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Abstract

This work aims at investigate the application of different learning based tech-
niques for the enhancement of the Nonlinear Model Predictive Control (NMPC)
framework, in the context of trajectory control for a quadrotor unmanned aerial
vehicle (UAV). In particular, a gaussian process regression technique and a neu-
ral network approach are both taken into account in order to improve the knowl-
edge of the model that constitutes the basis of the effectiveness of the NMPC.





Sommario

Questa tesi si propone di indagare l’applicazione di diverse tecniche learning-
based per il miglioramento del NMPC di un quadrirotore. In particolare, una
tecnica di regressione con Gaussian Process e un approccio basato su Neural
Networks sono utilizzati per migliorare la conoscenza del modello predittivo
che costituisce la base della efficacia del NMPC.
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1
Introduction

1.1 THESIS INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAV) have achieved great pop-
ularity in a number of fields of use, such as logistics, agriculture, security and
rescuing to name a few. In particular, quadrotor platforms represent an inter-
esting topic in robotics research and applications, thanks to their low cost and
high maneuverability. These mobile platforms, alongside said desirable fea-
tures, present also significant catches, including underactuation, nonlinearities
and bounded control inputs. Such characteristics prevent classical control ap-
proaches from exploiting the capabilities offered by these drones, as they typ-
ically relay on model linearizations and related small-angle-like assumptions
[37].
The NMPC framework lends itself well to the control of nonlinear constrained
systems as quadrotors, as it allows to rely on an accurate model of the con-
trolled system to define an high performance control law, while systematically
handling the system constraints. Such control technique, which was originally
adopted mainly for the control of slow-dynamics systems, has recently bene-
fited from the increase of computational power and from the development of
efficient and optimized toolbox. Specifically, the University of Padova devel-
oped in the past years an open-source MATLAB toolbox called MATMPC [13],
which allows a real-time implementation of the NMPC algorithm. Thanks to
these advancements, NMPC offers now a promising approach for the control
of fast-dynamics systems as quadrotors. Indeed, NMPC implementations have

1



1.1. THESIS INTRODUCTION

been widely adopted on quadrotors to solve position control tasks [10], [37], [48]
or to tackle specific critical maneuvers [4], [44], leading to satisfactory results.
However, NMPC performance are highly dependent on the quality of the con-
sidered model. For this reason, whenever the system presents unpredicted dy-
namical behaviours, introduced by manufacturing defects, platform customiza-
tion, damaged mechanical components or simply due to an inaccurate model,
the control performance could easily deteriorate. To overcome this limitation,
different research paths have been explored in recent years, both in the fields
of adaptive control and of learning-based control. Among the various adap-
tive control methods, ℒ1 adaptive control has been widely adopted, as it grants
fast adaptation and robustness [25], [41], [6]. Nonetheless, despite its desir-
able properties, this approach is prone to constraint violations when applied
in agile control tasks [15], [35]. On the other hand, great efforts have been de-
voted to the development of the Learning-based Nonlinear Model Predictive
Control (Lb-NMPC) framework, namely a research field dedicated to the imple-
mentation of learning techniques into the NMPC control scheme [31]. In partic-
ular, learning dynamics approaches are extensively used to replace or improve
the predictive model of the controller.
In this context, Gaussian Process (GP) regression has resulted remarkably effec-
tive in learning the residual errors between true and predicted dynamics. Such
data-driven prediction error models are suitable for the definition of a grey-
box description of the controlled system. GP-based models have been success-
fully implemented in NMPC schemes and consequently used for the control of
quadrotor platforms in presence of different kind of model uncertainties [50],
[36]. These models suffer from scalability problems and present huge computa-
tional complexity. However, said limitation can be effectively countered thanks
to sparse GP approximations [2].
Recently, a significant research effort has been dedicated to the adoption of Neural
Network (NN) regression models in NMPC implementations, as an alternative
to the aforementioned GP approach. These learning models have proven effec-
tive in learning complex dynamics and have been adopted for the development
of different data-driven NMPC approaches for quadrotor platforms [47], [46],
[11]. NN-based NMPCs present lower computational burden if compared with
the GP-based methods, yet their implementation can be troublesome, as NN
learning models are prone to overfittig and suffer from poor interpretability.
In order to deepen the understanding of the tradeoff problem offered by the

2



CHAPTER 1. INTRODUCTION

choice between GP and NN paths for the Lb-NMPC implementation, this thesis
is focused on the development of both approaches for the position control of a
quadrotor platform. GP and NN models are here adopted to derive a correc-
tion law for the NMPC continuous time prediction model, based on direct mea-
surements of the residual error between true and predicted acceleration of the
system. Following the intuition presented in [39] for the development of said
GP-based control, a GP-NMPC and a novel NN-NMPC algorithm are imple-
mented and tested in the MATLAB and Simulink environment, thanks to dedi-
cated modifications to the MATMPC framework. In this scenario, GP-based and
NN-based Lb-NMPC performances are compared with the ones of a traditional
NMPC, in order to test the beneficial impact of the considered data-drive tech-
niques. Moreover, as both learning-based approaches are implemented with
reference to the same problem, this work offers a fair comparison between these
two innovative tools.

1.2 THESIS STRUCTURE

This thesis is structured as follows:

• Chapter 2 presents a model of the considered quadrotor platform. The dy-
namics described by this model will be adopted both for the simulation of
the quadrotor platform in the Simulink environment and for the definition
of the discussed Nonlinear Model Predictive Control approaches;

• Chapter 3 introduces the MPC framework, starting from a discussion on
optimal control and its application in the receding horizon control algo-
rithm. Subsequently, specifics on the implementation of a NMPC approach
for the control of a quadrotor platform are here presented;

• Chapter 4 is devoted to the introduction of the Lb-NMPC approach. First,
the control algorithm and the associated learning problem are presented.
Hence, the GP and the NN regression frameworks are discussed, with par-
ticular focus on the application of interest;

• Chapter 5 provides a description of the simulation environment adopted
to test the considered control approaches, followed by a commented report
of the simulation results;

3
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• Chapter 6 is dedicated to a commented summary of the thesis results. A
suggestion on future works and development on the considered research
themes is finally provided.

4



2
Agent Modeling

All the control algorithms described in this thesis are discussed and devel-
oped with reference to a quadrotor platform. This chapter provides a mathe-
matical model for the description of this aerial vehicle.

2.1 QUADROTOR MATHEMATICAL MODEL

The model of interest of this work is the same described and adopted in [4]
by Beniamino Pozzan, Badr Elaamery and Angelo Cenedese. Let 𝔉𝔴 denote the
common world frame and 𝔉𝔟 the quadrotor body frame, whose origin coincides
with the center of mass of the UAV. Let 𝒑 ∈ R3 and 𝒗 ∈ R3 denote respec-
tively the position and the linear velocity of the quadrotor in the world frame
𝔉𝔴. Moreover, the quadrotor attitude is described by means of a unitary quater-
nion representation: 𝒒 ∈ S3 represents the pose of 𝔉𝔟 with respect to 𝔉𝔴, while
𝒘 ∈ R3 represents the angular velocity of the body frame 𝔉𝔟 with respect to 𝔉𝔴.

Each propeller of the quadrotor platform has rotation axis parallel to 𝒆𝑧 =

[0, 0, 1]𝑇 w.r.t. 𝔉𝔟. As for the most common UAV stuctures, half of the propellers
performs a clockwise rotation, while the other half performs a counter-clockwise
rotation. The quantities Ω𝑖 with 𝑖 = 1, 2, 3, 4 indicate the propellers spinning
rates. A representation of𝔉𝔴 and𝔉𝔟 and of the drone configuration can be found
in Figure 2.1. Each propeller, thanks to the blade configuration, applies a thrust
force 𝑓𝑖 = 𝑐𝑡Ω2

𝑖 along 𝒆𝑧 and a drag torque 𝜏𝑖 = 𝑐𝑑Ω2
𝑖 with opposite direction

to the angular velocity of the corresponding propeller. The quantities 𝑐𝑡 and 𝑐𝑑

5
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𝑥𝑊

𝑦𝑊

𝑧𝑊

𝑥𝐵
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1

2

3

4

Figure 2.1: Drone schematic representation with reference to the world frame
and the body frame.

denote respectively thrust and drag coefficients of the quadrotor. Overall, a total
thrust force of 𝑓𝑧 =

∑4
𝑖=1 𝑐𝑡Ω

2
𝑖 and a total steering moment 𝝉 =

∑4
𝑖=1(𝑐𝑡𝒓𝑖 × 𝒆𝑧 +

𝑐𝑑𝒆𝑧)Ω2
𝑖 are applied to the UAV, where 𝒓𝑖 is the position of the 𝑖-th propeller with

respect to 𝔉𝔟. The complete quadrotor model adopted in this work can therefore
be described as follows:

𝒑¤ = 𝒗

𝒗¤ = 1
𝑚
𝑓𝑧𝑹 (𝒒) 𝒆3 − 𝒈

𝒒¤ = 1
2
𝒒 ◦ 𝝎+

𝝎¤ = 𝑱−1 (𝝉 − 𝝎 × 𝑱𝝎)

(2.1)

where 𝑚 > 0 is the quadrotor mass, 𝑹(𝒒) ∈ 𝑆𝑂(3) is the rotation matrix asso-
ciated to 𝒒 ∈ S3, 𝒈 = [0, 0, 𝑔]𝑇 is the gravitational acceleration expressed in 𝔉𝔴,
𝑱 ∈ R3×3 is the inertia matrix of the quadrotor in 𝔉𝔟, which is assumed to be
diagonal, and lastly 𝝎+ = [0,𝝎𝑇]𝑇 . In order to control the system described
above, it is assumed that the whole state 𝒙 = [𝒑, 𝒗 , 𝒒 ,𝝎]𝑇 can be measured,
while 𝒖 = [Ω2

1,Ω
2
2,Ω

2
3,Ω

2
4]𝑇 is considered as control input.

Finally, Table 2.1 displays the collection of constants used for the nominal quadro-
tor model.
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Name Symbol [unit] Value
Mass 𝑚 [𝑘𝑔] 1.5

Moment of inertia 𝑱 [𝑘𝑔𝑚2]

0.029 0 0

0 0.029 0
0 0 0.055


Arm length 𝑟 [𝑚] 0.255

Thrust constant 𝑐𝑡 [𝑁/(𝑟𝑎𝑑/𝑠)2] 0.06
Drag constant 𝑐𝑑 [𝑁𝑚/(𝑟𝑎𝑑/𝑠)2] 7.8 · 10−4

Table 2.1: Nominal model constants for the characterization of the considered
quadrotor platform.
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3
Model Predictive Control

Model Predictive Control (MPC) is a form of control that exploits, at each
sampling instant, an estimation of the state of a system and its mathematical
model, in order to predict its evolution. This prediction is used to solve an op-
timal control problem over a finite horizon, leading to a finite control sequence;
the first control action in this sequence is then applied to the plant [27].
In this chapter a description of the concepts of Linear Quadratic Regulator (LQR)
and Receding Horizon Control (RHC) will be given, leading to the formulation
of the Model Predictive Control framework and to its application to the control
of a quadrotor platform.

3.1 LINEAR QUADRATIC REGULATOR

In order to introduce the formalization of the Receding Horizon Control first,
and of Model Predictive Control later, this section will be dedicated to discuss
the infinite horizon optimal control and, more specifically, the Linear Quadratic
Regulator.
Considering a generic continuous time system, described as

¤𝒙 = 𝑓 (𝒙(𝑡), 𝒖(𝑡))
𝒙(0) = 𝒙0

(3.1)

9



3.1. LINEAR QUADRATIC REGULATOR

where 𝑥, 𝑥0 ∈ R𝑛 are the state and the initial state of the system, while 𝑢 ∈ R𝑚 is
the input, one can define the infinite horizon optimal control as

min
𝒖(·)

∫ ∞

0
𝑉(𝒙(𝑡), 𝒖(𝑡)) 𝑑𝑡 (3.2)

i.e. finding the control sequence 𝑢∗(𝑡) that minimizes a given cost function 𝑉 in
the interval 𝑡 ∈ [0,+∞[.
In the case of LQR, the problem is restricted to the optimal control of a linear
time-invariant system of the form

¤𝒙 = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡)
𝒙(0) = 𝒙0

(3.3)

with a quadratic objective function, generally leading to the following optimiza-
tion problem

min
𝒖(·)

∫ ∞

0
𝒙>(𝑡)𝑸𝒙(𝑡) + 𝒖>(𝑡)𝑹𝒖(𝑡) 𝑑𝑡 (3.4)

with symmetric matrices 𝑸 ≥ 0 ∈ R𝑛×𝑛 and 𝑹 ≥ 0 ∈ R𝑚×𝑚 . Notice that, thanks
to this assumption on 𝑸 and 𝑹, the objective function is non negative and finite
for every 𝒖(·) ∈ 𝐿2, therefore the problem is well posed.
Consider now the Algebraic Riccati Equation (ARE)

𝑨>𝑷 +𝑸 + 𝑷𝑨 − 𝑷𝑩𝑹−1𝑩>𝑷 = 0 (3.5)

Given 𝑸1/2 ∈ R𝑛×𝑛 |𝑸 = 𝑸
1
2>𝑸 1

2 , equation (3.5) has unique solution 𝑷∞ ≥ 0 if
and only if (𝑨, 𝑩) is stabilizable and (𝑨,𝑸 1

2 ) is detectable [20]. In case (𝑨,𝑸 1
2 ) is

also observable, then 𝑷∞ ≥ 0.
Defining

𝑲∞ = 𝑹−1𝑩>𝑷∞ (3.6)

it is possible to outline a solution for problem (3.4) as a feedback control law

𝒖∗(𝑡) = −𝑲∞𝒙(𝑡) (3.7)

Finally, this control law makes the system asymptotically stable if and only if the
pair (𝑨,𝑸 1

2 ) is detectable.

10



CHAPTER 3. MODEL PREDICTIVE CONTROL

3.2 RECEDING HORIZON CONTROL

The Linear Quadratic Regulator has very desirable properties: an explicit
formula for a stabilizing feedback control law is provided and the existence and
uniqueness of a solution are guaranteed under mild and reasonable assump-
tions. However, the LQR may fail in presence of input saturations or other con-
straints on either the state or the control variables.
A first effort in order to provide an optimal control law that could include the
effects of saturation was carried out by Pontryagin and his colleagues, leading to
the Pontryagin’s minimum principle, originally presented in [32]. This approach
has some drawbacks: computing the solution is difficult and only an open-loop
optimal control is provided, missing all the advantages that a closed-loop one
could guarantee.
In order to counter the aforementioned computational difficulty, it is possible to
discretize the original problem in time and then solve it numerically over a finite
time-horizon. This indeed is also quite natural for digital controllers. Moreover,
it is important to find a way to implement a closed-loop control law. For this
purpose, one can rely on the Receding Horizon Control. At each time instant a
discretized version of the optimal control problem is solved over a finite horizon

min
𝒖(·)

𝑁−1∑
𝑘=0

𝐽(𝒙(𝑘), 𝒖(𝑘)) + 𝐽𝑁 (𝒙(𝑁))

s.t. 𝒙(𝑡 + 1) = Φ(𝒙(𝑡), 𝒖(𝑡))
𝒙(0) = 𝒙(𝑡𝑠𝑡𝑎𝑟𝑡)
𝒙(𝑘) ∈ X
𝒖(𝑘) ∈ U

(3.8)

considering the system’s condition at that instant 𝒙(𝑡𝑠𝑡𝑎𝑟𝑡) as initial condition for
its evolution prediction, expressed in a dsicretized form as Φ(𝒙(𝑡), 𝒖(𝑡)). Here
𝐽(𝒙(·), 𝒖(·)) represents the cost function for each time instant, while 𝐽𝑁 (𝒙(𝑁)) rep-
resents the terminal cost. The conditions 𝒙(𝑘) ∈ X ⊆ R𝑛 and 𝒖(𝑘) ∈ U ⊆ R𝑚
finally represent the adopted constraints over the state and the control input re-
spectively. Once the solution to problem (3.8) has been retrieved, namely the
control sequence 𝒖∗(1), 𝒖∗(2), ..., 𝒖∗(𝑁), only the first term is applied to the sys-

11



3.3. NONLINEAR MODEL PREDICTIVE CONTROL

tem, then the problem is formulated again starting from 𝒙(0) = 𝒙(𝑡𝑠𝑡𝑎𝑟𝑡 +1). This
process is repeated iteratively in order to obtain a control sequence that allows
to operate over an arbitrarily long time horizon.
The procedure that characterizes the Receding Horizon Control is summarized
by Alg. 1.

Algorithm 1 Receding Horizon Control
Require: 𝑁 > 0

loop
𝒙0← 𝒙(𝑡𝑠𝑡𝑎𝑟𝑡)
Compute optimal 𝑢∗(·) over a 𝑁 length horizon
Apply the first element 𝑢∗(1) to the system
𝑡𝑠𝑡𝑎𝑟𝑡 ← 𝑡𝑠𝑡𝑎𝑟𝑡 + 1

end loop

3.3 NONLINEAR MODEL PREDICTIVE CONTROL

Model Predictive Control is an implementation of RHC, in which the opti-
mal control law is iteratively computed on-line. MPC is basically composed of
three key ingredients: a dynamical model of the system, an objective function
that has to be minimized and a sets of constraints.
This control technique allows to obtain great performance, while implicitly han-
dling state and control input constraints. However, in order to approach this
framework with proper caution, one should also consider some significant draw-
backs: since the optimal control problem is formulated over a finite time horizon
at every instant, an analysis of stability and optimality of the MPC control law
is not straightforward; for the same reason, the optimization problem may also
become infeasible at some time step, in case no control sequence is able to satisfy
all the constraints. Moreover, each optimal control problem has to be solved in
real-time, namely within the sampling interval of the control system, making
the applicability of this approach highly dependent on the adopted hardware.
Finally, the control performance are deeply influenced by the accuracy of the
model [34].
In order to tackle the control of highly nonlinear systems, the MPC approach
needs to be extended, introducing the Nonlinear Model Predictive Control frame-
work. A nonlinear dynamical model is adopted in the formulation of the optimal
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control problem and to predict the evolution of the considered system. How-
ever, this introduces an obvious limitation: while the optimization problems re-
lated to a MPC implementation can be solved reliably and quickly, the optimiza-
tion problems that are needed to be tackled in a NMPC approach are typically
hard to solve, especially within real-time computational constraints. Due to the
consequent computational complexity of the problem, NMPC was historically
adopted for the control of slow varying nonlinear systems. However, thanks to
the recent improvements in terms of software and hardware, this technique is
now widely adopted for the real-time control of systems with fast dynamics as
well.
The remaining part of this section is dedicated to the formulation of the NMPC
problem and to a brief discussion of its modern solutions, that are extensively
treated and summarized in [12], with focus on the ones adopted for the control
of the considered quadrotor platform.

3.3.1 DIRECT MULTIPLE SHOOTING

Given a nonlinear system modeled in continuous time with a set of Ordinary
Differential Equations (ODE), generally expressed according to the formulation
(3.1), both MPC and NMPC require to solve at each sampling instant a finite
horizon optimal control problem

min
𝒙(·),𝒖(·)

∫ 𝑡 𝑓

𝑡0
𝐽(𝒙(𝑡), 𝒖(𝑡)) 𝑑𝑡 + 𝐽𝑁 (𝒙(𝑡 𝑓 ))

s.t. 𝒙¤ = 𝑓 (𝒙(𝑡), 𝒖(𝑡))
𝒙(𝑡0) = �̂�0

𝑟(𝒙(𝑡), 𝒖(𝑡)) ≤ 0

(3.9)

where the input and state constraints are here expressed in form of inequality
constraints 𝑟(𝒙(𝑡), 𝒖(𝑡)) ≤ 0. Thus, starting from a state measurement �̂�0 the so-
lution of problem (3.9) is given as an optimal trajectory {𝒙(·), 𝒖(·))} in the interval
𝑡 𝑓 − 𝑡0.
Potentially, this optimal control problem can be solved by means of three alter-
native approaches [42]:

• Dynamic Programming based on Partial Differential Equations (PDE);
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• Indirect methods for optimal control, based on Pontryagin’s maximum prin-
ciple;

• Direct methods for optimal control, based on the numerical solution of a fi-
nite dimensional parametrization of the original continuous-time optimal
control problem (3.9). Such parametrization of the problem results in a
Nonlinear Programming (NLP) problem.

Among these, direct methods are definitely more popular for NMPC implemen-
tations, thanks to their flexibility and to the availability of dedicated numerical
optimization solvers for the resulting NLP problem. In particular, direct multiple
shooting has been found to be particularly effective for NMPC [17].
In direct multiple shooting, the control signal 𝒖(𝑡), the state trajectory 𝒙(𝑡) and
the constraints inequality 𝑟(𝒙(𝑡), 𝒖(𝑡)) ≤ 0 are parametrized over 𝑁 shooting in-
tervals that divide the prediction horizon. Specifically, the control signal can be
parametrized by means of a piecewise constant representation over the consid-
ered shooting intervals [𝑡𝑘 , 𝑡𝑘+1), 𝑘 = 0, 1, ..., 𝑁 − 1, namely

𝒖(𝑡) = 𝑢𝑘 , 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1) (3.10)

For the parametrization of state trajectory and constraints inequality, 𝑁+1 shoot-
ing points {𝒔0, ...𝒔𝑁 } need to be introduced as additional optimization variables,
with each shooting point 𝒔𝑘 defined in correspondence of the time grid point
𝑡𝑘 . The system dynamics, expressed within each shooting interval with initial
condition 𝒔𝑘

¤𝒙 = 𝑓 (𝒙(𝑡), 𝒖(𝑡)), 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1)
𝒙(𝑡𝑘) = 𝒔𝑘

(3.11)

can be re-formulated in a discretized form as follows

𝒔𝑘+1 = Φ̂(𝒔𝑘 , 𝒖𝑘), 𝑘 = 0, 1, ..., 𝑁 − 1 (3.12)

where Φ̂(·) is a numerical integrator operator. Similarly, the inequality con-
straints can also be parametrized on the considered shooting points

𝑟(𝒔𝑘 , 𝒖𝑘) ≤ 0, 𝑘 = 0, 1, ..., 𝑁 − 1 (3.13)
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Thanks to this parametrization, the objective of the optimal control problem (3.9)
can be approximated by means of a discrete sum [42]:

𝑁−1∑
𝑘=0

∫ 𝑡𝑘+1

𝑡𝑘
𝐽(𝒔𝑘 , 𝒖𝑘) 𝑑𝑡 + 𝐽𝑁 (𝒔𝑁 ) ≈

𝑁−1∑
𝑘=0

𝐽(𝒔𝑘 , 𝒖𝑘) + 𝐽𝑁 (𝒔𝑁 ) (3.14)

Therefore, thanks to (3.12), (3.10), (3.13) and (3.14), the optimal control problem
(3.9) can be formulated in form of a NLP problem as

min
𝒔 ,𝒖

𝑁−1∑
𝑘=0

𝐽(𝒔𝑘 , 𝒖𝑘) + 𝐽𝑁 (𝒔𝑁 )

s.t. 𝒔𝑘+1 = Φ̂(𝒔𝑘 , 𝒖𝑘), 𝑘 = 0, 1, ..., 𝑁 − 1

𝒔0 = �̂�0

𝑟(𝒔𝑘 , 𝒖𝑘) ≤ 0, 𝑘 = 0, 1, ..., 𝑁 − 1

(3.15)

where the optimal trajectory is expressed in discrete form as {𝒔 = [𝒔𝑇0 , ..., 𝒔𝑇𝑁]𝑇 , 𝒖 =

[𝒖𝑇0 , ..., 𝒖𝑇𝑁]𝑇}. The first control input of this trajectory is the one that will be ac-
tually applied to the system, in a receding horizon fashion.
The popularity of the multiple shooting approach is given by a set of desirable
features. First of all, a number of existing softwares are available for the imple-
mentation of the numerical integrator used in (3.12) and for the solution of the
NLP problem (3.15). For the latter, an initial guess of state and control trajec-
tory over the prediction horizon is needed; however, such guess does not need
to be feasible. Moreover, the NLP problem is numerically stable, even in case
the considered dynamics is unstable, thus a numerical solution can be achieved
anyway. Also, as state and constraints can be decoupled on different shooting
intervals, the solution of the NLP problem is well suited for parallel computation
implementations.

3.3.2 SEQUENTIAL QUADRATIC PROGRAMMING

Essentially, the NLP problem (3.15) can be solved by resorting to two classes
of optimization algorithms, namely Sequential Quadratic Programming (SQP)
and Interior Point Method (IPM) [51]. The NMPC implementations in this thesis
rely on the first, as fast and robust solvers are available for this approach. Further
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details on the IPM approach and a comparison between the two can be found in
[12] and [5].
Consider now a general NLP problem, compactly expressed as

min
𝒛

𝑎(𝒛)
s.t. 𝑏(𝒛) = 0

𝑐(𝒛) ≤ 0
(3.16)

where 𝒛 = [𝒛𝑇0 , ..., 𝒛𝑇𝑁−1, 𝒔𝑁]𝑇 , 𝒛𝑘 = [𝒔𝑇𝑘 , 𝒖𝑇𝑘 ]𝑇 contains all the optimization vari-
ables, while functions 𝑏(·) and 𝑐(·) express the dynamics and the inequality con-
straints respectively, since

𝑏(𝒛) =


�̂�0 − 𝒔0

Φ̂(𝒔0, 𝒖0) − 𝒔1
...

Φ̂(𝒔𝑁−1, 𝒖𝑁−1) − 𝒔𝑁


, 𝑐(𝒛) =


𝑟(𝒔0, 𝒖0)

...

𝑟(𝒔𝑁−1, 𝒖𝑁−1)

 (3.17)

A necessary condition for the solution of the optimization problem 3.16, given
a local minimizer 𝒛∗, is the existence of multiplayers 𝝀∗,𝝁∗ that solve the Karush-
Kuhn-Tucker (KKT) system [7]

Stationarity

∇𝒛ℒ(𝒛∗, 𝝀∗, 𝝁∗) B ∇𝒛𝑎(𝒛∗) + ∇𝒛𝑏(𝒛∗)𝑇𝝀∗ + ∇𝒛𝑐(𝒛∗)𝑇𝝁∗ = 0

Primal feasibility

𝑏(𝒛∗) = 0

𝑐(𝒛∗) ≤ 0

Dual feasibility

𝝁∗ ≥ 0

Complementary slackness

𝜇∗𝑘𝑐𝑘(𝒛∗) = 0, 𝑘 = 0, 1, ..., 𝑁 − 1

(3.18)

where ℒ(·) is the Lagrangian function. Moreover, strict complementary slack-
ness, linear independence constraint qualification and second order sufficient
conditions will be assumed throughout this thesis, since they are reasonable as-
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sumptions in most optimization problems [51].
A SQP approach solves the NLP problem of interest iteratively, by adopting at
each iteration a local approximation of the objective function and linearized con-
straints, until the KKT conditions are satisfied with desired accuracy. Specifi-
cally, at each iteration a Quadratic Programming (QP) problem is formulated
starting from an initial guess value for the multipliers 𝒚𝑖 = [𝒛 𝑖 𝑇 , 𝝀𝑖 𝑇 , 𝝁𝑖 𝑇]𝑇 ,
namely

min
Δ𝒛

1
2
Δ𝒛𝑇𝐻(𝒛 𝑖)Δ𝒛 + 𝑔(𝒛 𝑖)𝑇Δ𝒛

s.t. 𝑏(𝒛 𝑖) + 𝐵(𝒛 𝑖)Δ𝒛 = 0

𝑐(𝒛 𝑖) + 𝐶(𝒛 𝑖)Δ𝒛 ≤ 0
(3.19)

where Δ𝒛 is called primal increment, 𝐻(𝒛 𝑖) B ∇2
𝒛ℒ(𝒛 𝑖 , 𝝀𝑖 , 𝝁𝑖) is the Hessian of

the Lagrangian function, while 𝑔(𝒛 𝑖) B ∇𝒛𝑎(𝒛 𝑖), 𝐵(𝒛 𝑖) B ∇𝒛𝑏(𝒛 𝑖) and 𝐶(𝒛 𝑖) B
∇𝒛𝑐(𝒛 𝑖) are the Jacobian matrices of objective function, dynamics constraint and
inequality constraint respectively. Notice that this formulation requires the com-
putation of an Hessian matrix at each iteration of the solver algorithm. It is well
known that this operation is quite computationally expensive; indeed, it rep-
resents one of the principal contributions to the computational burden of this
approach.
Problem (3.19) can be solved with popular and reliable QP algorithms, provid-
ing an increment value Δ𝒛. The multiplier guess is then updated as follows

𝒛 𝑖+1 = 𝒛 𝑖 + 𝛼𝑖Δ𝒛

𝝀𝑖+1 = (1 − 𝛼𝑖)𝝀𝑖 + 𝛼𝑖𝝀𝑖+1

𝝁𝑖+1 = (1 − 𝛼𝑖)𝝁𝑖 + 𝛼𝑖𝝁𝑖+1

(3.20)

where 𝛼𝑖 is a step size that can be chosen with dedicated globalization strategies
[51]. As anticipated, this iterative procedure is repeated until the satisfaction
of the KKT system (3.18). In particular, it has been proven that SQP iterations
reach the optimum with a quadratic or superlinear convergence rate with a good
enough initial guess [23]. It should be noted that with this iterative method the
continuity constraint introduced by (3.12) is not satisfied at the beginning of the
solving procedure; the trajectory continuity is achieved, with desired accuracy,
only when the optimal solution is reached. This behaviour can be observed in
Figure 3.1.

17



3.3. NONLINEAR MODEL PREDICTIVE CONTROL

(a) Discontinuous trajectory corresponding to the initial guess of the SQP procedure.

(b) Continuous trajectory achieved at the optimum.

Figure 3.1: Figure from [12], showing how the continuity constraint of the state
trajectory expressed in a multiple shooting fashion is generally achieved only
when the optimum is reached, with iterative NLP solvers.

Delving more into the algorithms that can be used for the solution of the QP
subproblems, mainly three classes can be identified [29], [18]:

• First-order methods are simple and fast algorithm for QPs with simple con-
straints. However, the numerical performance of these algorithms could
be unreliable, as their convergence rate can highly vary and they can even
lead to convergence failure, depending on the characteristics of the prob-
lem [18].

• Interior point methods do not address the inequality constraints directly.
Instead, constraint violations are penalized by means of additional slack
variables, that are inserted in the objective function.

• Active-set methods solve an easier equality-constrained QP problem in place
of the inequality-constrained one, with the assumption that the considered

18



CHAPTER 3. MODEL PREDICTIVE CONTROL

inequality constraints hold with equality at the optimum. In case the guess
is correct, an optimal solution is achieved. Otherwise, in case the guess
is not correct, it is updated by adding or removing inequality constraints
from the problem, until an optimal solution is reached. In this last category
falls a reliable and fast QP solver called qpOASES [19]. This solver has been
specifically designed for MPC application and it is the one adopted in this
thesis.

Even though the aforementioned method present significant perks for linear
MPC, it is crucial to consider that said perks are not always guaranteed for
NMPC implementations. In order to tackle the critical issues arising from real-
time NMPC applications, further considerations are needed.

3.3.3 REAL-TIME ITERATION

In order to deal with the time restrictions that typically afflict NMPC appli-
cations, it is possible to speed up the solution of optimal control problem (3.9)
by exploiting some peculiar features of the related NLP formulation. First of
all, one should notice that NLP problems given by two consecutive iterations of
the NMPC algorithm are very similar. Thus, information that are obtained dur-
ing the solution of the previous problem could come at hand to tackle the next
one. Moreover, for NMPC applications great accuracy in each NLP solution is
often unnecessary, hence inexact NLP algorithms are generally sufficient to ob-
tain satisfactory results.
Starting from these intuitions, the Real-Time Iteration (RTI) scheme [17], [16]
can be adopted to speed up the NLP solution procedure. The main idea behind
this approach is that each NLP problem should be approximately solved with
a single SQP iteration, namely by solving a single QP problem, while exploit-
ing information given by previous solutions. Moreover, since a measurement
of the initial state �̂�0 of optimal control problem (3.9) is not necessary for the
formulation of the related QP problem, the real-time optimization process can
be divided into a preparation phase, where the QP problem is formulated, and a
feedback phase, where the QP problem is solved right after �̂�0 is measured.

Preparation
In this phase, the QP problem needs to be defined without a measurement of the
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initial state �̂�0. The usual initial state condition is replaced by a linear constraint

Δ𝒔0 = �̂�0 − 𝒔0 (3.21)

In this way, the problem is formulated by accepting a violation of the initial con-
dition constraint. Thanks to the linearity of constraint (3.21), the violation will
be immediately corrected, with a single full Newton step that will be performed
in the feedback phase. This strategy is called an initial value embedding.
In order to speed up the computations, the hessian of the Lagrangian function
related to the NLP problem is typically approximated using the Gauss-Newton
method, for which only the first derivative of the objective function is required.
This approximation grants good numerical performance and excludes the La-
grangian multipliers from the Hessian computation. As a consequence, the QP
problem can be initialized with an initial trajectory guess 𝒛 𝑖 . This guess can be
obtained thanks to a warm up strategy, namely by using the predicted trajectory
that can be obtained starting from the past feedback solution as initial guess for
the new QP problem.
The QP problem can be written as [12]

min
Δ𝒔 ,Δ𝒖

𝑁−1∑
𝑘=0

(1
2

[
Δ𝒔𝑘
Δ𝒖𝑘

]𝑇
𝐻 𝑖
𝑘

[
Δ𝒔𝑘
Δ𝒖𝑘

]
+ 𝑔 𝑖 𝑇𝑘

[
Δ𝒔𝑘
Δ𝒖𝑘

]
) + 1

2
Δ𝒔𝑇𝑁𝐻

𝑖
𝑁Δ𝒔𝑁 + 𝑔 𝑖 𝑇𝑁 Δ𝒔𝑁

s.t. Δ𝒔0 = �̂�0 − 𝒔0

Δ𝒔𝑘 = 𝐴𝑖𝑘−1Δ𝒔𝑘−1 + 𝐵𝑖𝑘−1Δ𝒖𝑘−1 + 𝑑𝑖𝑘−1, 𝑘 = 1, ..., 𝑁

𝐶 𝑖𝑘

[
Δ𝒔𝑘
Δ𝒖𝑘

]
≤ −𝑐 𝑖𝑘 , 𝑘 = 0, ..., 𝑁 − 1

(3.22)

where 𝐴𝑖𝑘 B
𝜕Φ̂
𝜕𝒔 (𝒔 𝑖𝑘 , 𝒖 𝑖𝑘), 𝐵𝑖𝑘 B 𝜕Φ̂

𝜕𝒖 (𝒔 𝑖𝑘 , 𝒖 𝑖𝑘) are called sensitivities w.r.t. initial states
and controls, respectively. The quantity 𝑑𝑖𝑘−1 B Φ̂(𝒔 𝑖𝑘−1, 𝒖

𝑖
𝑘−1) − 𝒔 𝑖𝑘 denotes the

discontinuity gap between a trajectory point at the end of a shooting interval
and the point at the beginning of the next one (see Figure 3.1a). Finally, 𝐻 𝑖

𝑘 and
𝐶 𝑖𝑘 are the 𝑘-th blocks of Hessian and constraint Jacobian matrices, while 𝑔 𝑖𝑘 is
the 𝑘-th sub-vector of 𝑔(𝒛 𝑖).
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Feedback
Once the state �̂�0 has been measured, QP problem (3.22) can be solved. The
resulting increment Δ𝒛 can be used to perform a full Newton step

𝒛 𝑖+1 = 𝒛 𝑖 + Δ𝒛 (3.23)

The first control input of 𝒛 𝑖+1 is applied to the system, while a new preparation
phase begins, adopting the information given by the updated trajectory for the
warm start of the next QP problem and for the next initial state guess.

3.4 MATMPC

Given the popularity that the MPC framework has gained over the years,
many different open source software and packages were created for implemen-
tation and simulation of MPC and NMPC algorithms. Among these, some pop-
ular tools are the Model Predictive Control Toolbox [3] for MPC simulations in
MATLAB, ACADO [24], that allows the auto-generation of C code for the RTI
scheme and CasADi [1], a symbolic differentiation tool that embeds many NLP
and QP solvers.
However, the NMPC algorithms used in this thesis are implemented by means of
an open source software developed at the University of Padova called MATMPC
[13], [12]. This tool provides an easy-to-use and optimized NMPC implemen-
tation, with different pre-implemented options in terms of discretization pro-
cedures and optimal control problem solvers. Differently from other MPC soft-
ware, the main advantage offered by MATMPC is that it provides a user-friendly
environment both for NMPC implementation and for algorithmic coding and
modification. Moreover, while the MATMPC code is mainly written in MAT-
LAB and can be easily embedded in Simulink, its time critical modules are writ-
ten in the MATLAB API for C and can be compiled into MATLAB Executable
(MEX) functions by using MinGW or GCC compilers, on Windows or on Linux
and OS X respectively. In this way, MATMPC grants a fast runtime performance,
while preserving the readability of the MATLAB environment.
The MATMPC structure can be divided in six modules [12], as shown in Figure

3.2:

1. Model: in MATMCP the models are defined in form of continuous-time
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3.5. NMPC FOR QUADROTOR CONTROL

Figure 3.2: Figure from [12] that represents the structure of MATMPC.

dynamical models. The modelling language is based on CasADi. Starting
from a model definition, objective function, dynamic equation, and con-
straints are expressed by means of CasADi functions.

2. Discretization: The continuous-time model is discretized with a direct mul-
tiple shooting approach. In this phase, a numerical integrator operator is
needed to build the NLP problem (3.15). This operator is typically imple-
mented with CasADi symbolic coding.

3. Solver preparation: Since MATPMC allows to use different NLP solvers,
once the NLP problem is formulated it is necessary to adapt the related
information to the chosen solver. Specifically, the solver adopted for this
thesis, namely qpOASIS, solves a condensed QP problem. For condensing,
full, partial and null-space condensing algorithms are implemented [12].

4. Solving subproblem: after the solver preparation phase, the NLP problem
can be solved, either by means of existing solvers or with newly imple-
mented algorithms. Both SQP and IPM approaches are supported.

5. Globalization: Globalization is used to find local minimum from arbitrary
initial points. For this purpose, in MATMPC different efficient line search
algorithms are implemented.

6. Optimality check: constraints and KKT value, namely the first order deriva-
tive of the Lagrangian of the NLP problem, are evaluated, thanks to dif-
ferentiation toolbox offered by CasADi.

3.5 NMPC FOR QUADROTOR CONTROL

This section is devoted to detail the application of Nonlinear Model Predic-
tive Control to the quadrotor platform of interest. For this purpose, the key
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components of the NMPC discussed in section 3.3 will be outlined, namely the
model, the objective function and the selected constraints.

3.5.1 MODEL

In order to predict the system evolution and formulate the optimal control
problem, the dynamical model expressed by system (2.1) is adopted, together
with the nominal model constants reported in Table 2.1.
The adopted model is discretized with a direct multiple shooting approach. In
particular, the model dynamics is discretized by means of the Explicit Runge-
Kutta algorithm, since it guarantees accurate high-order numerical approxima-
tions [45] [8]. More in detail, this operator discretizes the considered model
with a fixed shooting time 𝑇𝑠 . This parameter, together with the prediction hori-
zon 𝑁 =

𝑡 𝑓−𝑡0
𝑇𝑠

, needs to be carefully selected. Indeed, a small time horizon 𝑁𝑇𝑠
doesn’t allow to exploit the predictive strategy of the NMPC. On the other hand,
a too long time horizon will possibly lead to a control based on incorrect long-
term predictions, in case the nominal model isn’t sufficiently accurate. More-
over, a small 𝑇𝑠 grants greater precision, but a bigger 𝑁 value will be required
to achieve a long enough time horizon, leading to an increased computational
burden.

3.5.2 COST FUNCTION

Referring to the quantities defined in section 2.1, consider

𝒉 =


𝒑

𝒗

𝝎

𝒖


∈ R13 (3.24)

namely a collection of values of relevance for the formulation of an objective
function for the quadrotor control. The time dependency of the considered
quantities is here omitted to simplify the notation. The control problem of in-
terest for this thesis will be outlined as a trajectory tracking task, with reference
in position 𝒑𝑟𝑒 𝑓 . The remaining terms will be considered in order to place a cost
over the drone linear and angular velocities and the control effort. With this
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idea, the cost function is chosen as quadratic and can be formulated as follows

𝐽(𝒉) = 1
2
(𝒉 − 𝒉𝑟𝑒 𝑓 )𝑇𝑸(𝒉 − 𝒉𝑟𝑒 𝑓 ) (3.25)

where 𝒉𝑟𝑒 𝑓 = [𝒑𝑟𝑒 𝑓 , 0, ..., 0]𝑇 ∈ R13 is the reference vector and 𝑸 > 0 ∈ R13×13 is
a diagonal weight matrix. The entries quantities of this latter specify the relative
importance of each term of vector 𝒉 − 𝒉𝑟𝑒 𝑓 in the objective function and require
extensive tuning to achieve satisfactory performance.
The terminal cost can be defined in a similar fashion, simply ignoring the cost
term on the control effort. Thus, given

𝒉𝑁 =


𝒑

𝒗

𝝎

 ∈ R
9 (3.26)

one can write the terminal cost as

𝐽𝑁 (𝒉𝑁 ) = 1
2
(𝒉𝑁 − 𝒉𝑟𝑒 𝑓 𝑁 )𝑇𝑸𝑁 (𝒉𝑁 − 𝒉𝑟𝑒 𝑓 𝑁 ) (3.27)

with 𝑸𝑁 ≥ 0 ∈ R9×9 and 𝒉𝑟𝑒 𝑓 𝑁 = [𝒑𝑟𝑒 𝑓 , 0, ..., 0]𝑇 ∈ R9.

3.5.3 CONSTRAINTS

As discussed, one of the main advantages given by the NMPC approach is
the systematic handling of state and control input constraint. For the problem
of interest, three constraints have been taken into account.
First, a simple constraint on the position has to be considered, since the drone
can’t fly below the ground level. Denoting the position components of the state
as 𝒑 = [𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧]𝑇 , one can simply enforce

𝑝𝑧 > 0 (3.28)

Since the drone pose is represented by means of a quaternion, one has to ensure
that the quaternion norm is unitary, namely

‖𝒒‖ = 1 (3.29)
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Finally, a control input saturation has to be taken into account, representing a
physical limitation on the rotation speed of each rotor. Trivially, one also has to
consider

0 ≤ 𝒖 ≤ 𝒖𝑚𝑎𝑥 (3.30)

where the entries of vector 𝒖𝑚𝑎𝑥 represent the maximum squared rotation speed
of each motor of the drone.

3.5.4 FINAL PROBLEM FORMULATION

Combining (3.25), (3.27), (3.28), (3.29) and (3.30) and considering model (2.1),
the optimization problem (3.9) that has to be solved at each NMPC iteration can
be re-formulated as follows, to tackle a trajectory tracking task for the considered
quadrotor platform

min
𝒖

∫ 𝑡 𝑓

𝑡0
𝐽(𝒉) 𝑑𝑡 + 𝐽𝑁 (𝒉𝑁 )

s.t. ¤𝒙 = 𝑓 (𝒙 , 𝒖)
𝒙(𝑡0) = �̂�0

𝑝𝑧 > 0

‖𝒒‖ = 1

0 ≤ 𝒖 ≤ 𝒖𝑚𝑎𝑥

(3.31)
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4
Learning-based NMPC

Recent advancements in the field of Machine Learning, as well as the avail-
ability of increasing computational capabilities in control systems, have led to a
growing interest in data-driven and data-enhanced control techniques. As dis-
cussed in chapter 4, the Model Predictive Control highly relies on the availability
of a good model of the controlled system. For this reason, this control approach
lends itself to exploit the opportunities offered by learning algorithms, in order
to improve the knowledge of the system starting from collected data [31].
In this chapter, a learning problem will be outlined in order to exploit experi-
ence data for the formulation of an improved model for the MPC prediction.
Two suitable regression tools will then be introduced, namely the GP and the
NN approaches.

4.1 LEARNING-BASED CONTINUOUS DYNAMICS

In order to exploit the information given by recorded data, the model adopted
by the MPC algorithm for the prediction of the system’s behaviour and for the
optimal problem formulation can be substituted by a law of the form

¤𝒙 = 𝑓 (𝒙(𝑡), 𝒖(𝑡)) + 𝑔(𝒙(𝑡), 𝒖(𝑡))
𝒙(0) = 𝒙0

(4.1)

where 𝑓 (𝒙(𝑡), 𝒖(𝑡)) represents the nominal dynamics of the system, while 𝑔(𝒙(𝑡), 𝒖(𝑡))
is an additional correction term, learned from data.
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4.1. LEARNING-BASED CONTINUOUS DYNAMICS

Being based both on the physical knowledge of the system and data, formula
(4.1) lies in the category of the so called grey-box models. Alternatively, it would
be possible to exclusively rely on the learned dynamics, in a black-box fashion.
However, the grey-box approach is often preferred to the latter, as it allows to
obtain an accurate model from a significantly smaller amount of data [40]. The
two methods lead to almost equivalent results with enough data, yet the com-
putational burden of learning algorithms is almost always proportional to the
dimension of the considered training data set. In this thesis only the grey-box ap-
proach will be considered, even though an extension to the black-box one would
be fairly straightforward.
In order to be properly exploited by a MPC algorithm, the data-enhanced model
represented in formula (4.1) has then to be detailed for the control problem of in-
terest. In particular, two approaches can be adopted: the learning-based model
can be formulated in continuous time and subsequently discretized by a numer-
ical integrator operator, as discussed in paragraph 3.5.1, or it can be considered
in a discrete formulation, inferring an expression of the system state at the next
discrete time instant thanks to both a discrete nominal model and experience
data. The two methods rely on different learning problems. In the continuous
formulation a learning-based law is used to describe an acceleration mismatch
between the one predicted by the nominal model and the actual acceleration
measurements. On the other hand, the discrete approach focuses on learning a
similar mismatch in terms of velocities. In practice, the two methods lead to very
similar results [39]. Even though the discrete approach is more computationally
efficient, the continuous one is way more intuitive and it lends itself to an easier
and more interpretable implementation. For this reason, this thesis focuses on
the discussion of the continuous learning-based strategy and on its application
to the control problem of interest.

Let the state of a dynamical system be formulated as

𝒙 = [𝝆, 𝝆¤ ] (4.2)

where 𝝆 and 𝝆¤ are respectively the position and the velocity of a physical sys-
tem. While interacting with the system, state 𝒙𝑘 and control input 𝒖𝑘 as well as
acceleration measurements 𝝆¥ 𝑘 can be acquired for 𝑇 step times. Using the first
two quantities, the nominal acceleration �̃�¥ 𝑘 can also be computed, according to
the nominal dynamical model of the system of interest, which is given by model
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(2.1) for the quadrotor. This data set can then be grouped as follows

X = {𝒙1, ..., 𝒙𝑇},
U = {𝒖1, ..., 𝒖𝑇},
P¥ = {𝝆¥1, ..., 𝝆¥𝑇},
P̃¥ = {�̃�¥1, ..., �̃�¥𝑇}

(4.3)

These quantities can be used for the regression of a correction law for the nomi-
nal model, adoptingX,U as learning input and P¥ ,P̃¥ as learning target, in order
to define a learning-based grey-box model of the form[

�̂�¤ (𝑡)
�̂�¥(𝑡)

]
=

[
�̃�¤ (𝑡)
�̃�¥(𝑡)

]
+
[

0
𝝍𝝆¥ (𝑡)

]
(4.4)

with 𝝍𝝆¥ (𝑡) being an estimate of the acceleration prediction error. Finally, this
model can be used for the definition of each NMPC optimization problem (3.9),
in order to be used in a Learning-based Nonlinear Model Predictive Control
implementation.

4.2 GAUSSIAN PROCESS

According to the function-space view discussed by Rasmussen and Williams
[9], a GP can be described as a distribution over functions. More specifically, a
Gaussian Process is a collection of random variables, any finite number of which
have a joint Gaussian distribution. A GP 𝑓 (x) is completely defined by its mean
function 𝑚(x) and its covariance or kernel function 𝑘(x, x′), namely

𝑚(x) = E[ 𝑓 (x)],
𝑘(x, x′) = E[( 𝑓 (x) − 𝑚(x))( 𝑓 (x′) − 𝑚(x′))] (4.5)

leading to the following notation

𝑓 (x) ∼ N(𝑚(x), 𝑘(x, x′)) (4.6)

Therefore, a crucial aspect of the definition of a GP model for regression is the
selection of a mean function, that will be here assumed to be always zero, and
of a kernel function, for which the quite popular Squared Exponential kernel
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will be adopted for any GP model presented in this thesis, since it is generally
preferred when no specific knowledge on the modelled function is available

𝑘(x, x′) = 𝑠2
𝑓 exp−(x − x′)𝑷−1(x − x′)

2
(4.7)

Here, 𝑠2
𝑓 represents the overall GP variance and 𝑷 is the length-scales diagonal

matrix.
In realistic modelling situation it is reasonable to assume that only noisy mea-
surements of the data are available. For this reason, also this model relays on
the assumption that the target data are possibly obtained as

𝒚 = 𝑓 (x) + 𝒆 (4.8)

where the 𝒆 components are sampled from independent Gaussian distributions
with variance 𝜎2

𝑛 . Therefore, the hyperparameters of this model can be identified
as

• length-scales [𝑷]𝑖,𝑖 ;

• the signal variance 𝜎2
𝑓 ;

• the noise variance 𝜎2
𝑛 .

An example of how these hyperparameters influence the model regression prop-
erties can be seen in Figure 4.1 for a scalar case. Regression made with matching
hyperparameters allows to obtain a good fitting of the training data and good
predictions with low variance for domain regions sufficiently close to the train-
ing data. Lower length-scales instead are associated with larger flexibility of the
regression model, which may lead to a perfect fitting of the training data at the
cost of poor generalization. On the contrary, higher length-scales are associated
to smoother and slower-varying models, affected by higher noise variance, re-
sulting in a poor fit of the training data.
Starting from the considered training data set, the GP model hyperparameters

can be finally tuned by means of empirical methods, such as cross validation, or
by maximization of the training data marginal likelihood [9]. In this thesis, this
second method will be adopted.
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Figure 4.1: Figure from [9], showing the effect of the GP model hyperparameters.
The training data, shown as +, have been generated with length-scale 𝑙 = 1, sig-
nal variance 𝜎2

𝑓 = 1 and noise variance 𝜎2
𝑓 = 0.1. Panel (a) shows the GP model

prediction ±2 standard deviation with matching hyperparameters, while panels
(b) and (c) show the prediction obtained with suboptimal model hyperparame-
ters.

4.2.1 GAUSSIAN PROCESS REGRESSION

Starting from the training data set presented in (4.3), one can model the es-
timation error for each component of the acceleration vector 𝝆¥ with a dedicated
independent GP, according to the procedure presented in [39]. The GP’s input
vector at the 𝑘-th time instant, denoted as x𝑔𝑝𝑘 , generally accounts for both the
state 𝒙𝑘 and the control input value 𝒖𝑘 , namely x𝑔𝑝𝑘 = [𝒙𝑇𝑘 , 𝒖𝑇𝑘 ]𝑇 . However, the
regression procedure could benefit from a dedicated feature selection, that can
be performed starting either from some prior knowledge of the system or algo-
rithmically. The corresponding output for the 𝑖-th GP is given by 𝑦 𝑖𝑘 = 𝜌¥ 𝑖𝑘 − �̃�¥ 𝑖𝑘 ,
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where 𝜌¥ 𝑖𝑘 and �̃�¥ 𝑖𝑘 are the measured and the nominal 𝑖-th component of 𝝆¥ respec-
tively. The following model is thus considered

𝒚𝑖 =


𝑦 𝑖1
...

𝑦 𝑖𝑇

 =

𝜌¥ 𝑖1 − �̃�¥ 𝑖1

...

𝜌¥ 𝑖𝑇 − �̃�¥ 𝑖𝑇

 =

𝜓
𝑖
𝝆¥ (x𝑔𝑝1 )
...

𝜓
𝑖
𝝆¥ (x𝑔𝑝𝑇 )

 +

𝑒 𝑖1
...

𝑒 𝑖𝑇

 = 𝝍
𝑖
𝝆¥ + 𝒆 𝑖 (4.9)

where 𝑒 𝑖1, 𝑒 𝑖𝑇 are zero-mean independent Gaussian noises with standard devia-
tion 𝜎𝑛 . According to what previously discussed, 𝝍

𝑖
𝝆¥ is assumed to be a zero-

mean GP, namely 𝝍
𝑖
𝝆¥ ∼ N(0,𝑲 𝑖), where 𝑲 𝑖 is a covariance matrix defined by a

Squared Exponential kernel function 𝑘 𝑖(·, ·). Specifically, the entry of 𝑲 𝑖 at row 𝑘

and column 𝑗 is given by 𝑘 𝑖(x𝑔𝑝𝑘 , x
𝑔𝑝
𝑗 ). Moreover, the model hyperparameters are

assumed to be tuned, as previously discussed, by maximization of the training
data marginal likelihood. Such model will then be used to provide a predic-
tion law for the target of interest, namely a correction acceleration term for the
nominal model. Indeed, given a general input x𝑔𝑝∗ , the posterior distribution of
𝜓
𝑖
𝝆¥ (x𝑔𝑝∗ ) is conveniently Gaussian. Therefore, the maxiumum a posteriori esti-

mator of the target value is given by the posterior mean of 𝜓𝑖
𝝆¥ (x𝑔𝑝∗ ) [9], that can

be expressed in closed form by

𝜓𝑖
𝝆¥ (x𝑔𝑝∗ ) = 𝒌 𝑖∗𝜶𝑖 (4.10)

where

𝒌 𝑖∗ = [𝑘 𝑖(x𝑔𝑝∗ , x𝑔𝑝1 ), ..., 𝑘 𝑖(x𝑔𝑝∗ , x𝑔𝑝𝑇 )]
𝛼𝑖 = (𝑲 𝑖 + 𝜎2

𝑛I)−1𝒚𝑖

where I ∈ R𝑇×𝑇 is the identity matrix.

4.3 NEURAL NETWORKS

Feedforward Neural Networks, also called multi-layer perceptrons, are a class
of parametric functions that is widely used in order to describe models for the
solution of either classification or regression learning problems [26]. These mod-
els can be associated to a directed acyclic graph, representing the composition
of different functions in a network structure, as the name suggests: e.g. given
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three functions 𝑔(1), 𝑔(2), 𝑔(3), they can be connected in a chain structure to form
𝑔(x) = 𝑔(3)(𝑔(2)(𝑔(1)(x))). Here, 𝑔(1) is commonly called first layer, 𝑔(2) is called
second layer and so on. In general, the final layer of the network structure is la-
beled as output layer, while the others take the name of hidden layers.
These networks are called neural as they are loosely inspired by neuroscience.
Each hidden layer is typically vector-valued. However, rather than thinking of
each layer as representing a single vector-to-vector function, one can also con-
sider it as composed of many parallel vector-to-scalar relations, generally re-
ferred to as neurons. Representing the output value of the 𝑙-th layer as 𝒐(𝑙), where
𝒐(0) = x𝑁𝑁 is the input vector of the Neural Network, the general function of the
𝑗-th neuron composing layer 𝑙 + 1 can be expressed as

𝑎(𝑙+1)
𝑗 = 𝒘(𝑙+1)𝑇

𝑗 𝒐(𝑙) + 𝑏(𝑙+1)
𝑗

𝑜(𝑙+1)
𝑗 = 𝜎(𝑙+1)(𝑎(𝑙+1)

𝑗 )
(4.11)

where the weight vector 𝒘(𝑙+1)
𝑗 and the bias term 𝑏 𝑗 characterize an affine func-

tion, while 𝜎(𝑙+1)(·) is a non-linear function that takes the name of activation.
Hence, the whole layer can be expressed as

𝒂(𝑙+1) = 𝑾 (𝑙+1)𝒐(𝑙) + 𝒃(𝑙+1)

𝒐(𝑙+1) = 𝜎(𝑙+1)(𝒂(𝑙+1)) (4.12)

where, with a slight abuse of notation, 𝜎(𝑙+1) is here applied to all the elements
of its argument vector. Matrix 𝑾 (𝑙+1) collects all the weights of the layer, having
vector 𝒘(𝑙+1)

𝑗 as its 𝑗-th row, while 𝒃(𝑙+1) simply contains all the layer biases.
In most cases, a single non-linear function 𝜎(·) is applied as activation for all the
hidden layers, while the output layer is characterized by a dedicated activation,
accordingly to the learning task of interest. For the NN models in this thesis,
the output layer will simply apply an identity function, as its the most common
choice for regression NN models.

4.3.1 NEURAL NETWORKS TRAINING

Starting from the training data set described in (4.3), it is possible to use Neu-
ral Network models in order to derive a correction law for the nominal quadrotor
acceleration. In particular, two neural networks can be used, for the correction

33



4.3. NEURAL NETWORKS

of the linear acceleration 𝒗¤ and of the the angular acceleration 𝝎¤ respectively,
according to the notation presented in section 2.1.

In practice, the NN weights and biasesW = {𝑾 (𝑙), 𝒃(𝑙)}𝑙=1,...,𝐿 can be trained
by means of gradient descent methods applied over a dedicated loss function
ℒ(W). In order to tackle the regression problems of interest, the loss function
choice falls on the Mean Squared Error (MSE) loss, that can be expressed as
follows

ℒ(W ,D) = 1
2

𝑇∑
𝑘=1

‖𝒚𝑁𝑁𝑘 − 𝒕𝑘 ‖22 (4.13)

where 𝒚𝑁𝑁𝑘 and 𝒕𝑘 are respectively the network prediction and the learning tar-
get for the 𝑘-th considered data, while D compactly represent the considered
data set. Generally, both state 𝒙𝑘 and control input 𝒖𝑘 are taken into account for
each NN input vector, that is hence defined as x𝑁𝑁𝑘 = [𝒙𝑇𝑘 , 𝒖𝑇𝑘 ]𝑇 . However, also
in this case a feature selection procedure could bring significant benefit to the
learning results. Moreover, given that the quadrotor acceleration vector can be
expressed as 𝝆¥ = [𝒗¤𝑇 ,𝝎¤ 𝑇]𝑇 , the learning targets for the two considered networks
can be formulated as 𝒕 𝑙𝑖𝑛𝑘 = [𝜌¥1𝑘−�̃�¥

1
𝑘 , ..., 𝜌¥3𝑘−�̃�¥

3
𝑘]𝑇 and 𝒕

𝑎𝑛𝑔
𝑘 = [𝜌¥4𝑘−�̃�¥

4
𝑘 , ..., 𝜌¥6𝑘−�̃�¥

6
𝑘]𝑇 ,

where 𝜌¥ 𝑖𝑘 and �̃�¥ 𝑖𝑘 are respectively the measured and the nominal 𝑖-th component
of 𝝆¥ at instant 𝑘.
Even though gradient descent methods are widely used for the training of a
number of different learning models, Neural Networks presents some impor-
tant peculiarities. First, the nonlinearity of NN models causes loss functions to
be non-convex. For this reason, the adopted iterative gradient descent optimiz-
ers only drive the cost function to local minima and results to be significantly
sensitive to the initialization of the network parameters. Moreover, given the
complexity of a generic Neural Network model, the numerical evaluation of the
loss gradient w.r.t. the network parameters can be very computationally expen-
sive. However, the network structure can be exploited in order to achieve an effi-
cient exact gradient evaluation, thanks to the popular back-propagation algorithm
[14]. In contrast with the forward propagation that characterizes the the network
prediction, where input x𝑁𝑁𝑘 provides the initial information that propagates up
to the hidden layers and finally produces y𝑁𝑁𝑘 , the back-propagation algorithm
allows the information given by the cost function to flow backward through the
network, in order to compute the overall loss gradient.

34



CHAPTER 4. LEARNING-BASED NMPC

The back-propagation procedure relies on the chain rule of calculus to obtain
the gradient evaluation: given composite functions y = 𝐹(x),x = 𝐺(z), namely
y = 𝐹(𝐺(z)), it holds that

𝜕y
𝜕z

=
𝜕𝐹
𝜕x

𝜕𝐺
𝜕z

(4.14)

In order to compute the loss derivative w.r.t. weight 𝑤(𝑙)𝑗 ,𝑖 that connects neuron 𝑖
of layer 𝑙 − 1 with neuron 𝑗 of layer 𝑙, one can apply the chain rule to relation
(4.11), obtaining

𝜕ℒ
𝜕𝑤(𝑙)𝑗,𝑖

=
𝜕ℒ
𝜕𝑎(𝑙)𝑗

𝜕𝑎(𝑙)𝑗
𝜕𝑤(𝑙)𝑗,𝑖

=
𝜕ℒ
𝜕𝑎(𝑙)𝑗

𝑜(𝑙−1)
𝑖 (4.15)

While 𝑜(𝑙−1)
𝑖 can be simply stored during the forward propagation, 𝜕ℒ

𝜕𝑎(𝑙)𝑗
is gener-

ally called error message 𝛿(𝑙)𝑗 and depends on layers of indices 𝑙′ > 𝑙. By applying
again the chain rule for the computation of this term, it results that

𝛿(𝑙)𝑗 =
𝜕ℒ
𝜕𝑎(𝑙)𝑗

=
∑
ℎ

𝜕ℒ
𝜕𝑎(𝑙+1)

ℎ

𝜕𝑎(𝑙+1)
ℎ

𝜕𝑎(𝑙)𝑗
=
∑
ℎ

𝛿(𝑙+1)
ℎ

𝜕𝑎(𝑙+1)
ℎ

𝜕𝑎(𝑙)𝑗
(4.16)

hence a weighted sum of the error messages of all the neurons of the following

layer is needed in order to compute the error message 𝛿(𝑙)𝑗 . The coefficients 𝜕𝑎(𝑙+1)
ℎ

𝜕𝑎(𝑙)𝑗
can be once again computed by means of the chain rule, recalling formula (4.11):

𝜕𝑎(𝑙+1)
ℎ

𝜕𝑎(𝑙)𝑗
=

𝜕𝑎(𝑙+1)
ℎ

𝜕𝑜(𝑙)𝑗

𝜕𝑜(𝑙)𝑗
𝜕𝑎(𝑙)𝑗

(4.17)

with
𝜕𝑎(𝑙+1)

ℎ

𝜕𝑜(𝑙)𝑗
= 𝑤(𝑙+1)

ℎ,𝑗

𝜕𝑜(𝑙)𝑗
𝜕𝑎(𝑙)𝑗

= 𝜎′(𝑎(𝑙)𝑗 )

Notice that these terms can be both computed thanks to information that can be
stored during the forward propagation as well. Finally, the error message of the
output layer can be obtained as

𝛿(𝐿)𝑗 =
𝜕ℒ
𝜕𝑎(𝐿)𝐽

=
𝜕ℒ
𝜕𝑜(𝐿)𝐽

𝜎(𝐿) ′(𝑎(𝐿)𝐽 ) (4.18)
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Starting from this, the error message, and hence the loss derivative, can be com-
puted backward thanks to the recursive law outlined by equations (4.16) and
(4.17):

𝛿(𝑙)𝑗 = 𝜎′(𝑎(𝑙)𝑗 )
∑
ℎ

𝛿(𝑙+1)
ℎ 𝑤(𝑙+1)

𝑗,ℎ

𝜕ℒ
𝜕𝑤(𝑙)𝑗 ,𝑖

= 𝛿(𝑙)𝑗 𝑜
(𝑙−1)
𝑖

(4.19)

Similar considerations can be carried out for the computation of 𝜕ℒ
𝜕𝑏(𝑙)𝑗

, leading to

𝜕ℒ
𝜕𝑏(𝑙)𝑗

= 𝛿(𝑙)𝑗 (4.20)

4.3.2 L2 REGULARIZATION

A central problem in Machine Learning is how to make an algorithm capa-
ble of performing well not only on training data, but also on test inputs. The
great regression power offered by Neural Network models allows to learn very
complex laws, at the cost of making those models prone to overfitting. In order
to counter this behaviour, many strategies are explicitly designed to reduce test
error, possibly at the expense of an increased training error. These strategies are
collectively known as regularization.
Many of these regularization approaches are based on limiting the model re-
gression capacity by adding a parameter norm penalty Ω(𝜽) to the loss function

ℒ̃(W;𝜽) = ℒ(W) + 𝛼Ω(𝜽) (4.21)

where 𝛼 ∈ [0,∞[ is a hyperparameter that weights the relative contribution of
the norm penalty Ω(𝜽) and of the loss function ℒ(W). Different kind of param-
eter norm Ω(𝜽) can result in different learning behaviours.
In this thesis, the 𝐿2 norm of the network weights vector 𝒘 is used as a regular-
izing term Ω(𝜽) = 1

2 ‖𝒘‖22 for the training of the considered NN models. This
widely used method, commonly known as weight decay, allows to preserve rel-
atively intact the parameters that contribute significantly to the loss reduction,
while irrelevant parameters are decayed away during the learning procedure
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[26]. The regularized loss function hence takes the form

ℒ̃(W;𝜽) = 1
2

𝑇∑
𝑘=1

‖𝒚𝑁𝑁𝑘 − 𝒕𝑘 ‖22 + 𝛼
1
2
‖𝒘‖22 (4.22)

4.3.3 ACTIVATION FUNCTIONS

The choice of the hidden layers activation function 𝜎(·) plays a crucial role
in the design of a Neural Network model. Clearly, a network model composed
of linear functions only is able of learning linear functions exclusively. For this
reason, activation functions are almost always non linear. Some popular activa-
tion functions will be discussed in the following.
First Neural Network used to adopt the Sigmoid function as activation

𝜎(𝑧) = 1
1 + 𝑒−𝑧 (4.23)

This function intuitively makes a neuron active for 𝑧 > 0 and inactive otherwise.
It is also differentiable, which is a good property for the application of gradient
descend optimization methods. However, its derivative

𝜎′(𝑧) = 𝜎(𝑧)(1 − 𝜎(𝑧)) (4.24)

is contractive, namely its absolute value belongs to ]0, 1]. For this reason, the error
message can easily shrink while back-propagating, potentially leading the loss
gradient to vanish, hence stopping the training. Moreover, since the function is
not zero centered, at each layer a bias is introduced, leading to a phenomenon
usually called bias drift that can significantly slow down the training procedure
as well.
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Figure 4.2: Sigmoid function plot.

A common alternative to the Sigmoid function is given by the hyperbolic
tangent

𝜎(𝑧) = tanh(𝑧) = 𝑒2𝑧 − 1
𝑒2𝑧 + 1

(4.25)

This activation avoids bias drift, but still presents contractive derivative.
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Figure 4.3: Hyperbolic tangent function plot.

Modern Neural Networks often adopt a class of activations commonly called
rectified linear units. These activation functions are designed in order to main-
tain the simplicity of a linear activation while guaranteeing non linearity. A first
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CHAPTER 4. LEARNING-BASED NMPC

example of these functions is given by the ReLU activation

𝜎(𝑧) = ReLU(𝑧) = max(0, 𝑧) (4.26)

This function significantly speeds up the learning, while partially solving the
contractive derivative problem. However, it still presents bias drift. Moreover,
negative argument values still present zero gradient, possibly leading some neu-
rons to die, namely to stop the gradient based learning procedure for those neu-
rons. Notice also that this function is non differentiable in 𝑧 = 0. It may seems
that this invalidates the use of gradient based algorithm. In practice, gradient
descent optimizers still perform well for these models.
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Figure 4.4: ReLU function plot.

In order to solve this issue, the Leaky ReLU (LReLU) function can be intro-
duced

𝜎(𝑧) = LReLU(𝑧) =

𝑧, if z > 0

𝛼𝑧, if z < 0
(4.27)

with 0 ≤ 𝛼 < 1. This activation mitigates the dying neuron problem. Notice
however that negative values of the argument can however assume arbitrarily
negative activation values, since the function is not lower bounded. This is not
a desirable property for an activation function. Despite that, Leaky ReLU is still
one of the most popular activations.
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Figure 4.5: LReLU function plot with 𝛼 = 0.1.

Finally, a valid alternative to LReLU is given by the Exponential-Linear Unit
(ELU), that asimptotically saturates for large negative arguments, granting more
robustness to noise

𝜎(𝑧) = LReLU(𝑧) =

𝑧, if z > 0

𝛼(𝑒𝑧 − 1), if z < 0
(4.28)
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Figure 4.6: ELU function plot with 𝛼 = 1.

However, this last function is more complex to compute and to differentiate
than the Leaky ReLU and it can slow down both the learning procedure and the

40



CHAPTER 4. LEARNING-BASED NMPC

network prediction on new inputs.
The Leaky ReLU will be adopted as activation function for the NN models in
this thesis. However, since it is not possible to predict which activation will give
better results for a given learning problem, all the mentioned alternatives shall
be generally taken into account also for future new applications.

4.3.4 WEIGHTS INITIALIZATION

As discussed in section 4.3.1, Neural Networks training is possibly influenced
by the network parameters initialization. Even though an analytical law for the
selection of good initial parameters is not available, it is possible to identify some
common sense rules:

• The network weights should be initialized randomly, in order to ensure
diversity;

• Large numerical values should be avoided, since they can cause instability
and numerical issues in the learning procedure.

One of the most popular weight initialization law is known as Glorot initializa-
tion, proposed in [21] by Glorot and Bengio. According to this procedure, the
network weights are sampled from an uniform distribution over an interval de-
fined by network input and output size, respectively noted as 𝑑 and 𝑛

𝑤(𝑙)𝑗 ,𝑖 ∼ U(−
√

6
𝑑 + 𝑛 ,

√
6

𝑑 + 𝑛 ) (4.29)

Alternatively, a common choice is to initialize the network weights by sampling
from a zero-mean Gaussian distribution, prioritizing small initialization values

𝑤(𝑙)𝑗 ,𝑖 ∼ N(0, 𝛽) (4.30)

Finally, the network bias terms are usually initialized to 0 or, more rarely, to other
constant values.
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5
Simulations and Results

This chapter provides a description of the simulation environment adopted
for the validation of the proposed control methods and a commented report of
the simulation results.

5.1 TRAJECTORY TRACKING PROBLEM

The control methods that will be assessed in the following are designed in
order to tackle a trajectory tracking task for the quadrotor platform described in
chapter 2. The reference trajectory is defined as a timed sequence of 𝐿 position
coordinates 𝒑𝑟𝑒 𝑓 and is represented in Figure 5.1. The tracking performance can
be reasonably evaluated in terms of position error w.r.t. the reference. Moreover,
the average position error

Averr =
1
𝐿

𝐿∑
𝑘=1

‖𝒑𝑘 − 𝒑𝑟𝑒 𝑓 𝑘 ‖2 (5.1)

can be used as a compact indicator of the control performance.

5.2 SIMULATION SETUP

All the simulations that will be discussed in the following are carried out in
the Simulink environment. Model (2.1) is used for the simulation of the quadro-
tor dynamics, while the Nonlinear Model Predictive Control approach is adopted
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Figure 5.1: Position reference for the trajectory control task of interest. The
quadrotor is required to take off and to subsequently perform an eight shaped
trajectory, changing its altitude in the process. The whole trajectory requires 40𝑠
to be completed.

to perform the control task of interest, using a control frequency of 𝑓𝑐 = 20 𝐻𝑧.
Specifically, the NMPC is implemented by means of MATMPC, an an open source
algorithm developed at the University of Padova that is introduced in section 3.4.
The NMPC optimal control problem is discretized with direct multiple shoot-
ing, by using a 4-th order Runge-Kutta [30] as numerical integrator. The result-
ing NLP is addressed with a SQP approach, while qpOASES [19] is used to solve
each QP subproblem. The derivatives needed to perform the control optimiza-
tion are computed with CasADi [1], a popular state of the art differentiation
toolbox.
The control scheme adopted in the simulations can be finally observed in Figure
5.2.

5.2.1 NMPC DESIGN AND TUNING

As discussed in section 3.5, the NMPC parameters require a careful tuning
in order to grant desirable performance of the controlled system. Specifically,
the adopted NMPC algorithm considers cost function (3.25) and terminal cost
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NMPC UAV Model 1
𝑠

𝒑𝑟𝑒 𝑓 𝒖 𝒙¤ 𝒙

Figure 5.2: Control scheme for the simulation of the adopted control strategies.
The NMPC block expoilts the MATMPC code starting from a nominal model of
the quadrotor. The 1

𝑠 block performs a numerical integration, in order to obtain
the state value 𝒙 starting from 𝒙¤ .

(3.27) with weights matrices composed as

𝑄 = diag([𝒒𝑝 , 𝒒𝑣 , 𝒒𝜔 , 𝒒𝑢]𝑇)
𝑄𝑁 = diag([𝒒𝑝 , 𝒒𝑣 , 𝒒𝜔]𝑇)

(5.2)

where 𝒒𝑝 is the position error weights vector, and 𝒒𝑣 , 𝒒𝜔 and 𝒒𝑢 are respectively
the costs vectors for linear velocity, angular velocity and control input. More-
over, the adopted NMPC algorithm performs predictions over an 𝑁 = 10 steps
horizon with shooting time of 𝑇𝑠 = 0.1𝑠, for a total prediction time horizon of
𝑁𝑇𝑠 = 1𝑠 for each algorithm iteration. Finally, the control input saturation con-
stant is set at 𝒖𝑚𝑎𝑥 = 91 (𝑟𝑎𝑑/𝑠)2. All the considered parameters are displayed
in Table 5.1.

Name Symbol [unit] Value
Position error weight 𝒒𝑝 [70, 70, 300]
Linear velocity weight 𝒒𝑣 [1, 1, 10]

Angular velocity weight 𝒒𝜔 [1, 1, 1]
Control input weight 𝒒𝑢 [10−4, 10−4, 10−4, 10−4]

Horizon steps 𝑁 10
Shooting time 𝑇𝑠 [𝑠] 0.1

Input saturation 𝒖𝑚𝑎𝑥 [(𝑟𝑎𝑑/𝑠)2] 91

Table 5.1: Parameters of the adopted NMPC algorithm.

5.3 NMPC RESULTS

In this section, the results obtained in simulation from the application of the
described NMPC control to the considered drone platform are displayed and
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discussed. Alongside a careful parameter tuning, the NMPC approach perfor-
mance are deeply influenced by the accuracy of the adopted prediction model.
In particular, consider model (2.1) with nominal parameters displayed in Table
2.1 as the NMPC prediction model. Then, in order to assess and subsequently
tackle the effects of unpredicted dynamics on the control performance, an ideal
case of perfect matching between the NMPC model and the simulated quadrto-
tor model will be observed and compared with some scenarios of NMPC appli-
cation in presence of model mismatch.

5.3.1 MATCHING MODELS

In case the prediction model adopted by the NMPC perfectly matches the
quadrotor model used for the simulations, the control should lead to an almost
perfect trajectory tracking. Indeed, an average position error of Averr = 7.2 𝑚𝑚
is obtained in simulation, while by observing the drone trajectory, showed in
Figure 5.3, one can notice a neat overlap with the position reference.
On top of that, working on a machine with an 10-th generation i7 CPU and a

Figure 5.3: Simulation result obtained by applying the NMPC with a perfectly
accurate prediction model. As expected, the drone follows with good precision
the reference trajectory. The drone trajectory is color coded w.r.t. the tracking
error value at each point.
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16 GB RAM, the NMPC block performs each iteration of the control algorithm
with an average Computational Time (CPT) of 0.3 𝑚𝑠, which is compatible with
a real-time implementation of the controller.
This scenario, both in terms of average position error and of CPT, will be con-
sidered as a benchmark for the following simulations.

5.3.2 MASS MISMATCH

In real world scenarios, an unknown additional payload could be added
to the quadrotor, e.g. for a transport task or in case some new component is
added to the platform. As an example, consider an additional payload of 0.25
𝐾𝑔 with respect to the nominal parameter displayed in Table 2.1, correspond-
ing to a 16.7% increase of the drone mass. In such case, the NMPC algorithm
can’t properly predict the quadrotor behaviour, leading to a position error in the
trajectory tracking task, as shown in Figure 5.4. The resulting average position
error amounts to Averr = 43.8 𝑚𝑚, representing a significant increase in error
w.r.t. the ideal case. Even though this performance could still be considered ac-

Figure 5.4: Simulation result obtained by applying the NMPC algorithm with
nominal model in case of a mass mismatch. The quadrotor performs the tracking
task with an altitude offset that becomes more evident during the ascending
portion of the trajectory.

ceptable in a real world application, it is clear how even a small linear mismatch
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between the prediction model and the controlled system dynamics can lead to
significant relative deterioration in performance.

5.3.3 MOTOR ROTATION SPEED MISMATCH

Consider either a mechanical or an electrical malfunction in one of the drone
propellers that persistently slows down its rotation of a 10.6% factor, correspond-
ing to a 20% decrease in one of the components of the drone control input 𝒖. This
not only weakens the overall thrust of the platform, but it also brakes the sym-
metry of the propeller configuration. In this case, the NMPC algorithm leads to
an average position error of Averr = 146.9 𝑚𝑚. By looking at the resulting simu-
lation trajectory displayed in Figure 5.5, one can indeed notice how the drone is
following the reference trajectory with evident position mismatch.

Figure 5.5: Simulation result obtained by applying the NMPC algorithm with
nominal model in presence of a rotor speed mismatch. Due to the thrust lack,
the quadrotor follows the reference trajectory with an altitude offset, while the
unpredicted loss of symmetry of the rotor configuration causes a lateral devia-
tion.

The effect that these unpredicted dynamics have on the position error, when
the drone is controlled with an NMPC based on the quadrotor nominal model,
can be observed in Figure 5.6. In both the mass mismatch and the rotor speed
mismatch cases the position error w.r.t. the reference trajectory is consistently
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Figure 5.6: Position error of the controlled quadrotor w.r.t. the reference trajec-
tory. The case of perfect match between NMPC model is compared with the
mass mismatch and the rotor speed mismatch scenarios. Notice that here the
first seconds of simulation data are not considered, since the takeoff is generally
a troublesome maneuver and it is often tackled with a dedicated controller.

higher if compared with the one achieved in case the NMPC model perfectly
matches the simulation model. Finally, the results in terms of average posi-
tion error are compared in Table 5.2. These results clearly confirm how the
NMPC performance is highly dependent on the accuracy of the adopted pre-
diction model.

Mismatch Averr [𝑚𝑚]
Exact model match 7.2

Mass mismatch 43.8 (+508.3%)
Rotor rotation speed mismatch 146.9 (+1940.3%)

Table 5.2: Average position errors achieved by NMPC with nominal model in
presence of model mismatches.

5.4 LEARNIG THE MODEL MISMATCH

In order to deal with the effect of the unmodeled dynamics listed in the pre-
vious section and to reduce the position error that they introduce, it is possible to
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replace the nominal NMPC prediction model with a grey-box model that con-
tains a learned correction law, following the intuition discussed in chapter 4.
Specifically, a GP or a NN grey-box model can be adopted as prediction model
for the NMPC algorithm, while using the same parameters tuning described in
section 5.2.1. The resulting controllers are hereafter denoted as GP-NMPC and
NN-NMPC respectively, as specific expressions of the Lb-MPC framework.
Both the GP models and the NN models are previously trained by measuring
the drone linear and angular accelerations over a dedicated training trajectory.
Subsequently, the learned models are tested on the trajectory presented in Fig-
ure 5.1.
In order to improve the learning results, by avoiding misleading correlations be-
tween input data and training target, a feature selection is manually applied to
the input data of the learning models. In fact, instead of considering the whole
[𝒙𝑇 , 𝒖𝑇]𝑇 state-control vector as learning input, it is here preferable to reduce the
state component to the sole pose of the drone. Specifically, by representing such
pose with an Euler angle representation 𝝐 = [𝜌, 𝜃,𝜓]𝑇 , the considered learning
input can be expressed as x = [𝝐𝑇 , 𝒖𝑇]𝑇 .
The remaining part of this section is dedicated to the presentation of the train-
ing trajectory, to the discussion of the specifics of the adopted learning methods
and to a presentation of the learning results.

5.4.1 TRAINING TRAJECTORY

The adopted learning models are trained off-line on a training trajectory for
2000𝑠, collecting 20000 data points with a sampling time of 0.1𝑠; 𝑇 = 16000 of
them will be used for the actual training procedure, while the last 4000 will be
dedicated to the validation. The training trajectory, which is displayed in Figure
5.7, is designed in order to repeatedly perform different types of maneuvers with
changing amplitude and velocity:

1. Helix: during this maneuver the quadrotor performs a number of horizon-
tal turns, connected by ascending movements at first and descending ones
then;

2. Slalom: during this maneuver the quadrotor executes a sequence of right
and left alternated turns, following in the meantime an ascending move-
ment to each a certain altitude. Once this altitude is reached, same kind of
turns are performed in a descending direction;
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3. Up and Down: during this maneuver the quadrotor performs a quick slope,
followed by a dive.

Each of these maneuvers is repeatedly performed a number of times, while in-
creasing the amplitude of the maneuver. This simple approach is used to obtain
a trajectory of the desired length with just few maneuvers definitions. In fact, by
repeating each movement with changed amplitude also the drone acceleration
varies, allowing to obtain more significant data. As an alternative, one could
use a randomized trajectory for training. However, the adopted method allows
to train the drone while performing maneuvers with controlled characteristics,
both in terms of learning input values and measured accelerations.
Notice that while NN models require a significant amount of learning data to
achieve a satisfactory training, GP regression could be performed with a shorter
learning trajectory. However, all the considered learning methods are trained
on the same trajectory, in order to deliver a better comparison of the results.

Figure 5.7: Training trajectory for the off-line learning procedure. Three types
of maneuvers are performed with different amplitude and velocities in order to
train the grey-box models in a number of different significant scenarios. The
helix maneuvers are highlighted in blue, the slalom movements are highlighted
in orange and the up and down maneuvers are colored in purple. The remaining
black section of the trajectory is finally used for validation.
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5.4.2 GP APPROACH AND RESULTS

The mismatch between nominal and real accelerations, introduced either by
the mass or by the rotor speed model mismatches, can be learned and therefore
predicted thanks to a set of Gaussian Process models. In particular, as antici-
pated in section 4.2, six GP models are used to derive a correction law, one for
each component of linear acceleration 𝒗¤ and angular acceleration 𝝎¤ of the drone
platform. For each GP, a SE kernel is adopted for the modeling of the covariance
function, while the model mean is imposed to be zero. The GP models hyper-
parameters are tuned by maximization of the training data marginal likelihood,
thanks to a MATLAB toolbox developed by Rasmussen and colleagues [43].
The learning results for the mass mismatch case, tested on the reference trajec-
tory, are hence displayed in Figure 5.8. As one can notice, the GP model predicts
almost perfectly the learning target, leading to a neat superposition between the
measured accelerations and the ones predicted by the grey-box model.

Figure 5.8: Comparison between measured accelerations, nominal model pre-
diction and GP grey-box model prediction, in presence of mass model mismatch.
The data are sampled over the test reference trajectory. As one can expect from
first principles, the main acceleration mismatch is the one relative to the 𝑧 com-
ponent of the linear acceleration.
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Even though GPs provide a precise and powerful regression framework,
they severely suffer from scalability problems. In fact, the GP prediction proce-
dure has cubic complexity w.r.t. the number of considered support points of the
model. In order to cope with this limitation, a lot of research has been devoted
towards sparse Gaussian Process model approximations [33]. In particular, a
global approximation generally known as Variational Free Energy (VFE) [2] is
adopted in order to approximate the GP posterior, by selecting a set of 𝑛𝑢 induc-
ing points in place of the 𝑇 training points adopted to support the model. By re-
ducing the inducing points of the GP model to 𝑛𝑢 = 34, starting from 𝑇 = 16000
training data, the VFE approximation is capable of maintaining the mismatch
prediction nearly unchanged, as displayed in Figure 5.9. Thanks to this approx-
imation, the average CPT on the simulation machine for one GP-NMPC iteration
can be reduced to 3.7 𝑚𝑠, allowing to adopt the grey-box model in the NMPC
formulation under the real-time constraint.

Figure 5.9: Plot of the mismatches between nominal accelerations and measured
accelerations along the reference trajectory, in presence of mass mismatch be-
tween nominal and simulation models. A full GP model prediction, based on
𝑇 = 16000 training data, is compared to a VFE approximation with 𝑛𝑢 = 34 in-
ducing points. Both the full GP model and the VFE approximation matches the
displayed learning target.
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Furthermore, a GP-based grey-box model can be adopted in a similar fashion
also in presence of the motor rotation speed mismatch. Even though this second
mismatch can be considered more complex than the previous one, the GPs can
properly learn an effective correction law, as shown in Figure 5.10.

Figure 5.10: Comparison between measured accelerations, nominal model pre-
diction and GP grey-box model prediction, in presence of rotor speed mismatch.
The thrust lack causes a significant mismatch on the 𝑧 component of the linear
acceleration. The unpredicted configuration asymmetry causes a mismatch on
the 𝑦 angular acceleration. Both the effects are correctly predicted by the GP
grey-box model.

5.4.3 NN APPROACH AND RESULTS

Alternatively to the Gaussian Process approach, the unmodeled dynamics
can be learned by means of Neural Network models. In particular, two NN are
adopted to learn the acceleration error made by the nominal model w.r.t. the
linear acceleration 𝒗¤ and the angular acceleration 𝝎¤ respectively. The learning
models are both designed as three hidden layers feedforward Neural Networks,
with Leaky ReLU activations and 8 neurons for the first layer, 16 for the second
one and 36 for the third.
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The network models are trained by means of the MATLAB Deep Learning Tool-
box, with a popular stochastic gradient descent algorithm commonly known as
Adam [28]. During the training procedure, a Mean Squared Error loss is adopted
in order to evaluate the prediction performance of the networks, regularized
with an 𝐿2 penalty term weighted by a relative coefficient 𝛼 = 10−4. The network
weights are initialized by sampling from a Gaussian distribution with standard
deviation 𝛽 = 0.01.

Figure 5.11: Comparison between measured accelerations, nominal model pre-
diction and NN grey-box model prediction, in presence of mass model mis-
match. The 𝑧 linear component is correctly predicted by the NN model, while
the other components are nearly unchanged w.r.t. the nominal model prediction.

In presence of mass mismatch, the Neural Network models are able to re-
trieve a good correction law for the nominal model predicted accelerations, as
shown in Figure 5.11. Notice however that the regression is less precise with
respect to the one performed by the GP approach. In particular, while the main
mismatch on the 𝑧 component of the linear acceleration seems to be properly cor-
rected, the other linear acceleration components remain completely unchanged
even after the introduction of the NN correction term in the prediction model.
Nonetheless, it can be noticed how the NN model intuitively prioritize the re-
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gression of the most influential components of the learning target. If a wider and
hence more complex network is used for the regression task, the target compo-
nents affected by minor mismatches can also be addressed. Indeed, by using a
network with 512 neurons in the first layer, 1024 in the second layer and 2042
in the third one, the mismatches on 𝑥 and 𝑦 components of linear acceleration
are also tackled by the grey-box model, as shown in Figure 5.12. However, such
network would require higher computational and memory resources if used to
define a grey-box prediction model for an NMPC implementation, thus the less
complex design presented before is highly preferable.

Figure 5.12: Comparison between measured accelerations, nominal model pre-
diction and NN grey-box model prediction, in presence of mass model mis-
match, obtained by adopting a Neural Network model with 512-1024-2042 neu-
rons divided in three hidden layers. All the components of the linear accelera-
tion are predicted by the grey-box model with higher precision w.r.t. the nominal
model.

Similar behaviour can be observed also in presence of the rotor speed mis-
match, as one can see in Figure 5.13. Here the 𝑧 thrust mismatch is correctly
learned by the NN model, while the angular acceleration mismatch is only par-
tially addressed. However, such shallow feedforward Neural Network models
allow to perform the prediction procedure simply by applying affine operations
and activation functions evaluation, potentially speeding up the NMPC algo-
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rithm iterations. Indeed, each NN-NMPC iteration is completed with an average
CPT of 1.8 𝑚𝑠 on the simulation machine. As it will be shown in the following
paragraphs, this computational advantage can be achieved without significant
costs in terms of average position error w.r.t. the GP-NMPC approach.

Figure 5.13: Comparison between measured accelerations, nominal model pre-
diction and NN grey-box model prediction, in the case of rotor speed mismatch.
The 𝑧 linear component is correctly learned by the model, while the angular
acceleration prediction is only partially improved with respect to the nominal
model.

5.5 LB-NMPC RESULTS

This section is dedicated to the discussion of the simulation results obtained
by applying the Lb-MPC approach for the control of the quadrotor platform.
First, the GP-NMPC and the NN-NMPC approaches are compared in terms of
achieved position error during the trajectory tracking task of interest, in presence
of mass or rotor speed mismatch. Afterwards, some non-ideality are taken into
account, in order to test the learning procedure effectiveness under more realistic
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conditions.

5.5.1 IDEAL CASE

After training the considered learning models in presence of mass mismatch,
these can be used in order to perform a more precise predictive control of the
quadrotor. Starting from the GP-NMPC approach, it is possible to observe a
significant improvement in terms of position error w.r.t. the standard NMPC
approach. Indeed, thanks to the learned correction law, the GP-NMPC is able
to achieve an average error of Averr = 7.8 𝑚𝑚, reducing the one obtained by
using the nominal model by 82.2% and reaching a result that is almost identi-
cal to the one obtained by the nominal NMPC in case of perfect model match.
Similarly, the NN-NMPC approach is able to reduce the average position error
to Averr = 5.8 𝑚𝑚 in the same scenario, which is equivalent to a 86.8% reduc-
tion. In conclusion, both the techniques definitely lead to a significant reduction
of the position error over the whole trajectory, as shown in Figure 5.14a. This
clearly reflects in satisfactory tracking performance, as one can confirm by look-
ing at Figure 5.15a.
Considering the more complex scenario of a rotor speed mismatch, the two
Lb-MPC approaches equivalently achieve satisfactory results. The GP-NMPC
completes the trajectory tracking task with an average position error of Averr =

7.6 𝑚𝑚, while the NN-NMPC attain an average error of Averr = 7.2 𝑚𝑚. These
results, if compared to the average error obtained by relying on the nominal
model, correspond to a 94.8% reduction with the GP-based model and a 95.1%
reduction with the NN-based one. More in detail, also in this case the posi-
tion error achieved by the Lb-NMPC approaches is significantly reduced w.r.t.
the one resulting from a NMPC application over the whole trajectory, as shown
in Figure 5.14b. Moreover, these two learning-based control approaches offer
a good tracking of the reference trajectory, as confirmed by the simulations in
Figure 5.15b.
Observe that the two learning techniques lead to very similar results in terms of
position error. Indeed, even though the considered Neural Networks are shown
to grant a less precise regression of the acceleration mismatch with respect to
the GP models, the registered control performance do not underline any sig-
nificant difference between the two approaches. However, the Neural Network
prediction procedure is less computationally demanding than the GP one, as
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evidenced by the measured CPTs during the simulations.
Table 5.3 offers a summary of the comparison between the considered control
techniques, in terms of average position error and computational burden.

Control approach Mass mism. Averr [𝑚𝑚] Rotor speed mism. Averr [𝑚𝑚] CPT [𝑠]
NMPC 43.8 146.9 0.3

GP-NMPC 7.8 (−82.2%) 7.6 (−94.8%) 3.7
NN-NMPC 5.8 (−86.8%) 7.2 (−95.1%) 1.8

Table 5.3: Performance comparison between the NMPC based on the nominal
model, GP-NMPC and NN-NMPC in an ideal learning scenario.
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(a) Mass mismatch scenario

(b) Rotor speed mismatch scenario

Figure 5.14: Position error obtained in simulations, for the ideal learning sce-
nario. The results obtained by GP-NMPC and NN-NMPC are compared with
the ones of a NMPC based on the nominal knowledge of the model, either in
presence of mass mismatch (a) or rotor speed mismatch (b).
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(a) Mass mismatch scenario

(b) Rotor speed mismatch scenario

Figure 5.15: Simulation results obtained from the application of GP-NMPC and
NN-NMPC in an ideal learning scenario, compared with the results achieved by
the nominal NMPC. Panel (a) shows the results obtained in case of mass mis-
match. Panel (b) is dedicated to the application in case of rotor speed mismatch.
In both cases, GP-NMPC and NN-NMPC achieve an almost perfect overlap be-
tween the drone trajectory and the reference.
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5.5.2 CONTROL SIGNAL DELAY

Differently from what happens in the previous simulations, in real life sce-
narios the control input signal is affected by a certain delay between the moment
of its determination by the controller and its actual application to the system. In
particular, a dynamic delay of 0.05 𝑠 is here taken into account. Such delay,
generally denoted in the Laplace domain with a term 𝑒−0.05𝑠 , is expressed in the
simulation system as a first order Padè approximation, given by the following
transfer function

𝐷(𝑠) = 1 − 0.05
2 𝑠

1 + 0.05
2 𝑠

(5.3)

Therefore, the resulting simulation system can be schematized as in Figure 5.16.

NMPC 𝐷(𝑠) UAV Model 1
𝑠

𝒑𝑟𝑒 𝑓 𝒖 �̃� 𝒙¤ 𝒙

Figure 5.16: Control scheme for the simulation of the system in presence of input
delay. The control input 𝒖 computed by the controller is affected by a dynamic
delay, hence �̃�(𝑡) ≈ 𝒖(𝑡 − 0.05) is applied to the controlled system.

This delay does not appear to affect in any significant way the control perfor-
mance during the simulations, as the adopted control frequency is high enough
to tackle the delay effect. Nonetheless, it is crucial to consider that its presence
can alter the learning procedure of the grey-box models. Indeed, as the rotors
speed is not typically measured for a commercial quadrotor, it would be reason-
able to consider vector x = [𝝐𝑇 , 𝒖𝑇]𝑇 as input for the learning problem of interest,
with 𝒖 simply taken as output of the control algorithm. However, this would
introduce an additional mismatch between the nominal model acceleration pre-
diction and the measured acceleration, since the first is based on the application
of input 𝒖 to the system, while the latter is consequent to the application of �̃�.
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Figure 5.17: Comparison of the position errors obtained by NMPC, GP-NMPC
and NN-NMPC in presence of a rotor speed mismatch. Here the learning-based
models are trained in presence of control input delay, by adopting the predicted
control 𝒖 as part of the learning input.

In support of this consideration, it is possible to observe the consequences
of the adoption of learning input x = [𝝐𝑇 , 𝒖𝑇]𝑇 in presence of control delay
in the case of rotor speed mismatch. As one can observe in Figure 5.17, only
the NN-NMPC is able to present a significant improvement with respect to a
NMPC based on the nominal quadrotor model. On the contrary, the considered
GP-NMPC design appears to present some difficulties in the regression of the
mismatch law. Specifically, the NN-NMPC achieves an average position error
of Averr = 7.1 𝑚𝑚, corresponding to a 95.2% reduction of the usual Averr = 146.9
𝑚𝑚 error obtained by the nominal NMPC, which remains unchanged by the
control delay. Instead, the GP-NMPC only reduces the nominal NMPC error by
24.8%, as it achieves an average position error of Averr = 110.5𝑚𝑚. Also by look-
ing at the simulation trajectories, which are displayed in Figure 5.18, it is pos-
sible to notice that NN-NMPC achieves a satisfactory reference tracking, while
GP-NMPC presents not only a less precise tracking, but also a less smooth trajec-
tory. Intuitively, one could attribute the better performance of NN-NMPC to the
fact that the delay induced mismatch is almost ignored during the learning pro-
cedure while prioritizing major mismatches. A similar behavior was discussed
in section 5.4.3, where the minor mismatches that affected a part of the compo-
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nents of the learning target were naturally ignored by the NN model. On the
other hand, the GP-based grey-box model tackles the delay induced mismatch,
without properly being able to retrieve a good regression law.

Figure 5.18: GP-NMPC and NN-NMPC simulation results in presence of con-
trol input delay and rotor speed mismatch, achieved by adopting the predicted
control input 𝒖 as part of the learning input for the grey-box models. GP-NMPC
is not able to provide a good overlap between the drone trajectory and the ref-
erence, as the considered GP grey-box model does not deliver a good prediction
of the drone dynamics. On the contrary, NN-NMPC achieves an almost perfect
overlap between drone trajectory and reference.

In order to completely avoid this issue, one could consider to adopt x =

[𝝐𝑇 , �̃�𝑇]𝑇 as input for the learning problem. This clearly leads to an improve-
ment in the performance of the considered Lb-MPC methods, as one can see in
in Figure 5.19 and 5.20. In this scenario, both GP-NMPC and NN-NMPC achieve
an average position error of Averr = 7.5 𝑚𝑚, corresponding to a 94.9% reduction
w.r.t. the nominal NMPC error. However, in order to obtain �̃� it is necessary to
directly measure the drone rotors speed. For this purpose, a set of additional
sensors would be needed, making this solution not ideal for a real world appli-
cation.
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Figure 5.19: Control error comparison in presence of rotor speed mismatch and
control input delay, with GP-NMPC and NN-NMPC trained with measured
control �̃� as part of the learning input.

Figure 5.20: GP-NMPC and NN-NMPC simulation results in presence of control
input delay and rotor speed mismatch, achieved by using the measured control
input �̃� as part of the control input. In this case, both the GP-NMPC and the
NN-NMPC are able to provide a good tracking of the reference trajectory.
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5.5.3 TRAINING TARGET NOISE

So far it has been assumed that the learning target can be measured with-
out any noise. However, a common problem in regression is that only noisy
measurements of the target are typically available. Consider then an additive
Gaussian measurement noise with zero mean and variance 𝜎𝒗¤

𝑛 = 10−5 𝑚
𝑠2 and

𝜎𝝎¤
𝑛 = 10−9 𝑟𝑎𝑑

𝑠2 for linear and angular acceleration data respectively. Recall that
the presence of such Gaussian noise is part of the assumptions of the Gaussian
Process models described in chapter 4. The considered Neural Network mod-
els instead do not take target noise into account directly. For this reason, bet-
ter results are expected from the GP-NMPC approach in this scenario. Indeed,
testing the considered controller in presence of the rotor speed mismatch, the
GP-NMPC performance is not influenced by the presence of the target noise, as it
achieved an average position error of Averr = 7.7𝑚𝑚. On the other hand, the NN
model is still able to properly generalize the mismatch law, leading NN-NMPC
to obtain an average position error of Averr = 11.5 𝑚𝑚. This result is still com-
pletely acceptable, as one can also evaluate by looking at the position errors over
the whole trajectory in Figure 5.21 and at the resulting trajectories in Figure 5.22.

Figure 5.21: Control error comparison in presence of rotor speed mismatch and
noisy learning target.
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Figure 5.22: GP-NMPC and NN-NMPC simulation results in presence of ro-
tor speed mismatch, with GP and NN grey-box models trained with unfil-
tered noisy learning target measurements. Both GP-NMPC and NN-NMPC
grant a good overlap between drone trajectory and reference, even though the
NN-NMPC error is slightly deteriorated w.r.t. the ideal case.

Yet, from both figures one can observe that GP-NMPC performs slightly bet-
ter than NN-NMPC in this scenario. Moreover, notice that the average position
error achieved by NN-NMPC presents a small deterioration with respect to the
ideal learning case, where achieved an average error equal to Averr = 7.2 𝑚𝑚.
The presence of target noise can also be tackled with simple data processing
techniques. Indeed, by filtering the measured acceleration data it is possible to
retrieve a good representation of the signal before the introduction of the Gaus-
sian noise. However, in order to avoid the delay that would be introduced on
the filtered signal by a naive low-pass filter, this procedure should be carried
out by adopting a zero-phase filter. That means that after filtering the data in the
forward direction, the filtered sequence needs to be reversed and run through
the filter once again. The result has the following characteristics:

• Zero phase distortion;

• A filter transfer function equal to the squared magnitude of the original
filter transfer function;
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• A filter order that is double the order of the original filter.

In the simulation setup, this procedure is carried out by a MATLAB function
that implements the algorithm proposed by Gustafsson in [22], starting from
a third order low-pass filter. The result of such procedure can be observed in
Figure 5.23, where the original signal, the noisy signal and the filtered one are
compared in an example.

Figure 5.23: Example of comparison between real acceleration, noisy accelera-
tion and a zero-phase filtered version of the latter. The filtered signal provides a
good representation of the real acceleration, without presenting any time delay.

By adopting the filtered target during the learning procedure, one can notice
a slight improvement in the NN-NMPC results, with an average position error
of Averr = 8.3 𝑚𝑚. In spite of that, the GP-NMPC performance are actually
deteriorated by the adoption of the filter. Indeed, by looking at Figures 5.24 and
5.25 one can see how the position error achieved by GP-NMPC in this case is
significantly higher than the one obtained with NN-NMPC. In particular, the
average position error achieved by GP-NMPC is Averr = 44.0 𝑚𝑚. If compared
to the error achieved by the nominal NMPC, this last result is still quite positive,
since the GP-based grey-box model introduces a 70.0% error reduction. Yet, it is
clear that the GP models not only can be used without any target filtering, but
it is even preferable to do so.
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Figure 5.24: Position error comparison between NMPC, GP-NMPC and
NN-NMPC in presence of rotor speed mismatch and noisy learning target. The
learning-based models are trained with zero-phase filtered targets.

Figure 5.25: GP-NMPC and NN-NMPC simulation results in case of rotor speed
mismatch, with grey-box models trained with a zero-phase filtered version of
the noisy learning target. While NN-NMPC performs an almost perfect trajec-
tory tracking, the trajcetory obtained with GP-NMPC presents some slight offset
with respect to the reference.
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Indeed, since the GP regression model takes into account the presence of ad-
ditive Gaussian noise on the learning target, the introduction of a filter on such
noise results is a violation of the model assumptions. One can better understand
how the GP prediction is deteriorated also by taking into account the resulting
standard deviation of the GP posterior distribution. In fact, while the posterior
mean offers a maximum a posteriori estimator of the target value, the poste-
rior standard deviation offers a measure of the confidence of such prediction,
as the posterior distribution is itself a Gaussian distribution. In particular, the
predicted value is expected not to be more than one standard deviation away
from the posterior mean with a 68.3% probability. By looking at Figure 5.26,
which shows the posterior standard deviation for the prediction of the 𝑧 lin-
ear component and the 𝑦 angular component, it can be noticed how such value
is consistently higher for the case in which a filtered target has been adopted
during the training procedure. Hence, the prediction made by learning on a
filtered learning target with the considered GP model is not only less accurate,
but also more uncertain. In conclusion, in presence of noisy learning target the
NN-NMPC approach should be trained on zero-phase filtered data, while the
GP-NMPC grants better results if trained on a noisy version of the target.

Figure 5.26: Comparison between standard deviation of the posterior distribu-
tion of the GP model for the prediction of 𝑧 linear component and 𝑦 angular
component of the drone acceleration along the test trajectory, in case a noisy
learning target or its zero-phase filtered version is used during training.
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6
Conclusions

The main scope of this thesis was to investigate the innovative field of Learning-
based Nonlinear Model Predictive Control, with focus on the position control of
a quadrotor platform. This learning-based advanced control aims at exploit-
ing the high performance of a NMPC approach while dealing with system dy-
namics that are unpredicted by the nominal prediction model of the controller,
thanks to the implementation of data-driven techniques. In particular, GP and
NN regression methodologies were here adopted to obtain a correction law for
the NMPC prediction model, starting from measurements of the residual er-
ror between true and predicted acceleration of the quadrotor platform. Grey-
box models derived from the combination of said correction law and quadrotor
nominal model were subsequently adopted as novel prediction models for the
control algorithm. This control approach was tested in the MATLAB Simulink
environment, thanks to an NMPC implementation based on the open-source
toolbox MATMPC. The main key points of this research are hence summarized
and discussed in the following, before looking into future developments of this
work.

6.1 CONCLUSIVE REMARKS

Quadrotor control has been a topic of great interest in robotic research in the
past years, thanks to the wide applicability of such mobile platform in customer
and industrial contexts. These systems, characterized by nonlinear and fast dy-
namics, are well suited to be controlled with the NMPC approach. However,
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the performance of such control method are highly dependent on the quality of
the prediction model adopted by the controller. This notion was also confirmed
in the context of this thesis, as it was observed in simulations that an incorrect
knowledge of the drone mass or an unexpected speed reduction of one of the
drone rotors lead to significant performance deterioration. In order to tackle
these undesired effects, learning-based correction laws can be adopted to im-
prove the precision of the controller prediction model. If GP regression models
were already a consolidated approach to the problem, in recent years much at-
tention has been given to novel NN-based solutions. In order to deepen the
understanding on these approaches, in this work both were implemented in the
MATMPC environment and tested on the same problem.
In particular, a GP-based and a NN-based regression models were trained in
an off-line fashion on a dedicated trajectory, in order to learn a continuous time
correction law for the nominal dynamical model of the considered quadrotor
platform. The GP regression offers high flexibility and great generalization ca-
pability. However, great attention was necessary to handle the computational
burden that is typical of this approach. In fact, since such method cannot be care-
lessly implemented in time-sensitive scenarios like the Nonlinear Model Predic-
tive Control of a multirotor platform, it was necessary to rely on a popular sparse
VFE approximation of the GP model. On the other hand, the NN architectures
required challenging design procedures, due to the high number of configura-
tion choice to be made and to the low interpretability that characterize this kind
of learning models. Both GP and NN models achieved satisfactory learning re-
sults, in terms of accuracy on off-line predictions. In particular, the GP models
performed almost perfect dynamical predictions, while NN models achieved
good predictions only on the components of the learning target that presented
the most significant mismatches. However, it was clear from in-between testing
that the learning results not always grant a good understanding of the perfor-
mance that will be achieved in closed-loop control with Lb-NMPC methods.
After training, Lb-NMPC implementations that adopted the considered learn-
ing models were tested in simulation on a trajectory tracking task. These con-
trollers were denominated GP-NMPC and NN-NMPC. Both implementations
achieved satisfactory reduction of the position error with respect to the reference
trajectory, both in presence of mass mismatch and rotor speed mismatch. In
particular, NN-NMPC managed to achieved similar results to GP-NMPC, while
granting a lower computational burden.
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These Lb-NMPC methods were also tested in non-ideal learning scenarios. First,
the presence of a dynamic delay on the control performance was taken into ac-
count. In this case, NN-NMPC obtained better results than GP-NMPC in case a
delayed control signal data was used as learning information. Moreover, both
method achieved good results in case an additive Gaussian noise was intro-
duced on the learning target used during training. In such case, NN-NMPC
was shown to benefit from the application of a zero-phase filter on the learning
target noisy measurements, while GP-NMPC achieved better performance when
the GP models were trained directly on noisy data. This was not surprising, as
GP regression models naturally account for the presence of additive Gaussian
noise on the learning target.

6.2 FUTURE WORK

Starting from the promising results delivered in this thesis for the application
of GP-NMPC and NN-NMPC to the control of quadrotor platforms, some future
developement of this research work can be outlined:

• Testing on realistic and experimental setups: throughout this thesis, the con-
sidered methods were tested only in fairly simplified simulation environ-
ments. A better understanding of the considered technologies can come
from testing them in more complex simulation environments, among which
the Gazebo robotic simulator stands out distinctly [49]. Following the same
idea, the Lb-NMPC approach could be tested also on real world experi-
mental setups.

• Research on dedicated NN architectures: NN design is a wide and complex
framework, that was only partially explored for the application of interest
of this thesis. The promising results that NN-NMPC has achieved in this
project can potentially open the door to a research devoted to design ded-
icated networks for Lb-NMPC applications and for quadrtoror NMPC in
particular.

• On-line learning in Lb-NMPC implementations: in this thesis project, the
adopted learning methods were used to learn the unknown dynamics of
the system in an off-line fashion, applying the resulting models to NMPC
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only after a training procedure. For this reason, the considered Lb-NMPC
approaches would not be able to tackle time-varying unmodeled dynam-
ics. Both GP-NMPC and NN-NMPC for on-line learning could be devel-
oped. In particular, continual learning, namely the problem arising from
the necessity to adapt trained learning models to new information while
preserving what was previously learned, is a topic of great interest for NN
architectures [38].
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