




Introduction

The nowadays availability of large datasets and the recent increase in computational power offer
a new paradigm to understand complex systems. However, data provide abundant detail that
generally carry no labels on the procedure for extracting the important information that interests
us about the system. Statistical physics and information theory offer a framework on which it
is possible to manipulate large datasets on many different systems, leading to an interaction
with other disciplines and creating a whole new branch called Complex System Science. This
proficient union brought new insights in various fields such as ecology [1], population dynamics
[2][3], ecosystem [4], nervous system [5] and economics, which is the framework in which we will
move in this thesis.
A recent new line of research that aims to couple network theory and economics has grown
in the last decade, thanks to its ability to capture information from large datasets of exports
and cast it into human-readable measures to rank nations and commodities. This is not the
first interdisciplinary approach to economics, as its road to complexity started many years ago.
However, this new theory called Economic Complexity is somehow different from standard
econophysics. It is a purely data-driven approach that does not aim to create a model but
instead seeks to extract as much as possible information from the network of exports that at
first sight may be hidden. This attracted a lot of attention at the institutional level (World
Bank, UE) [6]. This research is only in its infancy, so there is still a lot of discussion, especially
about what kind of information we want to extract and how.
In this thesis we will study the nations’ exports from 1995 to 2019 in a bipartite network
perspective, according to the economic complexity framework. We will discuss what is the
essential information and how a new algorithm, based on a self-consistent use of the Shannon
entropy, can enter into the theory to extract it, getting new measures of complexity of nations
and products. Finally, as an original contribution, we will try to understand the dynamics of
nations and forecast their future growth according to this new measure.

The Economics Road to Complexity The problem to understand why economic world
trade occurs has been a central topic from the very beginning of the economic thinking. Adams
Smith introduced the concept of absolute advantage [7]: the country that can supply the most
conspicuous amount of a commodity at the cheapest price has an absolute advantage on that
product. The search of this advantage was considered the force that drives countries to engage
in international trade. However, a satisfying theory occurred only several decades after due to
David Ricardo, who introduced the concept of comparative advantage [8]. With this theory we
have the first example of collective behavior in economics, that emerges when nations specialize
in products on which they have lower relative opportunity cost price 1, describing how countries
take advantage by engaging world trade.

1The opportunity cost of an activity is the loss of value or benefit that would be incurred by engaging in that
activity [9]

I



II

These considerations started to have mathematical foundations thanks to the initial work of the
Swedish economist E. Heckscher, who introduced in 1919 [10] a theory that was formalized by
his student B. Ohlin in 1933 [11]. The so called Heckscher-Ohlin model was extended and further
generalized up to become the standard economic model [12], describing how countries reach an
equilibrium trade according to their fixed non-tradable capital, such as labor and infrastructure.
Further works on the model [13] showed that the accumulation of capital can cause changes in
the export of a nation, both in quantity and in typology, therefore modifying the structure of
the world market breaking the equilibrium of trade proposed by the Heckscher-Ohlin model.
The paradigm shift towards a theory where exports and nation’s economic capitals influence
each other requires a deeper understanding of their complex interaction, paving the way for the
network science into economics.

We have to wait until 2003 for a first attempt to organize the world market into a network model,
the so called World Trade Web[14], on which nations are connected through their monetary
trade, setting up a model to describe the spread of economic crisis expansion among countries.
This study demonstrated how this network is far from being random, starting in this sense the
road to complexity into these topics.
In the same spirit, R. Hausmann and collaborators developed a model for the network of prod-
ucts, the Product Space [15], on which a proximity measure has been developed to catch the
”similarity” or ”proximity” among products. Countries explore this network through their pro-
duction system, changing it following paths that tend to connect similar products. However,
this measure of proximity, based on a conditional probability constructed on an empirical for-
mulation of comparative advantage, does not consider asymmetrical proximity relation that can
intuitively occur: for instance, oil and fruits have a clear unidirectional relation as fruits de-
pend strongly on oil for transportation costs. These considerations evolved into a new model
developed in Padua in 2016 [16], and further advanced in [17][18], on which a gravitational
model (one of the first economic models developed by a physicist, J. Tinbergen [19] winner of
a Nobel prize in economics in 1969) of trade has been used to construct a different measure of
distance among products. This new network is also equipped with the notion of time, on which
the dynamics of the nodes are described by a set of stochastic differential equations (SDE) that
describe the evolution of exports. This model is a particular example of the interdisciplinary
character of complex science, as the set of SDE used, inspired by a work of J.P. Bouchaud and
M. Mézard [20] on the distribution of wealth in a society, can be transformed into a more famous
equation already used to study the growth on surfaces [21], which is the Kardar-Parisi-Zhang
equation.

Economic Complexity foundations This path of economics into complexity has recently
led, thanks to the nowadays availability of large datasets of exports, to an alternative and com-
plementary line of research called Economic Complexity. The aim is no longer to create a
model capable to replicate the complex structure of the world trade network, but to infer as
much as possible meaningful information about the nodes of the network and, possibly, use this
information to deduce the future topology of the economic network. This approach lies in the
more general theory of data dimensionality reduction, on which we can gain more information
using a complexity approach than a mere aggregation of data. It is of course necessary to define
what kind of information we want to extract from the world trade network.
Countries interact with each other by exchanging products. As C. Hidalgo wrote in [22], prod-
ucts are nothing else than a solidification, or crystallization, of knowledge that takes three forms:
embodied knowledge in tools and material, codified knowledge in books, algorithms and formu-
las, and tacit knowledge also called know-how. While the first two types of knowledge are easily
tradable, the know-how is more complex and intangible, as it is a result of a long process of
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repetition, imitation and feedback. These three types of knowledge are strongly complementary:
to create a house we need several materials and infrastructures (embodied knowledge), we need
to know the necessary laws (codes information) and we need to know how to use the needed
instruments. The more complex is a product the more knowledge is required to construct it and
actually export it. In this sense production systems of nations are bounded by the amount of
knowledge they embed, and is the absence of know-how, which is not easily tradable, to create
this bound.
The know-how seems to be the important information we want to measure, as it is an indicator
of how much a nation is potentially able to produce more complex products. As firstly noted
by Adam Smith in his most famous work, the Wealth of Nations :

It is the great multiplication of the productions of all the different arts, in
consequence of the division of labor, which occasions, in a well-governed society,
that universal opulence which extends itself to the lowest ranks of the people

The diversification in productions drives the growth of know-how. Specialization of individuals,
that accumulate know-how, and diversification are two aspects of the same phenomenon seen
from two different scale [6]. A first qualitative results of these considerations is an explanation
of why for poor countries is difficult to enhance their wealth conditions, as noted by Hausmann
and Hidalgo [23] and paraphrased in [6]: ”as the number of possibilities grows exponentially
with the variety of elements to combine, countries with few (many) of those elements will have
few (strong) incentives to accumulate more elements as they may produce few (many) new
combinations”.
Diversification in productive systems seems to be the right proxy to infer the amount of know-
how and unveil the complexity of nations. It is clear that a mere count of products or a
naive indicator of the distribution of exports of a nation is not enough to achieve this result.
The intrinsic complexity of the world trade has to be considered as well as the heterogeneity
of countries and the complexity of products. A complementary measure of the complexity of
nations regarding products is necessary to the task.

The first attempt to establish a measure of complexity of nations is due to C. Hidalgo and R.
Hausmann in 2009 [24]. Laying on the Ricardian’s idea of comparative advantage, they con-
sidered a country a producer of a product if it had a revealed comparative advantage (RCA)
on it. The more common, but not unique [25], way to define mathematically the comparative
advantage is to use the Balassa index [26], which is the most common name of RCA: in this
approach a country is considered to have a comparative advantage on a product if its fraction in
the export basket is greater than the same fraction of an ”average” country, setting in this sense
a threshold criterion2. Using RCA they constructed a bipartite network in which countries are
connected to the products on which they revealed a comparative advantage. The graph was
therefore equipped with a bi-adjacency matrix on which the elements could assume only binary
numbers (0 if the country was not a relevant exporter of a product, 1 otherwise).
To define weights to each nodes according to their importance in the graph, they developed an
iterative algorithm called Method of Reflections, obtaining from it the Economic Complexity
Index (ECI) and the Product Complexity index (PCI). This was the start of the economic com-
plexity framework and further works, using this approach, showed how to establish correlation
with green economy [27], income inequality [28] and health indicators [29] for some examples.
However, this algorithm has been criticized especially for the interpretation of generalized di-
versification that the authors give to ECI. It was realized in [30] that this measure is orthogonal

2A country c has a revealed comparative advantage on a product p if and only if RCAcp > 1. However, one
could think to change the threshold from 1 to T getting RCAcp > T . The algorithm in question showed stability
on this choice.
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to a bare measure of diversity (the simple count of products exported with comparative ad-
vantage) rising legitimate suspicious about the real meaning of the measure. This problem of
interpretation is the first motivation on why we will discuss a new method in this thesis.

In 2012 L. Pietronero and his group developed a new method to estimate complexities among
the nodes of a bipartite network, the Fitness Method [31], getting a new measure with appar-
ently no problem of interpretation. Remarkably, they found that reordering the bi-adjacency
matrix according to the fitness rank shows a nested structure3, very similar to the ones ob-
served in ecological mutualistic networks [1]. This feature in the bi-adjacency matrix indicates
a hierarchical structure based on the number of products a country exports with a comparative
advantage, corroborating the underlying idea that nations tend to diversify instead of special-
ize in few products. But if on the one hand we have a meaningful measure, on the other the
non-linear nature of the Fitness algorithm gives problems of convergence, in particular when we
have to deal with niche products or we change the criterion to establish comparative advantage
[32]. Despite these problematics, the algorithm works if we consider aggregated products and
we cut the iteration at a certain point, so a lot of ink has been spilled in this direction [33][34].
Studying the dynamics of this complexity measure unveiled heterogeneous patterns of coun-
tries’ evolution [35], individuating regions of high and low predictability of growth according
to fitness. From this consideration they developed an algorithm (the Selective Predictability
Scheme bootstrap) [36] to forecast GDP, based on the Method of Analogues developed my
E.N. Lorenz [37] in the context of atmospheric prediction. The problem of convergence in the
iterative algorithm for measuring fitness is the second motivation that led to the development
of the new measure discussed in this thesis. We will see that this new measure will also lead to
some of the main results discussed above.

What is in common between ECI and Fitness is that the information on exports is always initially
pre-processed by only considering revealed comparative advantage and, a part an exception [31],
the bipartite graphs only contemplate information about whether a country is a competitor
or not, regardless the amount of products it exports. Besides the huge loss of information, if
the main task is to sort of ”count” the number of products a country produce, it seems rather
unclear why we have to only consider products on which it is revealed a comparative advantage.
Moreover, as found in [25], Balassa index has shown some shortcomings to truly representing the
comparative advantage, opening a discussion on other empirical measures besides RCA. More
explanatory is the example of the clothing export [25]. In 1996 Italy showed an RCA of 11.4
while Germany only 0.06, with RCA criterion we would end up with the fact the Germany
does not export clothes, hence it does not have the know-how related to that product: this
seems rather unjustified. Moreover, RCA is a source of noise in the dynamics of the bipartite
graph as, especially for least developed countries, RCA values can oscillate around the threshold
[36](Supplementary Information). In the same paper, regarding the Fitness algorithm, it was
proposed an alternative criterion that gets rid of thresholds, which was a problem for that
algorithm [32]. They decided to model the RCA time series as the emissions of the Hidden
States of an Hidden Markov Model. A first attempt to not use RCA threshold criterion is
found in [38], on which an analysis with principal component reduction and machine learning
techniques is proposed on large aggregation in products.
RCA is not the only cause of information loss. Export datasets provide products’ classification
at the finest possible level. However, most of the analysis of economic complexity concern
macro-categories of products obtained from a mere aggregation of exports, in contrast with
the dimensionality reduction thinking, as this approach does not preserve all the information

3A bipartite graph has a nested structure if its bi-adjacency matrix is comparable to an upper triangular
matrix, after a proper reorder of rows and columns.
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embedded at the finest level. RCA and product aggregation cause a loss of information that has
never been addressed in the literature.

A novel approach that makes full use of the information contained in the export datasets started
to grow in [18], but we had to wait 2021 for a full description of the method [39] (which is the
starting point of the thesis). Within this approach, the focus has moved from an iterative
counting of competitive products (ECI and Fitness) to a non-trivial measure of diversification in
the export’s basket. The measure is based on a self-consistent use of the Shannon entropy, which
is a common and universally accepted indicator of diversity, and shows an exponentially fast
local and global convergence to a unique fixed point. This is the first attempt in the economic
complexity literature to perform dimensionality reduction without considering the comparative
advantage of products, making this measure free on any data-preprocess assumptions. Moreover,
Shannon entropy allows performing coarse-grained analysis of nations and products going beyond
simple data aggregation of exports, opening a complete novel analysis in the economic complexity
framework according to the dimensionality reduction thinking. The proven convergence of the
algorithm, the clear interpretation of the measures, its complete use of the information embedded
in the datasets, and its not dependence on conceptual data-preprocessing, make this measure a
good candidate to rank nations and products according to their relevance in the trade market.
In addition, the stability of the algorithm and its use in weighted bipartite graphs inaugurate a
unique interdisciplinary approach to network science going beyond economics.

Structure of the Thesis This thesis will start with presenting the dataset used and char-
acterizing different ways to define a complex bipartite network to model the worldwide export
during 2019. After a brief introduction on revealed comparative advantage, ECI and Fitness
algorithms, we will highlight the importance of diversification as the essential ingredient in the
economic complexity framework and how entropy emerges as a natural candidate to measure
it. A technical introduction to the self-consistent iterative scheme developed in [39] will be the
next step, accompanied by a depth study of local and global convergence of the algorithm. We
will observe how this algorithm returns nations’ complexity measures that establish ranks in
line with the economic narrative and products’ ubiquity measures that discriminate according
to their importance in the world market. These results will be enhanced by a coarse-grained
analysis in product categories, showing a novel economic complexity approach that was impos-
sible with ECI and Fitness. To conclude the first chapter, we will discuss the role of revealed
comparative advantage and how its adoption would affect the entropy complexity measure.
The dynamics of the nations’ complexity measures will be presented in the second chapter, in
the same fashion of [35]. We will couple the entropy to a monetary measure, constructing a bidi-
mensional economic plane tracking the counties’ time series from 1995 to 2019. A coarse grain
technique will reveal a flow structure on this plane, showing different dynamical patterns in the
macroeconomic landscape. As the main result, we will demonstrate how entropy discriminates
among countries according to the stability of their economy and their possibility of growth. We
will also analyze the role of revealed comparative advantage in this dynamical context, observing
that it captures different dynamics.
Finally, in the last chapter, we will use the dynamics to forecast GDP growth using the Selective
Predictability Scheme [36]. The idea is to look at historical dynamics of nations with comparable
entropy and GDP (Gross Domestic Product) to infer future growth. However, in the original for-
mulation of the algorithm, the problem to choose the right ”comparable” nations’ dynamics was
not addressed. Therefore, we will individuate and solve this problem using a statistical learning
approach to historical data, combined with a kernel regression. The algorithm’s accuracy will be
compared to the International Monetary Fund’s (IMF) predictions, and the improvement will
corroborate our choice of entropy as a good candidate to measure nations’ complexity.



VI



List of Abbreviations and Symbols

Abbreviations

HS Harmonized System 5
RCA Revealed Comparative Advantage 6
GDP Gross Domestic Product 16
GDPpc Gross Domestic Product per capita 16
GDPpcPPP Gross Domestic Product per capita in Purchasing Power Parity 34
IMF International Monetary Fund 45
SBSb Selective Predictability Scheme bootstrap 45
cSBS Convergent Selective Predictability Scheme 50
CAGR Compound Annual Growth Rate 51
MAE Mean Absolute Error 51
RMSE Root Mean Square Error 58

Most Used Symbols

Xcp Bi-adjacency matrix 6

Mcp Bi-adjacency matrix binarized with RCA 7

ξcp Weighted export basket of a country c 16

ζcp Weighted country’s share of a product p 16

Hc Entropy of a nation 16

Hp Ubiquity of a product 16

rS Spearman correlation coefficient 16

xc,t Point in the entropy-income plane, related to a country c at a time t 31

vc,t Velocity or trend related to a country c at a time t 32

σ2
b Measure of chaos in a coarse-grained box 33

xc̃,τ Analogue of xc,t in the entropy-GDP plane 46

δxc,t 5 year displacement of xc,t 46

H Covariance matrix or bandwidth of a multivariate Gaussian p.d.f. 47

r(xc,t , xc̃,τ ) Mahalanobis distance of two points in the entropy-GDP plane 48

E Error in forecasting GDP growth using CAGR 51

1



2



Contents

Economic Complexity 5

1.1 Dataset and Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Ranking with ECI and Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The Role of Diversification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Entropic Complexity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Fixed point analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Coarse-Grained Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.1 Coarse-grained Shannon entropy . . . . . . . . . . . . . . . . . . . . . . 21
1.7 Difference with RCA, Binarization and HS Edition . . . . . . . . . . . . . . . . 22
1.8 Comparison with Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Dynamics in the entropy-monetary plane 29

2.1 Coarse-Graining the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.1 1, 5 and 10 years trend . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Patterns in the Macroeconomic Landscape . . . . . . . . . . . . . . . . . . . . 40

GDP forecasting 45

3.1 Selective Predictability Scheme bootstrap . . . . . . . . . . . . . . . . . . . . . 45
3.1.1 Observations and critiques of the algorithm. . . . . . . . . . . . . . . . . 47

3.2 Convergence of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 Nadaraya Watson applied to SPSb . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 The cSPS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Bandwidth Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Statistical Learning for Bandwith Selection . . . . . . . . . . . . . . . . 52

3.4 Minimizing the Test MAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Self-Correlation of Growth: Velocity . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Velocity-cSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Average Improvement in Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 58

Conclusion 61

Nadaraya-Watson kernel regression 63

Errors made by the IMF 65

Bibliography 67

3



4 CONTENTS



Economic Complexity

Economic complexity is a new line of research that aims to measure the underlying intangible
capabilities of nations with complexity measures computed by analyzing the exports properly.
In the literature, two main algorithms can be found, economic complexity index [24] and fitness
[31], but the first does not have a clear interpretation [30], while the second shows problems of
convergence [32]. In this chapter, a new complexity measure will be introduced, based on the
work [39], and a static analysis of the year 2019 will be presented to support the work already
done. An original discussion about the role of revealed comparative advantage and different
editions of the harmonized system will be presented.

1.1 Dataset and Aggregation

The Dataset we are using is the BACI supplied by CEPII (it gathers and harmonizes different
declarations in monetary exports listed by COMTRADE) that covers exports and imports in the
world trade network from 1995 to 2019. The products are classified using different Harmonized
System (HS) editions, but for this particular analysis about 2019, we decided to use the most
recent, the 2017 edition (HS17)[40]. The classification works as a 6 digits code: the first two
digits designate the HS chapter, the second two digits label the HS heading, and the last two
indicate the HS subheading. We propose an example of how the HS database is organized:

• 01 - Live animals

– 0101 - Live horses, asses, mules and hinnies

∗ 010121- Pure-bred breeding animals

∗ 010129 - Other

∗ 010130 - Asses

– 0102 - Live bovine animals

∗ 010221- Pure-bred breeding animals

∗ 010229 - Other

– . . .

• . . .

• 72 - Iron and Steel

– 7201 - Pig iron and spiegeleisen in pigs, block or other primary forms

∗ 720110 - Non-alloy pig iron containing by weight 0.5% or less of phosphorus

5
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The authors noted this problem, and in a subsequent work [42] they tried to fix it by taking the
eigenvector associated to the second largest eigenvalue of the iterative map M ′

cc′ . They called
it economic complexity index (ECI) and gave to it the meaning of a generalized measure of
diversification, hence complexity. The principal issue pointed out in [30] is that the ECI vector
is orthogonal to the bare diversification kc,0, undermining its interpretation.

Fitness Method A novel approach, called Fitness Method, that uses a non-linear iterative
algorithm, and therefore does not suffer from the eigenvector problem illustrated previously, was
developed by the group of L.Pietronero [31]. In the spirit of the work done with the method
of reflections, they gathered data in the binarized matrix Mcp, but also in the weighted matrix

X̃cp normalized with the worldwide export of a product, using the RCA criteria.
The idea is that the fitness Fc of a country is proportional to the sum of the products with a
revealed competitive export (just like the ECI), weighted by their complexity Qp. Computing
the complexity of a product is more subtle; it is inversely proportional to the number of countries
which export it (the more a product has revealed competitor, the less it is complex). In addition,
if a country has a high fitness this should reduce the weight in bounding the complexity of a
product, and the countries with low fitness should strongly contribute to the bound on Qp. This
is a consequence of the nestedness of the bipartite graph, countries with high fitness tend to
export everything. This idea is written mathematically in the following algorithm

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

F̃
(n)

c =
∑︁Np

p McpQ
(n−1)
p

Q̃
(n)

p =
1

∑︁Nc

c Mcp
1

F
(n−1)
c

→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F
(n)
c =

F̃
(n)

c
⟨︁

F̃
(n)

c

⟩︁

c

Q
(n)
p =

Q̃
(n)

p
⟨︁

Q̃
(n)

p

⟩︁

p

(1.7)

The initial condition are F
(n)
c = 1 and Q

(n)
p = 1 for all countries and products. The analysis in

[31] was made using the 4 digits classification of the HS for products, and apart from a few nodes
that converge to zero, the algorithm stabilized at a fixed point. As noted in [32], the problem
arises when the algorithm has to deal with niche products. If we use the 6 digits classification
in the HS for products, the algorithm shows convergence problems (see figure 1.4). It is still
possible to get a rank and a measure by stopping the algorithm at a certain point, but this is not
a good solution since it adds an arbitrariness leading to different fitness and complexity values.

Diversity is the essential ingredient in both approaches, as the more a country has revealed
comparative advantage in different products, the greater its complexity. In the next section, we
will deeply analyze the role of diversification and see how entropy emerges as a natural candidate
for this task.

1.3 The Role of Diversification

Diversification at the country level seems counter-intuitive, as one could think that countries
will reach different levels of specialization in a free trade market according to their know-how.
R. Hausmann wrote about this in an opinion article ”Many believe that cities, regions, and
countries should specialize: they cannot be good at everything, so they must concentrate
on their comparative advantage. But, while this idea seems obvious, it is both wrong
and dangerous [43].” It is misleading to equate the benefits of individual specialization with
those of specialization at a larger scale. Specialization at the individual level is needed to
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the BACI dataset, we can get some insights into this role of diversification. According to World
Bank classification [44] we take four different countries (Figure 1.5): Sudan (SDN) as a low in-
come economy, Iran (IRN) as a lower-middle income economy, Brazil (BRA) as a upper-middle
income economy, and finally Italy (ITA) as an high income economy. Sudan shows a broader
peak far from the equipartition value; for Iran and Brazil, the peak moves towards equipartition
and their distribution gets narrower. Italy shows a more narrow distribution with a peak rather
close to the equipartition value.

Diversification in the export shares already embeds some information about the wealth of a
nation. It is fascinating that the median of the basket shares of a country, which can be seen
as a naive measure of diversification, correlates very well with the total export of countries that
export less than 1000 products, see figure 1.6 (a). This line individuates a set of underdeveloped
countries (such as Iraq, Venezuela and Sudan), but also not underdeveloped ones like San Marino
(SMR) or Andorra (ADR), that have only the constraint of being a very small exporters due to
their dimension. Future diversification measures should capture this poverty line with also the
ability to exclude small countries with a high total export per capita. However, the poverty line
is no longer visible when we plot against export per capita (see figure 1.6 (b)). This problem is
resolved using a more complex diversity indicator, as we will see in the results section.

In the next section, we will introduce a new method developed by the group of Padua [39] that
aims to measure this diversification correctly, using the machinery of information theory.

Figure. 1.5: In these plots, we observe Gaussian kernel density estimation with a bandwidth equal to one of
the diversification of the export shares ξ0cp. Four different countries are considered, according to their income
classification. Differences in these densities are present among these main sets. The vertical line represents the
ideal equipartition value.
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figure 1.5, indeed one can argue that an ideal diversified country should have a delta distribution
centered on the equipartition line. The entropy is instead an indicator of the diversity of the
shares ξ0cp as a function of products.
As mentioned before, these indicators do not have the information of different products and
nations: for example, we could change crude oils with copper in the basket of a country’s export
ξ0cp and this would not change the bare entropic indicator. In the same way, we could change

USA with Tunisia for computing the export share ζ0cp of a product, and this would not change
the result.
The distinction among the nodes of the bipartite network is obtained with a self-consistently
re-weighting of the share matrices, in the same fashion as Fitness and ECI algorithms. Using
a coupling approach: the more a product is ubiquitous, the less it should contribute to the
diversification of a country (i.e. to the entropy of a country), while the more a country is
diversified (in our approach means wealthy), the less it should contribute to determining the
ubiquity of a product. We adopt the idea, corroborated by the proven nested property of the
graph, that wealthy and developed countries have a consolidated diversification and export all
kinds of goods. In this sense, diversified (wealthy) countries should contribute less than poor
diversified nations to the ubiquity of products.

For instance, if USA exports a lot of a product called P that is not exported by a large share
of the less diversified competitors, the product P will end up with a small ubiquity indicator.
On the other hand, if the same product P is exported by many countries with a small entropic
indicator, hence with low diversification, the product will end up with a high ubiquity indicator.
USA has a high entropic indicator, so it can produce and export a vast quantity of diversified
products whether they are complex or not, while countries with a small entropic indicator
produce and export only products that are not complex. We can think of the ubiquity measure
as the opposite of the complexity of a product [39], in a sense given by the fitness algorithm.

This idea was proposed mathematically using an iterative algorithm with initial conditions the
bare entropic indicator (1.11) [39]. In contrast with Fitness and ECI, we iteratively re-weight
the shares instead of the measures with this approach.

⎧

⎪

⎨

⎪

⎩

H
(k+1)
c = −

∑︁Np

p ξ
(k)
cp log(ξ

(k)
cp )

H
(k+1)
p = −∑︁Nc

c ζ
(k)
cp log(ζ

(k)
cp )

(1.12)

with shares at the k-th step defined as
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(1.13)

The functions f and g are the weighting functions that re-weight the share matrices at each
iteration. We want to give higher contributions to products with low ubiquity in computing the
entropy of a country, and in the same way, we want to give more weight to countries with low
entropy to compute the ubiquity of a product. We need two functions f and g that invert the
concept of entropy and ubiquity, respectively.
There are many ways to achieve this, but a simple way is to take the complementary of the
entropy. The Shannon entropy stays in a compact set because it is a continuous function
bounded from below by 0 that indicates maximum information on a stochastic variable, hence
a minimum diversification (a delta probability distribution, hence a monopoly of one product),
and also bounded from above by log(N) indicating minimum information, therefore a maximum
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A Lipschitz constant q = 0.19 indicates that the algorithm is globally convergent 4. We can
observe the evolution of the Lipschitz constant in figure 1.8(c).
The iterative scheme converges to the same fixed point, for which these consistency relations
hold ((1.20) and (1.21))

⎧

⎪
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⎪

⎩
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∑︁Np

p ξcp log(ξcp)

H=
p −

∑︁Nc

c ζcp log(ζcp)

(1.20)

Using a direct re-weight of the shares, instead of the measure, allows to define weighted shares
normalized concerning country’s exports, which are endowed of the different information that
each node in the bipartite network has.
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The fixed point of the iterative scheme are generalized measure of diversification of the export
shares, as they embed the information of the non-trivial topology of the complex bipartite
network.

1.5 Results

In this section we are going to use also other information taken from World Bank datasets, such
as: population [47], GDP [48] and GDP per capita [49].

To observe how entropy discriminates among countries, we plot the fixed point of the iterative
scheme, computed after 100 iterations, against some monetary indicators. Of course, the most
used monetary indicator is the Gross Domestic Product (GDP), which measures the market
value of all the final goods and services produced in a specific period, however it is criticized by
some economist who think that it is a wrong tool for measuring well-being and sustainability
[50]. In this sense, we also consider the total export of a country Ec =

∑︁

p′ Xcp′ . This monetary
measure is simpler to compute than GDP and has the advantage that it can be obtained directly
from the BACI dataset. Moreover, export and GDP correlate very well (see figure 1.9), so we
can use the total export as a proxy of GDP, as done in [39]. The correlation is evaluated using
the Spearman correlation coefficient.

Spearman correlator coefficient This coefficient is defined as the Pearson correlation co-
efficient between the rank variables [51]

rS =
Cov

[︁

R(X), R(Y)
]︁

σR(X)σR(Y )

(1.22)

Where R indicates the rank function, a map that returns a vector of ordered integer numbers. It
is a nonparametric measure of rank correlation and it asses how well the relationship between two
variables can be described using a monotonic function. In this context, where we are interested
in correlations beyond a simple linear model, this coefficient is more appropriate than a Pearson
correlation coefficient.

Another interesting correlation is between entropy and population. We observe that they do
not have a strong correlation (see figure 1.9), meaning that entropy does not depend on the

4q < 1 indicates that the map associated with the algorithm is a contraction.
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1.6 Coarse-Grained Properties

In the other complexity measures, aggregation at 4 or 2 digit level of the Harmonized System
is performed in the bi-adjacency matrix, so if P is a macro category of products, an aggregated
bi-adjacency matrix can be constructed as

XcP =
∑︂

p∈P

Xcp (1.23)

after this step, Fitness or ECI can be computed but losing the finer information. The entropy
algorithm allows leveraging a special summation rule when we cluster over products, overlooking
this step entirely. Instead of aggregating products in the bi-adjacency matrix, we can cluster
them directly in the weighted shares normalized solutions of the entropy algorithm.

ξcP =
∑︂

p∈P

ξcp (1.24)

This new coarse-grained share is already normalized
∑︂

P

ξcP =
∑︂

P

∑︂

p∈P

ξcp =
∑︂

p

ξcp = 1 (1.25)

A similar approach can be exploited in the weighted shares normalized concerning worldwide
product export

ζcP =
∑︂

p∈P

ζcp (1.26)

However, this new coarse-grained share is no more normalized. A new renormalization is needed

ζcP =

∑︁

p∈P ζcp
∑︁

c

∑︁

p∈P ζcp
(1.27)

This clearly works also for country aggregation, or both product and country aggregation. We
summarize the procedures:
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(1.29)
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(1.31)
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At first sight, we immediately get an improvement as the aggregation is performed a posteriori
on the weighted shares normalized matrix, solutions of the iterative scheme that uses the not
aggregated information.
In the following, we will analyze products aggregation from 6 to 4 digits for the year 2019 and
HS edition 2017.

1.6.1 Coarse-grained Shannon entropy

From the coarse-grained weighted shares normalized we can compute a coarse-grained entropy

HCG
c = −

∑︂

P

ξcP log(ξcP ) (1.33)

This entropy is always less than or equal to Hc.
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CG
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At the end we have defined a new quantity HcP , which is actually an entropy as the argument
of the Shannon entropy sum to one

HcP = −
∑︂

p∈P

ξcp

ξcP
log

(︃

ξcp

ξcP

)︃

(1.34)

This entropy, called intra-sectorial entropy(1.34) measures the diversification of a country
into a P macro-category of products. Therefore, using the fact that HcP ≥ 0 we end up with
Hc ≥ HCG

c . The equality holds in the case where for every coarse-grained category P there is
one and only one fine-grained category p.

The difference Hc − HCG
c , called inter-sectorial entropy(1.35), measures the gain in di-

versification that a country obtains, focusing on diffusing its productive system into a more
specialized micro category of goods.

∆Hc = Hc −HCG
c =

∑︂

P

ξcPHcP (1.35)

In figure 1.14 we observe the inter-sectorial entropy, computed using aggregation from 6 to
4 digits of products of the Harmonized System, against GDPpc. Wealthy countries show an
extreme articulated structure of the export shares (we find Germany at the first position), while
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(a) G7 countries (b) Oil dependent countries

Figure. 1.16: In figure (a) we have the countries that are into the G7 organization, the plot describes the
differences in ranking due to two different procedures of data pre-processing with RCA. In figure (b) we have the
most oil-dependent countries (shares of oil export more than 0.5).

countries, we observe that Japan has the most significant positive difference, indicating a solid
revealed comparative advantage on many products. Interestingly, the binarization criterion for
oil-dependent countries tends to give higher ranks, but if we filter with RCA, this does not
happen. With binarization, we lose the information about the relevance of some products in a
country’s basket, giving them higher ranks at the end.
For G20 countries, apart from the last two countries (Nigeria and Venezuela) that are also oil-
dependent ones, we find Perù (PER) and Chile (CHL) that both have a fraction of the 26% of
copper exportation, and Ecuador (ECU) that is still oil-dependent (32% of oil in the basket of
export). These considerations brought us to consider countries that are one-product dependent
Figure 1.17(b) : a product that constitutes more than half of their basket of export. It is vis-
ible that the binarization criterion tends to give higher ranks to these countries. As expected,
crude petroleum constitutes the most common and significant product for these countries. How-
ever, we can also find copper (Zimbabwe), Gold (Uganda, Suriname, Somalia, Nigeria, Mali),
petroleum gases (Turkmenistan), tobacco (Malawi), aluminum oxide (Jamaica), mollusks (Falk-
land islands), and diamonds (Botswana).
If we study the ranks of nations with less than one million population, we find that the binariza-
tion criterion tends to lower those countries’ ranks. Indeed, it is remarkable that the binarized
entropy correlates better with population (rS = 0.43) than full information entropy (as pointed
out in the results section rS = 0.35) and filtered RCA entropy (rS = 0.34). Concerning the
pre-processing data phase with filtering with RCA, we have not noted significant differences,
thanks also to the high correlation in ranks with full information entropy (rS = 0.99). We
summarize these considerations

a. RCA binarization tends to give higher ranks to one-product-dependent countries, as it
does not consider the weight that such export has on their basket.

b. An higher correlation with population has been found using RCA binarization, (rS = 0.43)
against (rS = 0.34).

c. The distribution of the entropies computed using RCA binarization is more concentrated
than the other distributions (see 1.19).

Further studies on the role of RCA can be done by looking at how the basket of a country changes
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(a) G20 countries (b) product dependent countries

Figure. 1.17: In figure (a) are depicted the differences in ranking for the G20 countries. In plot (b) we have the
countries that are product dependent, that have one product that constitutes half of their basket of export.

Figure. 1.18: Countries with less than 1 milion population

when we apply the filter. The top result that emerges from figure 1.21 is that RCA filter removes
all the products that have a low contribution in the basket. The red line in the colorbar of the
right panels shows the minimum value of the shares of a product after RCA filtering, while
the black lines are the first, second, and third quantile of the distribution of the shares of the
products that have no revealed comparative advantage. For under and lower-middle developed
countries, these quantiles show that the RCA filter removes all the products that count low in
their basket. For instance, we can consider Sudan, which has the red line over the third quantile,
indicating that the RCA filter erased over a 75% of products indistinctly below the red line.
However, especially if we want to study the dynamics of these countries’ entropies, it seems
incorrect to say that they do not have at all the capabilities and the know-how related to those
products. The evolution in entropy and ranks of these countries should depend primarily on
diversifying and getting more competitive to products that have low importance in their basket.
Therefore, it seems somewhat unclear why we should consider an RCA filter in our approach.
Those plots also show the heterogeneity in the basket among nations. The red lines indicate
the median of ubiquity and total export for each country, and interestingly, we observe that the
more a nation is wealthy, the more its median tends to be the same as that of an ideal world
country.
These considerations corroborate our idea of not using RCA criteria within the construction of
the bipartite graph and so support the adoption of our complexity measure. An analysis of the
dynamics of these different measures will be studied in the next chapter.

Different HS edition BACI provides 6 different editions of the Harmonized System (1992,
1996, 2002, 2007, 2012, 2017), a new edition of 2022 has been recently released, but there are
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still no BACI datasets with this classification. An analysis of how the country’s ranks change
with different editions of the HS has to be made because only for the first edition, we have
a wide range of years from 1995 to 2019. In Figure 1.18(a) we can see the correlation of the
measures among the different edition of the HS. The correlation with the next edition is very
high (HS92-HS96: rs = 0.9999) and it constantly decrease with the new editions (HS92-HS17:
rS = 0.99). Still, a very high correlation among ranks remains.

(a) Different HS edition agains HS 2017 (b) pdf of the measures

Figure. 1.19: In figure (a) we have a scatter plot of the various entropies that can be computed using different
editions of the harmonized system, we have a Spearman coefficient of 0.99 for every edition. In plot (b) we observe
the different distribution of entropy, computed using Gaussian kernel density estimation with a bandwidth of 1,
the distribution of the binarized entropies is more concentrated than the others.

1.8 Comparison with Fitness

Fitness algorithm is commonly accepted, and a lot of ink has been spilled using it. It is therefore
appropriate a direct comparison with this indicator. From 1995 to 2019, we surprisingly obtained
an excellent correlation between fitness (computed using 4 digits of the HS92 and binarization
procedure) and entropy (computed both with full information and 6 digits and binarization
with 4 digits, using HS96), see figure 1.20. Each color of the scatter plot represents a particular
year, from 1995 to 2019, with the only exception that we had to remove fitness results of 2018
because, for some reason, that dataset showed very poor convergence using the HS edition of
1992. A few country’s measures did not converge using the fitness method, therefore we had
to remove the point smaller the 10−5 (also for ubiquity) and fitness was taken at 200 iterations
while entropy was taken at 100 iteration steps. The Spearman correlation coefficient rS = 0.94
suggests the following relation Fc = exp(αHc + β) and a fit procedure gave as parameters
α = 0.995 ± 0.007 and β = −4.39 ± 0.03.
We have computed the ubiquity of a product using the first 4 digits of the HS92 through the
coarse-grained procedure. The relation with the complexity measure is shown in Figure 1.20
(c), a low absolute correlation is visible as the Spearman correlation coefficient is rS = −0.43
suggesting that complexity and ubiquity catch different aspects about products. The negative
sign of the coefficient validates the opposite interpretation we can give to those measures: more
complexity is given to less ubiquitous products.







Dynamics in the entropy-monetary

plane

In the previous chapter, we studied how a complexity measure, based on Shannon entropy, of
a complex bipartite network can be constructed from BACI datasets that gather and process
information about worldwide export. The analysis was done only for the most recent year
available (which is 2019) and using the most recent edition of the Harmonized System (HS),
the 2017 edition that at 6 digits level accounts for almost 5400 products. However, within this
edition of the HS data are available only for three years (2017, 2018, and 2019); therefore, it
would not be an excellent choice for the study of the dynamics of the complexity measure. The
richest dataset offered by BACI is the one with the first edition of the HS (1992), which contains
fewer products (about 5000), decreasing over the years, as a consequence of the fact that some
products that had been listed in 1992 were no more exported in the past few years. Within
this edition, we have access to the larger time window from 1995 to 2019. Other editions are
available in BACI (see [52]) but they cover smaller time windows.
We computed entropy measures from 1995 to 2019, the evolution of the ranks is visible in
Figure 2.1, on which we can notice that countries with very high entropy tend to remain in
those positions. Remarkably, Italy turns out to have the highest entropy all over the time
window, indicating a robust export diversification.

The biggest jumps towards high ranks were made by Poland (from 17 to 2), Spain (from 16 to
3), Turkey (from 20 to 6), and Portugal (from 23 to 8). In contrast, the biggest jumps in the
opposite direction were made by Hong Kong (from 13 to 37), the Czech Republic (from 3 to 20),
China (from 4 to 13), and Switzerland (from 15 to 56), the most significant downward jump was
made by Australia (from 40 to 100).
In contrast, countries with the lowest entropic values tend not to change their positions. For
instance, we can consider Iraq, which has the lowest entropy in all the time windows (except in
1995). Its constant low position is a consequence of the fact that its export is mainly charac-
terized by a single product: oil. In the area with low entropy (right panel), there are a lot of
upward movements, which is a sign that poor diversified countries tend to diversify their export.
Big upward jumps were made by Samoa (from 164 to 75), United Arab Emirates (from 121 to
64), Cambodia (from 109 to 54), and Iran (from 160 to 108).
In the middle region, there is much movement in both directions, and an example would be
Egypt (from 76 to 38) and Uruguay (from 51 to 87).

The dynamics in the entropic dimension seems to be rather chaotic, so to better understand it
is necessary to add a new dimension. A first idea could be to couple entropy and export per
capita. We have seen that entropy correlates less with per capita monetary indicators, suggesting
that the two measures embed different information and could be coupled to observe dynamical
patterns Figure 2.2. We will call this graph entropy-monetary plane.

29
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Figure. 2.2: Dynamics in the entropy - export per capita plane. Dots represent the initial point (1995).

This very first graph already gives some insight. Let us take, for instance, Switzerland (CHE) and
Spain (ESP). Initially, they have a similar entropy, but the first evolves towards smaller entropy
while the other does the opposite. The difference is in their position in the plane: Switzerland
already has a considerable export per capita while Spain does not. Moreover, countries with
similar conditions to Spain (see Poland and Turkey) appear to evolve similarly in the plane. It
is also visible that middle development counties have a more complex dynamics than developed
countries; for example, Italy (ITA) has a more stable dynamics and growth than Cambodia
(KHM).

2.1 Coarse-Graining the Plane

Following the procedure introduced in [35] for the Fitness method, we can investigate the graph
in Figure 2.2 better by dividing the plane into boxes. For each one we will compute a trend as
an average of all the velocities in that box. In this way, we can extract a flow structure from
the graph and investigate a coarse-grained dynamics.
For each box b, we collected the set of points that lay in that box {xc,t}b, where x is a point in
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the entropy-income plane x = (Hc, Y ), Hc is the entropy and Y is a general monetary indicator
of a nation (in the considered graph Y indicates the logarithm of the total export), while c
indicates a country and t a particular year.
Each point in the coarse-grained box has a one-year evolution {xc,t+1} that could be anywhere
in the plane. The velocity, or trend, can be calculated as a one-year displacement, regardless of
whether or not the evolution is inside the box.

{xc,t}b −→ {vc,t}b = {xc,t+1 − xc,t} xc,t into the b coarse-grained box (2.1)

Whit this construction we get a set of velocities {vc,t}b for each coarse-grained box b.

Central tendency trend The aim is to compute an unique trend, or central tendency trend,
from this set in order to assign an arrow to each box. To do this we can extract an average from
{vc,t}b as done in [35].

⟨v⟩b =
∑︁

(c,t)∈b vc,t

nb

(2.2)

Where the sum is over the set {vc,t}b and nb is the cardinality of the set, hence the number of
velocities into the coarse-grained box b.
However, this approach could be uninformative about the middle points of a country’s time
series. For instance, let us consider the case of a country’s time series {xc,t}t=T0,...,T (now we fix
c and consider the series in t from the initial time T0 to the final time T ) remaining into a coarse-
grained box b. If we compute a simple average of its one-year velocities, we will get a normalized
displacement from the initial point xc,T0 to the final point xc,T , loosing the information about
the middle evolution. Indicating as ⟨vc⟩b the average one-year trend of the country’s time series,
and nb(c) the number of points of the time series into the coarse-grained box b, we have indeed

⟨vc⟩b =
∑︁

t∈b(xc,t+1 − xc,t)

nb(c)
(2.3)

=
(xc,T − xc,T−1) + (xc,T−1 − xc,T−2) + · · ·+ (xc,T0+1 − xc,T0)

nb(c)
(2.4)

=
xc,T − xc,T0

nb(c)
(2.5)

Moreover, the set of velocities {vc,t}b is affected by outliers that can arise due to particular
economical situations, such as economic crisis. The arithmetic mean in (2.2) is greatly influenced
by outliers, making the indicator ⟨v⟩b mostly dependent on large displacements. We decide to
replace this average with the median, which is a robust measure of central tendency and so better
represents a ”typical” trend. In addition, with this indicator we no longer have the problem of
the uninformative middle evolution.

⟨v⟩b = median({vc,t}b) (2.6)

Collinearity Measure The central tendency trend of a coarse-grained box give information
about the most likely one year evolution of points inside it. However, this information is not
sufficient to properly catch the chaos embedded in the coarse-grained box; it gives only the
overall trend and does not say anything about the distribution of the velocities that it contains.
A possible measure of chaos into a coarse-grained box b consists in taking the trace of the
covariance matrix computed using all the velocities {vc,t}b, normalized with the area of the box
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2.1.1 1, 5 and 10 years trend

To further study the dynamics of the flow, we can augment the temporal range on which we
compute velocities. For economic purpose, it is interesting to study middle and long term
dynamics; in this sense we repeat the analysis for 5 Figure 2.14 and 10 years Figure 2.15, by
computing the velocities using (2.9) and (2.10). We previously observed that we do not obtain
a less chaotic plane using the 4 digits entropy, so for this analysis we will only consider the 6
digits one.

{xc,t}b −→ {vc,t}b = {xc,t+5 − xc,t} xc,t into the b coarse-grained box (2.9)

{xc,t}b −→ {vc,t}b = {xc,t+10 − xc,t} xc,t into the b coarse-grained box (2.10)

5 Year Trend

measures Unpredictable σ
2 Predictable σ

2 Total σ2

entropy 7.1± 0.7 2.9± 0.3 5.4± 0.5

filtered RCA entropy 6.8± 0.6 2.8± 0.4 5.4± 0.4

binarized RCA entropy 4.5± 0.4 1.1± 0.3 3.3± 0.3

Table. 2.2: Different value of σ2 for different entropies, highlighting the two regions of predictability

10 Year Trend

measures Unpredictable σ
2 Predictable σ

2 Total σ2

entropy 7.9± 0.7 4.1± 0.5 6.3± 0.5

filtered RCA entropy 8.8± 0.9 4.2± 0.6 7.2± 0.6

binarized RCA entropy 5.6± 0.6 1.6± 0.3 4.1± 0.4

Table. 2.3: Different value of σ2 for different entropies, highlighting the two regions of predictability

As expected, the tables show an increase in σ2, indicating more chaotic dynamics for middle and
long term views. In addition to the analysis made in the previous section, we consider also the
logarithmic growth in GDPpcPPP as a function of entropy. As growth can be very heterogeneous
for countries sharing similar entropy but different GDPpcPPP, there is the possibility to get
outliers in their distribution. Therefore, we also computed the median of the median growth
(see equation (2.6)), to smooth out the effect of these outliers. For the 5 year growth Figure 2.9
we obtain an encouraging positive correlation that gets stronger if we look at the long term
growth. The correlation at 10-year growth Figure 2.10 between entropy and growth is very
high (Spearman coefficient rS = 0.82) and an R2 = 0.66 suggests that a linear relation can
in average explain the 66% of the economic growth of a nation. Surprisingly, we get a better
correlation and linear fit if we look at the median.
A comparison with the binarized RCA entropy measures on 10-year growth unveils a better
correlation using the full information entropy Figure 2.11. Countries with very low binarized
entropy are not described well by the measure, as they move away significantly from the 10
years growth trend, corroborating our hypothesis that a diversification in revealed comparative
advantage is not a good indicator for under-developed countries. The same consideration for
the variance in GDPpcPPP and entropy remain for the middle and long term view, as we can
see from the graphs.
It is interesting to notice that we obtain very similar dynamics using the filtered RCA entropy.
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2.2 Patterns in the Macroeconomic Landscape

We better highlight the different dynamical regions that can be found for the 5-year trend, by
removing countries with a population smaller than 1 million. Together with the vertical pre-
dictability line at Hc = 4.5 we plot also the linear trend of entropy-GDPpcPPP.
Interestingly, in the region of risky economy, we get smaller σ2 if we remove small countries
(this can be seen by confronting Figure 2.14 with Figure 2.12), indicating that the most chaos
found in that region is due to them. We can argue that small countries with high GDPpcPPP
have a high entropy variance because their population constrains diversification. For instance, a
nation like San Marino or Monaco cannot reach the level of diversification of countries like Italy
or Germany, simply because they do not have the labor capacity to produce and export a high
number of products. Moreover, their small population yields a high relative export variability,
causing high variance in entropy. In this sense, this type of country is fated to remain in high-
income and low entropy regions.
We find an high stability for well developed countries, while we observe a considerable growth
for emergent countries. In contrast, under developed countries are affected by an high unpre-
dictability of their economy.

In the next chapter, we will investigate a new algorithm to infer GDPpcPPP growth using the
heterogeneous dynamics found in this chapter. We will only use the full information entropy at
6 digits all the dataset regardless country’s population.

Figure. 2.12: Flows in the entropy-export per capita plane
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GDP forecasting

Middle and long-term GDP predictions influence many aspects of a country: a politician might
use GDP forecasts to understand how policies will impact the economy, investors diversify their
portfolio according to the future economic status of countries. The international monetary fund
(IMF) releases GDP projections every year, using complex models that rely on many variables
ranging from socio-economics indicators to financial ones. The functional form of the forecast
and the parameters on which is based are designed to deliver the best possible prediction. So one
ends up with a set of parameters that offer the illusion to catch all the components that drive
economic growth, which is actually very heterogeneous. For example, it is scarcely interpretable
a possible relation between population age and raw material prices. Within the economic com-
plexity framework, we aim to avoid this abundance of parameters by concentrating only on the
complexity measure of nations and their GDP.
In this context, we developed a new complexity measure and showed, in the second chapter, that
a coupling with GDPpcPPP identifies dynamical patterns in the macro-economic landscape. In
particular, we found that countries close in the plane evolve similarly in the predictability re-
gion. In principle, we can infer a country’s future dynamics by looking at what was historically
observed in its neighborhood on the entropy-GDP plane. More specifically, given a point x in
the plane that describe a nation in a particular year, looking at the evolutions of points closed
to x will give some insights about the evolution of the point x. The points close to x with
known evolutions are called analogues, and the approach goes under the name of Method of
Analogues (developed by E.N. Lorents in the context of atmospheric predictability [37]). The
laminar dynamics observed in the predictability region of the entropy-GDPpcPPP plane justifies
this method for forecasting GDP growth, therefore using a less complex and more interpretable
model than the ones used by the IMF. The method’s accuracy depends only on the recipe we
use to choose analogues and the procedure for extracting the prediction.
In this chapter we will investigate and reformulate the Selective Predictability Scheme boot-
strap, a recipe of the method of analogues developed for the fitness complexity measure [36],
applying it to the entropy-GDPpcPPP plane. To avoid inflation we aim to predict growth in
GDPpcPPP instead of GDP, therefore to simplify the notation from now on we will write GDP
instead of GDPpcPPP.

3.1 Selective Predictability Scheme bootstrap

Initially proposed in [36], the idea that countries with similar GDP and Fitness evolve similarly
was exploited using the Method of Analogue. The log fitness - log GDP plane was embedded
with a Euclidean distance to measure the closeness of analogues. In addition, to extract the
information from them they decided to sample analogues from a univariate Gaussian probability
distribution and then calculate the mean growth based on the set of samples.
We can summarize the selective predictability scheme bootstrap (SPSb) in the following steps.
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1. Given an initial point xc,t in the log fitness - log GDP plane (where c indicates a country
and t a specific year) we want to forecast its 5 year displacement vector, for ∆t = 5.

δxc,t = xc,t+∆t − xc,t (3.1)

The analogues, which are points ”close” to xc,t, are indicated as xc̃,τ with τ +∆t ≤ t to
guarantee that we are not using analogue’s evolution xc̃,τ+∆t that would not be known at
time t. The pedix c̃ indicates that the point x can be associated with any country in the
dataset.

2. We sample with repetition N analogues (where N is the number of available analogues)
according to a univariate Gaussian conditional probability density function, getting a set
{xi

c̃,τ}i=1,...N

p(xc̃,τ |xc,t) =
1

σ
√
2π

exp

(︃

− |xc̃,τ − xc,t|2
2σ2

)︃

= p(ℓ) (3.2)

Where σ2 is the variance of the probability distribution and ℓ = |xc̃,τ −xc,t| the Euclidean
distance. The sampling probabilities P (xc̃,τ |xc,t) are then given by the cumulative of this
function.

P (xc̃,τ |xc,t) = P (ℓ) = 1−
∫︂ ℓ

0

p(ℓ̃)dℓ̃ (3.3)

A possible sampling technique could be a simple accept-reject algorithm 1. We decide to
consider a point xc̃,τ an analogue of xc,t if its probability to be sampled is larger than
0.05.

3. For each sampled analogue we take its 5 year displacement vector

xi
c̃,τ ↦→ δxi

c̃,τ = xi
c̃,τ+∆t − xi

c̃,τ (3.4)

and compute the average displacement.

⟨δxc,t⟩B =
1

N

N
∑︂

i=1

δxi
c̃,τ (3.5)

4. We repeat the second and third step forM = 1000 times (this is the bootstrap procedure),
obtaining a distribution of M different displacement {⟨δxc,t⟩B}B=1...M .

5. We take as final prediction the mean of the distribution given by the bootstrap and as
error its variance.

⟨δxc,t⟩ =
1

M

M
∑︂

B=1

⟨δxc,t⟩B σ2
⟨δxc,t⟩ =

1

M

M
∑︂

B=1

(⟨δx̂c,t⟩B − ⟨δx̂c,t⟩)2 (3.6)

6. The forecast is then
⟨xc,t+∆t⟩ = xc,t + ⟨δxc,t⟩ (3.7)

This method has shown significant improvement for GDP forecasts as it outperforms the pre-
dictions made by the IMF. In this section, we will deeply investigate this algorithm focusing on
some improvement, but more importantly, it will be applied in the entropy-GDP plane showing
that with our measure we can outperform IMF predictions as well.

1In our simulations we considered this sample algorithm: we randomly pick an analogue with uniform distri-
bution, we compute its probability P (ℓ) according to (3.3), we generate a random number p between 0 and 1 and
we accept the analogue if P (ℓ) ≥ p.
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plane, the Mahalanobis distance [53].

r(xc̃,τ ,xc,t) =

√︂

(︁

xc̃,τ − xc,t

)︁T
H−1

(︁

xc̃,τ − xc,t

)︁

(3.10)

Points having the same Mahalanobis distance lay in an ellipse of equal conditional probability.
In order to assign probabilities to the analogues we have to define a cumulative probability
function of the multivariate Gaussian distribution. Since analogues with the same Mahalanobis
distance from the initial point are considered equally distant, we define the cumulative probabil-
ity function of the multivariate Gaussian distribution as the area of the ellipse (locus of points
with equal Mahalanobis distance)[53].

F (r) = 1− e−r2/2 (3.11)

Therefore, the probability associated with each analogue is complementary to this cumulative
function, as ellipses with small areas contain points closer to the initial point.

P (xc̃,τ |xc,t) = e−r(xc̃,τ ,xc,t)2/2 (3.12)

In this context the SPSb works in the same way as it was introduced, with the only difference
on how we compute probabilities.
To get the original SPSb in this multivariate formulation is sufficient to consider a diagonal
covariance matrix with equal elements, hence Var[x] = Var[y] = σ2 and Cov[x, y] = 0. We
will analyze in the next sections which is the more appropriate model, referring to multivariate
SPSb and univariate SPSb.

The next step is to find a criterion to set the parameters of the covariance matrix H. SPSb
is intrinsically slow, as it relies on sampling with repetition, making an optimization procedure
intractable for a personal computer, especially if we use a multivariate Gaussian probability. In
the next section, we will see how SPSb converges to a faster algorithm.

3.2 Convergence of the Algorithm

The SPSb algorithm is sensitive to the choice of the sampling number N and the number
of bootstrap M , but more importantly, it requires an extensive computational effort making
the optimization approach intractable. The mean displacement ⟨δxc,t⟩ is independent of the
bootstrap’s procedure, but it only depends on how many analogues we sample.

⟨δxc,t⟩ =
1

M

M
∑︂

B=1

⟨δxc,t⟩B =
1

M ·N

N ·M
∑︂

i=1

δxi
c̃,τ (3.13)

Where the last sum is intended over the different analogues of xc,t labeled as (c̃, τ) among the
M batches made of N samples. To simplify the notation from now on we are going to use a
multi-index to identify analogues C = (c̃, τ).
Sticking to the example of France’s growth from 2014 to 2019, to investigate the algorithm’s
convergence for a large number of samples we made 20 different simulations using the same
standard deviation σ = 0.1, as shown in Figure 3.2. The algorithm seems to converge to a
unique value. Calling the total number of samples N (so in (3.13) we have N = N · M)
and rewriting the average of the analogue’s displacement in the limit of infinite bootstrap as a
weighted average over the absolute sample’s frequency nC we get

⟨δxc,t⟩ = lim
N→∞

∑︁N
C
nCδxC

N
= lim

N→∞

N
∑︂

C

(︃

nC(N)

N

)︃

δxC (3.14)
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Therefore, we decided to replace to SPSb algorithm with the convergent one (we will call it
cSPS). The new estimates are now given by the following formulas

⟨δxc,t⟩cSPS =

∑︁N
C
e−r(xC ,xc,t)2/2δxC

∑︁N
C
e−r(xC ,xc,t)2/2

(3.17)

This regression is similar to a non-linear regression technique called Nadaraya-Watson kernel
regression. The similarity was studied in [34] with the SPSb, but the multivariate case pre-
sented here represents an original improvement. More information on Nadaraya-Watson kernel
regression can be found in the appendix.

3.2.1 Nadaraya Watson applied to SPSb

In this context the selective predictability scheme has a very strong mathematical foundation.
We have a number of observation {(xC , δxC)}C (remember that C is a multi-index C = (c̃, τ)
that identifies an analogue with a specific time) and given the point xc,t we want to estimate δxc,t.
Using the Nadaraya-Watson kernel regression, with a multivariate Gaussian kernel centered on
xc,t, leads us to the following estimator

⟨δxc,t⟩NW = Ê(δxc,t|xc,t) =

∑︁N
C
KH(xc,t − xC)δxi

∑︁N
C
KH(xc,t − xC)

=

∑︁N
C
e−r(xC ,xc,t)2/2δxC

∑︁N
C
e−r(xC ,xc,t)2/2

(3.18)

Which is indeed the same estimator found intuitively in (3.17). With this approach, we can
also compute the errors of our prediction without using the bootstrap technique.

σ2
⟨δxc,t⟩NW

= Ê
[︁(︁

δxc,t − Ê(δxc,t|xc,t)
)︁2]︁

(3.19)

The estimator’s accuracy depends on the choice of the bandwidths of the kernel (the matrix H),
hence on the choice of the three parameters of the covariance matrix used to sample analogues.

3.2.2 The cSPS algorithm

For the sake of completeness and clarity, we summarize the cSPS algorithm in the following
steps:

1. Given an initial point xc,t in the log fitness - log GDP plane (where c indicates a country
and t a specific year) we want to forecast its 5 year displacement vector, for ∆t = 5.

δxc,t = xc,t+∆t − xc,t (3.20)

2. Using a multivariate Gaussian kernel with bandwidth H and centered on xc,t, we collect
a set of analogues {xc̃,τ} by taking all the points in the entropy-GDP plane with

P (xc̃,τ |xc,t) = e−r(xc̃,τ ,xc,t)2/2 > 0.05 and τ ≤ t−∆t (3.21)

Where r(xc̃,τ ,xc,t) is the Mahalanobis distance computed in (3.10), which depends on the
bandwidth H. While the first condition is set only for computational convenience, the
second condition on the time τ is important to a strict out-of-sample prediction.

3. For each sampled analogue we take its ∆t year displacement vector

xc̃,τ ↦→ δxc̃,τ = xc̃,τ+∆t − xc̃,τ (3.22)
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4. We estimate the unknown evolution δxc,t with a Nadaraya-Watson kernel regression tech-
nique over the set of the analogues’ evolution

⟨δxc,t⟩NW =

∑︁N
(c̃,τ) e

−r(xc̃,τ ,xc,t)2/2δxc̃,τ
∑︁N

(c̃,τ) e
−r(xc̃,τ ,xc,t)2/2

(3.23)

The error of the estimate is given again by the kernel regression

σ2
⟨δxc,t⟩NW

=

∑︁N
(c̃,τ) e

−r(xc̃,τ ,xc,t)2/2
(︁

δxc̃,τ − ⟨δxc,t⟩NW

)︁2

∑︁N
(c̃,τ) e

−r(xc̃,τ ,xc,t)2/2
(3.24)

The role of the bandwidth H has never been discussed in the literature. We will address this
problem in the next section.

3.3 Bandwidth Selection

To compute the error in GDP predictions, we choose the difference in compound annual growth
rate (CAGR) in the same way as the reference paper [36].

CAGR% =

[︃(︃

final value

initial value

)︃1/∆t

− 1

]︃

100% (3.25)

The errors are therefore computed as deviation from the true CAGR.

E = CAGR%− CAGR%forecasted (3.26)

Using this error we can investigate better the role of bandwidth selection in the accuracy of
the cSPS algorithm, using the evolutions from 2014 to 2019 as a benchmark. In the context of
statistical learning the considered set {(xc,2014, δxc,2014)}c is called test set. The accuracy of
the cSPS is expressed with the mean absolute error (MAE) on a total of 95 country’s growth
forecasts, the same that have counterpart predictions made by the IMF. Using the univariate
cSPS, in Figure 3.3 we observe a classical U-shape in MAE(σ) which shows a minimum at
σ∗ = 0.25. However, a direct optimization procedure on the test set is not possible, because we
have to put ourselves in a situation in which data after 2014 are unknown (so we have to take
out-of-sample data).
Under the assumption that the optimal bandwidth does not change significantly over the year,
we developed a strict out-of-sample technique to infer the best parameters σ∗ for the univariate
cSPS and H∗ for the multivariate cSPS, on a training set with known evolution at the year of
the test set.

Bandwidth for the cSPS With the Nayadara-Watson kernel regression, the estimates be-
come deterministic (3.17), so for each bandwidth, a unique error is given.

σ : (σ, σ, 0) → E(σ, σ, 0) = E(σ) Univariate cSPS (3.27)

H : (σx, σy, θ) → E(σx, σy, θ) = E(H) Multivariate cSPS (3.28)

The bandwidth H in (3.17) in the context of kernel regression, is completely described using a
rotated diagonal matrix, hence by three parameters.

H =

(︃

cos2 θσ2
x + sin2 θσ2

y cos θ sin θσ2
x − cos θ sin θσ2

y

cos θ sin θσ2
x − cos θ sin θσ2

y sin2 θσ2
x + cos2 θσ2

y

)︃

(3.29)
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forecast the GDP growth from 2014 to 2019, we can look at previous evolutions from 2009 to
2014 for each country getting a set of errors {Ec}c. The minimization is performed on the MAE
function

MAE(H) =
1

Nc

∑︂

c

|Ec(H)| H∗ = argmin(MAE(H)) (3.32)

Where Nc is the number of countries considered. The predictions on the training set rely on a
slightly reformulation of the cSPS presented in section 3.2.2, especially in the time condition on
the second step. Since we want to use the maximum information of the database, hence all the
possible analogues with known evolution at the test time, we can reformulate the second step
as follow:

Given the test time t and the training time t−∆t. Using a multivariate Gaussian kernel
with bandwidth H and centered on xc,t−∆t, we collect a set of analogues {xc̃,τ} by taking
all the points in the entropy-GDP plane with

P (xc̃,τ |xc,t) = e−r(xc̃,τ ,xc,t)2/2 > 0.05 and τ ≤ t−∆t (3.33)

With this reformulation, we allow sampling analogues with an evolution not known at the
training time but at the test time. For instance, in the training set of 2014 with ∆t = 5 we
can now sample analogues with a year less or equal to 2009 (instead of 2004), so the important
aspect is that their evolution is known at the test time.
Moreover, with this reformulation the algorithm uses the same information on the training and
the test set, hence the same space of possible analogues.

Specialized H∗(xc,t) A second, more complex way to get the best bandwidth H∗ is to spe-
cialize it for each country in the test set. The idea is that the best bandwidth for each country
H∗(xc,t) can be inferred by optimizing it on a training set composed by close analgoues to xc,t.
In figure 3.4 are depicted the ten most close analogues to France in the year 2014, the closeness
is computed with a Euclidean distance.
We can take K close analogues to xc,t and perform the optimization on those

MAE(H(xc,t)) =
1

K

K
∑︂

i=1

|Ei(H(xc,t))| H∗(xc,t) = argmin(MAE(H(xc,t))) (3.34)

With this approach, we can use only the information of a localized part of the entropy-GDP
plane, going beyond a single available time window forecast. Indeed, one close analogue to
France in the year 2014 is United Kingdom in the year 2005, and to study its evolution, we can
use any analogues up to 2009 (so their 5 year evolution is known at the test year 2014). The
procedure to find the best bandwidth is the following.

1. We choose a point in the entropy-GDP plane xc,t (where c is a country and t is the year)
and find the K close analogues to it xc̃,τ with τ ≤ t−∆t, where ∆t = 5 years.

2. Using the set of K close analogues xc̃,τ as a training set, we solve the optimization prob-
lem finding the best parameters that minimize the mean absolute error, using the entire
datasets available with evolution know at the test year t.

In our approach we have considered K = 10, we did not find any considerable difference using
other values. A few examples of the heterogeneity of bandwidth that we get using this algorithm
can be found at the end of the chapter in Figure 3.7 (different income nations).
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• one parameter: for a total MAE = 1.53%

σ∗
unpred = 0.21 → MAE(σ∗

unpred) = 1.44%

σ∗
pred = 0.06 → MAE(σ∗

pred) = 1.73%

• three parameters: for a total MAE = 1.49%

H∗
unpred = (0.23, 0.07,−0.2 rad) → MAE(H∗

unpred) = 1.54%

H∗
pred = (0.28, 0.02,−0.04 rad) → MAE(H∗

pred) = 1.40%

The distinction in two different regions of predictability emerges from the different accuracy. The
three parameters model captures better the proper distance among countries in the predictability
region, but is too specialized for countries showing poor laminar dynamics, giving space to
the one-parameter model in this region. A combined model that uses one parameter for the
unpredictability region and three parameters for the rest returns a MAE(σ∗

unpred,H
∗
pred) =

1.42%.
With this combined model, univariate cSPS for the unpredictability region and multivariate
for the predictability one, we obtain the best out-of-sample predictions using the constant H∗

algorithm. We call this statistical learning algorithm combined constant H∗ (see in the right
plot of the figure 3.4).

An in-sample minimization of the MAE in the test set using this new method returns a MAE =
1.37%. Therefore, using the combined constant H∗ algorithm on the training set, we obtain
bandwidths producing a MAE in the test set very close to the absolute minimum.

Analysis with specialized H∗(xc,t) In this case, the best bandwidths are inferred from each
country. Using K = 10 (the number of closed analogues to use for fitting the parameters) we
obtained these results

• one parameter: for a total MAE = 1.56%

MAE({σ∗(xc,t)}unpred) = 1.48%

MAE({σ∗(xc,t)}pred) = 1.64%

• three parameters: for a total MAE = 1.51%

MAE({H∗(xc,t)}unpred) = 1.56%

MAE({H∗(xc,t)}pred) = 1.51%

With the one-parameter model, we get worst results than considering a constant parameter in
the whole plane. We get worst results also if we use the three parameters model. This reduction
in accuracy using a more complex model is a consequence of a localized over-fitting on the ten
most close countries.

From these considerations, It is better to use a univariate cSPS in the unpredictability region
and a multivariate cSPS in the predictability one. The bandwidth of the cSPS will be learn by
minimizing the MAE of a training set (the most recent known evolutions at the test time) using
the combined constant H∗ algorithm. A recap of the method used and their accuracy in the
test MAE can be found in Figure 3.5.
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Figure. 3.5: Different accuracy in the test set (evolution from 2014 to 2019). In red we have the best possible
accuracy obtained by a direct minimization in the test set using the combined constant H∗, while in blue we have
the test MAE obtained from a minimization in a training set. The best algorithm is the combined constant H

∗

while the others perform almost equally.

3.5 Self-Correlation of Growth: Velocity

Following the refinement of SPSb introduced in [36] we discuss the self-correlation of growth.
With the cSPS approach, we sample analogues in a temporal range for which their evolution
is known when we perform the forecasts, losing the information embedded into the recent past
of the considered country’s time series. Nonetheless, it is well known that GDP growth exhibit
a strong self-correlation [54]. We perform a naive analysis of growth, that is that the country
should move in the plane as much as it moved in the previous year, on average. The algorithm
is the following

1. For each time series {xc,t}t=T0,...,T we take only its ∆t year history {xc,t}t=T−∆t,T , for
∆t = 5. We do not want to consider jumps made during situations in the past that could
have been different from the current situation, so a time series with only historical data of
5 years in the past should be sufficient to estimate an auto-correlated growth.

2. We take for each year the one year velocities vc,t = xc,t+1−xc,t then we compute the one
year average velocity and its variance

⟨vc⟩ =
1

∆t

T−1
∑︂

t=T−∆t

vc,t σ2
⟨vc⟩ =

1

∆t

T−1
∑︂

t=T−∆t

(︁

vc,t − ⟨vc⟩
)︁2

(3.35)
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xc,t−1

xc,t−2

xc,t−4

xc,t−3

xc,t−5

xc,t

xc,t+1

xc,t+5

Figure. 3.6: Example of velocity algorithm

3. We assume that the mean 5 year evolution is 5 times the mean one year evolution, hence:

⟨δxc,t⟩ = ∆t⟨vc⟩ =
T−1
∑︂

τ=T−∆t

vc,t (3.36)

σ2
⟨δxc,t⟩ = (∆t)2σ2

⟨vc⟩ (3.37)

This algorithm can be added to the cSPS providing a better accurate prediction.

3.5.1 Velocity-cSPS

We can incorporate the auto correlation information to the cSPS algorithm. We have two
estimates of ⟨δxc,t⟩: one given by the cSPS algorithm ⟨δxc,t⟩cSPS and one given by the velocity
algorithm ⟨δxc,t⟩vel, each estimate has its own error. A new forecast that uses both methods is
a weighted average of them.

⟨δxc,t⟩ = α(c, t)⟨δxc,t⟩cSPS + (1− α(c, t))⟨δxc,t⟩vel (3.38)

For the univariate case, the parameter α is chosen by minimizing the variance of the new
estimate. Let us consider two model A and B that give two estimates xA and xB with variance
Var[x]A and Var[x]B. The best weighting parameter α can be computed as

Var[x, α] = α2Var[x]A + (1− α)2Var[x]B (3.39)

∂Var[x, α]

∂α
= 0 ⇐⇒ α =

Var[x]B
Var[x]B +Var[x]A

(3.40)

For the multivariate case, the things are more subtle because we have to decide which component
we want to minimize of the variance matrix. An idea would be to minimize the generalized
variance, given by the determinant of the covariance matrix; however, this approach is not
correct for our purpose as we have optimized the parameters of the cSPS by minimizing the
error on the y-axis, regardless of the error in entropy evolution. So the right way is to minimize
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the yy component of the variance matrix, getting in this sense a new estimate with the small
possible variance in GDP.

α(c, t) =
σ2
yy(⟨δxc,t⟩vel)

σ2
yy(⟨δxc,t⟩vel) + σ2

yy(⟨δxc,t⟩cSPS)
(3.41)

3.6 Average Improvement in Accuracy

We performed a back-test analysis on three different time windows: 2012-2017, 2013-2018 and
2014-2019, and computed the mean absolute error (MAE) on the overall predictions on a total
of 275 observations to match the prediction made by the IMF. In addition, we will also report
the root mean square error (RMSE) as a complementary accuracy measure of MAE.
We used the evolution from 2014 to 2019 as a test set to decide which is the best algorithm to
infer the best bandwidth H in section 3.4, therefore the results presented here are not strictly
out-of-sample for this window. However, the evolutions from 2012 to 2017 and from 2013 to
2018 can be considered as fully out-of-sampled, as the algorithm to infer H∗ is already set.
The out-of-sample bandwidth selection optimization returned these values.

• Using as training set the evolution from 2007 to 2012:

σ∗
unpred = 0.12 H∗

pred = (0.54, 0.02,−0.12 rad) MAE2012→2017 = 1.57%

• Using as training set the evolution from 2008 to 2013:

σ∗
unpred = 0.14 H∗

pred = (0.41, 0.01,−0.12 rad) MAE2013→2018 = 1.53%

• Using as training set the evolution from 2009 to 2014:

σ∗
unpred = 0.21 H∗

pred = (0.28, 0.02,−0.03 rad) MAE2014→2019 = 1.42%

MAE % RMSE % Improvement in MAE Improvement in RMSE

IMF 1.88 2.37 0% 0%

velocity 2.07 2.87 −10% −21%

cSPS with combined constant parameters σ
∗
unpred and H∗

pred

cSPS 1.50 2.09 +20% +14%

v-cSPS 1.46 2.02 +22% +15%

Table. 3.1: Errors in 5 year prediction of GDP per capita PPP in constant 2017 international dollar for years
2017, 2018 and 2019, with a total of 275 predictions.

Predictability (Hc ≥ 4.5) Unpredictability (Hc < 4.5)

v-cSPS MAE 1.28% 1.66%

v-cSPS RMSE 1.82% 2.21%

Table. 3.2: Difference in errors between predictability and unpredictability region. We have 143 observations in
the predictability region, while 131 in the other one.
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Using these bandwidths, we forecasted the five-year growth in GDP for 89 countries in 2012, 91
countries in 2013, and 95 countries for 2014. The results are listed in Table 3.1 in which also the
velocity-cSPS algorithm (v-cSPS) is taken into account. The cSPS algorithm alone is responsible
for an increment in the accuracy of the 20% regarding the IMF’s predictions. The self-correlation
of growth (velocity) is not a good model, but if we apply it to the cSPS we improve the accuracy
for another 2%. The average value of the weighting parameter ⟨α(c, t)⟩ = 0.49 introduced in
(3.38) indicates that the two algorithms contribute equally as they have similar errors.
The difference in errors between the two distinct region in the entropy-GDP plane justify their
names: we have higher predictability in GDP growth in the predictability region.





Conclusion

We discussed how diversification in exports has an impact on the wealth of nations, and we de-
veloped a new algorithm to measure it in the context of economic complexity. The new measure
of nations’ complexity and products’ ubiquity fully use the information contained in the dataset,
going beyond the theory of comparative advantage. A construction based on a self-consistent
use of the Shannon entropy offers a measure with a universally accepted interpretation of non-
trivial diversification of a nation’s export that considers the different importance of products
in world trade. In addition, the boundedness of the Shannon entropy gives a stable algorithm
to compute the measures that exponentially converges to a unique fixed point both locally and
globally.
Studying the year 2019 with the 2017 edition of HS, we showed that this new complexity measure
positively correlates with income and income per capita, and it can qualitatively discriminate
among nations and products according to the economic narrative. Furthermore, a new approach
to measure intra and inter sectorial diversification emerged thanks to the coarse-grained prop-
erty of the Shannon entropy, showing how true diversification is reached in any sector for the
most complex nations. Moreover, thanks to this new algorithm, we can perform the sectorial
aggregation still using the maximum information available at the finer level, going beyond a mere
aggregation of products. Finally, the role of revealed comparative advantage has been discussed
within this framework. We showed how the binarized version of the bi-adjacency matrix can
lead one-product dependent countries to get high value of complexity, and how the products
with low export share are neglected, especially for the less diversified nations.
We showed the heterogeneous dynamics of countries with a coarse-grained analysis on the
entropy-GDPpcPPP plane describing the motion as if it would have a flow structure. A re-
gion of flow predictability emerged thanks to the entropy dimension, showing how high entropic
countries have a more stable economy. We got similar results considering diversification in
comparative advantage products (filtered RCA entropy) while a substantially different dynam-
ics emerged focusing on just which products are exported without considering the amount of
their exchange (binarized RCA entropy). Nonetheless, the emergent properties: predictability,
negative correlation with entropy and entropy-variance (GDPpcPPP variance), and positive cor-
relation with middle and long term growth, remain using these three different measures. This
fact indicates that despite the debated role of RCA to unveil competitiveness, it filters the most
crucial information of countries’ exports. Full information entropy, which does not use RCA,
has the advantage that no economic preconception is needed (comparative advantage is often
criticized by economists who do not support neo-liberalism [55]), no choice of the RCA threshold
and no data loss are required, and moreover, it still captures the essential information, making
this approach a genuinely data-driven and stable against noise indicator.
We showed how the growth in GDPpcPPP can be described as a local trend in the entropy-
GDPpcPPP plane, drastically diminishing the forecasting model’s complexity offered by stan-
dard econometric approaches (IMF). We used a kernel regression version of the Selective Pre-

61



62 CONCLUSION

dictability Scheme bootstrap (SPSb), an algorithm based on the method of analogue, with a
multivariate Gaussian kernel, calling it cSPS. In addition, we discussed and solved the problem
to decide a priori the optimal parameters to identify analogues in the plane, using a statistical
learning approach. Using as the test set the evolution from 2014 to 2019 and as the training
set the most recent known evolution at the test time, hence from 2009 to 2014, we observed
that a univariate cSPS works better in the unpredictability region, while a multivariate cSPS
gives better result for the predictability one. With this approach, we found that we can out-
perform the accuracy of the IMF’s prediction by twenty percent, using a less complex model
and, more importantly, fewer data. Furthermore, the difference in errors between predictability
and unpredictability corroborate that entropy discriminates between two different dynamical
regimes.

The algorithm studied to forecast GDPpcPPP growth is general and it can be easily inserted
in a generic problem of dynamical systems, on which the method of analogues can be used.
Any complex system that can be described by a few number of variables is a candidate for this
algorithm. The only requirement is that the dimension of the system (hence their number of
variables) should be sufficient to individuate laminar dynamics, as shown in the second chapter.
In addition, to properly work the algorithm needs a considerable number of historical data,
especially with similar condition of the system we want to predicts.
The statistical learning algorithm developed allow us to test the algorithm on historical data
before applying it. In addition, the statistical learning approach to infer the optimal bandwidth
of the kernel function can be modified according to what we are interested to observe, by changing
the minimization function.



Nadaraya-Watson kernel regression

Kernel regression is a non-parametric technique to estimate the conditional expectation of a
random variable. Firstly introduced for univariate random variables we now present the theory
for the multivariate case.
A probability density function of an ensamble of random vector i.i.d. {xi}i=1,...,N can be estimate
as a sum of p.d.f. centered on those points, this technique is called kernel density estimation.

f̂H(x) =
1

N

N
∑︂

i=1

KH(x− xi) (A.1)

The p.d.f KH is called kernel, which is a symmetric multivariate density function. The accuracy
does not depend on the form of the kernel function, but it does on the choice of the smoothing
parameter H that is called bandwidth of the kernel function.

H Is a symmetric and positive definite matrix (A.2)

KH(x) = |H|−1/2K(H−1/2x) (A.3)

Since the accuracy of the estimation does not depend on the form of the kernel it is convenient
to consider a multivariate Gaussian kernel

KH(x) =
1

(2π)d/2
√︁

|H|
e−

1
2
xT H−1x (A.4)

where d is the dimension of the random vector x. In this context the bandwidth plays the role
of a covariance matrix.

Let’s consider now a set of observation {(xi,yi)}i=1,...,N . We want to construct a non linear
regression model of the form

yi = m(xi) + ϵi (A.5)

where ϵi is an error with zero mean. The best estimate of y given an observation x is the
following

E(y|x) =
∫︂

yf(y|x) dy =

∫︂

y
f(x,y)

f(x)
dy (A.6)

We can approximate the probability distributions using a kernel density estimation

f(x,y) ≃ 1

N

N
∑︂

i=1

KH(x− xi)KH′(y − yi) (A.7)

f(x) ≃ 1

N

N
∑︂

i=1

KH(x− xi) (A.8)
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where in principle we can use a different bandwidth for the disjoint set {yi}i=1,...,N . Substituting
in the estimate we get

E(y|x) ≃
∫︂

y
∑︁N

i=1 KH(x− xi)KH′(y − yi)
∑︁N

i=1 KH(x− xi)
dy (A.9)

=

∑︁N
i=1 KH(x− xi)

∫︁

yKH′(y − yi) dy
∑︁N

i=1 KH(x− xi)
(A.10)

=

∑︁N
i=1 KH(x− xi)yi

∑︁N
i=1 KH(x− xi)

= Ê(y|x) (A.11)

Where in the last step we used the fact that the kernel function KH′(y − yi) has mean equal
to yi. The estimator found above is the so called Nadaraya-Watson estimator.

Ê(y|x) = m̂H(x) =

∑︁N
i=1 KH(x− xi)yi

∑︁N
i=1 KH(x− xi)

(A.12)

For a multivariate Gaussian kernel this estimator reduces to

m̂H(x) =

∑︁N
i=1 exp

[︃

− 1

2

(︁

x− xi

)︁T
H−1

(︁

x− xi

)︁

]︃

yi

∑︁N
i=1 exp

[︃

− 1

2

(︁

x− xi

)︁T
H−1

(︁

x− xi

)︁

]︃ (A.13)



Errors made by the IMF

Two times per year, the International Monetary Fund publishes the World Economic Outlook
(WEO), where its staff of economists presents analyses of global economic developments during
the near and medium-term.Despite the quality of these forecasts being debated in the economic
literature [56], they remain a valid reference to investigate the accuracy of our algorithm.

Year MAE % RMSE % Number of countries

2007-2012 3.68+0.38
−0.37 4.16+0.40

−0.37 100

2012-2017 1.68+0.30
−0.25 2.13+0.39

−0.29 89

2013-2018 2.43+0.37
−0.32 2.94+0.46

−0.34 91

2014-2019 1.55+0.26
−0.21 1.94+0.37

−0.27 95

TOTAL 1.88+0.16
−0.26 2.37+0.20

−0.25 275

Table. B.1: Errors in 5 year prediction of GDP per capita PPP in constant 2017 international dollar
for years 2012, 2017, 2018 and 2019. The errors are computed with a bootstrap technique at confidence
level 0.95. In the last row we have an aggregated errors from the three different time windows considered
(2017, 2018 and 2019). To notice the high errors for the predictions from 2007 to 2012 as a consequence
of the Great Recession.

Scaling Our approach makes use as a monetary unit the GDPpcPPP in constant 2017 inter-
national dollars; the PPP (purchasing power parity) is an index that allows comparing better
prices in different locations, while we used constant dollars to avoid inflation growth. WEO
reports countries listed by GDPpcPPP, but in the current international dollar, an exchange is
therefore required.
From the World Bank, we can acquire the databases of GDPpcPPP in current international
dollars (we call this database ”currentdf”) and of GDPpcPPP in constant 2017 international
dollars (we call this database ”constantdf”), the one we have used for our analysis. We can
compute an exchange rate for each county at each year using these two databases as a ratio

α(c, t) =
constantdf (c, t)

currentdf (c, t)
(B.1)

Where currentdf (c, t) (constantdf (c, t)) indicates the GDPpcPPP in current (constant) inter-
national dollars of the country c at the year t. We can now apply these exchange rates to the
IMF database

(︁

IMF(c, t), IMF(c, t+∆t)
)︁

↦→
(︁

α(c, t)IMF(c, t), α(c, t+∆)IMF(c, t+∆t)
)︁

(B.2)
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Predictions We gather all the released WEO second semester reports from 2007 to 2019 in an
unique dataset and extract the the five year prediction in GDPpcPPP in constant dollar from
2017 to 2019. These reports are corrected in a regular basis 1 so we can find different forecasts
and also different initial GDPpcPPP values for the same country. To extract an unique informa-
tion we average the repeated values getting in this way an unique forecasts. After these process
we perform the scaling and then we compute the predicted compound annual growth rate.
To compute the error we used the World Bank dataset of GDPpcPPP in constant 2017 interna-
tional dollars as reference (the same used in the entropy-GDPpcPPP plane and to compute the
scaling factor for the IMF database). The predictions are then an intersection of countries listed
in IMF and World Bank dataframe. In table B.1 we collect the mean absolute errore (MAE)
and root mean square error (RMSE) for each year.

1Historical data are updated on a continual basis as more information becomes available, and structural breaks
in data are often adjusted to produce smooth series with the use of splicing and other techniques [57]
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[53] Michaeël Bensimhoun. “N-dimensional cumulative function, and other useful facts about
gaussians and normal densities”. In: Jerusalem, Israel, Tech. Rep (2009), pp. 1–8.

[54] Lant Pritchett and Lawrence H Summers. Asiaphoria meets regression to the mean. Tech.
rep. National Bureau of Economic Research, 2014.

[55] James K Galbraith. The predator state: How conservatives abandoned the free market and
why liberals should too. Simon and Schuster, 2008.

[56] Axel Dreher, Silvia Marchesi, and James Raymond Vreeland. “The political economy of
IMF forecasts”. In: Public Choice 137.1 (2008), pp. 145–171.

[57] International Monetary Fund: World Economic Outlook Database. Assumptions and Data
Conventions. 2021. url: https://www.imf.org/external/pubs/ft/weo/data/assump.
htm.

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://data.worldbank.org/indicator/SP.POP.TOTL
https://data.worldbank.org/indicator/SP.POP.TOTL
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
http://www.cepii.fr/DATA_DOWNLOAD/baci/doc/DescriptionBACI.html
http://www.cepii.fr/DATA_DOWNLOAD/baci/doc/DescriptionBACI.html
https://www.imf.org/external/pubs/ft/weo/data/assump.htm
https://www.imf.org/external/pubs/ft/weo/data/assump.htm

	Economic Complexity
	Dataset and Aggregation
	Ranking with ECI and Fitness
	The Role of Diversification
	Entropic Complexity Measure
	Fixed point analysis

	Results
	Coarse-Grained Properties
	Coarse-grained Shannon entropy

	Difference with RCA, Binarization and HS Edition
	Comparison with Fitness

	Dynamics in the entropy-monetary plane
	Coarse-Graining the Plane
	1, 5 and 10 years trend

	Patterns in the Macroeconomic Landscape

	GDP forecasting
	Selective Predictability Scheme bootstrap
	Observations and critiques of the algorithm.

	Convergence of the Algorithm
	Nadaraya Watson applied to SPSb
	The cSPS algorithm

	Bandwidth Selection
	Statistical Learning for Bandwith Selection

	Minimizing the Test MAE
	Self-Correlation of Growth: Velocity
	Velocity-cSPS

	Average Improvement in Accuracy

	Conclusion
	Nadaraya-Watson kernel regression
	Errors made by the IMF
	Bibliography

