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Abstract

In this work we address the problem of the derivation and the study
of a mixed formulation of linear viscoelasticity, focusing on the case of
the Kelvin-Voigt model. Namely, we construct an equivalent mathematical
model in which the stress tensor appears as independent variable and its
natural regularity is explicitly enforced.

In the introductory part of this work we review the derivation of the
mixed formulation for static linear elasticity. Indeed, we aim to extend
the duality techniques underlying such construction to the more general
context of viscoelastic deformations.

This task is accomplished in the second part of the present work. Where,
after studying existence, uniqueness, and fine regularity properties of the
solution of the primal formulation of viscoelastic waves propagation, we
manage to find a variational characterization of the solution of the primal
problem that well fits in the above mentioned duality technique. We finally
arrive to a mixed formulation of viscoelasticity.

In the last part of this thesis we present a mixed finite elements dis-
cretization which is conformal with respect to the functional spaces con-
sidered in our mixed (infinite dimensional) formulation. A simple two-
dimensional test case is also implemented and presented as an example.
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Introduction

Viscoelastic models

Elastic and viscoelastic models are used, in the framework of continuum mechanics, to describe
the behaviour of certain materials, e.g. compressible fluids, gases, as well as most solids, in
presence of a (possibly time dependent) load. Elastic models are conservative mechanical sys-
tems, indeed they are used for describing the mechanical response of the so-called purely elastic
materials, i.e., media for which the internal friction can be neglected. In contrast, viscoelastic
models are used when the friction is non negligible with respect to the time and spatial scale of
the quantity of interest, leading to a dissipative system that, from a mathemtical point of view,
can be casted in the framework of parabolic PDEs.

In the 17th century R. Hooke started the study of the modelization of elastic and viscous
deformation in the seminal work [10], while the first treatment of this subject taking into account
several modes of deformation is due to T. Kelvin in 1865, see e.g. [17]. The modern treatment
of viscoelasticity relies upon the coupling of the Newton’s laws

ρutt = div(σ) + f,

with a stress-strain constitutive equation defining σ. Here u denotes the (Lagrangian) displace-
ment vector field, σ is the stress tensor, and f denotes the load. We warn the reader that
hereafter we use the notation · for vectors and · for tensors, and the subscripts ·t, ·tt denote
time derivatives. The stress-strain constitutive equation relates the symmetric gradients of the
displacement, ϵ(u), and of the velocity, ϵ(ut), with the stress tensor σ.

In the literature there is a number of models of viscoelasticity obtained by different choices of
the constitutive equation whose mathematical justification is given by possible combinations (in
series and/or in parallel) of springs and dash-pots. Among this class of models we mention the
Maxwell, the Kelvin-Voigt, and the Burgers models. Namely, the Maxwell constitutive equation
(typically used for modelling fluids) is obtained by combining a spring and a dash-pot in series,
the Kelvin-Voigt constitutive equation (typically used for modelling solids) is obtained by com-
bining a spring and a dash-pot in parallel, and the Burgers models by combining the Kevin-Voigt
and Maxwell in series, see e.g. [6, Ch. 1].

It is well-known that, if we attack the solution of the above models working with the dis-
placement as unique unknown, some issues arise. This difficulties are even stronger when elastic
or viscoelastic waves propagates in an heterogeneous or non isotropic media, a typical framework
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for many practical applications. Indeed, even if the stress tensor given by the exact solution of
the infinite dimensional model (by plugging the displacement and velocity gradients in the con-
stitutive equation) possesses L2 divergence, the finite dimensional solutions obtained by classical
discretization methods (e.g., spectral, finite elements, etc.) do not provide a stress tensor with
the same regularity.

We remark here that the condition div(σ) ∈ L2 allows to trace the flux of the normal com-
ponent of σ across any rectifiable hypersurface, i.e., the total force acting on the hypersurface:
in many applications this is the quantity of interest. Even worse, it can happen that the hy-
persurface along which we aim at tracing σ separates two media characterized by very different
constitutive equations. Moreover, from a numerical point of view, differentiating the displace-
ment, in order to obtain the stress tensor, implies a loss of accuracy.

These reasons justify the search for a matematical modelization of the propagation of elastic
and viscoelastic waves that entails the suitable regularity of the stress tensor σ.

For certain PDEs that present the above described difficulties, as e.g. Stokes and Poisson
problems (see e.g. [4] and reference therein), it can be introduced the so-called mixed formulation,
in which, roughly speaking, the equation is splitted into a system, that includes an additional
variable. This procedure can be carried out in order to enforce the regularity of the additional
variable or for treating it as the main quantity of interest.

In the last decades several authors studied different mixed formulation of viscoelastic models,
see [1], [2], [13], and [14]. In the preliminary study that we made of the subject we could not find
any approach that satisfies the following properties: a formal variational derivation of the mixed
formulation is provided, the natural H(div,Ω)sym regularity of the stress tensor is enforced both
in infinite and discrete version of the model, and a stable mixed finite element discretization of
the model is provided.

Our study

In this work we focus on the Voigt viscoelastic model

σ = Ael(ϵ(u)) +Avis(ϵ(vt),

where Ael(τ) = 2µelτ + λel tr(τ)id and Avis(τ) = 2µvisτ + λvis tr(τ)id. In this setting the
Newton’s law complemented with homogeneous Dirichlet conditions and initial conditions reads
as ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρutt − div(Ael(ϵ(u)) +Avis(ϵ(vt))− f = 0

ut|∂Ω(·, t) = 0

u|∂Ω(·, t) = 0

ut(·, 0) = u1(·)
u(·, 0) = u0(·)

. (1)

For this set of equations we address the problem of deriving a mixed formulation and mixed
FEM discretization enjoying the three properties we have defined above.

This task is accomplished following four steps. First, we study existence, uniqueness, and
regularity of solutions of (1) in the framework of second order evolution equation in Hilbert
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spaces, see [15]. In particular, we were able to verify all the properties that are needed to prove
the regularity of the resulting stress tensor (see Corollary 2.3.1), provided natural conditions on
the initial data hold.

As second step, we characterize the solution of (1) as the unique minimum of a variational
principle. Unfortunately, due to the dissipative nature of the system, we could not construct an
objective functional starting from Hamiltonian or Lagrangian mechanics, as it can be done for
very simple systems as, e.g., a damped harmonic oscillator. In contrast, in order to construct
such variational principle, we use the solution of (1) itself (see (2.101)) as a parameter in the
objective functional. This procedure, that apparently is running in circles, would not concern
the reader, since our final aim is only to construct a mixed formulation for the viscoelastic model.
We arrive to the following

inf
v∈Γ

{︃ ∫︂ T

0

∫︂
Ω

ρūttu+ (2µvisϵ(ūt) + λvisdiv(ūt)id) : ϵ(u)

+ µel|ϵ(u)|2 +
1

2
λel|tr(ϵ(u))|2 dx− ⟨f, u⟩

L2(Ω)2
dt

}︃
,

where Γ = L2(0, T ;H1
0 (Ω)

2).
In the next step we play with the duality theory of perturbation of variational problems (see
[8]) and, starting from our variational principle, we construct its dual and mixed formulations.
Namely, the latter reads

= inf
p∈Y

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4µel
|pD − 2µvisϵ(ūt)

D|2 + 1

8(µel + λel)
|tr(p)

− 2(µvis + λvis) tr(ϵ(ūt))|2 − ρūttu+ f(x, t)u+ div(p)u dx dt

}︃
,

where W = L2(0, T ;H(div,Ω)sym) and Λ = L2(0, T ;L2(Ω)2).
Such an approach has already been used for introducing the dual and the mixed formulations of
several steady-state problems, such as linear elasticity and Poisson (see e.g. [4] [8]). We remark
that in our problem we have to overcome the difficulty of working with an evolution equation,
and the drawbacks arising from its dissipative nature.

In the last step of our construction, that can be thought as main result of this work, we prove
that the solution of the mixed formulation (2.126) has an unique solution that coincides with the
solution of (1), see Theorem 2.12.

The study of a stable finite element discretization scheme of our model has been only partially
carried out. This is mainly due to the time limits and to the fact that the implementation and
the testing of the scheme we designed are highly non-trivial. In the last chapter of this work
we present a numerical approximation scheme where the spatial discretization is performed by
a conformal Galerkin method using vectorial P 1

0 elements for the displacement and the velocity
fields, and a subspace of the symmetric tensor discontinuous Galerkin elements of order 2 where
theH(div) regularity is preserved. Our preliminary results seem to show that this couple of spaces
provide a stable discretization of our mixed formulation in the sense of Brezzi, Ladyženskaja and
Babuška inf-sup condition, see [4, Sec. 4.2]. We plan to conclude this study in the next months.





Chapter 1

Linear Elasticity

In this chapter we want to introduce primal, dual and saddle point problems for linear elasticity
and also the mixed problem given by Brezzi. First of all we will fix some notations, secondly we
will analyse the primal problem and see that it admits an unique solution, then we will construct
the dual problem starting form the primal and see its properties. In the end we will construct
the saddle point problem and see its relation with the one given by Brezzi.

1.1 Description of the problem

Let Ω ⊆ R2 a bounded Lipschitz domain, which represents the initial configuration of the body
and we denote with ∂Ω its boundary. Our aim is to determinate the displacement u : Ω → R2,
since, for simplicity, we consider the boundary ∂Ω fixed we have that u|∂Ω = 0. We also have a
force f ∈ L2(Ω)2 acting on Ω and since ∂Ω is fixed the force g acting on the boundary is equal to
0. In order to introduce the problem it is convenient to give the definition of symmetric gradient
ϵ(u) of a function u ∈ H1

0 (Ω)
2.

Remark 1.1.1. In order to emphasize the fact that the symmetric tensor of a vector is a tensor,
we have decided to omit the bar under the vector and write ϵ(u) instead of ϵ(u).

We define the symmetric gradient as the linear map ϵ : H1
0 (Ω)

2 −→ L2(Ω)2×2
sym such that

ϵ(u)ij :=
1

2

(︁ ∂ui
∂xj

+
∂uj
∂xi

)︁
.

From the previous definition can be easily seen that ϵ(u) is a symmetric tensor and its trace,
where tr(τ) =

∑︁
i τii, is div(u). We define the double dot product of two tensors as

τ : σ =
∑︂
i,j

τijσij ,

and in case we have τ : τ we will write
⃓⃓
τ
⃓⃓2. Now we are ready to introduce the starting problem.

5
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1.2 Starting Problem

Our aim is to solve the following minimisation problem

inf
v∈H1

0 (Ω)2

{︃∫︂
Ω

µ|ϵ(v)|2 + λ

2
|div(v)|2 − f · v dx

}︃
, (1.1)

where we recall that f is a function in L2(Ω)2.
First of all we can rewrite the previous problem in the following way:

inf
v∈H1

0 (Ω)2

{︃
G(ϵ(v))− F (v)

}︃
,

where G : L2(Ω)2×2
sym −→ R is

G(p) =

∫︂
Ω

µ|p|2 + λ

2
|tr(p)|2 dx,

and F : H1
0 (Ω)

2 −→ R is

F (v) =

∫︂
Ω

f · v dx,

a linear and continuous operator.
In order to show the existence and uniqueness of solution of problem (1.1), it is enough to prove
that G ◦ ϵ is a strictly convex function. We will show that G ◦ ϵ is not only strictly convex but
also strongly convex.

Proposition 1.2.1. G is 2µ-convex function

Proof. Let p, q ∈ L2(Ω)2×2
sym and α ∈ [0, 1], then:

G(αp+ (1− α)q) =

∫︂
Ω

µ|αp+ (1− α)q|2 dx +
λ

2
|α tr(p) + (1− α) tr(q)|2 dx

= αG(p) + (1− α)G(q)− α(1− α)
[︁ ∫︂

Ω

µ|p− q|2 − λ

2
|tr(p− q)|2

]︁
dx

≤ αG(p) + (1− α)G(q)− α(1− α)

∫︂
Ω

µ|p− q|2 dx

≤ αG(p) + (1− α)G(q)− 1

2
(2µ)α(1− α)

⃦⃦⃦
p− q

⃦⃦⃦2
L2(Ω)2×2

sym

.

Now we want to prove that G ◦ ϵ is a strong convex function.

Proposition 1.2.2. G ◦ ϵ is 2µK-convex function where K is the constant of Korn.

Proof. From Proposition 1.2.1 we have that

G(αϵ(v)+(1−α)ϵ(w)) ≤ αG(ϵ(v))+(1−α)G(ϵ(w))− 1

2
(2µ)α(1−α)

⃦⃦
ϵ(v)− ϵ(w)

⃦⃦2
L2(Ω)2×2

sym
. (1.2)
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According to Korn inequality A.5 we have that

⃦⃦
ϵ(v)− ϵ(w)

⃦⃦2
L2(Ω)2×2

sym
=

2∑︂
i,j=1

∫︂
Ω

⃓⃓⃓
ϵ
ij
(v − w)

⃓⃓⃓2
≥ K∥v − w∥2H1

0 (Ω)2 . (1.3)

So from (1.2) and (1.3) we obtain

G(αϵ(v) + (1− α)ϵ(w)) ≤ αG(ϵ(v)) + (1− α)G(ϵ(w))− 1

2
(2µK)α(1− α)∥v − w∥2H1

0 (Ω)2 ,

for all v, w ∈ H1
0 (Ω)

2.

The fact that G ◦ ϵ is strictly convex and F is a linear and continuous functional implies that
there exists a unique u, solution of (1.1), that realize the minimum. Such function is characterized
by the Euler-Lagrange equations, so we have that the minimum u ∈ H1

0 (Ω)
2 satisfies:∫︂

Ω

2µϵ(u)ϵ(v) + λdiv(u)div(v)− f · v dx = 0 ∀v ∈ H1
0 (Ω)

2. (1.4)

Now we recall the classical integration by parts formula between a smooth symmetric tensor m
and ϵ(v): ∫︂

Ω

m : ϵ(v) dx = −
∫︂
Ω

div(m) · v dx +

∫︂
∂Ω

m n · v dx.

Since in our case v ∈ H1
0 (Ω)

2 then the boundary term is equal to zero. The problem in applying
such equation is that div(ϵ(u)) does not make sense for u in H1

0 (Ω)
2, unless we consider div(ϵ(u))

as an element of H−1(Ω)2 such that:

⟨div(ϵ(u)), v⟩
H1

0 (Ω)2
:= −

∫︂
Ω

ϵ(u)ϵ(v) dx. (1.5)

Now recalling the classical integration by parts in higher dimension between a smooth scalar
function w and v: ∫︂

Ω

w div(v) dx = −
∫︂
Ω

∇w · v dx +

∫︂
∂Ω

w v · n dx.

As before we have that the boundary term is equal to zero because v ∈ H1
0 (Ω)

2 and we have to
consider ∇(div(u)) as an element of H−1(Ω)2 such that:

⟨∇ div(u), v⟩ := −
∫︂
Ω

div(u)div(v) dx.

As a consequence of the previous reasoning we have that equation (1.4), with a change of sign,
becomes

2µ div(ϵ(u)) + λ ∇ div(u) + f = 0 in H−1(Ω)2,

then adding the boundary condition of u we obtain{︄
2µ div(ϵ(u)) + λ∇(div(u)) + f = 0

u|∂Ω = 0
. (1.6)
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From u, solution of (1.1), we can define the stress tensor σ = σD + p id, where{︄
σD = 2µϵ(u)

D

p = (λ+ µ) tr(ϵ(u))
. (1.7)

Recalling that tr(ϵ(u)) = div(u) and that for every tensor τ the following decomposition is unique

τ = τD +
1

n
tr(τ)id,

where n is the the dimension of the space, substituting σ, define in (1.7), in the first equation of
(1.6) we obtain

div(σ) + f = 0, (1.8)

which expresses the equilibrium condition of continuum mechanics.

1.3 Dual problem

In order to compute the dualisation of the linear elasticity problem, define in (1.1), we will follow
[8]. We will divide this section in three parts, in the first one we will introduce the dual problem
and see its relation to the primal one and in the second one we will see the particular case
in which the primal problem has the form F (v) + G(Λ(v)). In the last part we will compute
explicitly the dualisation of the linear elasticity problem.

1.3.1 Introduction to the dual problem

We start by giving the definition of primal problem.

Definition 1.3.1 (Primal Problem). Let V be a topological vector space, V ∗ its dual and F a
function from V to R, then the primal problem is

inf
v∈V

F (v). (P)

If there exists a function u ∈ V such that the infimum is realize we denote it with

F (u) = inf
v∈V

F (v) = inf P.

The problem P is said to be non-trivial if there exists an element u0 ∈ V such that

F (u0) < +∞.

In order to introduce the dual problem of primal problem P we have to perturb it. First of all we
need Y and Y ∗ two Hausdorff topological vector spaces placed in duality, we define a function
Φ : V × Y −→ R such that

Φ(u, 0) = F (u),
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and for every p ∈ Y we shall consider the minimisation problem

inf
v∈V

Φ(u, p). (Pp)

We call Pp the perturbed problems of P and in case p = 0 we return to the primal problem
P0 = P. The Pp is a family of problems and for a given primal problem P the perturbation is
not unique, so we could choose for better perturbation than others, as we will do for the linear
elasticity problem. Now we are able to define the dual problem of P.

Definition 1.3.2 (Dual Problem). Under the same assumption of Definition 1.3.1 of primal
problem, the dual problem is

sup
p∗∈Y ∗

[︁
− Φ∗(0, p∗)

]︁
, (P∗)

where Φ∗ : V ∗ × Y ∗ −→ R is the Legendre transform of Φ. If there exists an element q∗ such
that the supremum is realized we denote it with

−Φ∗(0, q∗) = sup
p∗∈Y ∗

[︁
− Φ∗(0, p∗)

]︁
= supP∗.

Now we want to see the relation between P and P∗.

Proposition 1.3.1. The following chain of inequalities hold:

−∞ ≤ supP∗ ≤ inf P ≤ +∞.

Proof. Let p∗ ∈ Y ∗, by Definition A.1.8 we have

Φ∗(0, p∗) = sup
v∈V p∈Y

[︁
⟨p∗, p⟩Y − Φ(v, p)

]︁
.

Taking p = 0 in the previous equation we obtain

Φ∗(0, p∗) ≥ −Φ(v, 0) ∀v ∈ V. (1.9)

By changing the sign of the previous equation and for the arbitrary of p∗ we have

supP∗ ≤ inf P

If both primal Problem P and dual Problem P∗ are non-trivial we have that

−∞ < supP∗ ≤ inf P < +∞.

Our aim now is to see when the previous inequality is an equality, i.e. supP∗ = inf P. If we try
to construct the dual problem of P in general we can not conclude anything unless we suppose
that

Φ ∈ Γ0(V × Y ),
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where Γ0(V × Y ) is the set of convex and l.s.c. (lower semi continuous) functions from V × Y

into R that can not be constantly equal to +∞ and −∞.

Assumption 1.3.1. From now we shall assume that

Φ ∈ Γ0(V × Y ).

For p ∈ Y let us define
h(p) = inf Pp = inf

v∈V

[︁
Φ(v, p)

]︁
. (1.10)

Proposition 1.3.2. The function h : Y −→ R is convex.

Proof. Let p, q ∈ Y and λ ∈]0, 1[. We have to show that

h(λp+ (1− λ)q) ≤ λh(p) + (1− λ)h(q).

Of course if h(p) or h(q) are equal to +∞ the inequality is true. Let us assume that h(p) < +∞
and h(q) <∞, so for every a > h(p) and b > h(q) there exists u, v ∈ V such that

h(p) ≤ Φ(u, p) ≤ a

h(q) ≤ Φ(v, p) ≤ b.

Then:

h(λp+ (1− λ)q) = inf
w∈V

Φ(w, λp+ (1− λ)q)

≤ Φ(λu+ (1− λ)v, λp+ (1− λ)q)

≤ λΦ(u, p) + (1− λ)Φ(v, q)

≤ λa+ (1− λ)b.

Taking the limit for a→ h(p) and b→ h(q) we can conclude.

Remark 1.3.1. Even if the function Φ ∈ Γ0(V × Y ), in general h /∈ Γ0(Y ).

Proposition 1.3.3. The following chain of equality holds:

supP∗ = sup
p∗∈Y ∗

[︁
− h∗(p∗)

]︁
= h∗∗(0).

Proof. First we notice that for every p∗ ∈ Y ∗ we have:

h∗(p∗) = sup
p∈Y

[︁
⟨p∗, p⟩Y − h(p)

]︁
= sup

p∈Y

[︁
⟨p∗, p⟩Y − inf

v∈V
Φ(v, p)

]︁
= sup

p∈Y
sup
v∈V

[︁
⟨p∗, p⟩Y − Φ(v, p)

]︁
= Φ∗(0, p∗).
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So, according to the Definition 1.3.2 of dual problem, we obtain

supP∗ = sup
p∗∈Y ∗

[︁
− Φ∗(0, p∗)

]︁
= sup

p∗∈Y ∗

[︁
− h∗(p∗)

]︁
= h∗∗(0). (1.11)

In order to have equivalence between primal and dual problem we need stronger assumption.
We start by the following definition.

Definition 1.3.3. The problem P is said to be normal if h(0) is finite and h is l.s.c. at 0.

These conditions imply that the primal problem is non trivial, because h(0) = inf P, and
lower semi continuity at 0 is needed for h∗∗(0) = h(0) even if h /∈ Γ0(Y ).
In the next Proposition we use some results we have reported in Appendix A.

Proposition 1.3.4. The following conditions are equivalent to each other

(i) P is normal,

(ii) P∗ is normal,

(iii) inf P = supP∗ and this number is finite.

Proof. (i) ⇒ (iii)

We assume that P is normal, so we can define h, which is the l.s.c. regularization of h (h is the
largest l.s.c. minorant of h). From Proposition A.1.3 and Proposition A.1.4 we obtain

h∗∗ ≤ h ≤ h.

Now if we dualize the previous equation we obtain h∗ = h∗∗∗ ≥ h
∗ ≥ h∗, so h∗ = h

∗
and also

h∗∗ = h
∗∗

.
By hypothesis we have that h(0) = h(0) ∈ R and since h is convex also h is convex and can not
take the value −∞, because if it does h would be equal to −∞ everywhere which is a contradiction
according to Proposition A.1.1. So we have that h ∈ Γ0(Y ) and thus h

∗∗
= h. This means that

h(0) = h(0) = h
∗∗
(0) = h∗∗(0). According to (1.11) we obtain (iii).

(iii) ⇒ (i)

We have that h(0) is finite and h(0) = h∗∗(0), this implies that h(0) = h(0) so

h(0) = h(0) ≤ lim inf
x→0

h(x) ≤ lim inf
x→0

h(x),

so h is l.s.c. at 0. Thus, according to Definition 1.3.3, we have that P is normal.
(ii) ⇔ (iii)

The equivalence between (ii) and (iii) follows by the fact that P∗∗ = P. Indeed we can consider
the dual problem as a primal problem and Φ∗(v∗, p∗) as the function from which we construct
its perturbed problem, as done for the primal problem P in Pp, we obtain

h̃(v∗) = inf
p∗∈Y ∗

[︁
Φ∗(v∗, p∗)

]︁
,

which corresponds to the function h defined in (1.10) for the primal problem. According to P∗
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and since V ∼= V ∗∗ and Y ∼= Y ∗∗ we have

h̃
∗
(v) = sup

v∗∈V ∗

[︁
⟨v∗, v⟩V − h̃(v∗)

]︁
= sup

v∗∈V ∗

[︁
⟨v∗, v⟩V − inf

p∗∈Y ∗
Φ∗(v∗, p∗)

]︁
= sup

v∗∈V ∗
sup

p∗∈Y ∗

[︁
⟨v∗, v⟩V − Φ∗(v∗, p∗)

]︁
= Φ∗∗(v, 0).

According to Assumption 1.3.1 and Proposition A.1.4 we have Φ = Φ∗∗, so we obtain

h̃
∗∗
(0) = sup

v∈V

[︁
− h̃

∗
(v)

]︁
= sup

v∈V

[︁
− Φ∗∗(v, 0)

]︁
= sup

v∈V

[︁
− Φ(v, 0)

]︁
= − inf

v∈V

[︁
F (v)

]︁
= − inf P.

Thus P∗∗ = P and since (i) ⇔ (iii), we obtain (ii) ⇔ (iii).

Even if we are ready to introduce the explicit formulation of the dual problem for linear
elasticity, it is convenient to us to go a bit further and see which conditions on P guarantee us
existence and uniqueness of solution for the dual problem P∗.

1.3.2 Existence of solution

In order to have at least one solution for the dual problem P∗ we need stronger assumptions, so
we start form a definition.

Definition 1.3.4. Problem P is said to be stable if h(0) is finite and h is subdifferentiable at 0.

Requiring P to be stable is a stronger assumption than P to be normal because subdif-
ferentiability implies l.s.c. In the following proof we recall same results that are collected in
[8].

Proposition 1.3.5 (A Stability criterion). Let us assume that Φ ∈ Γ0(V × Y ) (it is enough only
requiring Φ to be convex) , inf P is finite and that there exists u0 ∈ V such that p ↦→ Φ(u0, p) is
finite and continuous at 0. Then problem P is stable.

Proof. Since inf P is finite we have that h(0) is finite. The function p ↦→ Φ(u0, p) is convex and
continuous at 0, so there exists a neighbourhood V of 0 in Y such that is bounded form above:

Φ(u0, p) ≤M < +∞ ∀p ∈ V.

Since h(p) is the infimum in V this means that even h is bounded byM in V. applying Proposition
A.1.2 we have that h is continuous at 0, and, according to Proposition A.1.6, we have that h is
subdifferentiable at 0.

This result is important because gives an easy way to see if problem P is stable. Before
analyzing the consequence of stability for problem P we see a preliminary Lemma.

Lemma 1.3.1. The set of solution of P∗ is identical to ∂h∗∗(0).
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Proof. If q∗ ∈ Y ∗ is a solution of P∗, then

−h∗(q∗) = sup
p∗∈Y ∗

[︁
− h∗(p∗)

]︁
= supP∗ = h∗∗(0).

This is equivalent to say that q∗ ∈ ∂h∗∗(0).

Proposition 1.3.6. The following conditions are equivalent:

(i) P is stable,

(ii) P is normal and P∗ has at least one soultion.

Proof. If P is stable we have that h(0) is finite and ∂h(0) is non-empty, so from Proposition
A.1.5 we have that h(0) = h∗∗(0) which implies, from Proposition 1.3.4, that P is normal. Also
from Proposition A.1.5 we have that ∂h∗∗(0) = ∂h(0) ̸= ∅, so, using Lemma 1.3.1, P∗ has at
least one solution.
Conversely, if P is normal, using Proposition 1.3.4, we have that h(0) = h∗∗(0) and it is finite,
so from Proposition A.1.5 we have that ∂h∗∗(0) = ∂h(0). Since P∗ has at least one solution,
according to Lemma 1.3.1, ∂h∗∗(0) ̸= ∅. Thus P is stable.

Now we study the particular case where the function F , that characterize the primal Problem
1.3.1 has the form

F (v) = J(v,Λv),

where Λ is a linear operator from V to Y .
So P takes the form

inf
v∈V

J(v,Λv). (1.12)

We will denote with Λ∗ : Y ∗ −→ V ∗ the transpose (linear) operator.
Now we have to choose the perturbation needed for the construction of the dual problem. In
order to do that we should introduce another functional space, as we did before, but since the
function J takes value in Y (we suppose that Y and Y ∗ are two Hausdorff spaces) we use it
instead. So the function Φ will be

Φ(v, p) = J(v,Λv + p),

which is clearly a good choice for us.
Now we want to develop the Legendre transform of Φ(0, p∗) and write it as a function of J∗:

Φ∗(0, p∗) = sup
v∈V p∈Y

[︁
⟨p∗, p⟩Y − Φ(v, p)

]︁
= sup

v∈V
sup
p∈Y

[︁
⟨p∗, p⟩Y − J(v,Λv + p)

]︁
.
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Let fix q = Λv + p, so

Φ∗(0, p∗) = sup
v∈V q∈Y

[︁
⟨p∗,−Λu⟩Y + ⟨p∗, q⟩Y − J(v, q)

]︁
= sup

v∈V
sup
q∈Y

[︁
⟨−Λ∗p∗, u⟩V + ⟨p∗, q⟩Y − J(v, q)

]︁
= J∗(−Λ∗p∗, p∗).

So the dual problem P∗ of (1.12) becomes:

sup
p∗∈Y ∗

[︁
− J∗(−Λ∗p∗, p∗)

]︁
. (1.13)

Now we see a direct consequence of Proposition 1.3.5 for this special case in which Φ(v, p) =

J(v,Λv + p).

Theorem 1.1. Let us assume that J is convex, inf P is finite and that there exists u0 ∈ V such
that J(u0,Λu0) < +∞ and the function p ↦→ J(u0, p) being continuous at Λu0.
Then P is stable, inf P = supP∗ and P∗ has at least one solution p∗.

Proof. Clearly the hypothesis of this theorem imply the condition needed for Proposition 1.3.5
to be applied, then using Proposition 1.3.6 we can conclude.

Now we want to study the special case in which J(v,Λv) = F (v) +G(Λv).
In this case primal problem P becomes

inf
v∈V

[︁
F (v) +G(Λv)

]︁
. (1.14)

Now we want to write J∗(−Λ∗p∗, p∗) as a function of F ∗ and G∗:

J∗(u∗, p∗) = sup
v∈V p∈Y

[︁
⟨u∗, v⟩V + ⟨p∗, p⟩Y − F (v)−G(p)

]︁
= sup

v∈V

[︁
⟨u∗, v⟩V − F (v)

]︁
+ sup

p∈Y

[︁
⟨p∗, p⟩Y −G(p)

]︁
= F ∗(u∗) +G∗(p∗),

so from (1.13) we have that P∗ is

sup
p∗∈Y ∗

[︁
− F ∗(−Λ∗p∗)−G∗(p∗)

]︁
. (1.15)

Now we want to see the relation between solutions of primal and dual problem in case J(v,Λv) =
F (v) +G(Λv).

Proposition 1.3.7. Let u ∈ V be a solution of P, q∗ be a solution of P∗ and inf P = supP∗.
Then we have that

−Λ∗q∗ ∈ ∂F (u)

q∗ ∈ ∂G(Λu).
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Proof. Since u ∈ V is a solution of P we have

F (u) +G(Λu) = J(u,Λu) = inf
v∈V

[︁
J(v,Λv)

]︁
= inf P,

and from (1.13) and (1.15), since q∗ ∈ Y ∗ is a solution of P∗, we have

−F ∗(−Λ∗q∗)−G∗(q∗) = −J(−Λ∗q∗, q∗) = sup
p∗∈Y ∗

[︁
− J∗(−Λ∗p∗, p∗)

]︁
= supP∗.

So we obtain

0 = J(u,Λu) + J∗(−Λ∗q∗, q∗)

= F (u) +G(Λu) + F ∗(−Λ∗q∗) +G∗(q∗)

= [F (u) + F ∗(−Λ∗q∗)− ⟨−Λ∗q∗, u⟩]
+ [G(Λu) +G∗(q∗)− ⟨q∗,Λu⟩].

From the definition of Legendre transform we have

F ∗(−Λ∗q∗) = sup
v∈V

[⟨−Λ∗q∗, v⟩V + F (v)]

G∗(q∗) = sup
p∈Y

[⟨q∗, p⟩Y +G(p)],

so we can deduce that −Λ∗q∗ realizes the supremum for F ∗ and q∗ realizes the supremum for
G∗. This is equivalent to say that

−Λ∗q∗ ∈ ∂F (u)

q∗ ∈ ∂G(Λu).

Remark 1.3.2. This last result is strictly related to the choice of the perturbation, if we had
chosen Φ(v, p) = J(v,Λv − p) we would have obtain

Λ∗q∗ ∈ ∂F (u)

−q∗ ∈ ∂G(Λu).

Proposition 1.3.8. If the primal Problem P is in the form (1.14), it is stable, it admits a unique
solution u and G is differentiable at G(Λu), then the dual Problem P∗ admits a unique solution.

Proof. Since primal Problem P is stable then dual Problem P∗ admits at least one solution.
According to Proposition 1.3.7 we have that all the solutions of the dual problem must be
in ∂G(Λu), but, according to Proposition A.1.7, we have that ∂G(Λu) = {G′(Λu)}, so q∗ =

G′(Λu).

In this section we have introduced the dual problem P∗ of primal problem P. We have
seen that if the primal is normal then we have that inf P = supP∗ and, if we require P to be
stable then we have that P∗ has at least one solution. In the end we studied the case where
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J(v,Λv) = F (v) + G(Λv) and notice that under the hypothesis of Proposition 1.3.8 we have
uniqueness of solution for P∗. In the next subsection we want to apply these results to the linear
elasticity problem.

1.3.3 Application to linear elasticity problem

According to the theory we have developed in the previous subsection now we are able to intro-
duce the primal problem for the linear elasticity starting from the starting problem (1.1) that
we have defined in Section 1.2.

Problem 1.3.1 (Primal formulation of linear elasticity). Find u ∈ H1
0 (Ω)

2 such that

inf
v∈H1

0 (Ω)2

{︃∫︂
Ω

µ|ϵ(v)|2 + λ

2
|div(v)|2 − f · v dx

}︃
. (1.16)

From the analysis that we have done in Section 1.2 we have seen that Problem 1.3.1 admits a
unique solution. In order to dualize (1.16) it is convenient to rewrite it in the form (1.14), where:
Λ = ϵ : H1

0 (Ω)
2 −→ L2(Ω)2×2

sym is a linear operator, the function F : H1
0 (Ω)

2 −→ R is

F (v) = −
∫︂
Ω

f · v dx, (1.17)

a linear and continuous operator and G : L2(Ω)2×2
sym −→ R is

G(p) =

∫︂
Ω

µ|p|2 + λ

2
|tr(p)|2 dx, (1.18)

a 2µ-convex function. Now we can rewrite the primal problem (1.16) as follows

inf
v∈H1

0 (Ω)2

{︃
F (v) +G(ϵ(v))

}︃
.

In order to obtain inf P = supP∗ and the existence of solutions for P∗ we will show that Primal
problem is stable.

Proposition 1.3.9. Problem 1.16 is stable. Moreover the dual problem of Problem 1.16 admits
a unique solution.

Proof. In order to verifies stability we will show that Problem 1.16 verifies the hypothesis of
Theorem 1.1, i.e. we need to find u0 ∈ V such that J(u0, ϵ(u0)) < +∞ and the function
p ↦→ J(u0, p) being continuous at ϵ(u0). If we fix u0 = 0 we have that ϵ(0) = 0, and J(0, 0) =

F (0) + G(0) = 0 < +∞. So it remains to verify that p ↦→ J(0, p) = G(p) is continuous at 0.
In order to do that we will show that G is continuous for every p. Let p

n
→ p in L2(Ω)2×2

sym as
n→ ∞, then it is enough to show

lim
n→∞

∫︂
Ω

µ|p
n
|2 dx =

∫︂
Ω

µ|p|2 dx, (1.19)
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and
lim

n→∞

∫︂
Ω

1

2
λ|tr(p

n
)|2 dx =

∫︂
Ω

1

2
λ|tr(p)|2 dx. (1.20)

Since
∫︁
Ω
µ|p|2 dx dt = µ

⃦⃦⃦
p
⃦⃦⃦
Y

and the norm is continuous, then (1.19) is true. Since |tr(·)| : Y →
R can be seen as the composition of the projection π : Y → Y on the trace components, the sum
of them, and the norm of Y and because all of them are continuous, we obtain (1.20). So form
(1.19) and (1.20) we have the following

lim
n→∞

G(p
n
) = G(p).

Thus Problem 1.3.1 is stable and due to Proposition 1.3.6, its dual problem has at least one
solution.
Can be noticed that G is differentiable and the differential of G in p evaluated in q is

G
′
[p](q) =

∫︂
Ω

2µp : q + λ tr(p) tr(q) dx.

Since G is differentiable and primal Problem 1.16 admits a unique solution, according to Propo-
sition 1.3.8, we have that the dual problem of primal Problem 1.16 admits a unique solution.

Before compute the dual problem explicitly let do some consideration about the spaces we
are using. First of all H1

0 (Ω) is an Hilbert space and its dual is denoted with H−1(Ω). We also
recall that given two Banach spaces V and W the dual space of V ×W con be identified with
V ∗ ×W ∗, so (H1

0 (Ω)
2)∗ is H−1(Ω)2.

Secondly there exists an isometry between L2(Ω)3 and L2(Ω)2×2
sym such that

φ =

⎡⎣φ1

φ2

φ3

⎤⎦ −→

[︄
φ1

1√
2
φ2

1√
2
φ2 φ3

]︄
= ξ,

The factor 1√
2

is needed for having an isometry:

⃦⃦
φ
⃦⃦2
L2(Ω)3

= ∥φ1∥2L2(Ω) + ∥φ2∥2L2(Ω) + ∥φ3∥2L2(Ω)

= ∥φ1∥2L2(Ω) + 2

⃦⃦⃦⃦
1√
2
φ2

⃦⃦⃦⃦2
L2(Ω)

+ ∥φ3∥2L2(Ω) =
⃦⃦⃦
ξ
⃦⃦⃦2
L2(Ω)2×2

sym

.

So we obtain that, because L2(Ω)3 is an Hilbert space, even L2(Ω)2×2
sym is an Hilbert space and

using the Riesz representation define in Theorem (A.1) we have that for every p∗ ∈ (L2(Ω)2×2
sym)∗

there exists a unique element r ∈ L2(Ω)2×2
sym such that

⟨p∗, φ⟩
L2(Ω)2×2

sym

= (r, φ)L2(Ω)2×2
sym

∀φ ∈ L2(Ω)2×2
sym,

and we denote r with R(p∗).
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According to (1.15) we have that the dual problem have the following form:

sup
p∗∈L2(Ω)2×2

sym

{︃
−F ∗(−ϵ∗(p∗))−G∗(p∗)

}︃
. (1.21)

So we have to develope F ∗ and G∗ in order to get an explicit formulation. According to the
Definition A.1.8 we have that F ∗ : H−1(Ω)2 −→ R is the Legendre transform of F , so

F ∗(v∗) = sup
v∈H1

0 (Ω)2

[︁
⟨v∗, v⟩H1

0 (Ω)2 − F (v)
]︁
= sup

v∈H1
0 (Ω)2

[︁
⟨v∗, v⟩H1

0 (Ω)2 +

∫︂
Ω

f · v dx
]︁
.

Now we need to calculate F ∗(−ϵ∗(p∗)):

F ∗(−ϵ∗(p∗)) = sup
v∈H1

0 (Ω)2

[︁
⟨−ϵ∗(p∗), v⟩

H1
0 (Ω)2

+

∫︂
Ω

f · v dx
]︁

= sup
v∈H1

0 (Ω)2

[︁
− (R(p∗), ϵ(v))L2(Ω)2×2

sym
+

∫︂
Ω

f · v dx
]︁

= sup
v∈H1

0 (Ω)2

[︁
−

∫︂
Ω

R(p∗) : ϵ(v) +

∫︂
Ω

f · v dx
]︁
.

We can see that the value of F ∗(−ϵ∗(p∗)) can only be +∞, if there exists at least one v ∈ H1
0 (Ω)

2

such that the argument we are maximizing is different form zero, or 0 if we have that

−
∫︂
Ω

R(p∗) : ϵ(v) + f · v dx = 0 ∀v ∈ H1
0 (Ω)

2.

According to (1.5) we can define div(R(p∗)) as an element of H−1(Ω)2 such that

⟨div(R(p∗)), v⟩H1
0 (Ω)2 := −

∫︂
Ω

R(p∗) : ϵ(v) dx. (1.22)

Since R(p∗) is an element of L2(Ω)2×2
sym and f is in L2(Ω)2 and we can conclude that if there exists

a q∗ ∈ Y ∗ such that F ∗(−ϵ∗(q∗)) = 0, then R(q∗) belongs to H(div,Ω) and div(R(q∗)) + f = 0.
So we have that

F ∗(−ϵ∗(p∗)) =

{︄
0 if div(R(p∗)) + f = 0

+∞ otherwise
. (1.23)

Now we can calculate G∗(−p∗), where G∗ is the Legendre transform of G:

G∗(p∗) = sup
p∈L2(Ω)2×2

sym

[︁
⟨p∗, p⟩

L2(Ω)2×2
sym

−G(p)
]︁

= sup
p∈L2(Ω)2×2

sym

[︁
⟨p∗, p⟩

L2(Ω)2×2
sym

−
∫︂
Ω

µ|p|2 − λ

2
|tr(p)|2 dx

]︁
. (1.24)

Since G is strictly convex then for every fixed p∗ ∈ Y ∗ there exists a unique q ∈ L2(Ω)2×2
sym

such that the supremum in the previous equation is realize. Now we compute the first variation
respect to p evaluated in q of the argument inside the supremum in (1.24) and since q realize the
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maximum we have

⟨p∗, φ⟩
L2(Ω)2×2

sym

−
∫︂
Ω

2µ q : φ− λ tr(q) tr(φ) dx = 0 ∀φ ∈ L2(Ω)2×2
sym. (1.25)

If we take φ = q we obtain that

⟨p∗, q⟩
L2(Ω)2×2

sym

=

∫︂
Ω

2µ|q|2 − λ|tr(q)|2 dx = 2G(q). (1.26)

Substituting (1.26) in (1.24) we obtain

G∗(p∗) = 2G(q)−G(q) = G(q). (1.27)

Now we want to write q as a function of p∗. According to Theorem A.1 we can rewrite (1.25) as
follows.

(R(p∗), φ)L2(Ω)2×2
sym

−
∫︂
Ω

2µ q : φ− λ tr(q)id : φ dx = 0 ∀φ ∈ L2(Ω)2×2
sym,

from the arbitrariness of φ in the previous equation we obtain

R(p∗) = 2µq + λ tr(q)id = 2µqD + (λ+ µ) tr(q)id,

where we recall that the decomposition of a tensor into its deviatoric and trace components is
orthogonal and unique. This means that we can define the function

q −→ 2µqD + (λ+ µ) tr(q)id,

where the inverse can be easily seen to be

p −→ 1

2µ
pD +

1

4(λ+ µ)
tr(p)id.

According to the previous equation we can rewrite (1.27):

G∗(p∗) = G(q)

= G
(︁ 1

2µ
R(p∗)

D
+

1

4(λ+ µ)
tr(R(p∗))id

)︁
=

∫︂
Ω

1

4µ
|R(p∗)

D|2 + 1

8(µ+ λ)
|tr(R(p∗))|2 dx. (1.28)

Now we aim to write (1.21) explicitly. Since the only value of F ∗(−ϵ∗(p∗)), defined in (1.23), are
0 and +∞, and supP∗ is finite, we can rewrite (1.21) as follows.

sup
p∗∈(L2(Ω)2×2

sym)∗

div(R(p∗))+f=0

{︃
−G∗(p∗)

}︃
.

Changing the sup into a inf, since we are looking for p∗ and not the value of supP∗ and using
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(1.28), we have

inf
p∗∈(L2(Ω)2×2

sym)∗

div(R(p∗))+f=0

{︃
G∗(p∗)

}︃
= inf

p∗∈(L2(Ω)2×2
sym)∗

div(R(p∗))+f=0

{︃∫︂
Ω

1

4µ
|R(p∗)

D|2 + 1

8(µ+ λ)
|tr(R(p∗))|2 dx

}︃
. (1.29)

Since the functional define in (1.29) depends on p∗ only through R and since L2(Ω)2×2
sym is an

Hilbert space, so R is an isomorphism, we can replace Y ∗ with Y and R(p∗) with p and we can
introduce the following.

Problem 1.3.2 (Dual formulation of linear elasticity). Find q ∈ L2(Ω)2×2
sym such that

∫︂
Ω

1

4µ
|qD|2 + 1

8(µ+ λ)
|tr(q)|2 dx = inf

p∈L2(Ω)2×2
sym

div(p)+f=0

{︃∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 dx

}︃
. (1.30)

1.4 Saddle point Problem

In this section we want to introduce the saddle point problem for linear elasticity. We will
proceed in the same way as the previous section: according to the theory developed in [8], we
will introduce the saddle point problem and see its relation with primal and dual and then we
will apply it to the linear elasticity problem.

1.4.1 Introduction to saddle point problem

The assumption on the spaces are the same of the previous section. We will see that the work
here will be very similar to the one that we have done previously for duality. We start form two
definitions.

Definition 1.4.1 (Lagrangian). Let L : V × Y ∗ −→ R such that

−L(v, p∗) = sup
p∈Y

[︁
⟨p∗, p⟩Y − Φ(v, p)

]︁
,

for v ∈ V and p∗ ∈ Y ∗. L(v, p∗) will be called the Lagrangian of the primal Problem 1.3.1 relative
to the given perturbation Φ.

Definition 1.4.2 (Saddle point). The point (u, q∗) ∈ V × Y is called saddle point of L if

L(u, p∗) ≤ L(u, q∗) ≤ L(v, q∗) ∀v ∈ V, ∀p∗ ∈ Y ∗. (1.31)

We recall that Φ(v, p) is such that Φ(v, 0) = F (v) ∀v ∈ V and such perturbation it is not
unique. Now we want to see the relation between P and P∗ in terms of the Lagrangian. We
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start from noticing that

Φ∗(v∗, p∗) = sup
v∈V p∈Y

[︁
⟨v∗, v⟩V + ⟨p∗, p⟩Y − Φ(v, p)

]︁
= sup

v∈V

[︁
⟨v∗, v⟩V + sup

p∈Y

[︁
⟨p∗, p⟩Y − Φ(v, p)

]︁]︁
= sup

v∈V

[︁
⟨v∗, v⟩V − L(v, p∗)

]︁
.

From the previous equation we can rewrite the dual problem P∗ as

sup
p∗∈Y ∗

[︁
− Φ∗(0, p∗)

]︁
= sup

p∗∈Y ∗

[︁
− sup

v∈V

[︁
− L(v, p∗)

]︁]︁
= sup

p∗∈Y ∗
inf
v∈V

[︁
L(v, p∗)

]︁
.

Now we want to rewrite the primal problem P as a function of L, in order to do that we need
Φ ∈ Γ0(V × Y ), an assumption that we have already made in Assumption 1.3.1, so the function
Φv : p −→ Φ(v, p) is Γ0(Y ) and from Proposition A.1.4 we have Φv = Φ∗∗

v , that implies

Φ(v, p) = Φ∗∗
v (p)

= sup
p∗∈Y ∗

[︁
⟨p∗, p⟩Y − Φ∗

v(p
∗)
]︁

= sup
p∗∈Y ∗

[︁
⟨p∗, p⟩Y + L(v, p∗)

]︁
,

where, according to Definition 1.4.1, we have used

Φ∗
v(p

∗) = sup
p∈Y

[︁
⟨p∗, p⟩Y − Φv(p)

]︁
= sup

p∈Y

[︁
⟨p∗, p⟩Y − Φ(v, p)

]︁
= −L(v, p∗).

So primal Problem P can also be written in the following way:

inf
v∈V

[︁
F (v)

]︁
= inf

v∈V

[︁
Φ(v, 0)

]︁
= inf

v∈V
sup

p∗∈Y ∗

[︁
L(v, p∗)

]︁
.

Now we want to see the relation between the solutions of primal problem P, dual problem and
P∗ and the saddle points of the Lagrangian.

Proposition 1.4.1. If Φ ∈ Γ0(V × Y ), then the following conditions are equivalent:

(i) (u, q∗) is a saddle point ol L,

(ii) u is a solution of P, q∗is a solution of P∗ and inf P = supP∗.

Proof. If (u, q∗) is a saddle point, then according to (1.31), we have

inf P = inf
v∈V

F (v) = inf
v∈V

Φ(v, 0) = Φ(u, 0) (1.32)

supP∗ = sup
p∗∈Y ∗

−Φ∗(0, p∗) = −Φ∗(0, q∗), (1.33)

so u is a solution to P and q∗ is a solution to P∗. Then we can also notice that if (u, q∗) is a
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saddle point, then

Φ(u, 0) = sup
p∗∈Y ∗

L(u, p∗) = L(u, q∗) = inf
v∈V

L(v, q∗) = −Φ∗(0, q∗). (1.34)

So according to (1.32), (1.33) and (1.34) we have

inf P = Φ(u, 0) = −Φ∗(0, q∗) = supP∗.

Conversely, if u is a solution of P and q∗ is a solution of P∗ we have

Φ(u, 0) = sup
p∗∈Y ∗

L(u, p∗) ≥ L(u, q∗)

−Φ∗(0, q∗) = inf
v∈V

L(v, q∗) ≤ L(u, q∗),

then using that inf P = supP∗, we obtain Φ(u, 0) = −Φ∗(0, q∗), so we can conclude.

Remark 1.4.1. For our purpose it is important that (ii) ⇒ (i), because it guarantees existence
of solution for the saddle point problem since primal problem and dual problem of linear elasticity
admit solutions. Since for linear elasticity we know that solutions of primal and dual are unique,
form (i) ⇒ (ii), we have that the saddle point is unique.

Definition 1.4.3 (Saddle point problem). If the primal problem constructed from Φ(v, p) is
stable, then the saddle point problem consists in finding (u, q∗) ∈ V × Y ∗ such that

L(u, q∗) = sup
p∗∈Y ∗

inf
v∈V

[︁
L(v, p∗)

]︁
= inf

v∈V
sup

p∗∈Y ∗

[︁
L(v, p∗)

]︁
(1.35)

1.4.2 Application to linear elasticity problem

We start from recalling that in our case Φ(v, p) = F (v)+G(ϵ(v)+ p), where F is define in (1.17)
and G is define in (1.18), so the Lagrangian becomes

− L(v, q∗) = sup
p∈L2(Ω)2×2

sym

[︁ ∫︂
Ω

R(q∗) : p dx− F (u)−G(ϵ(v) + p)
]︁
, (1.36)

where R : (L2(Ω)2×2
sym)∗ → L2(Ω)2×2

sym is the Riesz operator that we have introduced in the previous
section.
Now we want to calculate the Lagrangian explicitly. Since G is a 2µ-convex functional and F

is linear and continuous, then there exists a unique q ∈ L2(Ω)2×2
sym such that the supremum is

realized, so if we take the Euler-Lagrange equations of∫︂
Ω

R(q∗) : p dx− F (u)−G(ϵ(v) + p),

evaluated in q we obtain∫︂
Ω

R(p∗) : φ− 2µ(ϵ(v) + q) : φ− λ(div(v) + tr(q))id : φ dx = 0 ∀φ ∈ L2(Ω)2×2
sym. (1.37)
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Now we proceed in the same way as done for duality: first we will try to characterize L(v, q∗)
as a function of q and then we will write q as a function of v and R(p∗). We start from noticing
that if we take φ = ϵ(v) + q in (1.37) then we obtain∫︂

Ω

R(p∗) : q dx = 2G(ϵ(v) + q)−
∫︂
Ω

R(p∗) : ϵ(v) dx.

Substituting the previous equation in (1.36) we obtain

−L(v, q∗) = sup
p∈L2(Ω)2×2

sym

[︁ ∫︂
Ω

R(q∗) : p dx− F (u)−G(ϵ(v) + p)
]︁

=

∫︂
Ω

R(q∗) : q dx− F (v)−G(ϵ(v) + q)

= G(ϵ(v) + q)− F (v)−
∫︂
Ω

R(p∗) : ϵ(v) dx. (1.38)

From the arbitrariness of φ in (1.37) we must have that

R(q∗)− 2µ(ϵ(v) + q)− λ(div(v) + tr(q))id = 0.

If one proceed in the same way as done for duality, i.e. write R(q∗) as a function of q, where ϵ(v)
is fixed, one could see that this function is invertible because the decomposition in deviatoric
and trace components is unique, and would obtain that

q =
1

2µ
R(q∗)

D
+

1

4(λ+ µ)
tr(R(q∗))id− ϵ(v).

Substituting the previous result in (1.38) we obtain

L(v, q∗) = −G( 1

2µ
R(q∗)

D
+

1

4(λ+ µ)
tr(R(q∗))id) + F (v) +

∫︂
Ω

R(q∗) : ϵ(v) dx

=

∫︂
Ω

− 1

4µ
|R(q∗)

D|2 − 1

8(µ+ λ)
|tr(R(q∗))|2 − f · v +R(q∗) : ϵ(v) dx.

So the right-hand side of (1.35) becomes

sup
q∗∈(L2(Ω)2×2

sym)∗
inf

v∈H1
0 (Ω)2

{︃∫︂
Ω

− 1

4µ
|R(q∗)

D|2 − 1

8(µ+ λ)
|tr(R(q∗))|2 − f · v +R(q∗) : ϵ(v) dx

}︃
.

Since the aim of the saddle point Problem 1.4.3 consists in finding the couple (u, σ) and not
L(u, σ), we can change the sign of the previous equation and we obtain

inf
q∗∈(L2(Ω)2×2

sym)∗
sup

v∈H1
0 (Ω)2

{︃∫︂
Ω

1

4µ
|R(q∗)

D|2 + 1

8(µ+ λ)
|tr(R(q∗))|2 + f · v −R(q∗) : ϵ(v) dx

}︃
.

Now recalling that L2(Ω)2×2
sym is an Hilbert space, so R is surjective, then, as done for the dual

Problem 1.3.2 we can replace Y ∗ with Y and R(p∗) with p. Now we are ready to introduce the
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following.

Problem 1.4.1 (Saddle point formulation of linear elasticity). Find (w, τ) ∈ H1
0 (Ω)

2×L2(Ω)2×2
sym

such that∫︂
Ω

1

4µ
|τD|2 + 1

8(µ+ λ)
|tr(τ)|2 + f · w − τ : ϵ(w) dx

= inf
p∈L2(Ω)2×2

sym

sup
v∈H1

0 (Ω)2

{︃∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 + f · v − p : ϵ(v) dx

}︃
. (1.39)

Proposition 1.4.2. Problem 1.4.1 admits a unique solution (u, σ), where u is the solution of
Problem 1.3.1 and σ = R(q∗), where q∗ is solution of Problem 1.3.2.

Proof. Since Problem 1.3.1 and Problem 1.3.2 admit a unique solution, then, according to Propo-
sition 1.4.1, also 1.4.1 admits a unique solution.

1.4.3 Characterization of saddle point

In this part we want to characterize the unique solution of Problem 1.4.1 through Euler-Lagrange
equations: {︄∫︁

Ω
f · φ− σ : ϵ(φ) dx = 0 ∀φ ∈ H1

0 (Ω)
2∫︁

Ω
1
2µσ

D : φD + 1
4(µ+λ) tr(σ) tr(φ) + φ · ϵ(u) dx = 0 ∀φ ∈ L2(Ω)2×2

sym

. (1.40)

According to (1.22) the first equation is equivalent to div(σ) + f = 0 in H−1(Ω)2. Noticing that
φ = φD + 1

2 tr(φ)id from the second equation we have that

∫︂
Ω

(︃
1

2µ
σD−ϵD(u)

)︃
: φD+

(︃
1

4(λ+ µ)
tr(σ)− 1

2
tr(ϵ(u))

)︃
tr(φ) dx = 0 ∀φ ∈ L2(Ω)2×2

sym. (1.41)

Considering φ =

[︃
φ11 φ12

φ21 φ22

]︃
with φ12 = φ21 = 0, φ11 = φ22 = φ

2 and φ ∈ C∞
c (Ω), we have that

φD = 0 and from (1.41) we obtain

∫︂
Ω

(︃
1

4(λ+ µ)
tr(σ)− 1

2
tr(ϵ(u))

)︃
φ = 0 ∀φ ∈ C∞

c (Ω),

then using Lemma A.2.1 we obtain

1

4(λ+ µ)
tr(σ) =

1

2
tr(ϵ(u)). (1.42)

From (1.41) and (1.42) we obtain∫︂
Ω

(︃
1

2µ
σD − ϵD(u)

)︃
: φD dx = 0 ∀φ ∈ L2(Ω)2×2

sym
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If we proceed in the exact same way as done before but with φ12 = φ21 = φ
2 and φ11 = φ22 = 0,

φ12 = φ21 = φ22 = 0 and φ11 = φ, φ12 = φ21 = φ11 = 0 and φ22 = φ with φ ∈ C∞
c (Ω) we get

1

2µ
σD − ϵD(u) = 0.

So the saddle point is characterize by the following equations.⎧⎪⎪⎨⎪⎪⎩
div(σ) + f = 0

σD = 2µϵD(u)

tr(σ) = 2(λ+ µ) tr(ϵ(u))

. (1.43)

According to Proposition 1.4.2 and (1.43) we can conclude that σ is the stress tensor define in
(1.7).

1.5 Mixed Problem Brezzi

In this section we want to introduce the mixed problem for linear elasticity developed by Brezzi
in [4]. The difference form saddle point Problem 1.4.1 consists in changing the functional spaces
in (1.39).

1.5.1 Mixed Problem formulation

First of all we recall that the solutions of primal Problem 1.3.1 and dual Problem 1.3.2 are unique
and that the solution of saddle point Problem 1.4.1 is the combination of those two. From (1.43)
we must have div(σ) + f = 0, so, since f ∈ L2(Ω)2 we can deduce that div(σ) ∈ L2(Ω)2, thus
σ ∈ H(div,Ω). So in (1.39) we can restrict the domain of p form L2(Ω)2×2

sym to H(div,Ω)sym and
still have guarantee the uniqueness of solution which is the same of Problem 1.4.1. Thus we can
rewrite (1.39) as

inf
p∈H(div,Ω)sym

div(p)+f=0

{︃∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 dx

}︃
. (1.44)

Now we want to introduce the constrain div(p) + f = 0 in the equation, but since both div(p)

and f are in L2(Ω)2, we can use as test space L2(Ω)2 instead of H1
0 (Ω)

2, so we obtain

inf
p∈H(div,Ω)sym

sup
v∈L2(Ω)2

{︃∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 + (div(p) + f) · v dx

}︃
. (1.45)

The formulation above is the one given by Brezzi in [4]. The difference between (1.39) and (1.45)
is that we have restrict the space where p lives, but enlarge the space where v lives. Now we are
ready to introduce the mixed problem.

Problem 1.5.1 (Mixed formulation of linear elasticity). Find (w, τ) ∈ L2(Ω)2 ×H(div,Ω)sym
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such that∫︂
Ω

1

4µ
|τD|2 + 1

8(µ+ λ)
|tr(τ)|2 + f · w + div(τ) · w dx

= inf
p∈H(div,Ω)sym

sup
v∈L2(Ω)2

{︃∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 + f · v + div(p) · v dx

}︃
. (1.46)

1.5.2 Existence and uniqueness of saddle point for the mixed problem

The aim of this subsection is to show that (u, σ), unique saddle point of Problem 1.4.1, is also
the unique saddle point of Problem 1.5.1, in the sense of Definition 1.4.2.

Proposition 1.5.1. If (w, τ) is a saddle point of Problem 1.5.1 then w ∈ H1
0 (Ω)

2.

Proof. Let (w, τ) be a saddle point of Problem 1.5.1, then if we take the Euler-Lagrange equations
of the right-hand side of (1.46) evaluated in (w, τ) we obtain{︄∫︁

Ω
div(τ) · φ+ f · φ dx = 0 ∀φ ∈ L2(Ω)2∫︁

Ω
1
2µτ

D : φD + 1
4(µ+λ) tr(τ) tr(φ) + div(φ) · w dx = 0 ∀φ ∈ H(div,Ω)sym.

(1.47)

We can rewrite the second equation of the previous system in the following way:∫︂
Ω

(︃
1

2µ
τD +

1

4(µ+ λ)
tr(τ)id

)︃
: φ dx = −

∫︂
Ω

div(φ) · w̃ dx ∀φ ∈ H(div,Ω)sym. (1.48)

Since C∞
c (Ω)2×2

sym are contained in H(div,Ω)sym, as [16] suggests, we obtain that w admits sym-
metric gradient ϵ(w) and

ϵ(w) =
1

2µ
τD +

1

4(µ+ λ)
tr(τ)id, (1.49)

which implies that w ∈ H(sym,Ω), which is a Banach space. Now we want to show that if
w ∈ H(sym,Ω), then w ∈ H1(Ω)2. Since C∞(Ω)2 is dense in H(sym,Ω), then we can take
{φ

n
}n∈N ∈ C∞(Ω)2 such that φ

n
→ w in H(sym,Ω), that means:

φ
n
−→ w in L2(Ω)2

ϵ(φn) −→ ϵ(w) in L2(Ω)2×2
sym.

Using Korn inequality (A.5) for H1(Ω)2 we have that⃦⃦⃦
φ
n

⃦⃦⃦
H1(Ω)2

≤ K
(︁⃦⃦⃦

(φ
n
)
⃦⃦⃦
L2(Ω)2

+
⃦⃦
ϵ(φn)

⃦⃦
L2(Ω)2×2

sym

)︁
,

which implies that {φ
n
}n∈N is a Cauchy sequence in H1(Ω)2. Since this space is complete there

exists an element φ ∈ H1(Ω)2 such that φ
n

→ φ in H1(Ω)2. We can notice that for every
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u ∈ H1(Ω)2 we have

⃦⃦
ϵ(u)

⃦⃦2
L2(Ω)2×2

sym
:= ∥∂x1

u1∥2L2(Ω) + ∥∂x2
u2∥2L2(Ω) +

1

2
∥∂x1u2 + ∂x2u1∥

2
L2(Ω)

≤ ∥∂x1u1∥
2
L2(Ω) + ∥∂x2u2∥

2
L2(Ω) + ∥∂x1u2∥

2
L2(Ω) + ∥∂x2u1∥

2
L2(Ω) =: ∥∇(u)∥2L2(Ω)2×2 ,

so we can deduce that

∥u∥H(sym,Ω) := ∥u∥2L2(Ω)2 +
⃦⃦
ϵ(u)

⃦⃦2
L2(Ω)2×2

sym
≤ ∥u∥2L2(Ω)2 + ∥∇(u)∥2L2(Ω)2×2 =: ∥u∥H1(Ω)2 .

Thus H1(Ω)2 immerses with continuity in H(sym,Ω) and this implies that φ = w, so w is an
element of H1(Ω)2. Now we have to show that w ∈ H1

0 (Ω)
2. According to (1.48), (1.49) and

since C∞(Ω)2×2
sym are dense in H(div,Ω)sym we have:

0 =

∫︂
Ω

ϵ(w) : φ dx +

∫︂
Ω

div(φ) · w dx =

∫︂
∂Ω

Tr(w) · φν dH1 ∀φ ∈ C∞(Ω)2×2
sym,

where φνi
=

∑︁2
j=1 φijνj , where ν is the normal unit vector of ∂Ω. Then according to Theorems

A.2, Theorem A.3 and since φ is arbitrary, we can conclude w ∈ H1
0 (Ω)

2.

Proposition 1.5.2. If (w, τ) is a saddle point of Problem 1.5.1, then it is also a saddle point
of Problem 1.4.1.

Proof. If (w, τ) is a saddle point of Problem 1.5.1, then if we define

F (v, p) :=

∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 + f · v + div(p) · v dx, (1.50)

according to Definition 1.4.2 of saddle point we have that

∀v ∈ L2(Ω)2 F (v, τ) ≤ F (w, τ) ≤ F (w, p) ∀p ∈ H(div,Ω)sym. (1.51)

If (u, σ) is a saddle point of Problem 1.4.1, then if we define

G(v, p) :=

∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 + f · v − p : ϵ(v) dx, (1.52)

we have that
∀v ∈ H1

0 (Ω)
2 G(v, σ) ≤ G(u, σ) ≤ G(u, p) ∀p ∈ L2(Ω)2×2

sym. (1.53)

Now we want to show that (w, τ), saddle point of Problem 1.5.1, is also a saddle point of
Problem 1.4.1. According to Proposition 1.5.3 we have that w ∈ H1

0 (Ω)
2 and so (w, τ) ∈

H1
0 (Ω)

2 × L2(Ω)2×2
sym. Thus (w, τ) is an admissible saddle point for Problem 1.4.1. If we show

∀v ∈ H1
0 (Ω)

2 G(v, τ) ≤ G(w, τ) ≤ G(w, p) ∀p ∈ L2(Ω)2×2
sym,

then we obtain that (w, τ) is a saddle point of Problem 1.4.1. For every v ∈ H1
0 (Ω)

2 p ∈
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H(div,Ω)sym if we integrate by parts (1.50) we obtain

F (v, p) :=

∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 + f · w + div(p) · v dx

=

∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 + f · w − p : ϵ(v) dx =: G(v, p). (1.54)

Since H1
0 (Ω)

2 ⊆ L2(Ω)2 and according to Proposition 1.5.3 we have that w ∈ H1
0 (Ω)

2, from
(1.54) and (1.51) we have that

G(w, τ) = F (w, τ) ≥ F (v, τ) = G(v, τ) ∀v ∈ H1
0 (Ω)

2.

According to Proposition 1.5.3 we have that w ∈ H1
0 (Ω)

2 and from (1.54) we can deduce that

G(w, τ) = F (w, τ) ≤ F (w, p) = G(w, p) ∀p ∈ H(div,Ω)sym.

Since p→ G(w, p) is continuous in L2(Ω)2×2
sym and since C∞(Ω)2×2

sym is dense in H(div,Ω)sym, then
H(div,Ω)sym is dense in L2(Ω)2×2

sym. So we obtain

G(w, τ) ≤ G(w, p) ∀p ∈ L2(Ω)2×2
sym.

Thus (w, τ) is a saddle point of Problem 1.4.1.

Proposition 1.5.3. If (u, σ) the unique saddle point of Problem 1.4.1 is also a saddle point of
Problem 1.5.1.

Proof. According to what we have said in Subsection 1.4.3 we have that σ ∈ H(div,Ω)sym, so
(u, σ) is an admissible saddle point for Problem 1.5.1. In order to prove the thesis we need to
show that (u, σ) satisfies (1.51). Since (u, σ) is a saddle point for Problem 1.4.1 then it satisfies
(1.53), and because σ ∈ H(div,Ω)sym, due to (1.54) we have

F (u, σ) = G(u, σ),

so, since H(div,Ω)sym ⊆ L2(Ω)2×2
sym, from (1.54) we obtain

F (u, σ) = G(u, σ) ≤ G(u, p) = F (u, p) ∀p ∈ H(div,Ω)sym.

From (1.53) and (1.54) we obtain

F (u, σ) = G(u, σ) ≥ G(v, σ) = F (v, σ) ∀v ∈ H1
0 (Ω)

2.

Since v → F (v, σ) is continuous in L2(Ω)2 and H1
0 (Ω)

2 is dense in L2(Ω)2 we obtain

F (u, σ) = G(u, σ) ≥ G(v, σ) = F (v, σ) ∀v ∈ L2(Ω)2.

Thus (u, σ) is a saddle point of Problem 1.5.1.

Theorem 1.2. Problem 1.5.1 admits a unique saddle point which is the same one of Problem
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1.4.1.

Proof. From Proposition 1.5.3 we have guarantee that there exists a saddle point for Problem
1.5.1, then from Proposition 1.5.2 we have that all the saddle points of Problem 1.5.1 are also
saddle points of Problem 1.4.1. Since Problem 1.4.1 admits a unique saddle point we have that
Problem 1.5.1 must have a unique saddle points that coincide to the one of Problem 1.4.1.





Chapter 2

Dynamic linear elasticity and
viscoelasticity

This chapter aims at the derivation and the analysis of a mixed formulation for the evolution
equation of linear elasticity and viscoelasticity. It is divided into four sections in each of which
we will analyse a different topic: elastic waves, linear elasticity, elastic waves with dissipation
and linear viscoelasticity. In each section, following the theory developed in the Sections 1.3 and
1.4, we will present mixed formulations similar to the one obtained in the previous chapter when
we have introduced the Problem 1.4.1. Only for elastic waves with dissipation and linear vis-
coelasticity we will be able to introduce another mixed formulation similar to the one introduced
with Problem 1.5.1 and this will be possible thanks to the dissipative term that will allow the
solution of the primal to have a greater regularity.

2.1 One dimensional elastic waves

2.1.1 Starting problem

The aim of this section is to introduce a mixed formulation for one dimensional elastic waves. We
will begin by stating the starting problem and then will show that it admits a unique solution.
After that, according to the theory developed in Section 1.3 and Section 1.4, we will introduce a
mixed formulation for elastic waves. Finally we will show that the mixed problem has an unique
solution that coincides with the one of the starting problem.

Remark 2.1.1. One of the main differences in working in one dimension respect to higher ones
is that the gradient and the divergence operator coincide, since we want to make the transition
to multidimensional easier we will represent differently this two operators. We will denote with
·′ the spatial derivative and with d

dx the divergence operator.

Assumption 2.1.1. Let Ω ⊂ R be a bounded and Lipschitz domain, T > 0, u0 ∈ H1
0 (Ω),

u1 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω)∗) and ρ, k ∈ L∞(Ω) such that 0 < A ≤ k, ρ ≤ B <∞ a.e. in Ω.

For k and Ω satisfying Assumption 2.1.1, we introduce the symmetric bilinear form a :

31
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H1
0 (Ω)×H1

0 (Ω) → R:

a(u, v) :=

∫︂
Ω

ku′v′ dx. (2.1)

Note that by classical Poincaré Inequality a is in particular positive definite.
We consider the following.

Problem 2.1.1 (Starting Problem one dimensional elastic waves). Find u such that

u ∈ L2(0, T ;H1
0 (Ω)) ut ∈ L2(0, T ;L2(Ω)) ρutt ∈ L2(0, T ;H−1(Ω)),

and satisfies⎧⎪⎪⎨⎪⎪⎩
∫︁ T

0
⟨ρutt, φ⟩H1

0 (Ω) + a(u, φ) dt =
∫︁ T

0
⟨f, φ⟩L2(Ω) dt ∀φ ∈ L2(0, T ;H1

0 (Ω))

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω.

(2.2)

Following the same ideas of [9, Thm. 1, 2, and 3 in Sec. 7.2], we obtain the following result.

Theorem 2.1 (Existence and uniqueness of solution). Let f ∈ L2(0, T ;L2(Ω)∗), u0 ∈ H1
0 (Ω)

and u1 ∈ L2(Ω). There exists a unique function u such that

u ∈ L2(0, T ;H1
0 (Ω)) ut ∈ L2(0, T ;L2(Ω)) ρutt ∈ L2(0, T ;H−1(Ω)),

and satisfies⎧⎪⎪⎨⎪⎪⎩
∫︁ T

0
⟨ρutt, φ⟩H1

0 (Ω) + a(u, φ) dt =
∫︁ T

0
⟨f, φ⟩L2(Ω) dt ∀φ ∈ L2(0, T ;H1

0 (Ω))

u(·, 0) = u0

ut(·, 0) = u1.

(2.3)

Sketch of the proof. The result can be proved following the proof of Theorem 2.3 with minor
changes.

Definition 2.1.1. We will denote by ū the unique solution of Problem 2.1.1.

2.1.2 Construction of mixed formulation

In order to apply the theory that we have developed in Section 1.3 and Section 1.4 we have to
give a variational characterization of ū.

Let us introduce the functional

S(u) =
∫︂ T

0

⟨ρūtt, u⟩H1
0 (Ω) +

1

2
a(u, u)− ⟨f, u⟩L2(Ω) dt, (2.4)

acting on

Γ =

{︃
u

⃓⃓⃓⃓
u(x, t) ∈ L2(0, T ;H1

0 (Ω))

}︃
.
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Remark 2.1.2. We warn the reader that the functional S depends on the function ū, the solu-
tion of Problem 2.1.1. In the following we will consider the minimisation of the functional S and
recover ū itself as solution. This procedure, that apparently is running in circles, would not con-
cern the reader. Indeed, we remark that our final aim is to construct a saddle point formulation
of Problem 2.1.1, and we can safely use its unique solution as a parameter in the intermediate
steps. We will use this type of construction a number of times in the next sections, the present
remark holding true for all the considered instances.

Problem 2.1.2 (Primal formulation of one dimensional elastic waves). Find u ∈ Γ such that

S(u) = inf
v∈Γ

{S(v)}. (2.5)

Proposition 2.1.1. The function ū is the unique minimiser of Problem 2.1.2.

Proof. Since the solutions of Problem 2.1.1 live in a subspace of Γ, then we have that ū ∈ Γ.
Computing the first variation of (2.4) evaluated in ū, we obtain

dS(ū).y =

∫︂ T

0

⟨ρūtt, y⟩H1
0 (Ω) + a(ū, y)− ⟨f, y⟩L2(Ω) dt = 0 ∀y ∈ Γ,

where we have used that ū satisfies the first equation of (2.2). Thus ū is a critical point of S.
Now we have to prove that S is strongly convex in Γ, if that happens, then ū is the unique
minimiser. This is equivalent to prove that the second variation of S is positive define for all
u ∈ Γ:

d2S(u).(y, y) = a(y, y) =

∫︂ T

0

∫︂
Ω

k|y′|2 dx dt

≥
∫︂ T

0

A∥y∥2H1
0 (Ω) dt ≥ A∥y∥2L2(0,T ;H1

0 (Ω)) ∀y ∈ Γ.

In order to introduce the dual and the saddle point formulation for Problem 2.1.2 it is con-
venient to rewrite (2.5) as follows:

S(ū) = inf
v∈Γ

{S(v)} = inf
v∈Γ

{︁
F (v) +G(v′)

}︁
,

where F : Γ → R is

F (v) =

∫︂ T

0

⟨ρūtt, v⟩H1
0 (Ω)2 − ⟨f, v⟩L2(Ω) dt, (2.6)

and G : Y := L2(0, T ;L2(Ω)) → R is

G(p) =

∫︂ T

0

∫︂
Ω

k|p|2 dx dt. (2.7)

Now we introduce the dual problem and show that it admits a unique solution. Starting from
Problem 2.1.2, if we define Φ(u, p) = F (u) + G(u′ + p), then, according to Definition 1.3.2, we
have the following.
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Problem 2.1.3 (Dual formulation of one dimensional elastic waves). Find q∗ ∈ Y ∗ such that

− Φ∗(0, q∗) = sup
p∗∈Y ∗

[︁
− Φ∗(0, p∗)

]︁
= sup

p∗∈Y ∗

[︁
− F ∗(−Λ∗p∗)−G∗(p∗)

]︁
, (2.8)

where Λ∗ is d
dx , the adjoint of ·′, according to Definition A.1.8 F ∗ : Γ∗ → R is

F ∗(− d

dx
p∗) =

{︄
0 if − d

dxp
∗ − ρūtt + f = 0

+∞ otherwise
,

and G∗ : Y ∗ → R is

G∗(p∗) =

∫︂ T

0

∫︂
Ω

1

4k
|R(p∗)|2 dx dt

where R is the Riesz operator such that R : Y ∗ → Y .

Proposition 2.1.2. Problem 2.1.2 is stable, in the sense of Definition 1.3.4. Moreover Problem
2.1.3 admits a unique solution.

Proof. In order to prove stability we verify the hypothesis of Theorem 1.1. Since F , defined in
(2.6), is linear and G, defined in (2.7), is strictly convex, then J(u, p) = F (u) + G(p) is convex
in Γ× Y :

J(α(u, p) + (1− α)(v, q)) = F (αu+ (1− α)v) +G(αp+ (1− α)q)

= αF (u) + (1− α)F (v) +G(αp+ (1− α)q)

≤ αF (u) + (1− α)F (v) + αG(p) + (1− α)G(q)

≤ αJ(u, p) + (1− α)J(v, q),

for all α ∈ [0, 1], u, v ∈ Γ and p, q ∈ Y .
Clearly for u0 = 0 we have that F (0) = 0 and G(0′) = 0, so we need to verify that p →
F (u0) + G(p) is continuos at 0. Let pn → p in Y as n → ∞, then, since k ∈ L∞(Ω) and
∥p∥2Y :=

∫︁ T

0

∫︁
Ω
|p|2 dx dt we have

lim
n→∞

F (u0) +G(pn) = lim
n→∞

∫︂ T

0

∫︂
Ω

k|pn|2 dx dt =

∫︂ T

0

∫︂
Ω

k|p|2 dx dt = F (u0) +G(p).

So, Problem 2.1.2 is stable and due to Proposition 1.3.6, Problem 2.1.3 has at least one solution.
Can be noticed that G is differentiable and the differential of G in p evaluated in q is

G
′
[p](q) =

∫︂ T

0

∫︂
Ω

2kpq dx dt.

Since G is differentiable and the primal Problem 2.1.2 admits a unique solution, according to
Proposition 1.3.7 and Proposition A.1.7, the dual Problem 2.1.3 admits a unique solution.

Before introducing the saddle point problem, according to the theory developed in Section
1.4, we need to study the Lagrangian defined in Definition 1.4.1:

− L(u, p∗) = sup
p∈Y

[︁
⟨p∗, p⟩Y − F (u)−G(u′ + p)

]︁
. (2.9)
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Since F , defined in (2.6), is linear and G, defined in (2.7) is strictly convex we have that the
argument of the supremum in (2.9) is a strictly concave function. Thus there exists a unique
q ∈ Y such that

⟨p∗, q⟩Y − F (u)−G(u′ + q) = sup
p∈Y

[︁
⟨p∗, p⟩Y − F (u)−G(u′ + p)

]︁
.

Therefore the first variation respect to p evaluated in q of ⟨p∗, p⟩Y −F (u)−G(u′+p) must vanish,
that is ∫︂ T

0

∫︂
Ω

R(p∗)φ− 2k(q + u′)φ dx dt = 0 ∀φ ∈ Y, (2.10)

where R : Y ∗ → Y is the Riesz operator defined in Theorem A.1 such that

⟨p∗, φ⟩Y :=

∫︂ T

0

∫︂
Ω

R(p∗)φ dx dt ∀φ ∈ Y.

Taking φ = q + u′ in (2.10) we obtain

⟨p∗, q⟩Y = 2G(u′ + q)−
∫︂ T

0

∫︂
Ω

R(p∗)u′ dx dt.

Then from (2.9) and the previous equation we can deduce that

−L(u, p∗) = sup
p∈Y

[︁
⟨p∗, p⟩Y − F (u)−G(u′ + p)

]︁
= ⟨p∗, q⟩Y − F (u)−G(u′ + q)

= G(u′ + q)− F (u)−
∫︂ T

0

∫︂
Ω

R(p∗)u′ dx dt. (2.11)

Since (2.10) is true for all φ in Y , then we have

R(p∗) = 2k(q + u′),

and we can deduce that
q =

1

2k
R(p∗)− u′. (2.12)

Substituting (2.12) in (2.11) we obtain

− L(u, p∗) =

∫︂ T

0

∫︂
Ω

1

4k
|R(p∗)|2 −R(p∗)u′ dx− ⟨ρūtt, u⟩H1

0 (Ω) + ⟨f, u⟩L2(Ω) dt. (2.13)

Since the right-hand side of the last equation depends on p∗ only through the Riesz operator R
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and Y is an Hilbert space, we can replace Y ∗ with Y and R(p∗) with p, and we obtain

inf
p∗∈Y ∗

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4k
|R(p∗)|2 −R(p∗)u′ dx− ⟨ρūtt, u⟩H1

0 (Ω) + ⟨f, u⟩L2(Ω) dt

}︃
= inf

p∈Y
sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4k
|p|2 − pu′ dx− ⟨ρūtt, u⟩H1

0 (Ω) + ⟨f, u⟩L2(Ω) dt

}︃
.

Thus, from the previous equation and according to Definition 1.4.3 of saddle point problem, we
arrive to consider the following.

Problem 2.1.4 (Saddle point formulation of one dimensional elastic waves). Find (w, τ) ∈ Γ×Y
such that∫︂ T

0

∫︂
Ω

1

4k
|τ |2 − τw′ dx− ⟨ρūtt, w⟩H1

0 (Ω) + ⟨f, w⟩L2(Ω) dt

= inf
p∈Y

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4k
|p|2 − pu′ dx− ⟨ρūtt, u⟩H1

0 (Ω) + ⟨f, u⟩L2(Ω) dt

}︃
. (2.14)

Proposition 2.1.3. Problem 2.1.4 admits a unique solution (ū, σ) where ū is the unique solution
of Problem 2.1.2 and σ = R(q∗), where q∗ is the unique solution of Problem 2.1.3.

Proof. According to Proposition 1.4.1 we have that the solutions of Problem 2.1.4 are the product
of the solutions of Problem 2.1.2 and Problem 2.1.3. Since Problem 2.1.2 and Problem 2.1.3 admit
unique solution ū and σ = R(q∗), where q∗ is the unique solution of Problem 2.1.3, then we have
that Problem 2.1.4 admits a unique solution that is (ū, σ).

If we compute the Euler-Lagrange equation of (2.14) evaluated in (ū, σ) we obtain{︄∫︁ T

0

∫︁
Ω
σy′ dx + ⟨ρūtt, y⟩H1

0 (Ω) − ⟨f, y⟩L2(Ω) dt = 0 ∀y ∈ L2(0, T ;H1
0 (Ω))∫︁ T

0

∫︁
Ω
σφ− 2kφū′ dx dt = 0 ∀φ ∈ L2(0, T ;L2(Ω))

(2.15)

Remark 2.1.3. We can define d
dxσ ∈ L2(0, T ;H−1(Ω)) as follows

⟨ d

dx
σ, y⟩

H1
0 (Ω)

:=

∫︂
Ω

σy′ dx ∀y ∈ H1
0 (Ω).

The main difference from the non evolutive case, that we have analysed in Subsection 1.4.2 and
Subsection 1.5.1, is that even if we require f ∈ L2(0, T ;L2(Ω)) we can not state that d

dxσ ∈
L2(0, T ;L2(Ω)) because ρūtt is in L2(0, T ;H−1(Ω)) and not in L2(0, T ;L2(Ω)). We will see,
in Section 2.3, that adding a viscosity term to the first equation of (2.2) we will gain enough
regularity to ū to have σ ∈ L2(0, T ;H(div,Ω)).

2.1.3 Mixed formulation Elastic waves

Now we are interested in finding the couple (u, σ) solution of the system (2.15), with the addition
of the initial conditions for u. We introduce the following.
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Problem 2.1.5 (Mixed PDE formulation in L2(0, T ;L2(Ω)) of one dimensional elastic waves).
Find (u, σ) such that u ∈ L2(0, T ;H1

0 (Ω)), ut ∈ L2(0, T ;L2(Ω)), ρutt ∈ L2(0, T ;H−1(Ω)), σ ∈
L2(0, T ;L2(Ω)) and satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫︁ T

0

∫︁
Ω
σy′ dx + ⟨ρutt, y⟩H1

0 (Ω) − ⟨f, y⟩L2(Ω) dt = 0 ∀y ∈ L2(0, T ;H1
0 (Ω))∫︁ T

0

∫︁
Ω
σφ− 2kφu′ dx dt = 0 ∀φ ∈ L2(0, T ;L2(Ω))

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω.

(2.16)

Proposition 2.1.4. For every (u, σ) solution of Problem 2.1.5, u must satisfy the following∫︂ T

0

⟨ρutt, y⟩H1
0 (Ω) + a(u, y) dt =

∫︂ T

0

⟨f, y⟩L2(Ω) dt ∀y ∈ L2(0, T ;H1
0 (Ω)), (2.17)

where a(·, ·) : H1
0 (Ω)×H1

0 (Ω) → R is defined in (2.1).

Proof. Since (u, σ) is solution of Problem 2.1.5, then it satisfies (2.16). From the second equation
of (2.16) and since σ ∈ L2(0, T ;L2(Ω)) we obtain

σ = 2kū′.

Substitute σ is the first equation of (2.16) and according to the definition of the operator a(·, ·)
we obtain∫︂ T

0

⟨ρutt, y⟩H1
0 (Ω)2 + a(u, y) dt =

∫︂ T

0

⟨f, y⟩L2(Ω) dt ∀y ∈ L2(0, T ;H1
0 (Ω)

2),

that is exactly (2.17).

Now we state the main result of this section.

Theorem 2.2. The function ū is the unique solution of Problem 2.2 if and only if the couple
(ū, σ) is the unique solution of Problem 2.1.5, where

σ = 2kū′. (2.18)

Proof. (⇒)

From the previous subsection we have obtained that (ū, σ) satisfies (2.15). Form the second
equation of (2.15) and since σ ∈ L2(0, T ;L2(Ω)) we have that σ is defined as in (2.18). Finally,
since ū is the solution of Problem 2.2, then it satisfies the initial conditions.
(⇐)

Let (u, σ) be solution of Problem 2.1.5. According to Proposition 2.1.4 we have that u satisfies
the following system.⎧⎪⎪⎨⎪⎪⎩

∫︁ T

0
⟨ρutt, y⟩H1

0 (Ω) + a(u, y) dt =
∫︁ T

0
⟨f, y⟩L2(Ω) dt ∀y ∈ L2(0, T ;H1

0 (Ω))

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω.
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Thus u is solution of Problem 2.2.
Since Problem 2.2 admits a unique solution, then (ū, σ) is the unique solution of Problem 2.1.5.



2.2. LINEAR ELASTICITY 39

2.2 Linear Elasticity

The aim of this section is to introduce a mixed formulation for linear elasticity. We will start
from presenting the starting problem and then following the same ideas of [7] and [9], we will
prove that it admits a unique solution. Then, using the theory we have developed in Sections 1.3
and 1.4, we will construct a mixed formulation. Finally we will show that the mixed formulation
has a unique solution that coincide with the starting problem.

2.2.1 Starting problem

Assumption 2.2.1. Let Ω ⊂ R2 be a bounded and Lipschitz domain, T > 0, u0 ∈ H1
0 (Ω)

2,
u1 ∈ L2(Ω)2, f ∈ L2(0, T ; (L2(Ω)2)∗), ρ ∈ L∞(Ω) such that 0 < A ≤ ρ ≤ B < ∞ a.e. in Ω,
µ > 0 and λ ≥ 0.

Satisfying Assumption 2.2.1 now we introduce the symmetric bilinear form a : H1
0 (Ω)

2 ×
H1

0 (Ω)
2 → R:

a(u, v) :=

∫︂
Ω

2µϵ(u) : ϵ(v) + λdiv(u)div(v) dx. (2.19)

We now consider the following.

Problem 2.2.1 (Starting Problem Linear Elasticity). Find u such that

u ∈ L2(0, T ;H1
0 (Ω)

2) ut ∈ L2(0, T ;L2(Ω)2) ρutt ∈ L2(0, T ;H−1(Ω)2),

and satisfies⎧⎪⎪⎨⎪⎪⎩
∫︁ T

0
⟨ρutt, φ⟩H1

0 (Ω)2
+ a(u, φ) dt =

∫︁ T

0
⟨f, φ⟩

L2(Ω)
dt ∀φ ∈ L2(0, T ;H1

0 (Ω)
2)

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω.

(2.20)

Following the same ideas of [7, Thm. 4.1 in Ch. 3] and [9, Thm. 1, 2, and 3 in Sec. 7.2], we
obtain the following.

Theorem 2.3 (Existence and uniqueness of solution). Let f ∈ L2(0, T ; (L2(Ω)2)∗), u0 ∈ H1
0 (Ω)

2

and u1 ∈ L2(Ω)2. There exists a unique function u such that

u ∈ L2(0, T ;H1
0 (Ω)

2) ut ∈ L2(0, T ;L2(Ω)2) ρutt ∈ L2(0, T ;H−1(Ω)2),

and satisfies⎧⎪⎪⎨⎪⎪⎩
∫︁ T

0
⟨ρutt, φ⟩H1

0 (Ω)2
+ a(u, φ) dt =

∫︁ T

0
⟨f, φ⟩

L2(Ω)
dt ∀φ ∈ L2(0, T ;H1

0 (Ω)
2)

u(0) = u0

ut(0) = u1.

(2.21)

Proof. Construction of approximate solution. Since H1
0 (Ω)

2 and L2(Ω)2 are separable,
then there exists functions wk, such that {wk}∞k=1 is an orthogonal basis of H1

0 (Ω)
2, {wk}∞k=1 is
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an orthonormal basis of L2(Ω)2 and wk > 0 for all k. As Evans suggests in [9] it is enough to
consider the normalize eigenfunctions of the Laplacian operator in H1

0 (Ω)
2.

For every fixed integer m we write

um(t) :=

m∑︂
k=1

dkm(t)wk, (2.22)

where wk := (wk, 0) or wk := (0, wk) , and we consider the problem of finding the coefficients
dkm(t), such that

(ρumtt, ws)L2(Ω)2 + a(um, ws) = ⟨f, ws⟩L2(Ω)
for 0 ≤ t ≤ T , (2.23)

for s = 1, 2, . . . ,m and

dkm(0) = (u0, wk)L2(Ω)2 (2.24)

dkmt(0) = (u1, wk)L2(Ω)2 , (2.25)

for k = 1, 2, . . . ,m.
Since wk > 0 for all k and 0 < A ≤ ρ ≤ B <∞ a.e. in Ω, we have the following

A(wk, ws)L2(Ω)2 ≤ (ρwk, ws)L2(Ω)2 :=

∫︂
Ω

ρwkws dx ≤ B(wk, ws)L2(Ω)2 , (2.26)

that implies

(ρum(t), ws)L2(Ω)2 =

m∑︂
k=1

dkmtt(t)

∫︂
Ω

ρ|wk|2 dx =

m∑︂
k=1

Ckd
k
mtt(t).

Denoting with fk(t) := ⟨f(t), wk⟩
L2(Ω)2

and bkl := a(wk, wl) we can rewrite (2.23) as a linear
system of ODE

Ckd
k
mtt(t) +

m∑︂
l=1

bkldlm(t) = fk(t) for 0 ≤ t ≤ T , (2.27)

for k = 1, 2, . . . ,m and 0 ≤ t ≤ T . According to the standard theory for ordinary differential
equations, there exists a unique function dm(t) = (d1m(t), . . . , dmm(t)) satisfying (2.27) for 0 ≤
t ≤ T , (2.24) and (2.25). So, if we define u0m =

∑︁m
k=1 d

k
m(0)wk and u1m =

∑︁m
k=1 d

k
mt(0)wk, we

have that for every m = 1, 2, . . . , there exists a unique function um(t), of the form (2.22), that
satisfies (2.23) and

um(0) = u0m (2.28)

umt(0) = u1m. (2.29)

A priori estimates. Now we want to prove the following:

max
0≤t≤T

(∥um∥2H1
0 (Ω)2 + ∥umt∥

2
L2(Ω)2

) + ∥ρumtt∥
2
L2(0,T ;H−1(Ω)2)

≤ C(
⃦⃦
f
⃦⃦2
L2(0,T ;(L2(Ω)2)∗)

+ ∥u1∥
2
L2(Ω)2 + ∥u0∥

2
H1

0 (Ω)2). (2.30)
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Taking (2.23), multiply it by dkmt and then sum for k = 1, 2, . . . ,m, we obtain

(ρumtt, umt)L2(Ω)2 + a(um, umt) = ⟨f, umt⟩L2(Ω)
.

Observing that

(ρumtt, umt)L2(Ω)2 = (
√
ρumtt,

√
ρumt)L2(Ω)2 =

1

2

d

dt

(︁⃦⃦√
ρumt

⃦⃦2
L2(Ω)2

)︁
,

and, since a(·, ·) is a symmetric operator, we have

a(um, umt) =

∫︂
Ω

2µϵ(um) : ϵ(umt) + λdiv(um)div(umt) dx =
1

2

d

dt

(︁
a(um, um)

)︁
,

recalling that 2ab ≤ a2+ b2, (2.26) and a(u, u) ≥ Kµ∥u∥2H1
0 (Ω)2 for all u ∈ H1

0 (Ω)
2, we obtain the

following

d

dt

(︁
∥√ρumt∥

2
L2(Ω)2

+ a(um, um)
)︁)︁

= 2
[︁
(ρumtt, umt)L2(Ω)2 + a(um, umt)

]︁
= 2

[︁
⟨f, umt⟩L2(Ω)2

− a(um, umt) + a(um, umt)
]︁

≤ 2
[︁
∥f∥(L2(Ω)2)∗∥umt∥L2(Ω)2

]︁
≤ ∥f∥2(L2(Ω)2)∗ + ∥umt∥

2
L2(Ω)2

≤ C
[︁
∥f∥2(L2(Ω)2)∗ +

⃦⃦√
ρumt

⃦⃦2
L2(Ω)2

+ a(um, um)
]︁
. (2.31)

If we define

ν(t) := ∥√ρumt(t)∥
2
L2(Ω)2

+ a(um(t), um(t))

ξ(t) :=
⃦⃦
f(t)

⃦⃦2
(L2(Ω)2)∗

,

we can rewrite (2.31) as follows

νt(t) ≤ Cν(t) + Cξ(t) for 0 ≤ t ≤ T ,

and according to Proposition A.2.6 we obtain

ν(t) ≤ eCt
(︁
ν(0) + C

∫︂ t

0

ξ(s) ds
)︁

for 0 ≤ t ≤ T . (2.32)

Due to (2.26) we can notice that

ν(0) = ∥√ρumt(0)∥
2
L2(Ω)2

+ a(um(0), um(0)) ≤ C
(︁
∥u1∥

2
L2(Ω) + ∥u0∥

2
H1

0 (Ω)2

)︁
, (2.33)

then from (2.32) and (2.33) we obtain

∥√ρumt(t)∥
2
H1

0 (Ω)2
+a(um(t), um(t)) ≤ C(∥u1∥

2
L2(Ω)2+∥u0∥

2
H1

0 (Ω)2+
⃦⃦
f
⃦⃦2
L2(0,T ;(L2(Ω)2)∗)

). (2.34)
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Since for all u ∈ H1
0 (Ω)

2 we have

a(u, u) ≥ 2µK∥u∥2H1
0 (Ω)2 ,

and

∥√ρumt(t)∥
2
L2(Ω)2 = (

√
ρumt(t),

√
ρumt(t))L2(Ω)2 =

(ρumt(t), umt(t))L2(Ω)2 ≥ A(umt(t), umt(t))L2(Ω)2 = A∥umt(t)∥
2
L2(Ω)2

,

from (2.34) we obtain

max
0≤t≤T

(∥um(t)∥2H1
0 (Ω)2 + ∥umt(t)∥

2
L2(Ω)2

) ≤

C(
⃦⃦
f
⃦⃦2
L2(0,T ;(L2(Ω)2)∗)

+ ∥u1∥
2
L2(Ω)2 + ∥u0∥

2
H1

0 (Ω)2). (2.35)

Now we fix v ∈ H1
0 (Ω)

2 such that ∥v∥H1
0 (Ω)2 ≤ 1 and v = v1 + v2, where v1 ∈ span{wk}mk=1 and

(v2, wk)L2(Ω)2 = 0 for every k = 1, 2, . . . ,m, then we obtain

⟨ρumtt, v⟩H1
0 (Ω)2

:= (ρumtt, v)L2(Ω)2 = (ρumtt, v1)L2(Ω)2 = (f, v1)− a(um, v1),

Since ∥v∥H1
0 (Ω)2 ≤ 1, we have

∥ρumtt∥H−1(Ω)2
:= sup

v∈H1
0 (Ω)2\{0}

|⟨ρumtt, v⟩H1
0 (Ω)2 |

∥v∥H1
0 (Ω)2

≤ C
(︁⃦⃦
f
⃦⃦
(L2(Ω)2)∗

+ ∥um∥H1
0 (Ω)2

)︁
,

from the previous equation and (2.35) we can deduce the following

∥ρumtt∥
2
L2(0,T ;H−1(Ω)2)

=

∫︂ T

0

∥ρumtt∥
2
H−1(Ω)2

dt

≤
∫︂ T

0

C
(︁⃦⃦
f
⃦⃦2
(L2(Ω)2)∗

+ ∥um∥2H1
0 (Ω)2

)︁
≤ C(

⃦⃦
f
⃦⃦2
(L2(Ω)2)∗

+ ∥u1∥
2
L2(Ω)2 + ∥u0∥

2
H1

0 (Ω)2). (2.36)

Thus from (2.35) and (2.36) we obtain (2.30).
Existence of solution. Since (2.30) is independent of m we can deduced that {um}∞m=1 is
bounded in L2(0, T ;H1

0 (Ω)
2), {umt}∞m=1 is bounded in L2(0, T ;L2(Ω)2) and {ρumtt}∞m=1 is

bounded in L2(0, T ;H−1(Ω)2). According to Theorem A.4, we have that there exists a sub-
sequence {uml

}∞l=1, u ∈ L2(0, T ;H1
0 (Ω)

2), ut ∈ L2(0, T ;L2(Ω)2) and ρutt ∈ L2(0, T ;H−1(Ω)2)

such that ⎧⎪⎪⎨⎪⎪⎩
uml

⇀ u weakly in L2(0, T ;H1
0 (Ω)

2)

uml t
⇀ ut weakly in L2(0, T ;L2(Ω)2)

ρuml tt
⇀ ρutt weakly in L2(0, T ;H−1(Ω)2).

(2.37)

From now on we identify {um}∞m=1 with its subsequence {uml
}∞l=1.
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Now we fix an integer N and consider the function φ ∈ C1([0, T ];H1
0 (Ω)

2) such that

φ(t) :=

N∑︂
i=1

dk(t)wk, (2.38)

where {dk}Nk=1 are smooth functions, i.e. {dk}Nk=1 ⊆ C∞([0, T ]). Taking m ≤ N , multiply (2.23)
by dk(t) and sum k = 1, 2, . . . N we obtain

(ρumtt, φ(t))L2(Ω)2 + a(um, φ(t)) = ⟨f, φ(t)⟩
L2(Ω)

for 0 ≤ t ≤ T .

Integrating the previous equation between [0, T ] with respect to the variable t, we obtain∫︂ T

0

⟨ρumtt, φ⟩H1
0 (Ω)2

+ a(um, φ) dt =

∫︂ T

0

⟨f, φ⟩
L2(Ω)

dt. (2.39)

According to (2.37) if we pass to the limit in the previous equation, we obtain∫︂ T

0

⟨ρutt, φ⟩H1
0 (Ω)2

+ a(u, φ) dt =

∫︂ T

0

⟨f, φ⟩
L2(Ω)

dt.

Since the functions defined in (2.38) are dense in L2(0, T ;H1
0 (Ω)

2) we can deduce that∫︂ T

0

⟨ρutt, φ⟩H1
0 (Ω)2

+ a(u, φ) dt =

∫︂ T

0

⟨f, φ⟩
L2(Ω)

dt ∀φ ∈ L2(0, T ;H1
0 (Ω)

2). (2.40)

In order to verify that u satisfy (2.21) we need to check that u(0) = u0 and ut(0) = u1. If we
take φ ∈ C2([0, T ];H1

0 (Ω)
2) such that φ(T ) = 0 and φ

t
(T ) = 0 and integrating by parts equation

(2.40) respect to the variable t, we obtain

∫︂ T

0

(ρu, φ
tt
)L2(Ω)2 + a(u, φ) dt =

∫︂ T

0

⟨f, φ⟩
L2(Ω)

dt

+ (ρu(0), φ
t
(0))L2(Ω)2 + (ρut(0), φ(0))L2(Ω)2 . (2.41)

Starting from equation (2.39), integrating twice by parts respect to the variable t, we obtain

∫︂ T

0

(ρum, φtt
)L2(Ω)2 + a(um, φ) dt =

∫︂ T

0

⟨f, φ⟩
L2(Ω)

dt

+ (ρum(0), φ
t
(0))L2(Ω)2 + (ρum(0)tφ(0))L2(Ω)2 ,

from (2.28), (2.29) and (2.37) if we pass to the limit of the previous equation we obtain

∫︂ T

0

(ρu, φ
tt
)L2(Ω)2 + a(u, φ) dt =

∫︂ T

0

⟨f, φ⟩
L2(Ω)

dt

+ (ρu0, φt
(0))L2(Ω)2 + (ρu1, φ(0))L2(Ω)2 . (2.42)



44 CHAPTER 2. DYNAMIC LINEAR ELASTICITY AND VISCOELASTICITY

Confronting (2.41) and (2.42) we obtain that

(ρu(0), φ
t
(0))L2(Ω)2 + (ρut(0), φ(0))L2(Ω)2 = (ρu(0), φ

t
(0))L2(Ω)2 + (ρut(0), φ(0))L2(Ω)2 ,

form the arbitrary of φ(0) and φ
t
(0), implied by the arbitrary of φ ∈ C2([0, T ];H1

0 (Ω)
2), and

since 0 < A ≤ ρ ≤ B < +∞ a.e. in Ω, we can deduce that

u(0) = u0

ut(0) = u1,

so u is a solution of (2.21).
Uniqueness of solution Now we want to show that there exists a unique solution of (2.21),
in order to do that we are going to prove that if u is solution of (2.21) with the choice of
u0 = u1 = f = 0, then u = 0. Let φ ∈ C1([0, T ]; (L2(Ω)2)∗) and according to what we have prove
until now there exists a function w solution of (2.21) with the choice u0 = u1 = 0 and f = φ.
Now we consider the function w̃(T − t) = w(t), so we have that

w̃ ∈ L2(0, T ;H1
0 (Ω)

2) w̃t ∈ L2(0, T ;L2(Ω)2) ρw̃tt ∈ L2(0, T ;H−1(Ω)2)∫︂ T

0

⟨ρw̃tt, φ⟩H1
0 (Ω)2

+ a(w̃, φ) dt =

∫︂ T

0

⟨f, φ⟩
L2(Ω)

dt ∀φ ∈ L2(0, T ;H1
0 (Ω)

2) (2.43)

w̃(T ) = 0

w̃t(T ) = 0.

Since w̃(T ) = w̃t(T ) = u(0) = ut(0) = 0, then we have∫︂ T

0

⟨ρutt, w̃⟩H1
0 (Ω)2 dt = −

∫︂ T

0

(ρut, w̃t)L2(Ω)2 dt

+ (ρut(T ), w̃(T ))L2(Ω)2 − (ρut(0), w̃(0))L2(Ω)2

=

∫︂ T

0

⟨ρw̃tt, u⟩H1
0 (Ω)2 dt

+ ⟨ρw̃tt(T ), u(T )⟩L2(Ω)2 − ⟨ρw̃tt(0), u(0)⟩L2(Ω)2

=

∫︂ T

0

⟨ρw̃tt, u⟩H1
0 (Ω)2 dt, (2.44)

and, because u is solution of (2.21), with f = 0 and w̃ satisfies (2.43) we have that∫︂ T

0

⟨ρw̃tt, u⟩H1
0 (Ω)2 dt =

∫︂ T

0

⟨φ, u⟩
L2(Ω)2

− a(w̃, u) dt (2.45)∫︂ T

0

⟨ρutt, w̃⟩H1
0 (Ω)2 dt =

∫︂ T

0

−a(u, w̃) dt. (2.46)

From (2.44), (2.45), (2.46) and because a(·, ·) is a symmetric operator we obtain∫︂ T

0

⟨φ, u⟩
L2(Ω)2

= 0 ∀φ ∈ C1([0, T ];L2(Ω)2).
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Since C1([0, T ]; (L2(Ω)2)∗) is dense in L2(0, T ; (L2(Ω)2)∗), then we can deduce that u = 0.

Definition 2.2.1. We will denote ū the unique solution of Problem 2.2.1.

2.2.2 Construction of mixed formulation

In order to apply the duality theory that we have seen in Section 1.3 and Section 1.4, we need
to characterize ū as the unique minimum of a certain variational principle. Let us start by
introducing the functional

S(u) =
∫︂ T

0

⟨ρūtt, u⟩H1
0 (Ω)2 +

1

2
a(u, u)− ⟨f, u⟩

L2(Ω)
dt, (2.47)

acting on the Hilbert space

Γ =

{︃
u(x, t)

⃓⃓⃓⃓
u(x, t) ∈ L2(0, T ;H1

0 (Ω)
2)

}︃
,

and the variational problem related to S.

Problem 2.2.2 (Primal formulation of linear elasticity). Find u ∈ Γ such that

S(u) = inf
v∈Γ

{S(v)} (2.48)

As suggested in Remark 2.1.2 the presence of ū in (2.47) is not a problem for the sake of our
purpose.

Proposition 2.2.1. The function ū is the unique minimum of Problem 2.2.2.

Proof. Clearly we have that ū ∈ Γ, if we compute the first variation of (2.47) evaluated in ū, we
obtain

dS(ū).y =

∫︂ T

0

⟨ρūtt, φ⟩H1
0 (Ω)2

+ a(u, φ)− ⟨f, y⟩
L2(Ω)

dt = 0 ∀y ∈ Γ,

where the last equality is a consequence of the first equation of (2.20). Thus ū is a critical point
of S. In order to prove that it is the unique minimum of S we will show that the action S is
strongly convex in Γ. This is equivalent to prove that the second variation of S is positive define
for all u ∈ L2(0, T ;H1

0 (Ω)
2):

d2S(u).(y, y) =
∫︂ T

0

a(y, y) dt

=

∫︂ T

0

∫︂
Ω

2µ|ϵ(y)|2 + λ|tr(ϵ(y))|2 dx dt

≥
∫︂ T

0

∫︂
Ω

2µ|ϵ(y)|2 dx dt

≥
∫︂ T

0

2µK
⃦⃦
y
⃦⃦2
H1

0 (Ω)2
dt ≥ 2µK

⃦⃦
y
⃦⃦2
L2(0,T ;H1

0 (Ω)2)2
∀y ∈ L2(0, T ;H1

0 (Ω)
2),

where we have used Korn Inequality (A.4).
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In order to introduce the dual and the saddle point formulation for Problem 2.2.2 it is con-
venient to rewrite (2.48) as follows:

S(u) = inf
v∈Γ

{S(v)} = inf
v∈Γ

{︁
F (v) +G(ϵ(v))

}︁
,

where F : Γ → R is

F (v) =

∫︂ T

0

⟨ρūtt, v⟩H1
0 (Ω)2 − ⟨f, v⟩

L2(Ω)
dt, (2.49)

and G : Y := L2(0, T ;L2(Ω)2×2
sym) → R is

G(p) =

∫︂ T

0

∫︂
Ω

µ|p|2 + 1

2
λ|tr(p)|2 dx dt. (2.50)

Now we need to introduce the dual problem and show that it admits a unique solution. Starting
from Problem 2.2.2, according to Definition 1.3.2 with the choice of Φ(u, p) = F (u)+G(ϵ(u)+p),
we obtain the following.

Problem 2.2.3 (Dual formulation of linear elasticity). Find q∗ ∈ Y ∗ such that

− Φ∗(0, q∗) = sup
p∗∈Y ∗

[︁
− Φ∗(0, p∗)

]︁
= sup

p∗∈Y ∗

[︁
− F ∗(−Λ∗p∗)−G∗(p∗)

]︁
, (2.51)

where Λ∗ is ϵ∗, the adjoint of ϵ, according to Definition A.1.8 F ∗ : Γ∗ → R is

F ∗(−ϵ∗(p∗)) =

{︄
0 if − ϵ∗(p∗)− ρūtt + f = 0

+∞ otherwise
,

and G∗ : Y ∗ → R is

G∗(p∗) =

∫︂ T

0

∫︂
Ω

1

4µ
|R(p∗)

D|2 + 1

8(µ+ λ)
|tr(R(p∗))|2 dx dt,

where R is the Riesz operator such that R : Y ∗ → Y .

Proposition 2.2.2. Problem 2.2.2 is stable, in the sense of Definition 1.3.4. Moreover Problem
2.2.3 admits a unique solution.

Proof. In order to prove stability we verify the hypothesis of Theorem 1.1. Since F , defined in
(2.49), is linear and G, defined in (2.50), is strictly convex, then J(u, p) = F (u)+G(p) is convex
in Γ× Y :

J(α(u, p) + (1− α)(v, q)) = F (αu+ (1− α)v) +G(αp+ (1− α)q)

= αF (u) + (1− α)F (v) +G(αp+ (1− α)q)

≤ αF (u) + (1− α)F (v) + αG(p) + (1− α)G(q)

≤ αJ(u, p) + (1− α)J(v, q),

for α ∈ [0, 1], u, v ∈ Γ and p, q ∈ Y .
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Now we need to find a value u0 such that F (u0)+G(ϵ(u0)) < +∞ and verify that the functional
p → F (u0) + G(p) is continuos at ϵ(u0). If we take u0 = 0 then F (0) = 0 and, since ϵ(0) = 0,
then G(ϵ(0)) = G(0) = 0, so the first hypothesis is verified. Now we need to show that p →
F (u0) +G(p) is continuos at ϵ(u0). Let p

n
→ p in Y as n→ ∞, then it is enough to show

lim
n→∞

∫︂ T

0

∫︂
Ω

µ|p
n
|2 dx dt =

∫︂ T

0

∫︂
Ω

µ|p|2 dx dt (2.52)

and

lim
n→∞

∫︂ T

0

∫︂
Ω

1

2
λ|tr(p

n
)|2 dx dt =

∫︂ T

0

∫︂
Ω

1

2
λ|tr(p)|2 dx dt. (2.53)

Since
∫︁ T

0

∫︁
Ω
µ|p|2 dx dt = µ

⃦⃦⃦
p
⃦⃦⃦2
Y

and the norm is continuous, then (2.52) is true. Since |tr(·)| :
Y → R can be seen as the composition of the projection π : Y → Y on the trace components,
the sum of them, and the norm of Y and because all of them are continuous, we obtain (2.53).
So form (2.52) and (2.53) we have the following

lim
n→∞

F (u0) +G(p
n
) = lim

n→∞

∫︂ T

0

∫︂
Ω

µ|p
n
|2 + 1

2
λ|tr(p

n
)|2 dx dt

=

∫︂ T

0

∫︂
Ω

µ|p|2 + 1

2
λ|tr(p)|2 dx dt = F (u0) +G(p).

Thus Problem 2.2.2 is stable and due to Proposition 1.3.6 we have that Problem 2.2.3 has at
least one solution. Can be noticed that G is differentiable and the differential of G in p evaluated
in q is

G
′
[p](q) =

∫︂ T

0

∫︂
Ω

2µp : q + λ tr(p) tr(q) dx dt.

Since G is differentiable and primal Problem 2.2.2 admits a unique solution, according to Propo-
sition 1.3.7 and Proposition A.1.7, we have that the dual Problem 2.2.3 admits a unique solu-
tion.

In order to write the saddle point formulation of Problem 2.2.2, using the theory developed
in Section 1.4, we need to study the Lagrangian, defined in Definition 1.4.1, of Problem 2.2.1:

− L(u, p∗) = sup
p∈Y

[︁
⟨p∗, p⟩ − F (u)−G(ϵ(u) + p)

]︁
. (2.54)

Since ⟨p∗, p⟩ − F (u) is linear in p and G is strictly convex, so −G is strictly concave, we have
that the argument of the supremum in the previous equation is strictly concave, so there exists
a unique q ∈ Y such that the supremum is realized. Computing the first variation respect to p
evaluated in q of ⟨p∗, p⟩ − F (u)−G(ϵ(u) + p) we obtain

∫︂ T

0

∫︂
Ω

R(p∗) : φ− 2µ(q + ϵ(u)) : φ− λ(tr(q)id+ tr(ϵ(u))id) : φ dx dt = 0 ∀φ ∈ Y, (2.55)

where R : Y ∗ → Y is the Riesz operator defined in Theorem A.1. If we take φ = q + ϵ(u) in



48 CHAPTER 2. DYNAMIC LINEAR ELASTICITY AND VISCOELASTICITY

(2.55) we obtain

⟨p∗, q⟩ =
∫︂ T

0

∫︂
Ω

R(p∗) : q dx dt = 2G(ϵ(u) + q)−
∫︂ T

0

∫︂
Ω

R(p∗) : ϵ(u) dx dt.

Substituting the previous equation in (2.54) we have

−L(u, p∗) = sup
p∈Y

[︁
⟨p∗, p⟩ − F (u)−G(ϵ(u) + p)

]︁
= ⟨p∗, q⟩ − F (u)−G(ϵ(u) + q)

= G(ϵ(u) + q)− F (u)−
∫︂ T

0

∫︂
Ω

R(p∗) : ϵ(u) dx dt. (2.56)

From the arbitrariness of φ ∈ Y in (2.55) we obtain

R(p∗) = 2µ(q + ϵ(u)) + λ(tr(q)id+ tr(ϵ(u))id),

and we can deduce that

qD =
1

2µ
R(p∗)

D − ϵ(u)
D

tr(q) =
1

2µ+ 2λ
tr(R(p∗))− tr(ϵ(u))

q = qD +
1

2
tr(q)id =

1

2µ
R(p∗)

D
+

1

4(µ+ λ)
tr(R(p∗))− ϵ(u). (2.57)

Substituting (2.57) in (2.56) we obtain

− L(u, p∗) =

∫︂ T

0

∫︂
Ω

1

4µ
|R(p∗)

D|2 + 1

8(µ+ λ)
|tr(R(p∗))|2 −R(p∗) : ϵ(u) dx

− ⟨ρūtt, u⟩H1
0 (Ω)2 + ⟨f, u⟩

L2(Ω)2
dt. (2.58)

Notice that the right-hand side of the last equation depends on p∗ only through the Riesz operator
R. Since Y is an Hilbert space, so R is an isomorphism, we can replace Y ∗ with Y and R(p∗)

with p, and we obtain

inf
p∗∈Y ∗

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4µ
|R(p∗)

D|2 + 1

8(µ+ λ)
|tr(R(p∗))|2 −R(p∗) : ϵ(u) dx

− ⟨ρūtt, u⟩H1
0 (Ω)2 + ⟨f, u⟩

L2(Ω)2
dt

}︃
= inf

p∈Y
sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 − p : ϵ(u) dx− ⟨ρūtt, u⟩H1

0 (Ω)2 + ⟨f, u⟩
L2(Ω)2

dt

}︃
.

Thus, from the previous equation and according to Definition 1.4.3 of saddle point problem, we
arrive to consider the following.
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Problem 2.2.4 (Saddle point formulation of linear elasticity). Find (w, τ) ∈ Γ× Y such that∫︂ T

0

∫︂
Ω

1

4µ
|τD|2 + 1

8(µ+ λ)
|tr(τ)|2 − τ : ϵ(w) dx− ⟨ρūtt, w⟩H1

0 (Ω)2 + ⟨f, w⟩
L2(Ω)2

dt

= inf
p∈Y

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4µ
|pD|2 + 1

8(µ+ λ)
|tr(p)|2 − p : ϵ(u) dx− ⟨ρūtt, u⟩H1

0 (Ω)2 + ⟨f, u⟩
L2(Ω)

dt

}︃
.

(2.59)

Proposition 2.2.3. Problem 2.2.4 admits a unique solution (ū, σ) where ū is the unique solution
of Problem 2.2.2 and σ = R(q∗), where q∗ is the unique solution of Problem 2.2.3.

Proof. According to Proposition 1.4.1, since Problem 2.2.2 and Problem 2.2.3 admit unique
solution, respectively due to Proposition 2.2.1 and Proposition 2.2.2, we have guarantee that
Problem 2.2.4 admits a unique solution, which is the composition of the solutions of Problem
2.2.2 and Problem 2.2.3. Recalling that we have replace Y ∗ with Y , if we denote σ = R(q∗),
where q∗ is the unique solution of Problem 2.2.3, we have that the unique saddle point of Problem
2.2.4 is (ū, σ).

Computing the Euler-Lagrange equations of (2.59) we obtain⎧⎪⎪⎨⎪⎪⎩
∫︁ T

0

∫︁
Ω
σ : ϵ(y) dx + ⟨ρūtt, y⟩H1

0 (Ω)2
− ⟨f, y⟩

L2(Ω)
dt = 0 ∀y ∈ L2(0, T ;H1

0 (Ω)
2)∫︁ T

0

∫︁
Ω
σD : φD − 2µϵ(ū)

D
: φD dx dt = 0 ∀φ ∈ L2(0, T ;L2(Ω)2×2

sym)∫︁ T

0

∫︁
Ω
tr(σ) tr(φ)− 2(µ+ λ) tr(ϵ(ū)) tr(φ) dx dt = 0 ∀φ ∈ L2(0, T ;L2(Ω)2×2

sym)

(2.60)

Remark 2.2.1. From the first equation of the previous system since ρutt is in L2(0, T ;H−1(Ω)2)

and not in L2(0, T ;L2(Ω)2) even if we require f ∈ L2(0, T ;L2(Ω)2) we can not deduce that
div(σ) ∈ L2(0, T ;L2(Ω)2). We will see in Section 2.4 that adding a viscosity term to the first
equation of (2.20) we will gain enough regularity to ū to have σ ∈ L2(0, T ;H(div,Ω)).

2.2.3 Mixed formulation

Now we are interested in finding the couple (u, σ) solution of the system (2.60), with the addition
of the initial conditions for u, i.e. u(·, 0) = u0 and ut(·, 0) = u1. We introduce the following.

Problem 2.2.5 (Mixed PDE formulation in L2(0, T ;L2(Ω)2×2
sym) of linear elasticity). Find the

couple (u, σ) such that u ∈ L2(0, T ;H1
0 (Ω)

2), ut ∈ L2(0, T, L2(Ω)2), ρutt ∈ L2(0, T,H−1(Ω)2),
σ ∈ L2(0, T ;L2(Ω)2×2

sym) and satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁ T

0

∫︁
Ω
σ : ϵ(y) dx + ⟨ρutt, y⟩H1

0 (Ω)2
− ⟨f, y⟩

L2(Ω)
dt = 0 ∀y ∈ L2(0, T ;H1

0 (Ω)
2)∫︁ T

0

∫︁
Ω
σD : φD − 2µϵ(u)

D
: φD dx dt = 0 ∀φ ∈ L2(0, T ;L2(Ω)2×2

sym)∫︁ T

0

∫︁
Ω
tr(σ) tr(φ)− 2(µ+ λ) tr(ϵ(u)) tr(φ) dx dt = 0 ∀φ ∈ L2(0, T ;L2(Ω)2×2

sym)

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω.

(2.61)
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Proposition 2.2.4. For every (u, σ) solution of Problem 2.2.5, σ is unique determined by u and

σ = σD +
1

2
tr(σ)id = 2µϵ(u) + λdiv(u)id (2.62)

Proof. Since (u, σ) is a solution, then σ ∈ L2(0, T ;L2(Ω)2×2
sym). From the second and third

equations of (2.61) we can deduce that

σD = 2µϵ(u)
D

tr(σ) = (2µ+ 2λ) tr(ϵ(u)).

Thus we have (2.62).

Proposition 2.2.5. For every (u, σ) solution of Problem 2.2.5, u must satisfy the following∫︂ T

0

⟨ρutt, y⟩H1
0 (Ω)2

+ a(u, y) dt =

∫︂ T

0

⟨f, y⟩
L2(Ω)2

dt ∀y ∈ L2(0, T ;H1
0 (Ω)

2) (2.63)

where a(·, ·) : H1
0 (Ω)

2 ×H1
0 (Ω)

2 → R is defined in (2.19).

Proof. A direct consequence of Proposition 2.2.4 is that we can substitute σ defines in (2.62) in
the first equation of (2.61) and recalling the definition of a(·, ·) we obtain∫︂ T

0

⟨ρutt, y⟩H1
0 (Ω)2

+ a(u, y) dt =

∫︂ T

0

⟨f, y⟩
L2(Ω)2

dt ∀y ∈ L2(0, T ;H1
0 (Ω)

2),

that is exactly (2.63).

Now we state the main result of this section.

Theorem 2.4. The function ū is the unique solution of Problem 2.20 if and only if the (ū, σ) is
the unique solution of Problem 2.2.5, where σ is defined in (2.62).

Proof. (⇒)

From the construction we have done in the previous section we have that (ū, σ) satisfies (2.60)
and σ = R(q∗), where q∗ is the unique solution of Problem 2.2.3. Since σ ∈ L2(0, T ;L2(Ω)2×2

sym)

from the second and third equations of (2.60) we obtain that σ is defined as in (2.62). Finally,
since ū is the unique solution of Problem 2.20, then it satisfies the initial conditions.
(⇐)

Let (u, σ) be solution of Problem 2.2.5, from Proposition 2.2.5 and, since (u, σ) is solution of
Problem 2.2.5, we have that⎧⎪⎪⎨⎪⎪⎩

∫︁ T

0
⟨ρutt, y⟩H1

0 (Ω)2
+ a(u, y) dt =

∫︁ T

0
⟨f, y⟩

L2(Ω)
dt ∀y ∈ L2(0, T ;H1

0 (Ω)
2)

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω.

Thus u is solution of Problem 2.20.
Since there exists a unique solution of Problem 2.20, then (ū, σ) is the unique solution of Problem
2.2.5.
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2.3 One dimensional elastic waves with dissipation

In this section we aim to introduce a mixed formulation for one dimensional elastic waves with
dissipation. As we have announced in Remark 2.1.3 in Section 2.1 if we require stronger condition
on the forcing function and the velocity initial date, respect to the condition we have used in the
conservative case, we obtain that σ ∈ L2(0, T ;H(div,Ω)).
We will start form presenting the starting problem and using a result from [15] we will show that
it has a unique solution. Then, proceeding as in Section 2.1, according to the theory we have
developed in the previous chapter in Sections 1.3 and 1.4 we will introduce a variational principle
through which we will construct a mixed formulation. After noticing that under our assumption
σ is in L2(0, T ;H(div,Ω)) we will be able to introduce a new mixed formulation. Finally we will
show that the solution of the new mixed formulation coincides with the solution of the starting
problem.

2.3.1 Starting problem

Assumption 2.3.1. Let Ω ⊂ R bounded , T > 0, u0 ∈ H1
0 (Ω), u1 ∈ H1

0 (Ω), f : [0, T ] → L2(Ω)∗

Hölder continuous and ρ, k, γ ∈ L∞(Ω) such that 0 < A ≤ ρ, k, γ ≤ B <∞ a.e. in Ω.

We recall Remark 2.1.1 according to which even if we are work in one dimension we will denote
with ·′ the spatial derivative and with d

dx the divergence operator. We consider the following.

Problem 2.3.1 (Starting Problem one dimensional elastic waves with dissipation). Find u such
that

u ∈ C1((0, T ];H1
0 (Ω)) ∩ C0([0, T ];H1

0 (Ω)) ∩ C2((0, T ];L2(Ω)) ∩ C1([0, T ];H1
0 (Ω)) (2.64)

and satisfies ⎧⎪⎪⎨⎪⎪⎩
ρutt = 2 d

dx (ku
′) + 2 d

dx (γu
′
t) + f in Ω× (0, T ]

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω.

(2.65)

Problem 2.3.1 can be cast within the framework of second order evolution equation in Hilbert
spaces. Indeed we can provide existence ad uniqueness of solution of Problem 2.3.1 using [15,
Thm. 2.2 in Ch. 6]. For the reader’s convenience we first recall this result.

Theorem 2.5 (Theorem 2.2 in Chapter 6 of [15]). Let A and C be the Riesz maps of the Hilbert
spaces V and W and V is dense and continuously embedded in W . Let B a linear operator form
V to V ∗ and assume that there exists constants C > 0 and δ > 0 such that B + δC satisfies

(B + δC)[u](u) ≥ C∥u∥2V ∀u ∈ V,

Then for every Hölder continuous f : [0,∞) → W ∗, u0 ∈ V and u1 ∈ W , there is a unique
solution u(t) of Problem A.2.1 on t > 0 with u(0) = u0 and ut(0) = u1.

A direct consequence of the previous theorem is the most important result of this subsection.
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Theorem 2.6 (Existence and uniqueness of solution). There exists a unique solution of Problem
2.3.1.

Proof. In order to show that there exists a unique solution to the Problem 2.3.1 we will verify
that (2.65) satisfies the hypothesis of Theorem 2.5. We start form setting V = H1

0 (Ω) and
W = L2(Ω). We have to show that A = − d

dx (k·
′) : H1

0 (Ω) → H−1(Ω) is a Riesz map, i.e. we
need to check that

(u, v)H1
0 (Ω) := A[v](u) =

∫︂
Ω

ku′v′ dx for u, v ∈ H1
0 (Ω) (2.66)

is a scalar product (i.e. symmetric, linear and positive define). Clearly (·, ·)H1
0 (Ω) is symmetric

and linear. Since 0 < A ≤ k ≤ B <∞ we have that

(u, u)H1
0 (Ω) :=

∫︂
Ω

k|u′|2 dx ≥ A

∫︂
Ω

|u′|2 dx = A∥u∥2H1
0

∀u ∈ H1
0 (Ω), (2.67)

where ∥·∥H1
0 (Ω)2 is the usual norm in H1

0 (Ω), so it is positive define. So the bilinear form defined
in (2.66) is a scalar product, where A is its Riesz map.
Now we have to show that C = ρ : L2(Ω) → (L2(Ω))∗ is a Riesz map, i.e. we need to check that

(u, v)L2(Ω) := C[v](u) =
∫︂
Ω

ρuv dx for u, v ∈ H1
0 (Ω), (2.68)

is a scalar product. Clearly it is symmetric and linear and since 0 < A ≤ ρ ≤ B < ∞, we have
that

(u, u)L2(Ω) :=

∫︂
Ω

ρ|u|2 dx ≥ A∥u∥2L2(Ω) ∀u ∈ L2(Ω), (2.69)

where ∥·∥L2(Ω)2 , so is the usual norm in L2(Ω)2 it is positive define. Thus the bilinear form
defined in (2.68) is a scalar product where C is its Riesz map.
Since 0 < A ≤ k, ρ ≤ B <∞, we have that

(u, u)H1
0 (Ω) :=

∫︂
Ω

k|u′|2 dx ≤ B

∫︂
Ω

|u′|2 dx = B∥u∥2H1
0

∀u ∈ H1
0 (Ω), (2.70)

and
(u, u)L2(Ω) :=

∫︂
Ω

ρ|u|2 dx ≤ B∥u∥2L2(Ω) ∀u ∈ L2(Ω). (2.71)

So from (2.67) and (2.70) we can deduce that the scalar product defined in (2.66) induces a norm
that is equivalent to the usual one in H1

0 (Ω) and from (2.69) and (2.71) we can deduce that the
scalar product defined in (2.68) induces a norm that is equivalent to the usual one in L2(Ω).
Since with the usual norms H1

0 (Ω)
2 is dense and immersed with continuity in L2(Ω)2 it is also

true for the norms induced by C and A.
Now it remains to show that there exists a constant C > 0 and δ > 0 such that B + δC satisfies

(B + δC)[u](u) ≥ C∥u∥2H1
0 (Ω) ∀u ∈ H1

0 (Ω). (2.72)

where B = −2 d
dx (γ·

′) : H1
0 (Ω) → H−1(Ω).
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Since 0 < A ≤ γ ≤ B <∞, we obtain

(B + δC)[u](u) =
∫︂
Ω

γ|u′|2 + δρ|u|2dx ≥
∫︂
Ω

γ|u′|2dx ≥ A∥u∥2H1
0 (Ω).

Thus (2.72) is satisfy for all δ > 0. Since all hypothesis of Theorem 2.5 are verified we have that
there exists a unique solution of Problem 2.3.1.

The regularity of the solution obtained by applying Theorem 2.5 is not enough for us. Indeed,
according to [15, Cor. 3.2 in Ch. 4], we are able to sharpen the above regularity result and obtain
the regularity we need for our purpose, in the case (u0, u1) ∈ D(A), where

A =

[︃
A−1 0

0 C−1

]︃ [︃
0 −A
A B

]︃
=

[︃
0 −1

C−1A C−1B

]︃
and

D(A) =

{︃
(x1, x2) ∈ H1

0 (Ω)×H1
0 (Ω) | A(x1) + B(x2) ∈ L2(Ω)∗

}︃
.

Since A = −2 d
dx (k·

′) and B = −2 d
dx (γ·

′) we have that (x1, x2) ∈ D(A) if and only if (x1, x2) ∈
H1

0 (Ω)×H1
0 (Ω) and

2
d

dx
(kx′1) + 2

d

dx
(γx′2) ∈ L2(Ω)∗.

So we have the following.

Corollary 2.3.1. If u1 ∈ H1
0 (Ω) and u0, u1 are such that

2
d

dx
(ku′0) + 2

d

dx
(γu′1) ∈ L2(Ω)∗.

Then we have that ū, unique solution of Problem 2.3.1, satisfies

ū ∈ C1([0, T ];H1
0 (Ω)) ∩ C2([0, T ];L2(Ω)).

For the purpose of our work from now on we can assume the following.

Assumption 2.3.2. The function u1 ∈ H1
0 (Ω) and

2
d

dx
(ku′0) + 2

d

dx
(γu′1) ∈ L2(Ω)∗.

Definition 2.3.1. We will denote by

ū ∈ C1([0, T ];H1
0 (Ω)) ∩ C2([0, T ];L2(Ω)),

the solution of Problem 2.3.1 provided by Theorem 2.5 and Corollary 2.3.1.

2.3.2 Construction of mixed formulation

In order to derive our mixed formulation we proceed as follows. First we characterize ū as
the unique minimum of a variational problem, then according to the theory we have developed



54 CHAPTER 2. DYNAMIC LINEAR ELASTICITY AND VISCOELASTICITY

in Section 1.3 and Section 1.4 we write its dual and saddle point formulation. We start form
introducing the functional

S(u) =
∫︂ T

0

∫︂
Ω

ρūttu+ |ku′|2 + 2γū′tu
′ dx− ⟨f, u⟩L2(Ω) dt, (2.73)

acting on

Γ =

{︃
u

⃓⃓⃓⃓
u(x, t) ∈ L2(0, T ;H1

0 (Ω))

}︃
,

and now we are ready to consider the following problem.

Problem 2.3.2 (Primal formulation of one dimensional elastic waves). Find u ∈ Γ such that

S(u) = inf
v∈Γ

{S(v)} (2.74)

Proposition 2.3.1. The function ū is the unique minimum of Problem 2.3.2.

Proof. Since ū ∈ Γ, then we can compute the first variation of (2.73) evaluated in ū and we
obtain

dS(ū).y =

∫︂ T

0

ρūtty + 2kū′y′ + 2γū′ty
′ dx− ⟨f, y⟩L2(Ω) dt

=

∫︂ T

0

⟨ρūtt +
d

dx
(2kū′)− d

dx
(2γū′t)− f, y⟩

L2(Ω)
dt = 0 ∀y ∈ Γ,

where we have used that ū satisfies the first equation of (2.65). Thus ū is a critical point of S.
In order to prove that ū is the unique minimum of S in Γ we will show that S is strongly convex
in Γ. This is equivalent to prove that the second variation of S is positive define for all u ∈ Γ:

d2S(u).(y, y) =
∫︂ T

0

∫︂
Ω

2k|y′|2 dx dt ≥
∫︂ T

0

2A∥y∥2H1
0 (Ω) dt ≥ 2A∥y∥2L2(0,T ;H1

0 (Ω)) ∀y ∈ Γ.

In order to introduce the dual and the saddle point formulation for Problem 2.3.2 it is con-
venient to rewrite (2.74) as follows:

S(u) = inf
v∈Γ

{S(v)} = inf
v∈Γ

{︁
F (v) +G(v′)

}︁
,

where F : Γ → R is

F (v) =

∫︂ T

0

∫︂
Ω

ρūttv dx− ⟨f, v⟩L2(Ω) dt, (2.75)

and G : Y := L2(0, T ;L2(Ω)) → R is

G(p) =

∫︂ T

0

∫︂
Ω

k|p|2 + 2γū′tp dx dt. (2.76)

Now we check that the dual problem admits a unique solution. Starting from Problem 2.3.2, if



2.3. ONE DIMENSIONAL ELASTIC WAVES WITH DISSIPATION 55

we define Φ(u, p) = F (u) + G(u′ + p), then, according to Definition 1.3.2, we can consider the
following.

Problem 2.3.3 (Dual formulation of one dimensional elastic waves with dissipation). Find
q∗ ∈ Y ∗ such that

− Φ∗(0, q∗) = sup
p∗∈Y ∗

[︁
− Φ∗(0, p∗)

]︁
= sup

p∗∈Y ∗

[︁
− F ∗(−Λ∗p∗)−G∗(p∗)

]︁
, (2.77)

where Λ∗ is d
dx , the adjoint of ·′, according to Definition A.1.8, F ∗ : Γ∗ → R is

F ∗(− d

dx
p∗) =

{︄
0 if − d

dxp
∗ − ρūtt + f = 0

+∞ otherwise,

and G∗ : Y ∗ → R is

G∗(p∗) =

∫︂ T

0

∫︂
Ω

1

4k
|R(p∗)− 2γū′t|2 dx dt

where R is the Riesz operator such that R : Y ∗ → Y .

Proposition 2.3.2. Problem 2.3.2 is stable, in the sense of Definition 1.3.4. Moreover Problem
2.3.3 admits a unique solution.

Proof. In order to prove stability we verify the hypothesis of Theorem 1.1. Since F , defined in
(2.75), is linear and G, defined in (2.76), is strictly convex, because is sum of a strictly convex
functional ∫︂ T

0

∫︂
Ω

k|p|2 dx dt,

and a linear one ∫︂ T

0

∫︂
Ω

2γū′tp dx dt,

then J(u, p) = F (u) +G(p) is convex in Γ× Y :

J(α(u, p) + (1− α)(v, q)) = F (αu+ (1− α)v) +G(αp+ (1− α)q)

= αF (u) + (1− α)F (v) +G(αp+ (1− α)q)

≤ αF (u) + (1− α)F (v) + αG(p) + (1− α)G(q)

≤ αJ(u, p) + (1− α)J(v, q),

for α ∈ [0, 1], u, v ∈ Γ and p, q ∈ Y .
Now we need to verify that there exists u0 such that F (u0)+G(u′0) < +∞ and p→ F (u0)+G(p

′)

is continuous in u′0. Taking u0 = 0 we have that F (0) = 0 and, since 0′ = 0, G(0′) = 0, so we
need to verify that p → F (u0) +G(p) is continuos at 0. Let pn → p in Y as n → ∞, then since
k ∈ L∞(Ω) and ∥p∥2Y :=

∫︁ T

0

∫︁
Ω
|p|2 dx dt we have

lim
n→∞

∫︂ T

0

∫︂
Ω

k|pn|2 dx dt =

∫︂ T

0

∫︂
Ω

k|p|2 dx dt,
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and since γ ∈ L∞(Ω) and ū′t ∈ L2(0, T ;L2(Ω)) we have

lim
n→∞

∫︂ T

0

∫︂
Ω

2γū′tpn dx dt = lim
n→∞

∫︂ T

0

⟨2γū′t, pn⟩L2(Ω) dt

= lim
n→∞

⟨2γū′t, pn⟩Y

= ⟨2γū′t, p⟩Y

=

∫︂ T

0

∫︂
Ω

2γū′tp dx dt.

So Problem 2.3.2 is stable and due to Proposition 1.3.6, Problem 2.3.3 has at least one solution.
Can be noticed that G is differentiable and the differential of G in p evaluated in q is

G
′
[p](q) =

∫︂ T

0

∫︂
Ω

2kpq + 2γū′tq dx dt.

Since G is differentiable and primal Problem 2.3.2 admits a unique solution, according to Propo-
sition 1.3.7 and Proposition A.1.7, we have that the dual Problem 2.3.3 admits a unique solu-
tion.

Before introducing the saddle point problem, according to the theory in Section 1.4, we need
to study the Lagrangian defined in Definition 1.4.1:

− L(u, p∗) = sup
p∈Y

[︁
⟨p∗, p⟩ − F (u)−G(ϵ(u) + p)

]︁
. (2.78)

Since F , defined in (2.75), is linear and G, defined in (2.76) is strictly convex we have that the
argument inside the supremum in (2.78) is a strictly concave function. Thus there exists a unique
q ∈ Y such that

⟨p∗, q⟩Y − F (u)−G(u′ + q) = sup
p∈Y

[︁
⟨p∗, p⟩Y − F (u)−G(u′ + p)

]︁
.

Computing the first variation respect to p evaluated in q of ⟨p∗, p⟩Y −F (u)−G(u′+p) we obtain∫︂ T

0

∫︂
Ω

R(p∗)φ− 2k(q + u′)φ− 2γū′tφ dx dt = 0 ∀φ ∈ Y, (2.79)

where R : Y ∗ → Y is the Riesz operator defined in Theorem A.1 such that

⟨p∗, φ⟩Y :=

∫︂ T

0

∫︂
Ω

R(p∗)φ ∀φ ∈ Y.

Taking φ = q + u′ in (2.79) we obtain

⟨p∗, q⟩Y = 2G(u′ + q)−
∫︂ T

0

∫︂
Ω

R(p∗)u′ − 2γū′t(u
′ + q) dx dt. (2.80)



2.3. ONE DIMENSIONAL ELASTIC WAVES WITH DISSIPATION 57

Now we introduce the functional G̃ : Y → R:

G̃(p) =

∫︂ T

0

∫︂
Ω

k|p|2 dx dt,

which is the functional G without the dissipative term. Then from (2.78) and (2.80) we can
deduce that

−L(u, p∗) = sup
p∈Y

[︁
⟨p∗, p⟩ − F (u)−G(u′ + p)

]︁
= ⟨p∗, q⟩ − F (u)−G(u′ + q)

= G(u′ + q)− F (u)−
∫︂ T

0

∫︂
Ω

R(p∗)u′ − 2γū′t(u
′ + q) dx dt

= G̃(u′ + q)− F (u)−
∫︂ T

0

∫︂
Ω

R(p∗)u′ dx dt. (2.81)

Since (2.79) is true for all φ in Y , then we have

R(p∗) = 2k(q + u′) + 2γū′t,

and we can deduce that
q =

1

2k
(R(p∗)− 2γū′t)− u′. (2.82)

Substituting (2.82) in (2.81) we obtain

− L(u, p∗) =

∫︂ T

0

∫︂
Ω

1

4k
|R(p∗)− 2γū′t|2 −R(p∗)u′ − ρūttu dx + ⟨f, u⟩L2(Ω) dt. (2.83)

Since the right-hand side of the last equation depends on p∗ only through the Riesz operator R
and Y is an Hilbert space, we can replace Y ∗ with Y and R(p∗) with p, and we obtain

inf
p∗∈Y ∗

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4k
|R(p∗)− 2γū′t|2 −R(p∗)u′ dx− ρūttu dx + ⟨f, u⟩L2(Ω) dt

}︃
= inf

p∈Y
sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4k
|p− 2γū′t|2 − pu′ dx− ρūttu dx + ⟨f, u⟩L2(Ω) dt.

}︃
.

Thus, from the previous equation and according to Definition 1.4.3 of saddle point problem, we
arrive to consider the following problem.

Problem 2.3.4 (Saddle point formulation of one dimensional elastic waves with dissipation).
Find (w, τ) ∈ Γ× Y such that

∫︂ T

0

∫︂
Ω

1

4k
|τ − 2γū′t|2 − τw′ dx− ρūttw dx + ⟨f, w⟩L2(Ω) dt

= inf
p∈Y

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4k
|p− 2γū′t|2 − pu′ dx− ρūttu dx + ⟨f, u⟩L2(Ω) dt.

}︃
. (2.84)
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Proposition 2.3.3. Problem 2.84 admits a unique solution (ū, σ) where ū is the unique solution
of Problem 2.3.2 and σ = R(q∗), where q∗ is the unique solution of Problem 2.3.3.

Proof. According to Proposition 1.4.1 we have that the solutions of Problem 2.3.4 are the product
of the solutions of Problem 2.3.2 and Problem 2.3.3. Since Problem 2.3.2 and Problem 2.3.3 admit
unique solution ū and σ = R(q∗), where q∗ is the unique solution of Problem 2.3.3, then we have
that the saddle point of Problem 2.3.4 admits a unique solution that is (ū, σ).

If we compute the Euler-Lagrange equations of (2.84) evaluated in (ū, σ) we obtain{︄∫︁ T

0

∫︁
Ω
ρūtty + σy′ dx− ⟨f, y⟩L2(Ω) dt = 0 ∀y ∈ L2(0, T ;H1

0 (Ω))∫︁ T

0

∫︁
Ω
σφ− (2kū′ + 2γū′t)φ dx dt = 0 ∀φ ∈ L2(0, T ;L2(Ω))

(2.85)

According to what we have noticed in Remark 2.1.3, for the purpose of our work form now on
we can assume the following.

Assumption 2.3.3. f : [0, T ] → L2(Ω) Hölder continuous.

A direct consequence of Assumption 2.3.3 is that we can no longer consider

⟨f(·, t), u⟩L2(Ω) ∀u ∈ L2(Ω),

but
(f(·, t), u)L2(Ω) :=

∫︂
Ω

f(·, t)u dx ∀u ∈ L2(Ω).

In the first equation of (2.85) since for every y ∈ Γ we have that y(·, t) ∈ H1
0 (Ω) for a.e. t ∈ [0, T ],

we can define d
dx (σ) as an element of L2(0, T ;H−1(Ω)2) as follows

⟨ d

dx
(σ), y⟩

L2(0,T ;H1
0 (Ω)2)

:=

∫︂ T

0

⟨ d

dx
(σ), y⟩

H1
0 (Ω)2

dt = −
∫︂ T

0

∫︂
Ω

σy′ dx dt ∀y ∈ H1
0 (Ω).

Now we can rewrite the first equation of (2.85) as follows

ρūtt −
d

dx
(σ)− f(x, t) = 0 in L2(0, T ;L2(Ω)∗).

Since ū ∈ C2([0, T ];L2(Ω)) and, according to Assumption 2.3.3, f : [0, T ] → L2(Ω) is Hölder
continuous, then we have that d

dx (σ) ∈ L2(0, T ;L2(Ω)), that implies σ ∈ L2(0, T ;H(div,Ω)).

Remark 2.3.1. Since we are working with one dimension in space, i.e. Ω ⊂ R, we have that
L2(0, T ;H(div,Ω)) = L2(0, T ;H1(Ω)) because d

dx (τ) = τ ′ = ∂xτ . If we pass in higher dimension
the last chain of equality does not hold, and we can not identify L2(0, T ;H(div,Ω)n×n) with
L2(0, T ;H1(Ω)n×n) for n > 1, so we will distinguish L2(0, T ;H(div,Ω)) with L2(0, T ;H1(Ω))

even if they coincide in one dimension.

Since σ ∈ L2(0, T ;H(div,Ω)) we can restrict Y to L2(0, T ;H(div,Ω)) in Problem 2.3.4, if we
do that we can integrate by parts

∫︁ T

0

∫︁
Ω
σy′ dx dt in (2.84) and we obtain∫︂ T

0

∫︂
Ω

1

4k
|p− 2γū′t|2 +

d

dx
(p)u− ρūttu+ fu dx dt.
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After doing that we no longer need u to be in Γ = L2(0, T ;H1
0 (Ω)), because the new functional

does not involve space derivative of u, so we can replace Γ with the largest space L2(0, T ;L2(Ω)).
If we make these changes is no longer guarantee that (ū, σ) is a saddle point, indeed we do
not even know if there exists one for the new problem. Now we are interested in studying the
following.

Problem 2.3.5 (Mixed formulation of one dimensional elastic waves with dissipation). Find
(w, τ) ∈ Λ×W such that

∫︂ T

0

∫︂
Ω

1

4k
|τ − 2γū′t|2 +

d

dx
(τ)w − ρūttw + fw dx dt

= inf
p∈Y

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4k
|p− 2γū′t|2 +

d

dx
(p)u− ρūttu+ fu dx dt

}︃
, (2.86)

where W = L2(0, T ;H(div,Ω)) and Λ = L2(0, T ;L2(Ω)).

Proposition 2.3.4. If (w, τ) is a saddle point of Problem 2.3.5, in sense of Definition 1.4.2,
then w ∈ L2(0, T ;H1

0 (Ω)).

Proof. Taking the first variation of∫︂ T

0

∫︂
Ω

1

4k
|p− 2γū′t|2 +

d

dx
(p)u− ρūttu+ fu dx dt,

respect to the variable p evaluated in (w, τ), we obtain∫︂ T

0

∫︂
Ω

d

dx
(φ)w dx dt = −

∫︂ T

0

∫︂
Ω

1

2k
(τ − 2γū′t)φ dx dt ∀φ ∈W. (2.87)

Since ū ∈ C1([0, T ];H1
0 (Ω)) and L2(0, T ; C∞

c (Ω)) ⊂W , we obtain that we can define

w′ =
1

2k
(τ − 2γū′t).

So we can deduce that w ∈ L2(0, T ;H1(Ω)2). From (2.87), since L2(0, T ; C∞(Ω)) ⊂W , according
to Theorem A.3, we obtain that Tr(w) = 0 for a.e. t ∈ [0, T ] and that is equivalent to stating
that w ∈ L2(0, T ;H1

0 (Ω)).

Proposition 2.3.5. Problem 2.3.5 admits a unique saddle point which is the solution of Problem
2.3.4.

Proof. Since Problem 2.3.4 admits a unique solution, then the thesis is equivalent to prove that
(w, τ) is saddle point of (2.86) if and only if is a saddle point of (2.84). We call F1(v, p) the
functional in (2.84) and F2(v, p) the functional in (2.86), we can see that if p ∈ W and v ∈ Γ

then we have F1(v, p) = F2(v, p) and, due to Proposition 2.3.4, we can deduce that all saddle
points of (2.84) and (2.86) satisfy such condition.
Let (w, τ) be a saddle point of (2.84), then

∀v ∈ Γ F1(v, τ) ≤ F1(w, τ) ≤ F1(w, p) ∀p ∈ Y, (2.88)
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and we want to show that

∀v ∈ Λ F2(v, τ) ≤ F2(w, τ) ≤ F2(w, p) ∀p ∈W. (2.89)

Since W ⊂ Y and if p ∈W we have F1(w, p) = F2(w, p), then the right inequality is satisfy. The
left one is given by the denseness of Γ in Λ and the continuity of v → F2(v, τ) in Λ. Indeed due
to the denseness we have that for every v ∈ Λ there exists {vn}n∈N ∈ Γ such that vn → v in Λ

as n→ ∞, recalling that if u ∈ Γ then F1(u, τ) = F2(u, τ), we obtain

F2(w, σ) = F1(w, σ) ≥ lim
n→∞

F1(vn, σ) = lim
n→∞

F2(vn, σ) = F2(v, σ).

Now we do the converse, let (w, τ) be a saddle point of (2.86), so it satisfies (2.89), we want
to prove (2.88). The left side follow from Γ ⊂ Λ and F1(v, τ) = F2(v, τ) for all v ∈ Γ. The
right side is given by the denseness of Y in W , the continuity of p → F1(w, p) in W and that
F1(w, p) = F2(w, p) for all p ∈ W . Indeed for every p ∈ W there exists {pn}n∈N ∈ Y such that
pn → p in Y as n→ ∞, then we obtain

F1(w, τ) = F2(w, τ) ≤ lim
n→∞

F2(w, pn) = lim
n→∞

F1(w, pn) = F2(w, p).

From the previous Proposition we have that (ū, σ), unique saddle point of Problem 2.3.4, is
also the unique solution of Problem 2.3.5, then if we calculate the Euler-Lagrange equations of
(2.86), evaluated in (ū, σ), we obtain:{︄∫︁ T

0

∫︁
Ω
ρūtty − d

dx (σ)y − fy dx dt = 0 ∀y ∈ Λ∫︁ T

0

∫︁
Ω
σφ− (2kū′ + 2γū′t)φ dx dt = 0 ∀φ ∈W

(2.90)

2.3.3 Mixed formulation 1

Now we are interested in finding the functions (u, σ) solution of system (2.85) with the addition
of initial conditions for u. We introduce the mixed problem:

Problem 2.3.6 (Mixed PDE formualtion in L2(0, T ;L2(Ω)) of one dimensional elastic waves).
Find the couple (u, σ) such that u ∈ H1(0, T ;H1

0 (Ω)), utt ∈ L2(0, T ;L2(Ω)), σ ∈ L2(0, T ;L2(Ω))

and satisfies: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫︁ T

0

∫︁
Ω
ρutty + σy′ − fy dx dt = 0 ∀y ∈ L2(0, T ;H1

0 (Ω))∫︁ T

0

∫︁
Ω
σφ− (2ku′ + 2γu′t)φ dx dt = 0 ∀φ ∈ L2(0, T ;L2(Ω))

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω.

(2.91)

Theorem 2.7. The function u is the unique solution of Problem 2.3.1 if and only if (u, σ) is
the unique solution of Problem 2.3.6 where σ is define (2.92).

Proof. The proof is rather long and we decided to divided it in Proposition 2.3.6 and Proposition
2.3.7.
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Proposition 2.3.6. For every (u, σ) solution of Problem 2.3.6, σ is uniquely determined by u
and

σ = 2ku′ + 2γu′t (2.92)

Proof. Since σ ∈ L2(0, T ;L2(Ω)) and satisfies the second equation of (2.91) we can deduce
(2.92).

Proposition 2.3.7. The function u is solution of Problem 2.3.1 if and only if there exists σ
such that (u, σ) is solution of the mixed Problem 2.3.6.

Proof. (⇒)

Let ū be solution of Problem 2.3.1, then Corollary 2.3.1 implies that ū is in H1(0, T ;H1
0 (Ω)) and

ūtt ∈ L2(0, T ;L2(Ω)). From the construction we have done in Section 2.4.2 we have that (ū, σ),
where σ ∈ L2(0, T ;L2(Ω)), is solution of (2.85), so it is also solution of Problem 2.3.6.
(⇐)

Now we proceed with the opposite, let um be the first component of a solution of Problem 2.3.6.
We want to prove that um = ū. Let start by considering the following.

1

2

d

dt
∥√ρ(umt − ūt)∥2L2(Ω) = ⟨√ρ(umtt − ūtt),

√
ρ(umt − ūt)⟩L2(Ω)

= (
√
ρ(umtt − ūtt),

√
ρ(umt − ūt))L2(Ω)

= (ρ(umtt − ūtt), umt − ūt)L2(Ω)

= ⟨ρ(umtt − ūtt), umt − ūt⟩L2(Ω) , (2.93)

where we have used that ρ ≥ A > 0. Since umt − ūt ∈ L2(0, T ;H1
0 (Ω)) and recalling that um

satisfies the first equation of (2.91), and ū satisfies the first equation of (2.65), from (2.93) we
obtain

⟨ρ(umtt − ūtt), umt − ūt⟩L2(Ω) =

− ⟨σ, um′
t − ū′t⟩L2(Ω) − ⟨ d

dx
(2kū′ + 2γū′t), umt − ūt⟩

L2(Ω)
. (2.94)

Since umt − ūt ∈ L2(0, T ;H1
0 (Ω)) we have that um′

t − ū′t ∈ L2(0, T ;L2(Ω)), so according to the
second equation of (2.91) we have

−⟨σ, um′
t − ū′t⟩L2(Ω) = −⟨2ku′m + 2γum

′
t, um

′
t − ū′t⟩L2(Ω) ,

and since um′
t − ū′t ∈ L2(0, T ;L2(Ω)) we have

⟨ d

dx
(2kū′ + 2γū′t), umt − ūt⟩

L2(Ω)
= −⟨2kū′ + 2γū′t, um

′
t − ū′t⟩L2(Ω) ,
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Denoting w = um − ū and wt = umt − ūt, we can rewrite (2.94) as follows

−⟨σ,w′
t⟩L2(Ω) + ⟨2kū′ + 2γū′t, w

′
t⟩L2(Ω) = −⟨2kw′ + 2γw′

t, w
′
t⟩L2(Ω)

= − d

dt

⃦⃦⃦√
2kw′

⃦⃦⃦2
L2(Ω)

− ⟨2γw′
t, w

′
t⟩L2(Ω)

≤ −⟨2γw′
t, w

′
t⟩L2(Ω)

≤ −2A∥wt∥2H1
0 (Ω), (2.95)

where we have used that 0 < A ≤ k ≤ B <∞ and k ∈ L∞(Ω).
Since ρ ≥ A > 0, then from (2.93) and (2.95) we can conclude that

d

dt
∥umt − ūt∥2L2(Ω) = 0.

From the previous equation and because um and ū satisfy the same initial condition, we have
um = ū.

2.3.4 Mixed formulation 2

Now we aim to find (u, σ) solution of system (2.90) with the addition of initial conditions for u.
We introduce the mixed problem:

Problem 2.3.7 (Mixed PDE formulation in L2(0, T ;H(div,Ω)) of one dimensional elastic waves).
Find (u, σ) such that u ∈ H1(0, T ;H1

0 (Ω)), utt ∈ L2(0, T ;L2(Ω)), σ ∈ L2(0, T ;H(div,Ω)) and
satisfies: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫︁ T

0

∫︁
Ω
ρutty − d

dx (σ)y − fy dx dt = 0 ∀y ∈ Λ∫︁ T

0

∫︁
Ω
σφ− (2ku′ + 2γu′t)φ dx dt = 0 ∀φ ∈W

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω,

(2.96)

where W = L2(0, T ;H(div,Ω)) and Λ = L2(0, T ;L2(Ω)).

Proposition 2.3.8. The couple (u, σ) is solution of Problem 2.3.6 if and only if is solution of
Problem 2.3.7.

Proof. (⇒)

Let (u, σ) be solution of Problem 2.3.6, so u = ū and σ is define in (2.92). We have already
notice, at the end of the Subsection 2.3.2, that σ ∈ L2(0, T ;H(div,Ω)), so if (u, σ) satisfies (2.96),
then it is a solution of Problem 2.3.7. Since ρūtt, f, d

dx (σ) ∈ L2(0, T ;L2(Ω)) and u satisfies the
first equation of (2.91), then, because L2(0, T ;H1

0 (Ω)) is dense in Λ, for every y ∈ Λ there exists
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{yn}n∈N ⊂ L2(0, T ;H1
0 (Ω)) such that yn → y in Λ as n→ ∞, then

0 = lim
n→∞

∫︂ T

0

∫︂
Ω

ρuttyn + σy′n − fyn dx dt

= lim
n→∞

∫︂ T

0

∫︂
Ω

ρuttyn − d

dx
(σ)yn − fyn dx dt

= lim
n→∞

(ρutt −
d

dx
(σ)− f, yn)Λ

= lim
n→∞

⟨ρutt −
d

dx
(σ)− f, yn⟩

Λ

= ⟨ρutt −
d

dx
(σ)− f, y⟩

Λ

=

∫︂ T

0

∫︂
Ω

ρutty −
d

dx
(σ)y − fy dx dt.

Thus the first equation of (2.96) is satisfy. Second equation of (2.96) is satisfy because W ⊂ Y .
The initial conditions, because are the same, are clearly satisfy.
(⇐)

Let (u, σ) be solution of Problem 2.3.7, we only need to verify that (u, σ) satisfies (2.91). Since
H1

0 (Ω) ⊂ Λ we can restrict the test functions in the first equation of (2.96) to L2(0, T,H1
0 (Ω)),

if we do that according to the integration by parts we have∫︂ T

0

∫︂
Ω

ρutty + σy′ − fy dx dt =

∫︂ T

0

∫︂
Ω

ρutty −
d

dx
(σ)y − fy dx dt = 0

Thus the first equation of (2.91) is satisfy.
From the second equation of (2.96), u ∈ H1(0, T ;H1

0 (Ω)) and σ ∈ L2(0, T ;H(div,Ω)) then,
because H(div(Ω)) is a dense subset of L2(Ω), for every φ ∈ L2(0, T ;L2(Ω)) there exists
{φn}n∈N ⊂ L2(0, T ;H(div,Ω)) such that φn → φ in L2(0, T ;L2(Ω)) as n→ ∞, then

0 = lim
n→∞

∫︂ T

0

∫︂
Ω

σφn − (2ku′ + 2γu′t)φn dx dt

= lim
n→∞

(σ − (2ku′ + 2γu′t), φn)L2(0,T ;L2(Ω))

= lim
n→∞

⟨σ − (2ku′ + 2γu′t), φn⟩L2(0,T ;L2(Ω))

= ⟨σ − (2ku′ + 2γu′t), φ⟩L2(0,T ;L2(Ω))

=

∫︂
Ω

σφ− (2ku′ + 2γu′t)φ dx dt.

Thus the second equation of (2.91) is satisfy. Since the initial conditions are the same, they are
fulfil.

Finally we can state the main result.

Theorem 2.8. The function u is the unique solution of Problem 2.3.1 if and only if (u, σ) is
the unique solution of the Problem 2.3.7 where σ is define (2.92).

Proof. A direct consequence of Proposition 2.3.8 and Theorem 2.7.
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2.4 Viscoelasticity

In this section we will derive a mixed formulation for viscoelasticity, where the stress tensor σ
will be in L2(0, T ;H(div,Ω)sym). In order to do that we need stronger assumption on the forcing
function and the velocity initial data respect to the condition we have used in the conservative
case, see Section 2.2.
We will start form presenting the problem, then we will define the starting problem and cite a
result form [15] that guarantee existence and uniqueness of solution. We will construct a mixed
formulation following the same steps we have taken in the previous chapter in Sections 1.3 and
1.4. After noticing that under our assumption σ is L2(0, T ;H(div,Ω)sym), we will introduce a
new mixed formulation, the most important one. Finally we will show that the solution of the
last mixed formulation and starting problem coincide.

2.4.1 Starting problem

Assumption 2.4.1. Let Ω ⊂ R2 be a bounded Lipschitz domain, T > 0, u0 ∈ H1
0 (Ω)

2, u1 ∈
L2(Ω)2, f : [0, T ] → (L2(Ω)2)∗ Hölder continuous, ρ ∈ L∞(Ω) such that 0 < A ≤ ρ ≤ B < ∞
a.e. in Ω, µel > 0, µvis > 0, λel ≥ 0, and λvis ≥ 0.

We consider the following.

Problem 2.4.1 (Starting problem of linear viscoelasticity). Find

u ∈ C1((0, T ];H1
0 (Ω)

2) ∩ C0([0, T ];H1
0 (Ω)

2) ∩ C2((0, T ];L2(Ω)2) ∩ C1([0, T ];H1
0 (Ω)

2)

such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρutt = 2µeldiv(ϵ(u)) + λeldiv(tr(ϵ(u))id)

+ 2µvisdiv(ϵ(ut)) + λvisdiv(tr(ϵ(ut))id) + f in Ω× (0, T ]

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω.

(2.97)

Problem 2.4.1 can be cast within within the framework of second order evolution equation
in Hilbert spaces. Indeed, we can provide existence ad uniqueness of solution of Problem 2.4.1
using [15, Thm. 2.2 in Ch. 6]. For the reader’s convenience we first recall this result.

Theorem 2.9 (Theorem 2.2 in Chapter 6 of [15]). Let A and C be the Riesz maps of the Hilbert
spaces V and W and V is dense and continuously embedded in W . Let B a linear form V to V ∗

and assume that there exists constants C > 0 and δ > 0 such that B + δC satisfies

(B + δC)[u](u) ≥ C∥u∥2V ∀u ∈ V,

Then for every Hölder continuous f : [0,∞) → W ∗, u0 ∈ V and u1 ∈ W , there is a unique
solution u(t) of Problem A.2.1 on t > 0 with u(0) = u0 and ut(0) = u1.

Now we are ready to state and prove the main result of this subsection.
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Theorem 2.10 (Existence and uniqueness of solution). There exists a unique solution of Problem
2.4.1.

Proof. We want to use Theorem 2.9 in order to prove existence and uniqueness of solution to
the Problem 2.4.1, so we need to verify its hypothesis. We set V = H1

0 (Ω)
2 and W = L2(Ω)2.

We have to show that A = −div(2µelϵ(·)+λeldiv(·)id) : H1
0 (Ω)

2 → H−1(Ω)2 is a Riesz map, i.e.
we need to check that

(u, v)H1
0 (Ω)2 := A[v](u) =

∫︂
Ω

(2µelϵ(u) + λeldiv(u)id) : ϵ(v) dx for u, v ∈ H1
0 (Ω)

2, (2.98)

is a scalar product (i.e. symmetric, linear and positive define). From the previous equation we
can deduce that

(u, v)H1
0 (Ω)2 :=

∫︂
Ω

2µelϵ(u) : ϵ(v) + λeldiv(u)div(v) dx for u, v ∈ H1
0 (Ω)

2,

then clearly (·, ·)H1
0 (Ω)2 is symmetric and linear. Since 0 < µel <∞, using Korn inequality (A.4),

we have that

(u, u)H1
0 (Ω)2 ≥

∫︂
Ω

2µel|ϵ(u)|2 dx ≥ 2µvisK∥u∥2H1
0 (Ω)2 ∀u ∈ H1

0 (Ω)
2,

where ∥·∥H1
0 (Ω)2 is the usual norm in H1

0 (Ω)
2 and K is the constant of Korn. So it is positive

define and we can deduce that (·, ·)H1
0 (Ω)2 is a scalar product, where A is its Riesz map.

Now we have to show that C = ρ : L2(Ω)2 → (L2(Ω)2)∗ is a Riesz map, i.e. we need to check
that

(u, v)L2(Ω) := C[v](u) =
∫︂
Ω

ρuv dx for u, v ∈ L2(Ω)2, (2.99)

is a scalar product (i.e. symmetric, linear and positive define). From the previous equation we
can clearly see that (·, ·)L2(Ω)2 is symmetric and linear. Since 0 < A ≤ ρ < B ≤ ∞ we have that

(u, u)L2(Ω) :=

∫︂
Ω

ρ|u|2 dx ≥ A∥u∥2L2(Ω)2 ∀u ∈ L2(Ω)2,

where ∥·∥L2(Ω)2 is the usual norm in L2(Ω)2. So it is positive define and we can deduce that
(·, ·)L2(Ω) is a scalar product, where C is its Riesz map.
Since we have that

(u, u)H1
0 (Ω)2 ≤ 2(µel + λel)

∫︂
Ω

|ϵ(u)|2 dx ≤ 2(µel + λel)∥u∥2H1
0 (Ω)2 ∀u ∈ H1

0 (Ω)
2,

and
(u, u)L2(Ω) ≤ B

∫︂
Ω

|u|2 dx ≤ B∥u∥2L2(Ω)2 ∀u ∈ L2(Ω)2,

we can see that (·, ·)L2(Ω), define in (2.99), and (·, ·)H1
0 (Ω)2 , define in (2.98), induces norms that

are equivalent to the usual one in H1
0 (Ω)

2 and L2(Ω)2. Since, with the usual norms, H1
0 (Ω)

2 is
dense and immersed with continuity in L2(Ω)2 it is also true for the norms induced by C and A.
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Now it remains to show that there exists a constant C > 0 and δ > 0 such that B + δC satisfies

(B + δC)[u](u) ≥ C∥u∥2H1
0 (Ω)2 ∀u ∈ H1

0 (Ω)
2. (2.100)

where B = −div(2µvisϵ(·) + λvisdiv(·)id) : H1
0 (Ω)

2 → H−1(Ω)2.
Since µvis > 0, using Korn inequality (A.4) we obtain

(B + δC)[u](u) =
∫︂
Ω

2µvis|ϵ(u)|2 + λvis|div(u)|2 + δρ|u|2dx ≥
∫︂
Ω

2µvis|ϵ(u)|2dx

≥ 2µvis

⃦⃦
ϵ(u)

⃦⃦2
L2(Ω)2

≥ 2µvisK∥u∥2H1
0 (Ω)2 ∀u ∈ H1

0 (Ω)
2,

where K is the constant of Korn. Thus (2.100) is satisfy for all δ > 0. Since all hypothesis of
Theorem 2.9 are verified we have that there exists a unique solution of the Problem 2.4.1.

The regularity of the solution obtained by a direct application of Theorem 2.9 is not sufficient
for our purposes, which include duality technique that require stronger time regularity of solution
at t = 0. According to [15, Cor. 3.2 in Ch. 4] we are able to sharpen the above regularity result
in the case (u0, u1) ∈ D(A), where

A =

[︃
A−1 0

0 C−1

]︃ [︃
0 −A
A B

]︃
=

[︃
0 −1

C−1A C−1B

]︃
and

D(A) =

{︃
(x1, x2) ∈ H1

0 (Ω)
2 ×H1

0 (Ω)
2 | A(x1) + B(x2) ∈ (L2(Ω)2)∗

}︃
.

Since A = −div(2µelϵ(·) + λeldiv(·)id) and B = −div(2µvisϵ(·) + λvisdiv(·)id) we have that
(x1, x2) ∈ D(A) if and only if (x1, x2) ∈ H1

0 (Ω)
2 ×H1

0 (Ω)
2 and

div(2µelϵ(x1) + λeldiv(x1)id+ 2µvisϵ(x2) + λvisdiv(x2)id) ∈ (L2(Ω)2)∗.

So we have the following.

Corollary 2.4.1. If u1 ∈ H1
0 (Ω)

2 and u0, u1 are such that

div(2µelϵ(u0) + λeldiv(u0)id+ 2µvisϵ(u1) + λvisdiv(u1)id) ∈ (L2(Ω)2)∗.

Then we have that ū, unique solution of Problem 2.4.1, satisfies

ū ∈ C1([0, T ];H1
0 (Ω)

2) ∩ C2([0, T ];L2(Ω)2).

For the purpose of our work from now on we can assume the following.

Assumption 2.4.2. The function u1 ∈ H1
0 (Ω)

2 and

div(2µelϵ(u0) + λeldiv(u0)id+ 2µvisϵ(u1) + λvisdiv(u1)id) ∈ (L2(Ω)2)∗.

Definition 2.4.1. We will denote by

ū ∈ C1([0, T ];H1
0 (Ω)

2) ∩ C2([0, T ];L2(Ω)2),
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the solution of Problem 2.4.1 provided by Theorem 2.9 and Corollary 2.4.1.

2.4.2 Construction of mixed formulation

In order to derive our mixed formulation we proceed as follows. First we characterize ū as the
unique minimum of a variational problem, then we apply the theory developed in Sections 1.3
and 1.4 in order to write its saddle point formulation. Let us start by introducing the functional

S(u) =
∫︂ T

0

∫︂
Ω

ρūttu+ (2µvisϵ(ūt) + λvisdiv(ūt)id) : ϵ(u)

+ µel|ϵ(u)|2 +
1

2
λel|tr(ϵ(u))|2 dx− ⟨f, u⟩

L2(Ω)2
dt, (2.101)

acting on the Hilbert space

Γ =

{︃
u(x, t)

⃓⃓⃓⃓
u(x, t) ∈ L2(0, T ;H1

0 (Ω)
2)

}︃
,

then we consider the following.

Problem 2.4.2 (Primal formulation of linear viscoelasticity). Find u ∈ Γ such that

S(u) = inf
v∈Γ

{︁
S(v)

}︁
. (2.102)

Proposition 2.4.1. Problem 2.4.2 has the unique solution ū.

Proof. If we compute the first variation of S at ū we obtain

dS(ū).(y) =
∫︂ T

0

∫︂
Ω

ρūtty + (2µvisϵ(ūt) + λvisdiv(ūt)id) : ϵ(y) + 2µelϵ(ū) : ϵ(y)

+ λel tr(ϵ(ū))id : ϵ(y) dx− ⟨f, y⟩
L2(Ω)2

dt

=

∫︂ T

0

⟨ρūtt − 2µeldiv(ϵ(ū))− λeldiv(tr(ϵ(ū))id)

− 2µvisdiv(ϵ(ūt))− λvisdiv(tr(ϵ(ūt))id)− f, y⟩L2(Ω)2 dt = 0 ∀y ∈ Γ,

where the last equation is implied by the fact that ū is solution of Problem 2.4.1, so it satisfies
the first equation of (2.97), that implies

⟨ρūtt − 2µeldiv(ϵ(ū))− λeldiv(tr(ϵ(ū))id)

− 2µvisdiv(ϵ(ūt))− λvisdiv(tr(ϵ(ūt))id)− f, · ⟩L2(Ω)2 = 0.

Hence ū is a critical point of S.
Now we want to show that the functional S is strictly convex, in order to do that we verify that
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the second variation of S is positive definite at any v ∈ Γ:

d2S(v).(y, y) =
∫︂ T

0

∫︂
Ω

2µel|ϵ(y)|2 + λel|tr(ϵ(y))|2 dx dt ≥
∫︂ T

0

∫︂
Ω

2µel|ϵ(y)|2 dx dt

≥ 2µelK
∫︂ T

0

⃦⃦
y
⃦⃦2
H1

0 (Ω)2
dt = 2µelK

⃦⃦
y
⃦⃦2
L2(0,T ;H1

0 (Ω)2)
∀y ∈ Γ,

where we used the Korn inequality (A.4). The functional S is strictly convex and it admits a
unique critical point, which is indeed its unique minimum. Thus ū is the unique minimiser of S
in Γ.

Before introducing the saddle point problem using the theory that we have developed in
Section 1.4, first we need to check that the dual problem, constructed from Problem 2.4.2, is
stable. In order to that it is convenient to rewrite the functional S in the form

F (u) +G(ϵ(u)),

where F : Γ → R is

F (v) =

∫︂ T

0

∫︂
Ω

ρūttu dx− ⟨f, u⟩
L2(Ω)2

dt, (2.103)

and G : Y := L2(0, T ;L2(Ω)2×2
sym) → R is

G(p) =

∫︂ T

0

∫︂
Ω

µel|p|2 +
1

2
λel|tr(p)|2 + (2µvisϵ(ūt) + λvisdiv(ūt)id) : p dx dt. (2.104)

With the choice of Φ(u, p) = F (u) +G(ϵ(u) + p), we can construct the dual problem of Problem
2.4.2 according to Definition 1.3.2, obtaining the following.

Problem 2.4.3 (Dual formulation of linear viscoelasticity). Find q∗ ∈ Y ∗ such that

− Φ∗(0, q∗) = sup
p∗∈Y ∗

[︁
− Φ∗(0, p∗)

]︁
= sup

p∗∈Y ∗

[︁
− F ∗(−Λ∗p∗)−G∗(p∗)

]︁
, (2.105)

where Λ∗ is the adjoint of ϵ and, according to Definition A.1.8, F ∗ : Γ∗ → R is

F ∗(−ϵ∗(p∗)) =

{︄
0 if − ϵ∗(p∗)− ρūtt + f = 0

+∞ otherwise

and G∗ : Y ∗ → R is

G∗(p∗) =

∫︂ T

0

∫︂
Ω

1

4µel
|R(p∗)

D − 2µvisϵ(ūt)
D|2

+
1

8(µel + λel)
|tr(R(p∗))− 2(µvis + λvis) tr(ϵ(ūt))|2 dx dt,

where R is the Riesz operator such that R : Y ∗ → Y .

Proposition 2.4.2. Problem 2.4.2 is stable in the sense of Definition 1.3.4. Moreover Problem
2.4.3 admits a unique solution.
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Proof. In order to prove stability we verify the hypothesis of Theorem 1.1. Since we have that
F , defined in (2.103), is linear and G, defined in (2.104), is strictly convex, because is sum of a
strictly convex function ∫︂ T

0

∫︂
Ω

µel|p|2 +
1

2
λel|tr(p)|2 dx dt,

and a linear one ∫︂ T

0

∫︂
Ω

(2µvisϵ(ūt) + λvisdiv(ūt)id) : p dx dt,

then J(u, p) = F (u) +G(p) is convex in Γ× Y :

J(α(u, p) + (1− α)(v, q)) = F (αu+ (1− α)v) +G(αp+ (1− α)q)

= αF (u) + (1− α)F (v) +G(αp+ (1− α)q)

≤ αF (u) + (1− α)F (v) + αG(p) + (1− α)G(q)

≤ αJ(u, p) + (1− α)J(v, q),

for α ∈ [0, 1], u, v ∈ Γ and p, q ∈ Y .
Now we have to find a value u0 such that F (u0)+G(ϵ(u0)) < +∞ and verify that the functional
p → F (u0) + G(p) is continuos at ϵ(u0). If we take u0 = 0 then F (0) = 0 and, since ϵ(0) = 0,
then G(ϵ(0)) = G(0) = 0, so the first hypothesis is verified. Now we need to show that p →
F (u0) +G(p) is continuos at ϵ(u0). Let p

n
→ p in Y as n→ ∞, then it is enough to show

lim
n→∞

∫︂ T

0

∫︂
Ω

µel|p
n
|2 dx dt =

∫︂ T

0

∫︂
Ω

µel|p|2 dx dt, (2.106)

and

lim
n→∞

∫︂ T

0

∫︂
Ω

1

2
λel|tr(p

n
)|2 dx dt =

∫︂ T

0

∫︂
Ω

1

2
λel|tr(p)|2 dx dt, (2.107)

and

lim
n→∞

∫︂ T

0

∫︂
Ω

(2µvisϵ(ūt) + λvisdiv(ūt)id) : p
n
dx dt

=

∫︂ T

0

∫︂
Ω

(2µvisϵ(ūt) + λvisdiv(ūt)id) : p dx dt. (2.108)

Since
∫︁ T

0

∫︁
Ω
µel|p|2 dx dt = µel

⃦⃦⃦
p
⃦⃦⃦2
Y

and the norm is continuous, then (2.106) is true. Since
|tr(·)| : Y → R can be seen as the composition of the projection π : Y → Y on the trace
components, the sum of them, and the norm of Y , and because of them are continuous, then
(2.107) holds. Since∫︂ T

0

∫︂
Ω

(2µvisϵ(ūt) + λvisdiv(ūt)id) : p
n
dx dt = ⟨(2µvisϵ(ūt) + λvisdiv(ūt)id), p

n
⟩
Y
,

is a linear and continuous operator, then also (2.108) is true. So form (2.106), (2.107), and
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(2.108) we have the following

lim
n→∞

F (u0) +G(p
n
) = lim

n→∞

∫︂ T

0

∫︂
Ω

µel|p
n
|2 + 1

2
λel|tr(p

n
)|2

+ (2µvisϵ(ūt) + λvisdiv(ūt)id) : p
n
dx dt

=

∫︂ T

0

∫︂
Ω

µel|p|2 +
1

2
λel|tr(p)|2 + (2µvisϵ(ūt) + λvisdiv(ūt)id) : p dx dt

= F (u0) +G(p).

Thus Problem 2.4.1 is stable and due to Proposition 1.3.6, Problem 2.4.3 has at least one solution.
Can be noticed that G is differentiable and the differential of G in p evaluated in q is

G
′
[p](q) =

∫︂ T

0

∫︂
Ω

2µelp : q + λel tr(p) tr(q) + (2µvisϵ(ūt) + λvisdiv(ūt)id) : q dx dt.

Since G is differentiable and primal Problem 2.4.1 admits a unique solution, according to Propo-
sition 1.3.7 and Proposition A.1.7, we have that the dual Problem 2.4.3 admits a unique solu-
tion.

In order to write the saddle point problem that we have introduce in Section 1.4 we need to
introduce the Lagrangian 1.4.1:

− L(u, p∗) = sup
p∈Y

[︁
⟨p∗, p⟩

Y ∗
− F (u)−G(ϵ(u) + p)

]︁
. (2.109)

Since G is strictly convex, because is sum of positive quadratic terms and linear terms, and
⟨p∗, p⟩ − F (u) is linear in p, we have that the argument inside the supremum of the Lagrangian
is strictly concave, so there exists a unique q ∈ Y that realizes the supremum. If we compute
the first variation in Y of

⟨p∗, p⟩
Y ∗

− F (u)−G(ϵ(u) + p),

evaluated in q, we obtain:

∫︂ T

0

∫︂
Ω

R(p∗) : φ− 2µel(q + ϵ(u)) : φ− λel(tr(q) + tr(ϵ(u))id) : φ

− (2µvisϵ(ūt) + λvisdiv(ūt)id) : φ dx dt = 0 ∀φ ∈ Y, (2.110)

where R : Y ∗ → Y is the Riesz operator define in Theorem A.1. If we take φ = q + ϵ(u) in
(2.110) we obtain

⟨p∗, q⟩ =
∫︂ T

0

∫︂
Ω

R(p∗) : q dx dt = 2G(ϵ(u) + q)−
∫︂ T

0

∫︂
Ω

R(p∗) : ϵ(u)− (2µvisϵ(ūt)

+ λvisdiv(ūt)id) : (q + ϵ(u)) dx dt.
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Substituting the previous equation in (2.109) we obtain

−L(u, p∗) = sup
p∈Y

[︁
⟨p∗, p⟩

Y ∗
− F (u)−G(ϵ(u) + p)

]︁
= ⟨p∗, q⟩

Y ∗
− F (u)−G(ϵ(u) + q)

= G(ϵ(u) + q)− F (u)−
∫︂ T

0

∫︂
Ω

R(p∗) : ϵ(u)− (2µvisϵ(ūt)

+ λvisdiv(ūt)id) : (ϵ(u) + q) dx dt.

It can be seen that the dissipative term disappears from −L(u, p∗), so if we introduce G̃ : Y → R
such that

G̃(p) =

∫︂ T

0

∫︂
Ω

µel|p|2 +
1

2
λel|tr(p)|2 dx dt,

then we have

− L(u, p∗) = G̃(ϵ(u) + q)− F (u)−
∫︂ T

0

∫︂
Ω

R(p∗) : ϵ(u) dx dt. (2.111)

From the arbitrariness of φ ∈ Y in (2.110) we obtain

R(p∗) = 2µel(q + ϵ(u)) + λel(tr(q) + tr(ϵ(u))id) + 2µvisϵ(ūt) + λvisdiv(ūt)id,

and we can deduce that

qD =
1

2µel

[︃
R(p∗)

D
+ 2µvisϵ(ūt)

D

]︃
− ϵ(u)

D

tr(q) =
1

2µel + 2λel

[︃
tr(R(p∗)) + 2µvis tr(ϵ(ūt)) + 2λvis tr(ϵ(ūt))

]︃
− tr(ϵ(u)),

from which we have

q = qD +
1

2
tr(q)id =

1

2µel

[︃
R(p∗)

D
+ 2µvisϵ(ūt)

D

]︃
+

1

4(µel + λel)

[︃
tr(R(p∗)) + 2µvis tr(ϵ(ūt)) + 2λvis tr(ϵ(ūt))

]︃
− ϵ(u). (2.112)

Substituting (2.112) in (2.111), we obtain

− L(u, p∗) =

∫︂ T

0

∫︂
Ω

1

4µel
|R(p∗)

D − 2µvisϵ(ūt)
D|2 + 1

8(µel + λel)
|tr(R(p∗))

− 2(µvis + λvis) tr(ϵ(ūt))|2 − ρūttu−R(p∗) : ϵ(u) dx + ⟨f, u⟩
L2(Ω)2

dt.

Notice that the right-hand side of the last equation depends on p∗ only through the Riesz operator
R. Since Y is an Hilbert space, so R is an isomorphism, we can replace Y ∗ with Y and R(p∗)
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with p, and we obtain

inf
p∗∈Y ∗

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4µel
|R(p∗)

D − 2µvisϵ(ūt)
D|2 + 1

8(µel + λel)
|tr(R(p∗))

− 2(µvis + λvis) tr(ϵ(ūt))|2 − ρūttu−R(p∗) : ϵ(u) dx + ⟨f, u⟩
L2(Ω)2

dt.

}︃
= inf

p∈Y
sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4µel
|pD − 2µvisϵ(ūt)

D|2 + 1

8(µel + λel)
|tr(p)

− 2(µvis + λvis) tr(ϵ(ūt))|2 − ρūttu− p : ϵ(u) dx + ⟨f, u⟩
L2(Ω)2

dt

}︃
.

From the previous equation and recalling the Definition 1.4.3 of saddle point problem, we can
consider the following.

Problem 2.4.4 (Saddle point formulation of linear viscoelasticity). Find (w, τ) ∈ Γ × Y such
that ∫︂ T

0

∫︂
Ω

1

4µel
|τD − 2µvisϵ(ūt)

D|2 + 1

8(µel + λel)
|tr(τ)

− 2(µvis + λvis) tr(ϵ(ūt))|2 − ρūttw − τ : ϵ(w) dx + ⟨f, w⟩
L2(Ω)2

dt

= inf
p∈Y

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4µel
|pD − 2µvisϵ(ūt)

D|2 + 1

8(µel + λel)
|tr(p)

− 2(µvis + λvis) tr(ϵ(ūt))|2 − ρūttu− p : ϵ(u) dx + ⟨f, u⟩
L2(Ω)2

dt

}︃
. (2.113)

Proposition 2.4.3. Problem 2.4.4 admits a unique solution (ū, σ) where ū is the unique solution
of Problem 2.4.2 and σ = R(q∗), where q∗ is the unique solution of Problem 2.4.3.

Proof. Recalling that Problems 2.4.2 and 2.4.3 admit a unique solution, then, due to Proposition
1.4.1, we have guarantee that Problem 2.4.4 admits a unique solution (ū, σ), where ū is the
unique solution of Problem 2.4.2 and σ = R(q∗), where q∗ is the unique solution of the Problem
2.4.3, since R is an isometry we have that σ is unique.

If we compute the Euler-Lagrange equations of (2.113) evaluated in (ū, σ), we obtain:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫︁ T

0

∫︁
Ω
ρūtty + σ : ϵ(y) dx− ⟨f, y⟩

L2(Ω)2
dt = 0 ∀y ∈ Γ∫︁ T

0

∫︁
Ω
σD : φD − 2µelϵ(ū)

D
: φD − 2µvisϵ(ūt)

D
: φD dx dt = 0 ∀φ ∈ Y∫︁ T

0

∫︁
Ω
tr(σ) tr(φ)− (2µel + 2λel) tr(ϵ(ū)) tr(φ)

− (2µvis + 2λvis) tr(ϵ(ūt)) tr(φ) dx dt = 0 ∀φ ∈ Y

(2.114)

For the purpose of our work form now on we can assume the following.

Assumption 2.4.3. f : [0, T ] → L2(Ω)2 Hölder continuous.
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A direct consequence of the previous assumption is that we can no longer consider

⟨f(·, t), u⟩
L2(Ω)2

∀u ∈ L2(Ω)2,

but
(f(·, t), u)L2(Ω)2 :=

∫︂
Ω

f(·, t)u dx ∀u ∈ L2(Ω)2.

In the first equation of (2.114) since y ∈ Γ then for a.e. t ∈ [0, T ] we have that y(·, t) ∈ H1
0 (Ω)

2,
so we can define div(σ) ∈ L2(0, T ;H−1(Ω)2) as follows

⟨div(σ), y⟩
L2(0,T ;H1

0 (Ω)2)
:=

∫︂ T

0

⟨div(σ), y⟩
H1

0 (Ω)2
dt = −

∫︂ T

0

∫︂
Ω

σ : ϵ(y) dx dt. (2.115)

From the first equation we can deduce that

ρūtt − div(σ)− f = 0 in L2(0, T ; (L2(Ω)2)∗),

recalling that ū ∈ C2([0, T ];L2(Ω)2) and f : [0, T ] → L2(Ω)2 is Hölder continuous, then we have
that div(σ) ∈ L2(0, T ;L2(Ω)2), that implies σ ∈ L2(0, T ;H(div,Ω)sym).
Since σ ∈ L2(0, T ;H(div,Ω)sym) we are interested in finding the saddle point of Problem 2.4.4
we can restrict Y to L2(0, T ;H(div,Ω)sym), if we do that, according to the integration by parts,
we can rewrite∫︂ T

0

∫︂
Ω

1

4µel
|pD − 2µvisϵ(ūt)

D|2 + 1

8(µel + λel)
|tr(p)− 2(µvis + λvis) tr(ϵ(ūt))|2

− ρūttu− p : ϵ(u) dx + ⟨f, u⟩
L2(Ω)2

dt,

with∫︂ T

0

∫︂
Ω

1

4µel
|pD − 2µvisϵ(ūt)

D|2 + 1

8(µel + λel)
|tr(p)− 2(µvis + λvis) tr(ϵ(ūt))|2

− ρūttu+ div(p)u dx + ⟨f, u⟩
L2(Ω)2

dt.

After doing that we no longer need u to be in Γ = L2(0, T ;H1
0 (Ω)

2), because the new functional
does not involve space derivative of u, so we can replace Γ with the largest space L2(0, T ;L2(Ω)2).
If do that we have no longer guarantee that (ū, σ) is a saddle point, indeed we do not even know
if there exists one for the new problem. Now we are interested in studying the following.
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Problem 2.4.5 (Mixed formulation of linear viscoelasticity). Find (w, τ) ∈ Λ×W such that∫︂ T

0

∫︂
Ω

1

4µel
|τD − 2µvisϵ(ūt)

D|2 + 1

8(µel + λel)
|tr(τ)

− 2(µvis + λvis) tr(ϵ(ūt))|2 − ρūttw + f(x, t)w + div(τ) : w dx dt

= inf
p∈Y

sup
u∈Γ

{︃∫︂ T

0

∫︂
Ω

1

4µel
|pD − 2µvisϵ(ūt)

D|2 + 1

8(µel + λel)
|tr(p)

− 2(µvis + λvis) tr(ϵ(ūt))|2 − ρūttu+ f(x, t)u+ div(p)u dx dt

}︃
, (2.116)

where W = L2(0, T ;H(div,Ω)sym) and Λ = L2(0, T ;L2(Ω)2).

Proposition 2.4.4. If (w, τ) is a saddle point of Problem 2.4.5, in sense of Definition 1.4.2,
then w ∈ L2(0, T ;H1

0 (Ω)
2).

Proof. If we take the first variation of (2.116) respect to the variable p evaluated in (w, τ), we
obtain that for every φ ∈W :

∫︂ T

0

∫︂
Ω

div(φ)w dx dt = −
∫︂ T

0

∫︂
Ω

φ :
[︁ 1

2µel

(︁
σD − 2µvisϵ(ūt)

D)︁
+

1

4(µel + λel)

(︁
tr(σ)− 2µvis tr(ϵ(ūt))− 2λvis tr(ϵ(ūt))

)︁]︁
dx dt, (2.117)

Since ū ∈ C1([0, T ];H1
0 (Ω)

2) and L2(0, T ; C∞
c (Ω)2×2

sym) ⊂ W , according to what we have seen in
Appendix A about H(sym,Ω), we obtain that w admit symmetric gradient:

ϵ(w) =
1

2µel

(︁
σD − 2µvisϵ(ūt)

D)︁
+

1

4(µel + λel)

(︁
tr(σ)− 2µvis tr(ϵ(ūt))− 2λvis tr(ϵ(ūt))

)︁
.

Since w ∈ L2(0, T ;H(sym,Ω)), then there exists {φ
n
}n∈N ⊂ L2(0, T ; C∞(Ω)2) such that

φ
n
−→ w in L2(0, T ;L2(Ω)2)

ϵ(φn) −→ ϵ(w) in L2(0, T ;L2(Ω)2×2
sym).

From Korn inequality (A.5) we have∫︂ T

0

⃦⃦⃦
φ
n

⃦⃦⃦2
H1(Ω)2

dt ≤
∫︂ T

0

K2
(︁⃦⃦⃦

(φ
n
)
⃦⃦⃦
L2(Ω)2

+
⃦⃦
ϵ(φn)

⃦⃦
L2(Ω)2×2

sym

)︁2
dt,

so {φ
n
}n∈N is also a Cauchy sequence in L2(0, T ;H1(Ω)2). Since L2(0, T ;H1(Ω)2) is an Hilbert

space, then it is complete, so there exists φ ∈ L2(0, T ;H1(Ω)2) such that {φ
n
}n∈N converges to

it. As L2(0, T ;H1(Ω)2) ↪→ L2(0, T ;H(sym,Ω)), i.e. L2(0, T ;H1(Ω)2) immerses with continuity
in L2(0, T ;H(sym,Ω)), because

⃦⃦
ϵ(φ)

⃦⃦2
L2(Ω)2×2

sym
≤

⃦⃦
∇φ

⃦⃦2
L2(Ω)2×2

sym
, we must have φ = w, so

w ∈ L2(0, T ;H1(Ω)2). From (2.117), since L2(0, T ; C∞(Ω)2×2
sym) ⊂ W , according to Theorem

A.3, we obtain that Tr(w) = 0 for a.e. t ∈ [0, T ] and that is equivalent to stating that w ∈
L2(0, T ;H1

0 (Ω)
2).
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Proposition 2.4.5. Problem 2.4.5 admits a unique saddle point which is the solution of Problem
2.4.4.

Proof. Since Problem 2.4.4 admits a unique solution, then the thesis is equivalent to prove that
(w, τ) is saddle point of (2.116) if and only if is a saddle point of (2.113). We call F1(v, p) the
functional in (2.113) and F2(v, p) the functional in (2.116), we can see that if p ∈ W and v ∈ Γ

then we have F1(v, p) = F2(v, p) and, due to Proposition 2.4.4, we can deduce that all saddle
points of (2.113) and (2.116) satisfy such condition.
Let (w, τ) be a saddle point of (2.113), then

∀v ∈ Γ F1(v, τ) ≤ F1(w, τ) ≤ F1(w, p) ∀p ∈ Y, (2.118)

and we want to show that

∀v ∈ Λ F2(v, τ) ≤ F2(w, τ) ≤ F2(w, p) ∀p ∈W. (2.119)

Since W ⊂ Y and if p ∈W we have F1(w, p) = F2(w, p), then the right inequality is satisfy. The
left one is given by the denseness of Γ in Λ and the continuity of v → F2(v, τ) in Λ. Indeed due
to the denseness we have that for every v ∈ Λ there exists {vn}n∈N ∈ Γ such that vn −→ v in Λ

as n→ ∞, recalling that if u ∈ Γ then F1(u, τ) = F2(u, τ), we obtain

F2(w, σ) = F1(w, σ) ≥ lim
n→∞

F1(vn, σ) = lim
n→∞

F2(vn, σ) = F2(v, σ).

Now we do the converse, let (w, τ) be a saddle point of (2.116), so it satisfies (2.119), we want
to prove (2.118). The left side follow from Γ ⊂ Λ and F1(v, τ) = F2(v, τ) for all v ∈ Γ. The
right side is given by the denseness of Y in W , the continuity of p → F1(w, p) in W and that
F1(w, p) = F2(w, p) for all p ∈ W . Indeed for every p ∈ W there exists {p

n
}n∈N ∈ Y such that

p
n
−→ p in Y as n→ ∞, then we obtain

F1(w, τ) = F2(w, τ) ≤ lim
n→∞

F2(w, p
n
) = lim

n→∞
F1(w, p

n
) = F2(w, p).

From Proposition 2.4.5 we have that (ū, σ), unique saddle point of Problem 2.4.4, is also
the unique saddle point of Problem 2.4.5, then from the Euler-Lagrange equations of (2.116),
evaluated in (ū, σ), we obtain:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫︁ T

0

∫︁
Ω
ρūtty − div(σ)y − fy dx dt = 0 ∀y ∈ Λ∫︁ T

0

∫︁
Ω
σD : φD − 2µelϵ(ū)

D
: φD − 2µvisϵ(ūt)

D
: φD dx dt = 0 ∀φ ∈W∫︁ T

0

∫︁
Ω
tr(σ) tr(φ)− (2µel + 2λel) tr(ϵ(ū)) tr(φ)

− (2µvis + 2λvis) tr(ϵ(ūt)) tr(φ) dx dt = 0 ∀φ ∈W

(2.120)
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2.4.3 Mixed formulation 1

Now we are interested in finding the functions (u, σ) solution of system (2.114) with the addition
of initial conditions for u. We introduce the mixed problem:

Problem 2.4.6 (Mixed PDE formulation in L2(0, T ;L2(Ω)2×2
sym) of linear viscoelasticity). Find

the couple (u, σ) such that u ∈ H1(0, T ;H1
0 (Ω)

2), utt ∈ L2(0, T ;L2(Ω)2), σ ∈ L2(0, T ;L2(Ω)2×2
sym)

and satisfies:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁ T

0

∫︁
Ω
ρutty + σ : ϵ(y)− fy dx dt = 0 ∀y ∈ Γ∫︁ T

0

∫︁
Ω
σD : φD − 2µelϵ(u)

D
: φD − 2µvisϵ(ut)

D
: φD dx dt = 0 ∀φ ∈ Y∫︁ T

0

∫︁
Ω
tr(σ) tr(φ)− (2µel + 2λel) tr(ϵ(u)) tr(φ)

− (2µvis + 2λvis) tr(ϵ(ut)) tr(φ) dx dt = 0 ∀φ ∈ Y

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω,

(2.121)

where Y = L2(0, T ;L2(Ω)2×2
sym) and Γ = L2(0, T ;H1

0 (Ω)
2).

Theorem 2.11. The function u is the unique solution of Problem 2.4.1 if and only if (u, σ) is
the unique solution of Problem 2.4.6 where σ is define (2.122).

Proof. The proof is rather long and we decided to divided it in Proposition 2.4.6 and Proposition
2.4.7.

Proposition 2.4.6. For every (u, σ) solution of Problem 2.4.6, σ is unique determined by u and

σ = σD +
1

2
tr(σ)id = 2µelϵ(u) + λeldiv(u)id+ 2µvisϵ(ut) + λvisdiv(ut)id. (2.122)

Proof. Since (u, σ) is a solution, then σ ∈ L2(0, T ;L2(Ω)2×2
sym). From the second and third

equations of (2.121) we can deduce that

σD = 2µelϵ(u)
D
+ 2µvisϵ(ut)

D

tr(σ) = (2µel + 2λel) tr(ϵ(u)) + (2µvis + 2λvis) tr(ϵ(ut))

Proposition 2.4.7. The function u is solution of Problem 2.4.1 if and only if there exists σ
such that (u, σ) is solution of the mixed Problem 2.4.6.

Proof. (⇒)

Let ū be solution of Problem 2.4.1, then Corollary 2.4.1 implies that ū is in H1(0, T ;H1
0 (Ω)

2)

and ūtt ∈ L2(0, T ;L2(Ω)2). From the construction we have done in Section 2.4.2 we have that
(ū, σ), where ū is the unique solution of Problem 2.4.2, that coincides with the one of Problem
2.4.1 by construction, and σ = R(q∗), where q∗ is the unique solution of Problem 2.4.3 satisfies
(2.114), so it is also a solution of Problem 2.4.6 since ū satisfies the initial conditions of Problem
2.4.6.



2.4. VISCOELASTICITY 77

(⇐)

Now we proceed with the opposite, let um be the first component of a solution of Problem 2.4.6.
We want to prove that um = ū. Let start by considering the following.

1

2

d

dt
∥√ρ(umt − ūt)∥

2
L2(Ω)2

= ⟨√ρ(umtt − ūtt),
√
ρ(umt − ūt)⟩L2(Ω)2

= (
√
ρ(umtt − ūtt),

√
ρ(umt − ūt))L2(Ω)2

= (ρ(umtt − ūtt), umt − ūt)L2(Ω)2

= ⟨ρ(umtt − ūtt), umt − ūt⟩L2(Ω)2
, (2.123)

where we have used ρ ≥ A > 0. Since umt− ūt ∈ L2(0, T ;H1
0 (Ω)

2) and recalling that um satisfies
the first equation of (2.121), and ū satisfies the first equation of (2.97), from (2.123) we obtain

⟨ρ(umtt − ūtt), umt − ūt⟩L2(Ω)2
= −⟨σ, ϵ(umt)− ϵ(ūt)⟩L2(Ω)2×2

sym

− ⟨div(Ael(ϵ(ū)) +Avis(ϵ(ūt))), umt − ūt⟩L2(Ω)2
, (2.124)

where Ael(ϵ(u)) = 2µelϵ(u) + λel tr(ϵ(u))id and Avis(ϵ(u)) = 2µvisϵ(u) + λvis tr(ϵ(u))id.
Since umt−ūt ∈ L2(0, T ;H1

0 (Ω)
2) we have that ϵ(umt)−ϵ(ūt) ∈ L2(0, T ;L2(Ω)2×2

sym), so according
to the second and third equations of (2.121), we obtain

−⟨σ, ϵ(umt)− ϵ(ūt)⟩L2(Ω)2×2
sym

= −⟨Ael(ϵ(um)) +Avis(ϵ(umt)), ϵ(umt)− ϵ(ūt)⟩L2(Ω)2×2
sym

,

and, since ϵ(umt)− ϵ(ūt) ∈ L2(0, T ;L2(Ω)2×2
sym), we have

⟨div(Ael(ϵ(ū)) +Avis(ϵ(ūt))), umt − ūt⟩L2(Ω)2
= −⟨Ael(ϵ(ū)) +Avis(ϵ(ūt)), ϵ(wt)⟩L2(Ω)2×2

sym
.

Denoting w = um − ū and wt = umt − ūt, we can rewrite (2.124) as follows

− ⟨σ, ϵ(wt)⟩L2(Ω)2×2
sym

+ ⟨Ael(ϵ(ū)) +Avis(ϵ(ūt)), ϵ(wt)⟩L2(Ω)2×2
sym

= −⟨Ael(ϵ(w)) +Avis(ϵ(wt)), ϵ(wt)⟩L2(Ω)2×2
sym

= −
(︃
µel

d

dt

⃦⃦
(ϵ(w))

⃦⃦2
L2(Ω)2×2

sym
+
λel
2

d

dt

⃦⃦
tr((ϵ(w)))

⃦⃦2
L2(Ω)2×2

sym
+ ⟨Avis(ϵ(wt)), ϵ(wt)⟩L2(Ω)2×2

sym

)︃
≥ −⟨Avis(ϵ(wt)), ϵ(wt)⟩L2(Ω)2×2

sym
= −

(︃∫︂ T

0

∫︂
Ω

2µvis

⃦⃦
(ϵ(wt))

⃦⃦2
L2(Ω)2×2

sym
+ λvis|tr(ϵ(wt))

2| dx dt

)︃
≥ −2µvisK

⃦⃦
wt

⃦⃦2
H1

0 (Ω)2
, (2.125)

where K is the constant of Korn. Since ρ, µvis ≥ A > 0, then from (2.123) and (2.125) we can
conclude that

d

dt
∥umt − ūt∥

2
L2(Ω)2

= 0.

From the previous equation and because um and ū satisfy the same initial condition, we have
um = ū.
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2.4.4 Mixed formulation 2

Now we aim to find (u, σ) solution of system (2.120) with the addition of initial conditions for
u. We introduce the mixed problem:

Problem 2.4.7 (Mixed formulation in L2(0, T ;H(div,Ω)sym) of linear viscoelasticity). Find the
couple (u, σ) such that u ∈ H1(0, T ;H1

0 (Ω)
2), utt ∈ L2(0, T ;L2(Ω)2), σ ∈ L2(0, T ;H(div,Ω)sym)

and satisfies:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁ T

0

∫︁
Ω
ρutty − div(σ)y − fy dx dt = 0 ∀y ∈ Λ∫︁ T

0

∫︁
Ω
σD : φD − 2µelϵ(u)

D
: φD − 2µvisϵ(ut)

D
: φD dx dt = 0 ∀φ ∈W∫︁ T

0

∫︁
Ω
tr(σ) tr(φ)− (2µel + 2λel) tr(ϵ(u)) tr(φ)

− (2µvis + 2λvis) tr(ϵ(ut)) tr(φ) dx dt = 0 ∀φ ∈W

u(·, 0) = u0 in Ω

ut(·, 0) = u1 in Ω,

(2.126)

where W = L2(0, T ;H(div,Ω)sym) and Λ = L2(0, T ;L2(Ω)2).

Proposition 2.4.8. The couple (u, σ) is solution of Problem 2.4.6 if and only if is solution of
Problem 2.4.7.

Proof. (⇒)

Let (u, σ) be solution of Problem 2.4.6, so u = ū and σ is define in (2.122). We have already
noticed, at the end of Section 2.4.2, that σ ∈ L2(0, T ;H(div,Ω)sym), so if (u, σ) satisfies (2.126),
then it is solution of Problem 2.4.7. Since ρūtt, f ,div(σ) ∈ L2(0, T ; (L2(Ω)2)) and u satisfies the
first equation of (2.121), then, because L2(0, T ;H1

0 (Ω)
2) is dense in Λ, for every y in Λ there

exists {y
n
}n∈N such that yn −→ y in Λ as n→ ∞, then

0 = lim
n→∞

∫︂ T

0

∫︂
Ω

ρuttyn + σ : ϵ(yn)− fy dx dt

= lim
n→∞

∫︂ T

0

∫︂
Ω

ρuttyn − div(σ)y
n
− fy dx dt

= lim
n→∞

(ρutt − div(σ)− f, y
n
)Λ

= (ρutt − div(σ)− f, y)Λ

=

∫︂ T

0

∫︂
Ω

ρutty − div(σ)y − fy dx dt.

Thus the first equation of (2.126) is satisfy.
Second and third equations of (2.126) are satisfy because W ⊂ Y and the initial conditions,
because are the same, are clearly satisfy.
(⇐)

Let (u, σ) be solution of Problem 2.4.7, we only need to verify that (u, σ) satisfies (2.121).
The first equation of (2.121) is satisfy because H1

0 (Ω)
2 ⊂ Λ. Since (u, σ) satisfies the second

and third equations of (2.126), u ∈ H1(0, T ;H1
0 (Ω)

2) and σ ∈ L2(0, T ;H(div,Ω)sym) then,
because H(div,Ω)sym is a dense subset of L2(Ω)2×2

sym, for every φ in L2(0, T ;L2(Ω)2×2
sym) there
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exists {φ
n
}n∈N in L2(0, T ;H(div,Ω)sym), such that φ

n
−→ φ in L2(0, T ;L2(Ω)2×2

sym) as n → ∞,
then

0 = lim
n→∞

∫︂ T

0

∫︂
Ω

σD : φ
n

D − 2µelϵ(u)
D

: φ
n

D − 2µvisϵ(ut)
D

: φ
n

D dx dt

= lim
n→∞

(σD − 2µelϵ(u)
D −−2µvisϵ(ut)

D
, φ

n

D)L2(0,T ;L2(Ω)2×2
sym)

= lim
n→∞

⟨σD − 2µelϵ(u)
D −−2µvisϵ(ut)

D
, φ

n

D⟩
L2(0,T ;L2(Ω)2×2

sym)

= ⟨σD − 2µelϵ(u)
D −−2µvisϵ(ut)

D
, φD⟩

L2(0,T ;L2(Ω)2×2
sym)

=

∫︂ T

0

∫︂
Ω

σD : φD − 2µelϵ(u)
D

: φD − 2µvisϵ(ut)
D

: φD dx dt,

and

0 = lim
n→∞

∫︂ T

0

∫︂
Ω

tr(σ) tr(φ
n
)− (2µel + 2λel) tr(ϵ(ū)) tr(φ

n
)

− (2µvis + 2λvis) tr(ϵ(ut)) tr(φ
n
) dx dt

= lim
n→∞

(tr(σ)− (2µel + 2λel) tr(ϵ(ū))− (2µvis + 2λvis) tr(ϵ(ut)), tr(φ
n
))L2(0,T ;L2(Ω)2×2

sym)

= lim
n→∞

⟨tr(σ)− (2µel + 2λel) tr(ϵ(ū))− (2µvis + 2λvis) tr(ϵ(ut)), tr(φ
n
)⟩

L2(0,T ;L2(Ω)2×2
sym)

= ⟨tr(σ)− (2µel + 2λel) tr(ϵ(ū))− (2µvis + 2λvis) tr(ϵ(ut)), tr(φ)⟩
L2(0,T ;L2(Ω)2×2

sym)

=

∫︂ T

0

∫︂
Ω

tr(σ) tr(φ)− (2µel + 2λel) tr(ϵ(ū)) tr(φ)− (2µvis + 2λvis) tr(ϵ(ut)) tr(φ) dx dt

Thus the second and third equations of (2.121) are satisfy. Since the initial conditions are the
same, they are fulfil.

Finally we can state the main result.

Theorem 2.12. The function u is the unique solution of Problem 2.4.1 if and only if (u, σ) is
the unique solution of the Problem 2.4.7 where σ is define (2.122) .

Proof. A direct consequence of Proposition 2.4.8 and Theorem 2.11.





Chapter 3

Mixed FEM discretization

The aim of this chapter is to construct a numerical method that solves equation (2.97), since
we have seen that (2.97) is equivalent to (2.126), we want to use the second equation and its
advantages. We will try different approaches to solve it: in the first two, even if σ is the quantity
of interest that we want to find, it is convenient, due to the size of the matrices we have to work
with, to implement a method with u and ut as explicit variables and then, in a second moment
derive σ as a function of these two. We will also introduce another method in which σ is an
explicit variable as u and ut .

3.1 Finite element spaces

Since the aim of this section is to introduce the finite-dimensional subspaces that we will use to
approximate the solution of (2.126), we will start from presenting a partition of Ω upon which we
will build our discretization. Then we will choose appropriate finite-dimensional subspaces, the
discretization, since we want that our method is conform, i.e. these subspaces must be contained
in the infinite dimensional spaces (H1

0 (Ω)
2 and H(div,Ω)sym) we are trying to approximate.

As domain discretization we use the triangulation, i.e. we divide the domain into triangles T
and we write Th = ∪{T}, where Th is the triangulation of Ω and T is a single triangle, also called
element. As the step h increase the triangulation Th becomes uniformly thinner in the domain.
Now that we have fixed the triangulation we are ready to do the same for the finite-dimensional
subspaces. Since u and ut live in H1

0 (Ω)
2 we approximate them with the classical P1-Galerkin,

that, for sake of completeness, we introduce. For the moments let us focus on the scalar case, if
we define Pk(T ), the set of polynomial of degree k in T , then we can introduce the following

Sh = { v ∈ C0(Ω) | v|T ∈ P1(T ) ∀T ∈ Th },

i.e. the piecewise-continuous function that restricted to every triangle are P1(T ). Since we have
to approximate H1

0 (Ω), we need to find a subspace Jh of Sh such that Jh ⊂ H1
0 (Ω). In order

to do that we define {Φi}Ni=1 such that Jh = span{Φi}. The functions {Φi} that we choose are
as many as the internal nodes of the triangulation Th and every function values 1 on an internal
node xi, each function on a different node, and 0 on the others. Since each element T contains

81
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or not the point xi and Φi|T is a P1(T ):

Φi|T = a0 + a1x+ a2y.

From the conditions we have decided we can deduce that Φi is 0 in every element that does not
contain the point xi. Since the three conditions of the value of the polynomial at the vertices of
the triangle determinate uniquely the value of Φi in such element and because they all are zero
we have that Φi|T = 0. If the element T contains the point xi, then clearly Φi|T ̸= 0, since Φi|T
is a P1(T ) and Φi(xi) = 1. So we can notice that each Φi does have support only in the elements
that are near xi. This choice for {Φi}Ni=1 has many advantages, one is that it usually leads to
sparse matrices since supp{Φi} ∩ supp{Φj} ̸= ∅ only when xi and xj , internal nodes in which
the two functions value 1, have an edge that connects them. Another advantage is that when we
want to evaluate a function v of Jh, i.e.

v(x) =

n∑︂
i=1

viΦi(x),

in a internal point. Indeed, we have

v(xj) =

n∑︂
i=1

viΦi(xj) = vjΦj(xj) = vj .

Since our aim is to create a basis for Vh we choose the basis spanned by {(Φi, 0), (0,Φi)}Ni=1,
where the functions Φi are the one that we have defined above.
Now we have to define the finite-dimensional subspace that approximate H(div,Ω)sym con-
formely. In order to do that we decide to introduce Qh, the space of discontinuous Galerkin
symmetric tensor that is often used as discretization for L2(Ω)2×2

sym, and then impose that be-
longs to H(div,Ω)sym through the intersection, i.e. Qh ∩H(div,Ω)sym. As before, in order to
introduce this space, it is convenient to study first the simpler formulation of the scalar case. We
focus on the construction of Ah, the scalar discontinuous Galerkin of degree 2 (DG2-Galerkin) :

A2 = {v | v|T ∈ P2(T ) ∀T ∈ Th},

i.e. the function that restricted to every triangle are P2(T ). Since a polynomial of degree 2 in
R2 has 6 degrees of freedom, we need to fix 6 conditions to define it uniquely: 3 conditions are
the values of the vertices, that are the same of the P1, and the other 3 are those at the middle
points of the edges. So the basis of A2 is the set of functions τi that have value only on one
element and, in that element, on one vertex they value 1 and on the others 0 and 0 on all the
middle points of the edges, and the ones that, in the same element, are 0 on all the vertices and
1 on one middle point of an edge and 0 on the others. Since on every element we there are 6

basis function, then, we can deduce that the dimension of A2 is 6 times the number of elements.
Since we want to introduce a basis for Qh, the space of discontinuous Galerkin symmetric tensors,
then we choose the one spanned by{︃[︃

τi 0

0 0

]︃
,

[︃
0 τi
τi 0

]︃
,

[︃
0 0

0 τi

]︃}︃
,
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where the τi are defined above. So for the dimension of Qh is 18 times the number of elements.
Now we need to check that the choice of P2 is the right one, because, since we have to take
the intersection of Qh with H(div,Ω)sym, we need to check that Qh ∩ H(div,Ω)sym ̸= ⟨0⟩. In
order to do that we count the degrees of freedom that such condition needs and verify that the
dim(Qh) is strictly greater of such number. Let σ

i
∈ Qh ∩ H(div,Ω)sym, then if we take two

elements in Th , T1 and T2, with an edge in common, L12, we need that σ must satisfy

σ
1
· n1 = σ

2
· n2 in L12, (3.1)

where σ
1

and σ
2

represent σ restricted to T1 and T2, and n1 and n2 are the two normal compo-
nents relative to the elements T1 and T2 on the edge L12. Since σ · ni is a polynomial of degree
2 we have that (3.1) is equivalent to impose that σ

1
(ξk) · n1 = σ

2
(ξk) · n2 are equal in 3 points

(degree of the polynomial + 1 ), so we have that every edge require 6 degrees of freedom. Since
we require such condition only for the internal edges we have that the number of conditions
needed is 6 times the number of internal edges. So, the dimension of Qh ∩H(div,Ω)sym is, if we
take the classical triangular mesh, (n− 1)(3n− 1), where n is the number of points in an edge.
Since n > 1, then working with the DG2-Galerkin symmetric tensors represent good choice for
us.

3.2 PDE formulation

Even if σ is the quantity of interest and trying to introduce a numerical mixed formulation in
which it is an unknown, and not calculate it separately as a function of u and ut, is the main
purpose of this thesis, we have that if we want to implement a method with such property the
dimension of the matrices we obtain is too large. This is due to the fact that the dimension of
σ
h

is 9 times the number of elements, instead of the dimension of uh that is "only" 2 times the
number of internal nodes. So, we need to rewrite (2.126), in a form such that the variables are
u and v are the unknown, because we want to write it as a first order ODE, and, at the same
time, we need to taking in account that σ is in H(div,Ω)sym. So we will substitute σ in the first
equation and introduce the relation between ut and v using a positive define operator.
Since the solution of (2.126) and (2.97) coincide and the solution of (2.97) is strong in time we
have that also the solution of (2.126) is strong in time. This means that for every t in [0, T ] the
following holds.{︄∫︁

Ω
ρutt(·, t)y − div(σ(·, t))y − f(·, t)y dx = 0 ∀y ∈ L2(Ω)∫︁

Ω
σ(·, t) : φ− (Ael(ϵ(uh(·, t))) +Avis(ϵ(vh(·, t)))) : φ = 0 ∀φ ∈ H(div,Ω)sym,

where Ael(τ) = 2µelτ + λel tr(τ)id and Avis(τ) = 2µvisτ + λvis tr(τ)id. So, if we rewrite the
above equations using the discretizations we have introduced before, we obtain:{︄∫︁

Ω
ρvhtyh − div(σh)yh − fhyh dx = 0 ∀yh ∈ Vh∫︁

Ω
σ : τh − (Ael(ϵ(uh)) +Avis(ϵ(vh))) : τh = 0 ∀τh ∈ Qh ∩H(div,Ω)sym.
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Since σh is in Qh ∩H(div,Ω)sym and the elements Vh are continuous in Ω and P1(T ) restricted
to every T , we can integrate by parts

∫︁
Ω
div(σ(·, t))y dx in the first equation and we obtain{︄∫︁

Ω
ρvhtyh + σh : ϵ(yh)− fhyh dx = 0 ∀yh ∈ Vh∫︁

Ω
σ : τh − (Ael(ϵ(uh)) +Avis(ϵ(vh))) : τh = 0 ∀τh ∈ Qh ∩H(div,Ω)sym.

(3.2)

From now on, in order to have simpler formulas to work with, we take fh = 0.

3.3 Construction of the matrices

In this section we will introduce the main matrices we will use later to attack (3.2) with different
approach. Since we have several summations we can take the following assumption.

Remark 3.3.1. From now on we use the Einstein convention and we write

αiβi :=

N∑︂
i=1

αiβi.

We start from fixing some notation, from now on we will denote with p the elements of Qh,
τ an orthonormal basis of Qh ∩H(div,Ω)sym, respect to the usual scalar product of L2(Ω)2×2

sym,
and φ the elements of Vh. Since uh and vh are elements of Vh, we can rewrite them using the
basis spanned by the {φi}Ni=1 and we obtain

uh =

N∑︂
i=1

uhiφi

vh =

N∑︂
i=1

vhiφi
.

Now we are ready to introduce the main matrices through which we will write equation (3.2):

Aij =

∫︂
Ω

Avisϵ(φj) : p
i
dx

Bij =

∫︂
Ω

Aelϵ(φj) : p
i
dx

Pij =

∫︂
Ω

ϵ(φj) : p
i
dx

Rij =

∫︂
Ω

ρφi · φj dx.

The last matrix that we need is the one that permits to write the {τi}Ri=1 as a combination of
{pi}Mi=1, i.e.

τ
i
=

M∑︂
j=1

αijp
j
dx = Nijp

j
.
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Since σ
h

is in Qh ∩H(div,Ω)sym, according to the second equation of (3.2) we have

σ
h
= (Ael(ϵ(uh)) +Avis(ϵ(vh))) in Qh ∩H(div,Ω)sym.

Now we rewrite the previous equation through the orthonormal basis of Qh ∩ H(div,Ω)sym
spanned by {τi}Ri=1 and we obtain

σ
h
= ⟨σ

h
, τi⟩ τi = ⟨Ael(ϵ(uh)), τi⟩ τi + ⟨Avis(ϵ(vh)), τi⟩ τi.

Since we can represent τi as a composition of pi through the matrix N we can rewrite the previous
equation as follows.

σ
h
= ⟨Ael(ϵ(uh)), τi⟩ τi + ⟨Avisϵ(vh), τi⟩ τi

= ⟨Ael(ϵ(uh)), pl⟩αliτi + ⟨Avis(ϵ(vh)), pl⟩αliτi. (3.3)

Substituting σ
h
, define in (3.3), in the second component of the first equation of (3.2) we obtain

∫︂
Ω

σ
h
: ϵ(yh) dx =

∫︂
Ω

⟨Ael(ϵ(uh)), pl⟩αliτi : ϵ(yh) dx

+

∫︂
Ω

⟨Avis(ϵ(vh)), pl⟩αliτi : ϵ(yh) dx. (3.4)

Since the {τi}Ri=1 are an orthonormal basis of Qh ∩H(div,Ω)sym respects to the scalar product
of L2(Ω)2×2

sym , then we can complete it to a an orthonormal one of Qh with {τ̃ i}M−R
i=1 , and we

obtain∫︂
Ω

τi : ϵ(yh) dx =

∫︂
Ω

τi : ⟨ϵ(yh), τj⟩ τj dx =

∫︂
Ω

τi : ⟨ϵ(yh), pp⟩αpjτj dx

+

∫︂
Ω

τi : ⟨ϵ(yh), pp⟩αpj τ̃ j dx = ⟨ϵ(yh), pp⟩αpj , (3.5)

where we have used that
∫︁
Ω
τi : τ̃ j dx = 0 for all j ∈ {1, 2, . . . ,M −R}.

According to (3.4) and (3.5) we obtain∫︂
Ω

⟨Ael(ϵ(uh)), τi⟩ τi : ϵ(yh) dx = ⟨Ael(ϵ(uh)), pl⟩αljαpj ⟨ϵ(yh), pp⟩∫︂
Ω

⟨Avis(ϵ(vh)), τi⟩ τi : ϵ(yh) dx = ⟨Avis(ϵ(vh)), pl⟩αljαpj ⟨ϵ(yh), pp⟩ .

Using the matrix R to define the left side of the first equation of (3.2), we can rewrite it as
follows.

Rvht = −P ′N ′NAvh − P ′N ′NBuh.

The last thing we need to do is to incorporate in the system that we want to introduce the
relation between vh and uht, in order to do that we impose

BNN ′Pvh = BNN ′Puth. (3.6)
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We can notice that BNN ′P is not a symmetric matrix since we are projecting into Qh ∩
H(div,Ω)sym both B and P . This in not a problem for us since the important relation that
we need is that if BNN ′Puh = 0, then uh = 0, so if (3.6) is satisfies then vh = uth. We have
not proved this condition, but experimentally we have seen that the eigenvalues of BNN ′P are
all strictly positive, so it is a positive definite form and, as a consequence, the above condition
is verify.
Now we are ready to introduce the system we are going to solve:{︄

Rvht = −P ′N ′NAvh − P ′N ′NBuh

BNN ′Puth = BNN ′Pvh.

If we define A = P ′N ′NA and B = P ′N ′NB, we can rewrite it as follows.[︃
R 0

0 B′

]︃ [︃
vh
uh

]︃
t

=

[︃
−A −B
B′ 0

]︃ [︃
vh
uh

]︃
. (3.7)

Since a method to solve this problem has not already been defined, we have faced it with different
approaches and seen the pros and cons of each one.

3.4 Time integration

In this section we will describe three different approaches we have used to resolve (2.126). In the
first two we implement (3.7), firstly trying to written the solution as an exponential one, and
secondly using the implicit Euler method, which is more stable. The final approach we propose
is to implement a system in which σ is also an unknown.

3.4.1 Semi-discrete approach

We have seen in Corollary 2.4.1, in Chapter 2, that if we require div(Avis(ϵ(v0) +Ael(ϵ(u0)) ∈
(L2(Ω)2)∗, then we have that the solution gains enough regularity to be a classical one. So, we
can represent it as an exponential solution. In order to do that it is convenient to diagonalize
the matrix [︃

R 0

0 B′

]︃−1 [︃−A −B
B′ 0

]︃
.

According to [3, Proposition 2.12] we must have that every eigenvalue λ of the previous matrix,
with non zero imaginary component, satisfies Re(λ) ≤ − 1

2λmax(A), where Re(λ) is the real part
of λ. Since A is positive define, then Re(λ) must be strictly less then zero. Instead, also according
to the same Proposition, for the eigenvalues with null imaginary component, we should have that
Re(λ) ≤ 0. So all the eigenvalues of the previous matrix must have Re(λ) strictly less then 0.
However, from a numerical point of view, we have found that the real part of some complex
eigenvalues with small modulus change sign and becomes positive (see 3.1). This is caused by
the fact that the coefficients µel,µvis, λel, and λvis are not heterogeneous since they jump from
two different regions of the domain.
Since we have found that for severely ill conditioned problem, as ours, this approach is not good



3.4. TIME INTEGRATION 87

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

10 -4

-300

-200

-100

0

100

200

300

Figure 3.1: Eigenvalues when the problem is severely ill conditioned

for the above reason, we have tried to attack it using the implicit Euler method which is more
stable for ill problems.

3.4.2 Implicit Euler

In this subsection we introduce two different formulations using the implicit Euler method. In
the first one we try the implementation of (3.7) and in the second one we try to implement a
formulation in which also σ

h
is a variable.

The advantage of solving system (3.7), instead of introducing σ
h
, is that we have to work with

matrices with less possible dimension since we do not have σ
h

as a variable. We remark that we
have used the property that σ

h
is in H(div,Ω)sym, since the matrix N represents the projection

of the elements of Qh into Qh ∩H(div,Ω)sym.
We start form inverting the matrix on the left side in (3.7), this is possible since it is positive
define, and we obtain [︃

vh
uh

]︃
t

=

[︃
R 0

0 B′

]︃−1 [︃−A −B
B′ 0

]︃ [︃
vh
uh

]︃
.

If ∆t is the time step we choose for the integration we have that the implicit Euler formulation
of the previous equation is[︃

vh
uh

]︃
k+1

=

[︃
vh
uh

]︃
k

+∆t

[︃
R 0

0 B′

]︃−1 [︃−A −B
B′ 0

]︃ [︃
vh
uh

]︃
k+1

.

Now we multiply both side by
[︃
R 0

0 B′

]︃
and we obtain

(︃[︃
R 0

0 B′

]︃
−∆t

[︃
−A −B
B′ 0

]︃)︃[︃
vh
uh

]︃
k+1

=

[︃
R 0

0 B′

]︃ [︃
vh
uh

]︃
k
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In order to solve the previous system we have two choices that depends on the number time
steps we have to take. If we have to take a number of steps greater than 2 times the number of

internal nodes, that are the columns of
[︃
R 0

0 B′

]︃
, then it is convenient to pre-calculate

M1 =

(︃[︃
R 0

0 B′

]︃
−∆t

[︃
−A −B
B′ 0

]︃)︃−1 [︃
R 0

0 B′

]︃
,

and then solve at every time step
[︃
vh
uh

]︃
k+1

= M1

[︃
vh
uh

]︃
k

. If the steps we take are less then

2 times the number of internal nodes, then it is convenient to calculate at every step
[︃
b1
b2

]︃
k

=[︃
R 0

0 B′

]︃ [︃
vh
uh

]︃
k

and pre-calculate M2 =

(︃[︃
R 0

0 B′

]︃
−∆t

[︃
−A −B
B′ 0

]︃)︃−1

, so, in this second case,

the system becomes
[︃
vh
uh

]︃
k+1

= M2

[︃
b1
b2

]︃
k

.

The problem related to this approach is that in both these cases the matrices M1 and M2 are
not sparse, so we have tried another method.

Now we introduce the second Implicit Euler Method where σ
h

enter in the equation as a
variable, so starting from (3.2) and (3.3), we obtain⎧⎪⎪⎨⎪⎪⎩

ρvth = div(σh) in Vh

Ael(ϵ(uth)) = Ael(ϵ(vh)) in Vh

σ
h
= Ael(ϵ(uh)) +Avis(ϵ(vh)) in Qh ∩H(div,Ω)sym

(3.8)

Since the elements of Vh are P1 on each element and σh is in Qh∩H(div,Ω)sym, then we rewrite
the first equation as follows.∫︂

Ω

ρvthφj
dx =

∫︂
Ω

div(σ
h
)φ

j
dx

= −
∫︂
Ω

σ
h
: ϵ(φ

j
) dx

= −
∫︂
Ω

pl
h
τ
k
αlk : ϵ(φ

j
) dx = σk

h
αlk

(︃
−
∫︂
Ω

p
l
: ϵ(φ

j
) dx

)︃
So the first equation can be written as follows:

Rvth = −P ′N ′σ
h
.

In order to write the second equation it is convenient to introduce the following symmetric
matrix:

Eij =

∫︂
Ω

Ael(ϵ(φi)) : ϵ(φj) dx.
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So, the second equation can be written, using the matrix E, as follows:

Euth = Evh.

Remark 3.4.1. We could have written the second equation introducing an orthonormal basis of
Qh and a matrix L that allow us to write this basis as a combination of {p}Mi=1. Then, using the
matrices B and P we should have obtained

P ′L′LButh = P ′L′LBvh.

Such approach is not convenient since calculating the product P ′L′LB represents a numerical
cost that can be avoided by the introduction of E.

Now we rewrite the third equation of (3.8):∫︂
Ω

σh : τ
k
dx =

∫︂
Ω

Ael(ϵ(uh)) +Avis(ϵ(vh)) : τk dx

=

∫︂
Ω

Ael(ϵ(uh)) : τk +Avis(ϵ(vh)) : τk dx

=

(︃∫︂
Ω

Ael(ϵ(uh)) : p
l
dx

)︃
αlk +

(︃∫︂
Ω

Avis(ϵ(vh)) : p
s
dx

)︃
αlk.

So the third equation can be written as follows:

N ′Nσh = N ′Buh +N ′Avh.

Now we can rewrite (3.8):⎡⎣R 0 0

0 P ′L′LB 0

0 0 0

⎤⎦⎡⎣vhuh
σh

⎤⎦
t

=

⎡⎣ 0 0 −P ′N ′

P ′L′LB 0 0

−N ′A −N ′B N ′N

⎤⎦⎡⎣vhuh
σh

⎤⎦ .
According to the implicit Euler method we obtain⎡⎣R 0 0

0 P ′L′LB 0

0 0 0

⎤⎦⎡⎣vhuh
σh

⎤⎦
k+1

=

⎡⎣R 0 0

0 P ′L′LB 0

0 0 0

⎤⎦⎡⎣vhuh
σh

⎤⎦
k

+∆t

⎡⎣ 0 0 −P ′N ′

P ′L′LB 0 0

−N ′A −N ′B N ′N

⎤⎦⎡⎣vhuh
σh

⎤⎦
k+1

,

this is equivalent to⎡⎣ R 0 ∆tP ′N ′

−∆tP ′L′LB P ′L′LB 0

N ′A N ′B −N ′N

⎤⎦⎡⎣vhuh
σh

⎤⎦
k+1

=

⎡⎣R 0 0

0 P ′L′LB 0

0 0 0

⎤⎦⎡⎣vhuh
σh

⎤⎦
k

,

where we have multiplicate for ∆t the third equation.
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3.5 A simple 2D test case

In this last section we introduce the setting of the example that we have implemented using the
last approach we have introduced before: Implicit Euler where σ is an unknown. As domain
we have chosen Ω = [−1, 1] × [0, 1], where Ω1 = [−1, 0] × [0, 1] represents the first material and
Ω2 =]0, 1]× [0, 1] the second one. The parameters are as follows:

µel = 10−2, 2 ∗ 10−2 µvis = 10−5, 10−4

λel = 5 ∗ 10−2, 4 ∗ 10−2 λvis = 2 ∗ 10−4, 10−3,

ρ = 1, 2

where the first number of each parameter is for Ω1 and the second one for Ω2. As time step
we have taken ∆t = 0.25 For simplicity as forcing function we take f = 0, as we have done in
the previous section. In order to have σ

0
in H(div,Ω)sym we need that the initial data satisfies

Corollary 2.4.1, so we take u0 and v0 compactly supported in Ω1:

u0 = {
(︃
sin(

π

2
+

π

0.6
(y − 1

2
)) sin(2π

x

0.4
)

)︃
χ[−1,−0.6]×[0.2,0.8], 0}

v0 = {0, 0}.

As mesh we have used the usual uniform triangulation, see Figure 3.2.

We have reported different frames of the evolution of the viscoelastic wave subjected to the
conditions described above. Indeed, we can notice that at the initial time, see Figure 3.3, the
deformation, due to the initial conditions, acts only on Ω1. From Figure 3.4 can be noticed,
when looking at the displacement in [−0.2, 0] × [0, 1] , the "rebound" of the wave when it hits
the second material, i.e. Ω2. Also from Figure 3.4, and even more from Figure 3.5, is visible the
formation of vortex due to the Dirichlet boundary conditions. For completeness we have also
put Figure 3.6 and Figure 3.7 that reported the evolution of the wave at t = 15 and t = 20.
From all the figures mentioned above it can be noticed how the magnitude of the velocity and
the displacement decay over time.
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Figure 3.2: Mesh with n = 5
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Figure 3.3: Evolution of the wave at t = 0 in the setting described in Section 3.5
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Figure 3.4: Evolution of the wave at time t = 5 in the setting described in Section 3.5
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Figure 3.5: Evolution of the wave at time t = 10 in the setting described in Section 3.5
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Figure 3.6: Evolution of the wave at time t = 15 in the setting described in Section 3.5
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Figure 3.7: Evolution of the wave at time t = 20 in the setting described in Section 3.5





Appendix A

Tools

In this chapter we want to fix some notations that we need later or recall results that we are not
going to prove here but are needed in some proofs.

A.1 Convex Analysis

All the results that we are going to take in this section came from [8] where a full coverage of
the subject can be found.

Definition A.1.1 (Convex function). Let A be a convex subspace of V , and F a mapping of A
into R. F is said to be convex if, for every u and v in A, we have:

F (λu+ (1− λ)v) ≤ λF (v) + (1− λ)F (v) ∀λ ∈ [0, 1] (A.1)

whenever the right-hand side is defined.

Definition A.1.2 (Strictly convex function). Let A be a convex subspace of V , and F a mapping
of A into R. F is said to be strictly convex if it is convex and the strict inequality holds in A.1,
∀u, v ∈ A, u ̸= v and ∀λ ∈]0, 1[

The next definition is not in the [8] but can be found in every book of analysis.

Definition A.1.3 (Strong convex function). Let A be a convex subspace of V where V is a
normed space, and F a mapping of A into R. F is said to be µ-convex if for every u and v in
A, we have:

F (λu+ (1− λ)v) ≤ λF (v) + (1− λ)F (v)− 1

2
λ(1− λ)µ∥u− v∥2V ∀λ ∈ [0, 1] (A.2)

whenever the right-hand side is defined.

Definition A.1.4 (Lower semi-continuous function). Let V be a real l.c.s. (locally convex space).
A function F : V −→ R is said to be l.s.c. (lower semi-continuous) on V if

∀u ∈ V, lim inf
v→u

F (v) ≥ F (u).

95
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Definition A.1.5 (lower semi-contineous regularization). Let V be a real l.c.s. (locally convex
space) and F : V −→ R a function, we define F : V −→ R the largest l.s.c. minorant of F and
we call it the l.s.c. regularization of F and

∀u ∈ V, F (u) = lim inf
v→u

F (v).

Proposition A.1.1. If F : V −→ R is a lower semi-continuous convex function and assumes
the value −∞, it can not take any finite value.

Proposition A.1.2. Let F : V −→ R be a convex function. The following statements are
equivalent to each other:
(i) there exists a non-empty open set θ on which F is not everywhere equal to −∞ and is bounded
above by a constant a < +∞
(ii) F is a proper function, and it is continuous over the interior of its effective domain, which
is non-empty.

Definition A.1.6 (Γ(V ) and Γ0(V )). Let V be a locacly convex space, Γ(V ) is the set of lower
semi-contnuous function from V into R, and if F takes the value −∞ then F is identically equal
to −∞.
We define Γ0(V ) as Γ(V ) with out the function F that are equal to +∞ and −∞.

Definition A.1.7 (Γ-regularization). Let V be a real l.c.s. (locally convex space) and F : V −→
R a function, we define G the largest minorant of F in Γ(V ) and we call it the Γ-regularizationof
F .

Proposition A.1.3. Let F : V −→ R, and G be its Γ-regularization, then
(i) G ≤ F ≤ F ;
(ii) if F is convex and admits a continuous affine minorant, F = G.

Definition A.1.8 (Legendre Transform). Let V and V ∗ be two vector spaces placed in duality,
let F : V −→ R be a function. We define the Legendre transform of F from V ∗ to R as

F ∗(u∗) = sup
v∈V

[︁
⟨v∗, v⟩ − F (v)

]︁
.

and F ∗ ∈ Γ(V ∗).

Proposition A.1.4. Let F be a function of V into R. Then its bipolar F ∗∗ is none other its
Γ-regularization. In particular, if F ∈ Γ(V ), then F ∗∗ = F .

Definition A.1.9 (subdifferentiability). A function F of V into R is said to be subdifferentiable
at the point u ∈ V if it has a continuous affine minorant which is exact at u. The slope u∗ ∈ V ∗

of such a minorant is called a subgradient of F at u, and the set of subgradients at u is called
the subdifferential at u and is denoted ∂F (u).

A much more easier characterization is

u∗ ∈ ∂F (u) ⇐⇒ F (u) is finite and F ∗(u∗) = ⟨u∗, u⟩ − F (u).

We have also the following results
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Proposition A.1.5. Let F be a function from V to R, then
(i) if ∂F (u) ̸= ∅, then F (u) = F ∗∗(u),
(ii) if F (u) = F ∗∗(u), then ∂F (u) = ∂F ∗∗(u).

Proposition A.1.6. Let F be a convex function of V into R, finite and continuous at the point
u ∈ V . Then ∂F (u) ̸= ∅

Proposition A.1.7. Let F be a convex function of V into R. If F is Gateaux-differentiable at
u ∈ V , it is subdifferentiable at u and ∂F (u) = {F ′(u)}.

A.2 Functional analysis

The results in this section came from [5] and [16] where, as before, a full coverage of the subject
can be found.

Definition A.2.1 (Banach space). (V, ∥·∥V ) is a Banach space if it is a complete normed space
where V is a vector space over a field K, for us will be R, and ∥·∥V : V −→ R is a norm on V .

Definition A.2.2 (Hilbert space). V is a Hilbert space if (V, ∥·∥) is a Banach space where the
norm ∥·∥ is the one induced by the scalar product (·, ·)V : V × V −→ R.

Proposition A.2.1. If V and X are two Banach spaces (Hilbert spaces), then V ×X is still a
Banach space (Hilbert space) with the norm ∥(v, x)∥V×X = ∥v∥V + ∥x∥X for all v ∈ V and for
all x ∈ X (with the scalar product ((v, x), (w, y))V×X = (v, w)V + (x, y)X for all v, w ∈ V and
for all x, y ∈ X).

Here we recall few spaces that we are using later, from now on we consider Ω ⊆ Rn.

1) L2(Ω) is a Hilbert space with

(f, g) =

∫︂
Ω

fg dx.

2) H1(Ω) is a Hilbert space with

(f, g) =

∫︂
Ω

f g dx+

∫︂
Ω

Df ·Dg dx,

where Df and Dg denote the weak derivatives of f and g.
3) H1

0 (Ω) = C∞
c (Ω)

∥·∥H1 ,which is the closure of test function C∞
c (Ω) respect to the norm ∥·∥H1

in H1(Ω), is a Hilbert space with

(f, g) =

∫︂
Ω

Df ·Dg dx.

4) H(div,Ω) is a Hilbert space with

(f, g) =

∫︂
Ω

f · g dx+

∫︂
Ω

div(f) div(g) dx.

The elements of H(div,Ω) are the elements of L2(Ω)n with div(f) ∈ L2(Ω).
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The space H(div,Ω) has to be seen as an intermediate space between L2(Ω)n and H1(Ω)n

where we are not requiring that all the weak derivative exists and Dαfj ∈ L2(Ω) for all α, j ∈
{1, . . . , n} but only that div(f) exists and is in L2(Ω). In the exact same way as it is done for
Sobolev spaces we require that div(f), in order to exists, must work in a good way with the
elements of C∞

c (Ω), which means∫︂
Ω

div(f) φ dx = −
∫︂
Ω

f · ∇φ dx.

So, for example, for a fixed function f ∈ L2(Ω)n if there exists a function g ∈ L2(Ω) such that∫︂
Ω

g φ dx = −
∫︂
Ω

f · ∇φ dx ∀φ ∈ C∞
c (Ω),

then we can say that f ∈ H(div,Ω) and div(f) = g.
We recall that the extension of the div operator to the matrices of function is equal to apply the
standard divergence to the lines of the matrix getting a vector of the same size of the number
lines of the matrix, so if σ is a matrix with n lines and m columns, then

div(σ)i =

m∑︂
j=1

∂σij
∂xj

.

we will denote div(σ) = {div(σ)1, div(σ)2, . . . div(σ)n}.
5) H(div,Ω), where σ ∈ H(div,Ω) if σij ∈ L2(Ω) for all i, j ∈ {1, . . . , n} and div(σ) ∈ L2(Ω)n,
is an Hilbert space with

(σ, τ) =

∫︂
Ω

σ : τ dx+

∫︂
Ω

div(σ) · div(τ) dx.

As done for the space H(div,Ω), we require that for div(σ), for σ ∈ H(div,Ω), in order to exist
it must satisfy ∫︂

Ω

div(σ) · φ dx = −
∫︂
Ω

σ : ∇φ dx ∀φ ∈ C∞
c (Ω)n.

where with ∇φ we denote the Jacobian.
6)H(div,Ω)sym, which is the subspace of H(div,Ω) where σij = σji for all i, j ∈ {1, . . . , n}, it is
also an Hilbert space with the same scalar product as above.
We have that for a given function u ∈ H1

0 (Ω)
n we can define the strain tensor ϵ(u) through the

linear map ϵ : H1
0 (Ω)

n −→ L2(Ω)n×n
sym where

ϵ(u)ij
.
=

1

2

(︁ ∂ui
∂xj

+
∂uj
∂xi

)︁
.

The relation between the strain tensor ϵ and H(div,Ω)sym is that the condition for the existence
of div(σ) becomes ∫︂

Ω

div(σ) · φ dx = −
∫︂
Ω

σ : ϵ(φ) dx ∀φ ∈ C∞
c (Ω)n.
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So, as we have done before, for a fixed tensor σ ∈ L2(Ω)2×2
sym if there exists a function g ∈ L(Ω)n

such that ∫︂
Ω

g · φ dx = −
∫︂
Ω

σ : ϵ(φ) dx ∀φ ∈ C∞
c (Ω)n. (A.3)

then we can say that σ ∈ H(div,Ω)sym and div(σ) = g.
7)H(sym,Ω) where u is in H(sym,Ω) if u ∈ L2(Ω)n, ϵ(u) ∈ L2(Ω)n×n

sym and ϵ(u) in order to exists
must operate in a good way with the elements of C∞

c (Ω)n×n
sym :∫︂

Ω

ϵ(u) : φ dx = −
∫︂
Ω

u · div(φ) dx ∀φ ∈ C∞
c (Ω)n×n

sym .

The norm of this space is the following one:

∥v∥2H(sym,Ω) = ∥v∥2L2(Ω)n +
⃦⃦
ϵ(v)

⃦⃦2
L2(Ω)n×n .

This space in not only a Banach space, but it is also an Hilbert space with scalar product:

(u, v) =

∫︂
Ω

u · v dx+

∫︂
Ω

ϵ(u) : ϵ(v) dx.

Now we recall few inequality that are needed later. The first one is the classical Poincaré
inequality, even if in [5] (Corollary 9.19 pag.290) the statement is for a general p we fix p = 2

for simplicity. The second one is the Korn inequality that can be found in [12] (Theorem 2.2 at
pag.14) that will allow us to estimate function from above e show strong convexity.

Proposition A.2.2 (Poincaré inequality). Let Ω be a bounded open set. Then there exists a
constant C, depending on Ω, such that

∥u∥L2(Ω) ≤ C∥∇u∥L2(Ω) ∀u ∈ H1
0 (Ω)

In particular, the expression ∥∇u∥L2(Ω) is a norm on H1
0 (Ω) and it is equivalent to the norm

H1(Ω) ; on H1
0 (Ω) the expression

∑︁n
i,j=1

∫︁
Ω

∂u
∂xi

∂v
∂xj

dx is a scalar product that induces the norm
∥∇u∥L2(Ω) and it is equivalent to the norm ∥u∥H1 .

Proposition A.2.3 (Korn inequality 1). Let Ω a bounded domain in R. Then every vector
valued function v ∈ H1

0 (Ω)
n satisfies the inequality

n∑︂
i,j=1

∫︂
Ω

|ϵij(v)|2 ≥ K∥v∥2H1
0 (Ω)n . (A.4)

where K > 0 is the constant of Korn and it depens only on Ω.

Proposition A.2.4 (Korn inequality 2). Let Ω a bounded domain in R. Then every vector
valued function v ∈ H1(Ω)n satisfies the inequality

∥v∥H1(Ω)n ≤ K
(︁
∥v∥L2(Ω)n +

⃦⃦
ϵ(v)

⃦⃦
L2(Ω)n×n

)︁
. (A.5)

where K > 0 is the constant of Korn and it depens only on Ω.



100 APPENDIX A. TOOLS

Now we want to see the dual space of the previous spaces and recall the most important
result that are used later. A full coverage of this subject can be found in [5]

Definition A.2.3 (Dual space). Let V be a vector space over R, then we denote with V ∗ its
dual space which is the space of all continuous linear functional on V . The norm on V ∗ is

∥v∗∥V ∗ = sup
v∗∈V ∗

|⟨v∗, v⟩|
∥v∥V

If V is an Hilbert space, then we have the following theorem (Theorem 5.5 pag.135) that
relate an element of V ∗ with an unique element of V .

Theorem A.1 (Riesz–Fréchet representation theorem). Given any v∗ ∈ V ∗ then there exists an
unique v ∈ V such that

⟨v∗, w⟩ = (v, w) ∀w ∈ V.

Moreover,
∥v∗∥V ∗ = ∥v∥V .

So we can define a map R : V ∗ −→ V such that R(v∗) = v, this map is a bijection and it is an
isometry.

So all the dual space of the previous spaces are isomorphic to themself. Sometimes we will
denote the dual space of H1

0 (Ω) with H−1(Ω). Now we recall a useful result that we need if we
will work with product of Hilbert spaces.

Proposition A.2.5. Let us consider H × V where H and V are two Hilbert spaces. Then
(H × V )∗ ∼= H∗ × V ∗

So, for example: (H1
0 (Ω)

2)∗ = (H1
0 (Ω)×H1

0 (Ω)
∗ ∼= H−1(Ω)×H−1(Ω).

Now we recall the fundamental lemma of calculus of variation:

Lemma A.2.1 (Fundamental lemma of calculus of variations). Let Ω ⊂ Rn and f ∈ L1(Ω),
such that ∫︂

Ω

fφ = 0 ∀φ ∈ C∞
c (Ω).

Then f = 0 a.e. in Ω

We recall that if Ω is bounded then Lp(Ω) ⊂ Lq(Ω) if p > q ≥ 1, so L2(Ω) ⊂ L1(Ω).

We present a version of Trace theorem that came from [11] (Theorem 18.1 pag. 592) and one
important result (Theorem 18.7 pag.595):

Theorem A.2 (Trace theorem). Let Ω ⊂ Rn, n ≥ 2, be an open set whose boundary ∂Ω is
Lipschitz continuous, let 1 ≤ p ≤ ∞. There exists a unique linear operator

Tr :W 1,p(Ω) → Lp
loc(∂Ω)

such that

(i) Tr(u) = u on ∂Ω for all u ∈W 1,p(Ω) ∩C(Ω)
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(ii) for all u ∈W 1,p(Ω), all ψ ∈ C1
c(Rn), and all i = 1,...,N, the following formula holds∫︂

Ω

u
∂ψ

∂xi
dx = −

∫︂
Ω

ψ
∂u

∂xi
dx+

∫︂
∂Ω

Tr(u)ψνi dHn−1

where νi is the normal component.

If we have a function v ∈ H1(Ω)n, with Tr(v) we indicate the vector where Tr(v)i = Tr(vi).

Theorem A.3 (Trace and W 1,p
0 (Ω)). Let Ω ⊂ Rn, n ≥ 2 whose boundary ∂Ω is Lipschitz

continuous, let 1 ≤ p ≤ ∞ and let u ∈W 1,p(Ω). Then Tr(u) = 0 if and only if u ∈W 1,p
0 (Ω).

Now we introduce a problem, that we will analyse in chapter 3, and then state a theorem
that guarantee us existence and uniqueness of solution for it. The following result came form
[15], where a full study of the argument can be found.
Let V and W two Hilbert spaces such that V is a dens subspace of W for which the injection
is continuous. Let A,C and B are a linear operators respectively form V to V ∗, W to W ∗ and
D(B), subspace of V , to V ∗. Let u0 ∈ V , u1 ∈W and f ∈ C([0,∞),W ′) then our aim si to find
ū ∈ C1((0, T ], V )∩C0([0, T ], V )∩C2(0, T ],W )∩C1([0, T ],W ) such that u(0) = u0 and ut(0) = u1
and

Cutt(t) + But(t) +Au(t) = f(t).

for all t > 0, where D(B) is

D(B) =
{︁
x ∈ V ∥ lim

h→0+

(S(h)− id)x

h
= D+(S(0)x) exists in V

}︁
.

Before recalling Theorem 2.2 at pag. 148 we need the following definition:

Definition A.2.4 (Hölder continuous). Let I an interval in R, H a Banach space and 0 < α ≤ 1,
then f : I → H is an Hölder continuous function if

∥f(x)− f(y)∥H ≤ |x− y|α ∀x, y,∈ I.

Problem A.2.1. Let V and W be Hilbert spaces with V a dense subspace of W for which the
injection is continuous. Thus, we identify W ∗ ≤ V ∗ by duality. Let A be a continuous linear
operator from V to V ∗ and C be a continuous linear operator from W to W ∗ be given. Suppose
D(B) ≤ V and B : D(B) → V ∗ is linear. If u0 ∈ V , u1 ∈ W and f ∈ C((0,∞);W ∗) are given,
we consider the problem of finding u ∈ C1((0, T ];H1

0 (Ω))∩C0([0, T ];H1
0 (Ω))∩C2((0, T ];L2(Ω))∩

C1([0, T ];H1
0 (Ω)) such that u(0) = u0 and ut(0) = u1 and

Cutt(t) + But(t) +Au(t) = f(t),

for all t > 0.

From [9] we have

Proposition A.2.6 (Gronwall’s inequality). Let ν(t) : [0, T ] → R be a non negative, absolute
continuous function on [0, T ], such that

νt(t) ≤ Φ(t)ν(t) + ψ(t),
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where Φ(t) and ψ(t) are non negative, locally integrable function on [0, T ]. Then

ν(t) ≤ e
∫︁ T
0

Φ(s) ds
[︁
ν(0) +

∫︂ t

0

ψ(s) ds
]︁

(A.6)

From [5] we have

Theorem A.4 (Banach–Alaoglu–Bourbaki). Let V be a Banach space, V ∗ its dual and let

BV ∗ = {v∗ ∈ V ∗|∥v∗∥V ∗ ≤ 1}

is compact in the weak topology σ(V ∗, V ).



Nomenclature

Constants

K The Korn constant

µ, λ The Lamé coefficients

ρ The mass density

Objects

a Scalar

v Vector

v · w The dot product

vw Alternative notation for the dot product. We use this notation after the first chapter in
order to have shorter notation

τ Tensor

tr(σ) The trace of tensor σ : tr(τ) =
∑︁

i τii

id The identical tensor with 1 on the diagonal and 0 outside it

σD The deviatoric component of the tensor σ, i.e. σD = σ − 1
n tr(σ)id where n is the

dimension of the space

τ : σ The duble dot product between two tensor τ : σ =
∑︁

i,j τijσij

Spaces

Ω The domain

∂Ω The boundary of Ω

V The closure of V

V ∗ The dual space of the vector space V

N The natural number

R The real number

103
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C(Ω) The set of continuous functions in Ω

C∞
c (Ω) The set of test functions in Ω

Functional operators

(u, v)V The scalar product between u and v in V

⟨v∗, v⟩V The dual pairing between v∗ and v, where v∗ ∈ V ∗ and v ∈ V

vtt The second time derivative of the function u

vt The first time derivative of the function u

div(v) The divergence of v

∇ v The Gradient of v

Λ∗ The transpose oprator of the linear operator Λ

∥v∥V The norm of v in the space V

∂xf The partial derivative of f respects to x

R The Riesz oprator

ϵ(u) The symmetric tensor of u, usually we denote with ϵ(u) the symmetric tensor of the
vector u, in order to emphasize that the object we obtain is a tensor and to mantain a
cleaner notation we write ϵ(u) instead of ϵ(u)

Tr(f) The trace of the function f

tr(σ) The trace of σ: tr(τ) =
∑︁

i τii

vn ⇀ v The weakly convergence of {vn} to v

Convex analysis tools

P The primal probelm

P∗ The dual probelm of primal problem P

Φ∗ The Legendre transform of Φ

Γ0(V ) The set of lower and semi continuous function from V to R that can not be constantly
equal to ±∞

∂Φ(x) The subdifferential of Φ in x

L The Lagrangian
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