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Abstract

This research focuses on using well-log data from abandoned oil and gas wells to
predict ground thermal properties and assess geothermal potential. The study utilizes
an Artificial Neural Network (ANN) approach to predict thermal conductivity in three
oil fields. Initially, thermal conductivity is calculated using recommended values for
each mineral from the UNIPD Cheap-GSHPs thermal database and a geometric average
(Clauser, 2006) in the first oil field. It is then validated by laboratory measurements,
showing a strong correlation. The ANN model incorporates seven training datasets,
including Gamma Ray (GR), Neutron Porosity (NPHI), Sonic Travel Time (DT), Bulk
Density (RHOB), Total Porosity (PHIT), and Resistivity logs, with thermal conductivity
as the associated log. The model is trained in the first oil field and validated, achieving a
correlation coefficient of over 95%. Performance metrics (MAE, MSE, and R-squared) for
thermal conductivity predictions are reported for all oil fields. The study also explores
the relationship between predicted thermal conductivity and other properties, such as
porosity and density. The study identified three oil fields with different properties for
geothermal applications. The first oil field, with a thermal conductivity of about 2.7
W/m · K and a temperature of 115◦C, is suitable for medium geothermal purposes.
The second oil field, made up of limestone, has a thermal conductivity of 2.8 W/m · K
and a temperature of138◦C, making it ideal for high geothermal applications. The
third oil field, composed of dolomite, exhibits thermal conductivity ranging between
2.9 W/m · K and 3.0 W/m · K and temperatures between 85◦C and 105◦C, making it
suitable for shallow geothermal purposes
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1
Introduction

Geothermal energy, often overlooked in discussions about renewable energy, holds
immense potential for meeting the increasing energy demands of emerging countries
and facilitating energy transition worldwide. Unlike other renewable sources, geother-
mal energy offers a consistent and nearly limitless heat supply from the Earth’s interior.
However, unlocking this potential presents various challenges, particularly in effectively
characterizing and utilizing geothermal resources.

Deep geothermal reservoirs, nestled within highly heterogeneous geological for-
mations, pose unique challenges for exploration and development. Overcoming these
challenges requires interdisciplinary methodologies encompassing volcanology, geo-
physics, geochemistry, and geothermal sciences. Additionally, improving assessment
methods for geothermal systems, including high-temperature borehole thermal energy
storage (HT-BTES) and direct heating applications, is essential for maximizing their
utilization.

Despite these challenges, geothermal energy, both deep and near-surface, offers
promising solutions for addressing energy needs sustainably. While large-scale geother-
mal installations face hurdles such as high investment costs and societal acceptance,
smaller-scale applications offer a viable pathway to reducing energy consumption and
carbon emissions, especially in household heating. Furthermore, advancements in tech-
nology, such as heat pumps and enhanced geothermal systems (EGS), are driving rapid
growth in both the electricity and heat sectors of the geothermal industry [17].

In this thesis, we delve into the utilization of geothermal energy by analyzing ground
thermal properties estimation. We will focus on applying neural networks to study
well-log datasets. Through the power of machine learning, our aim is to improve
our understanding of ground thermal characteristics and contribute to the sustainable
development of geothermal resources. This research aims to address key challenges
in geothermal energy exploration and promote its integration into the global energy
landscape.

1.1 Ways of heat transport

Geothermal heat is not straightforward. It involves depth, temperature gradients,
and geological formations. There are two categories: deep and near-surface geothermal

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic section showing the main components of a geothermal system.
[5]

energy, separated at around 400 meters. Deep geothermal energy is at greater depths.
Geothermal energy near the surface is accessible without excavating beyond 400 meters.

1.1.1 Convection

Convection is the primary heat transport mechanism within the Earth’s interior. It fa-
cilitates material movement through hot, deformable solids by temperature differentials
between the Earth’s surface and interior, resulting in a circulation pattern. Convective
heat transport is efficient and results in minor temperature fluctuations across the con-
vecting layer’s depth. Convective heat flow occurs when liquids or gases mobilize,
carrying their heat along with them.

1.1.2 Conduction

The Earth’s crust is a rigid, brittle layer made up of fragmented lithospheric plates
that interact and move across the Earth’s surface due to underlying convective forces.
Heat transfer in the top 100 kilometers of the crust occurs mainly through conduction.

1.1.3 Radiation

Radiation transmits heat from the Sun and is significant for shallow geothermal
energy. Past 20 meters in depth, solar radiation diminishes, and temperature regulation
relies on geothermal heat flow. This type of heat transfer involves electromagnetic
radiation without mass exchange or dependence on a transmission medium.

1.2 GEOTHERMAL SYSTEMS

1.2.1 Conventional geothermal systems

The most commonly exploited geothermal resources rely on the presence of water
circulating through the rock to extract heat and convey it to the surface. Within these
systems, several essential elements are consistently present.

Reservoir

2



CHAPTER 1. INTRODUCTION

Figure 1.2: Manifestations of geothermal activity (geysers) in different geothermal fields.
The left picture was taken in New Zealand and the right picture is of Iceland.

[5]

Geothermal reservoir rocks have porosity and permeability, which store water and
facilitate fluid flow. Favorable reservoirs include sandstones and limestone formations.
Fracture-induced permeability creates secondary pathways that connect pores and fa-
cilitate fluid migration[5].

Geothermal aquifers can be unconfined or confined. Unconfined aquifers are
recharged by rainfall, while confined aquifers lie beneath a cap rock and do not re-
ceive direct recharge from rainfall. As a result, confined aquifers can have high fluid
pressure.

Cap rock
The cap rock is a crucial seal for geothermal aquifers. It is made up of impermeable

materials such as shales, clays, evaporites, or unfractured lavas. It prevents geothermal
fluid from escaping upward, enhancing the efficiency of geothermal exploitation in the
area.

Permeable structures
Faults in the cap rock act as pathways for escaping steam and hot water, creating

geothermal manifestations. These include fumaroles, geysers, and hot springs. These
visible phenomena offer evidence of subsurface heat and fluid movement.

Heat source
Geothermal systems have varying heat sources depending on the region. In high-

enthalpy areas with frequent volcanic activity, the primary source is a cooling or solid-
ifying magma. In low-enthalpy regions, the heat source may be in deep sedimentary
basins with warm water from the geothermal gradient. Alternatively, hot dry rocks
with high natural heat production can be a source, though fluid circulation is difficult
due to low permeability[5].

To extract geothermal energy, artificial fractures are created in the rock using stim-
ulation techniques. These fractures enhance permeability and allow fluid circulation.

1.3 Unconventional geothermal systems

Geothermal systems often lack key elements, prompting the use of advanced tech-
nologies for economic exploitation. Additional stimulation techniques such as hy-
draulic, chemical or thermal methods may be needed to enhance permeability in un-
productive wells[5].

According to the Iceland Survey, the main types of unconventional geothermal
systems are as follows:

3



CHAPTER 1. INTRODUCTION

1.3.1 Hot-Dry Rock Systems (HDR)

Heat is stored in low-permeability rock formations, like shallow granite bodies.
Reservoirs are stimulated to create necessary permeability for well performance. Water
is injected to extract heat, ideally producing steam. Examples are Fenton Hill (US) and
Cornwall (UK)[5].

1.3.2 Enhanced Geothermal Systems (EGS)

Hydraulic fracturing, or "fracking," establishes artificial permeability and enables
fluid circulation for heat transfer. This involves injecting water, sand, and chemicals at
high pressure to create and expand fractures. Examples include Soultz (France) and
Cooper Basin (Australia)[5].

1.3.3 Supercritical Geothermal Systems (SGS)

Fluids in these systems undergo high temperatures and pressure in reservoirs. At
the borehole, the fluid exhibits properties of superheated steam, making it difficult to
differentiate between liquid and vapor phases. Examples include IDDP (Iceland) and
Geysers (USA)[5].

1.4 study of geothermal properties

Geothermal energy potential is assessed with a multidisciplinary approach using
scientific and technological methods. Here are the key steps involved:

Geological Mapping
Geothermal energy surveys target regions with tectonic plate boundaries, volcanic

activity, and high heat flow.
Geophysical Surveys
Geophysical surveys can identify underground structures and potential hot water

or steam reservoirs.
Geochemical Analysis
Geochemical surveys detect geothermal fluids by analyzing water, soil gases, and

rocks for chemical signatures.
Temperature Measurements
Direct temperature measurements are collected at the surface and in boreholes to

assess subsurface thermal gradients and identify areas of high temperature[5].
Remote Sensing
Using satellite imagery and aerial surveys can identify surface features such as hot

springs, fumaroles, and altered surface geology, which can indicate geothermal activity.
Hydrological Analysis
The distribution and characteristics of surface water bodies, such as hot springs and

thermal features, provide insight into subsurface heat sources and fluid flow pathways.
Numerical Modeling
Geological data predicts geothermal potential.
Exploratory Drilling

4
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Exploratory drilling is conducted to confirm the presence and characteristics of
geothermal resources identified through other methods. This involves drilling test wells
to measure temperatures, assess fluid chemistry, and determine reservoir properties.

1.5 Petrophysical properties of geothermal

Several key factors are considered when studying geothermal properties, with some
being more important depending on the context. Here are some of the most crucial
properties

Temperature
Perhaps the most important property is that it directly influences the feasibility

and efficiency of geothermal energy extraction. Understanding temperature gradients
and variations in the subsurface is essential for assessing the potential of a geothermal
resource.

Theraml Conductivity
Thermal conductivity measures a rock’s ability to conduct heat. In geothermal

systems, rocks with higher thermal conductivity transfer heat more efficiently, which
helps to extract thermal energy from the reservoir. It’s important to understand the
thermal conductivity of subsurface formations to evaluate the heat transfer dynamics
within a geothermal reservoir.

Permeability
The permeability of subsurface rocks is crucial for efficient geothermal fluid circu-

lation and productivity.
Porosity
The volume of pore space in rocks determines their capacity to store geothermal

fluids. Rocks with higher porosity can hold more fluid, increasing the potential energy
yield of a geothermal reservoir.

Rock Type
Rock types have different thermal conductivities, impacting heat transfer efficiency

in the subsurface. Knowing the thermal properties of formations helps assess geother-
mal heat extraction potential.

Fluid Chemistry
Geothermal fluid composition affects the system’s corrosiveness and scaling poten-

tial. Monitoring fluid chemistry optimizes energy production and reduces equipment
corrosion.

Reservoir Depth
The depth of a geothermal reservoir affects drilling costs, resource access, and heat

extraction efficiency. Deeper reservoirs may have higher temps but require costlier
drilling.

Fracture Network
Fractures and faults increase permeability, allowing fluid flow and heating in geother-

mal reservoirs.
Rock Density

5



CHAPTER 1. INTRODUCTION

Rock density affects a rock formation’s thermal and mechanical properties. Denser
rocks have higher thermal conductivity and heat storage capacity, impacting heat ex-
change efficiency in geothermal reservoirs.

Fluid content
Fluid content affects a geothermal reservoir’s heat extraction potential. Rocks with

more fluid store more thermal energy and facilitate heat transfer. Steam has a higher
heat capacity than liquid water, making it more energy efficient.

Geoscientists and engineers use petrophysical techniques to understand fluid con-
tent in geothermal reservoirs. They can optimize reservoir management strategies and
enhance geothermal energy project performance by quantifying fluid content.

Specific Heat Capacity
The specific heat capacity of a substance is the amount of heat required to increase

its temperature by one degree Celsius. In geothermal systems, this capacity affects how
much thermal energy can be stored in the rock and fluid phases, which impacts the
overall heat exchange processes and reservoir behavior.

1.6 Considerations of Risk and Cost

When studying geothermal properties, it’s important to consider the risks and costs
of different methods. Here’s how these factors can influence the selection of study
methods[9].

Risk Assessment

• Exploratory Drilling: While exploratory drilling directly measures geothermal
properties, it is also one of the riskiest and most expensive methods. There’s a
significant chance of encountering unexpected subsurface conditions or failing to
find viable geothermal resources, leading to high exploration costs and potential
financial losses[9].

• Geophysical Surveys: Geophysical methods such as seismic and magnetotelluric
surveys carry lower risks than drilling, as they provide indirect measurements
of subsurface properties. However, there’s still a risk of misinterpretation or
ambiguity in the survey data, which could lead to inaccurate assessments of
geothermal potential[9].

• Remote Sensing and Satellite Imagery: emote sensing techniques offer a non-
invasive way to identify surface features associated with geothermal activity, such
as hot springs and altered surface geology. While these methods carry minimal
direct risks, there’s a risk of false positives or misinterpretation of surface signals,
leading to potential misallocation of resources [9].

• Sample collection for laboratory analysis is less risky than drilling or geophysical
surveys. However, contamination or alteration during collection, handling, and
transport can impact accuracy[9].

• Various laboratory techniques, such as core analysis, petrography, XRD, and fluid
analysis, provide detailed information on geothermal reservoirs. These methods
are generally safe, but there is a risk of experimental errors that could impact
reliability[9].

Cost Considerations

• Exploratory Drilling: Exploratory drilling is costly due to the high drilling rigs,
equipment, and personnel expenses. Unexpected challenges or greater depths
can also increase costs[9].
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• Geophysical Surveys: Geophysical surveys are cheaper than drilling, but costs
vary based on factors like location complexity, equipment, and required expertise.
Larger surveys or more advanced techniques can be more expensive[9].

• Remote Sensing and Satellite Imagery: Remote sensing techniques are frequently
the less expensive and more effective choice for the initial exploration and eval-
uation of geothermal potential on a regional scale. The costs of remote sensing
are significantly lower in comparison to drilling or extensive geophysical surveys,
making it a valuable tool for the preliminary screening of potential geothermal
sites[9].

• Sample Collection: The cost of acquiring rock and fluid samples for laboratory
analysis is relatively low compared to drilling or extensive geophysical surveys.
However, the costs can vary based on sample location, accessibility, transportation,
and storage requirements[9].

• Analysis techniques may incur various costs, such as equipment, personnel, sam-
ple preparation, testing, and interpretation of results, depending on the complex-
ity and scope of the analysis[9]

.

1.7 Repurposing Abandoned Oil and Gas Wells for Sustainable
Energy Development

Repurposing abandoned oil and gas wells for geothermal energy production offers
numerous benefits[30].

Cost Savings
Utilizing existing wells can reduce upfront costs for geothermal projects. These wells

have already incurred permitting, site preparation, and drilling operations expenses,
resulting in overall cost savings[30].

Time Efficiency
Geothermal operators can save time and accelerate project timelines by using aban-

doned oil and gas wells to access the subsurface to explore and develop geothermal
resources[30].

Access to Data
Abandoned wells often come with valuable geological and engineering data, in-

cluding well logs, core samples, and historical production records. This information
provides insights into subsurface formations, reservoir characteristics, and fluid proper-
ties, facilitating informed decision-making and optimizing geothermal operations[30].

Infrastructure Reuse
Repurposing existing wells reduces environmental disturbance and simplifies project

logistics, leading to more efficient resource utilization[30].
Environmental Benefits
Geothermal projects can reuse abandoned oil and gas wells, minimizing the envi-

ronmental impact of new well drilling and aligning with sustainability goals[30].
Risk Mitigation
Abandoned wells have already undergone drilling and completion processes, re-

ducing the uncertainties and risks typically associated with new well construction. This
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enhances project predictability and helps mitigate potential drilling-related challenges
and setbacks[30].

Existing Infrastructure
Abandoned oil and gas wells have pre-existing infrastructure, including wellheads,

casing, and surface facilities, which can be repurposed for geothermal operations. This
infrastructure is a significant investment that can reduce the overall costs of geother-
mal projects. Rather than constructing new infrastructure, geothermal operators can
refurbish and retrofit existing components, saving both time and money[30].

Subsurface Access
Exploring geothermal energy through drilling new wells can be a risky and unpre-

dictable process due to geological complexity, drilling hazards, and unknown subsur-
face conditions. However, abandoned oil and gas wells offer reliable access to the subsur-
face and potential geothermal reservoirs. Using existing wellbores allows geothermal
companies to avoid uncertainties and risks associated with new well drilling, resulting
in more predictable project outcomes[30].

Geological Information
Abandoned wells are a valuable source of geological data, including well logs, core

samples, and geophysical surveys. This information can provide important insights into
subsurface formations, rock properties, and fluid characteristics, which are essential for
assessing the geothermal potential of a site. Geothermal operators can better understand
the geological setting by analyzing this data, identifying favorable reservoir conditions,
and optimizing drilling and production strategies[30].

Regulatory Considerations
Repurposing abandoned wells for geothermal purposes can provide regulatory ben-

efits compared to drilling new wells. In several jurisdictions, regulatory requirements
for re-entering and repurposing existing wells are less strict than those for drilling new
wells. This simplified regulatory process can expedite project permitting and approvals,
reducing administrative burdens and accelerating project timelines[30].

Repurposing abandoned oil and gas wells for geothermal energy offers a cost-
effective, time-efficient, and environmentally sustainable approach to accessing sub-
surface resources. Using existing infrastructure and data, geothermal operators can
expedite project development and optimize resource utilization, thereby contributing
to the growth and sustainability of the geothermal energy industry[30].

1.8 Optimizing geothermal exploration with well-log data and
neural networks

I conducted a thorough study using well-log data from multiple wells to analyze
important petrophysical properties required for geothermal exploration. Our primary
objective was to determine key parameters such as the formation’s porosity, fluid con-
tent, and lithology. We utilized advanced machine learning techniques, including neural
networks, to develop predictive models that estimate the thermal conductivity of each
composition of the formation.

By using existing well-log data and advanced computational techniques, we were
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able to save both time and money in studying the physical properties of geothermal
sources. Our approach also minimized risks involved in traditional methods, such as
exploratory drilling, by providing precise predictions without needing extensive field-
work or intrusive sampling. This innovative approach improves geothermal resource
assessment and optimizes renewable exploration.
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2
Review of Literature on Ground Ther-
mal Properties

2.1 Ground Thermal Properties for GSHP Applications

The study conducted by Antonio Galgaroa et al(2020). presents an updated database
of ground thermal properties, which was developed as part of the EU-funded Cheap-
GSHPs project. This project aims to support the design of Ground Source Heat Ex-
changer (GSHP) systems. Ground thermal properties are vital in GSHP system design,
as climate, building characteristics, and ground conditions influence them. One of the
biggest challenges in GSHP system design is accurately evaluating thermal properties
because undersized or oversized bore fields can significantly impact system efficiency
and costs. The Cheap-GSHPs project addresses this challenge by developing a Decision
Support System (DSS) and a comprehensive database that provides thermal conductiv-
ity values for rocks and sediments, which are crucial for system design. Methods for
determining thermal properties include in-situ tests like Thermal Response Tests (TRT)
and laboratory measurements. Overall, the accurate assessment of ground thermal
properties is essential for designing efficient and cost-effective GSHP systems, and the
resources developed by the Cheap-GSHPs project facilitate informed decision-making
in GSHP system design and implementation[7].

According to Sarbu and Sebarchievici’s 2014 study, low-enthalpy geothermal energy
is a widely used renewable energy source for heating and cooling buildings. This
method involves closed-loop geothermal systems that use borehole heat exchangers to
transfer heat between the ground and the building through a fluid. When designing
such systems, the authors suggest considering various factors such as climate, building
characteristics, and ground conditions[7].

The "Cheap-GSHPs" project was initiated in June 2015 and concluded in May 2019
under the Horizon 2020 EU framework program for Research and Innovation. Partners
from nine European countries led the project to reduce engineering and installation
costs for closed-loop geothermal systems. To achieve this goal, the project developed a
Decision Support System (DSS) to assist in system design, as described in Carnieletto et
al.’s 2019 study[7].

The DSS is a user-friendly web-based application that integrates climate data, build-
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ing requirements, and geological information to help users select appropriate compo-
nents for new GSHP systems, as De Carli et al. explained in 2018. Additionally, the
project developed a thermal properties database to evaluate the local thermal exchange
potential, as outlined by Müller et al. in 2018. This enhanced database was further
developed during the EU project GEO4CIVHIC to support the design of geothermal
systems for new constructions and retrofitting historical buildings[7].

As the reference data for thermal conductivity, the UNIPD Cheap-GSHPs thermal
database is used in this case study.

2.2 Factors that Affect Ground Thermal Properties.

The significance of thermal conductivity (TC) for calculating heat flow in geothermal
studies is highlighted by the research conducted by Popov et al. (1999) and Lide (1998).
Various laboratory methods such as Divided-bar, Line-source, and Optical scanning are
used to measure TC, which is influenced by intrinsic and extrinsic factors explained
by Jumikis (1966), Harmathy (1970), and others. TC determination methods include
empirical relationships (Özkahraman et al., 2004; El Sayed, 2011; Duchkov et al., 2014),
well log data analysis (Demongodin et al., 1991; Hartmann et al., 2005, 2008), and the
application of artificial intelligence (Goutorbe et al., 2006; Singh et al., 2007; Vaferi et al.,
2014; Gitifar et al., 2014). The relationships between TC and petrophysical properties
are studied in various rock types, including sandstone (El Sayed, 2011; Haffen et al.,
2013; Esteban et al., 2015) and carbonates (Kazatchenko et al., 2006). Gupta and Sharma
(2012) investigated correlations in quartzite rocks, while Hrouda and Kapika (1986) and
Vishnu et al. (2010) explored magnetic susceptibility effects. Benayad et al. (2013,
2014) and Aïfa et al. (2014) studied the Hamra Quartzites reservoir. In this study, the
application of Radial Basis Function (RBF) neural networks in geothermics is proposed
to efficiently predict TC, particularly in fractured samples, and investigate relationships
between TC, porosity, density, and permeability in the Hamra Quartzites reservoir[34].

Ahmed Ali Zerrouki et al(2019). studied the relationship between thermal con-
ductivity (TC) and petrophysical parameters in the Hamra Quartzites reservoir, which
is important for rock heat flow calculations. They proposed estimating TC through
linear and nonlinear relationships based on parameters such as mineralogy and poros-
ity. Porosity, density, and permeability were measured to predict TC. The study found
a moderate correlation between TC and porosity and a weak correlation between TC
and density and permeability. Radial Basis Function (RBF) neural networks were used
to achieve precise TC prediction, which correlated closely with laboratory measure-
ments[34].

2.2.1 Porosity

Porosity refers to the empty space within a rock or soil sample. Generally, the
higher the porosity, the lower the thermal conductivity because empty spaces act as
insulators, impeding heat transfer. However, the relationship between porosity and
thermal conductivity can vary depending on the type of empty spaces present, such as
connected or isolated pores, and the fluid content within those spaces. For instance,
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in dry rocks, increased porosity often results in lower thermal conductivity due to the
presence of air-filled gaps, which are poor conductors of heat. On the other hand, in
water-saturated rocks, higher porosity can lead to higher thermal conductivity because
water is a better conductor of heat than air[1].

2.2.2 Density

Density is a measure of the amount of mass that is present per unit volume of a
particular material. Denser materials tend to have higher thermal conductivity (TC)
because the atoms or molecules within them are packed more closely together. This
allows for more efficient heat transfer through the atomic or molecular vibrations. Rocks
with higher mineral densities, such as those rich in quartz or feldspar, typically exhibit
higher thermal conductivity compared to less dense rocks like those made up of shale
or clay-rich formations[1].

2.2.3 Permeability

Permeability refers to the property of a material to allow fluids to pass through.
Although permeability does not directly impact thermal conductivity, it can indirectly
influence fluid flow within the rock matrix. In porous materials, fluid movement can
enhance heat transfer by transporting heat away from hotter regions or toward cooler
regions. On the other hand, low permeability can limit fluid flow and hinder convective
heat transfer, leading to a lower overall thermal conductivity[1].

2.2.4 Fluid Content

The type and distribution of fluids present in the pore spaces can significantly
influence the thermal conductivity (TC) of rocks. When rocks are saturated with water,
for example, they exhibit higher TC than those that are dry or filled with gas due to
water’s higher thermal conductivity [1].

In addition to the fluid type, the degree of saturation also plays a role in TC. As
the volume fraction of fluid in the pore space increases, so does TC because the fluid
facilitates heat transfer through the rock matrix.

Another factor affecting TC is the spatial distribution of fluids within the rock pores.
Rocks with interconnected pores filled with fluids tend to have higher TC than those
with isolated pockets of fluid, as the former allows for more efficient heat transfer.

Finally, phase changes of fluids within the rock matrix, such as evaporation, con-
densation, or the transition between liquid and gas, can also impact TC by altering the
fluid’s thermal properties and its heat transfer capabilities within the rock[1].

2.2.5 Mineral composition of rock

The ability of rocks to conduct heat is influenced by their composition, a property
referred to as thermal conductivity (TC). Various minerals possess different abilities to
conduct heat, and the type and quantity of minerals in a rock determine its TC. The
following are some ways in which mineral composition affects TC:
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• Certain minerals: such as quartz, feldspar, and mica, are excellent heat conductors,
whereas others, such as clay minerals, are not. Rocks that have a higher proportion
of high-conductivity minerals have higher TC.

• Mineral Quantity: The number of minerals in a rock can impact its TC. A rock
with a higher concentration of quartz or feldspar will have greater TC than one
composed mainly of clay minerals.

• Mineral grain size: The size of minerals in a rock can also affect TC. Rocks with
smaller grains conduct heat more effectively because they provide more pathways
for heat transfer. Fine-grained textured rocks generally have higher TC than
coarse-grained ones.

• Mineral bonding: How minerals bond in a rock can also impact TC. Rocks with
tightly bonded minerals conduct heat better than those with loosely bonded min-
erals. Strong bonds facilitate the movement of heat from one mineral to another.

• Anisotropy: Some minerals conduct heat differently in different directions. Rocks
with these minerals can have varying TC in different rock parts, depending on
how the minerals are arranged.

[1].

2.2.6 Temperature

Temperature is a crucial factor that influences rocks’ thermal conductivity (TC). Let’s
explore how temperature affects TC:

• Temperature Dependence: Thermal conductivity often depends on temperature,
which can vary with temperature changes. Generally, the TC of most rocks tends
to increase with temperature. Higher temperatures lead to greater atomic or
molecular vibrations within the rock matrix, which enhances heat transfer.

• Thermal Expansion: As temperature increases, materials usually expand, affecting
the packing of mineral grains within the rock matrix. Changes in mineral packing
can affect the pathways available for heat conduction, thereby impacting TC.

• Phase Transitions: Temperature changes may also cause phase transitions within
the rock, such as melting or crystallizing minerals. These phase transitions can
alter the thermal properties of the rock and affect its TC.

• Hydrothermal Effects: In geothermal systems, temperature gradients within the
subsurface can drive fluid flow and alter rocks’ mineralogy and pore structure
through hydrothermal alteration. These changes can significantly impact TC and
heat transfer processes in geothermal reservoirs.

• In situ Conditions: The TC of rocks under in situ conditions, where they experience
the subsurface environment’s actual temperature and pressure conditions, may
differ from laboratory measurements conducted at ambient conditions. Therefore,
it’s essential to consider the temperature regime of the geothermal reservoir when
interpreting TC data.

[1].

2.3 Neural Network Introduction

Neural networks are a fundamental concept in machine learning and artificial in-
telligence, inspired by the structure and function of the human brain. They are a class
of algorithms designed to recognize patterns and learn from data. The basic principle
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Figure 2.1: Artificial neural network [13]

of a neural network involves processing input data through a series of interconnected
layers of artificial neurons, or nodes, to produce an output. The architecture of a neural
network typically consists of three main types of layers figure2.1:

• Input Layer: This layer receives the initial input data and passes it to the next layer
for processing. Each neuron in this layer represents a feature or attribute of the
input data.[33]

• Hidden Layers: The actual computation and learning occur in these layers. Each
neuron in a hidden layer receives inputs from the previous layer, applies a transfor-
mation (using weights and activation functions), and passes the result to the next
layer. Deep neural networks have multiple hidden layers, allowing for complex
feature representations and learning of intricate patterns in the data.[33]

• Output Layer: The final layer of the network produces the output based on the
processed information from the hidden layers. The number of neurons in the
output layer depends on the nature of the taskclassification tasks may have neu-
rons representing different classes. In contrast, regression tasks may have a single
neuron for continuous output[33].

The connections between neurons in adjacent layers are characterized by weights,
which determine the strength of the connection. During training, these weights are
adjusted iteratively through a process called backpropagation, where the network learns
to minimize the difference between its predicted output and the actual output using an
optimization algorithm like gradient descent[33].

2.3.1 Artificial Neural Network Applications

Neural networks are a powerful tool for data analysis and can learn complex patterns
from data to make predictions or classifications. They have many applications, such
as[10]:
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• Image Recognition and Computer Vision: Convolutional Neural Networks (CNNs)
excel in image classification, object detection, and facial recognition tasks. They are
commonly used in autonomous vehicles, medical imaging, surveillance systems,
and photo-tagging applications.

• Natural Language Processing (NLP): Recurrent Neural Networks (RNNs) and
their variants, such as Long Short-Term Memory (LSTM) networks and Trans-
former models, are used for tasks like sentiment analysis, language translation,
text generation, and speech recognition. NLP models power virtual assistants,
chatbots, language translation services, and text summarization tools.

• Healthcare: Neural networks are used in medical diagnosis, disease prediction,
and personalized treatment recommendations. They analyze medical images
(e.g., X-rays and MRI scans) to detect anomalies and assist in drug discovery and
genomics research.

• Finance: Neural networks are used in financial forecasting, fraud detection, algo-
rithmic trading, and risk assessment. They analyze market trends, predict stock
prices, detect fraudulent transactions, and optimize trading strategies[10].

• Recommendation Systems: Neural networks power recommendation engines in
e-commerce, streaming services, and social media platforms. They analyze user
behavior and preferences to suggest relevant products, movies, music, or con-
tent[10].

• Autonomous Vehicles: Neural networks play a crucial role in self-driving cars for
tasks like object detection, lane detection, traffic sign recognition, and decision-
making based on sensor inputs. They enable vehicles to perceive and navigate the
surrounding environment.

• Manufacturing and Industry 4.0: Neural networks are used for predictive main-
tenance, quality control, and optimization in manufacturing processes. They
analyze sensor data to detect equipment failures, optimize production schedules,
and improve product quality.

• Gaming and Entertainment: Neural networks are employed in game development
for character animation, behavior prediction, and adaptive gameplay. They also
contribute to content creation in the entertainment industry, such as generating
music, art, and virtual environments[10].

• Energy and Utilities: Neural networks are used for energy load forecasting, smart
grid optimization, and predictive maintenance of energy infrastructure. They
help utility companies improve efficiency, reduce downtime, and optimize energy
distribution[10].

• Agriculture: Neural networks are applied in precision agriculture for crop mon-
itoring, yield prediction, and pest detection. They analyze satellite imagery,
weather data, and soil characteristics to optimize farming practices and maximize
crop yield[10].

Artificial Neural Networks (ANN) is a new technology with various applications,
such as pattern recognition, prediction, system identification, and control. The ANN is
a radial basis function back-propagation network, which means that it can predict the
parameters of an experimental system. Its parallel structure and fast learning capacity
make it an ideal tool for data analysis. The network uses experimental data such as
speed, load, and pressure distribution values for training and testing. It is a feed-
forward three-layered network that uses the quick propagation algorithm to update
its weight during training. The ANN has a superior performance and can achieve the
desired results of the system, making it an excellent tool for analyzing system parameters
in practical applications. Artificial Neural Networks (ANN) is a new technology with
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various applications, such as pattern recognition, prediction, system identification, and
control. The ANN is a radial basis function back-propagation network, which means that
it can predict the parameters of an experimental system. Its parallel structure and fast
learning capacity make it an ideal tool for data analysis. The network uses experimental
data such as speed, load, and pressure distribution values for training and testing.
It is a feed-forward three-layered network that uses the quick propagation algorithm
to update its weight during training. The ANN has a superior performance and can
achieve the desired results of the system, making it an excellent tool for analyzing system
parameters in practical applications[10].

2.4 An overview of neural networks in geosciences

Using probabilistic neural networks to classify mineral deposits based on mineral-
ogy and broad rock types was explored by Singer and Kouda (1997). In their study,
geoscience information from large mineral databases was integrated to classify deposits
based on geoscience information. Their study examined whether a probabilistic neural
network could accurately classify deposits by analyzing ore and alteration mineralogy
and six generalized rock types[27].

Probabilistic neural networks can provide reliable confidence measures and handle
multimodal distributions with Parzen density estimation and Bayes theorem. In their
study, a Gaussian kernel weighted each class and variable separately.

A total of 28 well-typed deposits comprised of ore and alteration mineralogy were
considered for training, and six types of rock were used. Based on 1005 deposits, 58
minerals were reported, and six rock types were reported based on a restriction to
minerals in at least 50% of one deposit type.

Two independent tests were conducted based on a training set that contained 2751
Nevada deposits. A comparison between neural networks’ classification and expert
classifications showed 53% agreement. While the neural network cannot identify spe-
cific deposit types, it does perform well at generalizing. It can identify more than 98%
of sites correctly[27].

Among their study’s findings is the potential use of probabilistic neural networks
to integrate geoscience information and classify deposits by identifying characteristics
of the terranes that are conducive to certain deposits[27]. Barton (1986) estimated the
frequency of minerals in different types of deposits, which served as the basis for Mc-
Cammon’s (1992) attempt to classify deposits using a combination of estimated mineral
frequencies and other geological factors with Prospector II. McCammon managed to
classify Alaskan deposits with an 83% success rate. Expert systems like Prospector II
rely on human expert knowledge and qualitative principles perceived by experts. How-
ever, they face challenges due to internal inconsistencies or dependence on inconsistent
information.

On the other hand, inductive learning systems, such as decision trees, artificial
neural networks, and statistical pattern recognition, can use pre-classified samples for
training and excel in generalization. Singer and Kouda (1997) demonstrated the poten-
tial of probabilistic neural networks by correctly classifying 98% of 267 mineral deposits
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into eight types based on mineralogy and rock types. They proposed further testing
the network’s ability to classify deposits based on a simplified representation of min-
eralogy and six broad rock types. Their study discussed the sources of data and the
implementation of probabilistic neural networks. It tested the network’s classification
accuracy using a large database of expert-typed deposits and comparisons with expert-
delineated permissive tracts in Nevada. Finally, they examined classification errors and
potential improvements[27].

Anochi, Torres, and Velho (2020) presented two strategies for automatically con-
figuring neural networks using optimization techniques. They tackled a problem of
minimizing a single objective using the Multiparticle Collision Algorithm (MPCA)
and a problem of minimizing multiple objectives using the Non-Dominated Sorting
Genetic Algorithm (NSGA-II). These methods were tested in two geoscience applica-
tions: data assimilation for wave evolution equations and mesoscale seasonal climate
prediction for precipitation. Their research revealed that automatic network configu-
ration produced better results than the networks defined by experts in both applica-
tions. Specifically, in the case of data assimilation and predicting seasonal precipitation
for climate, automatic configuration demonstrated superior performance compared to
expert-defined networks. The NSGA-II algorithm showed better results in the experi-
ments conducted[2].

Artificial neural networks (ANNs) play an important role in artificial intelligence.
Generally speaking, they are characterized as a machine learning framework which has
been successfully applied to various applications. The neural networks are inspired
by research into the functioning of the neural structure of intelligent organisms, which
demonstrates that knowledge is acquired through experience. The artificial neural net-
work (ANN) is a highly efficient machine that can provide robust solutions to problems
involving pattern recognition, classification, prediction, optimization, and function ap-
proximation. In the field of intelligent control and image processing, neural networks
have been applied to solve real-world problems. As part of the geosciences, neural net-
works have been used in many applications, including meteorology (Hsieh and Tang
1998; Liu and Weisberg 2011; Liu et al. 2001); oceanography (Dauji et al. 2015; Van der
Merwe et al. 2007; Jiang et al. 2018; Krasnopolsky et al. 2016; Deo and Naidu 1998); and
hydrology (Lee and Kang 2016, Aichouri et al.; Dawson and Wilby 2001; Sudheer et al.
2002); geophysics (Djarfour et al. 2014; Baddari et al. 2009); space weather (Vandegriff
et al. 2005; Vassiliadis 2000; Murray 2018); and environmental science (Haupt et al.
2008; Hsieh 2009; Krasnopolsky 2007, 2013). Due to the large number of parameters
to be identified, neural networks present a challenge in addition to their excellent per-
formance. In supervised ANN, the following parameters must be found: the number
of hidden layers, the number of neurons in each layer, the type of activation function,
the learning rate (b), and the momentum rate (a). As part of the training process, it
is crucial to have a sufficient number of neurons in the hidden layer. It may not be
possible for a neural network to learn patterns in data if it has only a small number
of neurons (underfitting). In contrast, a larger number of neurons in the hidden layer
increases the search space dimension, resulting in an increase in generalization failures
(overfitting)[2].
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2.4.1 Strengths and limitations of geospatial and geophysical data handling

Neural network models have emerged as powerful tools for processing geospatial
and geophysical data. These models have several strengths such as their ability to
capture complex non-linear relationships within geospatial and geophysical data, to
automatically learn relevant features from raw data, to adapt to changes in data dis-
tribution over time, and to process large volumes of geospatial data through parallel
processing efficiently. As such, they are particularly suitable for tasks requiring high
computational power, such as remote sensing image analysis and geophysical signal
processing[20].

Nevertheless, neural network models have limitations in handling geospatial and
geophysical data. One such limitation is that neural networks require large amounts of
labeled training data to learn complex patterns effectively. The limited data availability
and high data collection costs in the geosciences can pose significant challenges in this
regard. Moreover, despite their high predictive accuracy, neural networks often operate
as "black box" models, making it difficult to interpret the underlying relationships
between input variables and output predictions. This limitation is critical in geosciences
as understanding geological processes and making informed decisions relies on the
ability to interpret the underlying relationships[20].

Another limitation is that neural networks are prone to overfitting, particularly when
trained on noisy or small datasets. This leads to poor generalization performance on un-
seen data. Researchers and practitioners need to employ regularization techniques and
cautious model selection to mitigate this issue. Finally, training complex neural network
architectures, especially deep neural networks with multiple layers, requires significant
computational resources and time, posing challenges for real-time applications and
large-scale geospatial analysis tasks[20].

In summary, while neural network models offer powerful tools for handling geospa-
tial and geophysical data, researchers and practitioners must consider their strengths
and limitations carefully. Appropriate strategies must be employed to address chal-
lenges in data availability, model interpretability, overfitting, and computational com-
plexity. The use of neural network models in geosciences requires a deep understanding
of their capabilities and limitations to aid in exploring and discovering geospatial pat-
terns and phenomena[20].

2.5 Application of Neural Networks to Well-log Datasets

Luisa Rolon and Shahab D. Mohaghegh(2009) have developed a methodology for
generating synthetic wireline logs. This approach analyzes reservoir properties in areas
without or incomplete conventional logs. The method uses artificial neural networks
(ANNs) together with data from conventional wireline logs. The goal is to reduce
companies’ costs [24]. The neural network model is developed using a Generalized
Regression Neural Network. It incorporates wireline logs from four wells, including
gamma ray, density, neutron, and resistivity data. Synthetic logs are generated through
two exercises. The first exercise uses all four wells for training, calibration, and ver-
ification; the second uses three wells for training and calibration, and the fourth for
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verification[24].
Three combinations of inputs/outputs are tested to demonstrate the methodology’s

robustness. Results show that the combination "A" of inputs/outputs performs the best,
followed by "C" and then "B." Data interpolation enhances the accuracy of synthetic
logs, indicating the superiority of neural network-based synthesis over conventional
approaches such as multiple regression[24].

2.5.1 Well-Logging

Well-logging has been used for almost a century as a vital tool to determine the
potential production of hydrocarbon reservoirs. Log analysts interpret the data from
the logs to determine the petrophysical parameters of the well. However, for economic
reasons, companies do not always have all the logs required to analyze reservoir char-
acteristics [24].

To solve this problem, an approach involving the use of an artificial neural network
(ANN) has been developed. The ANN is used together with data obtained from conven-
tional wireline logs to generate synthetic wireline logs for locations where the necessary
logs are absent or incomplete[24].

Artificial neural networks have been widely used in reservoir characterization due
to their ability to extract nonlinear relationships between sparse sets of data. Studies in
this field have used wireline logs and seismic attributes to predict reservoir properties
such as effective porosity, fluid saturation, and rock permeability. They also helped to
define lithofacies and predict log responses, such as generating synthetic logs. In all
cases, it was demonstrated that ANN is a powerful tool for recognition patterns, system
identification, and prediction of any variable in the future with a better correlation
coefficient (R2) over traditional statistical analysis like linear regression[24].

Mohaghegh et al. (1998) developed a methodology to generate synthetic Magnetic
Resonance Imaging (MRI) logs using conventional well logs, such as Spontaneous Po-
tential, Gamma Ray, Caliper, and Resistivity. They used an ANN as their main tool.
The synthetic MRI logs were generated with high accuracy, even when the model used
data not employed during model development[24].

Mohaghegh et al. (1999) presented an approach that involves neural network design
software for low-cost/high-effectiveness log analysis on a field scale. The cost reduction
is achieved by analyzing only a group of wells in the field. The intelligent software tool
is built to learn and reproduce the engineer’s analyzing capabilities on the remaining
wells. As part of this study, logs that were missed in several wells and that were
necessary for analysis were generated[24].

Bhuiyan (2001) developed a neural network to generate synthetic MRI logs to provide
information about the reservoir characteristics of the Cotton Valley formation. Data
preparation before network training involved fuzzy logic for grouping well logs together
based on similarity criteria of the reservoir formation. This helped to identify the most
influential logs for a well. Tonn (2002) used seismic attributes, density, and sonic logs to
train an ANN to predict the gamma-ray response of the Athabasca oil sands in western
Canada. This helped to solve the reservoir properties and choose the best location to
place injection and production wells for a steam injection program[24].
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This technique is not intended to eliminate well-logging in a field; it is meant to
become a tool for reducing companies’ costs when logging proves insufficient and/or
difficult to obtain. In addition, this technique can provide a guide for quality control
during the logging process by predicting the log’s response before the log is acquired
[24].

2.5.2 case study of well logging

Cao, Fu, and Xu (2022) propose a solution for predicting missing well logs using
a neural network model that integrates CNN, BGRU, and self-attention. The model
consists of two modules, one that extracts local morphological features and another
that captures variation trends. The self-attention mechanism enhances accuracy by
assigning weights to highlight relevant information. The approach is effective and
practical for real field data from different areas[32]. A model called SAIDNN was
developed to predict missing well logs by combining CNNs and BGRU networks. This
model extracts local morphological features from the logging data to minimize the loss
of historical information and enhance the impact of important data.

According to their results, SAIDNN is the best model for predicting missing well
logs, especially at the peak. Considering the local characteristics of well logs and the
variation characteristics of the formation, SAIDNN is particularly suited to this task.

For more reliable conclusions, comparing and discussing large datasets from differ-
ent geological backgrounds is important[32].

A study conducted by Shehata et al.(2021) emphasizes the importance of using
artificial neural networks (ANNs) to process and interpret complex geological data.
Researchers can holistically analyze various data types using neural networks, such as
conventional well logs, core samples, and borehole images. As a result, lithofacies and
petrophysical properties of reservoir formations can be more thoroughly characterized.

Researchers can integrate data sets from different scales to capture various geological
characteristics and phenomena, such as microscopic properties observed in core samples
and macrostructural features observed in borehole images. Using these different sources
of information, it is possible to learn and extract patterns from neural networks that may
not be apparent when analyzing each type of information separately.

In this integrated approach, one of the key components is the ability to predict
lithofacies and petrophysical properties in areas with limited data. To develop predictive
models, researchers must train and test neural network models on existing data sets
to generalize them to uncored or unexplored regions of the reservoir. Consequently,
reservoir heterogeneity can be better understood, and the characterization and modeling
of reservoirs can be more accurate.

Accordingly, the study by Shehata, Osman, and Nabawy highlights the potential
benefits of neural networks in petrophysical and lithofacies analyses. By integrating
multi-scale data sets and using advanced machine learning techniques, researchers can
gain a deeper understanding of reservoir properties and behavior, ultimately assisting
petroleum industry professionals in making more informed decisions[26].

Tabasi et al. (2022). developed optimized machine-learning models to predict frac-
ture density using conventional good logs in carbonate formations. The hybrid models
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significantly enhance fracture density prediction accuracy, including distance-weighted
K-nearest neighbor and neural network with firefly and artificial bee colony optimizers.
The study’s generalizability is confirmed with datasets from two additional wells in
the Marun field. Overall, the developed ML algorithms offer a promising solution for
predicting fracture density using conventional well logs, providing valuable reservoir
characterization and optimization insights. Tabasi et al. developed optimized machine-
learning models to predict fracture density using conventional well logs in carbonate
formations. The hybrid models significantly enhance fracture density prediction accu-
racy, including distance-weighted K-nearest neighbor and neural network with firefly
and artificial bee colony optimizers. The study’s generalizability is confirmed with
datasets from two additional wells in the Marun field. Overall, the developed ML al-
gorithms offer a promising solution for predicting fracture density using conventional
well logs, providing valuable reservoir characterization and optimization insights. Ac-
curately identifying and characterizing natural fractures are essential for understanding
fluid flow dynamics in oil and gas reservoirs, especially in carbonate formations. While
information from cores and formation imaging logs is valuable, its availability and cost
constraints necessitate alternative methods for predicting fracture density[29].

Using machine learning algorithms, Kheirollahi, Shad Manaman, and Leisi(2023)
conducted a study to estimate shear wave velocity in carbonate oil reservoirs. Existing
methods are expensive, so the authors aimed to use conventional well logs to develop
more cost-effective techniques. They pre-processed various logs, partitioned the dataset,
and constructed different models. The feed-forward neural network showed the best
results with high R-values of 0.99 and 0.96 for the training and testing datasets. The
authors fine-tuned the neural network architecture for enhanced prediction in other
wells. This study offers promising avenues for improved reservoir characterization and
decision-making in oil and gas exploration and production activities[21].

Sun and his team(2019) have conducted a study on optimizing models for quick
and accurate lithology identification while drilling using machine learning. Identify-
ing lithology from well-log data is critical in the petroleum industry, but conventional
methods often fail to meet the demands of real-time and accurate prediction, particu-
larly with logging while drilling (LWD) equipment, due to the complex sedimentary
environment and reservoir heterogeneity.

The study involved comparing and analyzing three prevalent machine learning algo-
rithms - one-versus-rest support vector machines (OVR SVMs), one-versus-one support
vector machines (OVO SVMs), and random forest (RF) - using data from conventional
wireline logging (CWL) and LWD in the Yan’an Gas Field. The primary objective of the
study was to optimize a practical method for LWD systems.

To simplify the input data dimensions, the researchers conducted correlation anal-
ysis on the logging data to derive characteristic parameters for training data. They
determined the optimal parameter values for each algorithm through the grid search
method and 10-fold cross-validation. They then used the three classifiers to predict
lithology on actual LWD data.

The results revealed that the characteristic parameters derived from correlation
analysis include AC, CAL, GR, K, RD, and SP logs. The overall classification and

21



CHAPTER 2. REVIEW OF LITERATURE ON GROUND THERMAL PROPERTIES

recognition performance of the RF classifier was found to be superior to the other
two classifiers, with an accuracy exceeding 90%. Although both OVR SVMs and RF
classifiers exhibited lower prediction errors than the OVO SVMs classifier for individual
lithology identification, the RF classifier notably expedites the training process.

Through comprehensive analysis, the RF classifier was identified as the optimal
choice for lithology identification while drilling, offering a blend of short training time
and high recognition accuracy. These findings not only advance drilling steering in
oilfield development but also contribute valuable insights for future research endeavors
in the field[28].

2.5.3 Challenges and Opportunities in Well-Log Interpretation

In petroleum exploration and development, neural networks can be used to interpret
well-log data.

Challenges:
A region’s geology can be highly complex, with small variations in lithology and

porosity. To capture these complexities, neural networks must be trained on several
geological scenarios. Well-log data quality and quantity vary dramatically between
wells and regions. Data augmentation and preprocessing can improve neural network
performance with insufficient or noisy data. Many neural networks are considered
’black boxes, meaning their internal workings are not easily understandable. This lack
of transparency can limit the model’s usefulness in decision-making, as it makes it
difficult to understand how it makes predictions. Neural networks tend to overfit,
particularly when dealing with complex geological formations. Model selection and
regularization techniques are crucial to minimizing this risk[15].

Opportunities:
Neural networks can learn complex patterns and relationships within data. By

identifying subtle correlations between different well-log measurements, more accurate
lithology predictions can be made. Automating interpretation with neural networks
reduces the need for manual intervention and speeds up analysis workflows. A large-
scale exploration and development project can greatly benefit from this. In addition to
seismic data and core analysis, neural networks can be integrated with other sources
of geological data to achieve a more accurate interpretation. Neural networks can
continuously learn new data. As more well-log data becomes available, neural networks
can adapt to changing geological conditions and improve performance[15].

As a result, neural networks can potentially improve well-log accuracy, efficiency,
and automation, making them a valuable tool for the petroleum industry. With careful
consideration of data quality, model complexity, and interpretability, neural networks
can provide valuable insight into subsurface geology. In the field of petroleum explo-
ration and development, neural networks present both challenges and opportunities[15].

2.6 Review of ground thermal properties and neural networks

According to Soteris A. Kalogirou (2000), an artificial neural network (ANN) can
solve complex and undefined problems across a wide range of domains. An ANN
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learns from examples, handles noisy and incomplete data, solves nonlinear problems,
and makes predictions quickly. ANNs are used in robotics, pattern recognition, fore-
casting, medicine, power systems, manufacturing, optimization, signal processing, and
social sciences. In system modeling, ANNs facilitate complex mapping and system
identification.

It emphasizes thematic relevance over chronological order in exploring neural net-
work applications in energy-related issues. Kalogirou uses ANNs to model and design
solar steam-generating plants, estimate parabolic-trough collector parameters, and pre-
dict solar water-heating systems’ performance. ANNs can also be used to predict airflow
in naturally ventilated rooms and energy consumption for passive solar buildings with
multiple hidden layers. In other fields of energy production and consumption, ANNs
are suitable for modeling.

Fellow researchers in the energy domain have applied ANNs to heating, ventilation,
and air conditioning systems, solar radiation analysis, power generation systems, load
forecasting, and refrigeration[19].

Adelina P. Davis and Efstathios E. Michaelides(2009) have conducted a rigorous
simulation to assess the feasibility of exploiting abandoned oil wells as a source of
geothermal power. The proposed method entails injecting and retrieving a secondary
fluid, namely isobutane, into the well at moderate pressures to produce vapor. The sim-
ulation employs a computational model that incorporates mass, energy, and momentum
conservation equations for well flow, allowing the team to determine the fluid’s state
from injection to retrieval.

The study’s results indicate that these systems can achieve a maximum power out-
put that is dependent on the temperature at the well bottom and injection pressure.
In the South Texas region, where typical wells have been examined, there is potential
for generating electric power between 2-3 MW. The research findings, therefore, of-
fer promising prospects for the utilization of geothermal energy and the recovery of
otherwise abandoned oil wells[8].

Abandoned oil wells have the potential to generate power when modified into
double-pipe heat exchangers. Injecting a secondary fluid like isobutane at the outer
rim can increase the power output. A single well can produce over 3MW of power with
a 450 K bottom-hole temperature and 30 bar injection pressure. This energy source is not
intermittent and can be available for both peak and basic demands. The power output
depends on down-hole temperature, injection pressure and velocity, and pipe geometry.
Optimal injection pressure is 30 bar, and a one-inch insulation thickness helps maintain
fluid temperature. When injection velocity and inner radius of the pipe are optimized,
power output can reach 3.4MW[8].

In the study conducted by A. Hartmann, V. Rath, and C. Clauser,(2005) the authors
focused on investigating the correlation between thermal conductivity and other petro-
physical properties in a borehole drilled within a Tertiary Flysch sequence. The authors
were able to establish a set of equations that predicts rock thermal conductivity using
logging data, with an average accuracy of better than 0.2 W/(mK), through regression
analysis of thermal conductivity, bulk density, and sonic velocity.

The authors then utilized logging data to calculate a lithological depth profile and
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subsequently employed it to develop a thermal conductivity profile. By comparing the
conductivity-depth profile with laboratory data, the authors determined that thermal
conductivity can be computed with an accuracy of less than 0.3 W/(mK) using con-
ventional wireline data. Furthermore, the author’s comparison of two different models
demonstrated the practicality of this approach, even when using old and incomplete
logging data.

In conclusion, the study provides valuable insights into the prediction of thermal
conductivity for boreholes that lack appropriate core data in similar geological settings.
The authors’ findings are of great importance to the field and demonstrate the potential
for further research to refine this approach[16].

In their scholarly article, Fred F. Farshad, James D. Garber, and Juliet N. Lorde(2000)
present a novel approach that employs artificial neural networks (ANNs) to predict
temperature profiles in oil wells, with a specific focus on 27 wells situated in the Gulf
of Mexico. The authors develop two ANNs capable of forecasting the temperature
of the fluid flowing at any depth within these wells by utilizing back propagation for
network training. Through testing with measured temperature profiles from the 27 oil
wells, both neural network models demonstrate the ability to effectively capture the
general temperature profile trends observed in naturally flowing oil wells, achieving an
impressive accuracy with a mean absolute relative percentage error of 6.0%.

The authors compare the accuracy of their proposed neural network models with
existing correlations that are used to predict temperature profiles in well-bore fluids. The
various correlations developed based on theoretical principles such as energy, mass, and
momentum balances coupled with regression analysis. The Neural Network 2 model
notably demonstrates significantly lower mean absolute relative percentage error than
other correlations. Furthermore, the accuracy of the neural network models is compared
to Kirkpatrick’s correlation to provide further validation of their efficacy[11].

Rahman Ashena(2023) proposes an innovative idea of converting inactive or aban-
doned oil and gas wells into geothermal wells. This would harness geothermal energy
and defer the costs associated with their closure. To validate the feasibility of this pro-
posal, Ashena conducted a detailed analysis of 20 case studies from different countries.

The analysis focuses on various key aspects, such as formation characteristics, down-
hole parameters, and surface conditions. Further, it delves into different production
scenarios, such as open-loop and closed-loop systems, optimization techniques for
open-loop systems, borehole heat exchangers, insulation methods, and the benefits of
installing bottom hole curvature.

The study also covers the use of organic Rankine cycle (ORCs), selection of circulation
fluids, circulation rates, working fluids, and performance metrics such as coefficient of
performance (COP) and thermal efficiency.

Ashena concludes by recommending a tailored idea for super-highly pressured
aquifers, emphasizing the vast potential of utilizing geothermal energy from abandoned
and old petroleum wells. This comprehensive investigation sheds light on the feasibility
and efficiency of repurposing oil and gas wells for geothermal energy production[3].

A. Bassam and colleagues(2010) employ an artificial neural network (ANN) ap-
proach to develop a predictive model for estimating static formation temperatures
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(SFT) in geothermal wells. They successfully train a three-layer ANN architecture
using a database of geothermal borehole data, which includes statistically normalized
SFT estimates derived from seven commonly used analytical methods in the geothermal
industry.

The main input variables for training the ANN include bottom-hole temperature
(BHT) measurements and shut-in times, while transient temperature gradients serve
as secondary variables. The LevenbergMarquardt (LM) learning algorithm, hyperbolic
tangent sigmoid transfer function, and linear transfer function are utilized to optimize
the ANN.

The best training dataset yields an ANN architecture composed of five neurons in
the hidden layer, achieving a satisfactory prediction efficiency with a correlation coef-
ficient (Rš) of 0.95. The ANN model demonstrates a percentage error of less than 75%,
indicating suitable accuracy. The predicted SFTs from the ANN model are statistically
analyzed and compared with true SFT data obtained from synthetic experiments and
actual BHT logs collected in geothermal boreholes during long shut-in times.

The results indicate strong agreement (Rš = 0.95) between the SFT estimates inferred
from the ANN model validation process and the true SFT data reported for synthetic
and field experiments. This suggests that the new ANN model could serve as a practical
tool for reliably predicting SFT in geothermal wells using only BHT and shut-in time as
input data[4].

A. Bassam and colleagues(2013) employ an artificial neural network (ANN) ap-
proach to develop a predictive model for estimating static formation temperatures
(SFT) in geothermal wells. They successfully train a three-layer ANN architecture
using a database of geothermal borehole data, which includes statistically normalized
SFT estimates derived from seven commonly used analytical methods in the geothermal
industry.

The main input variables for training the ANN include bottom-hole temperature
(BHT) measurements and shut-in times, while transient temperature gradients serve
as secondary variables. The LevenbergMarquardt (LM) learning algorithm, hyperbolic
tangent sigmoid transfer function, and linear transfer function are utilized to optimize
the ANN.

The best training dataset yields an ANN architecture composed of five neurons in
the hidden layer, achieving a satisfactory prediction efficiency with a correlation coef-
ficient (Rš) of 0.95. The ANN model demonstrates a percentage error of less than 75%,
indicating suitable accuracy. The predicted SFTs from the ANN model are statistically
analyzed and compared with true SFT data obtained from synthetic experiments and
actual BHT logs collected in geothermal boreholes during long shut-in times.

The results indicate strong agreement (Rš = 0.95) between the SFT estimates inferred
from the ANN model validation process and the true SFT data reported for synthetic
and field experiments. This suggests that the new ANN model could serve as a practical
tool for reliably predicting SFT in geothermal wells using only BHT and shut-in time as
input data.

Sven Fuchs and Andrea Förster have conducted research to explore methods for
predicting rock thermal conductivity (TC) using well-log data, with a focus on the North
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German Basin. TC data is an essential factor in understanding subsurface temperature
dynamics and heat flow. However, obtaining drill cores for laboratory measurements
can be challenging. Hence, the researchers investigated the correlation between TC
and standard well-log data, including gamma ray, density, sonic interval transit time,
hydrogen index, and photoelectric factor.

The study used both theoretical analysis and real subsurface data from four bore-
holes to examine the correlation trends between TC and well-log responses for different
mineral assemblages and porosity levels. The researchers proposed empirical equations
for predicting matrix TC separately for different sedimentary rock groups. The input
parameters for the equations include the volume fraction of shale, matrix hydrogen
index, and matrix density. The error of matrix TC prediction ranges from 4.2% to 11.4%
for different rock types.

Furthermore, the researchers developed prediction equations for bulk TC based on
lithological compositions. The input parameters for these equations include the vol-
ume fraction of shale, hydrogen index, and sonic interval transit time. These equations
predicted TC with average errors ranging from 5.5% to 11% for various lithologies. The
validation using measured temperature logs and modeled temperature logs demon-
strated excellent agreement, with interval temperature gradients varying by less than 3
K km1 and predicted absolute temperatures fitting with less than 5% accuracy.

Compared to previous TC prediction approaches, the developed equations showed
significantly higher prediction accuracy, with average errors less than 10%. This study
provides valuable insights into predicting TC from well logs in sedimentary formations,
offering improved accuracy for subsurface temperature estimation[12].

The team of Goutorbe, Lucazeau, and Bonneville(2006) introduces a novel technique
for estimating the thermal conductivity of sedimentary rocks. This technique utilizes
neural networks trained on geophysical well logs. Their approach, calibrated on Ocean
Drilling Program (ODP) data, involves the use of thousands of conductivity measure-
ments and five key geophysical well logs, including sonic, density, neutron porosity,
resistivity, and gamma-ray.

The researchers have employed multilayer perceptrons (MLP) to establish an empir-
ical relationship between these well logs (MLP inputs) and thermal conductivity (MLP
output). Validation tests have demonstrated that MLPs provide more accurate conduc-
tivity estimates compared to traditional linear models, achieving results within a 15%
confidence level. Notably, even when utilizing only four well logs, including neutron
porosity, MLPs still yield satisfactory results.

The authors have compared MLP predictions with conventional ’mixing’ methods
in two ODP sites. While the mixing technique produces reliable outcomes with precise
rock descriptions, MLPs offer a more straightforward alternative, requiring no addi-
tional parameters and delivering predictions in strong agreement with experimental
trends.

The proposed method holds great promise for estimating heat flow from data col-
lected in both scientific and industrial boreholes. By harnessing the power of neural
networks, Goutorbe, Lucazeau, and Bonneville have offered a valuable tool for enhanc-
ing thermal conductivity estimation in subsurface exploration and geothermal energy
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applications[14].
A team of researchers led by Dalla Santa(2020) has created a comprehensive database

of thermal properties crucial for the design of ground source heat exchanger (GSHP) sys-
tems. This Decision Support System is part of the EU-funded Cheap-GSHPs project and
provides essential underground thermal property input data for sizing geo-exchange
systems.

The database integrates information from various sources, including international
guidelines, extensive literature reviews, and over 400 direct measurements. Although
the database primarily focuses on thermal conductivity data, it does not include the
convective contribution facilitated by groundwater flow to heat transfer. In their paper,
the authors present and analyze the compiled database, shedding light on its significance
for GSHP applications.

The DSS developed within the scope of the European project Cheap-GSHPs is an
efficient tool for stakeholders involved in the planning and design of closed-loop Ground
Source Heat Pump (GSHP) systems. This system integrates crucial aspects that are
significant for designing such systems, thereby providing users with necessary design
parameters through software tools linked to a series of datasets.

Thermo-geological properties, particularly the local thermal properties of the ground
and the ground temperature profile play a pivotal role in the design of ground heat
exchangers. These properties determine thermal exchange capacity, impact the overall
performance of the energy system, and influence investment. The UNIPD Cheap-GSHPs
database for geological materials serves as an international reference for thermal prop-
erties in shallow geothermal systems. It integrates practical purposes by offering nec-
essary thermal property values of geological conditions through a dedicated database
developed as part of the Cheap-GSHPs project. This data is invaluable for preliminary
GSHP feasibility studies and design processes. Key elements of this database include:

The UNIPD Cheap-GSHPs database for geological materials serves as an interna-
tional reference for thermal properties in shallow geothermal systems. It integrates
widely used data from sources such as VDI and ASHRAE guidelines, along with ad-
ditional literature references. Over 250 samples of unconsolidated sediments and rock
were measured to enhance existing literature datasets. The database recommends values
calculated as averages from literature and project measurements, alongside minimum
and maximum values, to illustrate thermal conductivity variations due to natural ma-
terial heterogeneity. The introduction of new data expands the literature’s variability
range for the thermal conductivity of phyllite while more precisely defining ranges for
andesite, trachyte, and serpentinite. A new dataset for volume-related specific heat
capacity is included for specific lithotypes. Thermal properties for unconsolidated
sediments are categorized based on granulometry and moisture content for practical
application. Updated data on the thermal properties of gravels, obtained using an im-
proved device developed as part of the project, are included in the database, providing
a significant addition to internationally published data. It is important to note that these
values represent thermal conductivity and do not account for convective contributions
from groundwater flow[7].

Maher Nasr, Jasmin Raymond, Michel Malo, and Erwan Gloaguen conducted a

27



CHAPTER 2. REVIEW OF LITERATURE ON GROUND THERMAL PROPERTIES

study using well log analysis to assess the geothermal potential of the St. Lawrence
Lowlands sedimentary basin. The study aimed to address the challenge of determining
thermal conductivity, heat flow, and temperature in sedimentary basins due to the
heterogeneous distribution of minerals across various rock types. This is particularly
difficult when relying exclusively on databases from the oil sector.

To overcome this challenge, the study developed a novel methodology that utilizes
well-log data to improve the inference of thermal conductivity variations in sedimen-
tary formations. This approach enables the evaluation of heat flow and temperature
extrapolation at depth. The methodology was specifically applied to the St. Lawrence
Lowlands basin, leveraging available oil and gas databases, although it was not origi-
nally intended for geothermal exploration.

The methodology involved a quantitative analysis of well log data with an inversion
approach based on limited reference wells. Empirical relationships were established to
calculate thermal conductivity profiles for each available well. Pressure and temperature
corrections were applied, and continuous logs of thermal conductivity were utilized to
estimate Earth’s heat flux density using bottomhole temperatures and to extrapolate
temperatures at depth.

To achieve this, the study solved a modified version of Poissons equation using the
finite difference method. The results indicated an average temperature and standard
deviation for the St. Lawrence Lowlands at depths of 1000m, 2500m, and 5000m,
approximately 32 ś 6.9 řC, 63 řC ś 12.7 řC, and 119 řC ś 28.3 řC, respectively. Additionally,
temperature ranges were observed to vary from 19 to 52 řC, 41 to 112 řC, and 75 to 236
řC at depths of 1000m, 2500m, and 5000m, respectively[22].

2.6.1 Review of the literature related to geothermal energy advancements

An overview of various studies exploring geothermal energy utilization and thermal
properties assessment is presented through a literature review.

Artificial neural networks (ANNs) have been identified as a promising solution
to complex problems related to energy utilization. Researchers, such as Soteris A.
Kalogirou, have highlighted the versatility of ANNs in different applications, including
predicting thermal profiles in oil wells and estimating static formation temperatures
(SFT) in geothermal wells.

Studies by Adelina P. Davis, Efstathios E. Michaelides, and Rahman Ashena have ex-
plored the feasibility of converting abandoned oil wells into geothermal power sources.
Techniques involving injecting secondary fluids, such as isobutane, into wells can gen-
erate significant power output, contributing to the utilization of geothermal energy and
repurposing inactive oil wells.

Prediction of thermal conductivity has been a key research area for understanding
subsurface temperature dynamics. Studies by A. Hartmann, V. Rath, and C. Clauser,
as well as Sven Fuchs and Andrea Förster, have demonstrated methodologies using
well-log data and neural networks to predict thermal conductivity with high accuracy,
aiding in subsurface exploration and geothermal energy applications.

Comprehensive databases, such as the one developed by Giorgia Dalla Santa and
colleagues, provide essential thermal property values for designing ground source heat
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exchanger systems. The integration of data from various sources, including interna-
tional guidelines and direct measurements, aids in preliminary feasibility studies and
design processes for GSHP systems.

Studies like Maher Nasr et al. have assessed the geothermal potential of sedimentary
basins using well-log analysis. Researchers have developed novel methodologies to
overcome challenges in determining thermal conductivity and temperature profiles,
providing insights into the feasibility of utilizing geothermal energy from such basins.

In conclusion, the literature review underscores the importance of innovative ap-
proaches, data integration, and advanced technologies in harnessing geothermal energy
and understanding subsurface thermal properties for sustainable energy applications.

The exploration and utilization of geothermal energy is a vital field, and studying
ground thermal properties is essential for its advancement. However, obtaining accu-
rate thermal property data can be challenging, especially in areas where direct measure-
ments are limited or unavailable. To address this issue, leveraging well-log datasets and
advanced computational techniques like neural networks can provide valuable insights
into ground thermal properties, aiding in the development of sustainable geothermal
energy solutions. Therefore, the objectives of this study are to evaluate the feasibility of
using neural networks to analyze well-log datasets for predicting ground thermal prop-
erties, develop and optimize neural network models that accurately estimate thermal
conductivity, heat flow, and temperature profiles based on well-log data, investigate the
potential of neural network-based approaches to improve the resolution and accuracy
of ground thermal property predictions compared to traditional methods, validate the
performance of the developed neural network models using real-world well-log data
from diverse geological settings, and explore the implications of the study findings for
the design, implementation, and optimization of geothermal energy systems, with a
focus on enhancing efficiency and sustainability[19].

2.7 Understanding the importance of oil and gas well data for
predicting thermal conductivity.

2.7.1 Oil window

The temperature required for the production of oil and gas depends on various
factors, such as the depth and composition of the reservoir and the type of hydrocarbons
present. Generally, oil and gas formation occurs over millions of years under specific
geological conditions characterized by high temperatures and pressures.

Petroleum formation typically occurs several kilometers below the Earth’s surface
at temperatures ranging from 60 to 120 degrees Celsius (140 to 248 degrees Fahrenheit).
Here, organic matter, such as plankton and algae, undergoes burial and transformation
into hydrocarbons due to heat and pressure.

Similarly, natural gas formation can occur at similar depths but may necessitate
slightly higher temperatures, ranging from about 90 to 150 degrees Celsius (194 to 302
degrees Fahrenheit). While natural gas is mainly composed of methane (CH4), it can
also contain ethane, propane, and other hydrocarbons.
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In some cases, higher temperatures and pressures found at greater depths or in
geologically active areas can lead to the creation of thermogenic gas and oil, which have
undergone more extensive thermal maturation processes.

It’s essential to note that these temperature ranges are approximate and are subject
to geological factors, such as the presence of organic-rich source rocks, the thermal
conductivity of surrounding formations, and the duration of heating. Understanding
the temperature conditions within a reservoir is critical for assessing its potential for oil
and gas production and optimizing recovery techniques[31].

2.7.2 Importance of thermal conductivity

Understanding the thermal conductivity of formations within a reservoir is of utmost
importance for several reasons. Firstly, thermal conductivity plays a crucial role in heat
transfer through the reservoir rocks, determining how efficiently heat can propagate.
As temperature significantly influences the generation, maturation, and migration of
hydrocarbons, higher thermal conductivity can help inform the thermal history of the
reservoir and hydrocarbon generation processes.

Secondly, knowledge of thermal conductivity is valuable for reservoir characteri-
zation and understanding the thermal properties of the rocks. This information is es-
pecially useful for predicting temperature distributions, hydrocarbon generation rates,
and reservoir behavior over time, which helps with reservoir modeling and simulation
studies.

Thirdly, thermal conductivity impacts the temperature distribution within the reser-
voir during production operations. Thus, understanding these temperature profiles
can help optimize hydrocarbon recovery by informing decisions regarding production
strategies, such as well placement, injection rates, and fluid properties.

Fourthly, reservoirs with high thermal conductivity may also have the potential for
geothermal energy extraction. Understanding subsurface thermal properties is vital for
assessing the feasibility and efficiency of geothermal projects[6].
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3
Methodology

3.1 Data Sources

Three distinct oil fields in Iran were used to collect well-log data: The first formation
is located in the southwest of Iran, the second Field is in the west of Iran, and the third
Field is in the south of Iran. Ten wells were made from these data.

3.2 Dataset Description

First oil field

• Location: Southwest Iran.Figure3.1

• Lithology: Heterogeneous, including Anhydrite, Dolomite, Limestone, Sand-
stone, and Shale.

• Depth Range: 3400 to 3800 meters.

• Temperature: The bottom log interval temperature is 115 ◦C, and the top log
interval temperature is 98 ◦C.

• Drilling Bit Size: 8.5 inches.

• The density of Drilling Fluid: 9 lb/gal.

• Frames: Each log consists of 1771 frames.

Second oil field

• Location: West Iran.Figure3.2

• Lithology: Interpretation results show that the Sarvak Formation has hydrocarbon
potential, and the average useful porosity in studied reservoir intervals is about
12%. Due to the formation’s high-energy environment, the shale volume is low.

• Depth Range: 3187 to 4280 meters.

• Temperature: Bottom hole temperature is 138◦C.

• Frames: Each log consists of 7107 frames.
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Figure 3.1: The location of the first oil field in southwest Iran[23]

3.2.1 Third oil field

• location: south of Iran.Figure3.3

• Lithology:

– 0-10% Limestone,
– 10%-50% Dolomite limestone,
– 50%-90% Calcareous dolomite,
– 90%-100% Dolomite

• Texture: Peloidal grainstones are well structured and winnowed. Intraclastic
grainstones are poorly sorted and bimodal.

• Sedimentary Structures: Planar bedded grainstones with local soft-sediment folds;
planar bedded mudstones/wackestones.

• Biogenic: Dominated by Zoophycos burrows, with algal binding and other burrow
forms.

• Depositional Environment: Lagoon to tidal flat setting with grainy washovers and
local tidal inlets, transitioning upwards into a sabkha/salina setting.

• Depth Range: 2800 to 3200 meters.

• Frames: Each log consists of 3123 frames.

• Temperatur Range: 85◦C to 105◦C

3.2.2 Types of Well-Log Data

The datasets include various types of well-log measurements, such as:
• Gamma-Ray logs

• Caliper logs

• Resistivity logs

• Sonic logs

• Neutron porosity logs

• Density logs

• Total porosity logs

• Photoelectric factor logs
Sample Rate: Data was recorded at a sample rate of 0.15 seconds.
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Figure 3.2: Position of the second oil field in Iranian oil filed mapp[25]

Figure 3.3: Location of third oil field[18]
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3.3 Data Preprocessing

3.3.1 Introduction to GeoLog

GeoLog is a comprehensive software suite for processing and interpreting well-log
data. It includes tools for quality control, data editing, and advanced modeling. The
importance of well-log editing cannot be overstated. Editing well-log data is crucial to
ensure accuracy and reliability in subsequent analyses. Raw well-log data often contain
noise, errors, and inconsistencies due to tool malfunctions, environmental conditions,
or human error. Proper editing helps remove these anomalies and enhance the data
quality.

3.3.2 Data Import

Importing well-log data into software platforms like Leapfrog Geothermal involves
gathering data from various sources, such as files (CSV, ASCII, LAS), databases, or
specialized software (e.g., acQuire, iPoint), and matching the data in the selected files
with the expected columns for each type of table (e.g., collar, survey, interval, screens)
to ensure proper structuring and recognition by the software; the data must be in the
specific formats expected by the software, typically CSV, ASCII, or LAS, and the well
ID must be consistent across all tables for the data to be properly associated and linked
together, allowing the software to recognize all the data belonging to a specific well;
after the import, it’s important to visually inspect the data to ensure it has been correctly
imported and that there are no obvious issues or discrepancies, laying the foundation
for further analysis and interpretation. GeoLog enables the import of well-log data from
various formats, such as LAS and DLIS. Users can import data from multiple wells and
fields for comprehensive analysis.

3.3.3 Quality Control (QC)

Quality control (QC) of well-log data ensures the reliability and accuracy of the data
used in oil and gas exploration and production. Well-log data forms the foundation
for evaluating oil and gas reserves and making critical decisions in the industry. Poor-
quality data can lead to erroneous conclusions and costly mistakes

3.3.4 Depth Matching

For alignment, use a common depth scale. To interpret logs correctly, all depth
intervals must match. In sandstone and shale formations, the gamma-ray log is used as
a reference to match other logs. However, the density or neutron log is used as the refer-
ence in carbonates. The tools available in the GeoLog software matched petrophysical
logs in the studied wells from the Asmari formation, such as depth-matching the sonic
log to the density log.
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Figure 3.4: Despiking on the sonic log (The red one is corrected)

3.3.5 Noise Reduction and Despiking

In dense, high-velocity formations like anhydrite, which is considered a cap rock,
low transit times can cause spikes in the sonic log. These spikes are due to receiver mea-
surement errors and are unrelated to the formation’s rock properties. This phenomenon
is known as cycle skipping. The Despiking tool in the GeoLog software removes the
noise generated in the sonic log (depicted in green), resulting in the corrected sonic log
(depicted in red) as shown in Figure3.4

3.3.6 Smoothing

Noises created by tool sticking, cable stretching, or device shutdown at certain
depths of the well and zones with fractures can cause density and neutron logs to show
step-like spikes. These spikes can affect the calculations of petrophysical parameters.
The logs were smoothed in these wells using the Smooth tool in the GeoLog software.
Log data may be smoothed to remove anomalous values. The Smooth module has
four smoothing methods: mean, median, harmonic, and geometric. The size of the
smoothing filter, or number of smooth points, determines the window length. The
higher the number of sampling points, the greater the smoothing. Smooth only applies
a box filter. The weights of each sample point are uniform. The number of points
smoothed about a particular sample point includes the current one and should always
be an odd number.

3.3.7 Precalculation

The precalc module is a compulsory precursor to any petrophysical analysis for
several reasons:

• Some environmental corrections are dependent on mud cake thickness. Com-
monly, the mud cake thickness measured on the density/neutron porosity curves
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Figure 3.5: precomp layout after running precalc module

and the resistivity curves will be different. The pre-processing option creates mud
cake thickness curves for both of these tools.

• The photoelectric absorption cross-section (U) will be calculated as the product
of the photoelectric index and electronic density. This will be overwritten if
environmental corrections are subsequently applied to the density log.

• Various fluid properties that are used by Multimin are dependent on both the mud
pressure in and the temperature of the borehole and the immediately surrounding
rock. Some environmental corrections also use these parameters. The precalc
module places curves of these calculated properties into the database.

• Conductivities for the flushed zone (CXO) and unflushed zone (CT) will be cal-
culated from the deep and shallow resistivity logs as they are listed in the alias.
alias file. These will be overwritten if environmental corrections are subsequently
applied to the resistivity logs.

• Mud, mud cake, and mud filtrate resistivities from samples need to be translated
into resistivity curves that vary with depth and temperature

The PRECALC module is used to calculate the following parameters from well-log
data (Figure3.5):

• Formation temperature and pressure profiles.

• Formation temperature and pressure profiles.

• Formation temperature and pressure profiles.

• Downhole mud properties (Rmf, Rm, Rmc) from sample measurements.

• Salinities of mud and mud filtrate from sample measurements.

• Mudcake thicknesses for both resistivity and porosity tools.

• Photo-electric absorption cross-section: U

• Conductivities of unflushed and flushed zones (Ct, Cxo) from measured resistiv-
ities.

These items are determined in Geolog for all wells.
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Figure 3.6: Layout of Environmental Corrections

3.3.8 Environmental Corrections in Geolog

Raw data indicates the formation of rock and fluid properties and is strongly influ-
enced by the type of environment the tools are exposed to at the time of data acquisition.
Hence, the raw data needs to be corrected, resulting in a set of log data that is consistent
across the same formation, regardless of the environment. Some conditions that can
affect the tool responses are mud properties (salinity, barites in mud, conductive of mud,
etc.), borehole size, and even tool orientation. Various correction charts are available
depending on the tool used to record the data. These charts are usually generated and
supplied by the service provider. Sometimes, the service provider supplies environ-
mentally corrected data; other times, the end user must apply corrections by selecting
the appropriate charts for the tool. Environmental corrections are applied during phase
rotation of the real and imaginary data.(Figure3.6)

• Salinity Correction: The salinity correction is only applied if the Rmf < 10 ohm.m
at 75◦C. The correction compensates for the loss of hydrogen atoms replaced by
salt ions.

• Temperature Corrections: Temperature affects protons’ thermal relaxation and re-
duces the returned signal’s amplitude. The temperature correction should always
be applied.

• Hydrogen Depletion Correction: Increased formation temperature reduces the
formation fluid’s density and decreases the hydrogen index. Higher pressures
increase the hydrogen index. This effect is compensated for by using a Hydrogen
Depletion Multiplier, which is a function of porosity and temperature

In this section, the Schlumberger Charts book is used for Environmental Corrections
of well-log data, and it applies to GR, neutron, density, and resistivity logs.

3.3.9 Determining of petrophysical parameters

Within Geolog, Determin provides advanced deterministic formation evaluation
solutions for petrophysicists, geologists, and engineers. Determin is a comprehensive
suite of individual deterministic modules that allow the analyst to apply all the major
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Figure 3.7: Flow chart of determining of petrophysical parameters

Figure 3.8: layout of Determination Analysis of first oil field

modern petrophysical models in the traditional analysis methodology. It includes
all common techniques for determining shale/clay volumes, porosity, saturation, and
lithology. Interactive parameter picking and multi-zone/multi-well analysis provide a
rapid workflow for formation evaluation. The Petrophysics menu provides a variety
of modules for performing deterministic petrophysical analysis. Modules have been
constructed to incorporate the concept of total and effective porosities and saturations,
illustrated in Figure3.7

3.3.10 layout of Determination Analysis of first oil field

As can be seen in the picture, the first track shows CGR, GR, and CALIPER logs. The
next track shows resistivities logs, followed by density logs, neutron logs, and photoelec-
tric factor logs, and finally, sonic logs are displayed. These logs determine and correlate
the lithology track with the core data’s lithology. The formation is heterogeneous, and
the lithology includes Anhydrite, Dolomite, limestone, sandstone, and shale(Figure3.8
and 3.9).

3.3.11 layout of Determination Analysis of second oil field

In the second field, lithology is limestone without any shale, and we can say pure
limestone.( Figure3.10)

3.3.12 layout of Determination Analysis of third oil field

In this oil field, we have Dolomite, Limestone, and layers of Anhydrite.(Figure3.11)
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Figure 3.9: layout of Determination Analysis of first oil field

Figure 3.10: layout of Determination Analysis of second oil field

Figure 3.11: layout of Determination Analysis of third oil field
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Figure 3.12: Volume of Each lithology

3.4 Estiamtion of thermal conductivity

In the Geolog, the porosity and volume of lithology are determined for each well.
The volume of lithology in well-1 from the first oil field is shown in figuure3.12

log(𝜆) =
𝑛∑
𝑖=1

𝑉𝑖 · log (𝜆𝑖) (3.1)

In this equation:
𝜆 represents the thermal conductivity of the host rock.
𝑉𝑖 represents the volumetric fraction of the component.
𝜆𝑖 represents the thermal conductivity of the component.
I calculated the thermal conductivity profiles for the formation using the geometric

average method, which involves weighting each component’s contribution to thermal
conductivity by its volumetric fraction. I used the recommendations from the paper
"An updated ground thermal properties database for GSHP applications" by Galgaro
et al. (2020) to compute the thermal conductivity values.(Figure3.14) With the help of
Python(Figure3.13), I processed the well-log data and volumetric fractions to determine
the thermal conductivity profiles for the geological formations under consideration.

The next step involves importing this data into Geolog software after predicting
thermal conductivity using the formula provided. Thermal conductivity data can be
visualized along with other well-log data, such as gamma ray, resistivity, neutron,
density, sonic, and photoelectric factor logs, in Geolog. This method can also be used
to analyze thermal conductivity in conjunction with other geological parameters.

3.4.1 verifying thermal conductivity calculated with measured values in
the Laboratory

I used Anhydrite, limestone, sandstone, organic shale, organic sandstone, and
dolomite samples to validate the estimation values. (Figure3.15) I utilized the Isomet
2114 device in the University of Padova laboratory to determine the samples’ thermal
conductivity.(Figure3.16) The results are presented in Table 2 and can be seen in the
following figure3.17

3.4.2 ISOMET 2114

The ISOMET 2114 is a portable hand-held measuring instrument for directly mea-
suring heat transfer properties of a wide range of isotropic materials, including cellular
insulating materials, plastics, glasses, and minerals. It has two optional measurement
probes: needle probes for soft materials and surface probes for hard materials. It applies
a dynamic measurement method, which reduces the measurement time compared to
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Figure 3.13: codes of calculating thermal conductivity

Figure 3.14: Table of recommended thermal conductivity values[7]

Figure 3.15: In this figure (a) represents Dolomite,(b) Anhydrite, (c) and (d) Limestone
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Figure 3.16: In this figure (a) represents Organic Shale, (b) sandstone, (c) sandstone with
high porosity, and ( d) organic sandstone)

Figure 3.17: Thermal Conductivity measured in Lab

steady-state measurement methods. The built-in menu system on color graphic dis-
play and the alphanumeric keypad enable effective interactive communication with
the device. Measurement data are stored in the high-capacity internal memory. The
content of the memory is accessible through the display or can be transferred to a PC
through a USB port. Calibration data in internal memory ensures the interchangeability
of probes without affecting the accuracy of the measurement. The supplied software
package enables the updating of calibration coefficients after recalibration of measure-
ment probes through reference materials. The device can be powered from mains or
internal rechargeable batteries at outdoor, in situ measurements.(Figure3.18)

3.4.3 samples

In figure3.17, the thermal conductivity of each sample is measured with ISOMET
2114. The thermal conductivity values for each type of rock are calculated using a
specific formula, and these calculated values are verified.Figure3.19 compares the mea-

Figure 3.18: ISOMET 2114
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Figure 3.19: Table of the thermal conductivity measured and calculated.

sured values from the lab with the values calculated using the formula, and the results
are deemed acceptable.

In Figure3.19, the thermal conductivity of the sandstone in our calculation is de-
creased because the sandstone contains an oil reservoir, and the fluid content affects
thermal conductivity. As we know, oil can reduce thermal conductivity. In Chapter 4, I
explained more about the parameters affecting thermal conductivity.

3.5 Artificial Neural Network

I calculated the thermal conductivity using a formula and verified it with the mea-
sured thermal conductivity in the laboratory. I can use this thermal conductivity to
apply Neural Networks in my predictions.

3.5.1 Geolog’s Step-by-Step Process for Predicting Thermal Conductivity

Data Selection and Preparation
For data input, the following logs are selected (Figure3.20(c)):

• CGR (Compensated Gamma Ray)

• Neutron Porosity (Nphi)

• Density

• Resistivity

• Total Porosity

• Sonic Log

An associated log represents the output of a previously calculated thermal conduc-
tivity.

Architecture of an ANN

• input Layer: The input layer contains six neurons, each corresponding to one of
the selected logs.

• Hidden Layer: A single hidden layer with 2 neurons was specified. This hidden
layer processes the inputs using a non-linear activation function, which assists the
network in learning complex relationships.(Figure3.21)

• Output Layer: The output layer is one neuron that outputs the predicted thermal
conductivity.

Training the ANN

• Initialization: The network’s weights and biases are initialized, which can be done
randomly or using specific methods such as Xavier or He initialization.(Figure3.20(b))
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Figure 3.20: Model Logs

Figure 3.21: Logs ANN Model Parameters

• During forward propagation, for each epoch

• The input data is fed into the network.

• Each input value is multiplied by its corresponding weights and summed in the
hidden layer neurons.

• An activation function is applied to the weighted sums.

• The outputs from the hidden layer are then passed to the output layer neuron,
which produces the predicted thermal conductivity.

• Backpropagation: The error is propagated back through the network to update
the weights. This is done using an optimization algorithm like gradient descent,
which adjusts the weights to minimize the error.

• Epochs: This process is repeated for the maximum number of epochs (300 in my
case), continually refining the weights to improve prediction accuracy.(Figure3.21)

Propagation of the Model

• Once the ANN is trained, the next step is to use this trained model to predict
thermal conductivity for the entire well.

• Propagation: The trained ANN model takes input logs from all depth inter-
vals of the well and predicts the thermal conductivity for each depth inter-
val.(Figure3.20(a))
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Figure 3.22: Cross-plot of ANN-Predicted TC vs Measured TC

3.6 Validation of ANN Predictions Against Measured Thermal
Conductivity Values

After using the ANN approach to predict thermal conductivity in the first well, I
validated the results by creating a cross-plot and running a regression analysis with
the measured thermal conductivity data. The relationship between the predicted and
measured values is depicted in the figure3.22, and the correlation coefficient (CC) is
over 95%, indicating that our prediction is accurate. To gain a deeper understanding, I
categorized the data into 6 clusters, each representing different lithology properties and
porosity properties. I used different colors to represent the clusters, as shown in the
figure3.23. Blue is associated with low porosity and high density, while red and orange
are associated with high porosity and low density.

3.7 Values predicted vs. values calculated

I determined the Mean Absolute Error (MAE), Mean Squared Error (MSE), and
R-squared (Rš) using Python. Figure3.25 displays predicted and calculated thermal
conductivity values to illustrate the model’s performance.

3.7.1 Explanation of Performance Metrics

• Mean Absolute Error (MAE): An average of the absolute differences between
predicted and actual values, providing a straightforward measure of prediction
accuracy. The low MAE(0.032) indicates that, on average, the model’s predictions
are very close to the actual measurements.
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Figure 3.23: Legend of Clusters with histograms(a) and wights (b)

Figure 3.24: Layout of Thermal conductivity Predicted using ANN approach
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Figure 3.25: Calculated and predicted thermal conductivity values

• Mean Squared Error (MSE): The average of the squared differences between pre-
dicted and actual values. This metric emphasizes larger errors due to the squaring
process, and the low MSE(0.0018) value indicates that such large errors are rare,
confirming the model’s precision.

• R-squared (R2): A statistical measure of how well the predicted values approxi-
mate the data. The Rš value of 0.98 indicates that nearly all variability in the actual
thermal conductivity values is captured by the model’s predictions, underscoring
its high reliability

The ANN model performs exceptionally well at predicting thermal conductivity,
with a Mean Absolute Error (MAE) of 0.032 and a Mean Squared Error (MSE) of 0.0018.
These low error values indicate that the model’s predictions are very close to the ac-
tual values, on average. Additionally, the R-squared (R2) value of 0.98 suggests that
the predictions made by the model account for 98% of the variance in the calculated
thermal conductivity values. This high Rš value signifies a strong correlation between
the predicted and actual values, indicating that the model explains almost all the data
variability. The depth values provide context for where the thermal conductivity mea-
surements were taken, showing consistency across a range of depths. The small absolute
errors between the predicted and calculated thermal conductivity across these depths
further emphasize the model’s accuracy. These metrics illustrate the model’s reliability
and effectiveness in predicting thermal conductivity in geological studies, making it a
valuable tool for researchers in this field.

3.8 Propagation Of the ANN model in the other wells

After evaluating the model performance and achieving a 98% correlation coefficient,
the model is ready to be applied to other wells to predict thermal conductivity. Since
thermal conductivity data is unavailable for these other wells, I used N-fold cross-
validation to validate my model. This method ensures that the model’s predictions are
reliable and accurate despite the absence of direct thermal conductivity measurements
in the new wells. The results and a comprehensive analysis of these findings will be
presented in the next chapter. This section will provide detailed interpretations of the
relationship between thermal conductivity and various petrophysical properties. By ex-
amining these correlations, we will gain valuable insights into how thermal conductivity
interacts with and is influenced by factors such as porosity, permeability, and mineral
composition. These insights will validate the model’s predictions and enhance our
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understanding of the subsurface geological conditions, contributing to more informed
decisions in geophysical exploration and resource management.
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4
Results

4.1 Overview

This chapter presents findings from my study predicting ground thermal conduc-
tivity using neural networks trained on well-log data. This study aims to evaluate the
effectiveness of machine learning techniques in estimating key thermal parameters in
subsurface environments, such as thermal conductivity. I begin Chapter 4 by providing
an overview of the dataset. It consists of well-log data collected from various geological
formations in a particular geographic area. The parameters included in the dataset are
gamma-ray measurements, resistivity, temperature, and other relevant information. To
train the models, I describe the layers, activation functions, and optimization algorithms
used in our neural network architecture. My discussion also includes data cleaning,
normalization, and feature engineering techniques designed to enhance the predictive
performance of my models. We evaluate the performance of the trained neural net-
works in predicting ground thermal properties. To assess the accuracy and reliability
of predictions, I use quantitative metrics. Models that capture underlying relation-
ships between input features and thermal properties can be evaluated using cross-plots
comparing predicted values with ground truth measurements.

4.2 Analysis of thermal conductivity

In this section, I utilized layouts, cross-plots, and a histogram to analyze wells from
the first oil field. Similar to the previous chapter, this field’s lithology is diverse and
includes anhydrite, dolomite, limestone, sandstone, and shale.

Based on the clusters of well-1, each cluster color represents a specific lithology with
a corresponding porosity percentage. The porosity increases from the blue cluster to
the red one, decreasing thermal conductivity. This is due to the inverse relationship
between porosity and thermal conductivity.

To validate my result, I calculated the Mean Absolute Error, Mean Squared Error,
and R-squared (predicted vs. calculated).
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Figure 4.1: (a) Cross-plot of TC and Denisty, (b) Cross-plot of TC and Totol Porosity, (c)
layout of lithology and TC curve in well-1 of the First oil field

4.2.1 First oil field

I predicted thermal conductivity in this oil field and then validated the result for two
wells. I used cross-plots to demonstrate the relationship between thermal conductivity
and density. A regression analysis was used to show the correlation coefficient with an
equation.

well-1
In Figure4.1(a), the cross-plot displays the predicted thermal conductivity and den-

sity log in well-1, with colors representing clusters from the previous chapter. The
clusters range from high to low porosity (orange and red clusters indicate low density,
while blue indicates high density). As observed in the cross-plot, the thermal conduc-
tivity increases as the density increases, indicating a direct relationship between the
two. This supports the accuracy of my prediction.

Regarding lithology and porosity, the blue area indicates higher density than other
areas, and it is associated with Anhydrite, which has high thermal conductivity. The
red and orange areas are related to sandstone (2.6 g/cc) and shale (2.2 g/cc) due to their
high porosity and low density, while the blue area is related to Anhydrite (2.98 g/cc)
and Dolomite (2.87 g/cc).

The correlation coefficient is 97%.
The equation is given by:

𝑇𝐶 = −2.29 + 0.0019𝜌 − 1.27 × 10−8𝜌2

The next graph(figure4.1(b)) illustrates the predicted thermal conductivity versus
total porosity. The x-axis represents porosity, while the y-axis represents TC. I used
color to group the data based on porosity and lithology. The color gradient ranges from
blue to red, with an increase in porosity.
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Figure 4.2: (a)Histogram of TC (box chart) (b) Histogram of TC (bar chart), (c) histogram
of TC in sandstone zone colored by PEF (d) Histogram of TC cored by Density log in
well-1 of First oil field. The color bar range increases from blue to orange
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We can observe (figure4.1(b))that high porosity is represented by the red and orange
clusters (20% to 30%), while low porosity is indicated by the blue area (1% to 0). Conse-
quently, there is an inverse relationship between porosity and thermal conductivity. As
porosity increases, the thermal conductivity decreases. Anhydrite and dolomite exhibit
the highest TC, whereas shale has the lowest TC relative to porosity. The correlation
coefficient is 95%. The equation is given by:

𝑇𝐶 = 3.34 − 4.98Φ + 2.68Φ2

The following graph(figure4.1(c))shows the curve of TC (Thermal conductivity) and the
lithology track. At the top of the track, the lithology consists of anhydrite. As we move
downward, we encounter layers of dolomite intermixed with limestone, which can be
referred to as dolomitic limestone. The thermal conductivity of Anhydrite ranges from
3.7 to 3.9, while limestone ranges from 2.6 to 2.8, and dolomite ranges from 2.9 to 3.3.

In figure 4.2I created several thermal conductivity (TC) histograms using different
styles. The first(a) is a box chart showing the frequency of TC in well-1. I used the
Photoelectric Factor log (PEF) to understand better because PEF can determine lithology.
Based on the PEF log values, each color represents a different lithology: blue for shale,
green for sandstone, light green for limestone, yellow for dolomite, and orange for
anhydrite. From left to right, thermal conductivity increases.

The bar chart histogram(b) displays the range of values for different lithologies,
with shale having a minimum value of 1.9 and anhydrite having a maximum value of
3.9. The colors in the chart correspond to the lithology categories described in the first
histogram.

To demonstrate the impact of hydrocarbons on TC, I utilized a histogram(c) and
applied a filter for PEF log values smaller than 2.2, highlighting sandstone. In the
resulting bar chart, two sections of sandstone are visible in the same color but with
varying thermal conductivities. The first section exhibits lower TC than the second
section, attributed to the presence of hydrocarbons in this area, indicating that hydro-
carbons can reduce TC. The last histogram(d) shows the frequency of TC, colored by
density from blue to orange. As density increases, TC also increases, demonstrating a
better understanding of the relation between TC and density.

well-2
The figure4.3 shows the cross-plot validation of predicted TC by the N-fold method.

This means I validated it by training 25% of the data and then obtained the ANN model.
After that, I tested the model with the rest of the data, and it performed well, showing a
97% correlation coefficient. I also determined the mean absolute error (0.43) and mean
squared error (0.003).

The cross-plot of TC and density(a) shows that as density increases, TC also increases.
The color change from blue to orange on the density log indicates increasing density.
There is also a direct relationship between TC and porosity. The correlation coefficient
is approximately 98%.Figure4.4(a)

The cross-plot (Figure4.4)(b) of the TC and Sonic logs shows an inverse relationship
because the Sonic log measures transition time and not velocity. If transition time
increases, TC decreases. The color shows the Sonic log(DT) range increasing from blue
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Figure 4.3: Cross plot of TC Predicted and TC Calculated well 2 in the first oil field

to red, and the Correlation Coefficient is about 94%.
The equation is given by:
TC=4.65 - 0.0091*DT
This histogram (box chart) displays the frequency of thermal conductivity in well 2. I

used a color gradient to represent the density of the data. The color bar ranges from blue
to orange, indicating increasing density. It illustrates that lower thermal conductivity
values are represented by the color blue, indicating lower density, while the highest
values are represented by the color orange, indicating higher density.(Figure4.4(c))

The following bar chart of figure 4.4(d) represents TC, and I also used a Neutron
porosity log to display the porosity. The color of the bar changes from blue to red,
indicating that blue represents the highest TC and red represents the lowest TC.4.4(d)

In this histogram of Figure4.5(a), we can observe the frequency of TC in well-2, with
density represented by colors ranging from blue to orange. The blue area indicates the
lowest Tc values, while the orange area represents the highest Tc values. This is because
there is a direct relationship between TC and density. and the last graph(b) shows the
curve of TC in well-2.Figure4.5(b)

In this oil field, the Bottom log interval temperature is about 115 in the 3800 m
depth, and the mean value of thermal conductivity is 2.7 W/m ·K, so this oil field could
be possible for geothermal purposes regarding properties such as TC, Temperature,
water-saturated (45%) and high permeability of reservoir rock(sandstone) and presence
of fractures in carbonates and it is good for mide geothermal system

4.2.2 Geothermal Potential Assessment

Several factors need to be considered to assess the potential of an oil field for geother-
mal purposes, including temperature, thermal conductivity, water saturation, and the
suitability for a mid-range geothermal system.

• A temperature of 115 C at a depth of 3800 meters is suitable for a mid-range
geothermal system. Geothermal energy typically requires temperatures above
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Figure 4.4: (a) Cross-plot of TC and Density log(colored by density, (b) Cross plot of TC
and Sonic colored by DT (c) Histogram of TC colored bt Density (d) histogram of TC
colored by Neutron porosity
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Figure 4.5: (a)Histogram Of TC colored bt Density log(RHOB),(b)Represent the TC
curve of well-2 in first oil field

100řC, which can support binary cycle power plants commonly used for medium-
temperature geothermal resources.

• Thermal conductivity (TC) is crucial as it affects heat transfer efficiency. A mean
TC of 2.7 W/m · K is considered good for geothermal purposes. Higher thermal
conductivity facilitates better heat transfer from the reservoir to the surface.

• Water saturation of 45% is beneficial because water acts as a heat transfer medium
in geothermal reservoirs. Adequate water saturation ensures efficient heat extrac-
tion

• At 3800 meters, drilling and operational costs are significant, but the depth also
contributes to reaching higher temperatures, enhancing the feasibility of geother-
mal energy extraction.

• Reservoir Permeability: The permeability of the reservoir rock(sandstone) is an-
other critical factor. High permeability allows for efficient fluid flow( presence of
fractures in Carbontes), which geothermal systems need.
This oil field seems to have the potential to be converted into a geothermal en-
ergy production site. Its moderate temperature, favorable thermal conductivity,
and sufficient water saturation suit it for mid-temperature geothermal systems
or direct-use applications. To confirm this conversion’s feasibility and economic
viability, further studies, including detailed geological surveys, reservoir assess-
ments, and economic analyses, are recommended.

4.2.3 Second oil field

I utilized the ANN model to predict TC in the second field for 6 wells. The
results were validated using N-fold analysis and were found to be acceptable. The
correlation coefficient is about 97% figure4.6
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Figure 4.6: Cross-plot of predicted and N-fold method for validation

Well-1
As described in Chapter 3, the lithology of this field primarily consists of limestone
with interspersed layers of shale. Therefore, the main mineral composition of this
formation is calcite. In Figure4.7(a), the cross-plot of density and TC shows a
direct relationship between them. The color bar represents GR and indicates the
presence of shale, ranging from blue to red, as GR increases. However, the volume
of shale appears to be very low, as indicated by the predominantly blue color. The
correlation coefficient is about 96%. The equation is given by:

𝑇𝐶 = −8.34 + 0.0076𝜌 − 1.25 × 10−6𝜌2

Figure4.7 (b) shows that the thermal conductivity (TC) histogram ranges from
2.5 to 3.2. The data has been clustered using sonic, density, and neutron logs
into two distinct groups based on porosity. The blue cluster, which has low
thermal conductivity, represents high porosity, while the red cluster, which has
high thermal conductivity, indicates low or zero porosity.
In the figure 4.7(c), the first track shows the TC (orange) and Neutron porosity
log (red). The second track displays clusters in well 1, where red represents low
porosity and blue represents higher porosity. The last track demonstrates the
lithology of the formation, which is limestone. Upon examining the TC and NPHI
logs, we notice that as NPHI increases, TC decreases (to 2.4) and vice versa. TC
remains almost constant at about 2.9 in the remaining part of the formation due
to the pure limestone lithology without any porosity.
Well-2
"The lithology of this well is almost dolomite. Figure 4.8(a) shows the predicted
cross-plot of density vs. TC. As can be seen, the x-axis represents TC, and the
y-axis represents density. Data points are colored by the photoelectric factor (PEF)
log, and almost all data points are orange. This indicates that the PEF range is
between 5 to 5.5, related to limestone. Moreover, there is a direct relationship
between TC and density. Notably, there is a direct correlation between TC and
density. The correlation coefficient is about 98%.

𝑇𝐶 = −12.4 + 0.01𝜌 − 1.89 × 10−6𝜌2

The figure4.8 (b)and (c)shows two histograms of thermal conductivity (TC) rep-
resented by a bar chart and a box plot. The data are color-coded based on the
neutron porosity log (NPHI) to illustrate the relationship between porosity and
thermal conductivity; as the neutron log color changes from blue to red, porosity
increases while thermal conductivity decreases. Therefore, the blue area repre-
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Figure 4.7: (a)Cross-plot of TC predicted and density log colored by GR log,
(b)Histogram of TC colored by porosity clustering, (c)TC curve, clusters, and lithol-
ogy (Limestone), (d)Cross-plot of TC predicted and density log colored by porosity
clustering
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Figure 4.8: (a)Cross-plot of TC predicted and density log colored by PEF log,
(b)Histogram of TC colored by Neutron porosity log, (c)Histogram of TC predicted
colored by Neutron porosity log,(d)TC curve, clusters, and lithology (Limestone)
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sents low porosity and high thermal conductivity, while the red represents high
porosity and low thermal conductivity.
Figure (d)4.8 demonstrates that Well 2’s curve and lithology are nearly constant,
with a consistent green limestone pattern.
well-3
I selected this well because the mean value of porosity of The formation is 16%,
and I wanted to understand the effect of porosity on TC, so I predicted thermal
conductivity with data of this well. The figure4.9(a) shows a cross-plot demon-
strating the relationship between thermal conductivity on the x-axis and density
on the y-axis. The data points are color-coded based on total porosity. The color
bar indicates the porosity range from 0 to 20 percent, with blue representing low
porosity and red representing high porosity. It’s clear from the plot that thermal
conductivity has an inverse relationship with porosity. The correlation coefficient
is about 95%
The relationship is given:

𝑇𝐶 = −520 + 6.65𝜌 − 0.002 × 𝜌2 + 3.78 × 10−8𝜌3

Figure 4.9 (b)and(c) show two types of histograms: a bar chart and a box chart.
They show the thermal conductivity frequency and are colored based on total
porosity from blue to red to indicate increasing porosity. and the mean value of
thermal conductivity is about 1,8 W/můK.
well-4, well-5, well-6
In addition to my previous work, I introduced three new wells to expand the
ANN model for predicting thermal conductivity. The results are displayed in
the figure4.104.114.12 The scatter plots indicate the relationship between thermal
conductivity and density, with colors representing total porosity. It is evident that
the porosity of these data points is very low, leading to an increase in thermal
conductivity compared to well-3. The histograms show thermal conductivity
distribution, with colors indicating total porosity. In this case, blue signifies low
porosity, associated with increased thermal conductivity. Total porosity values are
1.2%, 1.4%, and 0.4%, and thermal conductivity (TC) ranges from 2.9 to 3 W/m ·K.

To evaluate the geothermal potential at a depth of 4200 meters with a bottom
hole temperature of 137řC, water saturation of 25%, and thermal conductivity
of 2.8 W/m · K; considering these factors, it is possible that high geothermal
energy could be generated at this location. The thermal conductivity, bottom hole
temperature, and depth suggest a significant heat source, and the water saturation
could enhance the thermal conductivity and fluid flow. However, further analysis
and detailed exploration would be necessary to confirm the geothermal potential
and optimize the design of the geothermal system.

4.2.4 Third oil field

In this oil field, lithology included Dolomite, limestone, and some layers of Anht-
drite, and TC is predicted according to the ANN model as same as previous data,
and for validation of the results again used the N-fold as explained before in other
oil fields.
well-1
In the figure4.13, a cross-plot displays the correlation and validation of the Arti-
ficial Neural Network (ANN) model in the first well. The y-axis represents the
new prediction utilizing the N-fold method, while the x-axis represents the initial
prediction. The correlation coefficient is approximately 98%.
As a result, the results appear to be acceptable.
In this figure4.14(a), the cross-plot of Tc (thermal conductivity) and density shows
a direct relationship, with a correlation coefficient of approximately 98%. The color
bar is based on total porosity, transitioning from blue to red with increasing values.
The blue area represents low levels of porosity and porosity but high Tc, while the
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Figure 4.9: (a)Cross-plot of TC predicted and density log colored by Total Porosity,
(b)Histogram of TC colored by Total porosity, (c)Histogram of TC predicted colored by
Total porosity,(d)TC curve, clusters, and lithology (Limestone)
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Figure 4.10: (a)Cross-plot of TC predicted and Density log colored by Total Poros-
ity,(b)Histogram of TC predicted colored by Total Porosity(well-4, The Second field)

Figure 4.11: (a)Cross-plot of TC predicted and Density log colored by Total Poros-
ity,(b)Histogram of TC predicted colored by Total Porosity(well-5, The Second field)
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Figure 4.12: (a)Cross-plot of TC predicted and Density log colored by Total Poros-
ity,(b)Histogram of TC predicted colored by Total Porosity(well-6, The Second field)

Figure 4.13: Cross-plot of TC predicted and N-fold method for validation The ANN
model(well-1, Third oil field)

62



CHAPTER 4. RESULTS

Figure 4.14: (a)Cross-plot of TC predicted and Density log colored by total poros-
ity,(b)Histogram of TC colored by total porosity, (c) TC curve and lithology track (well-1,
Third oil field)

red area indicates the highest porosity with the lowest thermal conductivity. The
relationship is as follows:

𝑇𝐶 = 47 − 0.05𝜌 + 2.5 × 10−5𝜌2 − 3.4 × 10−9𝜌3

In Figure 4.14 (b), the histogram (bar chart) of TC in well-1 is shown, with the
color bar representing the Neutron porosity log. The blue area represents high
TC, indicating low porosity according to the color bar. Track (c) demonstrates
the relationship between TC and lithology, including Dolomite, Anhydrite, and
limestone layers.
well-2
The artificial neural network (ANN) model is correlated and validated in the sec-
ond well in the figure labeled Figure4.15 The y-axis represents the new prediction
utilizing the N-fold method, while the x-axis represents the original prediction.
There is a correlation coefficient of approximately 98%.
In this figure4.16 (a), there is a direct correlation between Tc (thermal conductivity)
and density, with a correlation coefficient of approximately 98 percent. With
increasing total porosity, the color bar transitions from blue to red. porosity is low
in the blue area, but TC is high, whereas the lowest thermal conductivity is found
in the red area. Accordingly, the relationship is as follows:

𝑇𝐶 = 46 − 0.05𝜌 + 2.4 × 10−5𝜌2 − 3.3 × 10−9𝜌3

Figure 4.16(b) shows the histogram (bar chart) of TC in well-1, with the color bars
representing total porosity logs. According to the color bar, the blue area indi-
cates low porosity due to high TC. TC is correlated with lithology (figure4.16)(c),
including the limestone, dolomite, and anhydrite layers.
Based on the parameters of 3300 meters depth, a bottom hole temperature of 105řC,
10% water saturation, thermal conductivity of 2.9 W/m · K, and 7% porosity, the
site appears to have potential for medium enthalpy geothermal projects. The
combination of depth and temperature suggests a significant heat source suitable
for binary cycle power plants and direct-use applications. The moderate thermal
conductivity would support efficient heat transfer, but the low porosity indicates
limited fluid storage capacity. Therefore, techniques like hydraulic fracturing may
be needed to enhance permeability. Further detailed studies, including perme-
ability testing, geological surveys, reservoir modeling, and economic feasibility
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Figure 4.15: Cross-plot of TC predicted and N-fold method for validation The ANN
model(well-2, Third oil field)

Figure 4.16: (a)Cross-plot of TC predicted and Density log colored by total poros-
ity,(b)Histogram of TC colored by total porosity, (c) TC curve and lithology track (well-1,
Third oil field)
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Figure 4.17: Table of Performance Metrics for the first Oil Field: MAE, MSE, and R-
squared

analysis, are essential to confirm the geothermal potential and optimize the system
design.

4.3 evaluating predictive model(ANN) using MAE,MSE R-
squared

The following data represent the performance metrics of an Artificial Neural
Network (ANN) model for thermal prediction across three different oil fields. The
metrics used are Mean Absolute Error (MAE), Mean Squared Error (MSE), and
R-squared (R2). These metrics provide insights into the accuracy and reliability of
the model’s predictions for each well in the respective oil fields.

4.3.1 first oil field

Figure4.17 shows the ANN Model Performance for well 1 and well 2.
Well-1: The ANN model accurately predicts thermal properties with a low Mean
Absolute Error (MAE) of 0.032 and Mean Squared Error (MSE) of 0.002. The R-
squared value of 0.987 shows that 98.7% of the variance in the data is explained
by the model, indicating an excellent fit.
Well-2: Although Well 2 shows slightly higher MAE (0.040) and MSE (0.003)
compared to Well 1, the model still performs well. The R-squared value of 0.970
suggests that the model explains 97% of the variance.

4.3.2 Second oil field

Figure4.18 shows the ANN Model Performance for wells 1 to 6.
Well 1: Higher MAE (0.093) and MSE (0.078) indicate less precise predictions
compared to Oil Field 1. However, an R-squared value of 0.920 still shows that the
model explains 92% of the variance, indicating a strong model fit.
Well 2: This well has the highest MAE (0.259) and MSE (0.081) in Oil Field 2,
suggesting more significant prediction errors. While lower, the R-squared value
of 0.810 still shows reasonable model performance.
Well 3: With an MAE of 0.166 and MSE of 0.048, the model performs better than
Well 2 but not as well as for the other wells. The R-squared value of 0.890 indicates
a good fit.
Well 4: The best performance in Oil Field 2, with a low MAE (0.039) and MSE
(0.008), and an excellent R-squared value of 0.960, indicating high predictive ac-
curacy.
Well 5: Moderate MAE (0.107) and high MSE (0.080) with an R-squared value of
0.900, indicating good performance but with some significant errors.
Well 6: This well also shows strong performance with an MAE of 0.086 and MSE
of 0.013. An R-squared value of 0.930 indicates a high degree of variance, as the
model explains.
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Figure 4.18: Table Performance Metrics for the Second Oil Field: MAE, MSE, and
R-squared

Figure 4.19: Table of Performance Metrics for the third Oil Field: MAE, MSE, and
R-squared

4.3.3 Third oil field

In Figure4.19, performance metrics for wells 1 and 2 are shown for the ANN
model.
Well 1: The ANN model achieves excellent performance with a very low MAE
of 0.029 and MSE of 0.001. The R-squared value of 0.990 indicates that the model
explains 99% of the variance, demonstrating an almost perfect fit.
Well 2: Similarly, this well shows a very low MAE of 0.028 and MSE of 0.001, with
an R-squared value of 0.98, confirming the model’s high accuracy and reliability.
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5
Discussion and conclusion

5.1 conclusion

This chapter discusses the findings from applying neural networks to predict
ground thermal properties using well-log datasets. I analyze the results from
various wells and oil fields to understand the model’s performance and the un-
derlying patterns in the data. This chapter concludes with an assessment of the
implications of these findings and potential research directions.
In recent years, there has been a global shift towards renewable energy due to the
negative environmental impacts of fossil fuels, such as greenhouse gas emissions,
and the high costs and volatility associated with oil and gas. Climate change
concerns have driven many countries to invest in renewable energy sources like
wind farms, solar power, and geothermal energy. Geothermal energy has gained
significant interest because it provides a constant energy source as the heat from
the Earth’s interior is always available, unlike solar and wind energy. This reliabil-
ity makes geothermal energy particularly attractive for direct heating and cooling
systems applications.
Many existing oil and gas wells offer a unique opportunity to be converted into
geothermal wells, which can significantly reduce costs and risks associated with
drilling new wells and save time. Utilizing well-log data from these wells can pro-
vide valuable insights into ground thermal properties without the high expenses
related to coring and core analysis. Well-log data is more readily available and
less expensive compared to core samples.
Well-log data can be analyzed using various methods to determine ground ther-
mal properties. This study specifically focuses on using artificial neural networks
(ANN) due to their higher accuracy and more intelligent data classification com-
pared to regression methods. Each data set is trained using the ANN method,
which determines the best relationship between the training data set. For vali-
dation, the N-fold method is used, where 25% of the data is utilized to estimate
the model, and the results are then propagated to the remaining 75% of the data.
Comparing the two models helps ensure the reliability of the ANN model.
Using ANN, we can accurately determine thermal conductivity from well-log
data, which is crucial for studying geothermal potential. Other properties such
as porosity, permeability, water saturation, and mineral composition can also be
derived from well-log data. This method saves significant time and costs. For
instance, analyzing ten wells through coring would require much more time and
expense than using well-log data with ANN.
This study concludes with the realization that ANN-based analysis of well-log
data is a powerful, efficient, and cost-effective method for exploring geothermal
energy potential, providing a solid foundation for future research and practical
applications in the renewable energy sector.
In the first oil field, which has a heterogeneous formation comprising five different
lithologies (anhydrite, dolomite, limestone, sandstone, and shale), the mean value
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of geothermal conductivity is estimated to be 2.7 W/m · K using artificial neural
networks. Considering the temperature of 115 degrees Celsius at a depth of 3800
meters and the water saturation, this oil field can be regarded as a significant
target for medium geothermal system applications. Fluid content is the main
factor that can affect thermal conductivity in this oil field because oil is present in
the sandstone zone.
In the second oil field, the thermal conductivity is estimated using Artificial Neural
Network (ANN) prediction and has a mean value of about 2.8. The lithology of
the formation is limestone and is considered homogeneous. The temperature at
a depth of 4200 meters is approximately 137 degrees, and the water saturation is
lower than the first oil field. This formation is potentially suitable for medium to
high geothermal system applications. It is important to note that porosity is the
main parameter influencing thermal conductivity in this formation.
In the last oil field, thermal conductivity is also predicted using the ANN method,
yielding a value of about 2.9. The temperature in this field ranges from 85 to
105 degrees, making it suitable for shallow geothermal system applications. The
thermal conductivity in this field is influenced by mineral composition, porosity,
and fluid content.
The performance of the ANN model varies across the three oil fields, demonstrat-
ing its adaptability and robustness in predicting thermal properties. In Oil Field 1,
both wells consistently exhibit high performance, with excellent R-squared values
indicating a strong model fit. Oil Field 2 shows more variability in performance,
with Well 2 displaying the least accuracy. However, most wells in this field still
demonstrate good to excellent R-squared values, highlighting the model’s general
reliability. Oil Field 3 has exceptional performance in both wells, with very low
errors and near-perfect R-squared values. These results collectively emphasize the
ANN model’s capability to deliver high accuracy and strong explanatory power
across different wells and oil fields, proving its robustness in thermal property
prediction.
Further studies are needed to assess the geothermal potential of these fields fully.
These studies should include permeability testing to determine fluid flow capacity,
assessing the feasibility of hydraulic fracturing to improve permeability, and de-
tailed geological and geophysical surveys to map subsurface structures. It is also
important to measure thermal gradients to understand temperature distribution
with depth and to create detailed reservoir models to predict system behavior. Ad-
ditionally, an economic feasibility analysis and environmental impact assessments
are necessary to evaluate the cost-effectiveness and potential return on investment
and to identify and mitigate potential risks. Water chemistry analysis can help
determine potential impacts on the geothermal system and surface facilities, and
implementing seismic monitoring can help detect induced seismicity. These thor-
ough studies will provide a better understanding of the geothermal potential and
will assist in optimizing the design and implementation of the geothermal system
in the oil field.

5.2 suggestions

By utilizing this study’s findings, researchers can improve the simulation of the
geothermal gradient and reservoir behavior, leading to a more precise design and
implementation of the geothermal system in the oil field.
In the future, long-term thermal monitoring should be prioritized to continuously
monitor changes in temperature and thermal gradients, ensuring data accuracy
over an extended period of time. Developing dynamic reservoir models is crucial,
as more advanced models will improve predictive capabilities and optimize reser-
voir behavior under various conditions. To inform sustainable and cost-effective
development strategies, comprehensive studies on geothermal projects’ economic
and environmental feasibility are required to assess their viability, potential re-
turns, and environmental impacts.
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Other methods, such as fuzzy logic and clustering data, could also be explored to
predict thermal conductivity. They could be compared with the ANN method, as
these approaches might offer different advantages in handling uncertainties and
identifying patterns in complex datasets.
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