

Biomineralizzazione Aspetti cinetici e termodinamici

Laurea Triennale in Scienze dei Materiali - A.A. 2022-2023

Studentessa: Laura Bettinzoli Matricola nº: 2000451

Relatrice: Prof.ssa Antonella Glisenti

Biomineralizzazione

Insieme dei processi attraverso cui gli organismi viventi influenzano la precipitazione di materiali minerali.^[1]

I biominerali prodotti

- possono avere forma amorfa, policristallina o monocristallina;
- sono generalmente formati da ioni metallici quali Ca, Fe, Mg e Mn, e anioni quali carbonati, fosfati, ossalati, solfati, ossidi e solfuri. ^[2]

Due terzi dei biominerali conosciuti contengono Ca ^[3], il più noto di questi è il CaCO₃.

Sezione trasversale della conchiglia di *Diacria quadridentata* adulta. Strati costituiti da monocristalli curvi di aragonite (CaCO₃)^[4].

Prodotti e processi

Interesse per la scienza dei materiali

- I minerali sintetizzati hanno forma, orientazione, grado di cristallinità e composizione controllate
- Condizioni di processo: temperatura ambiente e pH vicino alla neutralità

Caratteristiche generali dei processi

- Avvengono in soluzioni sovrasature
- Prevedono meccanismi multistadio a partire da fasi amorfe
- Prevedono **nucleazione eterogenea** in presenza di macromolecole organiche

Immagine di un cristallo singolo di calcite (CaCO₃) in una spina di riccio di mare. La morfologia del cristallo non riflette l'organizzazione atomica^[5].

Teoria di nucleazione classica

- La nucleazione avviene attraverso l'addizione di specie monomeriche (atomi, complessi molecolari, colloidi) ad una particella in crescita, causata dalle fluttuazioni locali di concentrazione della soluzione.
- Non avviene coalescenza tra le particelle.

In una soluzione sovrasatura l'accrescimento della particella è favorito dal potenziale chimico

$$\mu_{solido} < \mu_{soluzione}$$
$$\Delta \mu = \mu_{solido} - \mu_{soluzione} < 0$$

La formazione di una particella comporta la formazione di un'**interfaccia solido-liquido** \Rightarrow penalità dovuta alla **tensione superficiale** γ

$$\begin{array}{c} \Delta g_b \propto -\Delta \mu r^3 \\ \Delta g_s \propto \gamma r^2 \end{array} \longrightarrow$$

Barriera di energia libera corrispondente ad un raggio critico r_c

Barriera di energia libera

Condizione per la crescita di una particella: $r > r_c$ (r = raggio della particella)

Velocità di crescita per unità di volume

$$J = A \ e^{\frac{-E_A}{k_B T}} e^{-\frac{\Delta g_n}{k_B T}}$$

Altezza della barriera energetica $\Delta g_n = \frac{B\gamma^3}{\sigma^2}$ Sovrasaturazione $\sigma = -\frac{\Delta\mu}{k_BT}$ Energia di attivazione dei processi atomici E_A (desolvatazione, attaccamento, possibili riarrangiamenti strutturali)

Fluttuazioni della soluzione

Sequenza di immagini LP-TEM ottenute per una soluzione di Au_2Cl_6 contenente citrato. Nel cerchio nero è visibile il nucleo nascente di una particella di Au che non riesce a raggiungere le dimensioni necessarie per la crescita spontanea: esso subisce fluttuazioni nelle dimensioni ed infine scompare. Barra di scala 200 nm^[7].

Diagramma di fase ed energia libera in funzione della composizione per una miscela che presenta decomposizione spinodale [8]

Meccanismi alternativi

Decomposizione spinodale

- Processo senza barriere energetiche
 - Avviene a concentrazioni per cui l'energia libera in funzione della concentrazione ha

curvatura negativa

- La transizione di fase è controllata dalla diffusione
- Le particelle possono crescere per collisione e coalescenza

Cluster di pre-nucleazione

Alcuni studi ^{[9],[10],[11]} dimostrano l'esistenza in soluzione di **complessi multi-ionici** che potrebbero contribuire alla nucleazione per **aggregazione**.

Immagine cryo-TEM di cluster di prenucleazione. Barra di scala: 50 nm figura intera e 10 nm l'inset ^[10].

Meccanismi multistadio

Vengono riportate numerose esempi di meccanismi multistadio nella formazione di cristalli

Formazione di una fase amorfa e/o metastabile

- Limitazioni cinetiche
- Inversione di stabilità a basse dimensioni

Formazione diretta:

- Crescita sotto la superficie della particella
- La fase più stabile crescendo consuma quella meno stabile

Formazione indiretta:

- Dissoluzione e crescita nella soluzione
- Avviene secondo i rispettivi prodotti di attività delle fasi

Accrescimento per meccanismo indiretto di CaCo₃

In una soluzione altamente sovrasatura i **prodotti di attività** di **tutte le fasi solide** sono **oltre** il **limite di solubilità**, quindi tutte le fasi iniziano a formarsi ma a **velocità diverse**:

- La solubilità $\sigma = -\frac{\Delta \mu}{k_B T}$ è maggiore per le fasi più stabili
- Il fattore cinetico E_A e l'energia superficiale γ sono inferiori per le fasi metastabili, soprattutto se amorfe o idrate

Ostwald step rule: la formazione di fasi metastabili avviene più rapidamente di quelle stabili

Stabilità

Fasi solide di CaCO₃

Fase amorfa (ACC) Vaterite Aragonite Calcite

Velocità di formazione

UNIVERSITÀ

Accrescimento per meccanismo diretto e indiretto di $CaCo_3$

(a-d) Nucleazione e crescita diretta di vaterite con consumo di ACC, (e-i) Nucleazione e crescita di vaterite e aragonite. (i-I) Crescita indiretta di calcite e contemporanea dissoluzione dell'aragonite. Immagini

ottenute tramite LP-TEM Barre di scala (**a-g**, **j-l**) 500 nm, (**h-i**) 1µm ^[12].

Nucleazione eterogenea

In ambiente biologico la nucleazione avviene prevalentemente come eterogenea su substrati stabilizzanti e templanti.

Energia effettiva dell'interfaccia^[6]

L'interfaccia cristallo-liquido (cl) è parzialmente sostituita da quella cristallo-substrato (cs), l'energia superficiale dell'interfaccia può essere espressa come

> $\gamma_{het} = \gamma_{cl} + h (\gamma_{cs} - \gamma_{ls})$ $\gamma_{cs} \leq \gamma_{cl} \Rightarrow \gamma_{het} \leq \gamma_{homo}$

 γ_{ls} interfaccia liquido-substrato h dipende dalle proporzioni del nucleo

L'interfaccia cristallo-substrato non genera penalità (=) o riduce l'energia (<) libera di formazione della nuova fase.

Nucleazione eterogenea

La stabilizzazione di ACC come precursore alla fase cristallina è stata ottenuta attraverso l'introduzione di additivi quali Mg, macromolecole biologiche e polimeri sintetici.

Sono stati prodotti substrati biomimetici funzionalizzati per ottenere il controllo:

- sull'orientazione dei cristalli
- sui pattern di cristallizzazione

(a) Rappresentazione schematica della precipitazione di una fase stabile di ACC (azzurro) su un monostrato selfassembled funzionalizzato con gruppi ossidrili biologicamente rilevanti e cristallizzazione di calcite orientata (rosa) indotta con un secondo layer templante terminato con -COOH. (b,c) Immagini SEM della calcite orientata (012) (b) e (113) (c) ^[13].

(a) Rappresentazione schematica della cristallizzazione diretta di calcite orientata (012) con consumo di ACC su substrati secondari decorati con un micro-pattern di siti di nucleazione. (b) Immagine del reticolo regolare di calcite orientata (012). (c) Pattern opposto lasciato sul film di

ACC ^[13].

(a) Biomineralizzazione mediata da una matrice nella bivalve *Mytilus californianus*: *s*trati di calcite prismatica circondati dalla matrice organica. (b) Mineralizzazione indotta nell'alga *Galaxura obtusata*: disposizione intracellulare di cristalli di aragonite con orientazione randomica ^[3].

Matrici macromolecolari

I sistemi di biomineralizzazione negli organismi più evoluti prevedono spesso che **nucleazione** e **accrescimento** avvengano all'interno di **matrici macromolecolari idrate** ricche di **biopolimeri** con **catene laterali cariche**, che:

- stabilizzano la fase amorfa
- inducono cristallizzazione
- determinano l'orientazione dei cristalli

Matrici macromolecolari

Le macromolecole cariche immobilizzate nelle matrici, in particolare i **polisaccaridi**, **concentrano** gli ioni dei minerali tramite **legami ionici**, ottenendo:

- Un **aumento** del fattore cinetico E_A
- Un **aumento** della sovrasaturazione locale σ
- Nucleazione localizzata

Effetto di macromolecole di polistirene sulfonato (PSS) sulla nucleazione di CaCO₃^[15]

Metodo: diffusione di CO_2 in soluzioni di $CaCl_2$ in celle di Si_3N_4

Risultati: Senza PSS (a.) \rightarrow Crescita di **vaterite** non controllata

Con PSS (b.) \rightarrow Formazione di **complessi globulari di Ca²⁺ - PSS**

 \rightarrow Nucleazione di **ACC** solo all'interno dei globuli

Conclusioni

I meccanismi di nucleazione ed accrescimento dei minerali utilizzati dagli organismi viventi per produrre strutture solide con proprietà ottiche e meccaniche sorprendenti possono essere presi ad ispirazione, mimati e sfruttati per realizzare nuovi materiali funzionali

Ringraziamenti

Ringrazio la Prof.ssa Alberta Ferrarini per avermi guidata nella stesura di questa tesi e per essersi sempre resa disponibile quando necessario.

Ringrazio la mia famiglia per avermi sostenuta negli studi e per essermi stata vicina nonostante la distanza.

Ringrazio Matteo per essere il mio miglior insegnante e per aver creduto in me più di quanto abbia fatto io.

Bibliografia

[1] H. D. Holland, K. K. Turekian, 'Treatise on Geochemistry', Elsevier Sci., 105-162 (2014).

[2] R. R. Crichton, 'Biological Inorganic Chemistry', Elsevier Sci., 359-378 (2012).

[3] H. A. Lowenstam, 'Minerals Formed by Organisms', Science 211, 1126-1131 (1981).

[4] S. Weiner, L. Addadi, 'Biomineralization: Mineral formation by organisms', *Phys. Scr.* 89, 098003 (2014).

[5] L. Addadi, S. Weiner, 'Crystallization Pathways in Biomineralization', Ann. Rev. Mater. Res. 41, 21–40 (2011).

[6] P. Vekilov, J. De Yoreo, 'Principles of Crystal Nucleation and Growth', *Rev. Mineral. Geochem.* 54, 57–93 (2003).

[7] M. Nielsen, D. Li, H. Zhang, S. Aloni, T. Han, C. Frandsen, J. Seto, J. Banfield, H. Cölfen, J. De Yoreo, 'Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM', *Microsc. Microanal.* 20, 1–12 (2014a).

[8] D. A. Porter, K. E. Easterling, M. Y. Sherif, 'Phase Transformations in Metals and Alloys', CRC *Press* (Boca Rarton, 2009).

[9] D. Gebauer, A. Völkel, H. Cölfen, 'Stable prenucleation calcium carbonate clusters', Science 322, 1819–1822 (2008).

Bibliografia

[10] D. Gebauer, M. Kellermeier, J. D. Gale, L. Bergström, H. Cölfen, 'Pre-nucleation clusters as solute precursors in crystallization', *Chem. Soc. Rev.* 43, 2348–2371 (2014).

[11] E. M. Pouget, P. H. H.Bomans, J. Goos, P. M. Frederik, G. De With, N. Sommerdijk, 'The initial stages of template-controlled CaCO₃ formation revealed by Cryo-TEM', *Science* 323, 1455-1458 (2009).

[12] M.H. Nielsen, S. Aloni S, J. De Yoreo, 'In situ TEM imaging of CaCO₃ nucleation reveals coexistence of direct and indirect pathways', *Science* 345, 1158-1162 (2014b).

[13] J. Aizenberg, T. Y. Han, 'Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization', *Chem. Mater.* 20, 1064-1068 (2008).

[14] P. Smeets, K. Cho, R. Kempen, N. Sommerdijk, J. De Yoreo, 'Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy', *Nat. Mater.* 14, 394–399 (2015).

[15] R. Demichelis, A. Schuitemaker, N.A. Garcia, K.B. Koziara, M. De La Pierre, P. Raiteri, J.D. Gale, 'Simulation of Crystallization of Biominerals', *Ann. Rev. Mater. Res.* 48, 327–352 (2018).

[16] A.E.S. Van Driessche, M. Kellermeier, L. G. Benning, D. Gebauer, 'New Perspectives on Mineral Nucleation and Growth', *Springer (Cham,* 2017).