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Abstract

Carbon mitigation effort is nowadays a pressing global challenge. While some advance-
ments are achieved on mitigation techniques, the fact that deforestation hinders the
capacity of the Earth to absorb the carbon dioxide generated by human endeavour
needs to be addressed. A software simulation of a desert environment created through
the Unity game engine is hereby documented. In this simulation, a grid of photovoltaic
panels powers a device that produces water through dehumidification of the air. The
water is consequently stored inside a reservoir and transferred to a robotic vehicle with
the task of moving and watering trees that are planted within a given area. By means
of Reinforcement Learning techniques, the robot will have to be trained to water the
trees in the area, assuring their daily growth while minimizing the waste of water and
assessing the local weather conditions in order to make decisions. This study does not
concern the training itself and its results: nevertheless, some indications on how to
perform the training are provided.
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Chapter 1

Introduction and Summary

Example of a reference to a term in the glossary:
Application Program Interface (API).

Example of an URL to a web resource:
http://lightningmaps.org.

Example of a citation:
citation [1]

1.1 About the Contractor Company
This study was conducted during a three-month internship at Piratech s.r.l.
Piratech is an IT company based in Padua, Italy. It offers a wide array of consulting
services to businesses with the purpose of aiding digital transformation, including UX
design discovery for digital products and delivery of full-fledged software solutions. It
leverages an in-house team of developers, engineers and designers in order to create
novel projects, and co-operates with academic institutions and founders to turn research
projects into marketable goods.

1.2 Document Structure
Chapter 2 describes the foundations of theoretical approach for this study.

Chapter 3 covers the characteristics of the environment to simulate.

Chapter 4 articulates the formal specifications of the simulation.

Chapter 5 gives an overview of Unity and the C# programming language.

Chapter 6 provides insight into the codebase that makes up the simulation.

1
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1.2. DOCUMENT STRUCTURE 2

Chapter 7 showcases captioned images of parts of the simulation renders.

Chapter 8 describes Reinforcement Learning and the concept of ML-Agents.

Chapter 9 provides hints and expectations apropos of the training process.

Chapter 10 is devoted to the conclusions.

With respect to the text styling, the following typographic conventions have been
adopted throughout the present document:

• Acronyms and shortened forms are defined in the glossary, which can be found
at the end of this document.



Chapter 2

General Discussion on the
Approach

In this chapter, the foundations and key concepts of the theoretical approach which moti-
vated the pursuit of this research are explained.

This research arises from the desire to foster the growth and thriving of trees and
shrubs in environments that are considered “hostile” due to the aridity (i.e. limited or
low water content) of the soil, which is assumed to hinder the survivability of plants: a
desert is a common example of such an environment.
Because salt water is not suitable for watering trees and shrubs (as the increase in
salinity of the soil will hamper their growth [2]), whenever a source of fresh water
located in proximity of the environment (such as a lake or river) is unavailable, one has
to choose between desalination and dehumidification – two consolidated approaches
- in order to produce fresh water. However, the provision of desalinated water can
demand a considerable organizational and logistical effort if the distance between the
area and sea is vast.
In equatorial deserts, the intense heat of the sunlight in the daytime can be exploited
through a grid of photovoltaic (PV) panels which, when facing towards the sun, should
provide energy to be subsequently stored in an appropriately sized battery, located
not too far from the panel grid. The energy will be used to power one or more
dehumidification systems: during nighttime, once the dew point (the temperature
at which airborne water vapor will condense to form liquid water) is reached, the
dehumidifiers will generate fresh water to be stored in a reservoir (plausibly placed
alongside the battery inside the same physical machinery).
It is obvious that the demand for energy coming from the dehumidification systems
imposes an adequate planning of the nominal power and efficiency requirements that
have to be met by the PV panels grid. What is missing so far is a system to supply
water regularly to each tree and shrub in the environment, once that they have been
planted. The proposed solution is a self-driving rover on wheels, equipped with a
battery and a water tank. The rover is assigned the task to move towards each tree
and dump water on the ground as soon as its distance from the tree is adequately close,
so that the roots of the tree will be able to absorb the water. The rover should detect
when both battery charge and water levels are low and decide accordingly to move
towards a fixed location where either the battery will be recharged, or the tank will be

3
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reloaded. The energy needed to recharge the rover’s battery shall be taken from the
dispenser’s battery: this means that the dispenser plays at least two roles, in terms of
providing energy.
This process must be continuous and require no human intervention whatsoever, with
the exception of scheduled maintenance operations. Local weather conditions in a
given moment should also be taken into account by the rover’s decision-making process.
As described in the following chapters, a technique known as Reinforcement Learning
will be employed to discover what the best course of action is in order to accomplish
the aforementioned tasks.



Chapter 3

Characteristics of the
Environment

In this chapter, a number of characteristics that should be possessed by an environment
that is meant to be simulated through this software are articulated.

The point of the “digital twin” which is the object of this study, far from being
a mere “game”, is to inquire on the feasibility of the approach explained in Chapter
2 when applied to real geographic locations on Earth. Countries that possess the
characteristics used as reference point - dry, hot, desertic terrain covering a wide surface
- are those which surround the Persian Gulf and the Gulf of Oman: Oman, Qatar, the
United Arab Emirates, Bahrain, and others.
In these areas relative humidity of air steadily increases in nighttime as the temperature
goes down: this allows for a large-scale production of water through dehumidification, a
technique which cannot be considered novel as it was already proposed by Khalil [3](in
the specific context of United Arab Emirates), Fathieh and others. [4] The very high
temperature reached in those places during the day, even up to 100° F (38° C), makes
for very harsh working conditions that a human could hardly endure for prolonged
amounts of time while moving around and pouring water on the ground (given the
additional burden of the water that must be carried) without severe health effects. In
game, only a small-scale scene can be actually explored. At the time of writing the
contractor Piratech s.r.l. intends to purchase a small lot in the municipality of Nardò,
Italy, in the region of Puglia, to test the system and gather additional data which
may prove useful. Nardò is one of the Italian municipalities with the scarcest yearly
precipitation (slightly over 500 mm of rain per year on average) and a climate that
roughly approximates that of countries with lower latitudes, at least if compared with
other municipalities of Italy.
Some could argue that in the long term, desalination of salt water is a more efficient
approach in terms of energy consumption: while this may be proven true, the infras-
tructure and maintenance cost for the required system is such that financial expenses
could jeopardise the attempts to put such a system in order, so the dehumidification
approach was ultimately chosen.

5



Chapter 4

Specifications of the Simulation

In this chapter, the formal specifications of the simulation (including mathematical formu-
las) are articulated.

4.1 Geography of the Environment
This simulation takes place in a desertic square lot, with the square side being 100 m
wide: the total surface is thus equal to 1002 m2 = 10.000 m2. The lot is bounded by
invisible walls, which make it impossible for any non-stationary entity to leave the
area. The altitude of the terrain ranges between 0 and 20 m. Because sand dunes are
assumed not to be significantly steep, in no point of the terrain is the slope expected to
exceed 30°. A variable amount of trees and saplings are spread over the square surface.
In this simulation, the tree species is not taken into consideration: this happens because
the specialization of the trees’ behavior according to their species is outside the scope of
this work and assumed to be developed during future advancements. The displacement
of the trees is described in Section 4.4.

4.2 Tree Behavior and Growth
As mentioned in Chapter 2, in order for the rover to behave as intended trees need to
be planted beforehand.
Signed integer variables are used to store the values of parameters that only accept
natural numbers, while single precision (32-bit) floating point variables are used
otherwise.
A tree is characterized by a number of parameters (the SI units of measurement for
non-dimensionless numbers are enclosed between square brackets from here onwards, in
all the sections that ensue):

• Age: An integer number which represents the age of a tree, or rather, the amount
of days elapsed since it has been planted.

• Initial Need [l]: The amount of water a tree needs to be provided during its
first day of life (from day 0 to day 1) in order to survive. In the beginning of the
new day, a calculation is performed to determine whether the demand was met
or not – the same applies to each day of the tree’s lifespan.

6



4.2. TREE BEHAVIOR AND GROWTH 7

• Final Growth Age: The integer number of days that must pass in order for
the tree to reach its final water demand (Final Need).

• Final Need [l]: The amount of water a tree needs to be provided on a daily
basis upon reaching its Final Growth Age, for all the following days.

• Daily Need Function: A piecewise-defined function which has as its first
sub-function a line (polynomial of degree 1) in the form y = mx+ q, that gives
the amount of water [l] the tree needs to be provided during the day x of its
lifespan in order to survive.
This is a very simple function that will eventually be replaced with a more
complex one in future advancements. The angular coefficient m is given by the
ratio FN−IN

FGA , where FN is the Final Need, IN is the Initial Need and FGA is
the Final Growth Age, while the intercept q is equal to IN . The function is

N(x) =

{︄
FN−IN
FGA x+ IN if x ≤ FGA

FN otherwise.
(4.1)

• Daily Bound: A function used to determine both the daily lower bound and
upper bound [l] of an interval centered in the value x returned by the Daily
Need Function. If the provision of water in a given day falls within the interval,
then there will be no Health Points loss. (See the definition below.)
An example of such function is

B(x) =

(︃
1± 30

100

)︃
x (4.2)

• Health Points: A numeric integer value that indicates the health of the tree. If
the health points amount falls below 0 as a consequence of a daily update, then
the plant is dead and cannot be revived. A tree has at most 100 Health Points
(which is also the initial amount). The technique used to compute the Health
Points loss or gain is described in Section 4.3.

In the simulation, the tree is endowed with a circular area at the base of the trunk
called Absorption Area. The Absorption Area is meant to simulate, in a very simple
fashion, the area where the roots can be found beneath the ground. This means that all
water that is poured on the ground within the perimeter of said area will be absorbed
by the roots and supplied to the whole tree.
The Absorption Area has the following characteristics:

• Initial Radius [m]: The initial value of the radius of the Absorption Area
during the first day of the tree’s lifespan.

• Maximum Size Age: The integer number of days that must pass in order for
the area to reach its Maximum Radius. It is supposed to match the tree’s
Final Growth Age.

• Maximum Radius [m]: The maximum radius that can be reached by the
Absorption Area.
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• Area Size Function: A piecewise-defined function which has as its first sub-
function a line (polynomial of degree 1) in the form y = mx+ q, that gives the
radius of the Absorption Area during the day x of its lifespan.
Similarly to the Daily Need Function, the angular coefficient m is given by the
ratio FR−IR

MSA , where FR is the Final Radius, IR is the Initial Radius and MSA
is the Maximum Size Age, while the intercept q is equal to IR. The function is

A(x) =

{︄
FR−IR
MSA x+ IR if x ≤ MSA

FR otherwise.
(4.3)

4.3 Tree Health System
A tree has an initial amount of Health Points (100) when it is first planted. If a tree
was provided too much, or not enough water over the day, points will be lost as the
next day starts. However, they can be regained in the following days, provided that
the amount of received water (which is subject to a daily change) is correct. The daily
variation in the number of Health Points is subject to a law as well.

Let Pl and Pg be the maximum amount of Health Points that can be lost or regained
at the beginning of each day (The value of the two variables is not supposed to vary).
Let ti be the “target” water quantity and B−(ti), B+(ti) be the lower bound and upper
bound calculated in Section 4.2 for day i. Then, if x is the amount of water provided
during the day i of the tree’s lifespan, the amount of points (which can be negative) to
be added to the score at the beginning of day i+ 1 is

Si(x) =
−Pg|x− ti|
ti −B−(ti)

+ Pg (4.4)

but the obtained value is clamped in the interval [−Pl, Pg], meaning that if it is
smaller than −Pl it will be set to −Pl. (The absolute maximum value of the function
is equal to Pg by construction.)

Intuitively, when the provided value is perfectly equal to ti the numerator is zero,
and Si(x) = Pg: the gain is maximum. However, a discrepancy from the target will
cause the numerator to be a negative, non-zero number.
The roots of the function are B−(ti) and B+(ti): there is an obvious vertical symmetry
with respect to ti. In other words, Health Points are gained so long as the amount of
provided water is not above or below the two bounds, otherwise they are lost.

4.4 Procedural Tree Generation
The generation of the trees in the 100×100m lot abides by the following rules:

1. The terrain is first divided into a 14x14 square grid. The side of each square is
thus 100

14 ≈ 7.14 m wide.

2. The user can choose one among three different Stages: Desert, Mixed and
Forest. A unique range of probabilities (numbers within the [0, 1] real interval)
is linked to each stage with no overlaps, as shown in the table.
Depending on the current Stage, a number is randomly extracted by sampling
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Stage Range
Desert [0, 0.05)
Mixed [0.05, 0.4)
Forest [0.4, 1]

Table 4.1: This table shows the connection between stages and unique probability ranges.

from the continuous uniform distribution on the interval [a, b), where a and b are
the boundaries of the associated interval.

3. The number obtained in the previous step is the probability that a tree will
spawn in a cell of the grid. If a tree is to successfully spawn within a cell, then
its position is calculated as follows:
A random radius r in the interval [0, 2] and a random angle α in the interval
[−π, π] are extracted by sampling from continuous uniform distributions. The
polar coordinates of a point are thusly obtained: the point represents the offset
of the tree from the center of the cell. Therefore, if (xCi

, yCi
) is the center of the

cell i, the final position of the tree in Cartesian coordinates is

(xCi + r · cos(α), yCi + r · sin(α)) (4.5)

4.5 Rover and Additional Scene Elements

4.5.1 Rover
The rover is a 0.45×0.35×0.35m six-wheeled, self-driving vehicle, based on the ExoMy
3D-printed rover developed by the European Space Agency [5] (More details can be
found at https://esa-prl.github.io/ExoMy/).
It is equipped with a water tank and a battery, which acts as a main source of energy
and allows motion. Of the three wheel axles, only the front one is a steering axle: the
maximum wheel rotation angle is equal to 45° in both directions. The weight is ≈ 2.5
kg (when the water tank is empty).
The rover is characterized by four main parameters.

• Power [W ]: The nominal power of the rover. It is assumed to be around 100
W.

• Maximum Battery Charge [C]: The maximum capacity of the battery. Ideally,
the battery should allow the rover to stay powered on for several hours in a row.

• Maximum Water Capacity [L]: The maximum amount of water that can be
contained in the water tank. It is assumed to be around 4 L.

• Water Dumping Rate
[︁
L
s

]︁
: The rate at which water that is contained in the

tank is dumped on the ground. It is assumed to be around 0.05 L
s .

4.5.2 Dehumidifier
The Dehumidifier is a system to extract water from air. A condensate dehumidifer
uses a refrigeration cycle to collect water known as condensate: as greywater, it
contains fewer pathogens than other types of wastewater, and is generally safe to use

https://esa-prl.github.io/ExoMy/
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Figure 4.1: A 3D render of the ESA ExoMy rover, upon which the rover in the simulation
is based.

for landscape or crop irrigation purposes. In the simulation, the related graphic asset
is omitted.

4.5.3 Dispenser
The Dispenser is a machinery that hosts both a water reservoir to contain the water
produced on a daily basis by the dehumidifier, and a battery to store the energy
produced by the PV grid system. In the game, it is a cube whose size is not expected
to match the size of the real dispenser.

4.5.4 Docking Station and Water Pump
In order to transfer energy and water from the Dispenser to the Rover, two components
are needed.

A Docking Station is a circular platform where the battery of the Rover is recharged,
as the Rover stands still on top of it. The energy is transferred from the dispenser’s
battery to the rover’s. It plays a major role in the simulation, along with the Water
Pump, because the Rover must head towards the Station as soon as a sufficiently low
battery level is detected. If the Rover fails to reach the Station in time and its energy
supply is depleted, it will no longer be able to move, and will have to be manually
relocated and recharged through human intervention.

In a similar fashion, a Water Pump is a device that is used to refill the Rover’s water
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tank, by taking it from the water reservoir in the Dispenser.
In the simulation, it is sufficient that the Rover is nearby the Water Pump for the refill-
ing process to begin, while refilling obviously implies additional mechanical processes
in reality.

The Docking Station and Water Pump have respectively a fixed Recharging Rate
[W ] and Refilling Rate

[︁
L
s

]︁
.

4.6 Weather Engine
Note: In the simulation, the graphic asset for the photovoltaic panels grid is omitted.
While some degree of arbitrariness could be tolerated for the values of some of the
parameters hitherto described, there are physical quantities whose value should be
closely aligned with real statistical measures for the sake of accuracy. Hence the need
to devise a system to extract and refine data obtained from public Representational
State Transfer (REST) API calls to services which make such measures available to
the general public. For each parameter, a table of the inputs (values of the parameters
for the HTTP GET request to the specific endpoint) and outputs (values that must
be returned by the API call in a JavaScript Object Notation (JSON) interchange file)
is provided. Note that the output values in the table do not necessarily correspond
to what is directly contained in the returned JSON file: instead, they are frequently
obtained via local extraction and manipulation of the contents of the file.

• Solar Energy Generation

Source: Photovoltaic Geographical Information System (PVGIS) by European
Commission
Base Endpoint URL: https://re.jrc.ec.europa.eu/api/v5_2/PVcalc

Name Type Notes
Latitude floating point The real-life latitude of the PV grid location, in

Decimal Degrees (DD).
Longitude floating point The real-life longitude of the PV grid location, in

Decimal Degrees (DD).
Power [kW ] floating point The nominal power of the PV system.

Loss floating point Sum of the power losses of the system (percentage
of the total energy delivered to the powerline).

Table 4.2: This table shows the parameters sent in a request to the PVGIS service.

Name Type Notes
Daily Energy Production [J ] floating point The energy produced during day-

time in a single day, assuming opti-
mal inclination and orientation an-
gles of the PV grid.

Table 4.3: This table shows the data to extract from the PVGIS API response.

https://re.jrc.ec.europa.eu/api/v5_2/PVcalc
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• Precipitation Statistics

Source: Open-Meteo
Base Endpoint URL: https://archive-api.open-meteo.com/v1/archive

Name Type Notes
Latitude floating point The real-life latitude of the area, in Decimal Degrees

(DD).
Longitude floating point The real-life longitude of the area, in Decimal Degrees

(DD).
Table 4.4: This table shows the parameters sent in the request to the Open-Meteo service.

Name Type Notes
Cumulative Precipitation [mm] floating point The cumulative amount of pre-

cipitation in one year.
Rainy Days integer The number of days in one year

with cumulative precipitation ex-
ceeding a 2.5 mm threshold.

Table 4.5: This table shows the data to extract from the Open-Meteo response.

The parameters listed above are part of the weather engine of the simulation. They
are stored in dedicated configuration files, which are hosted in secondary memory and
read by the software at startup.

4.7 Gaussian Sampling
A margin of difference and uncertainty must be left to the initial daily values of the
available dispenser water and energy retrieved from the API for increased flexibility.
However, the values shouldn’t diverge from the expected ones to a great extent. For
this reason, the initial values for water and energy are respectively sampled from the
random variables

X1 ∼ N (µ1, σ
2
1) , X2 ∼ N (µ2, σ

2
2) (4.6)

where µ1 and µ2 are the values retrieved by the API for available daily water and energy
at the beginning of the simulation, and the two standard deviations are some aptly
chosen values. A reference to the implementation of the random sampling technique
shall be included in Chapter 6. A new implementation was needed because Unity only
exposes a library function for random sampling from a real-valued linear distribution
by default.

At this point, the reader may have noticed that the actual numeric values of most
parameters listed in the sections above are left blank. This is because the assignment of
their values requires prior knowledge about a tree’s behavior which is outside the scope
of expertise of a computer scientist. With some research or additional support from a
professional in the field of Forest Science, one could easily gather real values at their
discretion and fit them in the simulation.

https://archive-api.open-meteo.com/v1/archive


Chapter 5

Unity and C# Scripts Overview

In this chapter, a brief overview of Unity - the software used to build the simulation - and
of the C# programming language is provided to the reader.

Unity is a cross-platform game engine developed by Unity Technologies, released
in June 2005. According to Wikipedia, it “[. . .] is considered easy to use for beginner
developers, and is popular for indie game development. The engine can be used to
create three-dimensional (3D) and two-dimensional (2D) games, as well as interactive
simulations and other experiences.” [6]
The engine has been selected because of its relatively steep learning curve, and the
integrated support for reinforcement learning via the ML Agents library: more infor-
mation about the topic can be found in Chapter 5.
In Unity, entities are known as Game Objects, and their behavior can be controlled
through scripts. A Script is a file written in C#: a general-purpose high-level pro-
gramming language which, in a similar way to older languages such as C++ and
Java, supports classes, inheritance, polymorphism and other concepts pertaining to
object-oriented programming (although it is not the only supported programming
paradigm).
Like every other C# document, a Script has a .cs file extension. A Script contains
the definition of a derived class (which usually has the same name as the file) that
inherits from a base class called MonoBehavior: that is, a class whose instances shall
all be executed in a single thread (as per the Unity specifications). A Script can be
attached to a Game Object: the behavior of the object is controlled by overriding
a number of event functions (which are methods exposed by the base class) in each
Script. The widespread use of scripts that inherit from the MonoBehavior class averts
typical dangers that may be faced in concurrent programming, such as race condition
and deadlock. [7]
At runtime, event functions are invoked in several different moments. In Figure 1, the
predetermined order of execution for the event functions defined in the MonoBehavior
class is shown.
The Update function is called once per frame, whereas the FixedUpdate function is
invoked with a fixed time frequency: the FixedUpdate invocations are finely synchro-
nized with the calculation steps done by the Unity physics engine (employed e.g. to
determine if a collision between bodies has happened, or calculate the velocity and
position of bodies whose behavior is described by equations of motion.)
Many of these functions do not require overriding.
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Figure 5.1: The order of execution of the methods defined in the MonoBehavior class.
Source: https://docs.unity3d.com/Manual/ExecutionOrder.html

https://docs.unity3d.com/Manual/ExecutionOrder.html


Chapter 6

Structure and Purpose of the
Codebase

In this chapter, insight into the codebase which makes up the simulation is provided. Here,
a UML class diagram and an a description of the role fulfilled by each module can be found.

6.1 Overview
In Unity, one can notice the absence of a clear-cut distinction between components
that belong to the business logic (i.e. which have the sole purpose of storing the state
of the application) and presentation logic (i.e. which are only needed to display data
retrieved from the business logic to the user). Or rather, while it is possible to enforce
such a decoupling in one’s own codebase organization, the role of several components
provided in the Unity library is mixed. As an example, changing the value of the
fields of a Rigidbody class instance (a component that makes the Game Object it is
attached to act as a rigid body, in the sense of classical physics) may produce effects
that are immediately visible on screen, even though, technically speaking, it may be
seen as a modification of the underlying state of the application. Rather than adopting
a specific major software design pattern (such as the Model-View-Controller pattern,
or one of its derivatives) it was decided to build self-contained components, or rather,
scripts that contain fields that represent both the underlying state and presentational
embellishments. This is because the added complexity and explosion in the amount of
unique class definitions that would have resulted was deemed unnecessary, as well as
because of time constraints.

6.2 UML Class Diagram
Here the Unified Modeling Language (UML) class diagram for the codebase is shown.
However, with the exception of the Agent class (visible in the bottom right corner),
"ready-made" classes which are provided in the Unity DLLs are omitted from the
representation: it only shows those classes that have been modeled especially for the
simulation. (Fields and most methods are also omitted.)

15



6.2. UML CLASS DIAGRAM 16

Figure 6.1: The UML class diagram for the software.

Furthermore, an additional dependency between the classes AbsorptionArea and
WeatherEngine can be found. It is displayed in a separate image (lest the diagram in
the previous image become cluttered):

Figure 6.2: The dependency between classes AbsorptionArea and WeatherEngine.

Colors are used to group classes into clusters, according to the role they play in the
simulation.
When appended to a class name, the asterisk * means that said class inherits directly
from MonoBehavior (a class whose purpose is described in Chapter 5). The [enum]
mark means that the class is actually an enumerated type (i.e. a a data type consisting
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of a finite set of named values, which are then translated by the compiler - every
occurrence of the name in the code is replaced with a number).
Unsurprisingly (given the nature of the component-based architecture), the GameManager
class (which is a singleton) contains references to most of the core elements of the
scene and handles its regeneration.

6.3 Insights on the Modules

6.3.1 PV Energy and Weather Statistics Retrieval
It is unwise to issue a request to obtain a JSON file containing the information described
in Chapter 4 to the website that exposes the API endpoints every time the application
is started, or, worse still, in multiple occasions during the same run. This is because
a continuous reliance on a connection to the Internet is something most certainly
unwanted: in addition, a limit on the daily number of API calls which are handled by
the service may be imposed to users who cannot afford a costly subscription.
Therefore, a system to download the information only once (and then read it locally
whenever it is requested again) has been devised. For the connection to the Open-Meteo
API, the steps are the following:

1. The client (WeatherEngine) calls the RetrieveYearlyPrecipitation function
of an OpenMeteoLocal object, which must return a RainInfo object.

2. A check is performed to verify if a text file (with a .txt file extension) with the infor-
mation had already been downloaded in a location with an unchanging path (for in-
stance, in the Windows file system it can be "C:\ReforestationSim\openmeteo.txt").

3. If no file was found, the RetrieveYearlyPrecipitation function of the OpenMeteoRequester
is called by the OpenMeteoLocal object:

• Firstly, an OpenMeteoConfig object is constructed: the construction involves
opening and reading a configuration file (for instance, in the Windows file
system it can be "C:\ReforestationSim\openmeteo.txt") which contains the
values of the input parameters for the request.

• Then, the values are passed to a freshly created UnityAPIRequest object
(which acts as a wrapper for the HTTP GET request). A request is so created
and sent: if it is successful, the data received by the server is processed and
wrapped in a RainInfo object returned to the caller (which in turn will
return it to the first caller in the chain, which is WeatherEngine).

4. The information retrieved in the previous step is saved in a file with the same
path as the one in step 2.

A similar technique, if not somewhat simpler, is also employed for the extraction of
energy statistics from the PVGIS API, although no interface is used.

6.3.2 Continuous Storage
The ContinuousStorage class is used to model the battery as well as the water tank
and reservoir (via the WaterStorage derivate class). It can be extended to represent
any sort of container that contains a real-valued quantity of something and can be
loaded and discharged, regardless of the unit of measurement.
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Some of the public methods purposefully violate the Command-Query separation
principle (according to which a method should either produce a side effect or return
a value, but not both): in particular, the method used to take an amount of the
substance from the container both subtracts the amount and returns the subtracted
value (which can be less than the requested value if there wasn’t enough substance
left), while the method used to add an amount of the substance only adds up to the
maximum capacity, returning the remainder. This makes for a versatile system to
guarantee that there are no losses while transferring the substance from a container to
a different one, regardless of the transfer rate.

6.3.3 Gaussian Sampling
The implementation of the sampling from a normal (Gaussian) distribution in the
GaussianSampling class is based on the Marsaglia polar method [8], which in its
original formulation allows to sample from N (0, 1). By multiplying the obtained value
by the standard deviation σ and adding µ we obtain a new value, as if it were sampled
from N (µ, σ).
However, the value must not be unreasonably small or large. Trying to “clamp”
systematically the value in an interval through addition or subtraction could result in
a lot of values “amassing” in the infimum and supremum of the set: this would induce
a bias towards the two bounds being picked by the function.
Therefore, the algorithm performs a number of iterations until the sampled value falls
within the interval: the number of iterations is finite, in order to prevent a potentially
infinite (though very unlikely) loop from occurring.

6.4 Design Patterns Employed

Factory Method: Allows to create objects without specifying the exact class that
will be instantiated: it is needed for the generation of IScoreFunction objects.
Even though for now there is only one concrete type, we want the Score Function
to be easily substituted with a more complex one in the future, which better
models the thriving or decay of a tree: that is why an interface was adopted.
The Tree class does not have to be aware of the concrete type of the function:
since the function has to be regenerated on a daily basis - given that the target
amount of water also changes - a dedicated, specific creator class is used to handle
the regeneration.

Proxy: Lets one provide a substitute or placeholder for another object. When the
WeatherEngine requests the Open-Meteo data, it doesn’t have to know that
they could have been already downloaded in the past. OpenMeteoLocal acts
as a “layer” that attempts to retrieve the data locally and in doing so prevents
unneeded API calls, unbeknownst to the client.

Strategy: Enables selecting an algorithm at runtime. Used with GridSampling in
the context of the generation of the 2D points where the trees should be located
in the map: allows one to easily switch with a different algorithm, such as the
Poisson disk sampling [9].

Singleton: Lets one ensure that a class has only one instance, while providing a global
access point to this instance. It is used for the GameManager class, as it wouldn’t
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make sense to have multiple instances of the one element which has full control
over the simulation loop.



Chapter 7

Visual Rendering of the Scene

This chapter is devoted to showcasing a variety of captioned images, showing the game
renders.

Almost all the images that follow are screenshots of the “Scene View” in the Unity
GUI (graphic user interface), besides the last one, which shows the “Game View”.
The core difference between Scene View and Game View is that in the former the user
is allowed to inspect and click on any Game Object, drag the camera, zoom in/out as
they please and perform many more actions, while the latter is basically tantamount
to what the user would see while playing the actual videogame, outside of Unity. As
one can see, there is a camera attached to the Rover: further considerations on the
rover being endowed with an image sensor can be found in Chapter 8, Section 3.2.
All the images are files with a PNG (Portable Networks Graphic) lossless format,
having a 32-bit depth (meaning that 32 bits are used to represent one pixel in the
image).

Figure 7.1: The rover, docking station (the yellow circular platform), dispenser (the light
blue cube), and water pump (the dark blue parallelepiped).
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Figure 7.2: The Desert stage of the simulation. Only a few trees are present.

Figure 7.3: The Mixed stage of the simulation. The amount of trees is noticeably higher
than in the previous stage.
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Figure 7.4: The Forest stage of the simulation. The area is mostly covered in trees.

Figure 7.5: Screenshot of the game view, including the labels in the GUI. The area is viewed
from the rover’s perspective. In the corners a number of labels are visible: the
current speed of the rover, the local time and number of elapsed days since the
start, the amount of energy and water stored both in the rover and dispenser.
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Figure 7.6: A close-up view of a tree. The absorption area of the tree is delimited by a blue
circle (though the area is implemented as a spherical collider).



Chapter 8

The Rover as a ML-Agent in
Unity

In this chapter, an overview of the concept of Reinforcement Learning as a whole, its
implementation in the Unity ML-Agents Toolkit and the configuration of the Agent for the
Rover is provided.

8.1 Overview of Reinforcement Learning
Machine Learning is a field of computer science and a branch of AI (Artificial Intel-
ligence) which, broadly speaking, concerns with the development of software agents
that are able to improve their effectiveness automatically with experience, thanks to
the usage of underlying mathematical optimization methods. Reinforcement Learning
(RL) is one of the three main categories of Machine Learning techniques (along with
Supervised and Unsupervised Learning). Reinforcement Learning

“[. . .] is the type of learning guided by a specific objective. An agent learns
by interacting with an unknown environment, typically in a try-and-error
way. This is the most common way of learning for a child, who does
something and observes what it happens. The agent receives feedback in
terms of a reward (or punishment) from the environment; then, it uses
this feedback to train itself and collect experience and knowledge about
the environment. Reinforcement Learning problems are related to learning
which is the best action to perform, situation-by-situation, in order to
maximize the aggregated reward. RL agent has to learn a policy (i.e. a
complete mapping between situations and actions) by trying actions out
without any domain expert has told it, as in many other forms of machine
learning.” [10]

Without delving into the mathematical foundations, it can be said that Reinforcement
Learning revolves around four main concepts:
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• Actions: the “degrees of freedom” of the entity that needs to be trained;

• Rewards: feedback received from the environment as a consequence of events
occurring;

• Observations: pieces of information about the state of the environment, which
are analyzed to infer what had happened when a reward was gained, in order to
be able to reproduce the behavior;

• Policy: the strategy that suggests the actions to take, progressively upgraded by
the Reinforcement Learning algorithm upon receiving Observations. Essentially,
it is a map from Observations to Actions.

All of the elements above must provided to the training algorithm in the form of numeric
values - a requirement which demands the concoction of a suitable mathematical model
of the environment.
The goal is to maximize the cumulative reward obtained by the agent in a given
timeframe, which in Unity corresponds to an Episode.

8.1.1 Training and Inference
While the details may be different, every branch of Machine Learning involves a
Training Phase and an Inference Phase.

Training Phase

It involves building a model from sketch using the provided data, a process which can
potentially last several hours or days, depending on the required specialization level.
In the Unity Reinforcement Learning, the training phase learns the optimal policy
through guided trials.

Inference Phase

It involves applying the model built during the Training Phase to new, previously
unseen data. The agent observes and takes actions “in the wild” using its learned
policy.

8.2 The Unity Implementation: ML-Agents Toolkit
The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source
project that enables games and simulations to serve as environments for training
intelligent agents. It provides several implementations for Reinforcement Learning,
Imitation Learning, Neuroevolution and other methods to train intelligent agents for
2D and 3D games, and is based on the PyTorch library.

8.2.1 PyTorch
PyTorch is an optimized free and open-source (FOSS) framework for Machine Learning.
It is a port of the now superseded Torch library, originally written in C but now rewritten
in the Python programming language. In PyTorch, computations are performed using
data-flow graphs: the output of the learning process is an Open Neural Network
Exchange-compliant model, having the .onnx file extension, that can be associated



8.2. THE UNITY IMPLEMENTATION: ML-AGENTS TOOLKIT 26

with an Agent. The learning process described here makes use of a pre-implemented
algorithm made available by PyTorch (implementing a new one is an immensely complex
operation, which requires advanced knowledge of the foundations of Machine Learning
itself).

8.2.2 Steps and Episodes
In the Unity jargon, a Decision is the specification produced by a Policy for a single
action to be carried out given an observation. A Step, on the other hand, corresponds
to an atomic change of the engine that happens between two or more Agent decisions.
The training process can be divided into Episodes: after the completion of a given
number of Steps, modifications to the scene can take place. Such number can be set
(or read) through the MaxStep field of the Agent class.
The rationale behind splitting the training into episodes is the following: if one sets
the max step value to a reasonable estimate of the time it should take to complete a
task, agents that haven’t succeeded in that time frame will start a new training episode
rather than continue to fail to obtain rewards.
An Episode should be lengthy enough to guarantee that some rewards will be obtained
before the end but, at the same time, its length (in terms of number of Steps) should
be limited. The end of an Episode can be forced externally: for example, after a fixed
or variable amount of seconds have passed since the termination of the previous one.

8.2.3 Requirements of an Agent Script
Besides those of an ordinary Script, an Agent has specific characteristics, including
properties and methods that need to be overridden by the programmer.

Parent Class

A ML Agent script needs to inherit from the Agent class, provided by the Unity ML
Agents library, and not from MonoBehaviour.

Override Method: Initialize

The lines of code normally executed within the body of the Start method (see Figure
5.1) must be moved inside the body of the method named Initialize.

Override Method: Heuristic

The Heuristic method has the following signature:

public override void Heuristic(in ActionBuffers actionsOut)

The object identified by the formal parameter actionsOut has two public fields named
ContinuousActions and DiscreteActions. The in keyword signifies that the param-
eter is passed “by value” and not “by reference”: it is the equivalent of the C++ syntax
ActionBuffers& actionsOut. It is needed in this context because ActionBuffers
is a struct, and not a class: in C#, class-type objects are passed “by reference” to
functions by default.
The type of ContinuousActions is ActionSegment<float>, whereas the type of DiscreteActions
is ActionSegment<int>. Here, the generic programming technique is used: the angle
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brackets, as in C++, enclose the type parameter of the class. The ActionSegment<T>
class has a member called Array of type T[], where T is the type parameter: Array
inherits the type parameter of the object that contains it.
It follows that we are going to have two distinct arrays of type float[] and int[].
Each cell of the array must be assigned a numeric value that depends on the current
state of an input mechanism: for instance, if the left arrow key is fully pressed in a given
moment the value will be -1, or +1 if the right arrow key is pressed instead. The brain
will take control of the inputs and send the signals itself, as if it were controlling the
mouse or keyboard: however, a mapping between inputs and actions to be performed
must be created beforehand.

The difference between discrete and continuous actions lies in how discrete actions
have a fixed number of input values (thus the integer-valued array), whiile continuous
actions are linked to inputs that can assume all the real values within a certain range.
Continuous actions may be needed to process movement along a spatial axis, while
discrete actions can be used to order that an “atomic” action be performed.

Override Method: OnActionReceived

The OnActionReceived method has the following signature:

public override void OnActionReceived(ActionBuffers actions)

When the OnActionReceived method is invoked by Unity, the same parameter as
in the Heuristic function is passed. This method is invoked regardless of the inference
or training mode being active. The instructions needed to perform the actual in-game
operations “requested” in the Heuristic method should be executed in this method.
In the example of the previous section, the lines of code that cause an object to move
left or right along the Z axis should be located in OnActionReceived.
This is done by extracting the “pure” input values stored in the arrays. Note that the
order of the elements in the array is important: the correct index of each input value
in the array must be fixed and known.

Override Method: CollectObservations

The CollectObservations method has the following signature:

public override void CollectObservations(VectorSensor sensor)

Observations are numeric values. One of the overloads in the AddObservation group
of methods of the sensor object must be called: howsoever, this will result in the
AddFloatObs(float) being invoked. All values should preferably be in the [0,1] or
[-1,1] range in order for the algorithm to converge at a higher speed.
As described earlier, the training algorithm needs observations to get the picture of
the inputs that led to a higher reward being obtained than in the previous episode,
and, in doing so, try to replicate them or improve their effectiveness.

Override Method: OnEpisodeBegin

The OnEpisodeBegin method has the following signature:
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public override void OnEpisodeBegin()

Every operation which must be necessarily performed in the beginning of each
Episode must be executed in this handler. The method will be regularly invoked upon
the completion of a fixed number of steps, or manually (by calling the EndEpisode
method).

Once the methods described earlier have been overridden and the training process
has started, the agent simulation loop is orchestrated as follows:

1. Calls the OnEpisodeBegin function for each Agent in the scene.

2. Gathers information about the scene. This is done by calling the CollectObservations
function for each Agent in the scene, as well as updating their sensor and collecting
the resulting observations.

3. Uses each Agent’s Policy to decide on the Agent’s next action.

4. Calls the OnActionReceived function for each Agent in the scene, passing in the
action chosen by the Agent’s Policy.

5. Calls the Agent’s OnEpisodeBegin function if the Agent has reached its Max
Step count or has otherwise marked itself as EndEpisode.

8.3 The Rover
As seen in the previous section, the Rover class does not have MonoBehaviour as its im-
mediate parent class: instead, it is Agent (which in turn is derived from MonoBehaviour
as well). This allows the invocation of the specific methods listed in the previous
section, needed for the algorithm to understand the actions and observations involved.

What follows is a group of tables where specific actions, observations and rewards
(the three core elements of RL) are stated.
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8.3.1 Actions

Name Type Values Range Description
Forward Motion Continuous [−1, 1] The value is 1 if it the maximum

forward speed is desired, 0 if the
rover is standing still, -1 for maxi-
mum backwards speed.

Steering Angle Continuous [−1, 1] The value is 1 for a 45° right
steering angle, 0 if the wheels are
aligned with the vehicle’s body, -1
for a 45° left steering angle.

Brake Discrete {0, 1} The value is 0 if the brake is not
activated in a given moment, 1
otherwise.

Water Dumping Discrete {0, 1} The value is 0 if in a given moment
the water is not being dumped
on the ground (with the dumping
rate mentioned in Chapter 4), 1
otherwise.

Table 8.1: The actions that the rover can perform as an Agent in the context of RL.

8.3.2 Observations
Needless to say, the physical rover is not an “all-knowing” entity, unlike the agent in
the simulation. Observations should be decided sensibly, because they must pertain
to quantities that can be physically measured through sensors and devices that can
be mounted on a real vehicle and must be relatively affordable, budget-wise. For
instance, the rover can be equipped with a Global Positioning System (GPS) sensor to
understand its geographic location and the distance from the other elements; a camera,
in order to know if a tree is in sight; a rain sensor, to understand whether it’s raining
or not in a given moment. All of the aforementioned elements can be powered by the
same battery used to allow motion, or by an auxiliary one.

Note that the following observations are not guaranteed to yield a satisfactory
model. They have been chosen speculatively and might be sub-optimal; this is because
the devising of suitable RL observations and rewards requires a lengthy, careful "trial
and error" approach which has not been attempted at the time of writing, owing to
time constraints. Still, they are the product of a preliminary evaluation of the possible
outcomes, no matter how naive.

All vectors are defined in R3 and contain x, y, z coordinates used to express
distances in the 3D space. Note that the vectors have been normalized (though not
in an "ordinary" fashion: each component has been brought in the [0, 1] range by
multiplying the vector by the scalar 1

100 since the area is 100 m wide, and a distance
across one axis can be of at most 100 m).
The observations are collected on every Fixed Update, which by default
takes place every 0.02 seconds.
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Name Type Description
Distance between Rover and
Docking Station

vector Obtained either by subtracting
v2 to v1, or the other way around:
so long as the position of the
rover location vector and the
other vector in the subtraction
is consistent across all observa-
tions.

Distance between Rover and Wa-
ter Pump

vector

Residual Rover Battery Percent-
age

floating point

Residual Rover Water Tank Per-
centage

floating point

Residual Dispenser Battery Per-
centage

floating point

Residual Water Reservoir Per-
centage

floating point

Table 8.2: The "one-of-a-kind" observations collected during the training.

The observations in the second table are collected for each tree in the environment
and stored in a variable length buffer sensor. The BufferSensor component makes
use of an attention module [11], which can be useful in situations in which the Agent
must pay attention to a varying number of entities. Attention mechanisms enable
solving problems that require comparative reasoning between entities in a scene: this
is because comparisons should be performed to determine which tree the Rover should
move towards next.

Notes on the Orientation Index

The Orientation Index is a scalar product (or dot product) between the normalized
vector that represents the distance v1 − v2 between the rover and a target (from now
on vd) and the normalized vector representing the Z (or "forward") axis of the rover in
world space (from now on vf ).
The quantity

vd · vf (8.1)

is equal to 1 if the rover facing towards the target, 0 if the rover is rotated by 90°,
and -1 if it is facing in the opposite direction.
This observation is needed in order to "aid" the rover in heading towards a target in
the most efficient way (i.e. by moving forwards in a straight line, rather than zigzag
or even backwards). A “coupled” reward will be needed to continuously dissuade the
index from becoming smaller than 1 (See the subsection below).



8.3. THE ROVER 31

Name Type Notes
Distance between Rover and
Tree

vector

Tree was Visited boolean flag (0/1) There exists a dynamic-length
array where references to trees
that were visited (meaning
that the rover entered the Ab-
sorption Area) during the on-
going episode is kept: the ref-
erences are cleared at the be-
ginning of a new episode.

Is Raining boolean flag (0/1) Rain makes the provision of
water to a tree unnecessary, if
not even harmful. Measure-
ment of the precipitation in-
tensity (instead of assuming
some fixed rate) could result
in an improvement.

Orientation Index floating point It is explained above.
Table 8.3: The observations collected during the training for each tree in the scene, to be

stored in a variable-length vector.

8.3.3 Assumptions on the Rewards
As the agent becomes increasingly skilled at doing certain things, new rewards should
be added to mirror the developer’s intent to teach a new behavior. A specific behavior
should be coupled to an insulated “batch” of rewards and penalties, which is not initially
active and can be activated later on when needed, during “breaks” in a training run
(PyTorch allows the user to save multiple “checkpoints” that are created when a certain
number of steps is reached, and resume the training from one of those checkpoints).
It is worth mentioning that while the reward system can be altered during pauses in a
single training run, the observations must necessarily stay the same throughout the
entire run. Sometimes it may be useful to “bind” together rewards and observations:
in the case of the Orientation Index (see the previous subsection) the value can be
observed while, at the same time, an appropriate reward or penalty can be given (for
example by modeling a smooth reward function f(x) with a global maximum for x = 1
and a global minimum for x = −1, where the argument x is the Orientation Index
itself). Of course, this is not always possible (or recommended).
In the following chapter, which is devoted to the training, we will indeed return to the
subject of rewards.



Chapter 9

Training Expectations

In this chapter, “non-prescriptive” hints, suggestions as well as expectations on the training
process introduced in the previous chapter are provided to the reader.

Training a Reinforcement Learning agent, depending on the sophistication of the
reasoning that the agent must be rendered capable of, often proves to be far from an
easy task. While some training sessions have been attempted, the hardships faced
while trying to induce the rover to maintain an acceptable cruise speed when moving
towards a target (even in the presence of proximity-based rewards) only hint at how
time-consuming the full learning process might be if the rewards and observations
system is sub-optimal.
One of the unavoidable risks of RL is that the agent learns a behavior which is slightly
or thoroughly different from the desired one - this doesn’t happen because of a flawed
learning algorithm, but due to poor choices in the nature of rewards (the agent finds a
way to “cheat” and maximize the reward function in a way that the programmer was
not aware of) or overlooking of constraints the agent is subject to in real life.

The goal of the training in its entirety is to minimize the cumulative loss
of Health Points of the trees (something which obviously requires main-
taining an ever-growing supply of water, and consequently of energy) over
time as well as the expenditure of water and energy in a time frame that
could possibly last months, or even years: this while preventing depletion
of the rover’s battery or the rover itself getting stuck. Ideally, the rover should
successfully develop an ability to approach all the trees in the area, one by one, and
water them regularly (potentially refraining from doing so in the presence of rain).
Since the battery does not necessarily have to be fully recharged once the station is
reached, the rover should concoct a “schedule” and plan ahead to recharge itself and
refill the tank on a regular basis. However, the rover should also be careful not to
try to reach a point too far from the docking station when the battery charge is soon
to run out. All this should aim at keeping the Health Points of the trees constantly
high: a major penalty should be carried in the event of a tree dying owing to water
deficiency protracted over several days.

The number of rainy days in a year was extracted from Open-Meteo because we
wanted the probability of rain at the beginning of an Episode to correspond to that
very number, divided by 365 (the number of days in one year): however, a slightly
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different approach can be tried. The point is that, while taking rain into account,
there should be no “overfitting” either: the chance of rain should reflect that of the
geographical location that is meant to be simulated.

One of the parameters of the Open-Meteo API call allows the user to choose the
reference month in the specified location: this functionality should be exploited because
the rover should be able to water an area in lieu of human workers for a period that
spans multiple months, or even one or more full years, similiar to how a Mars rover
mission can last two or more Earth years.

The position and number of trees in the area can can vary significantly. It was
chosen to resort to the RL approach because treating this problem in terms of a
multivariate mathematical optimization problem (which can be solved by a determinis-
tic algorithm) may prove very difficult, given the inherent complexity and the sheer
number of variables that come into play. As seen in the Specifications, a multiple-stage
system (each “stage” representing a different stadium in the foreseen evolution of the
forest) has been devised. The training should ideally be performed in an incremental
fashion: a certain amount of episodes set in the first stage, with very few trees, followed
by more episodes set in the second stage, and so on.
This is because the earliest part of the training must necessarily focus on the movement
technique before anything else - much before any capability for “high-level” reasoning
regarding the number of watered trees, health percentage and the likes is pursued.
During this phase, which will involve trying to reach a fixed target in the shortest
amount of time and learning to retain the same pace, the area should not be flooded
with trees that would potentially act as obstacles - while circumvention of obstacles
can (and ought to) be pursued.

Rewards should be given with a parameterized frequency that can be tuned (coher-
ently with the “trial and error” approach that epitomizes RL), while observations can
be normally recorded during Fixed Updates.
The training can be performed on a local machine as well as on cloud infrastruc-
ture. It is possible to set up an Elastic Compute Cloud (EC2) instance on Amazon
Web Services (AWS) for training ML-Agents environments, or a Container or Virtual
Machine on Microsoft Azure (further indications can be found at https://github.com/
Unity-Technologies/ml-agents/blob/develop/docs/Training-on-Amazon-Web-Service.
md and https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/
Training-on-Microsoft-Azure.md respectively). In order to avoid a potential waste
of time, it is of vital importance to mention that a single “fruitful” training run may
start exhibiting signs of a somewhat successful learning after no less than a several
hundred thousand steps, if not over a million: in the worst case, several runs are
expected to be attempted just to see their results completely discarded and start again
with a new one. This, along with the training being classified as a “heavy load” task in
terms of CPU and GPU usage, is why one may be led to consider training remotely,
benefiting from a reduced demand for user interaction and supervision in doing so.

https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-on-Amazon-Web-Service.md
https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-on-Amazon-Web-Service.md
https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-on-Amazon-Web-Service.md
https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-on-Microsoft-Azure.md
https://github.com/Unity-Technologies/ml-agents/blob/develop/docs/Training-on-Microsoft-Azure.md


Chapter 10

Conclusions

10.1 Final Remarks
The “digital twin” that was created during an internship at Piratech s.r.l., no matter
how inaccurate in its current state, will hopefully be used as a work bench: in fact,
the author believes that its strength lies in its modularity. Thanks to the adoption of
code-level interfaces, many modules can be easily replaced over time with ones that
reflect real-life behaviors with increasing accuracy. Moreover, the RL approach is not
the only one that is guaranteed to work: different kinds of ML-based approaches (such
as Imitation Learning) can be also tried while relying on the same infrastructure and
codebase, although this may bring about the need for some degree of refactoring.
No real pretensions to strongly mirror reality was had in the first place. The very
limited training (certainly not in terms of time, but in terms of achieved goals) that was
performed, which was mainly devoted to teach movement from one point to another in
the area, was partly underwhelming but encouraging at the same time. The author
believes in the existence of large room for improvement, which can be attained through
tweaks and corrections in the reward or observation system.

10.2 Final Balance of the Internship
The following table contains estimated duration for each major activity which would
have taken place during the internship at Piratech s.r.l., with a total of 300 hours.
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10.3. EXPECTATIONS FROM THE INTERNSHIP: THE AUTHOR’S PERSPECTIVE35

Estimated Duration (hours) Description of the activity
20 Learning Unity and the C# language
20 Learning the basics of ML-Agents in Unity

200

Designing the virtual world
20 Random generation of terrains
20 Implementing the atmospheric engine
20 Implementing the ecologic engine
20 Obtaining stylised 3D models for the rover and trees
20 Displacement of the game assets in Unity
40 Creation of the C# scripts
20 Devising the game loop
20 Determining the ML goals according to the stage
20 Testing the ML-Agents

40 Creation of a pipeline to interpret the results of the training
40 Simulation of the reforestation process

While a majority of the tasks have been successfully carried out, testing the Agent
proved a very long task, to the extent that the 80 hours that ideally should have been
devoted to the last two activities in the table (creating a pipeline to interpret the results,
then conducting a full-fledged simulation of the reforestation process) were entirely
spent training the rover. On the other hand, prior knowledge of the C# language was
already possessed by the developer (and author of the present document): this rendered
the coding process substantially easier. However, it must be remarked that training the
Agent was not the primary goal of the internship. No insurmountable difficulties were
faced while designing the simulation and writing code, with one small exception: rather
than use Blender to create fresh new 3D models, it was decided to resort on pre-built,
downloadable assets from the Unity Asset Store website (assetstore.unity.com) for
the trees and rain. This because systematically exporting meshes from Blender to
Unity while preserving the original textures of the models was deemed too lengthy a
process.

10.3 Expectations from the Internship: The Author’s
Perspective

This internship gave me a strong chance to test my understanding of the principles of
Object-Oriented Programming (OOP) in a real-life scenario, in contrast to the work I
did in the context of academic assignments so far. The realization that I overcame the
difficulties in the coding part without ever needing to seek help from the Chief Executive
Officer (CEO) or other more experienced co-workers certainly boosted my confidence.
It may be argued that a slightly more consistent oversight of the work from the CEO
- who had to deal with numerous other tasks in the meantime - could have translated
into a more successful end result: yet, from a different perspective, this made me reflect
on the importance of autonomy as a skill in the working field.
As for the “tech stack” of the project, we could say I didn’t really have any specific initial
expectations about what I would have learned: in the end I am glad to have gained
some valuable knowledge of the inner workings of Unity, along with the fundamentals
of Reinforcement Learning, which is a field I had no prior exposure to.

assetstore.unity.com


Acronyms

API Application Program Interface. 1, 37

JSON JavaScript Object Notation. 11, 37

REST REpresentational State Transfer. 11, 37

RL Reinforcement Learning. 24, 37

UML Unified Modeling Language. 15, 37
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Glossary

API An application programming interface (API) is a set of rules that enables a
software program to transmit data to another software program. APIs enable
developers to avoid redundant work; instead of building and rebuilding application
functions that already exist, developers can incorporate existing ones into their
new applications by formatting requests as the API requires. A message directed
at an API is known as an “API call”. API calls have to be formatted in accordance
with the API’s requirements in order to work. The API’s requirements are called
its “schema”. The schema also describes the types of responses that are provided
to each request. 36

JSON JSON (JavaScript Object Notation) is an open standard file format and data
interchange format that uses human-readable text to store and transmit data
objects consisting of attribute–value pairs and arrays (or other serializable values).
It is a common data format with diverse uses in electronic data interchange,
including that of web applications with servers. 36

REST REST (Representational state transfer) is a software architectural style that
was created to guide the design and development of the architecture for the
World Wide Web. REST defines a set of constraints for how the architecture of
a distributed, Internet-scale hypermedia system, such as the Web, should behave.
36

RL Reinforcement learning (RL) is an interdisciplinary area of machine learning and
optimal control concerned with how an intelligent agent ought to take actions in
a dynamic environment in order to maximize the cumulative reward. 36

UML The unified modeling language (UML) is a general-purpose visual modeling
language that is intended to provide a standard way to visualize the design of a
system. UML provides a standard notation for many types of diagrams which
can be roughly divided into three main groups: behavior diagrams, interaction
diagrams, and structure diagrams. The specification for UML was first introduced
in 1997 by computer scientists J. Rumbaugh, I. Jacobson and G. Booch. 36
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