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Abstract

Wind energy is one of the most widespread renewable technologies, therefore, increasing

wind turbine reliability is a crucial factor, especially nowadays when maintenance costs

are high and climate change is a serious problem for the planet.

In this thesis, the utilization of a novel fault tolerant control architecture based on Super

Twisting Sliding Mode Control (ST-SMC) is investigated for a conventional Wind Turbine

(WT) Hydraulic Pitch System (HPS). The thesis offers a description of the mathematical

model of the system dynamics with an overview of the most common faults that can affect

it. This is followed by a review of Sliding Mode Control (SMC) and its variants, including

the adaptive versions (Adaptive Sliding Mode Control, A-SMC). The latter are capable of

adjusting themselves in order to reject disturbances and unknown dynamics in the system

while maintaining the desired accuracy. Then, the design of the Super Twisting Sliding

Mode Controller and the Adaptive Super Twisting Sliding Mode Controller is derived. In

addition, the thesis analyses the performances of the proposed controllers in both nominal

case and faulty scenarios, using evaluation metrics. The results show great adaptation

capabilities for the adaptive techniques, which in some cases outperform the conventional

controller. Lastly, potential future research directions related to the project are suggested.





Sommario

L’energia eolica è una delle tecnologie rinnovabili più diffuse, pertanto, l’aumento dell’af-

fidabilità delle turbine eoliche è un fattore cruciale, soprattutto al giorno d’oggi con i costi

di manutenzione elevati e le problematiche legate al cambiamento climatico che rappre-

sentano una questione rilevante per il pianeta.

In questa tesi, viene studiato l’utilizzo di una nuova architettura di controllo a tolleranza

di guasti basata sul Super Twisting Sliding Mode Control per un sistema idraulico di

regolazione dell’angolo delle pale (Hydraulic Pitch System, HPS) convenzionale di una

turbina eolica. La tesi offre una descrizione del modello matematico della dinamica del

sistema con una panoramica dei guasti più frequenti che possono influenzarlo. Successi-

vamente, viene presentato il concetto di Sliding Mode Control (SMC) e le sue varianti,

comprese le versioni adattative (Adaptive Sliding Mode Control, A-SMC). Queste ultime

sono in grado di adattarsi per respingere disturbi e dinamiche sconosciute del sistema,

mantenendo allo stesso tempo l’accuratezza desiderata. In seguito, viene derivata la pro-

gettazione del Super Twisting Sliding Mode Controller e dell’Adaptive Super Twisting

Sliding Mode Controller. Inoltre, vengono analizzate le prestazioni dei controllori pro-

posti sia in condizioni nominali che in scenari con guasti utilizzando metriche di valu-

tazione. I risultati mostrano grandi capacità di adattamento per le tecniche adattative, le

quali in alcuni casi superano il controllore convenzionale. Infine, vengono suggerite le

potenziali direzioni di ricerca futura per il progetto introdotto nella tesi.
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1
Introduction

1.1 Background and Motivation

Wind turbine production soared in 2021, surpassing all other renewable energy technolo-

gies. The total production in that year reached 1870 TWh, almost as much as all the

others non-hydro renewable technologies combined. The push towards achieving Net

Zero Emissions by 2050 is driving efforts to enhance turbine size and power, particularly

focusing on offshore systems.

Minimizing downtime is priority for these systems. Besides maintenance costs, lost rev-

enue due to energy production halts during repairs must also be considered. Offshore

installations exacerbate maintenance challenges prolonging repair duration. Studies in-

dicate that the primary source of wind turbine failures arises from the pitch regulation

system. Implementing fault accommodation strategies can reduce hydraulic subsystem

maintenance needs, significantly boosting turbine uptime. A passive approach to mitigate

fault effects involves developing a robust control algorithm.

Sliding Mode Control (SMC), a robust nonlinear strategy characterized by high-frequency

switching, reduces chattering through the adoption of the established Super-Twisting (ST)
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algorithm. However, tuning such controllers often requires high gains, making the solu-

tion not feasible in practical applications. Therefore, ongoing research in the control

community explores dynamically adaptive gain solutions.

This project aims to investigate adaptive approaches for the ST algorithm and assess their

efficacy against prevalent faults affecting typical high-power wind turbine hydraulic pitch

systems.

1.2 Scope of the Project

The goals of the thesis are:

1. Present the Hydraulic Pitch System in Wind Turbines and Fault-Tolerant Control

algorithms: Super Twisting Sliding Mode Control (ST-SMC) and Adaptive Super

Twisitng Sliding Mode Control (A-ST-SMC), in particular Adaptive Gains Super

Twisitng Sliding Mode Control (AG-ST-SMC) and Barrier Function Super Twisitng

Sliding Mode Control (BF-ST-SMC);

2. Design ST-SMC and A-ST-SMC solutions for the given model;

3. Perform controller simulations through MATLAB/Simulink environment under nom-

inal conditions and faulty scenarios;

4. Compare the different methods.

1.3 Literature Review

In this section an overview of the state of art is presented.
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1.3.1 Wind Turbine Hydraulic Pitch System and Faults

The model of the Wind Turbine Hydraulic Pitch System is based on studies conducted in

[1] [2] [3]. In particular, in [1] the most significant faults occurring in a typical hydraulic

pitch system in high-power turbines are reported.

1.3.2 Sliding Mode Control

Sliding Mode Control (SMC) is a sophisticated control strategy commonly used in control

system implementations, particularly for dealing with systems that are subject to uncer-

tainties and disturbances. It is characterized by its ability to force the system state to

”slide” along a predetermined surface in the state space, known as the sliding surface,

which ensures desired system behavior. The foundation of these controllers is a high-

frequency switching control signal and this feature endows them with robustness against

matched perturbations or disturbances and ensures finite-time convergence. However, this

method leads to the phenomena of chattering, but it can be mitigated by implementing a

continuous control function, such as the saturation function, as shown in [4]. The price to

pay for this solution is a loss in performances. Subsequently, to overcome this problem, it

was suggested to employ an High Order Sliding Mode Control (HO-SMC). In particular,

the second-order Super Twisting Sliding Mode Control (ST-SMC) was introduced in [5].

Additionally, it was studied in [6] how to implement the Super Twisting strategy in arbi-

trary orders. Moreover, to improve the performance, literature has presented the adaptive

control that self-tunes the controller parameters.

1.3.3 Adaptive Sliding Mode Control

Adaptive Sliding Mode Control is an advanced control technique that combines the adap-

tive control with SMC: the former adjusts controller parameters in real-time based on
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system feedback, enhancing the performance and robustness of the control system, while

the latter ensures that the system state trajectory remains on a predefined sliding surface.

In fact, the controller drives the states of the system towards this sliding surface and then

keeps them there despite uncertainties and disturbances.

In [7] an adaptive version of SMC was presented, where a robust Lyapunov function

enabled the ST-SMC to counteract linearly increasing disturbances. Then, [8] introduced

the concept of adaptive gains with ST-SMC. This led to the Adaptive Gain ST-SMC (AG-

ST-SMC) introduction, which is capable to reject bounded disturbances with an unknown

bounds as shown in [9]. The adaptive gain approach was also extended to arbitrary order

SMC in [10] through the use of an adaptive continuous SMC. The AG-ST-SMC method

was further explored in [11] [12] [13].

Another A-SMC method that has recently gained significant attention involves the use of

Barrier Function (BF) to prevent the overestimation of gains. BF was initially applied

in [14] with Lyapunov functions for nonlinear systems. Then, the first implementation

of BF in SMC was demonstrated in [15], introducing BF-A-SMC for first-order SMC.

Subsequently, in [16], the BF method was adapted for A-ST-SMC. Similarly, HO-SMCs

were also modified to utilize this technique for controllers of arbitrary order, as shown in

[17]. BF-ST-SMC technique was also employed in [18] [19] [20].

1.4 Thesis outline

The thesis in composed of six chapters:

• Chapter 1 contains an introduction to the thesis;

• in Chapter 2 the mathematical model of the Wind Turbine Hydraulic Pitch System

is provided;

• Chapter 3 is dedicated to the theoretical explanation of Sliding Mode Control and

its adaptive variants employed;
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• Chapter 4 presents the design of each the controller;

• Chapter 5 reports the simulations and evaluates the results;

• Chapter 6 summarizes the analyses and hints future research directions.
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2
System Model: Hydraulic Pitch System

in Wind Turbine

This chapter provides an overview of the wind turbine structure and a detailed description

of the mathematical model of the Hydraulic Pitch System (HPS).

2.1 Wind Turbine

Wind turbines are machines that convert the kinetic energy of the wind into electrical

energy. This is possible due to the huge force of the wind that pushes the blades of

these devices, causing them rotate. Nevertheless this may seem a simple task, designing

a proper working and efficient structure requires an in-depth study of various disciplines,

including mechanical, hydraulic, electrical and automation engineering. Figure 2.1 shows

the architecture of a wind turbine.

It is important to remember that the objective of this thesis is to explore the turbine hub,

which contains the pitch control unit and the pitch control system.
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FIGURE 2.1: Structure of a wind turbine.

2.2 Hydraulic Pitch System

The structure consists of a wind turbine hydraulic pitch system that aims to control the

angle of the turbine blades, namely the pitch angle ´. The adjustment of the blades angle

is important for multiple reasons, some of them are reported here:

• optimizing energy capture: by changing the pitch angle, it is possible to maximize

the capture of the wind energy and thereby intensify the energy production;

• wind speed control: when weather conditions are critical, the adjustment of the

blade angle allows the wind turbine to operate in safety conditions avoiding me-

chanical stress and potential damage to its components;

• fault detection and mitigation: hydraulic systems are equipped with sensors and

monitoring systems to detect faults, namely if there is a deviation from expected

readings, it indicates a potential fault. For instance, pressure sensors can detect

leaks, while position sensors ensure that the blades are at the correct angle.
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The HPS is mainly composed of a pump and an accumulator bank that supply three equiv-

alent circuits. These circuits are connected to a proportional valve (PV) and to a hydraulic

cylinder. The reference HPS is shown in Figure 2.2 during normal operation.

FIGURE 2.2: Reference Hydraulic Pitch System.

The main terms describing the system dynamics include the blade angle ´ and its velocity

v´ , the position and velocity of the cylinder, denoted as xc and vc respectively, as well

as the pressure of the piston side pp and of the rod side pr. Beside these, all the other

variables and parameters employed in the following equations are collected in Table 2.1.

The study of the mathematical model can be split in four parts:

• hydraulic cylinder (Section 2.2.1);

• valves (Section 2.2.2);

• supply circuit (Section 2.2.3);

• sensors (Section 2.2.4).

Each element is presented in more detail in the next sections.
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Variable/parameter Description Unit

´ pitch angle rad
v´ pitch angle velocity rad/s
xc cylinder position m
vc cylinder velocity m/s
xv valve’s pool position m
Meq equivalent piston mass kg
Jtot inertia kg m2

Ap area of piston m2

Ar area of rod m2

pp piston side pressure N/m2

pr rod side pressure N/m2

ps supply pressure N/m2

pt tank pressure N/m2

´e effective bulk modulus N/m2

Bvvc viscous friction N

Fc tanh
(

vc
µ

)

Coulomb friction N

Fext external force N
V0,p initial volume of piston side chamber m3

V0,r initial volume of rod side chamber m3

Qp piston side flow m3/s
Qr rod side flow m3/s
Qrv flow from rod side chamber to the proportional

valve

m3/s

Qle leakage between cylinder inside and outside m3/s
Qli internal leakage between piston and rod side m3/s
Qcv check-valve flow m3/s

Kv(|xv|) nonlinear function of proportional valve spool

dynamics with respect to spool position input

m3/(sPa)

H(·) Heaviside step function -

sgn(·) sign function -

ϕv piston and rod area ratio -

TABLE 2.1: Variables and Parameters of the Hydraulic Pitch System.

2.2.1 Hydraulic Cylinder

The hydraulic cylinder is the part of the system responsible for the pitching of the blades,

namely it makes sure that the desired pitch angle ´ is applied to the blades with a force

generated by the pressure difference, which varies the cylinder position xc. Its dynamics
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is represented by the Newton’s second law that states:

Meqv̇c = Appp − Arpr − Bvvc − Fc tanh

(
vc
µ

)

+fFr,c − Fext (2.1)

where FFr,c = Bvvc + Fc tanh(
vc
µ
) is the friction, fFr,c is a fault due to increased friction

and Fext is the external force that acts against the control purpose as a disturbance.

The hydraulic cylinder consists of two chambers: the piston side one and the rod side one.

On the hand, the piston side is where the piston head is located. The piston moves in one

direction when there is a pressure difference (∆p) between the two chambers and, as a

consequence, it exerts force on the piston. On the other hand, the rod side chamber is

placed in the opposite part of the cylinder with respect to the piston side one. The rod is

connected to the piston and extends out of the cylinder. When pressure is applied to the

piston side, it moves the piston and, consequently, the rod in the opposite direction.

The expressions for the pressure dynamics inside the piston side and rod side chambers

are:

ṗp =
´e,p

V0,p + Apxc
(Qp − Apvc−Qle,p −Qli) (2.2)

ṗr =
´e,r

V0,p + Ar(xc,max − xc)
(−Qr − Arvc−Qle,r +Qli) (2.3)

where Qle,p, Qle,r and Qli are elements related to the leakage faults in the system. In the

nominal case, these terms are considered to be zero.

´e,i is the effective bulk modulus of the oil for the respective chamber. The bulk modulus

of a fluid represents its resistance to uniform compression, i.e. quantifies the amount of

pressure needed to change the volume of the material and it depends on the type of oil,

pressure and temperature.

The relation for the bulk modulus is given by:

´e =
1

1
´oil

+ ϵa(p)
(

1
cadP

− 1
´oil

)+fB,e (2.4)

11



where

ϵa(p) =
1

1−ϵa,0
ϵa,0

(
patm
p

) −1

cad + 1

(2.5)

The fault fB,e is related to oil degradation.

Furthermore, it is important to define the flow rate entering and the flow rate exiting from

the chambers (Qle,p and Qle,r) and the leakage flows (Qli):

Qle,p = Cle,p(pp − patm)+fQle,p
(2.6)

Qle,r = Cle,r(pr − patm)+fQle,r
(2.7)

Qli = Cli(pp − pr)+fQli
(2.8)

where fQle,p
, fQle,r

and fQli
are faults regarding flows leakage.

2.2.2 Valves

The Proportional Valve (PV) is the component of the system that allows for the control

of the cylinder position. A PV is a type of valve used in fluid control systems to regulate

the flow rate or pressure of a fluid based on an input signal, in this case by changing the

valve’s spool position xv. It is different from the standard on/off valve that has merely

two states (fully open or fully close), in fact the proportional valve gives a continuous and

precise control over the fluid flow or pressure by varying the valve opening proportionally

to the input signal. The introduction of a PV enables the system to work in a regenerative

way.

The following equations express the flows with respect to the valve’s spool position xv:

Qp = Kv(xv)

[√

|ps − pp|sgn(ps − pp)H(xv)−
√

|pp − pt|sgn(pp − pt)H(−xv)
]

+fQp

(2.9)

Qrv = −Kv(xv)ϕv

[√

|ps − pr|sgn(ps − pr)H(xv)H(−xv)
]

+fQrv
(2.10)

12



where fQp
and fQrv

are other faults related to the flow.

It is important to recall that H(x) is the Heaviside step function, defined as:

H(x) =







1, x ≥ 0

0, x < 0

(2.11)

and sign(x) is:

sgn(x) =







1, x > 0

0, x = 0

−1, x < 0

(2.12)

In Equation 2.10, the flow across the PV is defined, which is generally different than the

flow to/from rod side chamber, given by

Qr = Qrv +Qcv (2.13)

where Qcv represents the flow through the check valve used for operating the circuit in

regenerative mode, for reducing the size of the supply circuit. The equation for the flow

in the check valve is given by

Qcv = Kcv(pr − ps − pcv,c)H(pr + pcv,c − ps)+fQcv
(2.14)

fQcv
was included as a possible fault manifesting a flow perturbation.

2.2.3 Supply Circuit

The pump station in a wind turbine’s hydraulic pitch system serves as the control center

for adjusting the angle of the turbine blades. The pump station consists of hydraulic

pumps, valves, and other hydraulic components. When the wind conditions change or
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when the turbine needs to be shut down for maintenance or safety reasons, the pump

station activates to adjust the pitch angle of the blades accordingly.

2.2.4 Sensors

In this project it is assumed that the sensors provide the measurements of key system

states, specifically ´, xc, pp and pr. Instead, vc is not detected directly, but obtained by

deriving xc.

2.3 Full Hydraulic Pitch System

In a HPS for a WT the pitch angle ´ of the blades is controlled by the position of the

hydraulic cylinder xc. The hydraulic cylinder’s linear motion xc is converted into rotary

motion of the blade ´ through mechanical linkages or a crank mechanism. From Figure

2.3 it is possible to see that the blade base is attached to the hub through the bearing, which

acts as a rotating mechanism. The latter is fixed to the hydraulic cylinder that provides the

movement of it via the pressure system, namely the HPS.

Reconsidering the equation for the dynamics of xc without faults:

Mv̇c = Appp − Arpr − FFr,c − Fext

ẋc = vc

(2.15)

then, angular dynamics of the blade is described by:

Jtotv̇´ = (Appp − Arpr) r sin (È (xc))−Mfric −Mext

˙́ = v´

(2.16)
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FIGURE 2.3: Cross section scheme with pitch hydraulic cylinder.

It can be observed that the equations correspond to the dynamics of the cylinder as out-

lined in Equation 2.15, except for the inclusion of a variable momentum arm. This vari-

able is assumed to remain relatively constant for the system under consideration. Con-

sequently, the control design focuses on tracking the angle, while the cylinder dynamics

exhibit stable internal behavior, assuming a fully rigid mechanical connection between

the cylinder and the blade bearing. Thus, there exists a static relationship transforming xc

to ´.

Let us apply some simplification for simplifying the reading:

V olp = V0,p + Apxc (2.17)

V olr = V0,p + Ar(xc,max − xc) (2.18)

Jtot = I (2.19)

The dynamics of the full system is given by:
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





˙́ = v´

v̇´ = 1
I
[−Mfric −Mext + r sin(Èp(xc))(Appp − Arpr)]

ẋc = vc

v̇c = 1
Meq

(Appp − Arpr − FFr − Fext)

ṗp = ´e

V olp
[−Apvc +KQpu]

ṗr = ´e

V olr
(Arvc −KQrvu−Qcv)

(2.20)

2.4 Fault description

Based on the work in [1], the faults are inserted in the system as additive terms noted

with blue characters. They will be introduced into the system one at time because in real

applications it is unlikely that they will occur simultaneously and studying of this would

increase the complexity of the project.

Let us assume that the perturbations are much lower than the main signal.

Table 2.2 describes in detail the faults that may occur in the system where a ranking is

given (high, medium and low) to underline the severity on how each fault propagates

through the structure.
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Fault Name Fault Model Description Severity

fFr,c ∆Bcvc +∆Fc
tanh(vc/µ) Increased friction in the cylinder

because of sludge formation. Not

critical under a certain threshold,

but it can cause the cylinder to get

stuck. In the initial phase it ap-

pears as a variation of friction co-

efficients.

High

fB,e ∆B,e Fault related to oil contamination,

difficult to model differently than

a generic variation with respect to

the nominal value.

Medium

Qle,p, Qle,r ∆Qle,i
(pi − patm) Oil leakage between a cylinder

chamber and the outside. It can be

slow or abrupt, according to wear.

Even with small values the turbine

will be shut down. From a control

point of view, leakage does, how-

ever, act to increase the damping

in the system.

High

Qli ∆Qli
(pp − pr) Oil leakage between the two

chambers in the cylinder. Same

characteristics as the external one,

it just increases damping in the

pitching.

Low

Qp, Qrv ∆Ke
[·] Variation in the proportionality co-

efficient due to mechanical wear

of the valve, or by incorrect valve

command. As long as the valve is

able to operate the severity is low.

Low

Qcv ∆Qcv
It is usually a discrete-time na-

ture fault leading to the valve get-

ting stuck, more than leakages or a

variation in the proportional flow

coefficient.

High

fy,ps , fy,pp fy,pr ∆y,pi Wrong measurement in the related

pressure sensor.

Low

fy,xc
∆y,xc

Wrong measurement in the cylin-

der position sensor. Position mea-

surements are the only signals

used in the control loop. Hence,

their importance.

High

TABLE 2.2: Faults description ranked by their severity.
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3
Sliding Mode Control

This Chapter firstly addresses a review on Sliding Mode Control (SMC) and secondly on

Adaptive Sliding Mode Control (A-SMC).

3.1 Sliding Mode Control (SMC)

3.1.1 Standard Sliding Mode Control (SMC)

Sliding Mode Control is a sophisticated control method and one of the best choices for

nonlinear control systems when high accuracy and robust response are required. It can be

employed in both linear and nonlinear dynamical systems, directly considering robustness

problems as part of the design process. Specifically, SMC includes the uncertainty as part

of the design process, providing additional robustness property compared to traditional

feedback control techniques. Nevertheless, SMC presents one main issue: chattering

phenomenon. It occurs due to the switching property of the sliding mode control law, but

there exist strategies able to reduce chattering, which will be faced afterwards in the next

sections.
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To explore more in detail SMC, let us consider the following two-dimensional system:







ẋ1 = x2

ẋ2 = u+ f

(3.1)

where f is a disturbance function.

The aim is to design u ensuring that both states converge to zero.

Let us start with a simple controller, for instance the following full state feedback con-

troller:

u = −k1x1 − k2x2 (3.2)

If there are no disturbances, i.e. f = 0, the controller perfectly works (see Figure 3.1),

otherwise, if for example f = sin(2t), it does not properly react to the perturbation (see

Figure 3.3). Figure 3.2 and 3.4 illustrate their relative Simulink schemes.

FIGURE 3.1: Plot of the states x1 and x2 with full state feedback control action. Param-

eters: x1(0) = 1, x2(0) = −2, f = 0, k1 = 5, k2 = 5.

To overcome this issue, a Sliding Mode Controller can be employed.

Let us define the so-called sliding variable s:

s = cx1 + ẋ1 (3.3)
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FIGURE 3.2: Simulink scheme of the full state feedback controller with no disturbance,

i.e. f = 0.

FIGURE 3.3: Plot of the states x1 and x2 with full state feedback control action. Param-

eters: x1(0) = 1, x2(0) = −2, f = sin(2t), k1 = 5, k2 = 5.

where c > 0 is the state convergence rate when s = 0 holds (there is no fixed formula for

defining sliding surface, but there are some guidelines: s = 0 and u must appear in some

derivative of s, the degree of the derivative corresponds to the relative degree).
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FIGURE 3.4: Simulink scheme of the full state feedback controller with disturbance,

f = sin(2t).

Then impose it equal to zero:

s = 0

0 = cx1 + ẋ1

ẋ1 = −cx1

(3.4)

The relation that represents the sliding surface is a straight line passing through the origin.

As it can be seen from Figure 3.5, the red point goes towards the line and then slides along

it reaching the origin. The system is asymptotically stable since the states converge first

to the sliding surface s = 0 in finite time and then there is exponential convergence in the

origin.

The solution is:

x1 = x1,0 e
−ct (3.5)

Now let us search for the control input u. As first step, compute the dynamics of s:

ṡ = cẋ1 + ẍ1

= cx2 + ẋ2

= cx2 + u+ f

(3.6)
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FIGURE 3.5: Convergence towards the origin of both states with sliding surface s = 0.

Parameters: x1(0) = 1, x2(0) = −2.

Assume that the disturbance bounds are known:

|f | ≤ L (3.7)

Let us express u such that ṡ = 0, i.e. select u in such a way cancels out some known

terms:

ṡ = cx2 + u+ f

0 = cx2 + u+ f

ueq = −cx2

(3.8)

Design uSMC as the SMC action to counteract the disturbance:

uSMC = k sgn(s) (3.9)

with k > L in order to obtain finite time stability. It is important to recall that uSMC rep-

resents the unknown, but at least the bound L gives some information on the disturbance.
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So, the total control law is given by the sum of both controllers:

u = −cx2 − k sgn(s) (3.10)

From Figure 3.6 it can be noticed that the controller u chatters, but the sliding variable s

reaches zero in short time, (see Figure 3.7) and the states plotted with f = sin(2t) now

they converge to zero (see Figure 3.8).

FIGURE 3.6: Control input u with Sliding Mode Control action. Parameters: x1(0) = 1,

x2(0) = −2, f = sin(2t), c = 1.5, Ä = 1.5.

3.1.2 Super-Twisting Sliding Mode Control (ST-SMC)

As stated before, standard Sliding Mode Control leads the system to chattering phe-

nomenon because of its discontinuous input. Therefore, various solutions have been stud-

ied in the literature to address this issue. The fist attempt can be made by substituting the

sign(x) function with a continuous and smoother function like atan, atanh, sigmoid,

etc. However, the trade-off for implementing this strategy is a loss in performance when

the value x is close to the origin.
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FIGURE 3.7: Plot of sliding variable s with Sliding Mode Control action. Parameters:

x1(0) = 1, x2(0) = −2, f = sin(2t), c = 1.5, Ä = 1.5.

FIGURE 3.8: Plot of the states x1 and x2 with Sliding Mode Control action. Parameters:

x1(0) = 1, x2(0) = −2, f = sin(2t), c = 1.5, Ä = 1.5.

Hence, exploit a High-Order Sliding Mode Control (HO-SMC) with a continuous input

improves the performance. In general, this method has a main drawback: it requires

knowledge of the sliding variable’s derivative.
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FIGURE 3.9: Simulink scheme of the Sliding Mode Controller with disturbance, f =
sin(2t).

In literature particular attention has been given to the second-order Super Twisting Slid-

ing Mode Control (ST-SMC) because it does not require any information about the time

derivative of the sliding variable, only the measurement of the sliding variable itself. Fur-

thermore, it ensures a robust control solution.

Let us define the output tracking error as:

e = y − r (3.11)

and consider the following sliding variable:

s = ė+ ¼e with ¼ > 0 (3.12)

In order to drive the sliding variable to zero (s = 0) in finite time, one can use the contin-

uous super twisting controller:







uST−SMC = −k1|s|
1

2 sgn(s) + v, k1 > 1.8
√
k2 + L

v̇ = −k2 sgn(s), k2 > L > |ḋ|
(3.13)

The ST-SMC is a second-order SMC since it drives both s and ṡ to zero in finite time.
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With this strategy, as said above, it is possible to partially solve the chattering problem.

However, the gains k1 and k2 are set as constants and they can be easily overestimated. To

overcome this issue, it is possible to exploit an adaptive law that allows to vary the gains

with the most appropriate value depending on the conditions.

In the next sections, some of these approaches will be studied in detail: Adaptive Gains

ST-SMC and Barrier Function ST-SMC.

3.2 Adaptive Super Twisting Sliding Mode Control (A-

ST-SMC)

To sum up what it has been explained so far, the standard SMC is affected by the chattering

problem due to its discontinuous input.

Therefore, a first attempt is to use a continuous saturation function instead of the sign(x)

function, but this has a negative impact on the performance.

Hence, it was suggested to use a HO-SMC, in particular the second order ST-SMC, which

provides a continuous input and better results. The disadvantages of this approach is that

it requires information on the sliding variable derivative and the gains may be bigger than

necessary since they are set as constants.

Thus, an adaptive law is a better solution because it allows to change the gains, ensures a

good performance and handles very well the chattering problem.

In this project Adaptive Gains and Barrier Function algorithm are explored.
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3.2.1 Adaptive Gains Super Twisting Sliding mode control (AG-ST-

SMC)

Adaptive Gains Super Twisting Sliding Mode Control (AG-ST-SMC) is a technique that

combines two approaches to reduce the chattering: a higher-order of SMC (Super Twist-

ing strategy) and adaptive gains. The main benefit of the Super Twisting element, in addi-

tion to attenuating chattering, is that it does not require any information on the boundaries

of the disturbance, but only of its gradient. In many applications this value is not known,

it is only assumed that the perturbations are bounded. A common problem that one can

meet is the overestimation of this value, that leads to unnecessarily high gains. Therefore,

another advantage of the method is its ability to adapt the gains, which can improve the

elimination of chattering.

Hence, the new problem is formulated as:







uAG−ST−SMC = −³|s| 12 sgn(s) + v

v̇ = −´
2
sgn(s)

(3.14)

where ³ and ´ are the adaptive gains and they correspond to the previous gains k1 and k2

respectively. These two new gains are adjusted via the following formulas:

³̇ =







É
√

µ
2
sgn(|s| − µ) if ³ > ³m

¸ if ³ ≤ ³m

(3.15)

´ = 2ϵ³ (3.16)

The parameters É, µ, µ, ¸, ³m and ϵ are all positive constants. The best value for them

has to be found by trial and error procedure.

Let us see in detail the meaning of each term as done in [21]:

• É and µ both govern how quickly ³ increases or decreases once ³ exceeds a set

value of ³m. They are split into two separate parameters for more convenient tuning.
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• µ is the threshold of the sliding variable. In an ideal SMC this value would be µ = 0,

but this is not the case in practical implementation. The lower this parameter is

chosen, the closer the ideal SMC will be achieved. However, the lowest achievable

value can not be known beforehand and the addition of disturbances will likely

increase this reachable threshold.

• ¸ corresponds the slope of the increasing rate of ³ when it goes below ³m. It is

usually chosen as a low value.

• ³m represents a value of ³ at which point it starts constantly growing to ensure that

³ is not reduced past a certain value.

• ϵAG is a constant of proportionality between ³ and ´.

3.2.2 Barrier Function Super Twisting Sliding Mode Control (BF-

ST-SMC)

Another strategy studied in modern literature is the Barrier Function based algorithm.

Similar to the AG-ST-SMC, the Barrier Function Super Twisting Sliding Mode Control

(BF-ST-SMC) aims to avoid chattering while ensuring the convergence of the sliding

variable and of its derivative to the neighborhood of zero, without requiring knowledge of

the perturbation bounds or their derivatives. It is based on dynamically adapting the gains

in order to not overestimate them. In this case, the variable gain is indicated as L(t, s) and

the new problem formulation is as follows:







u(t)BF−ST−SMC = −L(t, s)|s| 12 sgn(s) + v

v̇ = −L2(t, s) sgn(s)

(3.17)

namely L(t, s) and L2(t, s) are related to the former k1 and k2 respectively.

The procedure of the BF-ST-SMC algorithm is split in two phases:
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• First, linearly increase the variable gain L(t, s) until the sliding variable s reaches

for the first time the neighborhood of zero |s| ≤ ϵ/2 at the time instant t̄, with ϵ > 0.

l(t) = L1t+ L0 with t ≥ 0 (3.18)

• Then, the variable gain L(t, s) switches to the barrier function and the sliding vari-

able is ensured to stay inside the neighborhood of zero never escaping: |s(t)| < ϵ.

Lb(s) =
ϵ ·K
ϵ− |s| with s ∈ (−ϵ, ϵ) (3.19)

In Figure 3.10 is illustrated the plot of the Barrier Function. The more s approaches

to the boundaries of ϵ, the more the gain Lb(s) will increase its value. If s = 0, the

Barrier Function will assume the starting gain value, i.e. K. The advantage of this

approach is that s never escapes from the boundaries thanks to the really high value

that Lb(s) will take if the parameters are well tuned.

Therefore, the law that rules the adaptive gain is:

L(t, s) =







l(t) if 0 ≤ t ≤ t̄(s)

Lb(s(t)) if t > t̄(s)

(3.20)

The adaptation, therefore, ensures that the gains are not overestimated. Now let us explain

each parameter of the adaptation law and its role as reported in [21]:

• L0 is the initial value of the gain at time t = 0;

• L1 indicates the rate of growth of the gain when the sliding variable has not yet

reached the threshold to switch to the barrier function;

• ϵ corresponds the threshold of the sliding variable and is the parameter that deter-

mines the maximum error of the system;
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• K is the minimum value of the gain that can be taken inside the barrier function, this

value is assigned to Lb when the sliding variable is equal to zero: Lb(s = 0) = K.

FIGURE 3.10: Barrier function plot. Parameters: K = 15 and ϵ = 2.

3.2.3 square root Barrier Function Super Twisting Sliding Mode Con-

trol (sqrtBF-ST-SMC)

It has been presented another version of the Barrier Function in [16] that makes use of the

square root:

Lb(s) =

√
ϵ ·K

√

ϵ− |s|
with s ∈ (−ϵ, ϵ) (3.21)

In this thesis it is referred as as square root Barrier Function Super Twisting Sliding Mode

Control (sqrtBF-ST-SMC).
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4
Controllers Design

In this Chapter, the design of the controllers developed in the MATLAB/Simulink envi-

ronment for the Wind Turbine Pitch Hydraulic System will be explained. At the beginning

the standard Super Twisting Sliding Mode Control algorithm will be discussed, and then

the Adaptive versions of it.

4.1 Sliding Mode Controller Design

Before going into details with the controller design, let us explain some variables that will

be recurrently mentioned:

• Blade angle amplitude error:

e = ´ − r (4.1)

• Blade angle velocity error:

ė = ˙́ − ṙ = v´ − ṙ (4.2)
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• Blade angle acceleration error:

ë = ΅− r̈ = v̇´ − r̈ =
Mfric +Mext

I
+
r

I
sin(Èp(xc))(Appp − Arpr)− r̈ (4.3)

It is necessary to derive the error until the input term u does not appear in the expression

to match the relative degree, therefore it is required to differentiate it one more time:

e(3) =
rAp´e
I V olp

Qp(u) sin(Èp(xc)) +
rAr´e
I V olr

Qxv(u) sin(Èp(xc))

−
rA2

p´e

I V olp
vc sin(Èp(xc))−

rA2
r´e

I V olr
vc sin(Èp(xc))

+
rAr´e
I V olr

Qcv sin(Èp(xc))

+
r

I
Fh cos(Èp(xc))

dÈp

dxc
vc

︸ ︷︷ ︸

À

−Ṁfric + Ṁext

I
− r(3)

(4.4)

To design a Sliding Mode Controller, the sliding surface needs to be defined. Since the

direct pitch angle orientation system is of relative degree 3 and the ST-SMC is of order 2,

the sliding surface requires the derivatives of the blade angle amplitude error. In particular,

the surface is chosen as a second-order linear system of the blade angle amplitude error

as follows:

s =

(
d

dt
+ c1

)(
d

dt
+ c2

)

e

= ë+ (c1 + c2)ė+ c1c2e

= ë+ ¼2ė+ ¼1e

(4.5)

where ¼1 = c1c2 > 0 and ¼2 = (c1 + c2) > 0. They are the error convergence rates when

the system is in sliding mode, i.e. when the conditions s = 0 holds.

By substituting the error and its derivatives in the Equation 4.5, s becomes:

s =
r

I
sin(Èp(xc))(Appp −Arpr)−

Mfric +Mext

I
+ ¼2v´ + ¼1´ − r̈− ¼2ṙ− ¼1r (4.6)
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The sliding surface dynamics is computed in order to obtain an expression depending on

u and to derive the equivalent controller:

ṡ =e(3) + ¼2ë+ ¼1ė

=
rAp´e
I V olp

Qp(u) sin(Èp(xc)) +
rAr´e
I V olr

Qxv(u) sin(Èp(xc))

−
rA2

p´e

I V olp
vc sin(Èp(xc))−

rA2
r´e

I V olr
vc sin(Èp(xc))

+
rAr´e
I V olr

Qcv sin(Èp(xc)) + À − Ṁfric + Ṁext

I

− r(3) + ¼2

(
r

I
sin(Èp(xc))Fh −

Mfric +Mext

I
− r̈

)

+ ¼1(v´ − ṙ)

(4.7)

Let us apply the following simplifications:

Qp(u) = KQp
u (4.8)

Qxv
(u) = KQrv

u (4.9)

For the sake of simplicity, one can define:

g =
rAp´e
I V olp

KQp
sin(Èp(xc)) +

rAr´e
I V olr

KQrv
sin(Èp(xc)) (4.10)

and

f =
rA2

p´e

I V olp
vc sin(Èp(xc))−

rA2
r´e

I V olr
vc sin(Èp(xc))

−
rA2

p´e

I V olp
vc sin(Èp(xc)) +

rA2
r´e

I V olr
vc sin(Èp(xc))

+ r(3) − ¼2

(
r

I
sin(Èp(xc))Fh −

r̂d
I

− r̈

)

− ¼1(v´ − ṙ)

(4.11)

Hence, the dynamics of s can be represented as:

ṡ = gu+ f (4.12)
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Imposing ṡ = 0 and isolating u, it can be obtained the equivalent controller such that

cancels the original dynamics:

ueq = −1

g
f (4.13)

Then, the Sliding Mode Control action has to be introduced because, even if ṡ is ideally

in zero with ueq action, actually there is still present a disturbance d(t). Therefore, let us

define uSMC as the control action of the first order SMC:

uSMC = −k sgn(s) (4.14)

and the disturbance to win is:

d(t) = À − Mfric +Mext

I
− ¼2

(
Mfric +Mext − r̂d

I

)

(4.15)

Thus, the global control law is expressed as the sum of both controls:

u = ueq +
1

g
uSMC

=
1

g
(−f − k sgn(s))

=
1

rAp´e

I V olp
KQp

sin(Èp(xc)) +
rAr´e

I V olr
KQr

sin(Èp(xc))

×
[

rA2
p´e

I V olp
vc sin(Èp(xc))−

rA2
r´e

I V olr
vc sin(Èp(xc))−

rA2
p´e

I V olp
vc sin(Èp(xc))

+
rA2

r´e
I V olr

vc sin(Èp(xc)) + r(3) − ¼2

(
r

I
sin(Èp(xc))Fh −

r̂d
I

− r̈

)

− ¼1(v´ − ṙ)− k sgn(s)

]

(4.16)

Due to chattering problems already discussed, to implement the previous controller, it is

necessary to substitute the sign(x) function with a smoother function.
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In this thesis project the following approximation is chosen:

sgn(x) ≈ 2

Ã
atan(kx) (4.17)

where k is a positive constant that gives the steepness. The more it is big, the better the

approximation will be.

4.1.1 Super Twisting Sliding Mode Controller Design

A better attempt is to explore an High Order of SMC, in particular a second order version,

the Super Twisting Sliding Mode Control. It is defined as follows:







uST−SMC = −k1|s|
1

2 sgn(s) + v, k1 > 1.8
√
k2 + L

v̇ = −k2sgn(s), k2 > L > |ḋ|
(4.18)

where the final control law becomes:

u = ueq +
1

g
uST−SMC (4.19)

which is given to the system as input.

The gains k1 and k2 are chosen as positive constants. However, as previously stated,

this is a static law that can not further adjust itself, it is required the knowledge of the

derivative of the disturbance bounds ḋ that in practice usually is unlikely to be known and

the chattering is just reduced, not eliminated. Therefore, to improve the performance, the

gains k1 and k2 require an adaptation law.
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4.2 Adaptive Gain Super Twisting Sliding Mode Controller

Design

The AG-ST-SMC is one of the Adaptive SMC that adapts the gains and it is formulated

as follows: 





uAG−ST−SMC = −³|s| 12 sgn(s) + v

v̇ = −´
2
sgn(s)

(4.20)

and u is the new control law:

u = ueq +
1

g
uAG−ST−SMC (4.21)

In this new formulation of the problem, ³ corresponds to the previous gain k1 and ´ to k2.

These two new gains are adapted via the following formulas:

³̇ =







É
√

µ
2
sgn(|s| − µ) if ³ > ³m

¸ if ³ ≤ ³m

(4.22)

´ = 2ϵ³ (4.23)

4.3 Barrier Function Super Twisting Sliding Mode Con-

troller Design

The other method explored is the BF-ST-SMC. The previous method AG-ST-SMC ensures

that the sliding variable converges in finite-time to a zone close to zero, but the size of the

zone close to zero depends on the upper bound of the disturbance. Therefore, these values

can not be known beforehand and there is no proof that the sliding variable will not escape

from this neighbourhood of zero. In order to circumvent these limitations, the use of BF
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is introduced. The BF control action is given by:







uBF−ST−SMC(t) = −L(t, s)|s|1/2sgn(s) + v

v̇ = −L2(t, s) sgn(s)

(4.24)

where the formulas that rule the adaptive gain are:

L(t, s) =







l(t) = L1t+ L0 if 0 ≤ t ≤ t̄(s)

Lb(s) =
ϵK
ϵ−|s|

if t > t̄(s)

(4.25)

The global law is given by the sum of both controls:

u = ueq +
1

g
uBF−ST−SMC (4.26)

4.4 square root Barrier Function Sliding Mode Controller

Design

Same formulation as before except for the new Lb(s) which is:

Lb(s) =

√
ϵ ·K

√

ϵ− |s|
with s ∈ (−ϵ, ϵ) (4.27)
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5
Simulation Results

In this chapter the controllers designed in the previous one are tested with a high-fidelity

simulator to analyze their performances and then the results are discussed. The simula-

tions were conducted in the MATLAB/Simulink environment.

5.1 Test Scenarios

As a first step, control goal has to be set. The purpose is to have a satisfactory tracking

of the reference, a reasonable error and a realistic input, namely avoiding saturation and

excessive chattering. Another task is to keep the gains as small as possible meeting the

previous requests.

It is considered a good performance when the error is inside the range [−0.005, 0.005]rad

for ´. Furthermore, the maximum absolute value that the input can assume in this system

is 1m.

The controllers have been tested with simulation time of 250s and by leveraging the open-

FAST simulator by NREL to obtain realistic pitch angle reference and external load.
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Figure 5.1 shows the Simulink block scheme of openFAST simulator, namely the entire

wind turbine system. Figure 5.2 instead, displays the Simulink block scheme of the Hy-

draulic Pitch System.

FIGURE 5.1: Simulink block scheme of openFAST simulator.

FIGURE 5.2: Simulink block scheme of the HPS.

The system is tested both under nominal conditions, namely without the presence of faults,

and under several faulty scenarios.

The performance criteria used to compare the different solutions are:

• Normalized Maximum Absolute Error (MAX(|e|));

• Normalized Mean Square Root of the Error (RMS(e));

• Normalized Mean Square Root of the Input Signal (RMS(usat − ūsat)), where its

moving average is subtracted in order to obtain an indication of chattering.

To have more valid outcomes, the initial samples are discarded, since they are related

to the initialization of the controllers. For the nominal case it was assumed to consider
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samples from time instant t = 5s and for the faults case from t = 30s, namely when the

fault is introduced in the system.

Metrics are normalized because they can be more easily interpreted, especially when the

original scales of the data are different. This helps the visualization and understanding the

relationships between the methods employed.

The tests are organized in two sections:

• Pitch angle ´ as output in nominal case (Section 5.2);

• Pitch angle ´ as output in fault case (Section 5.3).

For the sake of simplicity, N is employed to indicate the nominal (standard or baseline)

control (ST-SMC), AG for invoking AG-ST-SMC, BF refers to BF-ST-SMC and lastly

sqrtBF is used to mention sqrtBF-ST-SMC.

5.2 Pitch angle ´ as output in nominal case

In this Section the controllers are tested in the system with ´ as output in the nominal case

and the simulation time is 250s.

5.2.1 BF-ST-SMC

In Figure 5.3 the performances of the Barrier Function controller with fixed values chosen

for K (8, 10, 12, 16, 20) and with their relative ϵ found by trial and error (respectively 39,

26.5, 29.5, 19, 18) are plotted. Every ϵ reported is the limit case for which the controller

properly works. If that parameter is decreased, the sliding variable s escapes from the

boundaries [−ϵ, ϵ] and the tracking of the reference is lost. For practical reasons, the

parameters for the linear function are set L0 = K and L1 = 0 and the switching to the

barrier function is imposed after 5s. In Table 5.1 the simulations are discussed.
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FIGURE 5.3: Plot of output ´, error e, saturated input usat, gains k1 and k2 with BF-

ST-SMC strategy and simulation time 250s in nominal case. Parameters: fixed K (8, 10,

12, 16, 20) and various ϵ (respectively 39, 26.5, 29.5, 19, 18). On the right, a zoom from

time instant t = 140s to t = 160s.

It can be noticed that for K = 10 the ϵ value 26.5 corresponds to a case of outlier since

it differs from the other values, it should be inside the range [29.5, 39], namely the ϵ used

for the next K and the previous one.

Examining the results, some noteworthy details have been noticed. If the goal is to de-

crease K, in order to keep a satisfying tracking of the reference, it is required to increase

ϵ and vice versa. To obtain a smaller error and more accuracy, it is needed on the hand to
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reduce ϵ, but on the other hand to raise K that provokes more oscillations in the control

input, therefore more chattering. Otherwise, if it is preferable have less oscillations in the

control input, K needs to be diminished and ϵ enlarged, causing a bigger error and less

accuracy.

K = 12 appears to be a good tradeoff between parameters because the input does not os-

cillate as much as for higher values of K, the error is well bounded in the tolerance range

and finally the gains values are similar or below respect to the standard ones. Another

reason why this value is chosen, it is because it mimics the gains used in the standard

ST-SMC (k1,N = 25.2228, k2,N = 160). Considering that the relation of BF gains is

k2,BF = k21,BF , by calculating
√
k2,N one gets

√
160 ≈ 12.65.

In Figure 5.4 the performances of the Barrier Function controller with the chosen value

K = 12 and varying ϵ are presented. The starting ϵ is the limit case 39, then this value is

increased from 10% to 50% with step of 10%, i.e. 42.9, 46.8, 50.7, 54.6, 58.5 and finally

the value that will be used for the faults analysis, that is 2500.

For what concern the output ´, the error e and the saturated input usat, the performances

are more or less the same with different values of ϵ. Instead, regarding the gains, it can be

noticed that for ϵ = 2500 the gains are not really adapted and they emulate the standard

controller gains that are constants, but the performance still holds the requirements. This

occurs because the width of the band is very big. Hence, the more ϵ is small (within the

limit case), the more the gains are adjusted.

5.2.2 sqrtBF-ST-SMC

In Figure 5.5 and Table 5.2 the performances of the square root Barrier Function controller

with the fixed values chosen for K (8, 10, 12, 16, 20) and with their relative ϵ found by

trial and error (respectively 22, 15.5, 22, 12, 10) are reported and discussed. Every ϵ

is the limit case in which the controller properly works, otherwise, if that parameters is

diminished, the sliding variable s goes out from the boundaries [−ϵ, ϵ] and the tracking of

the reference is not followed anymore. For practical reasons, the parameters for the linear

45



FIGURE 5.4: Plot of output ´, error e, saturated input usat, gains k1 and k2 with BF-

ST-SMC strategy and simulation time 250s in nominal case. Parameters: K = 12 and

various ϵ (39, 42.9, 46.8, 50.7, 54.6, 58.5 and 2500). On the right, a zoom from time

instant t = 140s to t = 160s.

function are set L0 = K and L1 = 0 and the switching to the barrier function is imposed

after 5s.

Notice that for K = 10 the ϵ value 15.5 corresponds to a case of outlier since it differs

from the other values, where the ϵ used for the next K and the previous one is in both

cases 22.
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FIGURE 5.5: Plot of output ´, error e, saturated input usat, gains k1 and k2 with sqrtBF-

ST-SMC strategy and simulation time 250s in nominal case. Parameters: fixed K (8, 10,

12, 16, 20) and various ϵ (respectively 22, 15.5, 22, 12, 10). On the right, a zoom from

time instant t = 140s to t = 160s.

Observing the results, same conclusions as in the BF-ST-SMC case can be extracted,

therefore K = 12 seems to be an adequate tradeoff between parameters: the input does

not oscillate as much as higher values of K, the error is well bounded in the tolerance

range, the gains values are similar or below respect to the standard ones and emulate the

values of standard ST-SMC gains.

In Figure 5.6 the performances of the square root Barrier Function controller with the
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selected K = 12 and changing ϵ are presented. The initial ϵ is the limit case 22, then this

value is enlarged from 10% to 50% with step of 10%, i.e. 24.2, 26.4, 28.6, 30.8, 33.0 and

finally the value that will be used for the faults analysis, namely 1500.

FIGURE 5.6: Plot of output ´, error e, saturated input usat, gains k1 and k2 with sqrtBF-

ST-SMC strategy and simulation time 250s in nominal case. Parameters: K = 12 and

various ϵ (22, 24.2, 26.4, 28.6, 30.8, 33.0 and 1500). On the right, a zoom from time

instant t = 140s to t = 160s.

By looking at the tests, similar interpretations done in the BF-ST-SMC case can be done.

Therefore, for what regards the output ´, the error e and the saturated input usat, the

performances are really close to each other with different values of ϵ. Instead, it can
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be observed that for ϵ = 1500 the gains are not actually dynamically adjusted and they

emulate the standard controller behaviour that has constants, but anyway the performance

is still satisfying the requests. This happens because the bandwidth is very large. As stated

before, the more ϵ is small (within the limit case), the more the gains are adapted.

5.2.3 AG-ST-SMC

The tuning for this method is more challenging since a lot of parameters are involved. In

Table 5.3 few tuning solutions are listed and in Figure 5.7 their behaviours is presented.

The parameter ϵAG is fixed because the idea is to mimic the proportional relation between

the standard ST-SMC gains: k2,N = x · k1,N , therefore x =
k2,N
k1,N

= 160
25.2228

≈ 6. Since

k2,AG = 2 · ϵAG · k1,AG, hence ϵAG = 1
2

k2,AG

k1,AG
≈ 3.

The value of ³m was chosen considering that it should be a lower value than k1,N due

to the control goal and in order to let adapt k1,AG just when it is needed. The others

parameters were found by trial and error.

Simulation Number ³m É µ µ ¸ ϵAG

1 5 50 50 5 50 3

2 10 50 50 5 50 3

3 10 25 25 5 25 3

4 5 25 25 5 25 3

TABLE 5.3: Simulation parameters for AG-ST-SMC in nominal case.

The simulations have similar performances. The third solution is selected for the faulty

scenarios because of the best tracking performance and less chattering in the input.
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FIGURE 5.7: Plot of output ´, error e, saturated input usat, gains k1 and k2 with AG-ST-

SMC strategy and simulation time 250s in nominal case. Parameters are listed in Table

5.3. On the right, a zoom from time instant t = 140s to t = 160s.

5.2.4 Comparison and Conclusions nominal case

Figure 5.8 presents a comparison between of all the controllers and Figure 5.9 analyses

them in detail through the defined metrics.

It is possible to see that all the controllers have suitable performances since all the require-

ments are satisfied.
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FIGURE 5.8: Plot of output ´, error e, saturated input usat, gains k1 and k2, with simu-

lation time 250s in nominal case with four controllers. On the right, a zoom from time

instant t = 140s to t = 160s.

5.3 Pitch angle ´ as output in fault case

In this section the controllers are tested with the introduction of faults. In Table 5.4 the

values of all the simulated faults are listed. In each simulation there is just one fault

activated and it starts to affect the system at the time instant t = 30s.

Some values of the controllers parameters are different compared to the ones used in
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FIGURE 5.9: Metrics for the four controllers in nominal case: Normalized RMS(e),

Normalized RMS(usat − ūsat) and Normalized MAX(|e|).

the nominal case. To handle the faults, it was needed a new tuning that brought to the

following values:

• BF-ST-SMC: KBF = 12, ϵBF = 2500, L0,BF = 12, L1,BF = 0;

• sqrtBF-ST-SMC: KsqrtBF = 12, ϵsqrtBF = 1500, L0,sqrtBF = 12, L1,sqrtBF = 0;

• AG-ST-SMC: É = 25, µ = 25, µ = 5, ¸ = 25, ³m = 10 and ϵAG = 3.

As seen in the previous section, namely in the nominal case, when BF and sqrtBF mech-

anisms are implemented, increasing the ϵ parameter does not affect the overall perfor-

mance, except for exceeding the limit case found in order to not have the sliding variable

s escaping from the boundaries. With the injection of faults in the system, it was needful to

enlarge a lot ϵ to have s inside the range [−ϵ, ϵ], therefore ϵBF = 2500 and ϵsqrtBF = 1500
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are used. For what concern the AG strategy, it was not indispensable to change any pa-

rameters. Moreover, also in this tests the parameters for the linear function of BF and

sqrtBF strategy are implemented as L0 = K and L1 = 0 and the switching to the barrier

function occurs at 5s.

In the following, from Figure 5.10 to 5.44, the simulations of the faults and the metric

analysis are reported with the four controllers all together to let us do a comparison be-

tween the performances of the different methods.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.10: Fault 1 - Simulation results and metrics.
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Parameters Observations

K = 8, ϵ = 39

• k1 and k2 are adapted;

• The average value of k1 and k2 are decreased with respect to the standard ST-SMC

values (k1 = 25.2228, k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning;

• The system is able to track the reference;

• The |e| crosses the tolerance [−0.005, 0.005]rad because the controller is not

strong enough, the gains are too low.

K = 10, ϵ = 26.5

• k1 and k2 are adapted;

• The average value of k1 and k2 are decreased with respect to the standard ST-SMC

values (k1 = 25.2228, k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning and around

time instant 150s;

• The system is able to track the reference;

• The |e| crosses the tolerance [−0.005, 0.005]rad because the controller is not

strong enough, the gains are too low.

K = 12, ϵ = 29.5

• k1 and k2 are adapted;

• The average value of k1 is decreased with respect to the standard ST-SMC values

(k1 = 25.2228) and the average value of k2 is slightly increased with respect to

the standard ST-SMC values (k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning and around

150s;

• The system is able to track the reference;

• The |e| almost never crosses the tolerance [−0.005, 0.005]rad.

K = 16, ϵ = 19

• k1 and k2 are adapted;

• The average value of k1 is decreased with respect to the standard ST-SMC values

(k1 = 25.2228) and the average value of k2 is increased with respect to the stan-

dard ST-SMC values (k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning and around

time instant 150s;

• The system is able to track the reference;

• The |e| almost never crosses the tolerance [−0.005, 0.005]rad.

K = 20, ϵ = 18

• k1 and k2 are adapted;

• The average value of k1 is decreased with respect to the standard ST-SMC values

(k1 = 25.2228) and the average value of k2 is increased with respect to the stan-

dard ST-SMC values (k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning and around

time instant 150s, furthermore there are more oscillations;

• The system is able to track the reference;

• The |e| never crosses the tolerance [−0.005, 0.005]rad, except for the beginning.

TABLE 5.1: Summary of controller parameters and observations for BF method in nom-

inal case.
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Parameters Observations

K = 8, ϵ = 22

• k1 and k2 are adapted;

• The average value of k1 and k2 are decreased with respect to the standard ST-SMC

values (k1 = 25.2228, k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning;

• The system is able to track the reference;

• The |e| crosses the tolerance [−0.005, 0.005]rad because the controller is not

strong enough, the gains are too low.

K = 10, ϵ = 15.5

• k1 and k2 are adapted;

• The average value of k1 and k2 are decreased with respect to the standard ST-SMC

values (k1 = 25.2228, k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning and around

time instant 150s;

• The system is able to track the reference;

• The |e| crosses the tolerance [−0.005, 0.005]rad because the controller is not

strong enough, the gains are too low.

K = 12, ϵ = 22

• k1 and k2 are adapted;

• The average value of k1 and k2 are decreased with respect to the standard ST-SMC

values (k1 = 25.2228, k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning and around

150s;

• The system is able to track the reference;

• The |e| almost never crosses the tolerance [−0.005, 0.005]rad.

K = 16, ϵ = 12

• k1 and k2 are adapted;

• The average value of k1 is decreased with respect to the standard ST-SMC values

(k1 = 25.2228) and the average value of k2 is increased with respect to the stan-

dard ST-SMC values (k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning and around

time instant 150s;

• The system is able to track the reference;

• The |e| almost never crosses the tolerance [−0.005, 0.005]rad, except for the be-

ginning.

K = 20, ϵ = 10

• k1 and k2 are adapted;

• The average value of k1 is decreased with respect to the standard ST-SMC values

(k1 = 25.2228) and the average value of k2 is increased with respect to the stan-

dard ST-SMC values (k2 = 160);

• The control input is always between [−1, 1]m, except for the beginning and around

time instant 150s, furthermore there are more oscillations;

• The system is able to track the reference;

• The |e| never crosses the tolerance [−0.005, 0.005]rad, except for the beginning.

TABLE 5.2: Summary of controller parameters and observations for sqrtBF method in

nominal case.
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Number fault Name Value

1 Piston Pressure pp Sensor - Bias 5.0× 106 Pa

2 Piston Pressure pp Sensor - Gain 1.125
3 Piston Pressure pp Sensor - Drift 1.0× 105 Pa

4 Piston Pressure pp Sensor - Precision, Noise Increase 12.5% of nominal var

5 Piston Pressure pp Sensor - Activation fault 4 1
6 Piston Pressure pp Sensor - Stuck 1.25× 107 Pa

7 Piston Pressure pp Sensor - Activation fault 6 1
8 Rod Pressure pr Sensor - Bias 1.5× 107 Pa

9 Rod Pressure pr Sensor - Gain 1.0
10 Rod Pressure pr Sensor - Drift 7.5× 104 Pa

11 Rod Pressure pr Sensor - Precision, Noise Increase 12.5% of nominal var

12 Rod Pressure pr Sensor - Activation fault 11 1
13 Rod Pressure pr Sensor - Stuck 1.25× 107 Pa

14 Rod Pressure pr Sensor - Activation fault 13 1
15 Cylinder Position xc Sensor - Bias −0.2
16 Cylinder Position xc Sensor - Gain 0.875
17 Cylinder Position xc Sensor - Drift −0.005
18 Cylinder Position xc Sensor - Precision, Noise Increase 12.5% of nominal var

19 Cylinder Position xc Sensor - Activation fault 18 1
20 Cylinder Position xc Sensor - Stuck 0.375
21 Cylinder Position xc Sensor - Activation fault 20 1
22 Pitch Angle ´ Sensor - Bias −0.25
23 Pitch Angle ´ Sensor - Gain 0.875
24 Pitch Angle ´ Sensor - Drift −0.005
25 Pitch Angle ´ Sensor - Precision, Noise Increase 10% of nominal var

26 Pitch Angle ´ Sensor - Activation fault 25 1
27 Pitch Angle ´ Sensor - Stuck 0.15
28 Pitch Angle ´ Sensor - Activation fault 27 1
29 Friction for xc - Viscous Friction 100
30 Friction for xc - Coulomb Friction 125
31 Friction for ´ - Viscous Friction 100
32 Friction for ´ - Coulomb Friction 100
33 Bulk Modulus −1.0625
34 Leakages - Qle,p 2.0× 10−10 m3/s

35 Leakages - Qle,r 5.0× 10−10 m3/s

36 Leakages - Qli 3.0× 10−10 m3/s

37 Valve Flows - Qcv 12.5× 10−10 m3/s

38 Valve Flows - Qp 1.2× 10−6 m3/s

39 Valve Flows - Qrv 1.8× 10−6 m3/s

40 Valve - Increased csi 6.25
41 Valve - Decreased w0 312.5 rad/s

42 Supply Pressure ps Sensor - Bias 1.25× 107 Pa

43 Supply Pressure ps Sensor - Drift 4.0× 104 Pa

TABLE 5.4: Faults values for various sensors and components in faulty scenarios.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.11: Fault 2 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.12: Fault 3 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.13: Fault 4 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.14: Fault 6 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.15: Fault 8 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.16: Fault 9 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.17: Fault 10 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.18: Fault 11 - Simulation results and metrics.

65



(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.19: Fault 13 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.20: Fault 15 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.21: Fault 16 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.22: Fault 17 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.23: Fault 18 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.24: Fault 20 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.25: Fault 22 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.26: Fault 23 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.27: Fault 24 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.28: Fault 25 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.29: Fault 27 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.30: Fault 29 - Simulation results and metrics.

77



(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.31: Fault 30 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.32: Fault 31 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.33: Fault 32 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.34: Fault 33 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.35: Fault 34 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.36: Fault 35 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.37: Fault 36 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.38: Fault 37 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.39: Fault 38 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.40: Fault 39 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.41: Fault 40 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.42: Fault 41 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.43: Fault 42 - Simulation results and metrics.
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(A) Plot of the output ´, error e, input u, and gains k1, k2. Simulation time 250s, fault

injection at tf = 30s. On the right, a zoom from time instant t = 145s to t = 150s.

(B) Metrics in faulty case: Nor-

malized RMS(e), normalized

RMS(usat − ūsat) and normal-

ized MAX(|e|).

FIGURE 5.44: Fault 43 - Simulation results and metrics.
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Scrolling through the figures, it is possible to notice behaviors that some categories have

in common:

• no controller is able to handle the drift faults (Fault 3, 10, 17), except for the one of

the β sensor (Fault 24) where the adaptive action performance is acceptable com-

pared to the nominal one and in the case of the supply pressure drift (Fault 43)

where the adaptive solutions manage the faults much better than the standard one;

• in all the gain faults (Fault 2, 9, 23), except for the case of position sensor gain

fault (Fault 16), the adaptive controllers, that have similar performances, work in a

superior way compared to the standard controller;

• the plots of the leakage faults (Faults 34, 35, 36) show that the standard controller

is the best at managing the faults;

• in stuck faults (Fault 6, 13, 20), in general, AG controller seems to be the worst one

to implement, while in Fault 27 no one has a satisfactory performance;

• the controllers action while the increased friction faults (Fault 29, 31, 32) are affect-

ing the system, except for Fault 30, failed;

• the position and pitch angle sensor bias faults (Fault 15 and 22) are managed in the

same way, where AG appears to be the worst choice, instead the other controllers

have similar results. Pitch and rod pressure sensor bias faults (Fault 1 and 8) are

handled in different ways: in the first one the AG solution appears to be better

compared to the others, especially to the N one, instead in the second fault every

controller fails;

• in the position and pitch angle sensor precision faults (Fault 18 and 25) there are

similar performances, where no controller outperforms compared to the others, in-

stead in pressure sensor precision faults (Fault 4 and 11), the nominal controller

seems to be the best choice;
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• in DC valve faults (fault 40 and 41) the baseline controller shows a better perfor-

mance;

• in valve flows faults category (Fault 37, 38, 39) it was not individuated a common

feature: in the first one AG and N perform better, in the second the sqrtBF and BF

and finally in the third again N.
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6
Conclusions and Future Research

Directions

This thesis presents the design of some Adaptive Super Twisting Sliding Mode Con-

trollers, namely robust and accurate controllers, that are necessary when dealing with

systems subjected to disturbances, uncertainties and faults. It investigates some variations

of A-ST-SMC already presented in literature to suggest which method could be a feasible

solution to apply in real-world implementation compared to the baseline strategy.

In most of the fault cases, the adaptive solutions improved the reference tracking and re-

duced the gain values making the adaptive technique generally preferable to the nominal

one. However, the chattering phenomenon was not sufficiently enhanced as expected.

Consequently, this thesis can not conclusively determine the best controller overall for

a faulty situation since each scenario gave a different result. What can be noted is that

in some categories similar behaviors have been identified and the simulations had led to

confirm, in line with the literature, that the sqrtBF-ST-SMC and BF-ST-SMC providedin

general better performances among the adaptive solutions.

95



The work of refining and perfecting the proposed control architecture does not end with

this thesis. The presence of the chattering in the adaptive solution indicates a need for

further meticulous design and implementation reviews.

This thesis gives some starting points for the developing of future works:

• discretization of the system: this could potentially improve the chattering issue;

• real system experiments: this thesis simulates the system with an high-fidelity sim-

ulator, but by implementing the controllers on a real architecture, the comparison

between the controllers would lead to even more interesting findings. Moreover, it

would allow to determine unforeseen limitations of each controller.
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