in (4.28),
that are Γ(ηin,~k, q), ζ(~k), ξL(~k), and ξR(~k). All the other operators are deterministic
quantities either encoding the time evolution of large scale modes (transfer functions) or
projecting the GW anisotropies in the harmonic space (spherical harmonic functions).
Assuming that the four stochastic variables are statistically uncorrelated, the only non
vanishing 2-point functions, defined in relation to their dimensionless power spectra, are:

〈Γ(ηin,~k, q)Γ
∗(ηin,~k

′, q)〉 =
2π2

k3
PI(q, k)(2π)3δ

(
~k − ~k′

)
〈ζ(~k)ζ∗(~k′)〉 =

2π2

k3
Pζ(k)(2π)3δ

(
~k − ~k′

)
〈ξλ(~k)ξ∗λ′(

~k′)〉 =
2π2

k3
Pλ(k)(2π)3δλλ′δ

(
~k − ~k′

)
. (4.36)

These expressions can now be used combined with the results (3.92) to evaluate the angular
correlator (4.28), which, thanks to the above assumption, can be split into three different
contributions:

C̃` = C̃`,I + C̃`,S + C̃`,T . (4.37)

At this point one can appreciate the great benefit of having decomposed the anisotropies
in the above three terms. Moreover, since the three contributions to the coefficients Γ`m
share the same functional form, we can perform the computation for just one term, and
then easily extend the result for the other two. Let’s then consider the contribution to the
angular correlator arising from the initial condition term:

〈Γ`m,IΓ∗`′m′,I〉 = (4π)2(−i)`−`′
∫

d3k

(2π)3
ei
~k·~x0

∫
d3k′

(2π)3
e−i

~k′·~x0Y ∗`m(k̂)Y`′m′(k̂
′)

×j`[kl(η0, ηin)]j`′ [kl(η0, ηin)]〈Γ(ηin,~k, q)Γ(ηin,~k
′, q)〉

= (4π)2(−i)`−`′
∫

d3k

(2π)3

2π2

k3
PI(q, k)Y ∗`m(k̂)Y`′m′(k̂)

×j`[kl(η0, ηin)]j`′ [kl(η0, ηin)]. (4.38)

Decomposing the integral measure as d3k = k2dkd2k̂ and exploiting the orthonormality of
the spherical harmonics, the integral reduces to

〈Γ`m,IΓ∗`′m′,I〉 = δ``′δmm′(4π)2

∫
k2dk

(2π)3

2π2

k3
PI(q, k) [j`[kl(η0, ηin)]]2

= δ``′δmm′4π

∫
dk

k
PI(q, k) [j`[kl(η0, ηin)]]2 . (4.39)

Notice that, as expected, any dependence on the index m has dropped out after the im-
plementation of the orthonormality relation, since this dependence is contained only inside
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the spherical harmonics. A more general dependence of the initial fluctuation ΓI on the
director n̂ would have introduced a more complex dependence of the integrand of (4.38)
on the versor k̂, preventing this great simplification. The initial condition spectrum is in-
creased by the presence of a non vanishing mass, since this information only enters inside
the argument of the spherical Bessel function. In particular the argument is maximized
(and then the spherical Bessel function minimized) in the massless case, where the gravi-
ton speed equals the light velocity and the distance l(η0, ηin) reduces to the time difference
η0 − ηin.

As stressed above, thanks to the fact that all the three Γ`m coefficients listed in (3.92)
share identical structures, we can immediately extend the last computation to the scalar
and tensor sourced contributions. All we have to take care about is to replace the spherical
Bessel function and the dimensionless power spectrum PI(q, k) appearing in (4.39) with
the appropriate linear transfer function and power spectra for the scalar and tensor sourced
terms. This procedure straightforwardly leads to:

〈Γ`m,SΓ∗`′m′,S〉 = δ``′δmm′4π

∫
dk

k
Pζ(k)|T S` (η0, ηin, k, q)|2 (4.40)

for the 2-point correlator scalar sourced term, and

〈Γ`m,TΓ∗`′m′,T 〉 = δ``′δmm′4π

∫
dk

k
[P2(k) + P−2(k)] |T T` (η0, ηin, k, q)|2 (4.41)

for the tensor sourced one. Notice that both these expressions do not show a graviton mass
dependence, as it is confined inside the linear transfer functions (3.93). This concludes the
problem of the evaluation of the 2-point correlators, whose angular spectra defined in (4.28)
are listed below to summarize the previous computations.

C̃`,I = 4π

∫
dk

k
|j`[kl(η0, ηin)]|2PI(q, k),

C̃`,S = 4π

∫
dk

k
|T S` (η0, ηin, k, q)|2Pζ(k),

C̃`,T = 4π

∫
dk

k
|T T` (η0, ηin, k, q)|2

∑
λ=±2

Pλ(k). (4.42)

It is worth to mention one more time that all the three contribution in (4.42) contain a
q-dependence. This is due to the graviton mass, which affects the linear transfer functions
by adding a graviton velocity correction. In the massless case this velocity equals the light
velocity, and then the correction factor goes to one. As a result, in the massless case,
one would find that only the initial condition term maintains the dependence on the GW
frequency inside the dimensionless power spectrum PI(q, k).

4.3 Scalar transfer functions

In order to evaluate the scalar transfer functions, let’s consider a FLRW background space-
time perturbed by only scalar perturbations:

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2Ψ)δijdx

idxj
]
. (4.43)

Let’s suppose further that the energy density budget of the Universe is dominated by
relativistic and non-relativistic particles and by a cosmological constant. If we additionally
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assume that the cosmic fluid of the Universe is perfect, then we can immediately write
down the energy-momentum tensor elements remembering that that the matter content is
pressureless, while for the cosmological constant ρΛ = −pΛ:

T 0
0 = −ρm(1 + δm)− ρr(1 + δr)− ρΛ,

T ij =

(
1

3
ρr(1 + δr)− ρΛ

)
δij , (4.44)

where δr,m ≡ δρr,m/ρr,m represent the first order radiation or matter perturbation account-
ing for both baryonic and non baryonic particles, while v is the fluid particle velocity. The
time evolution of cosmological perturbations is governed by Einstein equations, which at
zero order lead to the background Friedman equations:

a
′2

a4
=

1

3M2
p

[ρΛ + ρm + ρr] ,

ρ′m + 3Hρm = 0, ρ′r + 4Hρr = 0, ρ′Λ = 0,

a
′′

a
=

a2

6M2
p

(ρ− 3p) =
a2

6M2
p

(4ρΛ + ρm) , (4.45)

with Mp the Plank mass and H ≡ a′/a. In order to see the effects of cosmological pertur-
bation we need to go at least at first order. The computation of the perturbed Einstein
tensor elements has been performed in Appendix (A). For our purposes we just need to
consider the spatial terms; therefore we can specialize (A.21) to our present case, where
the only non vanishing perturbed metric elements are h00 = −2Φ and hij = −2Ψδij . This
way the linearized spatial Einstein equations are :

a2δGij =

[
2Ψ
′′

+ 4HΨ′ + 2HΦ′ + 4
a
′′

a
Φ− 2H2Φ +∇2(Φ−Ψ)

]
δij − ∂i∂j(Φ−Ψ)

=
a2

M2
P

δT ij =
a2

3M2
P

ρrδr. (4.46)

This equation can be split in a diagonal and in an off-diagonal contribution. The latter is
immediately solved if

Φ = Ψ. (4.47)

An analytic solution of the diagonal part is not achievable in full generality. For this reason
we simplify the problem considering firstly the situation where the contribution to the total
energy density from radiation is dominating over the other components.

Radiation domination The solution of the Einstein equation (4.61) during radiation
domination is well known. The reader can find this solution in many text; for example, in
ref. [70] it is shown that the solution is

Φ(k, η) = 3Φin(k)
sin
(
kη√

3

)
− kη√

3
cos
(
kη√

3

)
(
kη√

3

)3 . (4.48)

On super-horizon (kη � 1) scales the scalar perturbation is well described by its primordial
value, while on sub-horizon scales (kη � 1) the perturbations undergo a damped oscillation
with increasing frequency.

74



4.3. Scalar transfer functions

It is useful now to link the primordial value of the scalar perturbation Φin(k) to the
gauge invariant quantity ζin(k). For this purpose one can take advantage one more time
of the linearized Einstein equations to rewrite the gauge invariant curvature perturbation
in a more convenient way. In particular, from the Einstein tensor (A.19), the time-time
component of the Einstein equation at first order reads:

6H2

(
Φ +

1

H
Φ′
)

+ 2k2Φ = − a2

M2
p

δT 0
0 = − a2

M2
p

(ρmδm + ρrδr). (4.49)

At early times the Universe was dominated by the ultra-relativistic component, and then,
inserting the first Friedman equation (4.45) inside (4.49), one gets:

δr ' δtot ' −2

(
Φ +

1

H
Φ′
)
−

2M2
P

a2ρr
k2Φ. (4.50)

Finally this result can be used with the continuity equation of (4.45) to rewrite (3.58) in
the desired form as follows

ζ = Φ− δ

3(1 + w)

= Φ +
2

3(1 + w)

[
a

a′
Φ′ + Φ

(
1 +

M2
P

a2ρr
k2

)]
. (4.51)

When the radiation component dominates in the Universe, the equation of state imposes
w = 1/3. Moreover, since we are interested in physical scales that happen to be above
the horizon at the end of inflation, we can neglect their first derivatives at initial time
and contextually neglect all the terms proportional to k2 as well. Applying all these
considerations to (4.51), the curvature perturbation at initial time is given by

ζin '
3

2
Φin, (4.52)

and the scalar metric perturbation is

Φ(k, η) = 2
sin
(
kη√

3

)
− kη√

3
cos
(
kη√

3

)
(
kη√

3

)3 ζin(k). (4.53)

Then, remembering the definitions (3.89):

T rad
Φ = T rad

Ψ =
2

3
grad(k, η), (4.54)

with

grad(k, η) = 3
sin
(
kη√

3

)
− kη√

3
cos
(
kη√

3

)
(
kη√

3

)3 . (4.55)

The scalar transfer function can be rewritten in terms of observable quantities exploiting
ρr(ηi)a

4(ηi) = ρ0 and the definition of critical energy density today ρcr,0 = 3M2
PH

2
0 :

T rad
Φ = T rad

Ψ =
2

3
grad(k, η). (4.56)

In order to easily understand the behavior of the growing rate with time, Figure (4.1)
shows the trend of the function grad(k, η) for a fixed scale k ' 104H0.
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Figure 4.1: Scalar growing rate during radiation domination. This function remain approximately
constant until the mode under consideration re-enter the horizon. This event is higlighted by a
vertical red dotted line corresponding to kη '

√
3. Once the mode has re-entered the horizon, it

soon starts decaying with an oscillating fashion.

Matter domination Scalar modes which are outside the horizion at the end of the ra-
diation domination epoch are frozen to their primordial value at the entering of the matter
domination era. This paragraph considers only such scales, since those that crossed the
horizon during the radiation era are washed out by quantum effects during the expansion
of the Universe. After the epoch of equality, the radiation component provides a negligible
contribution to the total energy density. In this case the condition (4.47) can be inserted
inside (4.46) to give the desired time evolution equation for the scalar perturbations:

Φ
′′

+ 3HΦ′ +

(
2
a
′′

a
−H2

)
Φ = 0, (4.57)

whose formal solution can be found in the form

Φ = C1D1(a) + C2D2(a), (4.58)

with C1 and C2 integration constants. The path to follow in order to specify the form of
each solution, D1(a) and D2(a), is outlined in Appendix (D). The first solution has to be
guessed, and in particular it seems reasonable to look for a solution built as a combination
of the relevant quantities entering in (4.57), that are a and H. The easiest function we can
think to build with those quantities is Φ ∝ anH, with n an integer number. Inserting this
ansatz inside (4.57), we can solve the differential equation to obtain the viable values for
n. By a direct computation:

0 = H′′ + 3(n+ 1)HH′ + 2
a′′

a
H+ (n2 + 3n− 1)H3

=
a
′′′

a
+ (3n+ 1)H

(
a
′′

a
−H2

)
+
a
′′

a
H+ (n2 + 3n− 1)H3, (4.59)
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where in the second step we directly inserted the expression for the first and second deriva-
tives of H. The third derivative of the scale factor can be obtained by deriving the last
equation of (4.45). Since the energy density of the cosmological constant does not depend
on time, this reads:

a
′′′

a
= 3Ha

′′

a
− a2

2M2
p

Hρm. (4.60)

Using further the Friedman equation for the second derivative of the scale factor, (4.59)
simplifies to

0 = (3n+ 5)
a′′

a
− a2

M2
p

ρm
2

+ (n2 − 2)H2

= (3n+ 5)
1

6
(4ρΛ + ρm)− ρm

2
+ (n2 − 2)

1

3
(ρΛ + ρm). (4.61)

This equation can now be split in a system of two equations, one for the matter energy
density and the other for the cosmological constant energy density, that is:{

(3n+ 5)− 3 + 2(n2 − 2) = 0, for ρm
4(3n+ 5) + 2(n2 − 2) = 0, for ρΛ

. (4.62)

The system is immediately solved by the value n = −2. Therefore, in the end, the desired
solution we were looking for is

D1(a) ∝ H
a2
. (4.63)

Following the arguments of [71], in Appendix (D) we have shown how to find the second
solution of an homogeneous second order differential equation once the first solution is
already known. Specializing (D.7) to our case, the second solution is obtained in the form

D2(a) ∝ D1(a)

∫
dη

e−
∫
dη 3H

D 2
1 (a(η))

, (4.64)

where in the denominator of the integrand we have made explicit the dependence of the
scale factor on the conformal time η just to make clear that even the denominator is
involved by the integral operator, and cannot be simplified with the factor outside the
integral. Now we can recast the solution in a more simple form. The integral entering in
the exponential factor can be directly computed through a change of integration variable:

−
∫
dη 3H = −3

∫
dã

ã
= −3 ln a, (4.65)

having set the integration constant to zero, since it would give rise to a solution proportional
to D1(a). This way, applying the same change of variables to the integral in (4.64) and
substituting the solution (4.63), we arrive to:

D2(a) ∝ H
a2

∫
dη

a−3

a−4H2
=
H
a2

∫
dã

1

H̃3
, (4.66)

where in the last step we defined H̃ ≡ ã′/ã. Summing up, this procedure provides two
linearly independent solutions to (4.57) of the form:

D1(a) ∝ H
a2
, D2(a) ∝ H

a2

∫
dã

1

H̃3
. (4.67)
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The solution D1(a) represents a decay mode, and it happens to decay very rapidly in time,
hence it can be safely neglected. Then the scalar metric perturbation is

Φ = C(k)
H
a2

∫
dã

1

H̃3
. (4.68)

Remember that our aim is to obtain an expression for the transfer scalar functions as
defined in (3.57). In order to reach our purpose, we thus need to separate the primordial
value of the scalar perturbation from its temporal evolution. In order to evaluate the
primordial value of Φ it is useful to firstly make explicit the a-dependence contained inside
the Hubble parameter H. This dependence can be directly read from the first Friedman
equation in (4.45) rewritten as

H
a

=
1√

3Mp

√
ρΛ +

ρm,0
a3

=

√
ρΛ√

3Mp

√
1 +

Ωm,0

(1− Ωm,0)a3
=

√
ρΛ√

3Mp

√
a3 + r

a3
, (4.69)

with the definitions
Ωm,0 ≡

ρm,0
ρcr,0

, r ≡ Ωm,0

1− Ωm,0
, (4.70)

where as usual ρcr,0 = 3M2
pH2/a2 denotes the critical energy density today. Therefore,

enclosing any constant term inside the proportionality factor C(k), the scalar perturbation
becomes:

Φ = C(k)

√
a3 + r

a5

∫ a

0
dx

(
x3 + r

x

)−3/2

= C(k)

√
a3 + r

a5

2a2
√

a
a3+r 2F1

(
1
3 , 1; 11

6 ;−a3

r

)
5r

= C(k)
2

5r
2F1

(
1

3
, 1;

11

6
;−a

3

r

)
. (4.71)

As mentioned at the beginning of this computation, this solution is really reliable only
when matter and the cosmological constant dominate in the Universe. This means that
this solution is valid only for η > ηeq, while at earlier epochs one should consider the
solution (4.48). At the epoch of matter-radiation equality the two solution must match
in order to preserve the continuity of the solution. Modes that happen to be above the
sound horizon at the epoch of equality are frozen to their primordial value, and then the
matching condition easily imposes

C(k) =
5r

2

[
2F1

(
1

3
, 1;

11

6
;−

a3
eq

r

)]−1

Φin(k)

=
5r

2

[
2F1

(
1

3
, 1;

11

6
;−

a3
eq

r

)]−1
2

3
ζin(k). (4.72)

This result completely defines the expression for the gravitational potential Φ, which can
be written as:

Φ(k, η) =
2F1

(
1
3 , 1; 11

6 ;−a3

r

)
2F1

(
1
3 , 1; 11

6 ;−a3eq
r

)Φin(k) =
2

3
gΛ,m(η) ζin(k), (4.73)
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where the normalized growing rate gΛ,matt(η) is defined as

gΛ,m(η) ≡
2F1

(
1
3 , 1; 11

6 ;−a3

r

)
2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) . (4.74)

In the end, the expression (4.73) automatically defines the transfer functions TΦ and TΨ

to be
TΛ,m

Φ (η, k) = TΛ,m
Ψ (η, k) =

2

3
gΛ,m(η). (4.75)

The time evolution of the growing rate g(η) is completely understood only once the
explicit expression for the scale factor a(η) is given. This relation is better derived solving
the Friedman equation with respect to the coordinate time t, and then establishing the link
between t and the conformal time η. Considering a ΛCDM model with negligible curvature
and radiation energy contribution, the Friedman equation in conformal time is

a2H2 =
a4

3M2
P

(
ρΛ +

ρm,0
a3

)
=
ρm,0
3M2

P

a
(
1 + a3r

)
. (4.76)

Performing an integral on both sides∫ a

aeq

da√
a(1 + a3r)

=

√
ρm,0
3M2

P

∫ η

ηeq

dη′ (4.77)

leads to

η(a) = ηeq +
2
√
a

H0

√
Ωm,0

2F1

[
1

6
,
1

2
;
7

6
;−ra3

]
−

2
√
aeq

H0

√
Ωm,0

2F1

[
1

6
,
1

2
;
7

6
;−ra3

eq

]
. (4.78)

This relation cannot be inverted analytically. For this reason we attempted a numerical
approach, tabulating the values of η(a) as a function of the scale factor a starting from
the epoch of equality; then this relation is plotted and inverted with Python to obtain the
desired expression of a(η). The results of this procedure are shown in Figure (4.2). The
form of the fitting function of the second plot was guessed by considering that during matter
domination the scale factor scales as a(η) ∝ η2, while when Λ dominates a(η) ∝ −η−1;
then it is reasonable to use the fit function

a(η) = c1 + c2

(
η

η0

)−1

+ c3

(
η

η0

)2

. (4.79)

Using the Plank data (ref. [109] for the values of the Hubble constant today (H0 =
67.36 km s−1Mpc−1) and for the matter density parameter (Ωm,0 = 0.315), the optimal
parameters given by the fit function are

c1 = −7.524× 10−3

c2 = 2.546× 10−4

c3 = 9.871× 10−1

At this point then, the growing rate g(η) is perfectly understood and it is given, as a
function of the conformal time, by

gΛ,m(η) ≡
2F1

[
1
3 , 1; 11

6 ;−r−1

(
c1 + c2

(
η
η0

)−1
+ c3

(
η
η0

)2
)3
]

2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) . (4.80)
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Figure 4.2: Scale factor evolution in conformal time in matter and Λ dominated Universe. In
the upper panel it is shown the evolution of the conformal time η(a) (in Mpc) as a function of
the scale factor a, (equation (4.78)), considering as reference values r = 0.46, Ωm,0 = 0.315,
ηeq = 112.8Mpc, and aeq = (1 + zeq)

−1 = 2.94× 10−4. In the lower panel this relation is inverted
graphically simply exchanging the two axis. The fit function reproduces very well the exact function
along the whole time domain.

The result is plotted in Figure (4.3).
To summarize the above results, the scalar metric perturbations can be written in the

following way

Φ(k, η) = Ψ(k, η) =
2

3

[
1 +

a2
i

9H2
0

k2

]−1

gΛ,m(η)ζin(k), (4.81)

with

g(η) =



3
sin
(
kη√

3

)
− kη√

3
cos
(
kη√

3

)
(
kη√

3

)3 η < ηeq

2F1

[
1
3 , 1; 11

6 ;−r−1

(
c1 + c2

(
η
η0

)−1
+ c3

(
η
η0

)2
)3
]

2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) η > ηeq

. (4.82)

4.4 Tensor transfer function

The evolution equation for the tensor transfer function are obtained minimizing the action

S
(2)
T =

M2
P

8

∫
d4x a2

[
χ′ijχ

ij ′ − (k2 + a2m2)χijχ
ij
]

(4.83)
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Figure 4.3: Upper panel: solution for the growing rate g(a) as a function of the scale factor from
the exact formula (4.74). Lower panel: approximate solution of g(η) using the previous fit function
to replace the scale factor dependence with the conformal time one.

found in Section (2.3.2). The Euler Lagrange equations for this action are

χ
′′
(η, k) + 2Hχ′(η, k) + (k2 +m2a2)χ(η, k) = 0. (4.84)

In order to solve this equation in a semi-analytical way, we firstly have to make explicit
the dependence of the scale factor a on the conformal time η. This relation can be directly
obtained working out the Friedman equations in the two regimes

Radiation domination The last Friedman equation (4.45) in this regime reads

a′′ = 0 → a(η) = c1η + c2. (4.85)

The integration constant c2 vanishes under the requirement a(0) = 0, while c1 is fixed by
the first Friedman equation

a′
2
(0) =

1

3M2
P

ρa4 = H2
0 . (4.86)

Therefore
a(η) = H0η. (4.87)

The Einstein equation (4.84) then becomes

χ′′ +
2

η
χ′ + (k2 +m2H2

0η
2)χ = 0. (4.88)

In the regime of small masses, that is m2a2 � k2, equation (4.88) immediately reproduces
the spherical Bessel equation (C.1) with ` = 0. Therefore the solution in this regime is

χ(k, η) = j0(kη) m2a2 � k2. (4.89)
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In the opposite regime, i.e. m2a2 � k2, it is convenient to introduce a new variable
x ≡ mH0η

2/2. This definition sets the following rules for differentiation

d

dη
=
√

2mH0x
d

dx

d2

dη2
= mH0

d

dx
+ 2mH0x

d2

dx2
, (4.90)

and then the Einstein equation becomes

χ̈+
3

2x
χ̇+

(
k2

2mH0x
+ 1

)
χ = 0. (4.91)

In the large masses approximation the first term inside the parenthesis can be neglected,
and the equation is solved by

χ(k, x) = c1x
−1/4J 1

4
(x) + c2x

−1/4Y 1
4
(x). (4.92)

Requiring χ(k, 0) = 1, since at initial time all the modes under consideration are outside
the sound horizon, imposes c2 = 0. The same condition fixes the value of the constant c1.
One can see this expanding the Bessel function with the Frobenius method (see ref. [105]
for further details) in the limit for x→ 0

Jα(x) =
x→0

[ ∞∑
n=0

(−1)n

n! (Γ(n+ α+ 1)

(x
2

)2n+α
]
. (4.93)

Then

χ(k, x) =
x→0

x−1/4

[ ∞∑
n=0

(−1)n

n! (Γ
(
n+ 1

4 + 1
) (x

2

)2n+ 1
4

]

= x−1/4

[
1

Γ
(

5
4

) (x
2

) 1
4

+ o(x9/4)

]
=

1

21/4Γ
(

5
4

) + o(x2), (4.94)

which implies

c1 = 21/4Γ

(
5

4

)
. (4.95)

Turning back to the original time η, and exploiting the relation between the Bessel function
Jn(x) and the spherical Bessel ones

Jn(x) =

√
2x

π
jn− 1

2
(x), (4.96)

the solution is

χ(k, η) =
23/4

√
π

Γ

(
5

4

)(
mH0η

2

2

)1/4

j− 1
4

(
mH0η

2

2

)
m2a2 � k2. (4.97)

A simple way to interpolate the solutions in the two regimes is to take their products, that
is

χ(k, η) =
23/4

√
π

Γ

(
5

4

)(
mH0η

2

2

)1/4

j− 1
4

(
mH0η

2

2

)
j0(kη). (4.98)
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Figure 4.4: Numerical solution of the Einstein equation (4.88) for tensor modes in radiation
domination with m = H0 = k/2000. The tensor transfer function remains nearly frozen to one
until the mode re-enters the horizon. This event is roughly captured by equation (4.100) and
illustrated in this picture with a vertical dashed line. After the mode has re-entered the horizon it
soon starts decaying with a damped oscillatory trend.

This solution shows an oscillating behavior with a time dependent frequency very similar to
the solution found for the scalar growing rate during radiation domination. The numerical
exact solution is shown in Figure (4.4) The horizon re-entering condition can be obtained
by directly comparing the scale of interest with the size of the comoving Hubble radius

rH(η) ≡ 1

H
=
a

a′
. (4.99)

Moreover, one should further take into account the mass term contribution, which, at the
end of the day, brings to the condition

k2 +m2H2
0η

2
∗ =

1

η∗
. (4.100)

Matter domination For large enough scales and sufficiently tiny graviton masses, tensor
perturbation modes may survive the damping oscillation until the epoch of matter-radiation
equivalence. In matter domination, since ρm = ρm,0/a

3, one can again integrate twice the
last equation of (4.45) to get:

a′(η) = c1 +
ρm,0
6M2

p

η, (4.101)

a(η) = c2 + c1η +
ρm,0

12M2
p

η2, (4.102)

with c1 and c2 integration constants. Imposing the constraint a(0) = 0, we can immediately
set c2 = 0. Furthermore, inserting (4.102) inside the first Friedman equation (4.45), one
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can readily verify that this equation is compatible with (4.101) only if c1 = 0 as well.
Therefore, at the end of the day the relation between the scale factor and the conformal
time during matter domination is:

a(η) =
ρm,0

12M2
p

η2 ' H2
0

4
η2, (4.103)

with H0 = ȧ(t0)/a(t0) the present Hubble parameter computed with respect to the coor-
dinate time under the usual assumption of matter domination. Omitting the functional
dependence of the tensor mode for the ease of notation, equation (4.84) specializes to

χ
′′

+
4

η
χ′ +

(
k2 +

m2H4
0

16
η4

)
χ = 0. (4.104)

This equation can be solved in two extreme regimes according to the value of the graviton
mass with respect to its wavenumber. In the limit for small masses, that is m2a2 � k2, we
can neglect the second term in the bracket. The field χ behaves then as massless spin-2
field, and, according to [69], (4.104) in the massless limit has two exact solutions:

χ(η, k) = b1χ1(η, k) + b2χ2(η, k),

χ1(η, k) =
1

(kη)2

[
sin(kη)

kη
− cos(kη)

]
,

χ2(η, k) =
1

(kη)2

[
cos(kη)

kη
+ sin(kη)

]
. (4.105)

Continuity with the solution in radiation domination demands χ(ηeq, k) = 1; this situation
can be always realized setting b2 = 0, and b1 an appropriate normalization factor. Moreover
we recognize in the first solution the typical form of the spherical Bessel function of first
degree (C.2). All in all, the total solution can be written as:

χ(k, η) ∝ j1(kη)

kη
. (4.106)

One can verify that is indeed the correct solution by a direct substitution inside (4.104);
denoting with x the combination x = kη, the wave equation reduces to

0 =
k

η

d2j1(x)

dx2
− 2

η2

dj1(x)

dx
+

2

η3
j1(x) +

4

η2

dj1(x)

dx
− 4

kη3
j1(x) +

k2

kη
j1(x)

=
k

η

[
d2j1(x)

dx2
+

2

x

dj1(x)

dx
+

(
1− 2

x2

)
j1(x)

]
, (4.107)

which is identically zero since the term inside the square brackets is exactly the spherical
Bessel equation (C.1) with ` = 1.

On the other hand, in the opposite regime for large masses (m2a2 � k2), the mass
term in the brackets of equation (4.104) represents the dominant contribution. In order to
solve the Einstein equation in this limit, let’s consider the following trick. We apply the
change of variable x =

mH2
0η

3

12 such that

d

dη
=

(
9mH2

0

4

)1/3

x2/3 d

dx
,

d2

dη2
=

(
9mH2

0

4

)2/3

x2/3

(
2

3
x−1/3 d

dx
+ x2/3 d

2

dx2

)
. (4.108)
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This way equation (4.104) becomes:

χ̈

(
9mH2

0x
2

4

)2/3

+ χ̇

[
2

3
+

4

3

]
x1/3

(
9mH2

0

4

)2/3

+

[
k2 +

(
9mH2

0x
2

4

)2/3
]
χ = 0

χ̈+
2

x
χ̇+

[
k2

(
9mH2

0

4

)−2/3

x−4/3 + 1

]
χ = 0

χ̈+
2

x
χ̇+

[
1 +

16k2

m2H4
0η

4

]
χ = 0 (4.109)

where the dots in χ̇ and χ̈ are used to denote the first and second derivative with respect
to x respectively. Now we take the limit for large masses such that the second term in
the bracket can be neglected and we recognize again the form of a Bessel function of order
zero. Therefore the solution in this regime can be approximated as

χ ∝ j0
(
mH2

0η
3

12

)
. (4.110)

The two solution show a similar behavior. They both approach to a constant value at early
times, while they provide a suppressed and damped oscillating behavior at late time, as a
symptom of the horizon re-entering process. A possible way to interpolate the solutions
in the two regimes is to treat the mass contribution as a modulation of the massless one,
that is we consider their product:

χ(η, k) ' A j1(kη)

kη
j0

(
mH2

0η
3

12

)
. (4.111)

with A a real coefficient set by requiring the matching with the solution in the radiation era
at the time of matter-radiation equivalence (the reader can find the explicit expression in
ref. [60]. The trend of this solution is shown in Figure (4.5). Taking the limit for η → 0 on
the spherical Bessel functions of first and zero order (C.2), one can easily realize that this
is indeed the correct normalization. Thanks to the properties of the solutions in the two
regimes, their product shows a constant trend at early times as well, as it should be. This
behavior gets broken once the cosmological scale k re-enters inside the horizon. In matter
domination the comoving Hubble radius increase as rH(η) = η2/2, and the condition for
the horizon crossing becomes

k2 +
1

16
m2H4

0η
6
∗ =

2

η2
∗
. (4.112)

This is an interesting result; the main effect of a non vanishing graviton mass is visible in
the horizon re-entering process. In particular the mass moves up this event, massive modes
happen to cross the horizon earlier. As a consequence, small scale massive tensor modes
happen to be even more suppressed, since they live within the horizon longer. Equation
(4.112) has six roots, but the only positive and real one is

η∗ =
1

31/3


[√

3µ6 (k6 + 27µ2) + 9µ4
]1/3

µ2
− 31/3k2[√

3µ6 (k6 + 27µ2) + 9µ4
]1/3


1/2

, (4.113)

where, for the ease of notation, it was defined an effective mass µ ≡ mH0/4.
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Figure 4.5: Tensor transfer function in matter domination as function of time with m = k =
H0. The plot shows that tensor modes remain nearly fronzen to their primordial value until the
occurrence of the horizon crossing process (higlighted by a dotted red vertical line taken from the
solution of the condition (4.112)). After this event, the perturbation modes soon decay and undergo
a rapid oscillation process averaged to zero.

In order to see more clearly the behavior of the interpolate solution (4.84), let’s consider
the superhorizon regime, namely kη � 1, and expand the massless contribution up to the
second order. This way, making explicit the zero order Bessel function,

χ(η, k) ∼
12 sin

(
mH2

0η
3

12

)
mH2

0η
3

(
1− (kη)2

10

)
+O(k4). (4.114)

Few comments are now in order. First of all this expression makes clear that in the massless
case the transfer function outside the horizon behaves nearly like a constant. When we
turn on the graviton mass, the sinusoidal factor introduces a time dependent modulation
on the transfer function. The frequency of these modulations increases with the mass. This
directly reflects the effect of the graviton mass on the horizon re-entering process stated
above. Indeed, the more is the the mass, the earlier a given cosmological scale will re-enter
the horizon, or, in other words, the more rapidly the modulation factor in (4.114) will force
the transfer function to oscillate and damp. The limiting mass which distinguishes between
the two regimes is conventionally defined by mη3/12 = kη, that is when the argument of
the massive and massless solutions equate. Significant mass contributions becomes evident
over this threshold mass. All these features are captured in Figure (4.6)

Λ domination The last case to analyze is the one where the contribution of the cosmo-
logical constant dominates. This epoch refers to very to very late times, since Λ started
dominating at redshift zΛeq ' 0.4, which means a(ηΛeq)/a0 ' 0.71. As in the previous
cases, one can find the scale factor evolution integrating the Friedman equation (4.45),
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Figure 4.6: Tensor transfer function in matter domination for different values of the late graviton
mass m and with fixed wavenumber k = H0 as function of conformal time. The plot shows clearly
that the heavier the mass the sooner a certein perturbation mode cross the horizon. Moreover,
massive modes undergo a more rapid oscillation when they leave beneath the horizon.

which in this case leads to ∫
da

a2
=

√
ρΛ

3M2
P

∫
dη, (4.115)

with solution
a(η) = − 1

H0

√
ΩΛ,0

η−1. (4.116)

Then the Einstein equation (4.84) becomes

χ
′′

+
2

η
χ′ +

(
k2 +

m2

H2
0 (1− Ωm,0)

η−2

)
χ = 0. (4.117)

Again the easiest path is to consider separately the regimes for large or small graviton
masses and then interpolate the two solutions. In the latter case the equation simplifies to

χ
′′

+
2

η
χ′ + k2χ = 0, (4.118)

which is identical to the radiation domination case (4.88) with solution

χ(k, η) ∝ j0(kη) m2a2 � k2. (4.119)

In the opposite regime the mass term survives, and the solution is readily found to be

χ(η) = c1η
1
2

(
−
√

1−4m̃2
0−1

)
+ c2η

1
2

(√
1−4m̃2

0−1
)
. (4.120)

Since the first term happens to decay more rapidly the the other one, one can safely decide
to neglect this contribution at late times, and then to set c1 = 0. The other constant is
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fixed by the matching condition with the solution in matter domination. This way the
complete interpolating solution is found as

χ(η) = B j0(kη) (η)
1
2

(√
1−4m̃2

0−1
)
. (4.121)

To sum up the results of this section, the tensor transfer function in the three different
regimes is found as

χ(k, η) =


21/4Γ

(
5

4

)(
mH0η

2

2

)1/4

j− 1
4

(
mH0η

2

2

)
j0(kη), if η < ηeq,

A
j1(kη)

kη
j0

(
mH2

0η
3

12

)
, if ηeq < η < ηΛeq ,

B j0(kη) (η)
1
2

(√
1−4m̃2

0−1
)
, if η > ηΛeq .

(4.122)

4.5 Explicit computation of the angular power spectra

The discussion of the previous sections provide us all the tools to attempt an explicit
evaluation of the linear transfer functions (3.93), and, ultimately, of the angular spectra
(4.42). As usual we divide this procedure in three step, one for each contribution.

4.5.1 Initial condition angular spectrum C̃`,I

For a start, let’s consider the initial condition contribution

C̃`,I = 4π

∫
dk

k
|j`[kl(η0, ηin)]|2PI(q, k). (4.123)

In order to evaluate this expression we firstly need a guess about the dimensionless power
spectrum PI(q, k). The easiest case is to assume an Harrison-Zel’dovich spectrum, that is
we assume that the dimensionless power spectrum does not depend on the scale k at all.
This way the computation simplifies to

C̃`,I = 4πPI(q)
∫
dk

k
|j`[kl(η0, ηin)]|2

= 4πPI(q)
∫
dx

x
j`(x)2. (4.124)

Having in mind the known solution for the CMB anisotropy, we immediately recognize in
this expression a contribution coming from the Sachs Wolfe effect, that is the contribution
of the gravitational redshift occurring at the time of the GW formation (which is manifest
in the dependence from the initial time ηin). At this point the integral can be evaluated
by exploiting the property (C.8) of the spherical Bessel functions:∫

dx

x
j`(x)2 = 2−3π

Γ(`)Γ(2)

Γ(`+ 2)Γ2
(

3
2

) =
2−1

`(`+ 1)
, (4.125)

where in the last step we used the properties of the Euler gamma functions:

Γ(n) = (n− 1)! , Γ

(
1

2
+ n

)
=

(2n)!

4nn!

√
π, (4.126)
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for n any non-negative integer. Therefore, the final result for the spectra of the initial
condition with the assumption of a Harrison Zel’dovich spectrum is

C̃`,I =
2πPI(q)
`(`+ 1)

. (4.127)

Notice that the initial condition contribution gets no corrections from the graviton mass.
This seems a reasonable result, since we expect the mass to affect the propagation of
gravitons, and not the way they were produced at the initial time. Anyway this term still
preserves the dependence on the graviton frequency q, regardless the presence of a non
vanishing mass.

We can now try to extend these result to allow a more general class of dimension-
less power spectra. We consider the case of a constant spectral index nI such that the
dimensionless power spectrum obeys the power law

PI(k) = P(k0)

(
k

k0

)nI−1

, (4.128)

where k0 denotes the pivot scale of the spectrum. In this case the angular spectra evaluate
to

C̃`,I = 4πPI(q, k0)

∫
dk

k

(
k

k0

)nI−1

|j`[kl(η0, ηin)]|2

= 4πPI(q, k0)

(
1

k0l(η0, ηin)

)nI−1 ∫
dxxnI−2j`(x)2. (4.129)

Using again (C.8) to evaluate the integral, we obtain the full general expression

C̃`,I =
π2

2

Γ
(
`+ nI

2 −
1
2

)
Γ
(
`+ 5

2 −
nI
2

) Γ(3− nI)
Γ2
(
2− nI

2

)PI(q, k0)

(
2

k0l(η0, ηin)

)nI−1

. (4.130)

4.5.2 Scalar sourced angular spectrum C̃`,S

The final result of section (4.3) allows to write an explicit expression for the linear scalar
transfer function (3.93), while the angular transfer function reads:

T S` (η0, ηin, k, q) =
2

3

{
v−2g(k, ηin)j` [kl(η0, ηin)] +

+

∫ η0

ηin

dη
∂
[
(1 + v−2)g(k, η)

]
∂η

j` [kl(η0, η)]

}
, (4.131)

with

g(k, η) =



grad(k, η) = 3
sin
(
kη√

3

)
− kη√

3
cos
(
kη√

3

)
(
kη√

3

)3 , if η < ηeq,

gΛ,m(η) =
2F1

(
1
3 , 1; 11

6 ;−a3

r

)
2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) , if η > ηeq.

(4.132)

and g(k, ηin) = grad(k, ηin). The first term of equation (4.131) represents an intrinsic
fluctuation in the energy density at primordial times, when the gravitational waves were
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generated. In the CMB literature this effect is commonly called Sachs Wolfe contribution.
The second term instead can be compared with the Integrated Sachs Wolfe effect, that
is an integrated gravitational-redshift effect accounting for all the history of the Universe
from the GW formation until today, and it is sensitive to any temporal variation of the
scalar potentials or the graviton phase velocity. The above expression can now be inserted
inside the spectra for the scalar sourced contribution (4.42).

C̃`,S = 4π

∫
dk

k
|T S` (η0, ηin, k, q)|2Pζ(k)

=
16π

9

∫
dk

k

∣∣∣∣v−2grad(k, ηin)j` [kl(η0, ηin)] +

+

∫ η0

ηin

dη
∂
[
(1 + v−2)g(η)

]
∂η

j` [kl(η0, η)]

∣∣∣∣2Pζ(k). (4.133)

As before, we now perform a change of variable inside the integral and pass to the dimen-
sionless variable x = kl(η0, ηin). Notice that the definition (3.31) of the quantity l(η, η′)
allows the decomposition l(η0, η) = l(η0, ηin)− l(η, ηin). This way (4.133) becomes

C̃`,S =
16π

9

∫
dx

x
Pζ
(

x

l(η0, ηin)

){
v−2grad

(
x

l(η0, ηin)
, ηin

)
j`(x)

+

∫ η0

ηin

dη
∂
[
(1 + v−2)g(η)

]
∂η

j`

[
x

(
1− l(η, ηin)

l(η0, ηin)

)]}2

. (4.134)

This expression can be compared again with the known results of the CMB anisotropy.
It is instructive to look at the two contribution separately to understand how each term
contributes to the total angular power spectrum.

Sachs-Wolfe contribution

The term of the angular transfer function corresponding to the the Sachs-Wolfe contribu-
tion is

T SW`,S (η0, ηin, k, q) =
2

3
v−2grad(k, ηin)j` [kl(η0, ηin)] . (4.135)

Hence, considering a power law scale-dependence of the primordial power spectrum as

Pζ(k) = Pζ(k0)

(
k

k0

)ns−1

, (4.136)

with ns the scalar spectral index and k0 a reference scale, the angular power spectrum is

C̃ SW
`,S =

16π

9
v−4Pζ(k0)

xns−1
0

∫
dxxns−2grad

(
x

l(η0, ηin)
, ηin

)2

j`(x)2, (4.137)

where x0 ≡ k0l(η0, ηin). As long as we are interested in large angular scales, that is low
multipoles `, since ηin is fixed, the most dominant contribution to the angular transfer
function comes from the large linear scales k. This is because small scales are suppressed
by the spherical Bessel function, which selects wavenumber of the order ` ∼ kl(η0, ηin).
Hence, one can assume that, for low multipoles, the scales that contribute the most to the
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angular transfer function happened to be out of the horizon at initial time. In this regime
the growing rate grad (k, ηin) ' 1. Then, for large scales,

C̃ SW
`,S =

16π

9
v−4Pζ(k0)

(
1

k0l(η0, ηin)

)ns−1 ∫
dxxns−2j`(x)2

=
2π2

9
v−4Pζ(k0)

(
2

k0l(η0, ηin)

)ns−1 Γ
(
`+ ns

2 −
1
2

)
Γ
(
`+ 5

2 −
ns
2

) Γ(3− ns)
Γ2
(
2− ns

2

) . (4.138)

In the easiest Harrison-Zel’dovich case the result simplifies to

`(`+ 1)

2π
C̃ SW
`,S =

4

9
v−4Pζ , (4.139)

that describes the usual Sachs-Wolfe Plateau which the reader may be familiar with from
the results of CMB anisotropy.

As we will see, the tensor sourced spectrum is subdominant with respect to the initial
and scalar sourced one, which therefore provide the most contribution to the total spec-
trum. Hence we can already read the leading contributions to the angular spectrum, in the
simplest case of an Harrison-Zel’dovich spectrum, from (4.127) and (4.139), which together
constitute the overall Sachs Wolfe effect of SGWB, that is:

`(`+ 1)

2π
C̃` '

`(`+ 1)

2π

[
C̃`,I + C̃ SW

`,S

]
' PI(q) +

(
2

3

)2

v−4Pζ . (4.140)

This result looks very similar to the one obtained in [59]. The only difference relies on
the graviton group velocity v, and the massless result is straightforwardly recovered in the
limit v → 1.

Integrated Sachs-Wolfe contribution

The ISW effect arise from the time variation of the gravitational potentials encoded in the
second term of (4.134). One should expect that the cross product of the two terms gives a
negligible contribution, since it involves an integral of two spherical Bessel functions with
different arguments, such that it is probable that they interfere in a distructive way. At
the level of the angular transfer function, the ISW contribution comes from

T ISW`,S (η0, ηin, k, q) =
2

3

∫ η0

ηin

dη
∂
[
(1 + v−2)g(k, η)

]
∂η

j` [kl(η0, η)] . (4.141)

Assuming for simplicity that gravitons propagate with constant velocity and considering
the limit ηin � η0, the ISW contribution to the angular power spectrum is

C̃ISW`,S =
16π(1 + v−2)

9

∫
dx

x
Pζ
(
x

vη0

){∫ η0

ηeq

dη
dg(k, η)

dη
j`

[
x

(
1− η

η0

)]}2

, (4.142)

with x = kl(η0, ηin) ≈ kvη0. In order to estimate this effect it is necessary to understand
the derivative of the growing rate g(η) appearing inside the second term of the angular
transfer function (4.131) (for simplicity in the following the graviton group velocity v will be
retained as constant in time). As seen above, the behavior of scalar modes is very different
during radiation or matter domination. In order to reach a semi-analytical expression
it is fair to discriminate between modes on large scales that re-enter the horizon during
matter domination and the small scales that re-enter when ultra-relativistic species were
dominating the energy budget of the Universe.
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Large scales: since these scales have remained frozen to their primordial value through-
out the radiation domination epoch, the derivative of the growing rate vanishes for η < ηeq.
On the contrary, once the Universe enters in the matter domination epoch, all the scales
happen to decrease according to (4.73) with the growing rate (4.74) defined as

g(η) = gΛ,m(η) =
2F1

(
1
3 , 1; 11

6 ;−a3

r

)
2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) . (4.143)

Its conformal time derivative can be decomposed in the following way

∂g(η)

∂η
=
dg(a)

da

da(η)

dη
. (4.144)

The first factor can be treated analytically and evaluates to

dg(a)

da
= −6a2

11r

2F1

(
4
3 , 2; 17

6 ;−a3

r

)
2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) . (4.145)

For what concerns the time derivative of the scale factor instead, we do not have an exact
analytic expression of a(η). The best approach is to use the numerical fit function solution
(4.79) to obtain

da(η)

dη
= −c2η0

η2
+ 2c3

η

η2
0

. (4.146)

Then finally

dg(η)

dη
= − 6

11r

(
−c2η0

η2
+ 2c3

η

η2
0

)[
c1 + c2

(
η0

η

)
+ c3

(
η

η0

)2
]2

×
2F1

(
4
3 , 2; 17

6 ;−
(
c1+

c2
η

+c3η2
)3

r

)
2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) . (4.147)

This function is really complicated and hard to integrate. For this reason some approxi-
mations are necessary to proceed with an analytic evaluation. In the first place, looking at
the magnitude of the parameters involved in the fitting function for the scale factor (4.79),
one can convince himself that the by far dominant contribution arise from the matter com-
ponent. This situation is achievable by simply neglecting the terms proportional to c1 and
c2, which leads to

dg(η)

dη
= − 12c3

3

11rη6
0

η5
2F1

(
4
3 , 2; 17

6 ;− c33η
6

rη60

)
2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) . (4.148)

Figure (4.7) shows the derivative of the growing rate considering both the two situation,
the one with dust and Λ components, and the one with matter only. Moreover, for a rough
estimation of the order of magnitude of this effect, one can try to replace the hypergeo-
metrical functions with their averaged value. Indeed, as shown in Figure (4.8), the ratio
of these functions provides a weak damping at late times (with values included between
[0.3, 1]) which does not spoil the most important polynomial behavior. The average of this
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Figure 4.7: Comparison between the full solution (4.147) considering both the matter and the Λ
contribution, and the simplified solution (4.148) taking into account for only the matter component.
The two solution are almost identical.
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function is given, in virtue of the integral mean value theorem, by

M =
1

η0 − ηeq

∫ η0

ηeq

dη
2F1

(
4
3 , 2; 17

6 ;− c33η
6

rη60

)
2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) = 0.8484. (4.149)

Here is was chosen to take the estimate value for the conformal time at matter radiation
equivalence ηeq from the input parameters of the public code CLASS [111] for computation
of the CMB anisotropy (ηeq = 112.800Mpc), while the present conformal time is computed
from (4.78) setting a(η0) = 1, with the result: η0 = 13982.6Mpc. At the end of the day,
the final approximated estimate for the derivative of the growing rate is

dg(η)

dη
= − 12c3

3

11rη6
0

Mη5. (4.150)

At this point one can attempt the evaluation of the time integral in (4.142) by hand:∫ η0

ηeq

dη
dg(η)

dη
j`

[
x

(
1− η

η0

)]
= − 12c3

3

11rη6
0

M
∫ η0

ηeq

dη η5j`

[
x

(
1− η

η0

)]
= −12c3

3

11r

M
x

∫ x

0
dy
(

1− y

x

)5
j`(y), (4.151)

where in the last step the following changes of variables were applied

η̃ ≡ η

η0
y ≡ x(1− η̃). (4.152)

Looking at the parenthesis in the second line of (4.151), one immediately realizes that the
term y/x is always subdominant with respect to the term 1, since the integration variable
y runs from 0 to x. Therefore, considering only the leading term, the integral evaluates to∫ x

0
dy j`(y) =

√
π2−l−2x`+1Γ

(
`+ 1

2

)
1F̃2

(
`+ 1

2
; `+

3

2
,
`+ 3

2
;−x

2

4

)

=
√
π2−`−2x`+1Γ

(
`+ 1

2

)
1F2
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`+1

2 ; `+ 3
2 ,

`+3
2 ;−x2

4

)
Γ
(
`+ 3

2

)
Γ
(
`+3

2

) . (4.153)

Therefore

C̃ISW`,S ' 16π2(1 + v−2)c6
3M2

121 r222`

Γ2
(
`+1

2

)
Γ2
(
`+ 3

2

)
Γ2
(
`+3

2

)∫
dxx2`−1Pζ
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)
1F

2
2

(
`+ 1

2
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3

2
,
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2
;−x

2

4

)
. (4.154)

At this point one cannot go further by analytical approaches. The integral of the
hypergeometric function can be evaluated with numerical methods for any given value of
the multipole ` and the scalar spectral index ns.

Small scales: small scale perturbation re-enter the horizon before the matter-radiation
equality, and hence they follow a time growth given by (4.55). As one can see in Figure
(4.1), the solution remains constant as long as the perturbation remains out of the Hubble
horizon, while it undergoes a rapid decay during the re-entering process. Once the mode
has crossed the horizon, it soon start oscillating with zero average. Therefore one can
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approximate the derivative of the growing rate grad(k, η) as a Dirac delta function centered
at the time of horizon crossing, that is when kη∗ '

√
3. Then the ISW contribution

simplifies to

C̃ISW`,S =
16π(1 + v−2)

9

∫
dx

x
Pζ
(
x

vη0

)
j`

[
x

(
1− η∗

η0

)]2

. (4.155)

This expression resembles the one of the SW term, but here there is a more tricky x-
dependence inside the spherical Bessel function. Indeed the horizon crossing time η∗ de-
pends on the variable x via

η0

η∗
=

x

v
√

3
+ 1, (4.156)

and then

C̃ISW`,S =
16π(1 + v−2)

9

∫
dx

x
Pζ
(
x

vη0

)
j`

[
x2

x+ v
√

3

]2

. (4.157)

The numerical solutions of the integrated Sachs-Wolfe effect, which we will discuss in
Section (6.2), are in agreement with the last result (4.157) only for very large multipoles,
namely ` > 1000, that are inaccessible to our future GW interferometers. For lower
multipoles instead, the numerical solution in not in agreement with (4.154); more efforts
are then needed to develop an efficient analytic computation of the ISW contribution.

4.5.3 Tensor sourced angular spectrum C̃`,T

In light of the result of section (4.4), and remembering the definitions (4.42) and (3.93),
the tensor sourced contribution to the angular spectrum is:

C̃`,T = 4π

∫
dk

k
|T T` (η0, ηin, k, q)|2

∑
λ=±2

Pλ(k)

=
π

4

(`+ 2)!

(`− 2)!

∫
dk

k

∣∣∣∣∣
∫ η0

ηin

dη χ′(η, k)
j`[kl(η0, η)]

k2l2(η0, η)

∣∣∣∣∣
2 ∑
λ=±2

Pλ(k). (4.158)

As done for the scalar case, one could separate between two distinct regimes, considering
large scales that re-enter the horizon during matter domination, and small scales which
re-enter before the time of equivalence, that is during the radiation era. However, looking
at the solution for the tensor transfer function in these regimes (4.122) and remembering
the discussion of Section (4.4)6, one can treat both the two cases at the same time with a
simple argument. Since for large arguments the growing rate oscillates very rapidly, it can
be averaged out to zero, while there is a steep variation when the modes pass from super-
to sub-horizon regime. Then it is reasonable to take the time derivative of the transfer
χ(k, η) as a Dirac delta function centered at the time of horizon crossing. What distinguish
between the two regimes is the condition which defines this event. For large scales which
re-enter during matter domination it is given by (4.112):

k2η2
∗ = 2− 1

16
m2H4

0η
6
∗. (4.159)

while for scales that re-enter during the radiation epoch the condition is (4.100)

k2 +m2H2
0η

2
∗ =

1

η∗
. (4.160)

6Indeed the form of the solutions for the tensor transfer function in both the two regimes is really
similar to the behavior of the scalar transfer function during radiation domination. Then, all the three
situation can be treated is an analogous way.
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Moreover, as done several times so far, one can consider ηin ≈ 0 and η0 ≈ ∞, such that
the angular spectrum becomes

C̃`,T '
π

4

(`+ 2)!

(`− 2)!

∫
dk

k

j2
` [kl(η0, η∗)]

k4l4(η0, η∗)

∑
λ=±2

Pλ(k). (4.161)

In this situation one should remember that the horizon crossing time η∗ depends on the
scale k under consideration. However this dependence is suppressed inside the spheri-
cal Bessel function, such that it is a good approximation to retain η∗ as k-independent.
Considering a power law dependence for the primordial spectrum Pλ(k) as

Pλ(k) = Pλ(k0)

(
k

k0

)nT
, (4.162)

and introducing the new integral variable x ≡ kl(η0, η∗), one gets

C̃`,T '
π

4

(`+ 2)!

(`− 2)!

∑
λ=±2 Pλ(k0)

knT0 l(η0, η∗)nT

∫
dxxnT−5j2

` (x)

' 2nT π2

512

∑
λ=±2 Pλ(k0)

knT0 l(η0, η∗)nT
(`+ 2)!

(`− 2)!

Γ
(
`+ nT

2 − 2
)

Γ
(
`− nT

2 + 4
) Γ(6− nT )

Γ2
(

7
2 −

nT
2

) . (4.163)

In section (2.1.1) it was shown the most general expression for the tensor primordial power
spectrum. In particular we obtained

nT ≡ 3− 2ν = 3

1−

√√√√1− 4

9

(
m2
g

H̄2
− 3ε

) . (4.164)

The effects of graviton mass are visible only inside the tensor spectral index and in the
quantity l(η0, η∗) that, besides for the graviton group velocity, contains a mass dependence
inside the time of horizon crossing η∗. As one can see in (4.164), the presence of a graviton
mass induces a blue tilt in the primordial tensor power spectrum. For a scale invariant
primordial power spectrum (nT = 0), the final result becomes

C̃`,T '
π2

512

∑
λ=±2

Pλ(k0)
(`+ 2)!

(`− 2)!

Γ (`− 2)

Γ (`+ 4)

Γ(6)

Γ2
(

7
2

)
' π

15

∑
λ=±2

Pλ(k0)
1

(`+ 3)(`− 2)
. (4.165)

4.5.4 Summary

The most important results of this chapter are now summerized. The scalar source con-
tribution to the anisotropy are divided in a SW (Sachs-Wolfe) and an ISW (Integrated
Sachs-Wolfe) effects:

C̃ SW
`,S =

16π

9
v−4Pζ(k0)

xns−1
0

∫
dxxns−2grad

(
x

l(η0, ηin)
, ηin

)2

j`(x)2, (4.166)

C̃ISW`,S =
16π(1 + v−2)

9

∫
dx

x
Pζ
(
x

vη0

){∫ η0

ηeq

dη
dg(η)

dη
j`

[
x

(
1− η

η0

)]}2

, (4.167)
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with the growing rate evaluated in two different regimes as

g(η) =


grad(η) = 3

sin
(
kη√

3

)
−
√
kη
3 cos

(
kη√

3

)
kη√

3

, if η < ηeq,

gΛ,m(η) =
2F1

(
1
3 , 1; 11

6 ;−a3

r

)
2F1

(
1
3 , 1; 11

6 ;−a3eq
r

) , if η > ηeq.

(4.168)

It is particularly interesting to evaluate the Sachs-Wolfe contribution in the limit of large
angular scales, where the angular power spectrum reduces to

C̃ SW
`,S =

2π2

9
v−4Pζ(k0)

(
2

k0l(η0, ηin)

)ns−1 Γ
(
`+ ns

2 −
1
2

)
Γ
(
`+ 5

2 −
ns
2

) Γ(3− ns)
Γ2
(
2− ns

2

) . (4.169)

which in the Harrison-Zel’dovich case ns = 1 recovers the familiar Sachs-Wolfe Plateau

`(`+ 1)

2π
C̃ SW
`,S =

4

9
v−4Pζ . (4.170)

The contribution arising from tensor perturbations instead amounts to a unique ap-
proximated term

C̃`,T =
2nT π2

512

∑
λ=±2 Pλ(k0)

knT0 l(η0, η∗)nT
(`+ 2)!

(`− 2)!

Γ
(
`+ nT

2 − 2
)

Γ
(
`− nT

2 + 4
) Γ(6− nT )

Γ2
(

7
2 −

nT
2

) , (4.171)

with η∗ the time of horizon crossing defined by (4.159) or (4.160) depending on the multi-
pole `. In the simplest Harrison-Zel’dovich case with nT = 0 one finds

`(`+ 1)

2π
C̃`,T =

1

30

∑
λ=±2

Pλ(k0)
`(`+ 1)

(`+ 3)(`− 2)
. (4.172)

All in all, the late time graviton mass m enters in the velocity factor v, for the scalar
sourced angular spectrum, and in the time of tensor modes horizon crossing η∗ for the
tensor case. The information about the heavy graviton mass instead is contained inside
the scalar and spectral indices, that in full generality were found to be

ns − 1 =
d lnP(k)

d ln k
= −2ε+

18α2λ2
1

c2
π

, (4.173)

nT = 3

1−

√√√√1− 4

9

(
m2
g

H2
− 3ε

) . (4.174)

4.6 Vector contributions

In Section (3.4.3), it was shown how the tensor sourced contribution to the density fluc-
tuations can be expanded in multipole and split in a product between a transfer function
and a primordial stochastic field. It is straightforward then to apply the vary same results
to the case of vector perturbations if we turn for a moment into synchronous gauge, that
is

δg
(V )
0i = 0

δg
(V )
ij = a2(η)

[
∂iχ
⊥
j + ∂jχ

⊥
i

]
. (4.175)

97



CHAPTER 4. STATISTICAL ANALYSIS OF THE SGWB FROM GAUSSIAN PERTURBATIONS

The perturbed Boltzmann equation for vector fluctuations then is

∂f

∂η
+

q

aE
ni∂if −

1

2
C ′ijn

injq
∂f

∂q
= 0, (4.176)

with Cij ≡ ∂iχ⊥j +∂jχ
⊥
i a symmetric traceless but not divergence-less tensor. This expres-

sion is exactly the same Boltzmann equation for tensor perturbation upon the replacement
χ′ij → C ′ij , such that we can safely follow the line of all the computations done above for
tensors. However, first of all, it is convenient to introduce a gauge invariant quantity to
work with. The most general perturbed metric around a FLRW background contains two
vector quantities. The gauge freedom allows to set one vector degree of freedom, such that
there is one only independent gauge invariant vector quantity we can build out of metric
perturbations; this is the vector contribution to the extrinsic curvature:

Vi = ω⊥i − χ⊥ ′i . (4.177)

Hence, working in the synchronous gauge and defining

Vij ≡ −∂iχ⊥ ′j − ∂jχ⊥ ′i , (4.178)

the Boltzmann equation is written in term of the extrinsic curvature as

∂f

∂η
+

q

aE
ni∂if +

1

2
ninjVij q

∂f

∂q
= 0. (4.179)

The transition to Fourier space is performed through

Vij(~x, η) = −i
∫

d3k

(2π)3

[
kiχ
⊥ ′
j (η, k) + kjχ

⊥ ′(η, k)
]
ek·x

= i

∫
d3k

(2π)3
Ṽij(k, η)ek·x. (4.180)

The source function seeded by vector fluctuations then is

S(V )(η,~k, q, ni) = i
1

2
Ṽijn

inj , (4.181)

and the fluctuations in the energy density distribution correspondingly are

ΓV (η,~k, q, n̂) = i
ninj

2

∫ η

ηin

dη′e−ikµl(η,η
′)Ṽij(η

′,~k). (4.182)

The spherical harmonics formalism can now be applied to expand the fluctuations in mul-
tipoles as:

Γ`m,V =

∫
d2nY ∗`m(n̂)

∫
d3k

(2π)3
ei
~k·~x0ΓV (η0,~k, q, n̂)

= i

∫
d2nY ∗`m(n̂)

∫
d3k

(2π)3
ei
~k·~x0

∫ η

ηin

dη′e−ikµl(η0,η
′)n

inj

2
Ṽij(η

′,~k). (4.183)

In order to make the formalism of vector compatible with the one used with tensor pertur-
bations, let’s follow these arguments. First of all it is useful to project the vector metric
perturbations χ⊥i into helicity modes

χ⊥i (k, η) =
∑
λ=R,L

εi,λ(k̂)χ⊥(k, η)λ. (4.184)
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Assuming that a decomposition between the time evolution and the stochastic primordial
value of the vector modes is allowed,

χ⊥i (k, η) = χ⊥(k, η)
∑
λ=R,L

εi,λ(k̂)Vλ(k), (4.185)

Vi(k, η) = −χ⊥ ′(k, η)
∑
λ=R,L

εi,λ(k̂)Vλ(k) = V (k, η)
∑
λ=R,L

εi,λ(k̂)Vλ(k). (4.186)

with Vλ a stochastic random field encoding the statistical primordial features of the ex-
trinsic curvature. Considering modes propagating along the ẑ direction, a possible basis
for the polarization vectors is

εi,R(k̂z) =
1√
2

 1
i
0

 , εi,L(k̂z) =
1√
2

 1
−i
0

 . (4.187)

satisfying kiεi,R/L = 0. Therefore one can define a polarization tensor with two indices as

Ṽij = k V (k, η)
[
ORijVR +OLijVL

]
= C(k, η)

[
ORijVR +OLijVL

]
(4.188)

O(R/L)
ij (k̂z) ≡ k̂iε

(R/L)
j (k̂z) + k̂jε

(R/L)
i (k̂z). (4.189)

Substituting the explicit expression of the polarization vectors

O(R)
ij (k̂z) =

1√
2

 0 0 1
0 0 i
1 i 0

 , O(L)
ij (k̂z) =

1√
2

 0 0 1
0 0 −i
1 −i 0

 . (4.190)

As done for tensors, it is convenient to introduce the +/× polarization basis as

Ṽij = C(k, η)
[
ORijVR +OLijVL

]
= C(k, η)

[
O+
ij

VR + VL√
2

+O×ij
VR − VL√

2i

]
, (4.191)

with

O+
ij(k̂z) =

1

2

(
ORij +OLij

)
=

1√
2

 0 0 1
0 0 0
1 0 0

 ,

O×ij(k̂z) =
1

2i

(
ORij −OLij

)
=

1√
2

 0 0 0
0 0 1
0 1 0

 . (4.192)

Adopting the usual decomposition of the unit director vector (3.70)

n̂ =
(√

1− µ2
k,n cosφk,n,

√
1− µ2

k,n sinφk,n, µk,n

)
, (4.193)

one can compute

ninj

2
Ṽij =

µk,n
√

1− µ2
k,n

2

[
VRe−iφk,n + VLeiφk,n

]
C(k, η). (4.194)

At this point one can exploit one more time the relation between spherical harmonics and
the Legendre polynomials (B.4) to compute

Y2,λ = −
√

15

8π
sinφn,k cosφn,ke

λiφn,k

= −
√

15

8π
µk,n

√
1− µ2

k,ne
λiφn,k (λ = ±1). (4.195)
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Hence,
ninj

2
C̃ij = −

√
2π

15
[VRY2,−1 + VLY2,1]C(k, η), (4.196)

and the vector fluctuations (4.182) for a fixed momentum k ‖ ẑ, becomes

ΓV (η,~k, q, n̂) = −i
√

2π

15
[VRY2,−1 + VLY2,1]

∫ η

ηin

dη′e−ikµl(η,η
′)C(k, η) (4.197)

Γ`m,V =

∫
d2nY ∗`m(n̂)

∫
d3k

(2π)3
ei
~k·~x0ΓV (η0,~k, q, n̂). (4.198)

In order to make the two expressions compatible, the trick to use is to rotate the integration
variable d2Ωn in such a way to pass into the coordinate system where k ‖ ẑ. As shown in
Section (3.4.3), this procedure transforms the spherical harmonics according to (3.76),

Γ`m,V =

∫
d3k

(2π)3
ei
~k·~x0

∑̀
m′=−`

D
(`)
mm′(S(Ωk))

∫
d2Ωk,nY

∗
`m′(Ωk,n)ΓV (η0,~k, q,Ωk,n). (4.199)

with the Wigner rotation matrix defined by

D(`)
ms(S(Ωk)) ≡

√
4π

2`+ 1
(−1)s −sY

∗
`m(Ωk). (4.200)

Now we are allowed to use the expression (4.197) inside the above integral, which leads to

JV ≡
∫
d2Ωk,nY

∗
`m′(Ωk,n)ΓV (η0,~k, q,Ωk,n)

= −i
∫
d2Ωk,nY

∗
`m′(Ωk,n)

√
2π

15
[VRY2,−1 + VLY2,1]

∫ η

ηin

dη′e−ikµl(η,η
′)C(k, η). (4.201)

Again the integration is performed exploiting the properties of the spherical harmonics
[46]: ∫

dΩk,nY
∗
`,m′Y2±1e

−iµk,nx = (−i)`−1δm′,±1

√
3

2
(2`+ 1)

(`+ 1)!

(`− 1)!

j`(x)

x
. (4.202)

This way the innermost integral becomes:

JV = −(−i)`
∫ η

ηin

dη′C(k, η′)

√
π

5
(2`+ 1)

(`+ 1)!

(`− 1)!

j`(kl(η0, η
′))

kl(η0, η′)

×
[
VR(k)δm′,−1 + VL(k)δm′,1

]
. (4.203)

Inserting this result in the above equation (4.199)

Γ`m,V = −(−i)`
√
π

5
(2`+ 1)

(`+ 1)!

(`− 1)!

∫
d3k

(2π)3
ei
~k·~x0

∫ η

ηin

dη′C(k, η′)

×j`(kl(η0, η))

kl(η0, η)

[
VR(k)D

(`)
m,−1(S(Ωk)) + VL(k)D

(`)
m1(S(Ωk))

]
= (−i)`

√
4π2

5

(`+ 1)!

(`− 1)!

∫
d3k

(2π)3
ei
~k·~x0

∫ η

ηin

dη′C(k, η′)

×j`(kl(η0, η
′))

kl(η0, η′)
[1Y
∗
`mVR(k) + −1Y

∗
`mVL(k)] . (4.204)
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From this expression we can isolate an angular transfer function as

Γ`m,V = 4π(−i)`
∫

d3k

(2π)3
ei
~k·~x0T V` (k, η0, ηin, q)

×
{

1Y
∗
`m(Ωk)VR(~k) + −1Y

∗
`m(Ωk)VL(~k)

}
, (4.205)

with

T V` (k, η, ηin, q) =

√
1

20

√
(`+ 1)!

(`− 1)!

∫ η

ηin

dη′C(k, η′)
j`(kl(η0, η

′))

kl(η0, η)
. (4.206)

Angular power spectrum In order to compute the two-point function of the vector
sourced fluctuations we consider as usual

〈Γ`m,V Γ`′m′,V 〉 = δ`,`′δm,m′C̃`,V (4.207)

〈Vτ (k)V∗τ ′(k′)〉 =
2π2

k3
Pτ (k)(2π)3δττ ′δ

(
k− k′

)
, (4.208)

where for convenience we denoted the two polarization states as R = −1 and L = 1, and
the primordial power spectrum Pτ (k) was computed in (F.11). Analogously the two point
correlator is

〈Γ`m,V Γ∗`′m′,V 〉 = δ`,`′δm,m′ 4π

∫
dk

k
[P−1(k) + P1(k)]

∣∣∣T V` (k, η0, ηin, q)
∣∣∣2, (4.209)

which means

C̃`,V = 4π

∫
dk

k

∣∣∣T V` (k, η0, ηin, q)
∣∣∣2 ∑
τ=±1

Pτ (k), (4.210)

with

T V` (k, η, ηin, q) =

√
1

20

√
(`+ 1)!

(`− 1)!

∫ η

ηin

dη′ k V (k, η′)
j`(kl(η0, η

′))

kl(η0, η)
. (4.211)

What we still don’t know is the expression for the primordial power spectrum Pτ (k) and
the transfer function C(k, η). The first one is usually guessed as a power law, as we have
seen in the case of scalar and tensor perturbations. The transfer function instead must be
studied starting from the Einstein equation for vector modes.

4.6.1 Einstein equations for vector modes

As commented in Section (2.3.2), none modification of General Relativity is expected in
the vector sector from our minimal theory of massive gravity, since no extra vector modes
are propagated. Interestingly this is also the case for other massive gravity theories, as
bimetric theories [115]. Hence one can work with the usual Einstein equations of GR,
which in terms of gauge invariant quantities, and in absence of an anisotropic stress, are
[119]:

∂(iV
′
j) + 2H∂(iVj) = 0, (4.212)

∇2Vi −
2a2

M2
P

(p+ ρ)Ωi = 0, (4.213)
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where Ωi is a matter-related gauge invariant vector variable called “vorticity” and defined
by

Ωi ≡ v(V )
i − ω⊥i , (4.214)

and v
(V )
i the vector perturbation to the fluid velocity. In momentum space the above

equations are

V ′i + 2HVi = 0, (4.215)

k2Vi = − 2a2

M2
P

(p+ ρ)Ωi. (4.216)

The first equation is straightforwardly solved by V (k, η) ∝ a−2(η). Concerning the vortic-
ity, due to the strong bounds on the graviton mass in late Universe posed by astrophysical
GW detection, one can fairly think that through the whole history of propagation, gravi-
tons after inflation have always been highly ultra-relativistic. For that species then, both
pressure and radiation dilute due to the expansion as ρ ∝ p ∝ a−4(η), providing the
vorticity to be a constant quantity Ωi ∝ −M2

Pk
2:

V (k, η) ∝ 1

k2a2(η)
, Ωi(k, η) ∝ constant. (4.217)

A case to study: Primordial Magnetic Field

Recent observations of galaxies and clusters at redshift z ∼ 0.7 − 2.0 have shown the ex-
istence of magnetic fields with magnitude O(10−6)G. A possible scenario to realize this
situation is an amplification mechanism of the magnetic field taking place through the
evolution of the Universe prior to galaxy formation. The seeds for the magnetic field can
be produced both during the inflationary epoch [116], and after cosmic phase transitions
[117], and during recombination [118]. Before neutrino decoupling, the Universe is domi-
nated by a fluid of ultrarelativistic particles. Along this epoch baryons are tightly coupled
to the fluid and there is no possibility for this fluid to create any anisotropic stress. Hence,
in this period, total anisotropic stress comes from only a primordial magnetic field (PMF
thereafter). This field survives until neutrino decoupling, and, for this arch of time, it is
a source of metric perturbations via the Einstein equation. Its effects can be inscribed
in an additional contribution to the stress-energy tensor, and in particular an anisotropic
contribution. Scalar and tensor modes on super-horizons scale acquire an additional loga-
rithmic contribution depending on the time τB when the PMF turned on and the time τν
of neutrino decoupling [46]. In this section however we are mostly interested in the vector
contributions.

Let’s consider a stochastic PMF Bi(k, η). As the Universe expands, magnetic field lines
are simply conformally diluted due to flux conservation Bi(k, η) = Bi(k)/a2(η), and the
energy momentum tensor is

T 0
0 = − 1

8πa4
B2(x) = −ργ(η)∆2

B(xµ),

T 0
i = 0,

T ij =
1

4πa4

[
B2(x)

2
δij −Bi(x)Bj(x)

]
= ργ(η)

[
∆B(xµ)δij + Πi

B j(x
µ)
]
. (4.218)

Now, following [119], we can take its vector contribution by applying the projector opera-
tors

Pij ≡ δij − k̂ik̂j (4.219)
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on the magnetic stress-energy tensor

Π
(V )
ij =

(
Pni k̂j + Pnj k̂i

)
k̂mTB,mn. (4.220)

Out of this expression we can build a rank-1 quantity via contracting with the unit vector
k̂i

Π
(V )
i = Π

(V )
ij k̂j = Pni k̂

mTB,mn. (4.221)

This way the Einstein equation (4.215) becomes

V ′i + 2HVi = − 2

M2
P

a2Π
(V )
i (k, η)

k
= − 2

M2
P

Π
(V )
i (k)

a2k
, (4.222)

where in the second step we used the fact that the stress energy tensor depends quadrat-
ically on the PMF, so that it has an explicit time dependence through the scale factor as
Πi(k, η) = Πi(k)/a4(η). The complete solution then is

Vi(k, η) = − 2

M2
P

Π
(V )
i (k)η

a2k
, (4.223)

while vorticity derives from the Poisson-like equation (4.216)

Ωi(k, η) ∝ −
M2
P

2ργ,0
a2k2 Vi =

1

ργ,0
kΠ

(V )
i (k)η. (4.224)

In radiation domination a ∝ η, and then vector perturbations decay as ∼ a−1. Therefore
the interesting effect provided by a magnetic field is to slow down the decay of vector modes
(remember that without any anisotropic source Vi ∝ a−2). In the end, a MPF produce an
enhancement on the angular power spectra which may be visible or not depending on the
size of the PMF itself.
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Chapter 5

Statistical analysis of
non-Gaussianity in the SGWB

As we have shown in the previous chapter, the easiest and quite reasonable assumption
for the primordial perturbations is to consider them as Gaussian distributed. As long
as we consider linear perturbations, the Gaussian distribution will not change its shape.
However deviations from Gaussianity can appear whenever we turn on higher order terms
in the definition of the stochastic random fields, since non linear transformations spoil
the trend of the normal distribution. The situation where non linearity is set by the
primordial perturbation at initial time is usually referred as primordial non-Gaussianity
[49, 50, 51]. Actually, since the Einstein field equations are non linear, the system can
evolve toward a non Gaussian distribution even starting from a perfectly Gaussian initial
condition. Usually one refers to this situation as secondary non-Gaussianity [15]. In the
latest years many models have been proposed to give predictions about possible sources of
non-Gaussianity [49, 89, 90]. Gaussianity is indeed a very restrictive prescription, as one
parameter (the variance, since the mean value can be always set to zero as we discussed in
(4.1)) encodes all the statistical features of the field, and all the three axioms of chapter
(4) must be satisfied. On the other hand non-Gaussianity can be anything else, and this
fact opens to a very wide landscape for many new theories. Moreover in many inflationary
models, non-Gaussianity is not only possible, but it is also an unavoidable prescription.
This is for example the case for the theory of space-diffeomorphism symmetry breaking
during inflation [47] that we analyzed in chapter (2). Non-Gaussianity is then becoming
more and more interesting during the last years, since it a crucial test to establish the
validity of any models of generation of primordial perturbations. These arguments give us
motivations to study the statistical features of the SGWB that would point out a deviation
from Gaussianity. This whole analysis follows the line of [59], and extends those results
accounting for a non vanishing late time graviton mass.

In section (5.1) we introduce the definition of bispectrum and decompose the 3-point
function in the basis of spherical harmonics. Then we will review the properties of the
bispectrum under rotations which will be eventually useful to compute the explicit expres-
sion of the correlators for the three contributions, the initial condition and the scalar and
tensor sourced terms.

In order to simplify the picture, we will focus just on the case where no extra graviton
degrees of freedom are produced during inflation. In (5.2) we introduce non-Gaussianity in
the form of the local ansatz. Moreover we will consider only the scalar contribution, since
the tensor one is expected to be subdominant by far. With the local ansatz we will then
proceed on the explicit evaluation of the bispectra for the scalar sourced contribution and
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the initial condition one.
The last section (5.3) is instead dedicated to an interesting example of secondary non-

Gaussianity. We will indeed show how the coupling between long and short wavelength
modes can give rise to a non linear evolution which ultimately will produce a non vanishing
3-point function in the squeezed limit.

5.1 GW bispectra and transformation properties

As we will show soon, proceeding in the same line of section (4.2), the assumption of
statistical isotropy of the correlation functions demands the 3-point correlator to assume
the form

〈Γ`1m1Γ`2m2Γ`3m3〉 = 〈B`1`2`3〉
(
`1 `2 `3
m1 m2 m3

)
, (5.1)

where the spatially averaged quantity 〈B`1`2`3〉 is called angular avaraged bispectrum (or
more briefly just bisprectrum) in analogy with the angular power spectrum C̃` we studied
in the previous chapter. The angular average is here inserted to reconcile with an exper-
imental setting: observationally we have just one realization of our Universe contributing
to the ensemle avarage, and then our measurements of the bispectrum are so noisy that
we would like to average them somehow. Relying on the ergodic principle and on statisti-
cal isotropy, what we usually do in experiments is to avarage the spectrum over different
orientations on the sky, that is over the index mi. The matrix appearing in (5.1) instead
denotes the Wigner 3-j symbol, whose properties and geometric interpretation are shown
in Appendix (E); the angular momenta `1, `2, `3 represent the three sides of a triangle,
and must therefore satisfy the triangle constraints (E.4). Moreover if we further require
the correlation functions to be invariant under parity, from the transformation laws (E.5)
and (E.6), it immediately derives that it must hold `1 + `2 + `3 = even. An intuitive and
very enlightening representation of the situation is again given in [79]. Imagine to consider
two states with angular momenta (`1,m1) and (`2,m2), and to combine them to form a
coupled state with angular momentum (`3,m3). All together they form a triangle in the
angular momentum space whose orientation is represented by m1, m2, m3. When we apply
a rotation to the system, the Wigner 3-j symbol transforms the m’s directions in such a
way to preserve the triangle conditions (E.4), that is preserving the triangle configuration.
At the same time, the assumption of statistical isotropy demands the angular averaged
bispectrum to provide the same amplitude regardless of its orientation. Therefore, in a
sense, we can think at the averaged bispectrum as the area of the triangle, which does not
change if we rotate the triangle, while the Wigner 3-j symbol describes its orientation in
terms of the azimuthal angle dependence.

On the same line of reasoning of the 2-point case, the expression for the anisotropies
(3.92) make clear that we can relate the 3-point correlators of the fluctuations Γ`m to
the correlators of the four stochastic variables Γ(ηin,~k, q), ζ(~k) and ξλ(~k) which are the
quantities encoding all the statistical properties of the primordial perturbations. Following
the in-in formalism presented in section (4.1) one can easily verify that a non vanishing 3
point correlator can arise from a three-self interaction term in the interacting Hamiltonian
describing the stochastic field dynamics. In analogy to the power spectrum, it is common
to write the 3-point correlators as

〈Γ(ηin,~k, q)Γ
∗(ηin,~k

′, q)Γ∗(ηin,~k
′′, q)〉 = BI(q, k, k

′, k′′)(2π)3δ(~k + ~k′ + ~k′′),

〈ζ(~k)ζ(~k′)ζ(~k′′)〉 = Bζ(k, k
′, k′′)(2π)3δ(~k + ~k′ + ~k′′),

〈ξλ(~k)ξλ′(~k
′)ξλ′′(~k

′′)〉 = Bλ(~k,~k′,~k′′)δλλ′δλλ′′(2π)3δ(~k + ~k′ + ~k′′), (5.2)
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where the delta functions enforce the invariance under translation. The quantitiesBI(q, k, k′, k′′),
Bζ(k, k

′, k′′) and Bλ(~k,~k′,~k′′) are called bispectrum of the initial condition, scalar and ten-
sor modes respectively. Notice that the tensor bispectrum maintains the dependence on
the wavevectors’ directions, since, as we will see later, it transforms in a non trivial way
under rotation of the vectors ~k.

As usual we have assumed for simplicity that the scalar and tensor modes are not cross
correlated. Before entering into the details of the computation of the bispectra, we want to
linger for a while on their properties under rotations which motivate the expressions (5.1)
and (5.2).

5.1.1 Rotation of the GW direction of propagation

First of all we want to prove that (5.1) provides a rotational invariant expression for the
3-point function, as stated at the beginning of this section. More precisely in this context
the invariance refers to rotations of the momentum director n̂ which describes the direction
of propagation of the GW; in other words the correlators are expected to be independent on
the orientation of our observation. As usual we impose this invariance by the constraining
the correlator with (4.33). Specializing to the 3-point case it reads

〈Γ`1m1Γ`2m2Γ`3m3〉 =
∑

m′1m
′
2m
′
3

〈Γ`1m′1Γ`2m′2Γ`3m′3〉D
(`1)
m′1m1

D
(`2)
m′2m2

D
(`3)
m′3m3

. (5.3)

Using the relation (E.13) for the composition of two rotation operators, it becomes

〈Γ`1m1Γ`2m2Γ`3m3〉 =
∑

m′1m
′
2m
′
3

〈Γ`1m′1Γ`2m′2Γ`3m′3〉
∑
LMM ′

(2L+ 1)

×
(
`1 `2 L
m′1 m

′
2 M

′

)(
`1 `2 L
m1 m2 M

)
D

(L)∗
M ′MD

(`3)
m′3m3

. (5.4)

At this point we introduce (5.1) as an ansatz for the 3-point correlator

〈Γ`1m1Γ`2m2Γ`3m3〉 = b̃`1`2`3
∑

m′1m
′
2m
′
3

(
`1 `2 `3
m′1 m

′
2 m

′
3

) ∑
LMM ′

(2L+ 1)

×
(
`1 `2 L
m′1 m

′
2 M

′

)(
`1 `2 L
m1 m2 M

)
D

(L)∗
M ′MD

(`3)
m′3m3

. (5.5)

and we want to verify that also the rotated correlator recovers the same expression. Ex-
ploiting the orthogonality condition (E.10)

∑
m1m2

(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `′3
m1 m2 m

′
3

)
=
δ`3`′3δm3m′3

2`3 + 1
, (5.6)

the equation simplifies to

〈Γ`1m1Γ`2m2Γ`3m3〉 = b̃`1`2`3
∑

m′3LMM ′

δ`3Lδm′3M ′

(
`1 `2 L
m1 m2 M

)
D

(L)∗
M ′MD

(`3)
m′3m3

= b̃`1`2`3
∑
m′3M

(
`1 `2 `3
m1 m2 M

)
D

(`3)∗
m′3M

D
(`3)
m′3m3

. (5.7)
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Finally, using the orthonormality condition of the rotation matrix∑
m

D
(`)∗
m′mD

(`)
m′′m = δm′m′′ , (5.8)

we arrive to

〈Γ`1m1Γ`2m2Γ`3m3〉 = 〈B`1`2`3〉
(
`1 `2 `3
m1 m2 m3

)
, (5.9)

which is exactly (5.1). All in all we have demonstrated that the angular averaged bispec-
trum 〈B`1`2`3〉 is symmetric under rotation of the director n̂, and that the expression (5.1)
provides an orientational invariant definition for the 3-point correlation function. As we
are interested in the bispecrum, it could be useful to invert the relation (5.1). Exploiting
again the orthogonality condition (E.11), we can isolate the averaged bispectrum as∑

m1m2m3

(
`1 `2 `3
m1 m2 m3

)
〈Γ`1m1Γ`2m2Γ`3m3〉 = 〈B`1`2`3〉. (5.10)

In practical computation anyway it could be useful to rewrite the Wigner symbols in a
more suitable form. One possible simplification comes from (E.14), thanks to which(

`1 `2 `3
m1 m2 m3

)
=

(
`1 `2 `3
0 0 0

)−1
√

4π

(2`1 + 1)(2`2 + 1)(2`3 + 1)

×
∫
d2n̂ Y`1m1(n̂)Y`2m2(n̂)Y`3m3(n̂). (5.11)

Indeed, defining further the azimuthally avaraged harmonic transform

e`(n̂) ≡
√

4π

2`+ 1

∑̀
m=−`

Γ`mY`m(n̂), (5.12)

we can express the averaged bispectrum as

〈B`1`2`3〉 =

(
`1 `2 `3
0 0 0

)−1 ∫
d2n̂

4π
〈e`1(n̂)e`2(n̂)e`3(n̂)〉. (5.13)

This expression is computationally very efficient, since the quantities e`(n̂) can be easily
evaluated with the spherical harmonic transform, while the integral simply represents an
average over the full sky. Moreover, from the Clebsch-Gordan tables one can verify that
the Wigner 3-j symbols appearing in (5.13) admits an analytic expression in the case
`1 + `2 + `3 = even and mi = 0 for i = 1, 2, 3:(

`1 `2 `3
0 0 0

)
= (−1)

∑3
i=1−

`i
2

√
(−`1 + `2 + `3)! (`1 − `2 + `3)! (`1 + `2 − `3)!(

−`1+`2+`3
2

)
!
(
`1−`2+`3

2

)
!
(
`1+`2−`3

2

)
!

×

×

(∑3
i=1

`i
2

)
!√(∑3

i=1 `i + 1
)

!

. (5.14)

For convenience it is common to define the Gaunt integral as

Gm1m2m3
`1`2`3

≡
∫
d2n̂ Y`1m1(n̂)Y`2m2(n̂)Y`3m3(n̂)

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `3
0 0 0

)
, (5.15)
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in terms of which the 3-point correlation function is written

〈Γ`1m1Γ`2m2Γ`3m3〉 = 〈B`1`2`3〉
(
`1 `2 `3
m1 m2 m3

)
= 〈B`1`2`3〉

(
`1 `2 `3
0 0 0

)−1
√

4π

(2`1 + 1)(2`2 + 1)(2`3 + 1)
Gm1m2m3
`1`2`3

. (5.16)

The Gaunt integral is by construction invariant under both even and odd permutation and
different from zero when `tot = even, as one can easily verify from the properties of the
Wigner 3-j symbols in (E). Moreover it encodes the fundamental geometric properties of
the averaged bispectrum, as it is non vanishing only when the triangle conditions (E.4) is
satisfied.

5.1.2 Rotation of the GW wave vector

The isotropy requirement of the correlation functions implies the angular averaged bispec-
trum to be invariant under rotations of the versor n̂, but it does not tell anything about the
transformation properties of the bispectrum under rotation of the wavevectors ~k. Notice
indeed that the tensor sourced 3-point correlator (5.2) preserves a vectorial dependence on
the vector ~k, since, as we will prove in this section, it does not transform as a scalar under
rotations [94].

The case where the bispectrum is built on scalar stochastic variables is trivial. Indeed
these quantities, by definition, do not change under rotation of the wavevector, and this
property is of course preserved by the two and three point correlation function. Therefore
we can focus just on the tensor mode correlator. Let us recall the tensor decomposition
(3.89):

χij(η,~k) = χ(η, k)
∑
λ

eij,λ(k̂)ξλ(~k), (5.17)

with eij,λ the polarization tensors in a generic basis. Usually one defines the polarization
basis by introducing an auxiliary unit vector êz oriented along the GW direction of prop-
agation, which is often taken to coincide with the z-axis of a cartesian system, and then
completing the 3-dimensional basis by adding two orthogonal vectors. Our goal is to find
the transformation properties of the stochastic variable ξλ(~k), knowing that χij,λ(η, ~x) is
a rank 2 tensor quantity with definite transformation properties. For this purpose it is
convenient to focus on the polarization tensors’ features firstly. In [94] it was shown that,
under a rotation R of the wave vector ~k, the polarization tensors do not transform simply
as a rank 2 tensor, but they further acquire an additional phase due to the fact that the
fixed vector êz does not change under the rotation of the wave vector. More precisely they
found

eij,λ(Rk̂) = e−2iλγ[k̂,R]RikRjlekl,λ(k̂), (5.18)

where γ[k̂, R] is the rotation angle transforming the orthogonal vector basis. Defining for
convenience the metric

Πij(k̂) ≡ δij − k̂ik̂j , (5.19)

and denoting the by (~a · ~b)Π ≡ aibjΠij the product of two tensorial quantities with the
metric Πij , the angle γ[k̂, R] is defined by the relations

cos γ[k̂, R] ≡ (êz · ê′z)Π√
(êz · êz)Π(ê′z · ê′z)Π

sin γ[k̂, R] ≡ k̂ · (êz × ê′z)√
(êz · êz)Π(ê′z · ê′z)Π

. (5.20)
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At the end of the day, the important lesson is that, in order to make χij transform as a
rank 2 tensor, in virtue of (5.17) and (5.18), one has to impose that the stochastic modes
transform as

ξλ(R~k) = e2iλγ[k̂,R]ξλ(~k) (5.21)

to compensate the additional phase introduced by the polarization tensors. From (5.20)
one can see that γ[−k̂, R] = −γ[k̂, R]. As a consequence the power spectrum for the tensor
mode is rotationally invariant. Indeed, denoting the rotated momenta as ~k′i = R~ki, the
rotation acts on the 2-point correlator as

〈ξλ1(~k′1)ξλ2(~k′2)〉 = e2i
∑2
i=1 λiγ[k̂i,R]〈ξλ1(~k1)ξλ2(~k2)〉

= (2π)3δ(~k1 + ~k2)δλ1λ2Pλ1(k1)e2iλ1(γ[k̂1,R]+γ[k̂2,R])

= (2π)3δ(~k1 + ~k2)δλ1λ2Pλ1(k1). (5.22)

In the last step the exponential phase vanishes thanks to the delta function, which demands
~k1 = −~k2. In order recover the expected expression we must rotate the vectors in the Dirac
delta. For any matrix A ∈ Rn×n, it holds

δ(A~x) =
1

|det(A)|
δ(~x), ~x ∈ Rn. (5.23)

Since rotation matrices are orthogonal matrices with unitary determinant, it follows im-
mediately that δ(R~x) = δ(~x). This way the last line of (5.22) becomes

〈ξλ1(~k′1)ξλ2(~k′2)〉 = (2π)3δ(~k′1 + ~k′2)δλ1λ2Pλ1(k1). (5.24)

Hence this expression explicitly demonstrates that the power spectrum for the tensor
stochastic modes is rotationally invariant, and this justifies the fact that it depends only
on the modulus of the momenta, as we assumed in (4.36). On the other hand, this trick
is not working for the bispectrum case. The fact that we have three momenta forbids the
huge simplification carried by the delta function. Indeed it holds

〈ξλ1(~k′1)ξλ2(~k′2)ξλ3(~k′3)〉 = e2i
∑3
i=1 λiγ[k̂i,R]〈ξλ1(~k1)ξλ2(~k2)ξλ3(~k3)〉

= e2i
∑3
i=1 λiγ[k̂i,R](2π)3δ(~k1 + ~k2 + ~k3)δλ1λ2δλ1λ3Bλ1(~k1,~k2,~k3)

= e2i
∑3
i=1 λiγ[k̂i,R](2π)3δ(~k′1 + ~k′2 + ~k′3)δλ1λ2δλ1λ3Bλ1(~k1,~k2,~k3), (5.25)

where in the last step we exploit again the invariance of the delta function under rotation.
Now, as before, the above equation can be rewritten as a relation between the bispectra.
However this time we have no arguments to make the exponential phase vanish, hence the
relation reads

Bλ1(~k′1,
~k′2,

~k′3) = e2i
∑3
i=1 λiγ[k̂i,R]Bλ1(~k1,~k2,~k3). (5.26)

Therefore we have obtained the important result that the tensor modes’ bispectrum trans-
forms in a non trivial way under rotation. As a manifestation of this features, the tensor
bispectrum conserves the vectorial dependence on the momenta.

After this technical digression, we have now all the necessary tools to attempt the
computation of the 3-point correlators, considering each contribution one at a time.
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5.1.3 Initial condition term

The method we pursue to compute the angular bispectrum is the same we used for the
angular power spectrum. Combining the solution of the multipole expansion (3.92) with
the definition of the bispectrum (5.2), the 3-point correlator of the anisotropy is written as

〈Γ`m,IΓ`′m′,IΓ`′′m′′,I〉 = (4π)3(−i)`+`′+`′′
∫

d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′

(2π)3

BI(q, k, k
′, k′′)(2π)3δ(~k + ~k′ + ~k′′)Y ∗`m(k̂)Y ∗`′m′(k̂

′)Y ∗`′′m′′(k̂
′′)

j` [kl(η0, ηin)] j`′
[
k′l(η0, ηin)

]
j`′′
[
k′′l(η0, ηin)

]
. (5.27)

In the 2-point case we exploited the properties of the delta function to reduce the number of
integration variables such that only one was remaining. In the present case this procedure
fails, because the delta function involves three momenta. It turns out to be rather more
convenient the following trick. We use the integral representation for the delta function
and expand the complex phase with (3.55):

δ(~k1 + ~k2 + ~k3) =

∫
d3y

(2π)3
ei(
~k1+~k2+~k3)·~y

=

∫ ∞
0

dy y2

∫
dΩy

3∏
i=1

2
∑
LiMi

iLijLi(kiy)Y ∗LiMi
(Ωy)YLiMi(k̂i)

 . (5.28)

Then (5.27) becomes

〈Γ`m,IΓ`′m′,IΓ`′′m′′,I〉 = (4π)3(−i)`+`′+`′′
∫

k2dk

(2π)3

∫
k′2dk′

(2π)3

∫
k′′2dk′′

(2π)3

BI(q, k, k
′, k′′)(2π)3j` [kl(η0, ηin)] j`′

[
k′l(η0, ηin)

]
j`′′
[
k′′l(η0, ηin)

]∫
dΩk

∫
dΩk′

∫
dΩk′′Y

∗
`m(k̂)Y ∗`′m′(k̂

′)Y ∗`′′m′′(k̂
′′)∫ ∞

0
dy y2dΩy 8

∑
LML′M ′L′′M ′′

iL+L′+L′′jL(ky)Y ∗LM (Ωy)YLM (k̂)

jL′(k
′y)Y ∗L′M ′(Ωy)YL′M ′(k̂

′)jL′′(k
′′y)Y ∗L′′M ′′(Ωy)YL′′M ′′(k̂

′′). (5.29)

Since the spherical harmonics YLiMi(k̂i) in the last line does not depend on the vector ~y, we
can move them inside the integrals in dΩki and exploit the normalization condition(B.7)
to get ∫

dΩkdΩk′dΩk′′Y
∗
`m(k̂)Y ∗`′m′(k̂

′)Y ∗`′′m′′(k̂
′′)YLM (k̂)YL′M ′(k̂

′)YL′′M ′′(k̂
′′)

= δ`LδmMδ`′L′δm′M ′δ`′′L′′δm′′M ′′ . (5.30)

This result brings a huge simplification inside the integral (5.29), which indeed becomes

〈Γ`m,IΓ`′m′,IΓ`′′m′′,I〉 = (8π)3(−i)`+`′+`′′
∫

k2dk

(2π)3

∫
k′2dk′

(2π)3

∫
k′′2dk′′

(2π)3

BI(q, k, k
′, k′′)(2π)3j` [kl(η0, ηin)] j`′

[
k′l(η0, ηin)

]
j`′′
[
k′′l(η0, ηin)

]∫ ∞
0

dy y2j`(ky)j`′(k
′y)j`′′(k

′′y)

∫
dΩy Y

∗
`m(Ωy)Y

∗
`′m′(Ωy)Y

∗
`′′m′′(Ωy). (5.31)
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In the last line we recognize the definition (5.15) of the Gaunt integral. Finally, simplifying
the multiplicative factors, we arrive to

〈Γ`m,IΓ`′m′,IΓ`′′m′′,I〉 = Gmm′m′′``′`′′

∫ ∞
0

dr r2BI(q, k, k
′, k′′)

2

π

∫
dk k2j` [kl(η0, ηin)] j`(kr)

2

π

∫
dk′ k′

2
j`
[
k′l(η0, ηin)

]
j`(k

′r)

2

π

∫
dk′′ k′′

2
j`
[
k′′l(η0, ηin)

]
j`(k

′′r), (5.32)

which can be recast more compactly as

〈
3∏
i=1

Γ`imi,I〉 = Gmm′m′′``′`′′

∫ ∞
0

dr r2
3∏
i=1

[
2

π

∫
dkik

2
i j`i [kil(η0, ηin)] j`i(kir)

]
BI(q, k, k

′, k′′). (5.33)

5.1.4 Scalar sourced term

Since the fluctuation related to the scalar sourced term share the same functional structure
of the initial condition one in the multipole basis, (3.92), we can readily extend the results
of the previous section in the same way as we have done in the 2-point case (4.2). Therefore,
by substituting the bispectra for the scalar modes and inserting the scalar linear transfer
function (3.93), the 3-point correlator is evaluated as

〈
3∏
i=1

Γ`imi,S〉 = Gmm′m′′``′`′′

∫ ∞
0

dr r2
3∏
i=1

[
2

π

∫
dkik

2
i T S`i (η0, ηin, ki, q)j`i(kir)

]
Bζ(k, k

′, k′′). (5.34)

5.1.5 Tensor sourced term

The last case to study is the tensor sourced one. This time the computation is a bit more
involved, since, as already seen, the tensorial bispectrum is not invariant under rotations,
that is it depends on the directions of the wavevectors ~k. This additional dependence spoils
the huge simplification coming from the solid angle integration of the spherical harmonics.
Therefore we cannot consider the above solution for the initial condition case to be valid
also for the tensor sourced one. Let’s then start as usual by the definition of the tensor
sourced fluctuation (3.92) and evaluate the 3-point correlator as

〈 3∏
i=1

Γ`imi,T

〉
=
∑
λ=±2

(4π)3(−i)`1+`2+`3

3∏
i=1

[∫
k2
i dki

(2π)3
T T`i (η0, ηin, k, q)

]
〈 3∏
i=1

∫
dΩkiξλ(~ki)−λY

∗
`imi

(Ωki)
〉
. (5.35)

At this point we see that we cannot proceed by performing the integrals on the solid angle.
However [96] shows a clever trick to evaluate the ensemble average in the second line.
Since the stochastic tensor modes ξλ describe a quantum field (the graviton field) with
spin λ = 2, we can project them on the basis of spin-weighted spherical harmonics (B.25)
of spin −λ and write

ξλ(~k) =
∑
`m

ξ
(λ)
`m (k)−λY`m(k̂). (5.36)
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This way, thanks to the normalization condition of the spin-weighted spherical harmonics,
the integral over the solid angle evaluates to∫

dΩkiξλ(~ki)−λY
∗
`imi

(Ωki) =
∑
`m

ξ
(λ)
`m

∫
dΩki −λY`m(k̂)−λY

∗
`imi

(Ωki) = ξ
(λ)
`imi

. (5.37)

Therefore the second line of (5.35) is nothing but the 3-point correlator of the coefficients
ξ

(λ)
`imi

, that is

〈 3∏
i=1

∫
dΩkiξλ(~ki)−λY

∗
`imi

(Ωki)
〉

=
〈 3∏
i=1

ξ
(λ)
`imi

(ki)
〉
. (5.38)

Under the assumption of statistical isotropy, as we have seen in section (5.1), the 3-point
correlators are orientation independent and can be always written in the form (5.1). Adopt-
ing the notation introduced by [97] we define

〈 3∏
i=1

ξ
(λ)
`imi

(ki)
〉
≡ (2π)3Fλ`1`2`3(k1, k2, k3)

(
`1 `2 `3
m1 m2 m3

)
. (5.39)

Exploiting the orthogonality condition (E.11) of the Wigner 3-j symbols we can invert this
relation to

Fλ`1`2`3(k1, k2, k3) =
∑

m1m2m3

(
`1 `2 `3
m1 m2 m3

)
1

(2π)3

〈 3∏
i=1

ξ
(λ)
`imi

(ki)
〉

(5.40)

=
∑

m1m2m3

(
`1 `2 `3
m1 m2 m3

)
1

(2π)3

3∏
i=1

∫
dΩki −λY

∗
`imi

〈 3∏
i=1

ξλ(~ki)
〉
. (5.41)

Remembering the definition (5.1) for the bispectrum, the expression (5.35) for the 3-point
correlator immediately allows an expression for the tensor sourced averaged bispectrum as

〈 3∏
i=1

Γ`imi,T

〉
= 〈B`1`2`3,T 〉

(
`1 `2 `3
m1 m2 m3

)
, (5.42)

with

〈B`1`2`3〉 =

[
3∏
i=1

(−i)`i
∫
k2
i dki

(2π)2
T T`i (η0, ηin, k, q)

]
(4π)3

∑
λ=±2

Fλ`1`2`3(k1, k2, k3). (5.43)

In order to obtain an expression with the same functional structure of (5.33) and (5.34),
let us work out a bit the Wigner 3-j symbols. From the definition (5.15) of the Gaunt
integral it derives

〈 3∏
i=1

Γ`imi,T

〉
= Gm1m2m3

`1`2`3

(
`1 `2 `3
0 0 0

)−1
√

4π

(2`1 + 1)(2`2 + 1)(2`3 + 1)
〈B`1`2`3〉

= Gm1m2m3
`1`2`3

(
`1 `2 `3
0 0 0

)−1
√

4π

(2`1 + 1)(2`2 + 1)(2`3 + 1)
(2π)3

[
3∏
i=1

4π(−i)`i
∫
k2
i dki

(2π)2
T T`i (η0, ηin, k, q)

] ∑
λ=±2

Fλ`1`2`3(k1, k2, k3). (5.44)
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Finally, defining

F̃λ`1`2`3(k1, k2, k3) ≡
(
`1 `2 `3
0 0 0

)−1
√

4π

(2`1 + 1)(2`2 + 1)(2`3 + 1)

(2π)3Fλ`1`2`3(k1, k2, k3), (5.45)

we recover the desired form for the 3-point correlation function

〈 3∏
i=1

Γ`imi,T

〉
= Gm1m2m3

[
3∏
i=1

4π(−i)`i
∫
k2
i dki

(2π)3
T T`i (η0, ηin, k, q)

]
∑
λ=±2

F̃λ`1`2`3(k1, k2, k3). (5.46)

Let us conclude this section by showing another additional ways to express the quantity
F̃λ`1`2`3(k1, k2, k3) which may be useful in the subsequent computations. By inserting the
definition (5.40), it reads

F̃λ`1`2`3(k1, k2, k3) =

(
`1 `2 `3
0 0 0

)−1
√

4π

(2`1 + 1)(2`2 + 1)(2`3 + 1)∑
m1m2m3

(
`1 `2 `3
m1 m2 m3

)[ 3∏
i=1

∫
dΩki −λY

∗
`imi

]〈 3∏
i=1

ξλ(~ki)
〉
. (5.47)

Rearranging some multiplicative factor

F̃λ`1`2`3(k1, k2, k3) =
√

4π

(
`1 `2 `3
0 0 0

)−1 ∑
m1m2m3

(
`1 `2 `3
m1 m2 m3

)
[

3∏
i=1

∫
dΩki

−λY
∗
`imi√

2`i + 1

]〈 3∏
i=1

ξλ(~ki)
〉
. (5.48)

5.1.6 Summary of the three contribution

At this point we have all the tools to attempt an explicit evaluation of the three point
functions and, more generally, of any non-Gaussian contribution. Before proceeding in the
computation it may be useful to tidy up the important results we derived in this section
and that we will use in the following sections. Expanding the anisotropies in multipoles,
with the assumption of statistical isotropy, and assuming further that there is no statistical
correlation between scalar and tensor modes, the only non vanishing 3-point function in
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the spherical harmonics basis are

〈
3∏
i=1

Γ`imi,I〉 = Gm1m2m3
`1`2`3

∫ ∞
0

dr r2
3∏
i=1

[
2

π

∫
dkik

2
i j`i

[
k′′l(η0, ηin)

]
j`i(kir)

]
BI(q, k, k

′, k′′),

〈
3∏
i=1

Γ`imi,S〉 = Gm1m2m3
`1`2`3

∫ ∞
0

dr r2
3∏
i=1

[
2

π

∫
dkik

2
i T S`i (η0, ηin, ki, q)j`i(kir)

]
Bζ(k, k

′, k′′),〈 3∏
i=1

Γ`imi,T

〉
= Gm1m2m3

`1`2`3

[
3∏
i=1

4π(−i)`i
∫
k2
i dki

(2π)3
T T`i (η0, ηin, k, q)

]
∑
λ=±2

F̃λ`1`2`3(k1, k2, k3), (5.49)

with the definition

F̃λ`1`2`3(k1, k2, k3) =
√

4π

(
`1 `2 `3
0 0 0

)−1 ∑
m1m2m3

(
`1 `2 `3
m1 m2 m3

)
[

3∏
i=1

∫
dΩki

−λY
∗
`imi√

2`i + 1

]〈 3∏
i=1

ξλ(~ki)
〉
. (5.50)

Again we note that all the three contributions depend on the graviton momentum q. How-
ever only the initial condition contribution maintains this dependence in the massless limit,
since this dependence is intrinsic in the definition of the stochastic variable Γ(ηin,~k, q);
hence this dependence is reflected in the angular bispectrum. On the contrary in the other
two cases the q dependence arises inside the linear transfer functions from the velocity cor-
rection terms, which tend to one in the limit m→ 0. For the ease of notation, as presented
by [101], sometimes it could be convenient to define the reduced bispectrum b̃`1`2`3 as〈 3∏

i=1

Γ`imi

〉
≡ Gm1m2m3

`1`2`3
b̃`1`2`3 . (5.51)

By comparison with the expressions (5.49), we can identify three different contributions

b̃`1`2`3,I =

∫ ∞
0

dr r2
3∏
i=1

[
2

π

∫
dkik

2
i j`i [kil(η0, ηin)] j`i(kir)

]
BI(q, k1, k2, k3),

b̃`1`2`3,S =

∫ ∞
0

dr r2
3∏
i=1

[
2

π

∫
dkik

2
i T S`i (η0, ηin, ki, q)j`i(kir)

]
Bζ(k1, k2, k3),

b̃`1`2`3,T =

[
3∏
i=1

4π(−i)`i
∫
k2
i dki

(2π)2
T T`i (η0, ηin, k, q)

] ∑
λ=±2

Fλ`1`2`3(k1, k2, k3),

=
4

π2

∑
λ=±2

∑
mi

[
3∏
i=1

(−i)`i
2`i + 1

∫
dkik

2
i T T`i (ki)−λY

∗
`imi

(Ωki)

]

Gm1m2m3
`1`2`3

(
`1 `2 `3
0 0 0

)−2

δ(~k1 + ~k2 + ~k3)Bλ(~k1,~k2,~k3), (5.52)

where in the last expression we have made explicit the factor Fλ`1`2`3(k1, k2, k3) through
(5.50) combined with the definition (5.15) of the Gaunt integral.
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5.2 Explicit evaluation of the scalar sourced bispectrum for
local non-Gaussianity

In order to give an estimate of the SGWB angular bisprectrum we focus just on the initial
condition and the scalar sourced contributions, since we expect to find a hierarchy between
the three contributions similar to the one found for the angular spectrum. In particular
in this section we will start from the latter, since it is the more complete and instructive
case, and then we will trivially extend the results to the former. If we restrict the analysis
to the case where no graviton extra modes are produced, we do not expect to see any
deviation arising from the early graviton mass term. The theory (2.9) is indeed untouched
by the additional mass term in the scalar sector. Hence we are allowed to proceed in
the stardand wat, forgetting about the heavy graviton mass during inflation. Among the
many models of non-Gaussian perturbations, the most simple one is the so called local
model. Motivations for this model rely on the dynamics of the inflationary mechanism
[102]. The production mechanism of perturbations provided by the inflation naturally
selects the large scale modes as the most important contributions. On such scales spatial
gradients are expected to become more and more negligible with respect to the Hubble
rate expansion. Neglecting spatial gradients means to apply a coarse graining procedure on
sufficiently large patches of the Universe (large at least as the size of the Hubble parameter),
and to treat the evolution “locally” on the different patches, which then evolve as effectively
separated Universes. This picture lead to the study of local models where the primordial
metric perturbations are described by local functions, that is functions defined on a single
point of the spacetime.

5.2.1 Parametrization of local non-Gaussianity

As stated at the beginning of this chapter, a linear function of Gaussian fields is Gaussian
itself; hence source of non Gaussianity would arises from a non linear perturbation. The
first and dominant correction is then expected to arise from a quadratic term, which is
conventionally introduced as

Φ(~x) = Φg(~x) + fNL
[
Φ2
g(~x)− 〈Φ2

g〉
]
. (5.53)

In this expression Φg(~x) denotes the gaussian contribution to the scalar metric perturba-
tion, while the factor fNL is a constant space-independent parameter which describes the
amount of deviation from a Gaussian distribution. The ensemble averaged quantity 〈Φ2

g〉
is required to ensure the scalar perturbations to be averaged to zero, as expected.

During the radiation dominated era, on large scale it holds Φ ' (2/3)ζ; one can then
parametrize the non-Gaussianity in terms of the gauge invariant curvature perturbation as

ζ(~x) = ζg(~x) +
2

3
fNL

[
ζ2
g (~x)− 〈ζ2

g 〉
]
. (5.54)

By definition the ensemble averaged term is the Fourier antitransform of the power spec-
trum. Indeed

〈ζ2
g (~x)〉 =

∫
d3pd3q

(2π)6
ei(~p+~q)·~x〈ζg(~p)ζg(~q)〉 =

∫
d3p

(2π)3
Pζ(p). (5.55)
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Therefore, in momentum space

ζ(~k) =

∫
d3xe−i

~k·~x
∫

d3p

(2π)3
ei~p·~xζg(~p)

+
2

3
fNL

∫
d3xe−i

~k·~x
[∫

d3pd3q

(2π)6
ei(~p+~q)·~xζg(~p)ζg(~q)−

∫
d3p

(2π)3
Pζ(p)

]
= ζg(~k) +

2

3
fNL

∫
d3p

(2π)3

[
ζg(~p)ζg(~k − ~p)− (2π)3δ(~k)Pζ(p)

]
, (5.56)

such that 〈ζ(~k)〉 = 0 is obviously preserved. The first statistical quantity which may re-
ceives contributions from the non linearity of the scalar perturbation is the 2-point function,
which becomes

〈ζ(~k1)ζ(~k2)〉 = 〈ζg(~k1)ζg(~k2)〉

+
2

3
fNL

∫
d3p

(2π)3
〈ζg(~k1)ζg(~p)ζg(~k2 − ~p)〉+ ~k1 ↔ ~k2

−2

3
fNL

∫
d3p〈ζ(~k1)〉δ(~k2)Pζ(p) + ~k1 ↔ ~k2. (5.57)

At this point one can appreciate the simplification coming from the local Gaussianity
assumption. Indeed the 2-point correlator is completely determined by the 2 and 3-point
correlator of a gaussian random variable. Therefore we can use the result of section (4.1) to
perform the present computation, and in particular the axioms (4.11), (4.12) and (4.13).
Since all the odd -point correlator functions of gaussian random fields are null, the only
non trivial term is the first one, which is nothing but the 2-point correlator of a gaussian
random variable:

〈ζ(~k1)ζ(~k2)〉 = 〈ζg(~k1)ζg(~k2)〉 = (2π)3δ(~k1 + ~k2)Pζ(~k1). (5.58)

This is a quite remarkable result, since it shows that the 2-point function is not affected, in
the context of local models, by the primordial non-Gaussianity of the stochastic perturba-
tion fields. Therefore the first channel capable of detecting a deviation from Gaussianity
is the 3-point correlator. Let’s then compute

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 = 〈ζg(~k1)ζg(~k2)ζg(~k3)〉

+
2

3
fNL

∫
d3p

(2π)3
〈ζg(~k1)ζg(~k2)ζg(~p)ζg(~k3 − ~p)〉+ 2 perms.

− 2

3
fNL

∫
d3p 〈ζg(~k1)ζg(~k2)〉δ(~k3)Pζ(p)− 2 perms. , (5.59)

where the abbreviation “perms” stands for permutations of the three momenta ~ki. Again
we are in the nice position where all the quantities contributing to the 3-point correlators
are correlation functions of gaussian fields, and then they can be evaluated exploiting the
axioms (4.11), (4.12) and (4.13). The first line trivially vanishes since it involves an odd
number of random fields. The 4-point correlator inside the integral instead can be written
in term of the 2-point correlator functions by (4.13), which we report here for the sake of
clarity

〈ζ(~k1)ζ(~k2)ζ(~k3)ζ(~k4)〉 = 〈ζ(~k1)ζ(~k2)〉〈ζ(~k3)ζ(~k4)〉+ 〈ζ(~k1)ζ(~k3)〉〈ζ(~k2)ζ(~k4)〉
+〈ζ(~k1)ζ(~k4)〉〈ζ(~k2)ζ(~k3)〉. (5.60)
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This way (5.59) becomes

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 =
2

3
fNL

∫
d3p

(2π)3

[
〈ζg(~k1)ζg(~k2)〉〈ζg(~p)ζg(~k3 − ~p)〉

+〈ζg(~k1)ζg(~p)〉〈ζg(~k2)ζg(~k3 − ~p)〉

+〈ζg(~k1)ζg(~k3 − ~p)〉〈ζg(~k2)ζg(~p)〉
]

+ 2 perms.

−2

3
fNL

∫
d3p 〈ζg(~k1)ζg(~k2)〉δ(~k3)Pζ(p)− 2 perms. , (5.61)

From the definition of power spectrum

〈ζg(~p)ζg(~k3 − ~p)〉 = (2π)3δ(~k3)Pζ(p). (5.62)

the first and the last lines simplify, leaving

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 =
2

3
fNL(2π)3P (k1)P (k2)

∫
d3p
[
δ(~k1 + ~p)δ(~k2 + ~k3 − ~p)

+δ(~k1 + ~k3 − ~p)δ(~k2 + ~p)
]

+ 2 perms.

=
4

3
fNL(2π)3P (k1)P (k2)δ(~k1 + ~k2 + ~k3) + 2 perms. , (5.63)

In terms of the dimensionless power spectrum (4.19), making explicit each term, we arrive
to

〈
3∏
i=1

ζ(~ki)〉 =
4

3
fNL4π4(2π)3δ(~k1 + ~k2 + ~k3)[
Pζ(k1)Pζ(k2)

k3
1k

3
2

+
Pζ(k1)Pζ(k3)

k3
1k

3
3

+
Pζ(k2)Pζ(k3)

k3
2k

3
3

]
. (5.64)

Finally, by comparing this expression with the definition (5.2), we obtain the expression
for the scalar sourced bisprectrum we were looking for:

Bζ(k1, k2, k3) =
4

3
fNL

[
2π2

k3
1

Pζ(k1)
2π2

k3
2

Pζ(k2) + 2 perms. ,
]

(5.65)

5.2.2 Scalar sourced reduced bispectrum and 3-point correlator

This last result (5.65) can now be used to evaluate the reduced bispectrum (5.52) as

b̃`1`2`3,S =

∫ ∞
0

dr r2
3∏
i=1

[
2

π

∫
dkik

2
i T S`i (η0, ηin, ki, q)j`i(kir)

]
×

×4

3
fNL

[
2π2

k3
1

Pζ(k1)
2π2

k3
2

Pζ(k2) + 2 perms.
]
, (5.66)

where scalar sourced angular transfer function (4.131) is

T S` (η0, ηin, k, q) = v−2 2

3
g(k, ηin)j` [kl(η0, ηin)]

+
2

3

∫ η0

ηin

dη
∂
[
(1 + v−2)g(η)

]
∂η

j` [kl(η0, η)] , (5.67)
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with g(k, ηin) = grad(k, ηin) as initial condition. In analogy with the results for the CMB
case, one is lead to expect a really tiny signal from a three-point angular correlator. For
this reason one can just focus on the dominant Sachs-Wolfe contribution, leading to

b̃`1`2`3,S =

∫ ∞
0

dr r2
3∏
i=1

[
2

π

∫
dkik

2
i v
−2 2

3
grad(ki, ηin)j`i [kil(η0, ηin)] j`i(kir)

]
×

×4

3
fNL

[
2π2

k3
1

Pζ(k1)
2π2

k3
2

Pζ(k2) + 2 perms.
]
. (5.68)

For the sake of simplicity, on the following the case of an Harrison-Zel’dovich spectrum
will be considered. The final result will eventually be generalized to a general power law
scale dependence.

Harrison-Zel’dovich spectrum In this case any dependence of the dimensionless power
sprectrum from the momenta is neglected. Given our low resolution in experiments with
interferometers, one can fairly restrict the study to the case of low multipoles, that is large
scales, where the growing rate can be fairly approximated to grad(k, ηin) ' 1. Then

b̃`1`2`3,S =
4

3
fNL

(
4

3π

)3

(2π2)2P2
ζ v
−6

∫ ∞
0

dr r2

∫
dk1

k1
j`1 [k1l(η0, ηin)] j`1(k1r)∫

dk2

k2
j`2 [k2l(η0, ηin)] j`2(k2r)

∫ k1+k2

|k1−k2|
dk3 k

2
3j`3 [k3l(η0, ηin)] j`3(k3r)

+2 permutations. (5.69)

The assumption of a k-independent power spectrum implicitly selects those cosmological
scales which where already outside the horizon at initial time (otherwise, beneath the
horizon, the power spectrum could not pursue a constant trend). This forces ki � η−1

in

as upper bound on the wavenumber, and then the first two integral should run up to
kmax
i ' 1/ηin. However, for sufficiently initial times, it is fair to set ηin ' 0, sending then

the upper bound to infinity. This approximation is quite reasonable since the first two
integrals are dominated in the regime of small momenta thanks to both the power law
factor k−1

i and the spherical Bessel functions. The extremes of the last integral instead
are set to ensure that the triangular inequality |ki − kj |≤ kk ≤ ki + kj for i, j, k = 1, 2, 3 is
always verified. Let’s now rewrite these integrals by performing two consecutive changes
of variables, firstly xi ≡ kil(η0, ηin)

b̃`1`2`3,S =
1024π

81
fNLP2

ζ v
−6

∫ ∞
0

dr r2

∫
dx1

x1
j`1 (x1) j`1

(
x1

r

l(η0, ηin)

)
∫
dx2

x2
j`2 (x2) j`2

(
x2

r

l(η0, ηin)

)
1

l3(η0, ηin)

∫ x1+x2

|x1−x2|
dx3 x

2
3j`3 (x3) j`3

(
x3

r

l(η0, ηin)

)
+ 2 perms. , (5.70)

and then y ≡ r/l(η0, ηin):

b̃`1`2`3,S =
1024π

81
fNLP2

ζ v
−6

∫ ∞
0

dy y2

∫
dx1

x1
j`1 (x1) j`1 (x1y)∫

dx2

x2
j`2 (x2) j`2 (x2y)

∫ x1+x2

|x1−x2|
dx3 x

2
3j`3 (x3) j`3 (x3y) + 2 perms. . (5.71)
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It is useful to take advantage of the relation between the spherical Bessel functions j`(x)
and the ordinary Bessel functions J`(x)

j`(x) =

√
π

2x
J`+ 1

2
(x) (5.72)

to write

b̃`1`2`3,S =
128π4

81
fNLP2

ζ v
−6

∫ ∞
0

dy
√
y

∫
dx1

x2
1

J`1+ 1
2

(x1) J`1+ 1
2

(x1y)∫
dx2

x2
2

J`2+ 1
2

(x2) J`2+ 1
2

(x2y)∫ x1+x2

|x1−x2|
dx3 x3J`3+ 1

2
(x3) J`3+ 1

2
(x3y) + 2 perms. . (5.73)

These integrals cannot be solved analytically yet; some more reasonable approximations
are needed. Thinking about the geometrical interpretation of the three point function,
the bispectrum can be linked to the surface of the triangle built from the momenta ~ki.
Therefore it is reasonable to assume that the most contribution to the bisprectrum should
come from the geometrical configuration that maximizes the area of the triangle. Fixed
the basis k3, the geometrical configuration that maximizes the area is realized by the
isosceles triangle1, that is when k1 ≈ k2, or equally x1 ≈ x2. This fact suggest to set to
zero the lower integration extreme of the innermost integral. Moreover, as the gravitons
stream freely without efficient collisional processes, the integrals should be dominated by
k ≈ (θl(η0, ηin))−1 ≈ `/l(η0, ηin), where θ denotes the angular separation between the
events under consideration. In terms of the dimensionless variable x, this implies that the
dominant contribution should come from xi ≈ `i. All in all the most dominant contribution
to the reduced bespectrum is approximated to

b̃`1`2`3,S '
128π

81
fNLP2

ζ v
−6

∫ ∞
0

dy
√
y

∫
dx1

x2
1

J`1+ 1
2

(x1) J`1+ 1
2

(x1y)∫
dx2

x2
2

J`2+ 1
2

(x2) J`2+ 1
2

(x2y)∫ `1+`2

0
dx3 x3J`3+ 1

2
(x3) J`3+ 1

2
(x3y) + 2 perms. . (5.74)

In this way the three integrals have becomed independent, and then they can be computed
separately one at a time. In [103] it is shown how to perform the integration in dx1 and
dx2. In general they proved that

∫ ∞
0

dxx−sJµ(ax)Jν(bx) = 2−sbνas−ν−1
Γ
(
µ+ν−s+1

2

)
Γ(ν + 1)Γ

(
µ−ν+s+1

2

)
2F1

[
ν − µ− s+ 1

2
,
ν + µ− s+ 1

2
; ν + 1;

b2

a2

]
, (5.75)

1The condition comes from the particular setting we can choose to adopt for our integration. Consider
the innermost integral in dx3. Imagine to take a circle whose diameter coincides with the fixed basis x3.
Out of this basis imagine to build a triangle whose sides are represented by x1 and x2. This way we
are constructing a triangle inscribed in a circle. From a basic geometrical discussion, one can prove that
the isosceles triangle is really the configuration that maximizes the triangle area. Then eventually the
integration is performed by running the basis x3 to infinity, and then, at the same time, expanding the
circle containing the triangle.
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when the conditions
Re(µ+ ν − s) > −1, 0 < b < a. (5.76)

are satisfied. The term 2F1[a, b; c; d] indicates the Gauss’s hypergeometric function (see
[104] for further details about generalized hypergeometric functions). In our case, remem-
bering that Γ

(
3
2

)
=
√
π

2

Ĩ`(y < 1) ≡
∫ ∞

0

dx

x2
J`+ 1

2
(x)J`+ 1

2
(yx) =

y`+
1
2

2
√
π

Γ(`)

Γ(`+ 3
2)

2F1

[
−1

2
, `; `+

3

2
; y2

]
(5.77)

for
` > 0, y < 1. (5.78)

In the opposite case when y > 1 the result is easily obtained by exploiting the symmetry
of the integrand under the exchanging of the order of the two Bessel functions, since they
are the same. Performing the change of variable z = yx, the integral I(y) becomes

Ĩ(y > 1) = y

∫ ∞
0

dz

z2
J`+ 1

2

(
1

y
z

)
J`+ 1

2
(z). (5.79)

This way one immediately sees that the integral in dz exactly reproduce the one of the
previous case; then the same solution (5.77) applies under the substitution y → 1/y, that
is

Ĩ`(y > 1) = y
y−`−

1
2

2
√
π

Γ(`)

Γ(`+ 3
2)

2F1

[
−1

2
, `; `+

3

2
;

1

y2

]
. (5.80)

The last case, when y = 1, can be better solved by transforming back the Bessel functions
into the spherical ones with (5.72):

I`(y = 1) =
2

π

∫
dx

x
j2
` (x) = 2−2 Γ(`)

Γ(`+ 2)

Γ(2)

Γ2
(

3
2

) =
1

π`(`+ 1)
, (5.81)

where in the second equality we have used (C.8). Summarizing the results

Ĩ`(y) =



y`+
1
2

2
√
π

Γ(`)

Γ(`+ 3
2)

2F1

[
−1

2
, `; `+

3

2
; y2

]
, y < 1,

1

π`(`+ 1)
, y = 1,

y−`+
1
2

2
√
π

Γ(`)

Γ(`+ 3
2)

2F1

[
−1

2
, `; `+

3

2
;

1

y2

]
, y > 1.

(5.82)

Figure (5.1) shows the behavior of these solutions, which will be useful later on. Concerning
the dx3 integral in (5.74), it can be solved analytically to

Ĩ`1`2`3(y) ≡
∫ `1+`2

0
dx3x3J`3+ 1

2
(x3)J`3+ 1

2
(yx3)

=
`1 + `2
1− y2

{
yJ`3+ 1

2
(`1 + `2)J`3− 1

2
[(`1 + `2)y]

−J`3− 1
2
(`1 + `2)J`3+ 1

2
[(`1 + `2)y]

}
. (5.83)

At the end of the day, summing up the last results, the reduced bispectrum becomes

b̃`1`2`3 =
128π

81
fNLP2

ζ v
−6

∫ ∞
0

dy
√
y Ĩ`1(y)Ĩ`2(y)Ĩ`1`2`3(y) + 2 perms. . (5.84)
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Figure 5.1: Plot of the integral Ĩ(y) for different values of the multipole `. The red dot represents
the solution (5.82) for y = 1, while the orange line on the left and right show respectively the same
solution for y < 1 and y > 1. The three solution perfectly match at the discontinuity point y = 1,
as it should be in order to preserve the continuity of the function Ĩ(y). Notice that this function
has a maximum around y = 1, which becomes more and more peaked as the multipole ` increases

For the same geometrical reasons outlined above, the most dominant configuration for the
bispectrum is expected to be the equilateral one, i.e. when `1 = `2 = `3 = `. In this case
the three terms with permuted momenta give the same contribution, and they can then
be summed to

b̃``` =
128π4

27
fNLP2

ζ v
−6

∫ ∞
0

dy
√
y Ĩ`(y)Ĩ`(y)Ĩ```(y). (5.85)

This integral can now be computed numerically to give an estimation of the equilateral
reduced bispectrum, and, ultimately, of the equilateral bispectrum as well. Anyway we can
roughly understand the trend of the integral in a simple way by looking for its dominant
contribution. Remembering the definitions (5.77) and (5.83), one can convince himself
that the integrand of (5.85) is mostly dominated by y = 1 since, when this condition is
not verified, the Bessel functions appearing inside I` and I``` are out of phase and they
interfere in a destructive way. On the contrary, when y = 1 the peaks and the troughs of
both the Bessel functions involved in each term occur at the same position giving rise to a
constructive interference. A more convincing proof in support of these arguments can be
found in Figure (5.2). For y = 1 a simple expression for I` holds, given by the second line
of (5.82), and then one expects the integral to be proportional to ∝ `−2(`+ 1)−2; hence

b̃``` ≈
128π2

27
fNLP2

ζ v
−6 Ĩ```(1)

`2(`+ 1)2
. (5.86)

Recalling the the result (4.139) for the Sachs Wolfe contribution to the scalar source spec-
trum

`(`+ 1)

2π
C̃ SW
`,S =

4

9
v−4Pζ , (5.87)
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Figure 5.2: Integrand function of equation (5.85). The purpose of this plot is to show the validity of
the approximation in considering the function as strongly peaked around y = 1. This approximation
increases its precision with larger values of the multipole `

the 3-point correlation function finally is

〈 3∏
i=1

Γ`mi,S

〉(SW )
≈ Gm1m2m3

``` 6fNLv
2Ĩ```(1)C̃

(SW ) 2
`,S , (5.88)

where Ĩ```(1) can be evaluated numerically from (5.83).
One can then quite easily extend this result to a general configuration simply consid-

ering that in general I`i(1) = 1
π`i(`i+1) and retracing the arguments outlined above. This

way, from (5.84),

b̃`1`2`3 ≈
128π2

81
fNLP2

ζ v
−6 1

`1(`1 + 1)

1

`2(`2 + 1)
Ĩ`1`2`3 + 2 perms

≈ 2fNLv
2C̃SW`1 C̃SW`2 Ĩ`1`2`3(1) + 2 perms. . (5.89)

Hence

〈 3∏
i=1

Γ`imi,S

〉
≈ Gm1m2m3

`1`2`3
2fNLv

2
[
C̃

(SW )
`1,S

C̃
(SW )
`2,S

Ĩ`1`2`3(1)

+C̃
(SW )
`2,S

C̃
(SW )
`3,S

Ĩ`2`3`1(1) + C̃
(SW )
`3,S

C̃
(SW )
`1,S

Ĩ`3`1`2(1)
]
. (5.90)

The terms Ĩ`1`2`3(1) are oscillating factors which suppress some geometrical configurations
of the triangle ~k1 + ~k2 + ~k3 = 0, and they come from the imposition of the triangular
constraint on the innermost integral of (5.69). In the next paragraph it will be shown how
it is possible, in a rough approximation, to get rid of these terms.
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Power-law spectrum In this paragraph the scale-dependence of the power spectrum is
taken as a power law in reference to a pivot scale k0

Pζ(k) = Pζ(k0)

(
k

k0

)ns−1

. (5.91)

As long as the scalar spectral index does not deviate much from the the value ns = 1, we
can trace back the previous computations applying the same approximations. Therefore
(5.69) immediately generalizes to

b̃`1`2`3,S =
4

3
fNL

(
4

3π

)3

(2π2)2P(k0)2
ζv
−6

∫ ∞
0

dr r2

∫
dk1

k1

(
k1

k0

)ns−1

j`1 [k1l(η0, ηin)] j`1(k1r)∫
dk2

k2

(
k2

k0

)ns−1

j`2 [k2l(η0, ηin)] j`2(k2r)∫ k1+k2

|k1−k2|
dk3 k

2
3j`3 [k3l(η0, ηin)] j`3(k3r) + 2 permutations. (5.92)

As before, it is convenient to perform two changes of coordinate, xi = kil(η0, ηin) and
y = r/l(η0, ηin). This way

b̃`1`2`3,S =
1024π

81
fNLP2

ζ (k0)
v−6

[k0l(η0, ηin)]2ns−2

∫ ∞
0

dy y2∫
dx1 x1

ns−2j`1 (x1) j`1 (x1y)∫
dx2 x2

ns−2j`2 (x2) j`2 (x2y)∫ x1+x2

|x1−x2|
dx3 x

2
3j`3 (x3) j`3 (x3y) + 2 perms. . (5.93)

Transforming the spherical Bessel function j`(x) into the ordinary ones J`(x) through (5.72)

b̃`1`2`3,S =
128π4

81
fNLP2

ζ (k0)
v−6

[k0l(η0, ηin)]2ns−2

∫ ∞
0

dy
√
y∫

dx1 x1
ns−3J`1+ 1

2
(x1) J`1+ 1

2
(x1y)∫

dx2 x2
ns−3J`2+ 1

2
(x2) J`2+ 1

2
(x2y)∫ x1+x2

|x1−x2|
dx3 x3J`3+ 1

2
(x3) J`3+ 1

2
(x3y) + 2 perms. . (5.94)

As commented above, the dominant contribution to the innermost integral comes from
the isosceles triangle configuration, that is when x1 ≈ x2, while, as long as the modes
propagate freely in the Universe, it can be assumed that xi ≈ `i. This way the three
integrals in (5.94) are independent and can be computed separately one at a time. The
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innermost integral is the same appearing in the Harrison-Zel’dovich case, that is

J`1`2`3(y) ≡
∫ `1+`2

0
dx3x3J`3+ 1

2
(x3)J`3+ 1

2
(yx3)

=
`1 + `2
1− y2

{
yJ`3+ 1

2
(`1 + `2)J`3− 1

2
[(`1 + `2)y]

−J`3− 1
2
(`1 + `2)J`3+ 1

2
[(`1 + `2)y]

}
, (5.95)

while the other integrals share the same structure of the previous case but with a different
power of the integral variable xi; therefore they can be solved using the same general
relation (5.75) with µ = ν = `i + 1/2 and s = 3− ns:

J`(y < 1) ≡
∫ ∞

0
dxxns−3J`+ 1

2
(x)J`+ 1

2
(yx)

=
2ns−3y`+

1
2 Γ
(
`− 1

2 + ns
2

)
Γ
(
`+ 3

2

)
Γ
(
2− ns

2

) 2F1

[
ns − 2

2
,
2`+ ns − 1

2
; `+

3

2
; y2

]
(5.96)

for
` >

1− ns
2

, y < 1. (5.97)

The case y > 1 can be reduced to the above one by performing the change of variable
z = yx, which easily brings, as we have seen before, to

J (y, y > 1) = yJ (
1

y
, y > 1), (5.98)

and then

J`(y > 1) =
2ns−3y

1
2
−` Γ

(
`− 1

2 + ns
2

)
Γ
(
`+ 3

2

)
Γ
(
2− ns

2

) 2F1

[
ns − 2

2
,
2`+ ns − 1

2
; `+

3

2
;

1

y2

]
. (5.99)

The case y = 1 is better solved by transforming back the Bessel functions into the spherical
ones with (5.72):

J`(y = 1) =

∫
dxxns−3J2

`+ 1
2

(x) =
2

π

∫
dxxns−2j2

` (x). (5.100)

This expression simplifies using (C.8) to

J`(y = 1) = 2ns−3 Γ
(
`+ ns

2 −
1
2

)
Γ
(
`+ 5

2 −
ns
2

) Γ(3− ns)
Γ2
(
2− ns

2

) . (5.101)

Summarizing the results:

J`(y) =



2ns−3y`+
1
2 Γ
(
`− 1

2 + ns
2

)
Γ
(
`+ 3

2

)
Γ
(
2− ns

2

) 2F1

[
ns − 2

2
,
2`+ ns − 1

2
; `+

3

2
; y2

]
, y < 1,

2ns−3
Γ
(
`+ ns

2 −
1
2

)
Γ
(
`+ 5

2 −
ns
2

) Γ(3− ns)
Γ2
(
2− ns

2

) , y = 1,

2ns−3y
1
2
−` Γ

(
`− 1

2 + ns
2

)
Γ
(
`+ 3

2

)
Γ
(
2− ns

2

) 2F1

[
ns − 2

2
,
2`+ ns − 1

2
; `+

3

2
;

1

y2

]
, y > 1.
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Collecting these results the reduced bispectrum finally reads

b̃`1`2`3 =
128π4

81
fNLP2

ζ (k0)
v−6

[k0l(η0, ηin)]2ns−2

∫ ∞
0

dy
√
yJ`1(y)J`2(y)J`1`2`3(y)

+2 perms. , (5.102)

and is ready to be evaluated with numerical approaches. Alternatively they can be intro-
duced some further assumptions to simplify the analytical solution. As sketched above, it
is reasonable to think that the integrand of (5.102) is highly peaked at y = 1, since it is
the case where the Bessel functions happen to interfere in a constructive way, and then

b̃`1`2`3 '
128π4

81
fNLP2

ζ (k0)
v−6

[k0l(η0, ηin)]2ns−2J`1(1)J`2(1)J`1`2`3(1)

+2 perms. . (5.103)

Again we note that, in the case y = 1, the expression (5.101) for J`(y) can be linked to
the Sachs-Wolfe contribution to the scalar source angular power spectrum (4.138)

C̃SW`,S =
2π2

9
v−4Pζ(k0)

(
2

k0l(η0, ηin)

)ns−1 Γ
(
`+ ns

2 −
1
2

)
Γ
(
`+ 5

2 −
ns
2

) Γ(3− ns)
Γ2
(
2− ns

2

) (5.104)

through

J`(1) =
9

8π2
v4P−1

ζ (k0)

(
1

k0l(η0, ηin)

)1−ns
C̃SW`,S . (5.105)

This way the reduced bispectrum becomes

b̃`1`2`3 ' 2v2fNLC̃
SW
`1 C̃SW`2 J̃`1`2`3(1) + 2 perms. . (5.106)

Hence

〈 3∏
i=1

Γ`imi,S

〉
' Gm1m2m3

`1`2`3
2v2fNL

[
C̃

(SW )
`1,S

C̃
(SW )
`2,S

J̃`1`2`3(1)

+C̃
(SW )
`2,S

C̃
(SW )
`3,S

J̃`2`3`1(1) + C̃
(SW )
`3,S

C̃
(SW )
`1,S

J̃`3`1`2(1)
]
. (5.107)

This expression is completely analogous to the one obtained with the assumption of an
Harrison-Zel’dovich spectrum; the only difference stands in the definition of the angu-
lar spectra which are taken here in the more general form (4.138) The oscillating terms
J̃`3`1`2(1) (and equivalently the oscillating terms Ĩ`1`2`3(1) in the Harrison-Zel’dovich case
as well) can be eliminated if we consider the usual isosceles triangle configuration and if
we make the upper extreme of the integral run to infinity. This procedure is justified by
the fact that the integrand is dominated by the smallest values of the wave number k, and
then the upper region of the integration domain is not really relevant. This approximation
becomes more and more valid as the angular scales we are considering decrease, that is as
` increases. Then the innermost integral can be evaluated exploiting the property (C.9) of
the spherical Bessel functions as∫

dk3k
2
3j`3 [k3l(η0, ηin)]j`3(k3r)

∣∣∣
`3�1

=
π

2

δ(l(η0, ηin)− r)
r2

. (5.108)
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This result is quite useful, since now we are able to perform directly the integral over dr
in (5.92):

b̃`1`2`3,S '
512π2

81
fNLv

−6

∫ ∞
0

dr δ(l(η0, ηin)− r)∫
dk1

k1
j`1 [k1l(η0, ηin)] j`1(k1r)Pζ(k1)∫

dk2

k2
j`2 [k1l(η0, ηin)] j`2(k2r)Pζ(k2) + 2 perms. . (5.109)

Notice that in this expression we have left implicit the form of the primordial power spec-
trum Pζ(k) in such a way to highlight that the following results are completely general.
Performing the integration in dr and rearranging some multiplicative factor

b̃`1`2`3,S ≈
32

81
v2fNL

(
4πv−4

∫
dk1

k1
j2
`1 [k1l(η0, ηin)]Pζ(k1)

)
(

4πv−4

∫
dk2

k2
j2
`2 [k2l(η0, ηin)]Pζ(k2)

)
+ 2 perms. . (5.110)

Remembering the expression (4.134) for the scalar sourced spectrum, the bispectrum can
be written

b̃`1`2`3,S ≈ 2v2fNL

[
C̃SW`1,SC̃

SW
`2,S + C̃SW`1,SC̃

SW
`3,S + C̃SW`2,SC̃

SW
`3,S

]
, (5.111)

while the 3-point correlator is〈 3∏
i=1

Γ`imi,S

〉
≈ Gm1m2m3

`1`2`3
2v2fNL

[
C̃SW`1,SC̃

SW
`2,S + C̃SW`1,SC̃

SW
`3,S + C̃SW`2,SC̃

SW
`3,S

]
. (5.112)

This is a remarkable result. We have found that the 3-point correlator characterizing the
non-Gaussianity of the SGWB is completely determined by its power spectrum, which
arises at the gaussian level, and a constant factor fNL. This is indeed quite expected,
since the local ansatz which parametrizes the departure from Gaussianity implies 3-point
correlation function to be decomposed in terms of correlator of gaussian random variables
(5.61), while the 2-point functions turns out to be untouched by non linear effects (5.58).
It is worth to stress one more time that the expressions (5.111) and (5.112) are fully
general, that is they are valid for any choice of the primordial curvature power spectrum.
Differences between models are eventually encoded inside the expression of the angular
power spectrum, which should recover (4.139) in the Harrison-Zel’dovich case, and (4.138)
for a more general power-law spectrum.

5.2.3 Initial condition term

In complete analogy one decomposes the initial condition stochastic variable Γ(ηin,~k, q) as

Γ(ηin,~k, q) = Γg(ηin,~k, q) +
2

3
f̃NL

∫
d3p

(2π)3

[
Γg(ηin, ~p, q)Γg(ηin,~k − ~p, q)

−(2π)3δ(~k)PI(p, q)
]
, (5.113)

where the factor 2/3 is just conventional so as to reproduce the same form of the curvature
perturbation decomposition (5.56). Following the same steps outlined above for the scalar
sourced case, one eventually ends up with

BI(q, k1, k2, k3) =
4

3
fNL

[
2π2

k3
1

PI(q, k1)
2π2

k3
2

PI(q, k2) + 2 perms.
]
, (5.114)
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while, from (5.52), the initial condition reduced bisprectrum is

b̃`1`2`3,I =

∫ ∞
0

dr r2
3∏
i=1

[
2

π

∫
dkik

2
i j`i [kil(η0, ηin)]j`i(kir)

]
4

3
f̃NL

[
2π2

k3
1

PI(q, k1)
2π2

k3
2

PI(q, k2) + 2 perms.
]
. (5.115)

Now one immediately recognizes the same expression found in (5.68); the only difference
between the two is a constant factor (2/3)v−2 which can be factorized out of the integral.
This is a nice situation, since one can take advantage of all the result of the previous
section. In particular, (5.110) becomes to

b̃`1`2`3,S ≈
4

3
f̃NL

(
4π

∫
dk1

k1
j2
`1 [k1l(η0, ηin)]PI(q, k1)

)
(

4π

∫
dk2

k2
j2
`2 [k2l(η0, ηin)]PI(q, k2)

)
+ 2 perms. . (5.116)

Recognizing the expression (4.123) of the initial condition spectrum, the bispectrum eval-
uates to

b̃`1`2`3,S ≈
4

3
f̃NL

[
C̃`1,IC̃`2,I + C̃`1,IC̃`3,I + C̃`2,IC̃`3,I

]
. (5.117)

and the 3-point function〈 3∏
i=1

Γ`imi,I

〉
≈ Gm1m2m3

`1`2`3

4

3
f̃NL

[
C̃`1,IC̃`2,I + C̃`1,IC̃`3,I + C̃`2,IC̃`3,I

]
. (5.118)

5.3 Secondary Non-Gaussianity in the SGWB: squeezed limit
configuration

Another possibility to generate a non vanishing n-point correlator even in absence of intrin-
sic primordial non-Gaussianity relies on the non-linear gravitational effects on the propa-
gation of interacting GWs. In particular this section shows that the bispectra of the GW
energy density contrast (3.46) acquires a non vanishing value in the squeezed limit, that
is the limit where one of the three modes involved in the 3-point function is outside the
horizon, while the other two modes are taken to be at small scales, i.e. k3 � k1,2. Among
the many possible configurations of the 3-point functions which are very difficult to study
in full generality at small scales, this situation represents a rather simple case, since long
wavelength modes are not expected to affect any physical process; then the effect of the
long wavelength mode will be only detectable in the way the short scale 2-point function is
observed. Following the discussion firstly proposed by Weinberg in [106], and then resumed
in [107], we will indeed show that the long wavelength perturbation mode can be reab-
sorbed with a coordinate transformation which ultimately will give rise to a second-order
modulation of the short wavelength modes. All this discussion follows quite faithfully the
arguments presented in [59].

Before entering in the details of this discussion let us resume some definitions of the
section (3.3) and set some new useful conventions. The energy density of the SGWB is
computed in terms of integral of the fundamental quantity ωGW (η0, ~x, q,m, n̂), which in
momentum space is

ωGW (η,~k, q, n̂) = ω̄GW (η, q)
[
1 + δGW (η,~k, q, n̂)

]
, (5.119)
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where the energy density contrast δGW is the quantity governing the small anisotropies in
the SGWB defined as

δGW (η,~k, q, n̂) = −∂ ln f̄(q)

∂ ln q
Γ(η,~k, q, n̂). (5.120)

In the following the focus will be posed only on the scalar adiabatic contribution to metric
perturbations in the usual Newtonian gauge, with the further assumption that there is
no anisotropic stress. Basing on the discussion of (4.5.2), the scalar perturbations are
parametrized as

Φ(η,~k) = Ψ(η,~k) =
2

3
g(η)ζ(~k). (5.121)

With this decomposition, the scalar sourced fluctuation ΓS , which is the only contribution
we are considering in this discussion, reads

ΓS(η,~k, q, n̂) =
2

3

∫ η0

ηin

dη′e−ikµl(η,η
′)

[
v−2g(η′)δ(η′ − ηin)

+
∂
[
(1 + v−2)g(η′)

]
∂η′

]
ζ(~k)

≡ TS(η, k, q, µ)ζ(~k), (5.122)

so that the density contrast becomes

δGW (η,~k, q, n̂) = −∂ ln f̄(q)

∂ ln q
TS(η, k, q, µ)ζ(~k). (5.123)

For what concerns the statistical correlators, in the following, for later convenience, it will
be adopted the prime ′ sign convention to understand the factor (2π)3δ(

∑~ki). Denoting
with PΓ the dimensionless power spectrum arising from the 2-point correlators of the scalar
sourced fluctuations ΓS :〈

ΓS(η,~k1, q, n̂)ΓS(η,~k2, q, n̂)
〉′

=
2π2

k3
1

PΓ(η, k1, q, n̂)

=
2π2

k3
1

|TS(η, k1, q, µ1)|2Pζ(k1), (5.124)

and

PΓ(η, k, q, µ) = |TS(η, k, q, µ)|2Pζ(k)

PδGW (η, k, q, µ) =
∣∣∣∂ ln f̄(q)

∂ ln q
TS(η, k, q, µ)

∣∣∣2Pζ(k). (5.125)

In matter domination all these expression greatly simplify, since g(η) ≈ 1 and the transfer
function TS , assuming for simplicity the graviton velocity to be constant, reduces to

TS =
2

3
v−2e−ikµl(η,η

′), (5.126)

so that |TS |2= 4/(9v2) without any dependence on η, k, µ. All these new convention prepare
the field to study the 2-point correlation function of the SGWB anisotropies at small scales
k, and in particular how the presence of a long scale mode ζL ≡ ζ(~kl), with kL � k,
modulates it. At a later stage, this modulation will affect higher order correlators as well,
giving rise, as an example, to a non vanishing 3-point function. As anticipated, the path
to follow basically consists in reabsorbing the long mode in a coordinate transformation,
and then in studying the evolution of the small wavelength modes in this new coordinate
system.
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5.3.1 Long wavelength mode as coordinate transformation

The aim of this approach, introduced in [106], is to generate second order perturbations in
the small wavelength modes by hiding the large ones inside a coordinate transformation on
the first order perturbed Universe. At first order, the metric for a long wavelength scalar
perturbation ΦL ≡ Φ(~kL) and ΨL ≡ Ψ(~kL)2 is

ds2 = a2(η)
[
−(1 + 2ΦL)dη2 + (1− 2ΨL)δijdx

idxj
]
, (5.127)

Let’s then consider the following coordinate transformation

η̃ = η + ε(η)ζL η = η̃ − ε(η̃)ζL,

x̃i = xi(1− λζL) xi = x̃i(1 + λζL), (5.128)

with λ an arbitrary constant and ε(η) an arbitrary time dependent function. This change
of coordinates acts on the scale factor as

a(η̃) = a(η) (1 +Hε(η)ζL) , (5.129)

so that in the new coordinate system the line element reads

ds2 = a2(η̃)(1− 2ε(η)HζL)[
−(1 + 2ΦL)(1− 2ε′ζL)dη̃2 + (1− 2ΨL)(1 + 2λζL)δijdx̃

idx̃j
]

= a2(η̃)
[
−(1 + 2Φ̃L)dη̃2 + (1− 2Ψ̃L)δijdx̃

idx̃j
]
. (5.130)

Therefore the coordinate transformation (5.128) preserve the Poisson gauge structure of
the metric with the redefinition of the long perturbation modes

Φ̃L = ΦL − ε′ζL −HεζL
Ψ̃L = ΨL − λζL +HεζL. (5.131)

Now it is possible to ‘gauge away’ the long wavelength modes with a proper gauge choice
of the parameter ε and λ, such that Φ̃L = Ψ̃L = 0. We then set the two parameter so that
to satisfy the relations

ΦL = (ε′ +Hε)ζL,
ΨL = (λ−Hε)ζL. (5.132)

As a result, in the new coordinates, we have a pure FLRW Universe, with no long wave-
length perturbations. As shown in [106], the Einstein field equation with kL = 0 are always
invariant under this gauge transformation. However, for it to acquire a physical meaning,
we should verify that thy are consistent with those piece of the Einstein equation that
vanish in the limit kL → 0 and that could then spoil the invariance. These requirements
will then reveal themselves as constraints on the two parameter. The first condition can be
easily read from the off diagonal space-space components of the Einstein equation (4.46),
which in momentum space read

kikj(Φ−Ψ) = 0. (5.133)

2Since we are assuming kL to be very small, we can consider the long wavelength perturbations to be
space independent
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This equation obviously vanishes in the limit k → 0, while it can be extended for any value
of k provided Φ = Ψ, and then, from (5.132), it yields

ε′ + 2Hε = λ. (5.134)

This is a first order differential equation with non homogeneous coefficients. In [71] it is
proved that such equation admits a solution in the form

ε(η) = e−f(η)

∫ η

η∗

dη′ef(η)λ+ ce−f(η), (5.135)

with η∗ a reference initial time and c an integration constant, while

f(η) = 2

∫ η

η∗

dη′H(η′). (5.136)

Opening the Hubble parameter in terms of the scale factors, this expression can be directly
integrated to f(η) = 2 ln(a(η)) − 2 ln(a(η∗)). Therefore for sufficiently initial times, since
ln(a(η∗))� 0, the solution reads

ε =
1

a2(η)

∫ η

η∗

dη a2(η′)λ. (5.137)

A second condition instead derives from the space-time components of the Einstein equa-
tions. Equating the Einstein tensor components (A.20) to the stress energy tensor (4.44)
leads to

ki(Ψ
′ +HΦ) = − a2

2M2
p

(ρ+ p)kiv = (H′ −H2)kiv, (5.138)

where in the second step the first and third Friedman equations (4.45) were used. Inserting
the conditions (5.132), this equation is satisfied by

v = −εζL. (5.139)

Moreover, the gauge transformation applies on the energy density through the Lie deriva-
tive [75] as

δρ̃ = δρ+ ρ′0εζL, (5.140)

where the subscript denotes the background quantities. Since the transformed spacetime
is defined in such a way to be an unperturbed pure FLRW Universe, one can take δρ̃ = 0.
Then

δρ = −ρ′0εζL. (5.141)

Finally, from the definition of the gauge invariant curvature perturbation (4.51)

ζL = ΦL +Hδρ
ρ′0

= ΨL −HεζL, (5.142)

which is consistent with (5.132) provided λ = 1. An alternative way to obtain the same
result is to consider the limit k → 0, where [106] proves that v = δρ/ρ′0; then, thanks to
(5.139), one can turn back to (5.142). To summarize, the conditions on the parameter ε
and λ to be consistent with the Einstein equation are

λ = 1

ε(η) =
1

a2(η)

∫ η

η∗
dη′a2(η′). (5.143)
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Notice further that all these results, if inserted inside (5.132), are consistent with the fact
that in the Poisson gauge Φ = Ψ. If the equation of state p = wρ provides a constant
factor w, in which case a ∝ η2/(1+3w) and H = 2/[η(1 + 3w)], then

ε(η) =
1 + 3w

5 + 3w
η,

Hε =
2

5 + 3w
. (5.144)

After having understood how to hide the long-wavelength modes inside the coordinate
transformation, we want to use it to study the second-order evolution of the short-wavelength
modes. Let’s then consider a perturbed metric in the (η̃, x̃i) coordinate system where only
short-wavelength perturbations appear explicitly, the long-wavelength ones being encoded
inside the coordinates. In the usual Poisson gauge

ds2 = a2(η̃)
[
−(1 + 2Φ̃S)dη̃2 + (1− 2Ψ̃S)δijdx̃

idx̃j
]
. (5.145)

Using again the coordinate transformation (5.128), we can express the short-wavelength
potentials Φ̃S and Ψ̃S in the original system (η, xi):

Φ̃S(η̃, x̃i) = ΦS + εζL
∂ΦS

∂η
− λζLxi

∂ΦS

∂xi
,

Ψ̃S(η̃, x̃i) = ΨS + εζL
∂ΨS

∂η
− λζLxi

∂ΨS

∂xi
. (5.146)

For the ease of notation, here the dependence on the original coordinate (η, xi) is un-
derstood, while the dependence on the transformed ones is left explicit. Applying the
transformation to the entire metric (5.145), one ends up with a second order perturbed
metric which can be written in the usual Poisson gauge form performing the following
steps3

ds2 = a2(η)(1 + 2HεζL)[
−(1 + 2Φ̃S)(1 + 2ε′ζL)dη2 + (1− 2Ψ̃S)(1− 2λζL)δijdx

idxj
]

= a2(η)
[
−(1 + 2Φ̃S)(1 + 2ΦL)dη2 + (1− 2Ψ̃S)(1− 2ΨL)δijdx

idxj
]

= a2(η)
[
−(1 + 2Φ̂S)dη2 + (1− 2Ψ̂S)δijdx

idxj
]
, (5.147)

with the definitions

Φ̂S = ΦS + ΦL + 2ΦSΦL + εζL
∂ΦS

∂η
− λζLxi

∂ΦS

∂xi
,

Ψ̂S = ΨS + ΨL − 2ΨSΨL + εζL
∂ΨS

∂η
− λζLxi

∂ΨS

∂xi
. (5.148)

This is the remarkable result which was already anticipated. These expression indeed
show that in the squeezed limit the physical effects of the long wavelength mode ΦL simply
amount to a modulation of of the short wavelength ones, introducing a non linear evolution

3In this expression we are going to neglect terms like ζ2L since at second order the give rise to constant
terms only, which are meaningless since they can always be reabsorbed with a field shifting. Indeed the
long wavelength modes can be assumed to be spatial independent while we focus on measurements on
small scales.
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through the coupling between the two different modes. In the end, this coupling will be
responsible for a modification of the 2-point function of the small-wavelength perturbations
and for a non vanishing squeezed limit of the 3-point function.

For the subsequent discussion it will be useful to understand how the spatial coordi-
nate shifting (5.128) applies when working in the Fourier space. Let’s then consider the
transformation acting on a generic function f(xi) of the spatial coordinate

f(xi)→ f(xi(1− λζL)). (5.149)

In the Fourier space the function f(xi) is expanded as

f(xi) =

∫
d3k

(2π)3
ei
~k·~xf̃(ki), (5.150)

while the space shifted function reads

f(xi(1− λζL)) =

∫
d3k

(2π)
ei
~k·~x(1−λζL)f(ki)

=

∫
d3k

(2π)
ei
~k·~x
[
(1 + 3λζL)f̃(ki(1 + λζL))

]
, (5.151)

where in the second step a simple shift in the integration variable ki → ki(1 + λζL) was
applied and expanded at first order in ζL. Therefore one learns that in momentum space
the spatial coordinate transformation acts in the following way

f̃(ki)→ (1 + 3λζL)f̃(ki(1 + λζL)), (5.152)

or, expanding at first order,

f̃(ki)→ f̃(ki) + 3λζLf̃(ki) + λζLk
m∂f̃(ki)

∂km
. (5.153)

What is still left to understand is how the coordinate transformation (5.128) acts on the
momentum q and on its director ni. The GW wave momentum components have already
been written in (3.7), (3.8). Neglecting tensor perturbations, they are

p0 =
e−Φ̂S

a

(
q2

a2
+m2

)1/2

=
e−Φ̂S

a
E, (5.154)

pi =
q

a2
nieΨ̂S . (5.155)

Under the coordinate transformation, the four-momentum transform as a vector

p̃µ =
∂x̃µ

∂xν
pν , (5.156)

with
∂x̃0

∂xν
= (1 + ε′ζL)δ0

ν ,
∂x̃i

∂xν
= (1− λζL)δiν . (5.157)

The transformation on the time component of the four momentum then implies

e−Φ̃S

ã
Ẽ = (1 + ε′ζL)

e−Φ̂S

a
E. (5.158)
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Remembering the definitions (5.148), and expanding this condition at first order in the
long wavelength perturbations,

Ẽ =
ã

a
(1 + ε′ζL)e−ΦLE =

ã

a
(1 + ε′ζL)(1− ΦL)E, (5.159)

that, in terms of the comoving momentum q, reads

q̃2 =

(
ã

a

)4

(1 + 2ε′ζL − 2ΦL)q2 +

(
ã

a

)4

a2m2(1 + 2ε′ζL − 2ΦL)− a2m2

= (1 + 4HεζL + 2ε′ζL − 2ΦL)q2 + 2a2m2(2HεζL + ε′ζL − ΦL)

=

[
1 + 2

(
1− 3

5
g(η)

)
ζL

]
q2 − 2a2m2

(
1 + 2εH− 3

5
g(η)

)
ζL, (5.160)

and then

q̃ =

[
1 +

(
1− 3

5
g(η)

)
ζL

]
q − a2m2

q

(
1 + 2εH− 3

5
g(η)

)
ζL. (5.161)

Notice that the graviton mass induces an additional term to the zero component momen-
tum transformation, while in the massless case this expression recovers the result of [59].
Concerning the spatial components of the four momentum, with the same arguments the
change of coordinate applies in this way

q̃

ã2
ñi = (1− λζL)

q

a2
nieΨL , (5.162)

which in terms of the director ñi becomes

ñi =
ã2

a2

q

q̃
(1− λζL)(1 + ΨL)ni

= (1 + 2HεζL)

[
1−

(
1− 3

5
g(η)

)
ζL +

a2m2

q

(
1 + 2εH− 3

5
g(η)

)
ζL

]
(1− λζL)(1 + ΨL)ni

=

[
1− 2

(
1− 3

5
g(η)−Hε

)
ζL +

a2m2

q

(
1 + 2εH− 3

5
g(η)

)
ζL

]
ni. (5.163)

To summarize the last results in the more compact form

q̃ =

[
1 +

(
βq(η)− a2m2

q2
βm(η)

)
ζL

]
q,

ñi =

[
1 +

(
βn(η) +

a2m2

q
βm(η)

)
ζL

]
ni, (5.164)

with the definitions

βq(η) = 1− 3

5
g(η),

βn(η) = −2

(
1− 3

5
g(η)−Hε

)
,

βm(η) = 1− 3

5
g(η) + 2εH. (5.165)

In matter domination they evaluate to βq = 2/5, βn = 0, and βm = 6/5.
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5.3.2 Coordinate transformation of the GW energy distribution

At this point we are ready to apply the previous results to our case of interest and to
study the transformation properties of the energy density of the GW, which is completely
characterized by the quantity ωGW . As seen in section (3.3), this function can be split in
an homogeneous and a non-homogeneous contributions

ωGW (η, ki, q, ni) = ω̄GW (η, q)[1 + δGW (η, ki, q, ni)], (5.166)

with

ω̄GW (η, q) =
q4

a4(η)ρcrit

√
1 +

a2m2

q2
f̄(q),

δGW (η,~k, q, ni) = −∂ ln f̄(η, q)

∂ ln q
ΓS(η,~k, q, ni). (5.167)

It is necessary now to understand the behavior of each contribution under the transforma-
tion (5.128), starting from the background quantities ω̄GW and f̄(q). For the homogeneous
energy density one can write

ω̄GW (η̃, q̃) = ω̄(η, q) +
∂ω̄GW
∂η

δη +
∂ω̄GW
∂q

δq, (5.168)

with

δη = εζL, δq = q

(
βq −

a2m2

q2
βm

)
ζL. (5.169)

Computing explicitly the derivative terms

ω̄GW (η̃, q̃) = ω̄GW (η, q)− 4Hω̄GW δη +
ω̄GW
q

[
4 +

∂ ln f̄(q)

∂ ln q
− 1

1 + q2

a2m2

]
δq

= ω̄GW (η, q)

{
1− 4HεζL +

(
βq −

a2m2

q2
βm

)
×

[
4 +

∂ ln f̄(q)

∂ ln q
− 1

1 + q2

a2m2

]
ζL

}
. (5.170)

To understand the transformation properties of the logarithmic derivative of the back-
ground distribution function it is convenient to proceed by steps. As a preliminary study,
let’s focus on the differential operator. From (5.164), it derives, at first order in ζL,

ln q̃ = ln q + ln

[
1 +

(
βq −

a2m2

q2
βm

)
ζL

]
= ln q +

(
βq −

a2m2

q2
βm

)
ζL. (5.171)

Differentiating with fixed time

d ln q̃ =

(
1 + 2

a2m2

q2
βmζL

)
d ln q. (5.172)

Let’s now turn to the transformation of the zero order distribution function:

f̄(q̃) = f̄(q) +
∂f̄(q)

∂q
qζL

(
βq −

a2m2

q2
βm

)
= f̄(q)

[
1 +

∂ ln f̄(q)

∂ ln q

(
βq −

a2m2

q2
βm

)
ζL

]
. (5.173)
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Considering now the expansion at first order of the logarithm of this expression and taking
its logarithmic derivative, one finds

∂ ln f̄(q̃)

∂ ln q̃
=

(
1− 2

a2m2

q2
βmζL

)[
∂ ln f̄(q)

∂ ln q
+
∂2 ln f̄(q)

∂(ln q)2

(
βq −

a2m2

q2
βm

)
ζL

+
∂ ln f̄(q)

∂ ln q

(
2
a2m2

q2
βm

)
ζL

]
=

(
1− 2

a2m2

q2
βmζL

)[
∂ ln f̄(q)

∂ ln q

(
1 + 2

a2m2

q2
βmζL

)
+
∂2 ln f̄(q)

∂(ln q)2

(
βq −

a2m2

q2
βm

)
ζL

]
=
∂ ln f̄(q)

∂ ln q
+
∂2 ln f̄(q)

∂(ln q)2

(
βq −

a2m2

q2
βm

)
ζL. (5.174)

Lastly, let’s consider the scalar sourced fluctuation ΓS . Using the previous result (5.152),
the change of coordinate applies as:

ΓS(η̃, k̃i, q̃, ñi) = ΓS

(
η + ε(η)ζL,~k(1 + ζL),

[
1 +

(
βq(η)− a2m2

q2
βm(η)

)
ζL

]
q,

[
1 +

(
βn(η) +

a2m2

q
βm(η)

)
ζL

]
ni

)
(1 + 3ζL). (5.175)

Expanding at first order in the long wavelength modes, and omitting the Γ-dependence
on the original quantities (η, ki, q, ni) and the conformal time dependence of the β and ε
factors, we have

ΓS(η̃, k̃i, q̃, ñi) = (1 + 3ζL)ΓS +
∂ΓS
∂η

εζL + ki
∂ΓS
∂ki

ζL

+

(
βq −

a2m2

q2
βm

)
∂ΓS
∂ ln q

ζL +

(
βn +

a2m2

q
βm

)
nj
∂ΓS
∂nj

ζL. (5.176)

The energy density contrast δ̃GW ≡ δGW (η̃, k̃i, q̃, ñi) becomes

δ̃GW = −∂ ln f̄(η̃, q̃)

∂ ln q̃
ΓS(η̃, k̃i, q̃, ñi)

= −∂ ln f̄(q)

∂ ln q

[
1 +

∂ ln q

∂ ln f̄(q)

∂2 ln f̄(q)

∂(ln q)2

(
βq −

a2m2

q2
βm

)
ζL

]
ΓS

[
1 + 3ζL +

∂ ln ΓS
∂η

εζL + ki
∂ ln ΓS
∂ki

ζL +

(
βq −

a2m2

q2
βm

)
∂ ln ΓS
∂ ln q

ζL

+

(
βn +

a2m2

q2
βm

)
ni
∂ ln ΓS
∂ni

ζL

]
= δGW + δGW ζL

[
3 +

∂ ln q

∂ ln f̄(q)

∂2 ln f̄(q)

∂(ln q)2

(
βq −

a2m2

q2
βm

)
+
∂ ln ΓS
∂η

ε

+ki
∂ ln ΓS
∂ki

+

(
βq −

a2m2

q2
βm

)
∂ ln ΓS
∂ ln q

+

(
βn +

a2m2

q2
βm

)
ni
∂ ln ΓS
∂ni

]
. (5.177)
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With this last ingredient the energy density ω̃GW ≡ ωGW (η̃, k̃i, q̃, ñi) finally evaluates to:

ω̃GW = ω̄GW (η̃, q̃)[1 + δ̃GW (η̃, k̃i, q̃, ñi)]

= ω̄GW

{
1− 4HεζL +

(
βq −

a2m2

q2
βm

)[
4 +

∂ ln f̄(q)

∂ ln q
− 1

1 + q2

a2m2

]
ζL

}
{

1 + δGW + δGW ζL

[
3 +

∂ ln q

∂ ln f̄(q)

∂2 ln f̄(q)

∂(ln q)2

(
βq −

a2m2

q2
βm

)
+
∂ ln ΓS
∂η

ε+ ki
∂ ln ΓS
∂ki

+

(
βq −

a2m2

q2
βm

)
∂ ln ΓS
∂ ln q

+

(
βn +

a2m2

q2
βm

)
ni
∂ ln ΓS
∂ni

]}
. (5.178)

Rearranging some terms, the final result is

ω̃GW = ω̄GW (η, q)

{
1 + δGW +

(
βq −

a2m2

q2
βm

)[
4 +

∂ ln f̄(q)

∂ ln q
− 1

1 + q2

a2m2

]
ζL

−4Hε(η)ζL + δGW ζL

[
3 +

∂ ln q

∂ ln f̄(q)

∂2 ln f̄(q)

∂(ln q)2

(
βq −

a2m2

q2
βm

)
+

+
∂ ln ΓS
∂η

ε(η) + ki
∂ ln ΓS
∂ki

+

(
βq −

a2m2

q2
βm

)
∂ ln ΓS
∂ ln q

+

(
βn +

a2m2

q2
βm

)
ni
∂ ln ΓS
∂ni

]}
. (5.179)

This is a first remarkable result. Indeed this expression clearly shows that, even in absence
of intrinsic small wavelength anisotropies (i.e. δGW = 0), there is a modulation of the
background energy density provided by the coupling with the long wavelength mode ζL.
As an example, in matter domination, the energy density in absence of intrinsic anisotropies
gets modulated by the long mode as

ω̃GW = ω̄GW (η, q)

[
1 +

2

5

(
1− 3a2m2

q2

)[
∂ ln f̄(q)

∂ ln q
− 1

1 + q2

a2m2

]
ζL

−24a2m2

5q2
ζL

]
. (5.180)

The modulation in the energy density is controlled by the q-dependence of the graviton
distribution function, as found in [59], and further by the dimensionless ratio a2m2/q2

encoding the information about the non vanishing graviton mass.

5.3.3 Squeezed limit of the two and three point correlation functions

As anticipated, the final purpose is to evaluate the correlation functions of the energy
density contrast δGW at small scales, and in particular to understand how a long wavelength
mode influences them. The simplest case is the 2-point correlators of the small-wavelength
modes modulated by the long wavelength one, which can be directly read from (5.179). In
a compact way, at first order in ζL, one can write it as〈

δ̃GW (~k1)δ̃GW (~k2)
〉′

= (1 +MζL)
〈
δGW (~k1)δGW (~k2)

〉′
. (5.181)
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Be careful that the quantity δ̃GW (~k) is the energy density contrast modulated by the long
wavelength mode but evaluated in the original coordinate system (η, xi, q, ni), which is the
first order contribution of the last result in (5.179). However those terms which are not
proportional to δGW do not contribute at first order to the 2-point functions, since they
give rise to terms proportional to the mean value of the energy contrast 〈δGW 〉 which is null
by definition. Therefore the only effective contributions to the 2-point correlators come
from the last line of (5.177). In the previous expression it was defined the modulating
factorM as

M = 6 + 2

(
βq −

a2m2

q2
βm

)
∂ ln q

∂ ln f̄(q)

∂2 ln f̄(q)

∂(ln q)2
+ ε(η)

∂ ln
〈

ΓS(~k1)ΓS(~k2)
〉′

∂η

+ki1

∂ ln
〈

ΓS(~k1)ΓS(~k2)
〉′

∂ki1
+ ki2

∂ ln
〈

ΓS(~k1)ΓS(~k2)
〉′

∂ki2

+

(
βq −

a2m2

q2
βm

) ∂ ln
〈

ΓS(~k1)ΓS(~k2)
〉′

∂ ln q

+

(
βn +

a2m2

q2
βm

)
ni
∂ ln

〈
ΓS(~k1)ΓS(~k2)

〉′
∂ni

. (5.182)

The second line is justified by the obvious observation that

ki1
∂ ln ΓS(~k1)

∂ki1
= ki1

∂
(

ln ΓS(~k1) + ln ΓS(~k2)
)

∂ki1
= ki1

∂ ln
(

ΓS(~k1)ΓS(~k2)
)

∂ki1
. (5.183)

More shortly, one can rewrite the modulation factor is in the the following way

M = 6 + 2

(
βq −

a2m2

q2
βm

)
∂ ln q

∂ ln f̄(q)

∂2 ln f̄(q)

∂(ln q)2

+

[
ε(η)

∂

∂η
+ ki1

∂

∂ki1
+ ki2

∂

∂ki2
+

(
βq −

a2m2

q2
βm

)
∂

∂ ln q

+

(
βn +

a2m2

q2
βm

)
ni

∂

∂ni

]
ln
〈

ΓS(~k1)ΓS(~k2)
〉′
. (5.184)

Let’s now take in consideration the power spectrum relative to the energy density
contrast defined in (5.124) and (5.125). The intention is to study how the long wavelength
mode modulates the results; therefore as usual one starts from the modulated spectrum in
the transformed coordinates

Pδ̃GW (η̃, k̃, q̃, ñi) =

∣∣∣∣∣∂ ln f̄(q̃)

∂ ln q̃
TS(η̃, k̃, q̃, ñi)

∣∣∣∣∣
2

Pζ(k̃), (5.185)

and then performs the inverse coordinate transformation (5.128) to come back to the origi-
nal coordinate system. The transformation of the distribution function was already written
in (5.174), while for the dimensionless scalar soured power spectrum and the transfer func-
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tion TS one finds respectively

Pζ(k̃) = Pζ(k)

(
1 +

∂ lnPζ(k)

∂ ln k
ζL

)
,

TS(η̃, k̃, q̃, ñi) = TS

[
∂ lnTS
∂η

εζL + k
∂ lnTS
∂k

ζL +

(
βq −

a2m2

q2
βm

)
∂ lnTS
∂ ln q

ζL

+

(
βn +

a2m2

q
βm

)
ni
∂ lnTS
∂ni

ζL

]
. (5.186)

Inserting these results inside (5.185), and defining PδGW ≡ PδGW (η, k, q, ni) for convenience
of notation, we arrive to

Pδ̃GW (η, k, q, ni) = PδGW
{

1 + ζL

[
∂ lnPζ(k)

∂ ln k

+2

(
βq −

a2m2

q2
βm

)
∂ ln q

∂ ln f̄(q)

∂2 ln f̄(q)

∂(ln q)2

+ε
∂ ln|TS |2

∂η
+
∂ ln|TS |2

∂ ln k
+

(
βq −

a2m2

q2
βm

)
∂ ln|TS |2

∂ ln q

+

(
βn +

a2m2

q
βm

)
ni
∂ ln|TS |2

∂ni

]}
, (5.187)

where as usual the dependence on the original coordinates was omitted. This important
result shows that the long wavelength modes modulate the dimensionless power spectrum
of the energy density contrast δGW through three different effects:

i. The first contribution comes from the scale dependence of the dimensionless power
spectrum relative to the gauge invariant curvature perturbation.

ii. A second effect comes from the q-dependence of the background graviton distribution
function through the combination of its first and second logarithmic derivatives.

iii. The third effect instead derives from the time, scale, momentum and direction de-
pendence of the transfer function TS .

As a last comment, it is worth understanding the role played by a non vanishing graviton
mass. The first correction brought by the mass consist in an additional contribution to the
β factor, as one can understand remembering (5.164). Moreover the graviton mass adds a
non trivial q-dependence of the transfer function TS confined inside the factor l(η, η′); this
ultimately gives rise to a richer structure of the density contrast power spectrum, adding
a derivative term ∂ ln|TS |2/∂ ln q which is not there in the massless case, as one can verify
looking at [59].

Finally the result for the power spectrum can be used to study the modulation of the
long mode on the 3-point correlation function. Let’s start noticing that we can always
write the large scale limit of the energy contrast δGW in the form

δ̃GW (η, ki3, q, n
i) = −∂ ln f̄(q)

∂ ln q
TS(η, ki3, q, n

i
3)ζ(~k3). (5.188)

The long scale mode (in the following we are going to assume k3 � k1,2) indeed does not
receive an extra modulation, being itself responsible for the modulation of the small scale
modes, and then it assumes the same form in both the ‘tilde’ and ‘untilde’ basis. Moreover
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5.3. Secondary Non-Gaussianity in the SGWB: squeezed limit configuration

the huge scale separation between the large and small wavelength modes, suggests to think
that they are non causally connected; while the small scales are beneath the horizon, as
long as the long mode remain outside the horizon it cannot interfere significantly with
our observable Universe. Hence we do not expect the statistics of the two scale modes to
be relevantly coupled. However we don’t want to treat them as completely independent
perturbations, but rather we consider a weak dependence. These arguments allow the
decomposition of the 3-point correlator in the following way:

limk3→0 〈δ̃GW (~k1)δ̃GW (~k2)δ̃GW (~k3)〉 =

= −∂ ln f̄(q)

∂ ln q
TS(η, ki3, q, n

i
3)
〈
〈δ̃GW (~k1)δ̃GW (~k2)〉ζ(~k3)

〉
= −∂ ln f̄(q)

∂ ln q
TS(η, ki3, q, n

i
3)
〈
〈δGW (~k1)δGW (~k2)〉(1 +MζL)ζ(~k3)

〉
= −∂ ln f̄(q)

∂ ln q
TS(η, ki3, q, n

i
3)M

〈
〈δGW (~k1)δGW (~k2)〉ζLζ(~k3)

〉
. (5.189)

where in the second line the relation (5.181) was used. This is the final result for the 3-point
correlation function of the energy density contrast in the squeezed limit. It is common to
parametrize the amount of the correlation by defining a non-linear parameter f δGWNL such
that

lim
k3→0
〈δGW (~k1)δGW (~k2)δGW (~k3)〉 = f δGWNL

(
4π4

k3
1k

3
3

)
PδGW (k1)Pζ(k3). (5.190)

Using again the transformation properties of the distribution function (5.174) and the
transfer function (5.186), it is also possible to give a prediction about the value of the
non-linear parameter f δGWNL . Indeed from the two transfromation properties

〈δ̃GW (~k1)δ̃GW (~k2)δ̃GW (~k3)〉 = (1 + o(ζL))〈δGW (~k1)δGW (~k2)δGW (~k3)〉. (5.191)

On the other hand, from (5.187),

lim
k3→0
〈δ̃GW (~k1)δ̃GW (~k2)δ̃GW (~k3)〉 =

= −∂ ln f̄(q)

∂ ln q
TS(η, ki3, q, n

i
3)
〈
〈δ̃GW (~k1)δ̃GW (~k2)〉ζ(~k3)

〉
= −∂ ln f̄(q)

∂ ln q
TS(η, ki3, q, n

i
3)

4π4
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1k

3
3
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(
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βm
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∂2 ln f̄(q)
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+ ε
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∂η

+
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+

(
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q2
βm

)
∂ ln|TS |2

∂ ln q
+

(
βn +

m2

q
βm

)
ni
∂ ln|TS |2

∂ni

]
. (5.192)

Therefore, at first order the non-linear parameter reads

f δGWNL = −∂ ln f̄(q)

∂ ln q
TS(η, ki3, q, n

i
3)

[
∂ lnPζ(k)

∂ ln k

+2

(
βq −

a2m2

q2
βm

)
∂ ln q

∂ ln f̄(q)

∂2 ln f̄(q)

∂(ln q)2
+ ε

∂ ln|TS |2

∂η
+
∂ ln|TS |2

∂ ln k

+

(
βq −

a2m2

q2
βm

)
∂ ln|TS |2

∂ ln q
+

(
βn +

a2m2

q
βm

)
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∂ ln|TS |2

∂ni

]
. (5.193)

139



CHAPTER 5. STATISTICAL ANALYSIS OF NON-GAUSSIANITY IN THE SGWB

By construction, this quantity receives the same contributions studied for the density
contrast power spectrum. In pure matter domination this expression greatly simplifies
since βq = Hε = 2/5, βn = 0, and βm = 6/5, while the transfer function is estimated to
be

TS(η, ki3, q, n
i
3) =

3

5
v−2e−ik3µl(η,ηin) '

k3→0

3

5
v−2 =

3

5

(
1 +

m2a2

q2

)
. (5.194)

Therefore, neglecting any time dependence of the group velocity v,

f δGWNL = −∂ ln f̄(q)

∂ ln q

3

5
v−2

[
∂ lnPζ(k)

∂ ln k
− 8

5

(
1− 3a2m2

q2

)
1

1 + q2

a2m2

]

−12

25
v−2

(
1− 3a2m2

q2

)
∂2 ln f̄(q)

∂(ln q)2
. (5.195)

5.4 The need to go further

Only the situation where no extra graviton’s degrees of freedom propagates was taken into
account so far. One can then start to think how to address the same problem considering
these extra modes as well. Unfortunately the computations are rather complicated and go
beyond the purposes of this text. Nonetheless it is useful and instructive to set the starting
framework and comment some results for possible future developments. What changes in
this new situation is that we are not allowed anymore to consider the local ansatz for
the scalar perturbations. The bispectrum must be instead evaluated rigorously with the
in-in formalism. Remembering the discussion of Section (2.1.1), in order to compute
the primordial power spectra we expanded the action up to second order in Goldstone
bosons. Analogously, the bispectrum is sourced by three-point interactions, such that the
expansion up to the third order is required. In doing this many interactions terms between
the Goldstone bosons appear. In ref. [47] it is found that, up to second order in the α
parameter, the new interaction terms are

8α2F̄X2Z

3a2
π̇2∂iσ

i,

α2F̄Y 2

(
π̇σ̇iσ̇

i − π̇σ̇i∂iπ

a2
+
γij σ̇

i∂jπ

a2
− γij∂

iπ∂jπ

a4
− σ̇i∂jσi∂

jπ

a2
+
∂jσi∂

iπ∂jπ

a4

)
,

2

3
α2F̄Y 2X

(
−π̇σ̇iσ̇i +

2π̇σ̇i∂iπ

a2

)
. (5.196)

All these terms provide different sources for the bispectra and open to the possibility of
cross colletation between different modes. These are particularly relevant for unveiling the
nature of the graviton mass term, since these contributions are expected to vanish in the
limit α→ 0. For example in [47] they found that in the squeezed limit configuration with
k1 = kL → 0, the scalar bispectrum is

〈
3∏
i=1

ζki〉 = −H3〈
3∏
i=1

πki〉 = − α2H8

16c10
π k

3
Lk

3
S

√
2(−F̄X + 2F̄X2) ln

(
kL
kS

)
×

×
[
9c2
πλ1λ4 + (3λ1 + λ2)(λ2 + λ3)c2

πŜ2 − 27λ1λ2Ŝ1

]
,(5.197)

with
Ŝ1 = − cos2 θ, Ŝ2 = 1− 2 cos2 θ,
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θ being the angle between the long and the short wavelength modes, and λi, i = 1, 2, 3, 4
four coefficients built upon derivatives of the the term F (X,Y i, Zij). Interesting features
of this solution that worth to be mentioned are the log-enhancement ln(kL/kS) which we
encountered even in the angular power spectrum, and the non trivial angular dependence
inside the terms Ŝ1,2. Besides this three-point correlator, one can investigate many other
terms. In [47] for example the cross correlator between a long wavelength tensor mode
and two short wavelength scalar modes is computed. It is clear that this scenario leaves
a wide open panorama where many models can be tested and hopefully compared with
future observations; this may be an interesting topics for future developments.
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Chapter 6

SGWB Angular Power Spectrum

All the previous analysis was dedicated to obtain theoretical predictions for angular cor-
relators of the SGWB. In particular we found deviations from GR predictions both at the
time of generation of the perturbations and through their propagation until today. In the
present Chapter we want to turn back to physical observations and quantify graviton mass
effects. First of all, in Section (6.1), we link the graviton density fluctuations to the true
observable, that is the energy density contrast. This relation was left implicit in Section
(3.3); now we want to evaluate explicitly the factor relating the two quantities in order
to estimate the amplitude of the correlators we expect in our interferometers. After this
short digression, the angular power spectra are analyzed. Since a fully analytic solution
describing the angular spectra is not accessible, we take advantage of the publicly available
codes CLASS [111] and hi_class [112, 113] to attempt a numerical solution. Actually these
codes were meant to analyze CMB anisotropy, so that few modifications had to be applied
to the source code in order to adapt it to consider SGWB. Both the scalar and tensor
sourced cases are then plotted and discussed.

6.1 GW energy density

Although it is easier to work with the distribution density fluctuation Γ, one should always
remember that our physical observable when dealing with anisotropies in the SGWB is
the energy contrast δGW defined in section (3.3). It was shown that the two quantities are
related by

δGW (η0, ~x, q, n̂) =

[
4− ∂ ln Ω̄GW (η0, q)

∂ ln q
−
(

1 +
q2

a2m2

)−1
]

Γ(η0, x
i, q, ni). (6.1)

The first step is to obtain an explicit expression for the gravitational wave energy density
per logaritmic frequency interval ΩGW defined in (3.42). Adopting the convention of ref.
[108], the energy density carried by gravitational waves perturbations today is defined as

ρGW (η0) = T 00
GW =

M2
P

4

〈χ′ij(~x, η0)χ′ij(~x, η0)〉
a2(η0)

. (6.2)

On the other and, working out the tensor equations of motion (4.84), one can easily verify
that the re-scaled tensor field hij(x, η) = a(η)χij(x, η) satisfies, in momentum space, the
Klein-Gordon equation

h
′′
ij +

(
q2 − a

′′

a
+ a2m2

)
hij = 0. (6.3)
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Therefore its solution can be written as a superposition of positive and negative energy
plane waves

hij(x, η) =
∑

λ=+,×

∫
d3q

(2π)3/2

[
hq,λ(η)eiqxaq,λ + h∗q,λ(η)e−iqxa†q,λ

]
eij,λ(q̂). (6.4)

and the same form of the solution must be shared by the original perturbation χij :

χij(x, η) =
∑

λ=+,×

∫
d3q

(2π)3/2

[
χq,λ(η)eiqxaq,λ + χ∗q,λ(η)e−iqxa†q,λ

]
eij,λ(q̂). (6.5)

with the appropriate consistency condition relating the two Fourier modes

hλ(q, η) =
χλ(q, η)

a(η)
. (6.6)

In the framework of second quantization, the functions aq,λ and a+
q,λ becomes the ladder

operators, and they satisfy the canonical commutation relations[
âq,λ, â

+
q′,λ′

]
= δλλ′δ

(3)(q− q’),[
âq,λ, âq′,λ′

]
=
[
â+
q,λ, â

+
q′,λ′

]
= 0. (6.7)

This description in terms of harmonic oscillator correspond to a particular choice of the
vacuum state, called Bunch-Davies vacuum [108]

χλ(q, η) =
e−iqη

a
√

2q
. (6.8)

Inserting the decomposition (3.89) inside (6.5) and exploiting the commutation relations
(6.7) one eventually obtains

ρGW (η0) =
M2
P

4a2
0(2π)3

∫
d3q

[
χ′(q, η0)

]2 |ξλ(q)|2

=
M2
P

8π2a2
0

∫ ∞
0

dqq2
[
χ′(q, η0)

]2 |ξλ(q)|2

=
ρc,0

12H2
0a

2
0

1

2π2

∫ ∞
0

dq

q
q3
[
χ′(q, η0)

]2 |ξλ(q)|2. (6.9)

Comparing the last expression with (3.42), the energy density reads

ΩGW (q) =
1

12H2
0a

2
0

[
χ′(q, η0)

]2 Pλ(q). (6.10)

At the present time, we can consider the solution for the tensor transfer function χ(q, η)
during matter domination, which was evaluated in (4.111) as

χ(η, q) ' 3
j1(qη)

qη
j0

(
mH2

0η
3

12

)
. (6.11)

However, in our experiments, the scale we can probe are those which are beneath the
horizon at the present time. For this reason the above solution must be considered in the
sub-horizon regime, where the transfer function shows a rapid oscillating behavior. It is
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common (see ref. [108]) to approximate this oscillation considering 〈χ′(q, η)〉 ' qχ(q, η).
Moreover, from an observational point of view, the exact solution of the transfer function
χ(η0) is not really meaningful at late time, because of the oscillations that rapidly change
its value. What we really observe is an average of the value of the transfer function; then
an averaging procedure on the spherical Bessel function is needed. For this purpose it is
useful to expand them in trigonometric functions as

〈
[
χ′(q, η0)

]2〉 ' q2 9

(qη0)4

(
sin(qη0)

qη0
− cos(qη0)

)2

j2
0

(
mH2

0η
3

12

)
. (6.12)

On sub-horizon one can take the limit qη � 1, and then, averaging the cosine function, it
brings

〈
[
χ′(q, η0)

]2〉 ' 9

2q2η4
0

j2
0

(
mH2

0η
3

12

)
. (6.13)

The same arguments applies for those modes which re-enter the horizon before the
time of matter-radiation equivalence. In this case however the solution for the transfer
function requires a bit of care in order to match the transition from radiation domination
and matter domination. The full solution for the massless case is shown in ref. [108]. In
the present case it generalizes to

χ(q, η) = A(q)
j1(qη)

qη
j0

(
mH2

0η
3

12

)
+B(q)

y1(qη)

qη
y0

(
mH2

0η
3

12

)
, (6.14)

with

A(q) =
3

2
− cos(2qηeq)

2
+

sin(2qηeq)

qηeq
,

B(q) =
1

qηeq
− qηeq −

sin(2qηeq)

2
− cos(qηeq)

qηeq
. (6.15)

Since in this regime qηeq < 1, the most dominant term in the transfer function is

χ(q, η) = −qηeq
y1(qη)

qη
y0

(
mH2

0η
3

12

)
=

ηeq
q2η2

[
sin(qη) +

cos(qη)

qη

]
y0

(
mH2

0η
3

12

)
. (6.16)

Considering now the derivative of this expression at late time with the same approximation
〈χ′(q, η)〉 ' qχ(q, η) and performing the average procedure over oscillations, one eventually
ends up with

〈
[
χ′(q, η)

]2〉 ' η2
eq

2η2
0

y2
0

(
mH2

0η
3

12

)
. (6.17)

Summing up the results in the two limiting case, the tensor transfer function can be written
in a compact way as

〈
[
χ′(q, η)

]2〉 '
qη0�1


9

2q2η4
0

j2
0

(
mH2

0η
3

12

)
, if q < η−1

eq ,

η2
eq

2η2
0

y2
0

(
mH2

0η
3

12

)
, if q > η−1

eq ,

(6.18)

where j0(x) and y0(x) denote respectively the spherical Bessel and Neumann functions.

144



6.1. GW energy density

The dimensionless power spectrum at the epoch of inflation for massive tensor modes,
P inf
λ (q), was obtained in (2.50), which we report here for convenience

Pλ(q) =
22ν−3H2

π2M2
P

(
Γ(ν)

Γ(3
2)

)2 ( q

aH

)nT
, (6.19)

with

nT ≡ 3− 2ν = 3

1−

√√√√1− 4

9

(
m2
g

H2
− 3ε

) . (6.20)

Summing up all the contributions, the energy density parameter is

ΩGW (q) ' 22ν−3H2

24H2
0η

2
0π

2M2
P

(
Γ(ν)

Γ(3
2)

)2 ( q

aH

)nT


9

q2η2
0

j2
0

(
mH2

0η
3

12

)
, q < η−1

eq ,

η2
eq y

2
0

(
mH2

0η
3

12

)
, q > η−1

eq ,

(6.21)
and its logaritmic derivative is

∂ ln ΩGW (q)

∂ ln q
=

{
nT − 2 q < η−1

eq

nT q > η−1
eq

. (6.22)

At the end of the day the proportionality factor between the density contrast and the
fluctuation Γ is

α ≡ 4− ∂ ln Ω̄GW (η0, q)

∂ ln q
−
(

1 +
q2

a2m2

)−1

=


4− nT + 2−

(
1 +

q2

a2m2

)−1

, if q < η−1
eq ,

4− nT −
(

1 +
q2

a2m2

)−1

, if q > η−1
eq .

(6.23)

For any practical purposes, the last term of this equation can be safely neglected. Indeed it
is reasonable to pose an upper bound on the physical momentum pmax ∼ 1015GeV, which
correspond to the estimated temperature of the Universe during inflation (all estimated
values refer to ref. [66]). Gravitons are produced with wide range of physical momenta
up to pmax which correspond to a comoving momentum qmax ∼ 10−11GeV. In light of the
astrophysical bounds on the graviton mass at late times, one can consider m . 10−38GeV.
Therefore, evaluated at the present time, this factor approximately gives q2/a2

0m
2 ∼ 1054,

providing then an highly suppressed term. Given these considerations, one can take

α =


6− 3

(
1−

√
1− 4m2

9H̄2

)
, if q < η−1

eq ,

4− 3

(
1−

√
1− 4m2

9H̄2

)
, if q > η−1

eq .

. (6.24)

As an example, one can see what happens considering m2/H2 ≈ 1. In this case the tensor
spectral index evaluates to nT ' 0.764 and the proportionality factor to

α =

{
5.236, if q < η−1

eq ,

3.236, if q > η−1
eq .

(6.25)
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6.2 Numerical results

In this section, numerical results for the angular correlators are shown. For this purpose
it was used the publicly available code CLASS [111] and its extension hi_class [112, 113].
Actually the code is meant to study the CMB, then some modifications are needed in order
to apply it to the case of the SGWB. These modifications are shown in Appendix (G). The
quantity we are interested in are the angular power spectra in the scalar and tensor sourced
case, that is

C̃`,S = 4π

∫
dk

k
|T S` (η0, ηin, k, q)|2Pζ(k),

C̃`,T = 4π

∫
dk

k
|T T` (η0, ηin, k, q)|2

∑
λ=±2

Pλ(k), (6.26)

with the angular transfer functions

T S` (η0, ηin, k, q) ≡ v−2TΦ(ηin, k)j` [kl(η0, ηin)]

+

∫ η0

ηin

dη
∂
[
TΨ(η, k) + v−2TΦ(η, k)

]
∂η

j` [kl(η0, η)] ,

T T` (η0, ηin, k, q) ≡

√
(`+ 2)!

(`− 2)!

1

4

∫ η0

ηin

dη χ′(η, k)
j`(kl(η0, η))

k2l2(η0, η)
. (6.27)

6.2.1 Graviton mass effects on the scalar sourced angular spectrum

In the scalar case one can see that the graviton mass enters in the angular transfer function
just with a multiplicative factor related to the graviton velocity. This factor is present, in
different ways, both in the Sachs-Wolfe and integrated Sachs-Wolfe terms. In principle,
what one should expect is to see a gain in the angular spectra for lower velocities, which
corresponds to higher values of the graviton mass. This behavior is indeed captured in
both the two contributions shown in Figures (6.1) and (6.2) In Figures (6.1),(6.2) the
difference between the graviton velocity and the speed of light was highly overestimated
for the pedagogical purpose to show how the late graviton mass m would modify the shape
of the SGWB angular scalar sourced spectra. Indeed, astrophysical observations set strong
bounds on the graviton mass at late times (see ref. [10]); in light of these bounds one can
reasonably take m . 10−28 eV [3, 6]. On the other hand the averaged present grativon
energy can be estimated by red-shifting its value from the time of production until today.
Assuming that at initial time gravitons were produced with Einf ∼ 1013 GeV when the
Universe was a0/ainf ∼ 1026 times smaller, this gives

E0 = Einf

(
ainf

a0

)
∼ 10−11 GeV,

and the displacement between the graviton and light velocities in this estimation is bounded
by

c2 − v2 =
m2

E2
. 10−54, (6.28)

which brings a completely inappreciable correction to the scalar angular spectra. Therefore
we do not expect to see any difference arising in this sector from the massive and massless
case. The interesting feature to notice in the SW contribution is the decreasing trend of
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Figure 6.1: Sachs-Wolfe contribution to the SGWB scalar sourced angular power spectrum with
different values of the late time graviton velocity. The velocities are taken arbitrarily in order
to highlight how the graviton mass modifies the angular specra. In a real situation, due to the
strong astrophysical bounds, we don’t expect to be sensitive to this effect. The plots show a slowly
decreasing behavior caused by the growing rate grad(k, ηin) that suppresses the small scales.

the curve, which is different from the classical behavior characterizing CMB anisotropies.
This peculiar trend is well motivated by the analytic expression (4.133)

C̃`,S =
16π

9

∫
dk

k

∣∣∣∣v−2grad(k, ηin)j` [kl(η0, ηin)]

∣∣∣∣2Pζ(k). (6.29)

In this equation the growing rate grad(k, ηin) acts as a low-pass filter, selecting those
scales which at initial time happened to be outside the horizon. On the other hand, the
spherical Bessel function , for fixed multipole `, gets more contribution from those scales
such that ` ' kl(η0, ηin). Therefore, increasing the multipole `, means to consider larger
wavenumbers k which are closer to the horizon at initial epoch; this means that larger
multipoles ` are slowly suppressed by the growing rate grad(k, ηin).

An analytic solution for the ISW term is much harder to find. Anyway we can still
comment in a qualitative way the behavior shown in Figure (6.2) to learn some physics.
This picture clearly shows two different regimes for low and high multipoles. In order to
understand the origin of this splitting, let’s first remember the analytic expression of the
ISW contribution

C̃ISW`,S =
16π(1 + v−2)

9

∫
dx

x
Pζ
(
x

vη0

){∫ η0

ηeq

dη
dg(k, η)

dη
j`

[
x

(
1− η

η0

)]}2

. (6.30)

The two different regimes arise from the definition of the growing rate g(k, η), for which in
Section (4.3) we found two different expressions in radiation domination or in a Universe
dominated by pressureless dust and a cosmological constant. Large scales, i.e. low `,
are frozen during radiation domination, and re-enter the horizon after matter-radiation
equality. The growing rate for these modes is defined in (4.74). Figure (4.3) shows that
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Figure 6.2: Integrated Sachs-Wolfe contribution to the scalar sourced angular power spectrum with
different values of arbitrarily chosen late time graviton velocity. Two regimes can be distinguished:
low multipoles (` < 20) that receive contributions from those modes which re-enter during matter
domination, and large mutipoles (` > 50) which are sourced by those modes which re-enter when
the Universe was still dominated by radiation.

the growing rate after the epoch of equality is k-independent and very slowly changing in
time. Hence large wavelength modes brings a really tiny contribution to the angular power
spectra. On the opposite, short wavelength modes re-enter during radiation domination,
where the growing rate has a steep decay in correspondence to the horizon crossing. This
modes then can brings a much larger contribution. The separation between the two regimes
can be approximately evaluated considering modes that re-enter at the time of matter-
radiation equality. Remembering (4.55), this is realized for modes such that kηeq ≈ 1.
On the other hand, the spherical Bessel function selects kη0 ≈ `. Combining these two
conditions one has1

` ≈ η0

ηeq
≈ 100, (6.31)

which identifies quite well the multipole scale at which the two regimes intersect. Moreover,
very small scales cross the horizon very early, such that η/η0 � 1. In this regime the above
expression (6.30) simplifies to

C̃ISW`,S ' 16π(1 + v−2)

9

∫
dx

x
Pζ
(
x

vη0

)
j`(x)2, (6.32)

which has exactly the same structure of the SW term on large scales. Indeed, if we compare
the two Figures (6.1) and (6.2), we can notice that the SW term on large scales and the
ISW term on small scales bring contributions of the same order.

On the contrary, much more visible effects can arise taking into account the graviton
mass during inflation. In Section (2.2.2) it was derived the power spectrum for the primor-
dial curvature perturbation. The intriguing result is that this quantity gets contributions

1The value of the conformal time at the epoch of equality and today are reported in the Introduction.
They are taken from [111].
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from both the inflaton field and the scalar extra mode of the massive graviton, giving rise
to a scalar spectral index

ns − 1 ≡ d lnP(k)

d ln k
= −2ε+

18α2λ2
1

c2
π

. (6.33)

This shows that Lorentz-symmetry violation during inflation drives the primordial scalar
spectrum toward a blue tilt (Planck measurements however ensure that a blue spectrum is
not achievable). Although knowing that a relation exists between the early graviton mass
parameter mg and the symmetry violation parameter α, since these quantities are linked
via model-dependent relation (2.122), we are not able to connect them in full generality
without fixing a model. Hence we chose to treat them as independent parameters. In
Figure (6.3) the total scalar sourced angular power spectrum for different values of ns is
shown. Plack CMB measurements bound the scalar spectral index to be ns = 0.965± 0.04
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Figure 6.3: Scalar sourced angular power spectrum for different values of the scalar spectral index.
The scalar spectral index is directly related, through other model-dependent coefficients, to the
parameter α controlling the amount of space-diffeomorphism violation during inflation in the gravity
sector. The more amount of violation, the more the priordial spectrum is pushed toward a blue tilt
and angular power spectrum is suppressed at large scales. Here the values of ns are arbitrarily
taken within the CMB data range [109] ns = 0.965± 0.004 just to show how space-diffeomorphism
symmetry violation modifies the angular spectra. If, through an independent experiment, we will
succeed in measuring ε, we will be able to fix the GR prediction and parametrize any possible
deviation with equation (6.33).

[109]. However, in equation (6.33) the two parameters ε and α are degenerate, and we are
not able to discriminate between the two contributions at this level. If we were able to
measure, with enough precision, the slow-roll parameter ε in an independent experiment,
this analysis could unveil the amount of contribution attributable to a mechanism of space-
diffeomorphism violation during inflation. Here we arbitrarily assumed that the value
predicted by the model with α = 0 for the scalar spectral index is ns(α = 0) = 0.961 (the
dashed black line in Figure (6.3)), and we make vary the symmetry-violation contribution
within the range ns = 0.965 ± 0.004 measured by Planck experiment [109], relying on
the reasonable assumption that the α correction should be of the order of the slow-roll
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parameter. It worth to notice that more evident signatures are visible on the lowest angular
multipoles, until ` ∼ 100. This corresponds to the range where future interferometers as
LISA and ET are expected to work [16, 15].

6.2.2 Graviton mass effects on the tensor sourced angular spectrum

The effects of the graviton mass are more evident in the tensor sector. As seen in Chapter
(2), the mass term explicitly modifies the equations of motion for tensor modes providing
deviation from the GR predictions arising both from the generation mechanism during in-
flation and from their propagation across the Universe. We studied these effects separately
in order to understand better how they enter in the angular correlators. In Figure (6.4)
it is shown the tensor sourced angular power spectrum taking into account only the late
time graviton mass effect, which modifies the Einstein equations of motion as

χ
′′
(η, k) + 2Hχ′(η, k) + (k2 +m2a2)χ(η, k) = 0. (6.34)

All the current observations are in agreement with a single field slow-roll inflation. Assum-
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Figure 6.4: Tensor sourced angualr power spectrum for different values of the late time graviton
mass m and with fixed tensor spectral index nT = −0.025 (r = 0.2). We chose the values of the
graviton mass within the permitted range allowed by astrophysical bounds. Notice that, according
to (4.172), only the solutions with ` ≥ 3 must be considered, and that the value of the late graviton
mass cosidered in this plot are well below our current bounds.

ing the single slow-roll scenario, the Planck observations [109] and the BICEP2 and Keck
Array Collaborations [110] put strong upper bound on the tensor-to-scalar ratio r < 0.06.
Nonetheless, for pedagogical reasons, we take r ' 0.2 in order to emphasize the interesting
signatures that are expected to arise in the tensor sourced angular power spectrum2 and
considered then the value of the tensor spectral index predicted by the slow-roll inflation
scenario, that is nT = −r/8 ' −0.025 [75]. Finally we modified the Einstein equations

2Anyway, it is still possible that inflation didn’t happened with a single slow rolling field, and the
possibility to have a larger value for r then the one predicted by the standard single slow-roll field paradigm
is not completely ruled out today.
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inside the CLASS code to reproduce (6.34) (see Appendix (G) for a detailed explanation
of the modification applied to the code). The plots (6.4) must be compared with the semi-
analytic solution (4.171); Given the small value of the tensor spectral index, we can fairly
look at the particular solution in the scale invariant case (nT = 0):

`(`+ 1)

2π
C̃`,T =

1

30

∑
λ=±2

Pλ(k0)
`(`+ 1)

(`+ 3)(`− 2)
. (6.35)

The trends of the curves are perfectly described by the analytic solution. This is a strong
proof in support of our analytic analysis. The piece of information not captured by equation
(6.35) is that regarding the effects of the late time graviton mass. This is because of our
rough approximation in replacing the time derivative of the tensor transfer function with
a Dirac delta peaked at the horizon crossing time. This approximation looses tracks of the
graviton mass, which only remains encoded in the primordial power spectrum and goes
completely away in the limit nT = 0. Nonetheless we can give a reasonable qualitative
explanation of the fact that large scales, i.e. low multipoles, enhance their amplitude
for larger values of the late graviton mass at fixed nT . As already stressed, the more the
mass, the earlier tensor modes re-enter the horizon. This means that massive modes remain
frozen outside the horizon for shorter times, turning on the tensor angular transfer function
(3.88), which depends on the derivative of the linear tensor transfer function, for longer
times. On smaller scales this effect becomes weaker because small wavelength gravitons are
so energetic that the mass term becomes more and more negligible. The net effect is then
a peculiar signature on low multipoles; the heavier the mass the stronger the signature.
More specifically, signatures of late masses of orderm ' 1Mpc−1 are expected to be visible
until ` ' 40÷50, while masses of the order m ' 0.01Mpc−1 leave a distinct signature only
below ` ≤ 5. This argument promotes the tensor sector as the golden channel to unveil a
possible graviton mass in late times. Recent observations of binary pulsars have put the
current contraint [3, 6, 10]

m ≤ 2× 10−28 eV/c2 ∼ 3× 101 Mpc−1 (95 %C.L.). (6.36)

In Figure (6.4) one can see that even much smaller values, around the inverse megaparsec
scale, would bring appreciable effects.

The most evident signature comes from the graviton mass in the primordial stages. As
it was shown in Section (2.1.1), the early graviton mass enters in the primordial power
spectra modifying the tensor spectra index according to

nT ≡ 3− 2ν = 3

1−

√√√√1− 4

9

(
m2
g

H̄2
− 3ε

) . (6.37)

This is a modified expression of the consistency relation telling us that for large enough
values of the early graviton mass, the tensor spectral index acquires a positive value, and
the primordial power spectrum becomes blue tilted. In the following table we list some
values that will be used later:

ε m2
g/H̄

2 nT
0.0125 1 0.730
0.0125 0.1 0.042
0.0125 3ε 0.0
0.0125 0 −0.025
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Figure 6.5: Tensor sourced angualr power spectrum for different values of the early time graviton
mass mg (r = 0.2). For small values of mg the curves nearly follows the predicted Harrison-
Zel’dovich trend, while deviations become significant for m2

g ∼ H̄2, where the mentioned trend is
completely spoiled.

The first evident effect shown in Figure (6.5) is the suppression in amplitude of the more
massive modes on large scales. Moreover, while lighter modes nearly maintain the expected
scale invariant trend discussed above, modes with large enough masses (m2

g ∼ H̄2) show a
more and more increasing deviation with a rapid and appreciable growth at all the scales
from ` = 3 up to ` ' 500, falling in the visible range of LISA and ET.

6.2.3 Graviton mass effects on the total angular spectrum

Dealing with real observations, it is not possible to separate between the scalar sourced and
the tensor sourced contributions to angular power spectrum. Hence it is more useful to look
for the whole angular spectrum taking into account all the sources. This is shown in Figures
(6.6) and (6.7), where the effects due to the late and early graviton masses are considered
respectively. In the first case only the tensor sector provides some appreciable deviation
from GR. As a result, possible distinctive signature may be visible on very low multipoles
(` ≤ 5 ÷ 20 depending on the value of m). In the second case instead, deviations arise
both from the tensor and scalar sectors. Comparing with the previous figure, in this case
signatures are visible also for larger multipoles (until ` ∼ 300 in the more optimistic case
m2
g ' H̄2). Last thing to notice, comparing the above plots, is that late and early graviton

masses have very different implications on low multipoles angular spectrum. Indeed, while
it was already noticed that larger late graviton masses increase the angular spectrum, early
graviton masses tend to damp it.

At this point one may wonder if there is a way to disentangle between the effects arising
from the early and late graviton masses in the tensor sector. The answer is already written
in the previous figures, and consists in a multipole separation between the two effects.
This separation is better shown in Figure (6.8). While the effects of the graviton late mass
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Figure 6.6: Scalar and Tensor sourced angular power spectrum for different values of the late time
graviton masses and fixed m2

g = 0 (r = 0.2). Since it was already pointed out that deviation from
the light speed are completely negligible at this level, in these plot it was fairly taken v = c. The
signatures present in the tensor case survive in the total angular spectrum on very low multipoles.

are confined on the very largest scales, the early graviton mass survives even for larger
multipoles. For practical purposes one can then treat the effects of a late graviton mass as
an higher order correction which superimposes on the largest scales with the more evident
modification brought by the early graviton mass. Notice further that the signatures of the
late mass becomes more and more weak for larger values of the tensor spectral index. This
is because the enhancement brought by the late mass is balanced by the factor∑

λ=±2 Pλ(k0)

knT0 l(η0, η∗)nT
(6.38)

entering in the tensor sourced angular spectrum (4.171). For nT = 0.730 the late time
graviton mass effects become completely irrelevant.

In the case modifications from GR come with the appearance of the extra modes, on
top of the just studied effect, one has to add the signatures coming from the change in
the scalar spectral index. In Figure (6.9) we address this analysis considering the effect
of a modified scalar spectral index having fixed the early graviton mass to m2

g = H̄2, and
hence nT = 0.730. It may be an interesting development for future works to analyze some
particular models of inflation with space-diffeomorphism violation and production of extra
degrees of freedom in such a way to fix the relation between mg and α and pursue the
same analysis in term of one parameter only.

To conclude, we come back to the more strict prediction of single field slow roll inflation
model. In this case one has to consider the bound r < 0.06 [110]. As one can see in Figure
(6.10), because of this condition, signatures arising from the tensor sector become weaker
in the total SGWB angular power spectrum. The same figure shows clearly one more time
the different contributions coming from the late and early graviton masses. While the
former increases the the angular spectrum in the rage ` ≤ 10, the latter damps it for far
larger multipoles, providing possibly visible effects until ` ∼ 100. Evident signatures could
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Figure 6.7: Scalar and Tensor sourced angular power spectrum for different values of the early
graviton masses with fixed late graviton mass m = 0. Only the effect on the tensor spectral in-
dices are considered. The signatures in this case are much more manifest and survive for larger
multipoles.

also arise in the case where graviton extra modes are produced; as highlighted by Figure
(6.10), these signatures are indeed enhanced for smaller values of r.
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Figure 6.8: Comparison between the early and late graviton mass effects in the total angular power
spectrum (r = 0.2). The late graviton mass effects are weaker then the early mass effects, and are
visible up to ` ∼ 20). Early mass effects instead can survive until ` ∼ 100 for large enough mass.
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Figure 6.9: Scalar and Tensor sourced angular power spectrum for different values of the scalar
spectral index ns with fixed value of the late graviton mass m = 0 (r = 0.2). The black line shows
the GR prediction, while the solid red line the modification due to the mass term in the tensor
modes (it is considered the case m2

g = H̄2). Dotted lines show deviations arising from the extra
scalar sector.
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Figure 6.10: Comparison between the effects arising from the late and early graviton masses and
from violation of space-diffeomorphism invariance during inflation in the single slow-roll paradigm
(r = 0.06). Where it is not specified, the late graviton mass m is taken to be vanishing. The
signatures on the tensor sector are damped in the total SGWB angular power spectrum because of
the little value of the tensor-to-scalar-ratio r, but they still may bring visible deviation from GR
prredictions; variation in ns due to symmetry violation, if this phenomenum really happend, is
likely to be the most evident effect in the total angular spectrum.
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Conclusions

The high sensitivity we expect to reach with future Gravitational Waves interferometers
as LISA and ET promotes the Stochastic Gravitational Wave Background to be one of the
most interesting and promising laboratories to test many theories of gravity. In this thesis
we focused in particular on the signatures of a graviton mass term arising from different
models of massive gravity. We depicted a scenario considering two distinct moments: one
during inflation, where the graviton is allowed to acquire an heavy mass of the order m2

g ∼
H̄2, and one after inflation, where astrophysical bounds constraint the late time graviton
mass to be m ≤ 10−28 eV [3]. Whereas for the latter case we adopted a viable model of
massive gravity developed by De Felice and Mukhoyama where only two massive tensor
degrees of freedom are propagated, we considered two different models for the Universe
during inflation. Both these models describe the physics of inflation through an effective
field theory approach where spatial-diffeomorphism invariance is broken in addition to the
time-reparametrization invariance broken by the inflaton field. The two theories differ for
the fact that in one case the graviton develops all its five degrees of freedom, while in
the other the scalar and vector extra modes are too massive and undergo an exponential
dilution due to the expansion of the Universe, hence becoming completely negligible. In
both the two cases, tensor modes acquire a mass term which increase the tensor spectral
index of the primordial tensor power spectrum

nT = 3

1−

√√√√1− 4

9

(
m2
g

H2
− 3ε

) , (6.39)

pushing it toward a blue tilt.
Having depicted the full theoretical setting, in Chapter (3) we solved the Boltzmann

equations for the fluctuations of the graviton distribution function, and expanded them in
the multipole basis. One can notice, already at this level, the effect of the late time graviton
mass; the angular transfer functions (3.93) show indeed a peculiar dependence on the
graviton momentum which goes away in the massless limit; in general such a dependence is
instead present in the initial condition term regardless to the graviton mass. The solutions
of the Boltzmann equations are then coupled with the Einstein equations for scalar and
tensor modes to compute the two-points angular correlators. Besides the initial condition
term, an analytic approximate solution is only available for the tensor sourced SGWB
angular power spectrum and for the Sachs-Wolfe contribution to the scalar sourced SGWB
angular power spectrum in the low multipole regime. Our approximate solution for the
tensor sourced angular power spectrum has an explicit dependence on the horizon re-
entering time; this is where the late time graviton mass dependence arises in this case,
because the mass term shift the horizon re-entering event to earlier times. In the scalar
sourced case instead, the late time graviton mass only enters modifying the graviton speed
volocity. This correction is however shown to be completely negligible for reasonable values
of the late time graviton mass m. We have found that the more important signatures arise
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from the early time graviton mass, which at the level of the angular correlators is hidden
inside the tensor spectral indices of the primordial power spectra. To confirm the validity
of our analytic results we explicitly verified that the well known expression of the Sachs-
Wolfe contribution in the Harrison-Zel’dovich limit is recovered in the massless limit [59].
For the tensor sourced angular spectrum instead we are not aware of any paper showing
a similar result. We have found a completely new result, never encountered also in CMB
literature

C̃`,T ∝
1

(`+ 3)(`− 2)
. (6.40)

The same Boltzman formalism used for scalar and tensor perturbations is then introduced
also for vectors obtaining a reasonable result similar to its CMB analogous [114]. No
additional new effects are expected from the late graviton mass. In the end of this topic,
also the possibility to have a primordial magnetic field is investigated. Even in the presence
of a primordial vector field setting a non vanishing value for the primordial power spectrum
of vector perturbation, we have very little hope to detect signatures arising from vector
perturbations, because vector modes decay with the inverse squared power of the scale
factor through the whole expansion of the Universe as long as vorticity is conserved. The
presence of a magnetic field prior to structure formation would give us better chances,
because it has the effect to slow down the damping of vector perturbation during their
evolution, increasing the expected angular power spectrum today. The possibility to be
sensitive to such signatures strongly depends on the amplitude of the primordial power
spectrum, for which we attempted a calculation in the Appendix (F), and on the presence
of a strong magnetic field, but the discussion must still be investigated in deep, and it may
require further efforts in future works.

In Chapter (5) the analysis of non-Gaussianity is performed. A bit of care is needed in
the three-points correlators of the tensor sourced fluctuations, because the tensor bispec-
trum transforms non trivially under rotation of the wavevectors. The explicit evaluation
of the bispectrum in full generality is a really subtle topic; we considered the simplest case
focusing on scalar perturbations and working on very large scales, where we are allowed
to consider the Sachs-Wolfe contribution only. In the scenario without any extra gravi-
ton degree of freedom, primary non-Gaussianity arises for example taking the curvature
perturbation in the form of the local ansatz. This particular choice greatly simplifies the
computation, and brings to the three-points correlator (5.112), which has the same form of
the one found in [59]. None deviation from the standard GR case is then expected in this
term. The analysis is instead more interesting in the case of secondary non-Gaussianity.
In this case deviation from Gaussianity arises from a non linear evolution of long and
short wavelength modes. We used the Weinberg coordinate transformation to explicit the
interaction between these modes, finding

lim
k3→0
〈δGW (~k1)δGW (~k2)δGW (~k3)〉 = f δGWNL

(
4π4

k3
1k

3
3

)
PδGW (k1)Pζ(k3), (6.41)

with

f δGWNL = −∂ ln f̄(q)

∂ ln q
TS(η, ki3, q, n

i
3)

[
∂ lnPζ(k)

∂ ln k

+2

(
βq −

a2m2

q2
βm

)
∂ ln q

∂ ln f̄(q)

∂2 ln f̄(q)

∂(ln q)2
+ ε

∂ ln|TS |2

∂η
+
∂ ln|TS |2

∂ ln k

+

(
βq −

a2m2

q2
βm

)
∂ ln|TS |2

∂ ln q
+

(
βn +

a2m2

q
βm

)
ni
∂ ln|TS |2

∂ni

]
. (6.42)
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this solution highlights the appearance of completely new terms which vanish in the mass-
less limit, and that may bring significant contribution to the non linear parameter f δGWNL .
Particularly interesting is the term ∂ ln|TS |2/∂ ln q, which comes out from the new depen-
dence of the linear transfer function on the graviton momentum q. The case where the
graviton mass brings the graviton extra degrees of freedom with itsef is much more compli-
cated. In that case the bispectrum is source by three-points interactions at the Lagrangian
level, and have to be computed with the in-in formalism. These are found after a proper
expansion of the action at third order in Goldstone bosons. Non-Gaussianity in this case
could be a very useful tool to constraint some parameters which define the model.

Finally, the numerical analysis of the SGWB two-points angular correlators performed
with the program hi_class is developed in the last Chapter (6). As expected, no inter-
esting signatures of late time graviton mass are produced on the scalar sourced angular
power spectrum. Nonetheless the plots are instructive to identify how the SW and ISW
contributions enter differently inside the angular power spectrum. In particular one can
see that on very large scales the SW contribution is dominant, while the ISW contribution
increase on smaller scales, becoming relevant for ` ∼ 50. The transition between the two
regimes coincides with the fact that large scale re-enter the horizon during matter dom-
ination, where the slow damping provides for just a tiny contribution to the ISW, while
small scales cross the horizon in the radiation epoch, with a rapidly changing growing rate.
Visible signature of massive modes arise instead from the extra scalar graviton degree of
freedom, which modifies the definition of the scalar spectral index as in (6.33). The amount
of violation of space-diffeomorphism is controlled by a parameter α; the more α, the more
the sourced angular power spectrum gets suppressed on low multipoles. Without specifying
a model, we are not able to give predictions on such effect, but visible modifications are
shown even for deviation of the spectral index of the order of the slow-roll parameter ε. A
similar behavior is shown by the tensor sourced angular power spectrum, where the value
of the early time graviton mass mg was compared with the energy scale of the Universe
during inflation H̄. The numerical analysis supports our analytical solution, showing a
trend in agreement with (6.40). Moreover, besides the effect of the early time graviton
mass, the tensor sector reveals itself to be sensitive also to the effect of the late time mass.
These are weaker but still maybe visible effects which increase the tensor sourced angular
power spectrum on the largest scales. As a consequence, for large enough values of the
early graviton mass around m2

g ∼ H̄2, the effects of the late time graviton mass become
completely irrelevant. The possibility that these signatures survive in the total angular
power spectrum is strongly related to the value of the tensor-to-scalar ration r. Although
BICEP2 and Keck Array Collaborations [110], in accordance with Planck measurement
[109], have set r < 0.06 for single field slow roll inflation, we firstly considered a more op-
timistic situation with r = 0.2; this is done for pedagogical reason, because a larger value
for r enhances the signatures arising from the tensor sector. We can then summarize our
findings in the following way: an heavy graviton mass during inflation provides a visible
damping of the angular power spectrum on low multipoles; the damping is enhanced in the
case where the gravity sector propagates an additional scalar degree of freedom; these two
effects are a little counterbalanced by a possible late time graviton mass. In this regard it
has to be said that late time graviton mass effects becomes less and less important as the
early time graviton mass increase. This was shown in Figure (6.8) and motivated by the
factor

C̃`,T ∝
∑

λ=±2 Pλ(k0)

knT0 l(η0, η∗)nT
(6.43)

emerging from the primordial tensor power spectrum. Interestingly, the curves one can
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obtain considering all these effects are not uniquely determined. The three contribution
may indeed combine in many different ways, such that different curves may overlaps in
some multipole ranges. This calls for the need to be sensitive to the largest possible
multipole range, in order to be able to disentangle different combinations of the three
mentioned contributions. Finally we compared the contributions arising from both the
space-diffeomorphism breaking and the late/early graviton masses within the bounds of
the single field slow roll inflation, that is setting r = 0.06.

Future developments

In the main text we sometimes mentioned the possibility to proceed deeper in some argu-
ments in future works. We want to resume these possibilities of challenging and intriguing
future developments. The first step to connect our analysis with observations is to quantify
the sensitivity of future GW interferometers to the effects studied in this thesis. The idea
is to build an estimator in order to determine the Signal to Noise ratio (SNR) of such
effects considering the sensitivity level of LISA and ET.

Concerning more theoretical aspects, in Chapter (6) it was mentioned that the modifi-
cation in the scalar spectral index ns and the early time graviton mass mg are degenerate
in the angular power spectra, in the sense that they affect the power spectra simultaneously
providing similar effects; hence we are not able to discriminate between the two. The path
to follow to eliminate this degeneracy is to focus on particular models, where the relation
between mg and the parameter α

m2
g =

8

M2
P

(
α2

a2
F̄Z +

α4

2a4
F̄ZZ

)
(6.44)

is fixed by the choice of the operator F (X,Y i, Zij). Having fixed a model we should be
able to parametrize both the variation in the scalar spectral index and the graviton mass
with one parameter only, namely m2

g or α3. The analysis of non-Gaussianity plays a crucial
role in this sense, because predictions about three-points interaction terms could allow to
constraint some coefficients of the theory in an effective field theory approach. This analysis
is in part performed in [47], but it is far from being completed; hence much more efforts are
needed to completely describe the theory. Another possibility to disentangle between nT
and ns could be to study polarization of the angular power spectrum. It is known indeed
that E-modes and B-modes select respectively scalar and tensor perturbation contributions,
so that the two effects may be split. The study of B-modes could be interesting also for
a deeper analysis of the late graviton mass effects. Since these effects arise only in the
tensor sector, they are suppressed in the total (temperature) angular power spectrum by
the fact that the amplitude of primordial tensor power spectrum is more then one order
of magnitude lower then the corresponding amplitude for the primordial scalar power
spectrum (r < 0.06 in the standard single field slow-roll inflation). If we have a way to
separate between scalar and tensor perturbations, we get rid of this suppression, reaching
better chances to discover such effects.

Another open question concerns vector modes. This argument was very little studied
so far because the standard slow-roll inflationary paradigm does not provide any velocity
field, and because vector modes decay during the expansion of the Universe as V ∝ a−2,
so that they are expected to be negligible today. However now possibilities arise in mas-
sive gravity, because the extra vector degree of freedom is able, in principle, to set the

3It is important to stress that the modifications in the scalar sector arise from the symmetry breaking
pattern, and not from the graviton mass.
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primordial vector perturbations forming the primordial vector power spectrum. There are
no constraints in the theory about the amplitude of such primordial power spectrum, so
that the possibility to have non vanishing effects today is still open and has to face with
observations. As already commented, the chances to have a significant contribution from
vector perturbations increase in the presence of a strong magnetic field. This is indeed a
source for vorticity, which increases in time, and slows down the vector’s decay to V ∝ a−1.
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Appendix A

Linearised Einstein equations

In this chapter of the Appendix we want to derive the linearised Einstein tensor in the
framework of standard cosmology, since it is widely used inside the text. Let ḡµν be the
FLRW metric describing the background spacetime. Let’s then introduce a first order
perturbation on the background, defining then the physical spacetime as the difference

gµν = ḡµν + δgµν , (A.1)

with |ḡµν |� |δgµν |. In full generality the physical metric has 10 degrees of freedom, and,
in a generic gauge, can be written as

gµν = a2(η)

{
−[1− 2Φ(η, ~x)] ωi(η, ~x)

ωi(η, ~x) δij [1 + 2Ψ(η, ~x)] + χij(η, ~x)

}
, (A.2)

The perturbations of the metric directly reflect on the perturbed Einstein tensor, and then
the field equations for gravity. In order to derive the linearised Einstein tensor we proceed
by steps starting from the perturbed Christoffel symbols.

Perturbed Christoffel symbols: Inserting the decomposition (A.1) inside the defini-
tion of the Christoffel symbols, one can verify that

Γµνρ ≡
1

2
gµσ(gσν,ρ + gσρ,ν − gνρ,σ) = Γ̄µνρ + δΓµνρ, (A.3)

δΓµνρ =
1

2
ḡµσ(δgσν,ρ + δgσρ,ν − δgνρ,σ) +

1

2
δgµσ(ḡσν,ρ + ḡσρ,ν − ḡνρ,σ)

=
1

2
ḡµσ(δgσν,ρ + δgσρ,ν − δgνρ,σ − 2δgσαΓ̄ανρ). (A.4)

Let’s define the perturbed contribution hµν to the physical metric by

gµν = a2(ηµν + hµν). (A.5)

with ηµν the flat Minkowski metric. From the definition (A.3), one can easily verify that,
at zero order, the only non vanishing Christoffel symbols are

Γ̄0
00 =

a′

a
, Γ̄0

ij =
a′

a
δij , Γ̄i0j =

a′

a
δij , (A.6)
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while the perturbed contributions are:

δΓ0
00 = −1

2
h′00, δΓ0

i0 = −1

2
(h00,i − 2Hh0i),

δΓi00 = h′i0 +Hhi0 −
1

2
h00,i δΓij0 =

1

2
(h′ij + hi0,j − h0j,i),

δΓ0
ij = −1

2
(h0i,j + h0j,i − h′ij − 2Hhij − 2Hδijh00),

δΓijk =
1

2
(hij,k + hik,j − hjk,i − 2Hδjkhi0), (A.7)

where it has been defined the conformal time Hubble factor H ≡ a′/a.

Perturbed Ricci tensor At linear order also the Ricci tensor can be decomposed in an
unperturbed component and a perturbed one. Starting from its definition

Rµν ≡ Γρµν,ρ − Γρµρ,ν + ΓρµνΓσρσ − ΓρµσΓσνρ ≡ R̄µν + δRµν ,

R̄µν = Γ̄ρµν,ρ − Γ̄ρµρ,ν + Γ̄ρµνΓ̄σρσ − Γ̄ρµσΓ̄σνρ,

δRµν = δΓρµν,ρ − δΓρµρ,ν + ΓρµνδΓ
σ
ρσ + δΓρµνΓσρσ − ΓρµσδΓ

σ
νρ − δΓρµσΓσνρ. (A.8)

The unperturbed Ricci tensor elements can be easily computed from the explicit expression
of the zero order Christoffel symbols. The only non vanishing elements are

R̄00 = 3

(
H2 − a′′

a

)
, R̄ij = δij

(
H2 +

a′′

a

)
. (A.9)

Concerning the perturbed part, we can compute individually each element of the Ricci
tensor by opening the contracted indeces. In particular for the time-time component we
have:

δR00 = δΓk00,k − δΓk0k,0 + Γ̄0
00δΓ

i
0i + Γ̄i00(δΓkik − δΓ0

0i) + Γ̄i0iδΓ
0
00 + Γ̄kikδΓ

i
00

−Γ̄i0kδΓ
k
0i − Γ̄0

0iδΓ
i
00 − Γ̄k0iδΓ

i
0k

= δΓk00,k − δΓk0k,0 −HδΓi0i + 3HδΓ0
00. (A.10)

where in the second step we used the explicit values for the unperturbed Christoffel sym-
bols. Inserting then the expression of the perturbed ones, we arrive to

δR00 = −1

2
∇2h00 −

3

2
Hh′00 + h′k0,k +Hhk0,k −

1

2
(h
′′
kk +Hh′kk). (A.11)

In the same spirit one can compute the other matrix elements as well. The computation
is a bit lengthy and tedious, therefore we will only show the result. At the end of the day
one can verify that

δR0i = −Hh00,i −
1

2
(∇2h0i − hk0,ik) +

(
a′′

a
+H2

)
h0i −

1

2
(h′kk,i − h′ki,k), (A.12)

δRij =
1

2
h00,ij +

H
2
h′00δij +

(
H2 +

a′′

a

)
h00δij +

1

2
h
′′
ij +Hh′ij

−Hhk0,kδij −
1

2
(h′0i,j + h′0j,i)−H(h0i,j + h0j,i) +

H
2
h′kkδij

−1

2
(∇2hij − hki,kj − hkj,ki + hkk,ij) +

(
H2 +

a′′

a

)
hij . (A.13)
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Perturbed Ricci scalar: having computed the perturbed Ricci tensor elements, we are
now able to compute the Ricci scalar at first order in metric perturbations. By definition
the Ricci scalar is given by

R ≡ gµνRµν = ḡµνR̄µν + ḡµνδRµν + δgµνR̄µν ≡ R̄+ δR,

δR = ḡµνδRµν + δgµνR̄µν . (A.14)

In order to go on we need to understand the behavior of δgµν . The decomposition (A.1)
implies that, since both the background and the physical metrics by definition satisfy
ḡµρḡ

ρν = δµν and gµρgρν = δµν :

(ḡµρ + δgµρ)(ḡρν + δgρν) = ḡµρḡρν → δgµν = −ḡµρḡνσδgρσ. (A.15)

This property allows to rewrite the perturbed Ricci scalar in terms of all known quantities:

δR = − 1

a2
δR00 +

1

a2
δijδRij − a2hρσ ḡ

µρḡνσR̄µν . (A.16)

Substituting the expression for the perturbed and unperturbed Ricci tensor elements, one
eventually arrives to

a2δR = ∇2h00 + 3Hh′00 + 6
a′′

a
h00 − 2h′k0,k − 6Hhk0,k

+h′′kk + 3Hh′kk −∇2hkk + hkl,kl. (A.17)

Perturbed Einstein tensor: at this point we can collect all the above results to com-
pute the Einstein tensor elements. It is common to work with mixed indices, for which we
raise one index with

Gµν = gµρRρν −
1

2
δµνR = ḡµρR̄ρν −

1

2
δµν R̄+ ḡµρδRρν + δgµρR̄ρν −

1

2
δµν δR,

Ḡµν = R̄µν −
1

2
δµν R̄,

δGµν = ḡµρδRρν − ḡµτ ḡρσδgτσR̄ρν −
1

2
δµν δR. (A.18)

Inserting the results for the Ricci tensor and scalar we obtain1

a2δG0
0 = −δR00 − h00R̄00 −

a2

2
δR

= −3H2h00 + 2Hhk0,k −Hh′kk +
1

2
∇2hkk −

1

2
hkl,kl (A.19)

for the time-time component, and

a2δG0
i = −δR0i + R̄jih0j = −Hh00,i −

1

2
(∇2h0i − hk0,ik)−

1

2
(h′kk,i − h′ki,k) (A.20)

for the time-space components, while the space-space components are:

2a2δGij = δRij − gkla2hilR̄kj −
1

2
δija

2δR

=
[
− 4

a′′

a
h00 − 2Hh′00 −∇2h00 + 2H2h00 − 2Hh′kk +∇2hkk − hkl,kl

+2h′k0,k + 4Hhk0,k − h
′′
kk

]
δij + h00,ij −∇2hij + hki,kj + hkj,ki

−hkk,ij + h
′′
ij + 2Hh′ij − (h′0i,j + h′0j,i)− 2H(h0i,j + h0j,i). (A.21)

1Be careful that in the following repeated indeces are always meant to be contracted, even if they are
both covariant or controvariant
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Spherical harmonics

In this appendix chapter we want to review briefly the main features of the spherical
harmonics. These are eigenfunctions of the Laplacian operator on the sphere. In quantum
mechanics this operator is associated to the square of the orbital angular momentum.
Spherical harmonics are proved to be an orthonormal set, and therefore any function on
the sphere can be expressed as a linear combination of them. In order to write down the
eigenvalue equation defining the spherical harmonics, let’s start by the line element of the
unit sphere in spherical coordinate:

ds2
S = dθ2 + sin2 θdφ2. (B.1)

Through the definition of the Laplacian operator in a general relativistic framework

∇2 =
1√
−g

∂µ
(
gµν
√
−g ∂µ

)
, (B.2)

the spherical harmonics are defined as the functions Y (θ, φ) solving the eigenvalue equation

∇2Y (θ, φ) =

[
1

sin θ
∂θ (sin θ ∂θ) +

1

sin2 θ
∂2
φ

]
Y (θ, φ) = λY (θ, φ). (B.3)

This equation can be solved with the assumption that the θ and φ dependences can be
factorized in two distinct functions. With this assumption, the solution for the spherical
harmonics is given by

Y`m(θ, φ) =

√
(2`+ 1)(`−m)!

4π(`+m)!
Pm` (cos θ)eimφ, (B.4)

in terms of the Legendre polynomials

Pm` (x) =
(1− x2)m/2

2``!

d`+m

dx`+m
[(x2 − 1)`], (B.5)

with the convention
P−m` = (−1)m

(`−m)!

(`+m)!
Pm` . (B.6)

The fact that the spherical harmonics form an orthonormal system derives immediately
from the normalization condition∫ π

0
dθ sin θ

∫ 2π

0
dφY`m(θ, φ)Y ∗`′m′(θ, φ) = δ``′δmm′ . (B.7)
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Moreover the completeness relation

∞∑
`=0

∑̀
m=−`

Y`m(θ, φ)Y`m(θ′, φ′) =
1

sin θ
δ(θ − θ′)δ(φ− φ′) (B.8)

allows to expand any square-integrable function f(θ, φ) as:

f(θ, φ) =
∞∑
`=0

∑̀
m=−`

a`mY`m(θ, φ) (B.9)

in a unique way.

B.0.1 Spin-weighted spherical harmonics

In the previous section we have seen how spherical harmonics allow to expand scalar
quantities. These are quantities f(n̂) that remain invariant under rotation, that is

f(n̂)→ f ′(n̂′) = f(n̂), n̂′ = Rn̂, (B.10)

with R a rotation matrix. decomposing the scalar function as (B.9), this relation reads:∑
`m

a′`mY`m(n̂′) =
∑
`m

a`mY`m(n̂). (B.11)

Using the properties of the spherical harmonics under rotation:

Y`m(Rn̂) =
∑̀
m′=−`

D
(`)
m′m(R−1)Y`m′(n̂), (B.12)

where D(`)
m′m are the elements of the Wigner D-matrix which we will define later, one can

readily verify that the coefficients a`m transform as:

a′`m =
∑
m′

D
(`)
m′m(R)a`m′ . (B.13)

As a consequence, it is easy to infer that the angular power spectra are direction indepen-
dent, that is rotationally invariant:

C ′` = 〈a′`ma∗
′
`m〉 =

∑
MM ′

D
(`)
mMD

(`)∗
mM ′〈a`Ma

∗′
`M 〉 = C`

∑
MM ′

D
(`)
mMD

(`)∗
mM ′ = C`, (B.14)

since the Wigner D-matrices are unitary matrices. Therefore we proved that, as long as
f(n̂) is a scalar quantity, its angular power spectrum is invariant under rotation. Actually,
if one remembers the discussion of section (4.2), it is exactly the assumption of statistical
isotropy that allows to express the 2-point correlator function as

〈a`ma∗`′m′〉 = δ``′δmm′C`. (B.15)

What about non scalar quantities? In general one can see that if we expand non-zero
spin quantities with the basis of spherical harmonics, they would provide power spectra
which depend on the orientation of the coordinate system, breaking the rotational invari-
ance. In order to avoid this problem, it is common to introduce the spin-weighted spherical
harmonics. In general, if η is a spin-s quantity, then it transforms as

η(n̂)→ η′(n̂′) = esiψη(n̂), (B.16)
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under rotation of an angle ψ around the propagation direction n̂. In order to get rota-
tional invariant quantities, one defines the spin rising and lowering differential operator
respectively as:

ðη = −(sin θ)s
[
∂

∂θ
+

i

sin θ

∂

∂φ

]
[(sin θ)−sη], (B.17)

ð̄η = −(sin θ)−s
[
∂

∂θ
+

i

sin θ

∂

∂φ

]
[(sin θ)sη]. (B.18)

These operators owe their name to the fact that ðη turns out to be a spin-(s−1) quantity,
while ð̄η a spin-(s − 1) one, and they are nothing but covariant derivative on the sphere.
With these new ingredients one defines the spin-s spherical harmonics simply by applying
s-times the rising or lowering spin operator on the usual spherical harmonics, that is

sY`m =

√
(`− s)!
(`+ s)!

ðsY`m (0 ≤ s ≤ `), (B.19)

sY`m = (−1)s

√
(`+ s)!

(`− s)!
ð̄sY`m (−` ≤ s ≤ 0), (B.20)

where the root factors are there just to provide the correct normalization. By expanding
explicitly the operators one can possibly recover the expression (3.78). Notice that, as
expected, the spin-s spherical harmonics reduce to the usual ones when s = 0. For this
reason on can regards the spherical harmonics just as a particular case of the more general
spin-weighted ones. Indeed even the latter share the properties of orthonormality∫ π

0
dθ sin θ

∫ 2π

0
dφ sY`m(θ, φ) sY

∗
`′m′(θ, φ) = δ``′δmm′ (B.21)

and completeness
∞∑
`=0

∑̀
m=−`

sY`m(θ, φ) sY`m(θ′, φ′) =
1

sin θ
δ(θ − θ′)δ(φ− φ′). (B.22)

As a consequence any spin-s quantinty can be expressed as a combination of spin-weighted
spherical harmonics as

η(θ, φ) =

∞∑
`=0

∑̀
m=−`

η`m sY`m(θ, φ). (B.23)

Moreover one can show [86] that the complex conjugation acts on the spin-weighted func-
tions as

sY
∗
`m(θ, φ) = (−1)s+m−s Y`−m(θ, φ). (B.24)

As a consequence any spin-s quantity can be equally expanded on a basis of spin weighted
spherical harmonics of spin s, as (B.23), or of spin −s, i.e.

η(θ, φ) =
∞∑
`=0

∑̀
m=−`

η̃`m −sY`m(θ, φ). (B.25)

In conclusion of this appendix we mention that the spin-weighted spherical harmonics enter
in the definition of the Wigner D-matrix used in (B.12) as follows:

D(`)
ms(φ, θ, ψ) =

√
4π

2`+ 1
sY`−m(θ, φ)eisψ, (B.26)

with (φ, θ, ψ) the Euler angles.
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Appendix C

Spherical Bessel functions

Spherical Bessel functions are intensively used in the study of large scale anisotropies; for
this reason in this Appendix we give a brief review of their main properties, while more
details can be found in [85]. By definition spherical Bessel functions are functions j`(x)
satisfying the differential equation

d2j`(x)

dx2
+

2

x

dj`(x)

dx
+

[
1− `(`+ 1)

x2

]
j`(x) = 0. (C.1)

Just to give some easy example, since they are used within the main text, we show the two
lowest orders:

j0(x) =
sinx

x
, j1(x) =

sinx− x cosx

x2
. (C.2)

Spherical Bessel functions are related to the Legendre polynomial through the key relation∫ 1

−1

dµ

2
P`(µ)eixµ =

j`(x)

(−i)`
. (C.3)

An important relation that allows to eliminate derivatives of the spherical Bessel function
is:

dj`(x)

dx
= j`−1(x)− l + 1

x
j`(x). (C.4)

Moreover, in the explicit computation of the leading order anisotropies, it often appears
the integral of the squared spherical Bessel functions multiplied by a certain power of the
integral variable. We computed this integral with Mathematica and get∫ ∞

0
dxxn−2j2

` (x) = 2n−4π
Γ
(
`− 1

2 + n
2

)
Γ
(
2− n

2

) 2F1

[
−1 +

n

2
, `− 1

2
+
n

2
; `+

3

2
; 1

]
(C.5)

if n odd ∨ 1 < Re(n) < 4 ∧ Re(2`+ n) > 1, (C.6)

where 2F1 denotes the Gauss hypergeometric function and Γ(n) the Euler Gamma function.
Moreover, in [104] it is shown that the hypergeometric function of the type 2F1(a, b; c; 1)
admits the following explicit expression in terms of the Gamma functions:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (C.7)

Therefore, if the above conditions (C.6) are verified, the integral eventually reads∫ ∞
0

dxxn−2j2
` (x) = 2n−4π

Γ
(
`+ n

2 −
1
2

)
Γ
(
`+ 5

2 −
n
2

) Γ(3− n)

Γ2
(
2− n

2

) , (C.8)
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that is the expression one can find in [70]. Other useful relations are the closure equation

2

π

∫
dxx2j`(αx)j`(α

′x) =
δ(α− α′)

α2
, (C.9)

and the recurrence relation, which one can infer from the same relation holding for the
Legendre polynomials

(`+ 1)P`+1(µ) = (2`+ 1)µP`(µ)− `P`−1(µ). (C.10)

Exploiting (C.3), one can easily verify that for the spherical Bessel functions:

j`(x)

x
=
j`−1(x) + j`+1(x)

2`+ 1
. (C.11)
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Appendix D

Second order linear differential
equations with non constant
coefficients

This Appendix focuses on the solution of second order differential equations with non
constant coefficients with the reduction of order method. All the derivation follows the
reference [71]. It is known that any homogeneous linear differential equation of second
order, that is of the type

y
′′

+ p(t)y′ + q(t)y = 0, (D.1)

admits as solution a linear combination of two linearly independent functions satisfying
the above differential equation. In this Appendix we want to show how to solve (D.1) in
the case the coefficients p(t) and q(t) are time-dependent. In this case we have no way to
find analytically the solution in full generality. The best we can do is to find one of the
two linearly independent solutions in the case the other one is already known.

The mathematical object that we use to probe the linear independence of the two
solutions (the we will call y1 and y2) is the WronskianW (y1, y2)(t), that is the determinant
of the coefficient matrix built from the system

y = C1y1 + C2y2,

y′ = C1y
′
1 + C2y

′
2,

W (y1, y2)(t) ≡ det
(
y1 y2

y′1 y
′
2

)
= y1y

′
2 − y2y

′
1. (D.2)

Therefore, if y1 and y2 are two linear solutions of (D.1), and if W (y1, y2)(t) 6= 0 for t
belonging to an interval I, then their linear combination y = C1y1 +C2y2 forms a general
solution of (D.1) within the interval I. In the following we will benefit from the Abel’s
theorem, that states:

Theorem 1. Abel’s Theorem
If y1 and y2 are any two solutions of the equation

y
′′

+ p(t)y′ + q(t)y = 0,

with p(t) and q(t) continuous functions on the interval I, then the Wronskian W (y1, y2)(t)
is given by:

W (y1, y2)(t) = Ce−
∫
dtp(t), (D.3)
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COEFFICIENTS

where C is a time-independent constant that depends on the two solutions y1 and y2. Fur-
ther, W (y1, y2)(t) is either zero for all t ∈ I (if C = 0), or else is never zero for all t ∈ I
(if C 6= 0).

At this point we are able to find the desired solution to (D.1). Let’s suppose now to
have found the first solution y1. Assume further that there exists a second solution of the
form y2 = y1ν(t), with ν(t) some differentiable function. The Wronskian then reads:

W (y1, y2) = y1y
′
1ν(t) + y 2

1 ν
′(t)− y′1y1ν(t) = y 2

1 ν
′(t). (D.4)

However the same Wronskian can be evaluated exploiting the Abel’s theorem as (D.3).
Therefore the two expression must coincide. By equating them:

y 2
1 ν
′(t) = Ce−

∫
dtp(t), (D.5)

with C 6= 0 to ensure the linear independence of the two solutions. Now we can integrate
this expression to obtain

ν(t) = C

∫
dt
e−
∫
dtp(t)

y 2
1

+ C̃, (D.6)

with C̃ an integration constant that we can safely set to zero since, in the final result
y2 = y1ν(t), it would bring an additional term that is proportional to y1, that is linearly
dependent. Therefore, at the end of the day, the desired solution for the differential
equation (D.1) is

y = C1y1 + C2y1

∫
dt
e−
∫
dtp(t)

y 2
1

. (D.7)
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Appendix E

Wigner 3-j Symbol

This chapter of the Appendix is meant to give a basic review on the properties of the Wigner
3-j symbol which is intensively used in the computation of the bispectrum in chapter (5). In
quantum mechanics the Clebsh–Gordan coefficients describe the addition of two eigenstate
of the angular momentum operator. Let us denote as |`m〉 a quantum state where ` is the
eigenvalue of the angular momentum operator L2 such that L2|`,m〉 = `(`+ 1)|`,m〉, and
m the eigenvalue relative to the z-component of the angular momentum Lz|`m〉 = m|`m〉.
Then, given two initial states |`1m1〉 and |`2m2〉, a final state |`3m3〉 which is the sum of
the initial ones can be decomposed as [91]

|`3m3〉 =
∑
m1,m2

|`1,m1, `2m2〉〈`1,m1, `2m2|`3m3〉, (E.1)

where the last contracted term represents indeed the Clebsh-Gordan coefficients. As shown
in the Appendix of [92], the Wigner 3-j symbols(

`1 `2 `3
m1 m2 m3

)
(E.2)

are defined in relation to the Clebsh-Gordan coefficients by

〈`1,m1, `2m2|`3m3〉 = (−1)−`1+`2−m3
√

2`3 + 1

(
`1 `2 `3
m1 m2 −m3

)
. (E.3)

This means that the Wigner symbols in (E.3) describe the coupling of two angular momenta
L1 and L2 such that L3 = L1 + L2. In the same way the symbol (E.2) describes three
angular momenta forming a triangle L1 + L2 + L3 = 0. Since the triangle condition must
hold for any of the three spatial direction, projecting the relation between the angular
momenta on the z-axis it immediately derives that m1 + m2 + m3 = 0. Moreover, any
side of the triangle must satisfy the geometrical condition |Li − Lj |≤ Lk ≤ Li + Lj with
i, j, k = 1, 2, 3). All in all the triangle condition demands the following two relations

m1 +m2 +m3 = 0,

|`i − `j |≤ `k ≤ `i + `j . (E.4)

If one of these conditions are not satisfied, then the Wigner 3-j symbols automatically
vanish. To find explicit expression for the symbols is a difficult task, and one should often
refers to the Clebsch-Gordan tables. However for many practical purposes we can exploit
some symmetry properties which simplify the computations
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Symmetries The Wigner 3-j symbols are invariant under even permutations, while
they change sign for odd permutation if `tot = `1 + `2 + `3 = 0, i.e.(

`1 `2 `3
m1 m2 m3

)
=

(
`3 `1 `2
m3 m1 m2

)
=

(
`2 `3 `1
m2 m3 m1

)
, (E.5)

(−1)`tot
(
`1 `2 `3
m1 m2 m3

)
=

(
`2 `1 `3
m2 m1 m3

)
=

(
`1 `3 `2
m1 m3 m2

)
=

=

(
`3 `2 `1
m3 m2 m1

)
. (E.6)

If `tot = odd, the phase changes even under the transformation mi → −mi :(
`1 `2 `3
m1 m2 m3

)
= (−1)`tot

(
`1 `2 `3
−m1 −m2 −m3

)
. (E.7)

Moreover, if the z components of the angular moments are all vanishing, then the Wigner
symbol (

`1 `2 `3
0 0 0

)
(E.8)

is invariant under any kind of permutation of the momenta `i and non vanishing only if
`tot = even.

Orthogonality In accordance with the orthonormality of the angular momentum eigen-
states and the unitarity of the Clebsh–Gordan coefficients, we have the following orthonor-
mality conditions for the Wigner 3-j symbols:

∑
`3m3

(2`3 + 1)

(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `3
m′1 m

′
2 m3

)
= δm1m′1

δm2m′2
, (E.9)

∑
m1m2

(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `′3
m1 m2 m

′
3

)
=
δ`3`′3δm3m′3

2`3 + 1
, (E.10)

∑
m1m2m3

(
`1 `2 `3
m1 m2 m3

)2

= 1. (E.11)

Rotation matrix The intrinsic meaning of the Wigner 3-j symbols to describe the
coupling of two angular momenta can be naturally extended to the coupling of two rotation
operators. Indeed the angular momenta enter in the definition of a rotation operator
D(α, β, γ) with α, β and γ Euler angles, in the following way

D(α, β, γ) = e−iαLxe−iβLye−iγLz . (E.12)

Opening this matrix as D(`)
m′m = 〈`,m′|D|`,m〉, one can show that

D
(`1)
m′1m1

D
(`2)
m′2m2

=
∑
`3

(2`3 + 1)
∑
m3m′3

D
(`3)∗
m′3m3

(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `3
m′1 m

′
2 m

′
3

)
. (E.13)
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Spherical harmonics Other useful relations come from the composition of spherical
harmonics. We just limit ourselves to report some of the properties shown in [93].∫

d2n̂ Y`1m1(n̂)Y`2m2(n̂)Y`3m3(n̂) =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

×
(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `3
0 0 0

)
. (E.14)

From the relation between the spherical harmonics and the Legendre polynomials

Y`0(n̂) =

√
2`+ 1

4π
P`(cos θ), (E.15)

in the case where all the m’s are vanihing, the relation (E.14) simplifies in terms of the
latter as ∫ 1

−1

dx

2
P`1(x)P`2(x)P`3(x) =

(
`1 `2 `3
0 0 0

)2

. (E.16)
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Primordial vector power spectrum

The equation of motion for the Goldstone boson σTi are readily derived from the action
(2.92). It is useful to redefine the vector field in order to obtain a canonically normalized
action

σ̂iT = α

√
2

(
−F̄Z +

F̄Y 2

2

)
σiT . (F.1)

This way the vector sector of the quadratic action for Goldstone bosons becomes

S(V ) =

∫
d4x a3 1

2

[
˙̂σiT

˙̂σi,T + c2
v

∂j σ̂
i
T∂j σ̂i,T
a2

]
, (F.2)

with the definition

c2
v =

2
(
F̄Z + 2α

2

a2
F̄ZZ

)
−F̄Z +

F̄Y 2

2

. (F.3)

This is the action for a free particle as it was already studied in the scalar case. In second
quantization vector fields decompose in Fourier modes in the following way:

σ̂iT = −i
∫

d3k

(2π)3

∑
λ=±1

εiλ(k) σ̂T (k, t)ek·x. (F.4)

where εiλ are two polarization vectors. In terms of the Fourier modes, the Euler-Lagrange
equations are

¨̂σT + 3H ˙̂σT − c2
v

∇2

a2
π = 0. (F.5)

This is the same equation (2.101) encountered for scalar modes. Therefore we can imme-
diately write the solution for the σiT Goldstone boson as

|σ̂k,T | '
H√
2c3
vk

3

(
k

aH

) 3
2
−ν
, (F.6)

with 3/2− ν = −ε, and the primordial power spectrum

Pσ =
H2
k

16π2cvα2
(
F̄Z + 2α

2

a2
F̄ZZ

) . (F.7)

However, since in section (4) we will deal with measurable quantities, it is useful to work
with gauge invariant quantities, as shown above for the scalar case. As before, we firstly
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pass to the unitary gauge, where all the Goldstone bosons are set to zero. This configuration
is achieved through the gauge transformation xµ → xµ − ξµ with ξ0 = π and ξi = σi. In
the high energy limit k/a � H, as said above, the gravitational metric perturbations
decouple, such that the metric in the π − σ language is unperturbed. Then, after a gauge
transformation

g̃µν(x) = gµν(x) + Lξ g
(0)
µν + o(ξ2), (F.8)

and the new metric components, in conformal time, are explicitly1

g̃00 = −a2(1 + 2π̇),

g̃0i = a2
[
σ′i + 2Hσi − ∂iπ

]
= a2

[
2Hσi,T + σ′i,T + ∂i

(
2HσL√
−∇2

+
σ′L√
−∇2

− π
)]

,

g̃ij = a2 [(1 + 2Hπ)δij + ∂iσj + ∂jσi] =

= a2

[
(1 + 2Hπ)δij +

1

2
∂(i,σj),T + 2∂i∂j

σL√
−∇2

]
. (F.9)

which share the same form of the general linearly perturbed metric (2.23). Applying
another gauge transformation and computing explicitly the Lie derivative of the metric as
above, one can show (see ref. [123]) that there is only one possible vector gauge invariant
quantity we can build out of the metric perturbations. This is found as the combination

Vi ≡ ω⊥i − χ⊥ ′i = 2Hσi,T + σ′i,T − σ′i,T = 2Hσi,T , (F.10)

which represents the vector contribution to the extrinsic curvature. This is a very nice
result, since it allows to relate the primordial power spectra of the gauge invariant variable
Vi with the one of the vector transverse Goldstone mode σi,T , which was already studied
above. Hence, remembering (F.7),

PV = 4H2Pσ =
H4
k

4π2cv

(
α2

a2
F̄Z + 2α

4

a4
F̄ZZ

) . (F.11)

1Notice that if the contravariant vector ξµ = (π, σi), the covariant vector must be taken with the
contraction with the unperturbed FLRW metric, that is ξµ = gµνξ

ν = (−a2π, a2σi), having defined
σi ≡ δijσj .
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Appendix G

Modifications to the hi_class code

In the case the reader may be interested in verifying our results by itself, we dedicate this
chapter of the Appendix to illustrate the necessary modifications to apply to the source
code of the program. The code itself is indeed meant for to purpose of studying CMB
anisotropy, and some modifications are in order if one wants to focus on the background of
gravitational waves. The first thing to notice is that gravitons have negligible interactions
with the thermal plasma, such that they obey a collisionless Boltzmann equation, contrary
to the case of the CMB photons. Moreover, while CMB was created on the last scattering
surface, the SGWB was originated in primordial epochs during Iflation, and since their
generation they freely stream until today.

Modification to the time integration range

By default, hi_class is developed in such a way that the source function is integrated
from an early reference initial time (τini ∼ 200Mpc) until today. This is because for very
early times the optical depth τ → inf and suppresses the propagation of the temperature
perturbations in the plasma. This is not the case for gravitons, since they do not undergo
any collision process. We then would like firstly to push the initial time of integration to
much smaller values. The information about the initial sampling time are contained in the
file “source/perturbations.c” at the line

tau_lower = pth->tau_ini;

The simplest way to modify the initial sampling time is to replace this line with something
as

tau_ini = 1;

remembering that both the CLASS and hi_class codes counts the time variables in units
of Mpc. Actually this time value is really far from the time at which Iflation is expected
to end. However, no cosmologically events relevant for the evolution of perturbations, like
phase transition from matter to radiation dominance, are expected to take place before
that time; hence this value should work correctly for our purposes1. As a confirmation,
we verified that none variation in the spectra can be appreciate in varying the initial time
from τini = 1.0 to τini = 0.01, and we fairly assume this holds for even smaller values. A
more elegant way to shift the initial sampling time as back as possible is to identify τlower,
which is the stating sampling time, with the earliest time tabulated by the code, that is

1Pay attention that too small values of the initial time may force the code to run for too much time
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tau_lower = pba->tau_table[0];

The value of the first element of the array is controlled by the parameter “start_sources_
at_tau_c_over_tau_h” which can be arbitrary set inside the file input.c. In particular
the lower the value of this parameter the lower the initial sampling time for the source the
sources, and the above situation can be recovered setting

class_precision_parameter(start_sources_at_tau_c_over_tau_h,double,0.00008);

One problem that may arise in shifting the initial sampling time concerns the sampling
rate. Indeed we must teach the program to decrease the interval between two subsequent
samples in order to have a faithful representation of earlier times. This can be done adding
the lines

if(tau<=30){timescale_source = tau*pow(10,-1);}
tau = tau + ppr->perturb_sampling_stepsize*timescale_source;
counter++;

inside the sampling cycle. These lines have the effect to decrease the sampling rate as

τi+1 = τi + sampling_stepsize ∗ timescale_source;

Modification of the source function

The temperature angular power spectrum in the multipole space are numerically evaluated
by the CLASS/hi_class codes through

CTT` = 4π

∫
dk

k
(Θ`(τ0, k))2 P(k), (G.1)

with Θ` the temperature fluctuations of the photon population and P(k) the dimension-
less power spectrum of primordial perturbations, summed over scalar and tensor modes2.
After an integration by parts, the temperature fluctuations sourced by scalar and tensor
perturbations are respectively

ΘS
` (τ0, k) =

∫ τ0

τini

dτ
{
S0
T (τ, k)j`(k(τ − τ0)) + S1

T (τ, k)
dj`
dx

(k(τ − τ0)) +

+S2
T (τ, k)

1

2

[
3
d2j`
dx2

(k(τ − τ0)) + j`(k(τ − τ0))

]}
, (G.2)

ΘT
` (τ0, k) =

∫ τ0

τini

dτ ST (τ, k)

√
3(`+ 2)!

8(`− 2)!

j`(k(τ0 − τ)

(k(τ0 − τ))2
, (G.3)

with3

S0
T,S = g

(
δg
4

+ Φ

)
+ e−K2Φ′ + g′θb + gθ′b, S1

T,S = e−KK(Ψ− Φ),

S2
T,S =

g

8
(G0 +G2 + F2),

S2
T,T = −g

(
F

(2)
γ0

10
+
F

(2)
γ2

7
+

3F
(2)
γ4

70
−

3G
(2)
γ0

5
+

6G
(2)
γ2

7
−

3G
(2)
γ4

70

)
− e−Kχ′, (G.4)

2Vector modes are neglected by the code
3Our choice is to work in the Newtonian gauge.
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where g(τ) ≡ −K̇e−K is the visibility function, k the optical depth, δg and θb fluctuations
in the fluid density, and F,G, Fγ , Gγ quantities related to polarization modes. Looking
back to our solutions, these equations have to be compared with

S0
T,S = v−2Φδ(τ − τini) + (1 + v−2)Φ′, S1

T,S = 0, S2
T,S = 0,

S2
T,T = −χ′. (G.5)

Then, by comparison, we learn that the CMB sourced functions can recover the case for
SGWB if we set K = δg = θb = 0 and g = δ(τ − τini), neglecting any polarization
contribution which does not enter in our analysis. First of all we define the new variables

double grav_mass;
double grav_velocity;

in the file “thermodynamics.h”. Then we implemented the above identifications in “pertur-
bations.c”. The most tricky step is how to reproduce a delta function peaked at the initial
time. We inserted then, in a very rough approximation, a strongly peaked function with
the shape of a power law to reproduce the same behavior. All in all the code lines we
modified on the code read

if (ppt->gauge == newtonian) {
double v2=pth->grav_velocity*pth->grav_velocity;
pvecthermo[pth->index_th_exp_m_kappa] = 1;
pvecthermo[pth->index_th_g] = pow(0.1*pow(2*3.14,0.5),-1)
*exp(-pow(tau-1-5*0.1,2) *pow(2*0.1*0.1,-1));

_set_source_(ppt->index_tp_t0) =
ppt->switch_sw * /*pth->factor */ pvecthermo[pth->index_th_g] *
(0*delta_g / 4. + pvecmetric[ppw->index_mt_psi])/v2

+ switch_isw * (pvecthermo[pth->index_th_g] *
(y[ppw->pv->index_pt_phi]-pvecmetric[ppw->index_mt_psi])

+ pvecthermo[pth->index_th_exp_m_kappa]
* (1+1/v2) * pvecmetric[ppw->index_mt_phi_prime])

+ ppt->switch_dop /k/k * 0*(pvecthermo[pth->index_th_g]
* dy[ppw->pv->index_pt_theta_b]

+ pvecthermo[pth->index_th_dg]
* y[ppw->pv->index_pt_theta_b]);

_set_source_(ppt->index_tp_t1) = switch_isw
* pvecthermo[pth->index_th_exp_m_kappa] * k
* (pvecmetric[ppw->index_mt_psi]-y[ppw->pv->index_pt_phi]);

_set_source_(ppt->index_tp_t2) = 0*ppt->switch_pol
* pvecthermo[pth->index_th_g] * P;

}

for the scalar source function, and

/* tensor temperature */
if (ppt->has_source_t == _TRUE_) {

_set_source_(ppt->index_tp_t2) = - y[ppw->pv->index_pt_gwdot]
}
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/* tensor polarization */
if (ppt->has_source_p == _TRUE_) {

/* Note that the correct formula for the polarization source
should have a minus sign, as shown in Hu & White. We put a
plus sign to comply with the ’historical convention’
established in CMBFAST and CAMB. */

_set_source_(ppt->index_tp_p) =0;
}

}

for tensors, where _set_source_(ppt->index_tp_t0) and _set_source_(ppt->index_tp_t2)
denotes the contributions to S0

T and S2
T respectively, while the other quantities can be easily

recognized.

Modification of the Einstein equation

In order to account for the late graviton mass effects also the Einstein field equations must
be modified according to

χ
′′
(η, k) + 2Hχ′(η, k) + (k2 +m2a2)χ(η, k) = 0. (G.6)

This is simply performed by writing, in the file “perturbations.c

/** - for tensor modes */

if (_tensors_) {

/* single einstein equation for tensor perturbations */
if (pba->has_smg == _FALSE_) {
double m2 = pth->grav_mass * pth->grav_mass;

ppw->pvecmetric[ppw->index_mt_gw_prime_prime] =
-2.*a_prime_over_a*y[ppw->pv->index_pt_gwdot]-(k2+2.*pba->K +
m2*a2)*y[ppw->pv->index_pt_gw]+ppw->gw_source;

}
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