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Abstract

In this work we study the effective Schwarzian theories arising in the description

of near-extremal and near-BPS black holes in 4d, N = 2 ungauged supergravity. The

supergravity models we consider are such that the supersymmetry of the extremal

solutions can be either preserved or broken by flipping the sign of some of the charges.

We obtain the Schwarzian in two ways: by studying the (super)isometries of the

extremal solutions and by performing the dimensional reduction to 2d of both the

bosonic and fermionic sectors in the 4d supergravity. We then quantize exactly these

generalized Schwarzian theories and extract the spectra. When supersymmetry is

preserved, the spectrum has a degenerate ground state and a mass gap, in accordance

with the semiclassical analysis. When supersymmetry is broken, the spectrum is

continuous and has no extremal degeneracy, due to strong quantum effects modifying

the Bekenstein–Hawking area law. The 2d gravitinos set apart the dynamics in the

two cases, becoming respectively massless and massive.
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1 Introduction

The understanding of black holes is one of the main tools to gain deeper insights on the

quantum behavior of gravity. In particular, one of the simplest setup to study is the one offered

by extremal black holes: in any dimension, their near-horizon geometry is usually characterized

by a more symmetric AdS2 throat, in contrast to the 2d Rindler (Rind2) throat of typical near-

extremal black holes. By using the Euclidean gravitational path integral, one can analyze their

thermodynamics, discovering a peculiar behavior: while extremal black holes have a temperature

T = 0, their extremal entropy S∗ = Area/4GN — as given by the Bekenstein–Hawking area

law [1, 2] — remains finite, showing a huge degeneracy in the ground state of the underlying

microscopic theory describing the black holes.

A paradoxical behavior also arises when analyzing the thermodynamics of near-extremal black

holes. Their energy E above the extremal energy E∗ in general scales like E − E∗ ∼ T 2/∆Egap.

For T ≲ ∆Egap, the average energy of a Hawking quanta is greater than the mass gap above

extremality and thus the near-extremal black hole cannot radiate, despite having a temperature

T ̸= 0; this signals a breakdown of the semiclassical description of the black holes [3, 4]. One

way out of the problem is to assume that there actually is a gap in the spectrum of microstates,

with no states between the extremal energy E∗ and E∗ + ∆Egap. This is supported by some

string constructions of the microstates in supergravity [5, 6]. These constructions, however,

require some amount of supersymmetry to work; hence the presence of the gap protecting the

degeneracy of states at T = 0 might not be a general property of near-extremal black holes, but

rather it might just be peculiar to supersymmetry.

In recent years, there has been accumulating evidence [7, 8, 9, 10] showing that the paradox

of the mass gap is solved once one includes gravitational quantum corrections. These quan-

tum corrections are encoded in generalized Schwarzian theories, which are particular kinds of

effective 1d boundary theories describing the near-extremal dynamics. These theories feature

a Schwarzian mode [11, 12] — related to the SL(2,R) symmetry of the near-horizon AdS2 —

together with some additional gauge degrees of freedom (and possibly fermions). These theo-

ries are usually 1-loop exact thanks to fermionic localization [13]; therefore, one just needs to

calculate 1-loop determinants in order to obtain the fully quantum corrected partition function.

In general, it turns out that when considering near-extremal black holes in non-supersymmetric

theories [7] the 1-loop determinants add a temperature dependent logarithmic contribution to

the entropy, S ∼ log T + . . . ; when taking T → 0, the entropy S → −∞, signaling that there

is just a single extremal microstate and no extremal degeneracy. The energy is also modified

and behaves as E − E∗ ≳ T for T → 0, and hence the black holes can always radiate and the

thermodynamic description never breaks down. Vice-versa, when considering near-BPS black

holes (i.e. near-extremal black holes close to an extremal solution that is also supersymmet-

ric) in supersymmetric theories [8, 9], we still get an extremal degeneracy even after quantum

corrections. However, analyzing the spectrum (or energy density of the states) of the theory
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shows exactly a gap of order ∆Egap with no states, thus solving the problem of the mass gap

as expected from microscopic string constructions. Therefore, one expects the presence of a

gap in the spectrum only when expanding around supersymmetric black holes, while around

non-supersymmetric ones quantum corrections remove the extremal degeneracy that is found

classically, leaving a single extremal microstate.

The goal of this work is to assess this conjectured behavior by analyzing the case of a super-

symmetric theory in which we can have both supersymmetric and non-supersymmetric extremal

black holes. One motivation for considering this setup is that sometimes non-supersymmetric

states within a supersymmetric theory enjoy particularly nice properties, and we would like

to figure out if this can happen for near-extremal black holes. In particular, we would like

to understand if the fact that the Lagrangian is supersymmetric may lead to cancellations in

the quantum corrections to the classical entropy, thus protecting the degeneracy of states at

extremality, similarly to what happens when the solution is supersymmetric. We will focus on

slowly rotating black holes in N = 2 4d ungauged supergravity with no hypermultiplets [14],

working at fixed electric and magnetic charges. N = 2 ungauged supergravity contains (in flat

space language) one graviton multiplet (with one graviton, two gravitinos and one U(1) gauge

field) and nV vector multiplets (each with one U(1) gauge field, two gauginos and one scalar).

The scalar manifold is a special Kähler manifold, with a holomorphic line bundle (as in usual

N = 1 supergravity) and a holomorphic symplectic bundle, which implements the electromag-

netic duality among the nV + 1 U(1) gauge fields. One of the main features of black holes in

N = 2 ungauged supergravity — working at fixed electric and magnetic charges at infinity — is

the N = 2 attractor mechanism [15, 16, 17]. Let us consider extremal solutions with the values

of the scalars fixed at infinity, zi = zi∞; as we move towards the horizon, the scalars will flow

towards some value zi = zi0. In extremal black holes, the horizon sits infinitely far away from

spatial infinity; hence the scalars “forget” their value at infinity, and solutions with different zi∞
flow towards the same zi0, organized in basins of attractions. The fixed points of the flow are

exactly the minima of some real functions W , denoted “superpotentials” as they determine the

scalar potential1. Notice that different zi0 correspond to fixed points of different superpotentials

W , and a given theory may admit different superpotentials.

In particular, in some models we can have, at the same time, some fixed points which lead

to BPS black holes and some fixed points which instead belong to non-supersymmetric black

holes [18, 19]; in the latter case, their W are often referred to as “fake-superpotentials”. The

scalars and the metric satisfy in both cases some first order flow equations. When dealing with

supersymmetric attractors, this is the typical behavior of a BPS solution; while dealing with a

non-supersymmetric attractor, instead, this is quite atypical and thus these solutions are referred

to as “fake-BPS”. We will review the attractor mechanism in section 2, mainly following [19].

Notice that these fake-BPS black holes can be quite similar to actual BPS black holes; in fact

1 Despite the name, notice that these “superpotentials” are not related to the usual superpotentials appearing
in supersymmetric theories.
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we will review an example of a fake-BPS black hole which is obtained from an actual BPS black

hole by just flipping the sign of one of the electric charges.

We now have to find the correct 1d effective Schwarzian theory which correctly captures the

near-extremal dynamics. There are two main ways to do this: one can analyze the symmetry

breaking pattern in the near-horizon, or alternatively one can perform a Kaluza–Klein dimen-

sional reduction to 2d starting from the 4d supergravity, and later identify the 1d boundary

theory. Let us begin with the former. If we take the near-horizon limit of the metric of a near-

extremal black hole, we get Rind2 × S2; if we do the same for an extremal black hole, we get

AdS2×S2 instead. In particular, the latter — once Wick rotating to the Euclidean signature —

is symmetric under SL(2,R) isometries, which are not present in the former. The Schwarzian

mode can then be interpreted as the “Goldstone boson” associated with this symmetry breaking.

The procedure for obtaining the 1d effective theory can be summarized as follows:

1. identify the (super)isometries of the near-horizon extremal geometry;

2. choose the correct generalized Schwarzian theory which describes the symmetry breaking;

3. match the classical result of the Schwarzian with the one from the Euclidean path integral

to fix the energy scale of the theory (and other unknown constants).

This approach, particularly the last point, is the typical top-down approach to construct an

effective theory.

We will follow this approach in section 3, fixing the electric and magnetic charges while

allowing the black holes to rotate, generalizing the results from [8]. The isometry group of the

near-horizon geometry of both supersymmetric and non-supersymmetric attractors is SL(2,R)×
SU(2), where the two factors come respectively from the AdS2 and S2 components of the

geometry (after Wick rotation). The SL(2,R) is fully broken by turning on a small temperature

T , which sends AdS2 → Rind2; the SU(2) is broken to U(1) by turning on a small angular

velocity Ω, which turns on — in the dimensionally reduced 2d theory — a background SU(2)

gauge field. Up to now, the analysis cannot distinguish between supersymmetric and non-

supersymmetric attractors. When considering the latter, however, we have yet to consider

supersymmetry, i.e. the presence of superisometries. We will show that the supersymmetric

attractors possess an enlarged superisometry group PSU(1, 1|2), whose bosonic subgroup is

exactly SL(2,R) × SU(2) ⊂ PSU(1, 1|2). This highlights how one cannot just analyze the

bosonic part of the symmetries, but needs a fully fermionic analysis to distinguish the near-

extremal dynamics around supersymmetric and non-supersymmetric attractors. The effective

theory describing the SL(2,R)×SU(2)→ ∅×U(1) symmetry breaking is the one of a Schwarzian

mode (associated to SL(2,R)) together with a particle moving on an SU(2) group manifold

(associated to SU(2)) [7]; the effective theory describing the PSU(1, 1|2)→ ∅×U(1) symmetry

breaking is instead the N = 4 super-Schwarzian, a supersymmetric generalization of the usual

Schwarzian, whose bosonic part of the action is exactly the Schwarzian mode together with a
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particle moving on SU(2) [8].

Although this approach yields sensible results, it does not explain in a clear way what

really changes, within a supersymmetric theory, in going from a supersymmetric to a non-

supersymmetric attractor (whose difference, as explained above, can be as small as a flip in the

sign of an electric charge). For this reason, most of this work is dedicated to following the dimen-

sional reduction approach. We first start from the original 4d supergravity theory and perform

a Kaluza–Klein dimensional reduction to 2d. Since we are only interested in the lightest degrees

of freedom above extremality, we neglect the infinite towers of massive fields that are generated,

and keep only the massless ones (which is enough to guarantee a consistent truncation of the

4d theory). We perform the bosonic part of the dimensional reduction in section 4, following [7,

8]; we obtain a 2d dilaton gravity [20], coupled to some 2d scalars and an SU(2) gauge fields,

which arises when gauging the SU(2) isometry of the angular part of the 4d metric.

Given once again the insight from [7, 8], we then separate the contribution of the spacetime

into two regions: the near-horizon region (NHR) and the far-away region (FAR). The idea is

that in the FAR region the curvature is negligible and we can thus employ the semiclassical

approximation; this way the FAR region only contributes to the extremal energy and entropy of

the black holes, without influencing the near-extremal dynamics. In the NHR region, instead,

the curvature is not negligible and we need to take into account the quantum effects due to

gravity. Imposing the near-extremality conditions, however, reduces the dilaton gravity to a

far simpler (generalized) Jackiw–Teitelboim (JT) gravity [21, 22], which can be quantized in

various ways [11, 23, 24, 8]. It is from JT gravity that we can eventually recover the generalized

Schwarzian, which arises from its boundary terms.

This highlights however an important problem: in JT gravity, the whole near-extremal dy-

namics is determined by the boundary terms, and therefore choosing the correct boundary

conditions for the NHR region is essential to get the correct result. These boundary conditions

are determined when gluing together the NHR and FAR region in such a way to obtain a unique

spacetime that is well defined. How to exactly do this procedure, however, is not entirely clear.

We will show that the proposal of [7, 8, 10] of using the FAR region to propagate the boundary

conditions from infinity using the equation of motions does not seem to yield a consistent result.

We will therefore follow a different approach. We first show, extending the argument given in

[24], that (the bosonic part of) the generalized JT gravity we obtain is equivalent — in the

first order formulation — to an SL(2,R) × SU(2) BF theory, which is a particular type of 2d

topological gauge theory [25]. Then the Dirichlet boundary conditions for the metric — needed

to recover the Schwarzian mode — become mixed boundary conditions, fixing a combination of

the SL(2,R) gauge field and the related Lagrange multiplier [24]; these boundary conditions are

also equivalent to introducing a defect in the 2d bulk. In the supersymmetric case, the SL(2,R)

and SU(2) gauge fields are not independent and become part of a unique PSL(1, 1|2) gauge

field; to preserve supersymmetry, we must impose the same boundary conditions on (or intro-
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duce the same defect for) both the SL(2,R) and SU(2) components of the gauge field. In the

non-supersymmetric case, since the bosonic part of the theory is the same as in the supersym-

metric case, we also expect the same boundary conditions to apply; this is because, in principle,

they should be obtained only from the gluing procedure between the NHR and FAR region.

This way we obtain the boundary terms that exactly contain the Schwarzian boundary theory

together with a particle moving on the group manifold SU(2), as expected from the previous

analysis of the bosonic symmetries.

As before, however, a bosonic analysis alone is not enough to distinguish between a super-

symmetric and a non-supersymmetric attractor; while we do get the Schwarzian and the particle

moving on SU(2), there is no way to know — purely from the bosonic dimensional reduction

— whether we should include the fermions appearing in the N = 4 super-Schwarzian or not.

Therefore, in section 5, we will perform the dimensional reduction of the gravitinos and the

gauginos at the quadratic level; we choose the dimensional reduction ansatz slightly modifying

[26, 27]. The 2d gauginos — arising from the s-wave reduction of the 4d gauginos — have

masses of the order of the Kaluza–Klein scales, and thus we will neglect their contribution, as

we did for the other Kaluza–Klein modes. The gravitinos, instead, assume a central role. In

the dimensional reduction, they get a mass term both from their 4d kinetic term and the inter-

actions with the graviphoton field strength: the latter, in particular, can distinguish between

supersymmetric and non-supersymmetric attractors. Around supersymmetric attractors, the

two contributions cancel each other out and the gravitinos remain massless, becoming part of

the N = 4 JT supergravity; N = 4 JT supergravity is equivalent to a PSU(1, 1|2) BF theory,

which in turn is related to the N = 4 super-Schwarzian [8] (provided that we pick the correct

boundary conditions as before). Around non-supersymmetric attractors, instead, the gravitinos

gain a large mass, and therefore they will not be excited in the near-extremal limit. Hence

we are just left with the bosonic part of the N = 4 JT supergravity, which in turn leads to a

SL(2,R)× SU(2) BF theory and the boundary action of a Schwarzian together with a particle

moving on the group manifold SU(2). Hence we get the same result given by the symmetry

considerations of section 3.

Finally, we analyze the thermodynamics of the two generalized Schwarzian theories in sec-

tion 6, following [8, 28]. First, we show that in the path integrals defining the grand-canonical

partition functions we are integrating over symplectic manifolds with a U(1) symmetry; we

can thus apply fermionic localization [13], granting that the partition functions are 1-loop ex-

act. We then calculate the 1-loop determinants [8] and obtain the quantum corrected partition

functions. At last, we extract the spectrum of the near-extremal black holes in the two cases.

Around non-supersymmetric attractors, the gravitational quantum corrections remove the ex-

tremal degeneracy, and we are just left with a continuous spectrum for all the possible values of

the total angular momentum J of the black holes. As for supersymmetric attractors, we get a

purely continuous spectrum only for J = 1/2, 1, . . . ; for J = 0, instead, we get a delta function

at the extremal energy — signaling the presence of a degeneracy of the supersymmetric ground
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state — and a continuum of states starting after a mass gap ∆Egap from extremality [28]. This

confirms that the gravitational quantum corrections actually solve the mass gap problem and

the semiclassical thermodynamic description never breaks down; in particular the problem is

solved either by removing the extremal degeneracy and by raising the energy so that E−E∗ ≳ T

(in the non-supersymmetric case) or by adding a mass gap (in the supersymmetric case). More

importantly, this also shows that the presence of a mass gap — argued from string construc-

tions of black holes [5, 6] — is an artifact of supersymmetry. This suggests that one has to

be careful when trying to extend to non-supersymmetric black holes conclusions drawn using

supersymmetry, with the dynamics differing already qualitatively. The semiclassical thermody-

namics — obtained from the Euclidean path integral — is thus a good approximation of the

near-extremal dynamics only when supersymmetry is preserved; when supersymmetry is broken,

instead, the gravitational quantum corrections strongly modify the thermodynamics, violating

the Bekenstein–Hawking area law.

To sum up and to compare with the symmetry approach, we also write here in a list the

procedure we use to obtain the 1d effective theory following the dimensional reduction approach:

1. perform the Kaluza–Klein dimensional reduction from 4d to 2d, keeping only massless

fields;

2. separate the spacetime into FAR and NHR regions, in order to obtain a generalized JT

gravity in the NHR;

3. relate JT gravity to the appropriate SL(2,R)× . . . BF theory;

4. pick the correct boundary conditions on the gauge field, eventually using supersymmetry

to relate the gravitational SL(2,R) components to the other (super-)groups;

5. calculate the boundary terms needed to make the variational problem well defined.

2 The black hole attractor mechanism

2.1 The N = 2 supergravity action

Before finding the effective Schwarzian theories describing the near-extremal black hole dy-

namics, let us start by briefly reviewing first the N = 2 ungauged supergravity action (with no

hypermultiplets) and then the attractor mechanism for black holes in asymptotically flat space2

[15, 16, 17, 18, 19, 14].

The bosonic part of the action for N = 2 ungauged supergravity can be expressed as

S4d = S4d
grav + S4d

scal + S4d
EM + S4d

ferm + S4d
∂ , (2.1)

2 We will mainly follow the conventions of [14].
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where3 [14]:

S4d
grav =

1

2κ2

∫︂
d4X

√
−G R ,

S4d
scal =

∫︂
d4X

√
−G

(︂
−gij(z

i, zi)∂Mz
i∂Mzj

)︂
,

S4d
EM =

1

2κ2

∫︂
IIJ(z

i, zi)F I ∧ ⋆F J +RIJ(z
i, zi)F I ∧ F J ,

S4d
ferm =

1

κ2

∫︂
d4X

√
−G

(︁
−κ−2ψAMΓMNPDNψ

A
P

)︁
− 1

4

∫︂
d4X

√
−G

(︃
gijξA

i
/DξA

j
+ h.c.

)︃
+

1

κ2

∫︂
d4X

√
−G

(︂
F−I
MNIIJX

JψA
M
ψB

NεAB + h.c.
)︂

+
1

κ2

∫︂
d4X

√
−G

(︃
F−I
MNIIJ∇iX

J
ξ
Ai
ΓMψBNεAB + h.c.

)︃
+

1

2

∫︂
d4X

√
−G

(︂
gijψAM /∂z

iΓMξAj + h.c.
)︂

+ (four-fermions terms) ;

(2.2)

S4d
∂ contains the necessary boundary terms, which depend on the boundary conditions chosen

at infinity — i.e. the ensemble chosen for the black holes — such as the Gibbons–Hawking–York

boundary term [29]. In flat space language, this action contains a graviton multiplet together

with nV vector multiplets. As for the bosonic sector, in N = 2 supergravity the nV U(1) gauge

fields of the vector multiplets mix with the vector field in the graviton multiplet; together,

they are described by the U(1) field strengths F I = dAI , where I = 0, . . . , nV and AI are the

corresponding U(1) gauge potentials. The gauge fields also interact with the nV complex scalars

zi and zi, with i = 1, . . . , nV , through the gauge kinetic functions RIJ(z
i, zi) and IIJ(z

i, zi),

which together compose the matrix NIJ = RIJ + iIIJ . Finally, the scalars form a non-linear

sigma model due to the matrix gij(z
i, zi) appearing in their kinetic term. As for the fermionic

sector, we have the gravitinos ψAM — where M are spacetime indices and A = 1, 2 — and the

gauginos ξA
i and ξA

i
. The fermionic sector of the action contains their kinetic terms, as well as

their interactions with the scalars, the vectors, the graviton and among themselves.

The main feature of N = 2 supergravity is that the scalar manifold is a special Kähler

manifold [14, 30, 31]. Special Kähler manifolds are characterized by the presence of both a holo-

morphic line bundle (as for Kähler–Hodge manifold of N = 1 supergravity) and a holomorphic

symplectic bundle, i.e. a vector bundle with structure group Sp(2nV + 2,R). This is needed to

implement the electromagnetic duality in the theory. In particular, taking the (anti-)self dual

part4 of the field strength F I and their electromagnetic dual GI := RIJF
J + IIJ ⋆ F

J , we can

3 In this work we will freely switch between κ2 = 8πGN depending on convenience.
4 We define the (anti-)self-dual part of a 2-form ω as ω± = (ω ∓ i ⋆ ω) /2.

7



compose the symplectic vectors (which are covariant with respect to the line bundle)

F+ =

(︄
F+I

G+
I

)︄
, F− =

(︄
F−I

G−
I

)︄
, (2.3)

whose upper and lower component are related by

G+
I = NIJF

+J , G−
I = NIJF

−J . (2.4)

The scalars zi themselves are essentially just a choice of homogeneous coordinates on the (pro-

jective) special Kähler manifold. They parameterize the covariantly constant symplectic vectors

V =

(︄
XI(zi, zi)

FI(z
i, zi)

)︄
and V =

(︄
X
I
(zi, zi)

F I(z
i, zi)

)︄
, (2.5)

with

FI = NIJX
J and F I = NIJX

J
. (2.6)

Additionally, the constraint ⟨V,∇iV ⟩ = 0 must be imposed, where we denoted the symplectic

product via the bracket ⟨. , . ⟩. This can be solved if the matrix
(︁
XI ,∇iXI

)︁
is invertible, by

choosing FI = ∂IF (X
J), where F (XJ) is called the prepotential and is a homogeneous function

of second degree in XJ . Choosing a specific model of N = 2 supergravity then simply amounts

to the choice of the prepotentials. Notice also that, while in general the matrix
(︁
XI ,∇iXI

)︁
might not be invertible, it is always possible to make a choice of frame (through a symplectic

transformation) such that the matrix becomes invertible, thus allowing for a prepotential [14].

2.2 The 1 dimensional effective potential

Let us now search for bosonic black hole solutions which are static and spherically symmetric,

carrying both electric and magnetic charges. A generic ansatz for the metric that allows for both

extremal and non-extremal black holes is given by [32]

ds2 = −e2U(r)dt2 + e−2U(r)

(︃
c4dr2

sinh4 (cr)
+

c2

sinh2 (cr)
dΩ2

S2

)︃
, (2.7)

where extremal black holes are recovered in the limit c = (r+ − r−)/2→ 0:

ds2 = −e2U(r)dt2 + e−2U(r)

(︃
dr2

r4
+

1

r2
dΩ2

S2

)︃
. (2.8)

To see this, let us change the variables from r to R in such a way that [14]:

c2

sinh2 (cr)
= (R−R+) (R−R−) ; (2.9)
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we thus get the metric:

ds2 = −e2U(R)dt2 + e−2U(R)
(︁
dR2 + (R−R+) (R−R−) dΩ

2
S2

)︁
, (2.10)

which, for R → ∞, is the typical form of the metric for a charged black hole. We choose the

parameter r to run from −∞ to 0, where r = −∞ is the location of the black hole outer horizon

and r = 0 is spatial infinity. In order to recover flat space at infinity, we thus impose the

condition U(r = 0) = 0.

Before proceeding with the gauge fields and the scalars ansatze, we note here that, throughout

this work, we will freely Wick rotate between Lorentzian signature and Euclidean signature by

using tE = −it. For example, Wick rotation transforms the metric (2.7) to:

ds2E = +e2U(r)dt2E + e−2U(r)

(︃
c4dr2

sinh4 (cr)
+

c2

sinh2 (cr)
dΩ2

S2

)︃
. (2.11)

This Euclidean metric describes only the region outside of the horizon; the smoothness of this

region — since the only physical singularity is inside the horizon — implies that the Euclidean

time becomes compactified, with periodicity tE ∼ tE + β. The constant β = 1/T is the inverse

of the Hawking temperature T of the black hole, which is related to the parameter c from (2.7)

as follows [32]:

c =
Area

2GN
T = 2ST ; (2.12)

here the Bekenstein–Hawking area law is used to relate the area of the horizon to the (semiclas-

sical) black hole entropy S. With abuse of notation, in the rest of this work we will drop the

subscript E from the Euclidean time tE —which we will just denote with t— in order to ease the

notation, leaving the interpretation up to the context. To avoid any confusion, we will highlight

explicitly when we perform Wick rotations. As a rule of thumb, we will use Lorentzian signa-

ture when discussing the (super)isometries of the solutions and the Kaluza–Klein dimensional

reduction from 4d to 2d, while we will use Euclidean signature when discussing the generalized

Schwarzians and the (super-)BF theories.

Let us now go back to searching for black hole solutions. For the electromagnetic fields, we

will assume that there are no charged objects outside the black hole horizon, given that all the

other fields in the supergravity actions are neutral, i.e.

dF I = 0 ,

dGI ≡ d
(︁
RIJF

J + IIJ ⋆ F
J
)︁
= 0 .

(2.13)
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This implies that the relations defining the charges,

pI = −
∫︂
S2
∞

F I ,

qI = −
∫︂
S2
∞

GI ,

(2.14)

usually valid only when integrating on a 2-sphere S2
∞ at spatial infinity, can be imposed on

a sphere S2
r at any radius r outside the horizon. These conditions are satisfied under the

assumptions of spherical symmetry by:

4πF I = −pI sin θdθ ∧ dϕ+
(︁
I−1
)︁IJ (︁

qJ −RJKpK
)︁
⋆ (sin θdθ ∧ dϕ) ; (2.15)

notice that IIJ(z
i, zi) and RIJ(z

i, zi) intrinsically depend on the radius r, given that they are

functions of the scalar fields zI . We also define the chemical potential for the electric charge as

e
∮︁
AI

= e−µ
Iβ , (2.16)

where we integrate over the boundary of the spacetime at infinity along the periodic Euclidean

time direction from 0 to β. This implies the relation

4πµI = −
∫︂ 0

−∞
dr e2U

(︁
I−1
)︁IJ (︁

qJ −RJKpK
)︁
; (2.17)

the above expression relates the chemical potential µI to the values of the charges qI that

dominate the sum over different charges in the grand-canonical partition function. Finally,

we will simply assume that the scalar fields are simple functions of the radial coordinate, i.e.

zi = zi(r).

Placing these ansatze into the equations of motion of the supergravity theory yields some

second order differential equations that U(r) and z(r) must satisfy in order to obtain an actual

black hole solution. These differential equations can alternatively be obtained as the equation

of motions of the following 1-dimensional effective theory:

S1d = −4π

κ2

∫︂
dt

∫︂
dr U ′2 + κ2gijz

i′zj ′ + e2UVBH − c2 , (2.18)
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where we define the black hole potential VBH as [32]:

(4π)2VBH =
1

2
Q⊤MQ ,

M =

(︄
−(I +RI−1R)IJ (RI−1)I

J

(I−1R)IJ −(I−1)IJ

)︄
,

Q =

(︄
pI

qI

)︄
.

(2.19)

In order to correctly reproduce the equations of motion of the original 4d theory, we also need

to impose the following constraint,

U ′2 + κ2gijz
i′zj ′ − e2UVBH − c2 = 0 , (2.20)

which can be seen as the conservation of energy in the 1d effective theory.

Notice that, to get the effective theory (2.18), it is not enough to simply plug the ansatz into

the action. With no additional boundary term, we are fixing the gauge field at infinity, i.e. we

are fixing the magnetic charges and the electric chemical potentials. To work in an ensemble

with both types of charges fixed — and get the proper VBH — we thus have to add the term

+βµIqI , properly converted to real Minkowski time via

β → i

∫︂
dt . (2.21)

Notice that to get the 1d theory (2.18) we also ignore the contribution of a total derivative

(proportional to U ′′) and we should in principle renormalize the theory by fixing a boundary

near r ∼ 0 and subtracting a diverging constant; this is akin to what usually happens while

studying black holes thermodynamics, when one subtracts the contribution of flat space to the

action by adding a boundary near spatial infinity [29] (or using holographic renormalization in

the case of asymptotically AdS spacetimes).

2.3 Flow equations for black holes

To find actual black hole solutions, we now have to solve the classical equations of motion of

the 1d theory; they are given by [18]:

U ′′ = e2UVBH ,

zi′′ + Γijkz
j ′zk ′ = e2Uκ−2gij∂jVBH .

(2.22)

Typically, one should solve these second order differential equations in full generality. However,

when we are dealing with extremal black holes (and for particular types of VBH) it turns out

that we can find BPS-like solutions that satisfy just first order differential equations instead.
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In particular, if the black hole potential can be written as

VBH =W 2 + 4κ−2gij∂iW∂jW (2.23)

for some real functionW =W (zi, zi) — denoted “superpotential”5 in analogy with the function

that appears in supersymmetric theories — and if we set c = 0, the equations of motion and the

constraint are reduced to first order differential equations6:

U ′ = +eUW ,

zi′ = +2eUκ−2gij∂jW .
(2.24)

This is why these solutions are called BPS-like. Notice however that these solutions are not

necessarily actual BPS solutions, i.e. supersymmetric solutions of the 4d supergravity satisfying

the BPS bound E∗ = |Z∞|, where E∗ is the (extremal) mass of the solution, Z∞ is the central

charge evaluated at infinity,

Z∞ = −iκ−2

∫︂
S2
∞

T− = 2κ−2
(︁
XI

∞qI − FI∞pI
)︁
≡ 2κ−2⟨V∞, Q⟩ , (2.25)

and

T− = −4XIIIJF
−J (2.26)

is the bosonic and anti-self-dual part of the graviphoton field strength.

If we look at equations (2.24), we see that they are simply flow equations. In particular, the

scalar fields flow from the values zi∞ — fixed by the boundary conditions at infinity — towards zi0
at the horizon, which are fixed points of the flow, i.e. ∂jW (zi0, z

i
0, p

I , qI) = ∂jW (zi0, z
i
0, p

I , qI) =

0; in particular, given that the superpotential W ≥ 0 always, these fixed points are minima of

the superpotential [19]. Given that the black hole potential VBH and thus the superpotential W

are only functions of the charges and the scalar fields, we see that the fixed points of the flow

zi0 = zi0
(︁
pI , qI

)︁
are just functions of the charges themselves, and are thus independent of the

values zi∞ set by the boundary conditions at infinity. This can be intuitively understood as a

consequence of the fact that, for extremal black holes, the horizon sits infinitely far away from

spatial infinity; as the scalar fields flow moving towards the horizon, they “forget” the boundary

conditions at infinity, and therefore they can only depend on the near-horizon properties of the

black hole, such as the electric and magnetic charges. Notice also that there could be more than

one fixed point for each superpotential, and that there could be different superpotentials with

different fixed points that satisfy (2.23) for the same VBH. The moduli space of the zi∞ of the

5 The analogy is only partial, as the standard superpotential that is found in supersymmetric theories is a
holomorphic function of its variables.

6 If we choose r ∈ (0,+∞) we should replace the + sign at the beginning of both equations with a − sign. In
this work we choose r ∈ (−∞, 0) such that εtrθϕ = +1, leaving the orientation of the coordinates as the usual one
in spherical coordinates.
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possible extremal black holes will therefore be divided into multiple basins of attractions, each

with its own fixed point [19].

2.4 Fake-superpotentials in N = 2 supergravity

Up to now, the whole analysis still holds true for more general theories with the bosonic

action identical to (2.1), but with coefficients gij , IIJ and RIJ not related to each other by

special Kähler geometry as in N = 2 supergravity; let us now focus on the latter. In N = 2

supergravity, we can always find a superpotential W that is given by:

WZ = GN |Z| . (2.27)

It turns out that BPS-like solutions of (2.24) are actual BPS solutions [14]. In general, however,

it might be possible to find different ˜︂W that satisfy (2.23); the BPS-like solutions obtained this

way are not supersymmetric, and thus these ˜︂W are referred to as a fake-superpotentials.

One way to find other superpotentials is to notice that VBH is left unchanged if we rotate

Q → ΘQ, using a matrix Θ such that Θ⊤MΘ =M [18]. If this matrix is a constant, we can

define a “fake-central charge”

Z = 2κ−2⟨V,Q⟩ → ˜︁Z = 2κ−2⟨V,ΘQ⟩ (2.28)

and get, from (2.27), the fake-superpotential

˜︂W = GN | ˜︁Z| . (2.29)

A useful trick to simplify the procedure of finding the appropriate matrix Θ is to rewrite (2.19)

as [18]

M = IM , I =

(︄
0 1

−1 0

)︄
. (2.30)

The condition Θ⊤MΘ =M then simply becomes [Θ,M ] = 0.

We also notice here, for future convenience (see section 3.2), that the mass of the extremal

black holes is given by:

E∗ =
∂rU∞
GN

=
W (zi∞, z

i
∞)

GN
≡ W∞
GN

; (2.31)

the mass can either be calculated as a Komar mass or obtained by looking at the asymptotic

form of the metric (2.8) near spatial infinity (since we are in flat space). For the supersymmetric

black holes with superpotential (2.27), whereW∞ =WZ(zi∞, z
i
∞) is the superpotential evaluated

at infinity, the relation (2.31) correctly recovers the BPS relation E∗ = |Z∞|. Notice also

that, since the attractors of the flow are minima of the superpotential W , in each basin of

attraction the solution with minimal mass (which we denote by E0
∗) is the one given with constant
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scalars zi(xµ) = zi0; for the “true” superpotential (2.27), this becomes E0
∗ = |Z0|, while for fake

superpotentials given by (2.29), this yields E0
∗ = | ˜︁Z0|.

Let us now show one of the simplest theories which admit both BPS-like supersymmetric and

non-supersymmetric black holes. We consider the SU(1, 1)/U(1) model of N = 2 supergravity

[19], with the prepotential:

F (XI) = −iκ−2X0X1 . (2.32)

This is a model with only one vector multiplet in addition to the supergravity multiplet. Choos-

ing the normal coordinates Z0 = e−κ
2K/2X0 = 1 and Z1 = e−κ

2K/2X1 = z = x + iy on the

scalar manifold, we have the covariant symplectic vector

V =

⎛⎜⎜⎜⎜⎝
X0

X1

F0

F1

⎞⎟⎟⎟⎟⎠ =
1

2
√
x

⎛⎜⎜⎜⎜⎝
1

z

−iκ−2z

−iκ−2

⎞⎟⎟⎟⎟⎠ . (2.33)

Due to the simplicity of the theory, we can find the attractors by looking directly at the minima

of the potential VBH (without finding superpotentials first). The black hole potential is given

by:

VBH =
1

32π2κ2x

[︁
κ4(q0)

2 + (p1)2 + (x2 + y2)
(︁
κ4(q1)

2 + (p0)2
)︁
+ 2κ2

(︁
p0q

0 + p1q
1
)︁
y
]︁
. (2.34)

Its extrema are given by

z+0 =

(︁
p0p1 + κ2q0q1

)︁
+ iκ2

(︁
p0q0 − p1q1

)︁
(p0)2 + κ4(q1)2

if p0p1 + κ2q0q1 > 0 ,

z−0 =
−
(︁
p0p1 + κ2q0q1

)︁
+ iκ2

(︁
p0q0 − p1q1

)︁
(p0)2 + κ4(q1)2

if p0p1 + κ2q0q1 < 0 ;

(2.35)

notice that the “if” conditions are needed in order to have Re(z) > 0 and thus IIJ < 0, so that

we have the proper sings in the gauge kinetic functions of the gauge fields. In particular, we can

pass from z+0 to z−0 (and vice-versa) by simply flipping the sign of some charges, for example

by sending q0 → −q0 and p0 → −p0. Notice also that, at both z±0 , the value of the black hole

potential is the same:

VBH|r→−∞ =

⃓⃓
p0p1 + κ2q0q1

⃓⃓
16π2κ2

. (2.36)

Let us now find the appropriate superpotentials yielding the two solutions z±0 . For sure we

have one superpotential — proportional to the central charge — given by (2.27). The central

charge is

Z =
κ−2

√
x

(︁
q0 + zq1 + iκ−2

(︁
p1 + zp0

)︁)︁
, (2.37)
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and its absolute value |Z| is extremized exactly by z+0 . Therefore, the black extremal black holes

in the z+0 basin of attraction are actual BPS black holes. In order to find a superpotential ˜︂W
with fixed point z−0 , instead, we follow the procedure described in (2.28) and (2.29). Looking at

the matrix (2.27),

M =

⎛⎜⎜⎜⎜⎝
κ−2

(︄
x2+y2

x 0

0 1
x

)︄ (︄
− y
x 0

0 y
x

)︄
(︄
− y
x 0

0 y
x

)︄
κ2

(︄
1
x 0

0 x2+y2

x

)︄
⎞⎟⎟⎟⎟⎠ , (2.38)

we find that the matrix

Θ = cos η

(︄
σ3 0

0 σ3

)︄
+ sin η

(︄
0 −iκ2σ2

iκ−2σ2 0

)︄
(2.39)

satisfies Θ⊤MΘ = Θ. We thus get a fake-superpotential ˜︂W as in (2.29) using the fake-central

charge ˜︁Z =
κ−2

√
x
eiη
(︁
−q0 + zq1 + iκ−2

(︁
p1 − zp0

)︁)︁
, (2.40)

with ˜︂W being extremized by z−0 . These kind of black holes still satisfy BPS-like equations, but

they are not supersymmetric solutions. We also have that the value of W0 and ˜︂W0, which are

the superpotentials evaluated at the horizon, are exactly the same:

WZ
0 = ˜︂W0 =

√︁
VBH

⃓⃓⃓
r→−∞

=

(︄⃓⃓
p0p1 + κ2q0q1

⃓⃓
16π2κ2

)︄1/2

. (2.41)

Thus we cannot distinguish the supersymmetric and the non-supersymmetric attractors from

W0 only, which — as we will show in the next section 3.1 — is the radius of the extremal AdS2

throat. Vice-versa, the two solutions differ for their values of the central charge:

Z(z+0 ) =
2i
√︁
p0p1 + κ2q0q1

√︁
(p0)2 + κ4(q1)2

κ4 (p0 + iκ2q1)
,

Z(z−0 ) =0 .

(2.42)

This indicates that only quantities coupling directly to the central charge, such as the gravipho-

ton field strength, behave differently for the two attractors, making the near-extremal dynamics

differ in the two cases. Finally, notice that we can have both BPS-like supersymmetric and

non-supersymmetric black holes even when we consider only electric charges; as we will see in

section 4.1, this setup will be easier to analyze in the dimensional reduction, and thus we will

fix pI = 0 for simplicity.
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3 Symmetries in the near-horizon

3.1 Bosonic symmetries

Let us now study the symmetries of the extremal solutions satisfying (2.24), focusing on the

near-horizon limit of the solutions. One way to choose the correct generalized Schwarzian theory

describing the extremal/near-extremal transition is by looking at the symmetry breaking pattern

in the near-horizon limit. In particular, the extremal solution admits more (super)isometries

than the near-extremal ones; we can then interpret the extremal/near-extremal transition as a

sort of symmetry breaking, to be described by the means of an effective theory (in the top-down

approach). We thus pick the generalized Schwarzian action by looking at the broken symmetries,

interpreting the generalized Schwarzian modes as the “Goldstone bosons” of the symmetry

breaking. Finally, we should in principle fix the energy scale of the effective theory, along with

other unknown constants, by matching — at the classical level — the partition function of the

generalized Schwarzians with the ones from the 4d supergravity; this is equivalent to comparing

and matching various thermodynamic quantities such as the energy, the entropy and the specific

heat of the black hole.

As we move towards the horizon r → −∞ of (2.8), the scalar fields approach the constant

values zi0, set by the attractor mechanism; given that ∂iW = ∂iW = 0, we will approximate the

first equation of (2.24) as

U ′ = eUW0 + . . . , (3.1)

where W0 = W (zi0, z
i
0) is the superpotential evaluated at the horizon (i.e. at the fixed point of

the attractor flow). Solving this equation yields:

e−U(r)
⃓⃓⃓
NHR

= −W0r + . . . ; (3.2)

plugging this approximate result into (2.8), we get:

ds2 =W 2
0

(︄
−dt̃2 + dr2

r2
+ dΩ2

S2

)︄
, (3.3)

where we rescaled ˜︁t = t/W 2
0 . This is exactly the metric of AdS2×S2, with AdS radiusW0. Hence,

after a Wick rotation, all the extremal solutions generated through the attractor mechanism

possess an SL(2,R)× SU(2) symmetry in the near-horizon, independently of whether they are

supersymmetric or not. Notice the following delicate point: from the metric AdS2×S2 one would

generically consider the isometry group to be PSL(2,R) × SO(3), and not SL(2,R) × SU(2).

As pointed out in [28], however, in a theory with fermions one wants the spacetime to admit a

spin structure. More heuristically, the antiperiodicity of fermions in Euclidean times forces us to

consider the double cover of PSL(2,R)×SO(3), that is SL(2,R)×SU(2). This is also consistent

with the results of section 3.2, where we analyze the superisometries of the extremal solutions,
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and of section 4.7, where we discuss the BF formulation of the generalized JT gravities: in the

former case, the supersymmetric attractors possess a PSU(1, 1|2) superisometry group, which

exactly contains the bosonic subgroup SL(2,R)×SU(2); in the latter case, see in particular the

comment at page 34 of [28].

Let us now discuss the symmetry breaking pattern in the extremal/near-extremal transition

heuristically. The breaking of SL(2,R) is caused by turning on a finite temperature T > 0

and moving away from extremality, modifying the near-horizon throat from an AdS2 to a less

symmetric Rind2 one. The breaking of SU(2) is instead caused by turning on a small angular

velocity Ω (which we will take, without loss of generality, along the z axis) and considering

slowly rotating black holes. Since giving an angular velocity along z still leaves the solutions

symmetric under rotations along the z axis, the symmetry breaking pattern is SU(2) → U(1).

Putting everything together, the extremal → near-extremal transition is described by a sym-

metry breaking with bosonic subgroup SL(2,R)× SU(2) → ∅× U(1). Finally, notice that the

analysis of the bosonic symmetries is completely independent on whether we choseWZ = GN |Z|
as in (2.27) or not, that is on whether the BPS-like solution is supersymmetric or not.

3.2 Fermionic symmetries

Let us now search for the supersymmetry transformations that leave the near-horizon solu-

tions (3.3) invariant; once again, we will approximate zi(r) ∼ zi0. The supersymmetric transfor-

mation of the gravitinos is given by7 [14]:

δψM
A = ∇M ϵA −

1

16
ΓNPT−

NPΓMε
ABϵB = 0 , (3.4)

where ∇M = ∂M + 1
4ωM

NPΓNP and the graviphoton field strength is

4πT− = iκ2Z (1 + i⋆) (sin θdθ ∧ dϕ) . (3.5)

To find the solutions, it is convenient to separate the xM = (t, r, θ, ϕ) coordinates into two sets:

xµ = (t, r) and yα = (θ, ϕ). This way we can write the 4d Γ matrices in terms of 2d γ matrices

on µ and α coordinates as8:

Γµ = γµ ⊗ 1 , Γα = γ3 ⊗ γα , (3.6)

where γ3 = γ0γ1 is the pseudo-chirality matrix in µ coordinates9. Next, in order to obtain a

simpler spinor equation, we define the following Dirac spinor:

ϵ := ϵ1 − iei argZ0ϵ2 , (3.7)

7 We choose the matrix εAB such that ε01 = ε01 = 1.
8 For the choice of the 4d Γ matrices and the 2d γ matrices, we will follow the conventions of [8]; see in particular

Appendix B (at page 70).
9 When acting on a 4d spinor, we will simply write γ3 ⊗ 1 as γ3.
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by combining together the left-handed spinor ϵ1 and the right-handed spinor ϵ2. We can then

express (3.4) in terms of the spinor ϵ by taking the equation with A = 1, together with the

charge conjugate of the equation with A = 2; in doing so we use the fact that the Killing spinors

that parameterize the supersymmetry transformation are Majorana. Finally, by expanding

4πΓNPT−
NP = −4κ2

W 2
0

Z0γ3PL (3.8)

using the ansatz (2.15), we get

∇M ϵ−
i

2

GN |Z0|
W 2

0

γ3ΓM ϵ = 0. (3.9)

Splitting into two 2d components the spinor ϵ = ϵAdS ⊗ η, we obtain(︃
∇µ −

i

2W0
ζγ3γµ

)︃
ϵAdS = 0 ,(︃

∇α −
i

2W0
ζγα

)︃
η = 0 ,

(3.10)

where we introduced the parameter

ζ =
GN |Z0|
W0

. (3.11)

Equation (3.10) is the standard form of the Killing spinor equation on a AdS2 × S2 spacetime

of radius W0/ζ. The general solutions to these equations can be found in [33]; there are 8 free

real parameters controlling the solutions, implying that — in the near-horizon — the solutions

preserve the full N = 2 supersymmetry. Had we not considered the near-horizon limit, we would

have had to impose a supersymmetric projection condition such as ϵA ∼ εABϵB; this would have

halved the number of free parameters, making the full black hole solution only 1/2-BPS [18].

There is thus a symmetry enhancement in the near-horizon.

So far, the solutions coming from fake-superpotentials could still be supersymmetric, de-

spite the mismatch between the AdS radii W0 (coming from the metric) and W0/ζ (coming

from the supersymmetric Killing spinors). We have however yet to look at the supersymmetric

transformation of the gauginos, once again in the zi ∼ const. approximation [14]:

δξiA = −1

2
G−
NP

i
ΓNP εABϵ

B = 0 . (3.12)

Expanding G−
NP

i
, we get:

∂i|Z0|ϵ1 = 0 ,

∂i|Z0|ϵ2 = 0 .
(3.13)

Therefore, in order to get non trivial Killing spinors, we must have ∂i|Z0| = ∂i|Z0| = 0; in turn,
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this implies that the only supersymmetric extremal solutions come from the “true” superpoten-

tial (2.27) and that fake-BPS solutions are indeed not supersymmetric. The ζ parameter intro-

duced in (3.11) thus controls whether the solution is supersymmetric or not: we can have Killing

spinors only for ζ = 1, and in that case they are exactly the Killing spinors on an AdS2×S2 space-

time of AdS radius WZ
0 . It can be shown [8] that the Killing spinors obtained from (3.10) gener-

ate the superisometry group PSU(1, 1|2), whose bosonic part is SL(2,R)×SU(2) ⊂ PSU(1, 1|2)
as expected from the analysis of section 3.1.

At last, let us discuss in more depth the meaning of the parameter ζ introduced in (3.11);

it will in fact assume a central role in the dimensional reduction of the fermionic sector of

the 4d supergravity (see section 5, and in particular 5.2). For supersymmetric solutions with

superpotential (2.27), we simply have ζ = 1. If the superpotential is obtained from a fake-central

charge via (2.29), instead, we have

ζ =
|Z0|
|˜︂Z0|

=
|Z0|
E0
∗
. (3.14)

ζ is thus the inverse ratio between the mass E0
∗ of the lightest extremal black hole in the chosen

basin of attraction (see section 2.4) and the mass |Z0| which the black hole would have if it

satisfied the BPS bound (and hence if it were supersymmetric). Since the BPS bound implies

E0
∗ ≥ |Z0| — with E0

∗ = |Z0| for supersymmetric solutions only — ζ must take the values

0 ≤ ζ ≤ 1, with ζ = 1 just for supersymmetric attractors. In other words, ζ measures how far

are we from a true BPS black hole, and controls whether we are in the basin of attraction of a

supersymmetric attractor or not.

3.3 Choice of the Schwarzian theory

The above analysis shows that the symmetry broken in the extremal/near-extremal black hole

transition in the near-horizon region is SL(2,R) × SU(2) → ∅ × U(1) for non-supersymmetric

attractors and PSU(1, 1|2)→ ∅×U(1) for supersymmetric attractors. These symmetry break-

ing patterns have already been studied in [7, 10] and [8], respectively, for simpler types of black

holes. We can thus already guess the Schwarzian theories that will describe the behavior of the

black holes. We remark that we are working in an ensemble with fixed electric and magnetic

charges, but fixed angular velocity Ω.

Let us start from the symmetry breaking of SL(2,R) × SU(2) for a non-supersymmetric

attractor. The symmetry breaking of SL(2,R) is described by a pure Schwarzian theory [11,

12]:

SSch = − 1

MSL(2)

∫︂ β

0
du Sch

(︃
tan

πτ(u)

β
, u

)︃
; (3.15)

here u is the Euclidean time of the theory, τ(u) is a monotonically increasing function that

parameterizes the boundary mode, MSL(2) is the energy scale associated to the Schwarzian
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mode — to be determined by matching with the on-shell supergravity action — and

Sch (f(u), u) =
f ′′′(u)

f ′(u)
− 3

2

(︃
f ′′(u)

f ′(u)

)︃2

(3.16)

is the Schwarzian derivative10. The symmetry breaking of SU(2) can instead be described using

the action of a particle moving on the group manifold SU(2) [7, 10]:

SSU(2) = −
1

MSU(2)

∫︂ β

0
du Tr

[︂(︁
g−1(u)g′(u)

)︁2]︂
, (3.17)

where g(u) ∈ SU(2)fund is an SU(2) group element in the fundamental representation and

MSU(2) is the energy scale associated with the SU(2) symmetry breaking. Finally, by adopting

the effective theory approach to add all the possible terms compatible with the symmetries

of the system, we can add a constant term E∗ to the Lagrangian; we will also add an overall

constant −S∗ to the action. These terms account for the (classical) mass and entropy of the

extremal black hole; we need to add them by hand since the effective Schwarzians only describe

the near-extremal excitations, and not the extremal black hole itself. We thus get the effective

action:

Seff
non-SUSY =− S∗ + βE∗ −

1

MSL(2)

∫︂ β

0
duSch

(︃
tan

πτ(u)

β
, u

)︃
− 1

MSU(2)

∫︂ β

0
du Tr

[︂(︁
g−1(u)g′(u)

)︁2]︂
,

(3.18)

where the constants E∗, S∗, MSL(2) and MSU(2) should be determined by matching. Note that

there is no term form ΩJ∗ — with J∗ the extremal angular momentum — in contrary to what

happens for the extremal energy (+βE∗) and entropy (−S∗); this is simply because the extremal

solutions that we consider are static and not rotating, so J∗ = 0.

Let us now focus on the symmetry breaking of PSU(1, 1|2). As shown in [8], it is described

by the N = 4 super-Schwarzian theory; its action is based on the N = 4 super-Schwarzian, a

supersymmetric generalization (with SU(2)R-symmetry) of the usual Schwarzian, first described

in [34, 35] (we give more details in section 6.1). The bosonic part of the action is given by:

Sbos
Sch,N=4 = −

1

MPSU(1,1|2)

∫︂ β

0
duSch

(︃
tan

πτ(u)

β
, u

)︃
+Tr

[︂(︁
g−1(u)g′(u)

)︁2]︂
+(fermions) , (3.19)

where we introduced yet another energy scaleMPSU(1,1|2). The fermionic degrees of freedom are

given by the two Grassmanian functions ηp(u) and ηp(u), where p = 1, 2. Adding the extremal

10 We denote the derivative f ′(u) ≡ ∂uf(u).
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energy and entropy contribution as before, we get the effective theory:

Seff, bos
SUSY =− S∗ + βE∗ −

1

MPSU(1,1|2)

∫︂ β

0
duSchN=4 (τ, g, η, η)

=− S∗ + βE∗

− 1

MPSU(1,1|2)

∫︂ β

0
duSch

(︃
tan

πτ(u)

β
, u

)︃
+Tr

[︂(︁
g−1(u)g′(u)

)︁2]︂
+ (fermions) .

(3.20)

By comparing (3.20) with (3.18), we see that the bosonic part of the action is essentially the

same, with the identificationMSL(2) =MSU(2) ≡MPSU(1,1|2). This is to be expected, given that

the bosonic subgroup of symmetry is identical in the two cases. Notice also that the two energy

scalesMSL(2) andMSU(2) become related thanks to the supersymmetry of the super-Schwarzian

theory; therefore, in the PSU(1, 1|2) case, there is apparently one less parameter to determine

by matching.

However, it is important to note that the underlying supersymmetry of the original super-

gravity action (2.1) imposes the relation MSL(2) = MSU(2) even for near-extremal black holes

around non-supersymmetric attractors [10]. Although we will verify this directly in section 4.6,

the reason can be understood without doing any calculations. In fact, not only the bosonic

symmetries are the same, but if we look at (2.1) we see that the bosonic part of the action

is not dependent on whether we consider supersymmetric attractors or not11; in particular,

the only pieces depending on the graviphoton field strength T− — and thus on the value of

the central charge Z — are in the fermionic terms. Since the generalized Schwarzians actions

are obtained via dimensional reduction of (2.1) to generalized JT gravities, the bosonic part

of the JT gravities and thus of the effective Schwarzians will be independent on whether we

consider supersymmetric attractors or not. In turn, since we must have a single energy scale

MSL(2) =MSU(2) ≡MPSU(1,1|2) for the supersymmetric attractors (due to supersymmetry), the

relation MSL(2) =MSU(2) will also be enforced in the non-supersymmetric case.

4 The bosonic 1d boundary theory

4.1 Dimensional reduction of bosons

In principle, all that remains is to match the effective theories (3.18) and (3.20) to the classical

partition functions of the supergravity. Then, one computes 1-loop quantum corrections and

extracts the quantum corrected spectra of states. A remarkable property of these theories is

that they have been shown to be 1-loop exact thanks to fermionic localization in the Schwarzian

path integral [13]. The overall qualitative features of the spectrum — such as the presence of

11 While technically NIJ (evaluated at the horizon) can be different for different attractors, it does not change
significantly the results to distinguish between supersymmetric and non-supersymmetric attractors.
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a gap or of a degenerate ground state — are however already set by the choice of generalized

Schwarzian theory. In fact, the 1-loop corrections do not depend on the actual value of the mass

scales, but they are simply related to how many bosonic and fermionic zero-modes one has to

gauge fix when computing the path integral [13]. In particular — as we will review in section

6 — the non-supersymmetric Schwarzian (3.18) has a continuous spectrum for all the possible

values of the angular momentum J and thus a vanishing extremal entropy [7, 10]; instead, the

N = 4 super-Schwarzian has a discrete part of the spectrum associated with the J = 0 states,

due to the presence of the fermionic zero-modes, with a non-zero extremal entropy [8, 28].

While this is sufficient for understanding the behavior of the black hole spectra, the approach

of section 3 is not really transparent on what sets apart the two boundary theories we have

identified, given that they should both be obtained from dimensional reduction of the same

supergravity action (2.1). Since the difference between BPS and fake-BPS extremal black holes

can be as simple as flipping the sign of some charges, we would like to understand what is the

actual mechanism which differentiates between the two effective theories.

We will therefore proceed with the Kaluza–Klein dimensional reduction of (2.1). We follow

the conventions of12 [8], with minor modifications; more details can be found for similar cases

in [26, 27]. Notice that, since we are interested just in the lowest energy excitations above

extremality, we will only consider the Kaluza–Klein modes that remain massless, ignoring the

infinite tower of massive particles that will be generated. This can be justified because when

going in the near-horizon region (which is the region we are actually interested in), the Kaluza–

Klein modes have a mass of ordermKK ∼ 1/W0 [7]. As we will see in section 4.6, the energy scale

associated with the effective Schwarzian boundary modes and thus the order of magnitude of the

temperatures T we are interested in is T ∼ Φ−1
ren = GN/W

3
0 ; since T ≪ mKK for macroscopic

black holes with radius much larger than Planck length — which satisfy GN ≪ W 2
0 — the

Kaluza–Klein modes are too heavy to be excited in the near-extremal limit we consider. It

is also important to note that, in general, these massive modes contribute to the value of the

extremal entropy and energy [7], but do not give rise to other temperature dependent terms in

their 1-loop determinants (which are the main focus of this work).

As in section 3.2, we once again split the 4d coordinates xM = (t, r, θ, ϕ) into the two sets

xµ = (t, r) and yα = (θ, ϕ). The ansatz for the metric in the Kaluza–Klein reduction is given by

[8]:

ds2 =GMNdX
MdXN

=
W∞

χ1/2
gµνdx

µdxν + χhαβ
(︁
dyα + Ti

αBi
µdx

µ
)︁ (︂
dyβ + Tj

βBj
νdx

ν
)︂
;

(4.1)

here W∞ = W (zi∞, z
i
∞) is just a constant, gµν(x

µ) is an arbitrary 2d metric and hαβdy
αdyβ =

dΩ2
S2 is the metric of a unit sphere. The field χ(xµ) is the dilaton; its normalization has been

12 In particular, see the appendix B of [8].
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chosen such that it has no kinetic term in the resulting action. Finally Bi
µ(x

µ) is the SU(2)

gauge fields transforming in the adjoint of SU(2); together with the Killing vectors Ti
α (see [26]

for their explicit form) it gauges the SU(2) isometry of the extremal solution. We denote the

frame indices of the 2d metrics gµν and hαβ with (m,n, . . . ) and (a, b, . . . ) respectively, while we

use M̂ = (m̂, â) for the frame indices of the 4d metric GMN ; the vierbein and the zweibeins are

given by

GMNdX
MdXN = ηˆ︂M ˆ︁Neˆ︂Me ˆ︁N = ηmne

ˆ︁meˆ︁n + δabe
ˆ︁aeˆ︁b ,

gµνdx
µdxν = ηmne

men ,

hαβdy
αdyβ = δabe

aeb ,

(4.2)

where

eˆ︁m =W 1/2
∞ χ−1/4em , eˆ︁a = χ1/2

(︁
ea + eaαTi

αBi
µdx

µ
)︁
. (4.3)

The explicit expression for the spin connection ω is obtained by solving the torsionless con-

dition:

de
ˆ︂M + ω

ˆ︂M ˆ︁Ne ˆ︁N = 0 . (4.4)

Calling ωg and ωh the spin connections of gµν and hαβ respectively, we get:

ω ˆ︁mˆ︁n = ω(g)
m
n
− 1

2
∂[n logχe

m] − 1

2
TaiH

im
n

(︁
ea + Ti

aBi
)︁
,

ωˆ︁a ˆ︁m =
1

2
W−1/2

∞ χ3/4
[︁
Ti
aH i

mne
n + ∂m logχ

(︁
ea + T ai B

i
)︁]︁
,

ωˆ︁aˆ︁b = ω(h)
a
b
+∇bTiaBi ,

(4.5)

where ∇b = eb
β∇β is the gravitational covariant derivative and H i = dBi+ 1

2ε
i
jkB

j ∧Bk is the

SU(2) field strength associated to the gauge field B. Evaluating the curvature, plugging the

result in S4d
grav given by (2.2) and integrating over the sphere S2 yields [8]:

S2d
grav =

2π

κ2

∫︂
d2x
√
−g
(︃
χR+

2W∞

χ1/2

)︃
+

2

3

χ5/2

W∞
Tr (H ∧ ⋆H) ; (4.6)

here we write B = BiTi and H = dB −B ∧B, with Ti generators in the fundamental of SU(2)

normalized such that [Ti, Tj ] = −εijkTk and Tr (TiTj) = −δij/2. This is the action of a 2d

dilaton gravity [20], coupled with a 2d SU(2) gauge field.

As for the scalar field, if we were interested in the full Kaluza–Klein expansion, we should in

principle assume an expansion in spherical harmonics such as

zi(XM ) =
∑︂
l

zil (x
µ)Y l(yα) ; (4.7)

after integrating spherical harmonics we get a tower of scalars of mass m2
l ∼ l(l + 1)/χ [7].
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Therefore, taking into account only the massless modes, we simply need to replace zi = zi(xµ)

into S4d
scal from (2.2), obtaining:

S2d
scal =

2π

κ2

∫︂
d2x
√
−g
(︂
−2χκ2gij∂µz

i∂µzj
)︂
. (4.8)

Finally, we have to expand the U(1) gauge fields. The full expansion in spherical harmonics

can be found in [36]; once again, since we are only interested in the massless terms, we will take:

AI±(X
M ) = aI(xµ)− pI

4π
(cos θ ∓ 1) dϕ ,

F I(XM ) = f I(xµ) +
pI

4π
sin θdθ ∧ dϕ .

(4.9)

Notice that we defined the 2d field strength f I = daI and that we specified the potential

AI±(X
M ) into two different charts in order to properly account for the magnetic charge of the

black hole. Notice also that by fixing pI we are implicitly assuming to work in an ensemble with

fixed magnetic charges and thus fixed holonomy of the gauge field at infinity (and, equivalently,

fixed electric chemical potentials). Plugging (4.9) into S4d
EM from (2.2), we get

S2d
EM =

2π

κ2

∫︂
χ3/2

W∞
IIJf

I ∧ ⋆fJ +
1

2π
RIJp

IfJ +
1

16π2
W∞

χ3/2
IIJp

IpJ ⋆ 1

+
2π

κ2

∫︂
1

24π2
IIJp

IpJBi
µBi

µ ⋆ 1

+
2π

κ2

∫︂
1

96π2
χ3/2

W∞
IIJp

IpJ
[︃(︁
Bi

µBi
µ

)︁2 − (︂Bi
µB

jµ
)︂2]︃

⋆ 1 .

(4.10)

This action is quite complicated: apart from the usual kinetic term of the 2d U(1) gauge fields

(coupled to the scalars and the dilaton), we also get some non-trivial quadratic and quartic terms

for the isometry gauge field B, due to the presence of the magnetic charges pI in the angular part

of (4.9). To simplify the treatment of the 2d theory, we will turn off all the magnetic charges,

setting pI = 0, thus getting the far simpler action:

S2d
EM =

2π

κ2

∫︂
χ3/2

W∞
IIJf

I ∧ ⋆fJ . (4.11)

This action simply describes 2d U(1) gauge fields coupled to the scalars and the dilaton. As

shown in section 2.4, it is still possible to have non-supersymmetric BPS-like black holes even

without magnetic charges, so this setup is still general enough to investigate the mechanism

that generates the different effective Schwarzians for supersymmetric and non-supersymmetric

attractors. This way we are also free to chose whether to work with fixed electric chemical

potential or fixed electric charges, provided we add the correct boundary terms to have a well

defined variational principle.
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At last, we conclude this section by combining together all the relevant contributions into a

single 2d action:

S2d =
2π

κ2

∫︂
⋆ 1

(︃
χR+

2W∞

χ1/2
− 2χκ2gij∂µz

i∂µzj
)︃

+
2

3

χ5/2

W∞
Tr (H ∧ ⋆H) +

χ3/2

W∞
IIJf

I ∧ ⋆fJ + S2d
∂ ,

(4.12)

where S2d
∂ represents additional boundary terms dependent on the choice of ensemble for the

black holes. In the near-AdS limit — which arises when considering the near-horizon limit of

the near-extremal black holes — we can linearize the dilaton around a constant value,

χ(xµ) ≈ χ0 + 2GNΦ(x
µ) + . . . , (4.13)

thus obtaining the usual JT gravity [21, 22] coupled to additional scalars and gauge fields.

4.2 Boundary conditions for the metric

Even though (4.12) is simpler than the original 4d action (2.1), the theory as it is is far too

complicated to be directly quantized. What one can do then is to separate the contribution of

the action into two pieces: one coming from the near-horizon region (NHR) — where we consider

the JT gravity limit of (4.12) at the quantum level — and the other coming from far away from

the black hole (FAR), in which the curvature is small and thus we assume that the classical

approximation is valid [7]. In principle, one cannot simply separate the two contributions: in

the gravitational path integral, one should only set the boundary conditions at infinity, allowing

the metric inside to fluctuate freely; this might also include different topologies and perhaps

complex metrics [37, 38]. Fixing the metric at its classical value in the FAR region thus might

not capture some of the quantum corrections due to gravity; however, given that the curvature

is small away from the horizon, one expects this approximation to hold relatively well. Notice

also that one could also expand around fluctuations of the FAR metric, computing perturbative

loop corrections due to the gravitons in the FAR region.

In the NHR region, however, the classical curvature is not negligible and thus we have to

consider the full quantum gravity. Fortunately, when expanding the dilaton as in (4.13), the

action (4.12) simply becomes a generalization of JT gravity, which one can then quantize much

more easily following different approaches [11, 23, 24, 8]. In the simplest approach, one must

first go from the generalized JT gravity description (4.12) to the corresponding generalized

Schwarzian; for example, the pure Schwarzian mode arises from the Gibbons–Hawking–York

boundary term of pure JT gravity. Thus understanding the correct boundary conditions to

impose at the boundary between the NHR and FAR regions (for the fields in the NHR action)

is essential to obtain the correct description of the near-extremal black holes. Another way to

see the importance of the boundary conditions is to rewrite the generalized JT gravity (4.12)
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as a BF theory (see sections 4.7 and 5.3) plus additional bulk contributions. A BF theory

is a 2d topological gauge theory; its whole dynamics is therefore determined by the boundary

conditions of the NHR region, highlighting once again how they encode the near-extremal degrees

of freedom. In particular, as we will show in section 5.3, the bosonic fields that will be included

into the BF description are essentially gµν ,Φ, a
I and B; in the supersymmetric case, there are

also the additional fermions λ and Ψ, which are respectively the dilatinos and the gravitinos of

the 2d theory. Therefore, we will be mainly concerned by their boundary conditions, without

caring too much about the scalars and the gauginos.

Now, choosing the correct boundary conditions for the NHR region is not simple and there

is no clear way to do so. Let us start from the metric gµν and the dilaton Φ. Ideally, we want to

glue together the NHR and FAR spacetimes along their boundary [7]; given that the FAR region

has a fixed spacetime, we want this boundary to be fixed. Hence we must impose the Dirichlet

boundary conditions δhuu|r∂ = 0 (with huu the intrinsic boundary metric) and δχ|r∂ = 0, along

a boundary set at a fixed distance r = r∂ close to the horizon in the FAR region, i.e. r∂ ∼ −∞.

There is also another reason to justify these Dirichlet boundary conditions. At the classical

level, when we calculate the entropy of the black holes from the Euclidean path integral, the ex-

tremal entropy essentially comes from the contribution of the horizon, i.e. the end of the “cigar”

shaped spacetime (typical of black hole geometries). We therefore want the JT gravity obtained

from the action (4.12) to produce exactly the extremal entropy S∗ = Area/4GN = πW 2
0 /GN .

As we will show in section 4.5, the extremal entropy contribution comes from rewriting — after

expanding the dilaton — the 2d Einstein–Hilbert action in terms of the Euler characteristic of

the 2d spacetime, using the Gauss–Bonnet theorem [39, 31]. In manifolds with a boundary, one

also has to include the usual Gibbons–Hawking–York boundary proportional to the extrinsic

curvature K to apply the Gauss–Bonnet theorem. Therefore one must have Dirichlet boundary

conditions both for gµν and Φ. Since Φ is just a scalar field, we also assume that the zi will

themselves satisfy Dirichlet boundary conditions at the boundary, even though, as said before,

we do not particularly care about them.

Let us now explicitly calculate how to join the FAR and NHR regions along their boundaries.

The 4d metric in the FAR is given by the classical solution (2.8); comparison to (4.1) implies:

χ =
e−2U

r2
,

gµνdx
µdxν = − e−U

W∞r

(︃
−e2Udt2 + e−2U dr

2

r4

)︃
,

√
−g = − e−U

W∞r3
.

(4.14)

In order to perform the matching we expand near the boundary at r = r∂ the quantities above.

In principle, to obtain an explicit expression for U(r) in the FAR region, we should solve (2.24);

doing so in full generality requires an explicit expression of W as a function of the zi, which
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requires us to specify a particular model of N = 2 supergravity (i.e. we need to pick the

prepotential F (XI)). To keep the discussion more general, we will employ the following approx-

imation: we consider only solutions whose values of the fields at infinity zi∞ are already “close

enough” to the values zi0 of the attractor. Let us quantify what this means. If we expand around

zi(xµ) = zi0 + δzi(xµ) and use the fact that zi0 are fixed points of the superpotentials W , we can

expand the first line of (2.24) as:

U ′ = eU
(︃
W0 +

1

2
∂
(2)
(i)(j)W0δz

(i)δz(j) + . . .

)︃
, (4.15)

where we use the notation (i) = i, i for the indices of the scalars to make the notation more

compact. If we fix zi∞ such that

1

2
∂
(2)
(i)(j)W0

(︂
z(i)∞ − z

(i)
0

)︂(︂
z(j)∞ − z

(j)
0

)︂
≪W0 , (4.16)

the second (and higher) order terms of (4.15) become negligible, and thus we can approximate

U ′ ≈ eUW0 (4.17)

throughout the whole solution (and not just in the NHR region, as in (3.1)). This equation is

then solved by

e−U(r) = −W0r + 1 , (4.18)

which gives us an explicit expression of U(r), independent from the specific supergravity model.

Expanding near the boundary at r = r∂ thus yields13:

huu = gtt|r∂ ≈ −
1

W∞W0r2∂
+ . . . ,

χ|r∂ ≈W
2
0 − 2

W0

r∂
+ . . . .

(4.19)

Notice also that, for constant radius surfaces of radius r∂ , the intrinsic boundary metric huudu
2

coincides with gttdt
2. In the NHR region, instead, we have a generalized JT gravity. The

linearized dilaton acts as a Lagrange multiplier, enforcing a (near-)AdS2 metric:

ds2NHR = ℓ2
−dt2 + dr2

r2
, (4.20)

where the AdS radius ℓ will be determined in section 4.5. As the dilaton moves towards the

boundary, its value diverges in the near-AdS case [11]; to avoid this divergence, we cut the AdS2

spacetime by adding a boundary, which acts as an IR cutoff. The boundary is chosen such that

13 u is the intrinsic boundary time coordinate that parameterizes the boundary in both the FAR and NHR
region.
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— with Euclidean boundary time u ∈ (0, β) — we have:

huu =
ℓ2

ε2
,

χ|r∂ = χ0 + 2GN
Φren

ε
+ . . . ;

(4.21)

here we introduced the renormalized dilaton Φren = ε Φ|r∂ , which remains finite near the bound-

ary. Finally, comparing (4.19) and (4.21) yields the matching conditions between the FAR and

NHR regions:

χ0 =W 2
0 ,

GNΦren =W
3/2
0 W 1/2

∞ ℓ ,

r∂ =
ε

W
1/2
0 W

1/2
∞ ℓ

.

(4.22)

As for the other scalars, we will assume that, due to the attractor mechanism in the FAR region,

the fields at the boundary will be essentially at their fixed points, that is zi
⃓⃓
r∂
≈ zi0.

Now that we found the correct boundary conditions for the metric and the dilaton of the

reduced action (4.12), let us briefly discuss the boundary terms that one needs to add to the

action in the NHR region in order to obtain the correct variations. Notice that in principle we

should do the same also for the FAR region action, in order to get the complete treatment of

the black hole thermodynamics; however, since the contribution of the FAR region is just a shift

in the extremal energy that does not modify the spectrum of the black hole (as we will briefly

explain in section 4.3), we will just focus on the NHR region. When gluing together the NHR

and FAR region, we impose Dirichlet boundary conditions fixing the boundary as a circle of

fixed length:

huu|r∂ =
ℓ2

ε2
=⇒ δhuu|r∂ = 0 ; (4.23)

we thus need to add the usual Gibbons–Hawking–York boundary term to (4.12),

S2d
∂,grav =

2π

κ2

∫︂
du
√
−hχK , (4.24)

where K is the extrinsic curvature of the boundary. For what concerns the dilaton χ and the

scalars zi, we also chose the Dirichlet boundary conditions:

χ|r∂ =W 2
0 +

2GNΦren

ε
=⇒ δχ|r∂ = 0 ,

zi
⃓⃓
r∂

= zi0 =⇒ δzi
⃓⃓
r∂

= 0 ,
(4.25)

where zi0 are the fixed points of the black hole attractor flow determined by which basin of

attraction the scalar at infinity zi∞ belong to. Therefore, we do not need to add boundary terms
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for the scalars in order to have a well defined variational problem.

4.3 Boundary conditions for the gauge fields

Picking the boundary conditions for the gauge fields is instead far trickier. In particular, the

situation is rather problematic given the plethora of boundary conditions that we can already

put on them at infinity. An approach to tackle this problem has been proposed by [7, 10, 8]: the

idea is to set the boundary conditions at infinity and then “propagate” them to the NHR/FAR

boundary using the equation of motions. To argue why this could be the case, let us try to

translate this idea in terms of path integrals. The partition function of the original theory can

be written heuristically as

Z =

∫︂
Ψ(0)=Ψ∞

DΨeiS
4d(Ψ) , (4.26)

where we denote collectively all the fields with Ψ and the measure DΨ includes the appropriate

quotient over the gauge and (super-)diffeomorphisms groups. What we want to highlight is the

fact that, since spacetime itself is dynamical, we can just set the boundary conditions at spatial

infinity — collectively denoted as Ψ(r = 0) = Ψ∞ — and thus we cannot in principle distinguish

between the FAR and NHR region. However, if we ignore possible non-perturbative effects away

from the horizon, we can expand perturbatively around the classical metric (3.3) in the FAR

region. This allows us to identify a FAR region going from spatial infinity (r = 0) down to a

fixed arbitrary radius r = r∂ , where the background spacetime is fixed and gravitons propagate.

The remaining NHR region, instead, still contains a dynamic spacetime, and is joined with the

FAR region at its boundary. In terms of path integrals, this can be expressed as:

Z =

∫︂
DΨ∂

∫︂
ΨNHR(r∂)=Ψ∂

DΨNHReiS
4d(ΨNHR)

∫︂ ΨFAR(r∂)=Ψ∂

ΨFAR(0)=ΨFAR
∞

DΨFAReiS
4d(ΨFAR) . (4.27)

Now we employ the classical approximation in the FAR region. This amounts to simply solving

the equation of motions of ΨFAR while imposing the boundary conditions ΨFAR(0) = ΨFAR
∞ , thus

evaluating the action S4d
(︁
ΨFAR

)︁
on-shell. There is however another consequence due to the

presence of the other boundary at r = r∂ : the classical equations of motion will constrain the

possible values of the field Ψ∂ at the boundary between the NHR and FAR region to a subset

Ψconstr
∂ . In formula this becomes:

Z = eiS
4d(ΨFAR

eom )
∫︂
Ψconstr

∂

DΨ∂

∫︂
ΨNHR(r∂)=Ψ∂

DΨNHReiS
4d(ΨNHR) . (4.28)

The role of the FAR region is thus twofold: first, it provides a contribution exp
[︁
iS4d

(︁
ΨFAR

eom

)︁]︁
to the partition function; second, most importantly, it propagates the boundary conditions at

infinity to the new boundary at r = r∂ , altering the dynamic of the NHR modes. This is

particularly important for the gauge fields, given the various possible choices for their boundary

conditions already at infinity. Finally, notice that the contribution to the action of the FAR
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region just amounts to a shift in the extremal energy of the black hole, and thus cannot influence

the near-extremal dynamics and in particular the presence of a mass gap. In fact, the classical

black hole solutions we are interested in are static, and thus the integral in time of the action

factors out; after Wick rotation, we therefore get an overall β factor multiplying the spatial

integrals which are β independent. This means that

e−S
4d(ΨFAR

eom ) = e−β·const , (4.29)

i.e. the on-shell action only changes the extremal energy. While we justified this procedure

heuristically in 4d, [7, 8, 10] propose to apply it directly using the 2d action (4.12) (in place of

the original 4d action (2.1)).

Let us now attempt to propagate the boundary conditions of the gauge fields, starting from

the U(1) gauge fields. The equations of motion given by (4.12) are:

d
(︂
χ3/2IIJ ⋆ f

I
)︂
= 0 . (4.30)

If we look for electrically charged solutions, these equations are solved by:

aI =

(︃
c(0)

I +

∫︂ r

0
dr′ e2U

(︁
I−1
)︁IJ

c(1)J

)︃
dt ,

f I = −e2U
(︁
I−1
)︁IJ

c(1)Jdt ∧ dr ;
(4.31)

c(0)
I and c(1)J are two constants that must be determined by imposing the boundary conditions

at infinity. Notice also that a|r=0 = c(0)
I ; in fact, the integral in the first line vanishes, provided

that
(︁
I−1
)︁IJ

reaches a finite value as r → 0. Let us now impose the boundary conditions at

infinity (r → 0). If we fix the field strength at infinity — δf I |∞ = 0 — by specifying electric

charges via (2.14), we have:

c(0)
I undetermined , c(1)I =

qI
4π

; (4.32)

this means that fixing f I at infinity also completely fixes f I at the boundary between the NHR

and FAR region as

4π f I
⃓⃓
r∂

= −
[︂
e2U

(︁
I−1
)︁IJ]︂⃓⃓⃓

r∂
qJdt ∧ dr , (4.33)

where in the second line we expanded for r → r∂ . Something different happens instead if we

want to fix the holonomy along the imaginary time boundary at infinity. Using (2.16) we get:

c(0)
I = −i

(︃
µI +

2πi

β
nI
)︃
≡ −iµIn , c(1)I undetermined , (4.34)

with nI ∈ ZI a vector of integers characterizing solutions differing from large gauge transforma-

tions. The constant c(1)I is left undetermined, and we can thus express it in terms of f I and

30



then plug it back into the expression (4.31) of aI . Looking at the boundary r = r∂ , we now have

— fixing the holonomy at infinity — that:∮︂
r=r∂

aI −
∫︂
r∈(r∂ ,0)

f I = −iµInβ =

∮︂
r=0

aI . (4.35)

Fixing the holonomies of the gauge fields at infinity thus does not fix the holonomies at the

boundary between NHR and FAR, but rather fixes a particular combination of the electromag-

netic potentials and the field strengths.

Let us now work out the correct boundary terms for (4.12), which are needed to obtain the

correct variational problem. Let us start from fixing the charges qI at infinity: expanding around

r → r∂ equation (4.33), we have

4π ⋆ f I
⃓⃓
r∂
≈ −W∞

W 3
0

(︁
I−1
0

)︁IJ
qJ + . . . =⇒ δf I

⃓⃓
r∂

= 0 . (4.36)

The correct boundary term one needs to add is then:

S2d,δf
∂,EM = −4π

κ2

∫︂
∂

χ3/2

W∞
IIJa

I ∧ ⋆fJ =
qI
κ2

∫︂
∂
aI =

qI
κ2

∫︂
f I , (4.37)

where in the last equivalence we used Stoke’s theorem. If we instead fix the chemical potentials

µI at infinity, we must impose (4.35) at the boundary between FAR and NHR; expanding around

r → r∂ — using (3.2) and χ2 =W 2
0 + . . . — we have:

aI
⃓⃓
r∂

+
W 2

0

W∞
⋆f I
⃓⃓
r∂
dt ≈ −iµIndt+ . . . =⇒

[︃
δaI +

W 2
0

W∞
⋆ δf Idt

]︃⃓⃓⃓⃓
r∂

= 0 . (4.38)

These mixed boundary conditions are a hybrid between fixing the holonomy (which requires no

additional boundary term) and fixing the field strength (see (4.37)). The correct boundary term

one needs to add to the action is:

S2d,δa
∂,EM =

2π

κ2

∫︂
∂
du

W 5
0

W∞
I0IJ ⋆ f

I ⋆ fJ . (4.39)

Finally, we will repeat the same steps for the SU(2) gauge field; since we will be mainly

interested in fixing the angular velocity of the black holes, we will focus directly on the case of

fixed holonomy at infinity. The equations of motion for B are

D
(︂
χ5/2 ⋆ H

)︂
= d

(︂
χ5/2 ⋆ H

)︂
− χ5/2[B, ⋆H] = 0 . (4.40)
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Searching for black holes solutions rotating along the polar axis14, we find:

B =

(︃
c̃(0) +

∫︂ r

0
dr′ e4Ur′2c̃(1)

)︃
dt T3 ,

H = −e4Ur2c̃(1)dt ∧ dr T3 .
(4.41)

Fixing the holonomy of B at infinity, i.e. the angular velocity, via

P
(︂
e
∮︁
B
)︂
= e−2iΩβT3 , (4.42)

gives

c̃(0) = 2

(︃
Ω+

2πi

β
n

)︃
≡ 2Ωn , c̃(1) undetermined . (4.43)

Fixing the holonomy at infinity thus implies the following matching condition:∮︂
r=r∂

B −
∫︂
r∈(r∂ ,0)

H = 2ΩnβT3 =

∮︂
r=0

B; (4.44)

notice that this condition is exactly the same as (4.35), the one for U(1) gauge fields, despite

the differences in the action (4.12) between the two types of gauge fields and the presence of the

scalars in the U(1) gauge kinetic functions. Expanding (4.44) around r → r∂ yields:

B|r∂ +
W 2

0

3W∞
⋆H|r∂ dt ≈ 2Ωndt T3 + . . . =⇒

[︃
δB +

W 2
0

3W∞
⋆ δHdt

]︃⃓⃓⃓⃓
r∂

= 0 ; (4.45)

the boundary term needed for the correct variational principle is thus:

S2d,δB
∂,SU(2) =

4π

9κ2

∫︂
∂
du

W 7
0

W 2
∞

Tr
[︂
(⋆H)2

]︂
. (4.46)

Although this procedure of “propagating” the boundary conditions seems fine, it provides

quite problematic results. In fact, if we continue with the analysis of the theory (4.12) using

the steps of the next sections (4.4, 4.5 and 4.6), what we get with these boundary conditions is

not the bosonic part of the N = 4 super-Schwarzian, despite what is claimed in [8, 10]15. While

this is in stark contrast with the analysis purely based on symmetry breaking considerations

of section 3.3, in principle this might just signal that these symmetry considerations are not

enough to capture the near-extremal black hole dynamics. There is another reason, however, to

believe that the propagated boundary conditions (4.44) are wrong. The generalized Schwarzian

14 We always have the freedom to rotate (in 4d) or gauge transform (in 2d) to get black holes rotating along the
polar axis.

15 While [8] does claim that one gets the bosonic part of the N = 4 super-Schwarzian, there are many typos
and inconsistencies in the paper; in particular the boundary conditions for B are different in different formulas
(see page 15 versus equation (4.48) at page 51) and there are some missing 2 factors in the treatment of the B
fields (see equations (4.35) and (4.37) from pages 46/47). Therefore we will proceed differently in our discussion
of the boundary conditions, even though this point requires certainly further investigation.
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that one obtains is in fact of the form:

S = − 1

MPSU(1,1|2)

∫︂ β

0
duSch

(︃
tan

πτ(u)

β
, u

)︃
− 1

2
Tr
[︂(︁
g−1(u)g′(u)

)︁2]︂
, (4.47)

which, as we already said, is different from the N = 4 super-Schwarzian action (3.19). The issue

with this action is that, apart to the factor of 1/2 in front of the trace, we also get an additional

− sign; this gives the wrong sign to the kinetic term of the particle moving in SU(2), making the

action unphysical. The origin of this paradoxical behavior is unclear to us; one possible source

for the problem might be the fact that, while we are working in the 2d theory, the separation

in NHR and FAR region should be analyzed in the full 4d supergravity, in which the B field

becomes itself part of the metric. Notice also that we could check the validity of the procedure of

propagating the boundary condition by applying it to the metric gµν and then checking whether

or not we recover (4.22) (even though we will not do so in this work).

Therefore, we must find another way to pick the boundary conditions for the gauge fields.

As we will show in section 5.3, we argue that the boundary conditions for the B field — once

fixing the holonomy at infinity — should be:

B|r∂ −
W 2

0

6W∞
⋆H|r∂ dt ≈ 2Ωndt T3 + . . . =⇒

[︃
δB − W 2

0

6W∞
⋆ δHdt

]︃⃓⃓⃓⃓
r∂

= 0 ,

S2d,δB
∂,SU(2) = −

2π

9κ2

∫︂
∂
du

W 7
0

W 2
∞

Tr
[︂
(⋆H)2

]︂
;

(4.48)

they differ from (4.45) only for the factor of −1/2 in front of ⋆H, needed to recover the bosonic

part of the N = 4 super-Schwarzian. In the following, we will just assume that (4.48) holds

true, leaving the explanation for this (as of now arbitrary) choice to section 5.3.

Finally, the problems arising in the treatment of the B field at fixed holonomy suggests

that the propagation for the U(1) gauge fields — namely (4.35) and (4.33) — might also be

incorrect. In particular, from the B field results, we can argue that the procedure is somewhat

problematic, but at least provide the right kind of mixed boundary conditions, although off by

few numerical factors. We are substantially interested in just fixing the charges of the black

holes, rather than the electric potentials; since the boundary condition δf I = 0 is independent

on eventual proportionality constants, we might think that (4.33) still holds true. We also point

out that, since there are no charged objects in the FAR region, all the charges measured at

the near horizon must be the same as the one measured at infinity. This is exactly what the

boundary conditions (4.33) implies, and thus we will assume in the following that they remain

valid, even though a more accurate analysis of the boundary conditions of the gauge fields is

needed to better validate the results.
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4.4 Simplifying the action

We now have to find a way to quantize the action (4.12). Before doing so, however, we

will further simplify (4.12) in order to get a more manageable problem. First off, since we are

interested in computing the 1-loop quantum corrections, it is convenient to linearly expand the

scalars and the gauge fields around their classical values. As for the scalars, we will expand

them as

zi(xµ)→ zi0 + zi(xµ) , (4.49)

where we will only keep terms up to order O
(︁
(zi)2

)︁
in the action. Notice that we avoid calling

the fluctuations δzi — and simply use zi instead — in order to make the notation less cluttered;

we will do the same for the other fields we expand. As for the SU(2) gauge field, since we are

expanding around extremal configurations which are not rotating, the classical values of the field

is B = 0; the expansion is thus simply:

B(xµ)→ 0 +B(xµ) ,

H(xµ)→ 0 +H(xµ) = 0 + (dB −B ∧B) = dB .
(4.50)

Finally, for the U(1) gauge fields, we will focus for simplicity on the case where we fix the electric

charges of the black holes. In particular, spherical symmetry — together with (2.14) — dictates

⋆f I
⃓⃓
eom

= −W∞χ
−3/2I−1

0
IJ qJ

4π
(4.51)

throughout the classical solution. Therefore we expand:

aI → aIeom + aI ,

⋆f I → ⋆d
(︁
aIeom + aI

)︁
= −W∞χ

−3/2
(︁
I−1
0

)︁IJ qJ
4π

+ ⋆f I ,
(4.52)

where we left the classical value of the gauge fields aIeom implicit. Finally, notice that we did

not use the explicit expression of the metric gµν and of the dilaton χ to expand the scalars and

the gauge fields; therefore, we can safely leave them in their fully non-linear expression, making

it easier to recognize and treat JT gravity. Plugging the expansions back into the respective

actions, and using the fact that the attractor solution is not only a fixed point of W but also of

VBH (i.e. the classical equation of motion), we get the action for the gauge fields and the scalars
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(where we include the appropriate boundary terms):

S =− 4π

κ2

∫︂
⋆1
(︂
W∞W

2
0χ

−3/2 + g0ij∂µz
i∂µzj

)︂
+

2π

κ2

∫︂
W−1

∞ χ3/2I0IJf
I ∧ ⋆fJ − 4π

κ2

∫︂
qI
4π
I−1
0

IJ
∂(i)I0JKz

(i)fK

− 2π

κ2

∫︂
⋆1W∞χ

−3/2M2
(i)(j)z

(i)z(j)

− 8π

3κ2W∞

∫︂
χ5/2Tr (H ∧ ⋆H)− 2π

9κ2

∫︂
∂
du

W 7
0

W 2
∞

Tr
[︂
(⋆H)2

]︂
,

(4.53)

where the index (i) runs over (i) = i, i, z(i) = (zi, zi) and we defined the scalar mass matrix

M2
(i)(j) :=

1

2

(︂
∂
(2)
(i)(j)I0IJ

)︂(︂
I−1
0

IK qK
4π

)︂(︂
I−1
0

JL qL
4π

)︂
. (4.54)

First off, on the first line we see that the expansion generates a term proportional to

W 2
0 = VBH|r→−∞ = −1

2

(︁
I−1
0

)︁IJ qI
4π

qJ
4π

; (4.55)

this term essentially acts as a cosmological constant due to the fixed charges of the black hole,

and it is the dominant term that fixes the near-AdS background. Then we have, apart from the

usual kinetic terms for the scalars and the U(1) gauge fields, a mass term (∼ z(i)z(j)) for the

scalars proportional to the charges ∼ qI
2 and an interaction term between the scalars and the

gauge fields (∼ z(i)fK); both of them are due to the presence of the scalars in the gauge kinetic

functions of the action (4.10). The interaction term appears to greatly increase the complexity

of the dynamics, coupling the gauge fields and the scalars fluctuations together. We can however

work around this problem by defining a new composite “U(1) field strength”:

˜︁f I = f I −W∞χ
−3/2 qK

4π
∂(i)

(︁
I−1
0

)︁KI
z(i) ⋆ 1 . (4.56)

In terms of this new field, we can rewrite the second and third line of (4.53) as:

+
2π

κ2

∫︂
W−1

∞ χ3/2I0IJ ˜︁f I ∧ ⋆ ˜︁fJ
− 2π

κ2

∫︂
⋆1W∞χ

−3/2˜︂M2
(i)(j)z

(i)z(j) ,

(4.57)

with the new scalar mass matrix

˜︂M2
(i)(j) = ∂

(2)
(i)(j) VBH|r→−∞ . (4.58)

While this may seem just a way to rewrite the action, this allows us to essentially reabsorbe the

∼ z(i)f I interaction, leaving only the additional mass term for the scalars. The contribution
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of the SU(2) gauge field, instead, is left unchanged16. Considering the B field as a fluctuation

will however be important in section 5.1, where it will simplify the dimensional reduction of the

fermions. Finally, in terms of the fluctuations around the classical solutions, we can express the

boundary conditions (4.33), (4.44) and (4.25) as17:

zi
⃓⃓
r∂

= 0 ,˜︁f I ⃓⃓⃓
r∂

= 0 ,

B|r∂ =
W 2

0

6W∞
⋆H|r∂ du+ 2ΩnduT3 .

(4.59)

Next, to further simplify the treatment of the gauge fields in the action (4.53), we will employ

a typical trick used to deal with 2d gauge theories [40]. What one can do is to rewrite the action

in terms of the Lie-algebra-valued scalars ⋆ ˜︁f I and ⋆H in place of the field strength ˜︁f I and H. To

do so, we introduce the Lie-algebra-valued Lagrange multipliers φI and b respectively, related

to ⋆ ˜︁f I and ⋆H by:

⋆ ˜︁f I = 2GNW∞χ
−3/2φI ,

⋆H = 3GNW∞χ
−5/2b .

(4.60)

In terms of these Lagrange multipliers, we can rewrite the contributions of the gauge fields to

the action (together with their boundary conditions) as:

S =
2π

κ2

∫︂
W−1

∞ χ3/2I0IJ ˜︁f I ∧ ⋆ ˜︁fJ
=

∫︂
I0IJφ

I ˜︁fJ +GNW∞

∫︂
⋆1χ−3/2I0IJφ

IφJ ,

φI
⃓⃓
r∂

=0 ,

(4.61)

and

S =
4π

3κ2W∞

∫︂
χ5/2Tr (H ∧ ⋆H)− 2π

9κ2

∫︂
∂
du

W 7
0

W 2
∞

Tr
[︂
(⋆H)2

]︂
=

∫︂
Tr [bH] +

3

2
GNW∞

∫︂
⋆1χ−5/2Tr

[︁
b2
]︁
− GN

4W 3
0

∫︂
∂
du Tr

[︁
b2
]︁
,

B|r∂ =
GN
2W 3

0

b|r∂ du+ 2ΩnduT3 .

(4.62)

16 In principle we should replace H = dB − B ∧ B → dB in the action if we expand up to second order, but
essentially this does not simplify further our treatment.

17 Notice that we deliberately confuse the boundary time u (which coincide for both the NHR and FAR region)
with the time t in the FAR region, since the two match at the boundary.
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4.5 Extracting the boundary modes

We are now finally ready to combine all the pieces back together and extract the boundary

modes that describe the near-extremal dynamics. To do so, we merge the purely gravitational

terms of the 2d action (4.12) with the action (4.53) written in terms of the Lagrange multipliers

φI and b. In order to recover JT gravity, we linearize the dilaton in all the terms of the action

as in (4.13). The bosonic part of the final 2d action dictating the near-extremal dynamics is:

S2d
bos =

W 2
0

GN
πχ(M) +

∫︂
⋆1

Φ

2

(︃
R+

2

ℓ2
(1 + ∆bos)

)︃
+

∫︂
∂
du
√
−h Φ|r∂ K

+

∫︂
⋆1

(︃
−4πW 2

0 g0ij∂
µzi∂µz

j − 1

4GNℓ2
˜︂M2

(i)(j)z
(i)z(j)

)︃
+

∫︂
I0IJφ

I ˜︁fJ +

∫︂
⋆1
GN
ℓ2
I0IJφ

IφJ

+

∫︂
Tr [bH] +

3

2
GNW∞

∫︂
⋆1χ−5/2Tr

[︁
b2
]︁
− GN

4W 3
0

∫︂
∂
du Tr

[︁
b2
]︁
.

(4.63)

Here we defined the AdS radius18

ℓ =
W

3/2
0

W
1/2
∞

, (4.64)

and the dynamical correction to the AdS radius

∆bos =−
6GN
W 2

0

I0IJφ
IφJ +

3GN
W 2

0

I0IJφ
I qK
4π
∂(i)

(︁
I−1
0

)︁KI
z(i) − 15GN

W 4
0

Tr
[︁
b2
]︁

− 16πGNℓ
2g0ij∂

µzi∂µz
j +

6

W 2
0

˜︂M2
(i)(j)z

(i)z(j) ;

(4.65)

we also have that

2πχ(M) =
1

2

∫︂
d2x
√
−g R+

∫︂
∂
du
√
−hK (4.66)

is the Euler characteristic of the 2d spacetime [39, 41, 31]. Starting from the top, we have the

term proportional to χ (M) = 1 (for a disk) that provides the classical extremal entropy S∗ of

the black hole:

S∗ = π
W 2

0

GN
=

1

4GN

(︁
4πW 2

0

)︁
=

Area

4GN
. (4.67)

Next, we have the bulk term proportional to the dilaton Φ; the dilaton acts as a Lagrange

multiplier, forcing the spacetime to be (near-)AdS. The dominant contribution to the AdS

18 The mismatch between this AdS radius ℓ = W
3/2
0 /W

1/2
∞ and ℓ = W0 (from (3.3)) is just a consequence of the

different normalizations of the 2d metrics (along t and r) of (4.1) and (3.3). This actually gives us a way to check
if our calculations make sense. In particular, we expect the near-extremal dynamics in the NHR to be dependent
only on the properties of the near-horizon, that is on the charges of the black hole and the values of the scalars
at the attractor of the flow, and thus on W0 only. While ℓ = W

3/2
0 /W

1/2
∞ depends also on W∞, we will show in

section 4.6 that the whole near-extremal dynamics depends only on the length scale Φren. Calculating Φren using
(4.22), we see that the dependence on W∞ cancels, since Φren = W 3

0 /GN , leaving all the dependence only on W0

(as expected) and giving us a simple check that our calculations make sense.
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radius is given by the classical part of the U(1) gauge fields, i.e. from the fixed electric charges

of the black hole; the corrections contained in ∆bos instead come from all the fluctuations around

the background values of the other fields. Next, we have the Gibbons–Hawking–York boundary

term ∼ ΦK, which contains the Schwarzian mode dominating the gravitational dynamics in the

near-extremal limit. Finally, we have the contributions of nV free massive scalars, nV + 1 U(1)

gauge fields and an SU(2) gauge field (together with its boundary term).

To further simplify (4.63), we will adopt one more approximation, namely the macroscopic

or large mass (or charge) limit [8]. Since our original supergravity theory only holds down to

length scales of the order of the Planck length ℓP ∼
√
GN , we can only trust it when analyzing

extremal black holes whose horizon is much larger than the Planck length, i.e. in the limit

W0,W∞, ℓ≫
√︁
GN . (4.68)

In this limit, we have two major simplifications in the action (4.63). First, the dynamical

corrections to the AdS radius become suppressed: ∆bos/ℓ
2 ≪ 1; approximating ∆bos ≈ 0, we

see that Φ now forces properly the spacetime to be locally AdS, with a fixed AdS radius ℓ.

Notice that, apparently, the contributions of the scalars is not suppressed; however, after we

rescale g0ij → g0ij/W
2
0 and ˜︂M2

(i)(j) → GNℓ
2˜︂M2

(i)(j) to get properly normalized kinetic and mass

terms for the z(i), we see that the scalars contributions to ∆bos are in fact suppressed in the

macroscopic limit. The second simplification is that the bulk terms proportional to φIφJ and b2

are also suppressed19 with respect to the terms φI ˜︁fJ and bH. With these approximations, the

action (4.63) can be divided20 into a purely topological term Stop
bos — which contains JT gravity

together with the gauge fields — and a more usual bulk contribution Sbulk
bos :

S2d
bos =S

top
bos + Sbulk

bos ,

Stop
bos =

∫︂
⋆1

Φ

2

(︃
R+

2

ℓ2

)︃
+

∫︂
∂
du
√
−h Φ|r∂ K

+

∫︂
I0IJφ

I ˜︁fJ +

∫︂
Tr [bH]− GN

4W 3
0

∫︂
∂
du Tr

[︁
b2
]︁
,

Sbulk
bos =

∫︂
⋆1

(︃
−4πW 2

0 g0ij∂
µzi∂µz

j − 1

4GNℓ2
˜︂M2

(i)(j)z
(i)z(j)

)︃
.

(4.69)

However, the presence of scalars — whether massive or massless — can only modify the extremal

entropy and energy of the black holes, without actually modifying the other properties of the

spectrum. As explained in section (4.3) of [7] (see also [42]), the 1-loop determinant of the scalars

can be computed using the Gelfand-Yaglom method [43]. The result of this calculation is that

the only temperature dependent contribution of the scalars 1-loop determinant to the partition

19 We will however keep the boundary term proportional to b2 since it is the only non-zero term in the action
and it is not dominated by any other term.

20 From now on we will forget the term proportional to χ (M), since it only contributes to the extremal entropy
and it does not influence the qualitative features of the spectrum.
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function is independent of the masses of the scalars21; therefore, one can then calculate it using

massless scalars. Massless scalars on a Poincaré disk can then be treated as a 2d Conformal

Field Theory (CFT). The end result is that — after appropriate renormalization — they only

contribute to the extremal entropy (i.e. they provide just a constant term), and thus do not

modify the temperature dependence of the partition function [7]; for this reason, the whole

near-extremal dynamic is determined just by Stop
bos. Finally, since there are no boundary terms

related to ˜︁f I in the action, integrating out φI eliminates the bulk contribution without leaving

any boundary term coming from the U(1) gauge fields; the ˜︁f I do not influence the spectrum

and thus we will ignore them in the following analysis.

4.6 Analysis of the bosonic boundary modes

Let us now finally analyze the remaining contribution to the topological 2d action Stop
bos, which,

after Wick rotating, becomes:

Stop
bos =−

∫︂
⋆1

Φ

2

(︃
R+

2

ℓ2

)︃
−
∫︂
∂
du
√
−h Φ|r∂ K

− i
∫︂

Tr [bH] +
GN
4W 3

0

∫︂
∂
du Tr

[︁
b2
]︁
.

(4.70)

The most straightforward way to show that Stop
bos is topological is to integrate out the Lagrange

multipliers Φ and b. This way, all the 2d bulk integrals are set to 0 and we are left with just the

boundary terms:

S = −
∫︂ β

0
du
√
−h

(︃
Φ|r∂ K −

GN
4W 3

0

Tr
[︁
b2
]︁)︃

. (4.71)

We will now cast the above action as (the bosonic part of) the generalized Schwarzian theory

which controls the dynamics of near-extremal black holes.

Starting from the Gibbons–Hawking–York boundary term, we follow the usual procedure for

obtaining the Schwarzian action from JT gravity [11, 12]. We parameterize the boundary of

AdS, with metric

ds2AdS = gµνdx
µdxν = ℓ2

dt2 + dr2

r2
, (4.72)

using

ds2∂ = ℓ2
r′(u)2 + t′(u)2

r(u)2
du2 ; (4.73)

here t(u) is a monotonic function that is always growing, with t′ > 0 always. Let us now impose

the boundary condition (4.22):

ds2∂ =
ℓ2

ϵ2
du2 . (4.74)

21 Dependence on the scalar masses only enters as a shift in extremal entropy, which we do not care about.
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If we make the change of variable

t(u) = tan
πτ(u)

β
, (4.75)

where τ(u) is thus an element of Diff(S1), we have

K = 1 +
ε2

ℓ
Sch

(︃
tan

πτ(u)

β
, u

)︃
+ . . . . (4.76)

Notice that the K = 1 + . . . gives a divergent contribution proportional to β when inserted

into the action (4.71); this divergent contribution can however be simply removed by a local

counterterm, and thus we are free to ignore it. Plugging everything back into the Gibbons–

Hawking–York boundary term yields the effective boundary action

S = −Φren

∫︂ β

0
duSch (t(u), u) = −Φren

∫︂ β

0
duSch

(︃
tan

πτ(u)

β
, u

)︃
, (4.77)

with the renormalized dilaton

Φren =
W 3

0

GN
(4.78)

controlling the energy scale associated to the Schwarzian effective theory.

As for the SU(2) component of the boundary term (4.71), we can rewrite it in terms of the

B field by using (4.62) (after Wick rotation) as:

S =
GN
4W 3

0

∫︂ β

0
du Tr

[︁
b2
]︁
= −Φren

∫︂ β

0
du Tr

[︂
(Bu + 2iΩnT3)

2
]︂
. (4.79)

This is useful because from (4.70) we see that integrating out b forces H = 0, i.e. the SU(2)

gauge field becomes pure gauge. Near the boundary we thus have

Bu = −˜︁g−1(u)∂u˜︁g(u) , (4.80)

where ˜︁g(u) maps u to an SU(2) matrix in the fundamental representation, implying:

S = −Φren

∫︂ β

0
du Tr

[︂
(Bu + 2iΩnT3)

2
]︂
= −Φren

∫︂ β

0
du Tr

[︂(︁˜︁g−1(u)˜︁g′(u)− 2iΩnT3
)︁2]︂

. (4.81)

Finally, defining g(u) := exp (2iΩnT3u) ˜︁g(u), we can rewrite the above action as

S = −Φren

∫︂ β

0
du Tr

[︂(︁
g−1(u)g′(u)

)︁2]︂
, (4.82)

where g(u) now has the periodicity condition:

g(β) = e−2iΩnT3βg(0) . (4.83)
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We have therefore managed to rewrite the boundary action (5.21) as the following generalized

Schwarzian theory:

Sbos
eff = −Φren

∫︂ β

0
du

(︃
Sch

(︃
tan

πτ

β
, u

)︃
+Tr

[︂(︁
g−1g′

)︁2]︂)︃
; (4.84)

in particular, since we started from the bosonic part of the original 4d supergravity, we should

interpret this as the bosonic part of the effective generalized Schwarzian theory which de-

scribes the near-extremal dynamics. The action above is exactly the action of a Schwarzian

boundary mode together with a particle moving on a SU(2) group manifold (with a non-

zero holonomy), which together describe the symmetry breaking of the bosonic isometry group

SL(2,R)×SU(2)→ ∅×U(1), as explained in section 3.3. Notice that the action (4.84) does not

distinguish between supersymmetric and non-supersymmetric attractors; this is to be expected,

since the bosonic symmetry breaking pattern is the same in both for the supersymmetric and

non-supersymmetric case. This means, however, that in order to check whether the supersym-

metric and non-supersymmetric spectra differ we must also perform the dimensional reduction

of the fermionic sector of the supergravity (2.1). We also see that, as argued once again in

section 3.3, the energy scales associated to the SL(2,R) and SU(2) symmetry breaking are re-

lated to each other as expected from the supersymmetric N = 4 super-Schwarzian, even in the

non-supersymmetric case; in particular they are related to the renormalized value of the dilaton

at the boundary:

MPSU(1,1|2) =MSL(2) =MSU(2) =
1

Φren
=
GN
W 3

0

. (4.85)

Finally, notice that the U(1) gauge fields have no impact on the near-extremal dynamics, as

long as we fix the electric charge of the black hole. Had we fixed the chemical potentials µI

instead, there would be two main differences with respect to the previous analysis. First, there

would be another additional boundary term22:

S ∼ GN
W0

∫︂ β

0
du I0IJφ

IφJ . (4.86)

After integrating out the φI and imposing the pure gauge condition f I = 0, this would result

in a new boundary term23:

S ∼ −W0

GN

∫︂ β

0
du I0IJα

I ′(u)αJ ′(u) , (4.87)

where the functions αI(u) — analogously to the g(u) — satisfy aIu = i∂uα
I(u). These boundary

modes describe nV +1 U(1) symmetry breakings; notice that the energy scale of these symmetry

22 Modulo the additional complication of understanding the correct mixed boundary conditions for the U(1)
gauge fields, since we might encounter a similar problem to that of the SU(2) gauge field of section 4.3.

23 Note that technically to obtain the following boundary term we also expanded the chemical potential µI

around its background value.
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breakings is not given simply by GN/W0, since we also have the explicit appearance of I0IJ in

the action. A similar U(1) boundary mode, describing the breaking of only one U(1), arises —

without the dependence on I0IJ — in the bosonic part of the N = 2 super-Schwarzian [44]; for

its application to the description of near-BPS black holes, see [9]. The second difference with

respect to the action (4.84) is however quite problematic: changing boundary conditions flips

the sign of the cosmological constant +2/ℓ2 → −2/ℓ2 in the term proportional to Φ. Therefore

the spacetime is not AdS anymore, it becomes dS instead; this makes the interpretation of the

JT gravity somewhat troublesome, since heuristically one identifies the AdS2 background of JT

gravity with the near-horizon AdS2 throat of the extremal black hole. A possible interpretation

of this peculiar behavior is that when we calculate the partition function and we fix the holonomy,

already at the classical level we are summing over all the possible values of the charges qI . This

way, we are including in the sum also black holes that do not respect the macroscopic limit

(and thus ∆bos cannot be neglected), and even black holes whose horizon is comparable to the

Planck length ℓP ∼
√
GN ; hence the supergravity description breaks down. When we instead

fix the charges and consider the macroscopic limit, we are sure that the black holes that we

sum over in the partition function have a horizon which is much greater than ℓP , and we are

thus in a regime where the supergravity still holds. Notice that a somewhat similar problem

seems to arise in24 [7]; in that instance, when one consider the partition function for fixed U(1)

chemical potentials, the sum over the possible charges diverges due to the breakdown of the

(qI)
2 ≫ GN approximation. The problem there is then avoided considering only black holes in

an asymptotically AdS background with a finite value of the AdS radius, which cannot be sent

to infinity to recover the flat space limit (or otherwise one gets a divergent result).

4.7 Boundary action as a bosonic BF theory

We will now reanalyze the action (4.70) from a different point of view: we will show how

the generalized JT gravity can be rewritten as a BF theory, a 2d topological gauge theory [25].

This will become much more useful once we perform the dimensional reduction of the fermions

in order to understand the fermionic part of the generalized Schwarzian theory, shedding also

some light on the (as of now) arbitrary choice of the boundary conditions (4.62) for the SU(2)

gauge field.

A 2d BF theory is a purely topological gauge theory of the form (in the Euclidean) [40, 41]

SBF = −i
∫︂

Tr [BF] + S∂ ; (4.88)

here F = dA − A ∧ A is the field strength of a gauge theory with group G (with generators

Ti), B is a Lie-algebra-valued Lagrange multiplier and S∂ represent a generic boundary term

depending on the chosen boundary conditions. Integrating over the Lagrange multiplier B forces

the constraint F = 0, making the gauge field pure gauge. It also sets the bulk term to 0; the

24 In particular, see the beginning of page 27 of [7].
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whole dynamics thus depends only on the boundary term S∂ and the theory becomes topological.

Notice that we can define the trace starting from the quadratic Casimir C2 — C2 = gABTATB

for some metric gAB — and defining Tr [TATB] :=
(︁
gAB

)︁−1
[8]. Notice also that the BF theory

(4.88) can be easily generalized for supergroups, as we will do in section 5.3.

If we look at the second line of (4.70), we see that the SU(2) contribution is already expressed

as a BF theory. Therefore we just need to rewrite the first line of Stop
bos as a BF theory, i.e. the

gravitational contribution; we will do so following [24]. The BF theory which is equivalent to

the gravitational part of Stop
bos is based on the non-compact gauge group SL(2,R); notice that

the equivalence requires passing from the second order to the first order formulation of the JT

gravity. SL(2,R) is generated by the three generators L0, L+1 and L−1 satisfying:

[Lm, Ln] = (m− n)Lm+n , C
SL(2)
2 = 2L2

0 − {L+1, L−1} . (4.89)

It is convenient to redefine the basis of generators as

P0 := L0 , P1 := −
L+1 − L−1

2
, J :=

L+1 + L−1

2
, (4.90)

such that
[Pa, Pb] = εabJ , [Pa, J ] = εabPb ,

C
SL(2)
2 = 2PaPa − 2J2 ,

(4.91)

where a = 0, 1 and we sum over repeated indices. To recover the gravitational description, it is

sufficient to expand the SL(2,R) gauge field ASL(2) and Lagrange multiplier BSL(2) as:

ASL(2)(x) =
1

ℓ
ea(x)Pa − ω(x)J BSL(2)(x) = 2ℓϕa(x)Pa − 2ϕ(x)J , (4.92)

where ea are the 2d zweibein and ω ≡ ω1
2 = −ω2

1 is the 2d spin connection. Plugging (4.92)

into the BF action (4.88), we get:

SBF
SL(2) = −i

∫︂
−ϕ
(︃
dω +

1

ℓ2
e0 ∧ e1

)︃
+ ϕa

(︂
dea + εab ω ∧ eb

)︂
. (4.93)

Integrating out ϕa forces the torsionelss condition needed to recover the second order formulation

of the JT gravity. Integrating out ϕ instead imposes the spacetime to be AdS, as it happens

for JT gravity; this can be seen using the relation dω = Re1 ∧ e2/2 valid for 2d manifolds [24],

which implies:

dω +
1

ℓ2
e0 ∧ e1 = ⋆1

1

2

(︃
R+

2

ℓ2

)︃
. (4.94)

Notice in particular that, to recover JT gravity, the dilaton is related to the Lagrange multiplier

by ϕ = iΦ.

We still need to express the Gibbons–Hawking–York boundary term as a function of ASL(2)

43



and BSL(2). As pointed out in [24], this boundary term is equivalent to introducing a line defect

in the BF theory; this is in turn equivalent to imposing mixed boundary conditions which relate

the gauge field and its field strength. The Schwarzian action can be obtained from the SL(2,R)

BF theory provided that we add the contribution of a line defect25 of the form:

S∂ =

∫︂ β

0
du Tr

[︂
B2
SL(2)

]︂
. (4.95)

To see this, one partially integrates out the ASL(2) gauge field along the boundary, solving the

equations of motion along the u direction:

Du

(︁
BSL(2)

)︁
=∂uBSL(2) −

[︂
ASL(2)
u ,BSL(2)

]︂
= 0

=∂uBSL(2) − t′(u)
[︂
A
SL(2)
t ,BSL(2)

]︂
= 0 .

(4.96)

Here t(u) is exactly the boundary parameterization (4.75); eat and ωt in A
SL(2)
u are constant

along the boundary26, and can calculated from (4.73). To solve these equations, it is convenient

to combine ϕ± := ϕ0 ± iϕ1 and e±t := e0t ± ie1t; this way we can express (4.96) as:

∂uϕ
± ± t′

(︃
−iϕ±ωt +

i

ℓ2
ϕe±t

)︃
= 0 ,

∂uϕ+
it′

2

(︁
ϕ−e+t − ϕ+e−t

)︁
= 0 .

(4.97)

The equations for ∂uϕ
− and ∂uϕ are solved by:

ϕ− = Λt′e−t ,

ϕ = Λ

(︃
ωtt

′ − i t
′′

t′

)︃
,

ϕ+ =
Λ

ℓ2

(︃
e+tt

′ +
2ℓ2

e−tt′3
(︁
t′′2 − t′t′′′ − iωtt′2t′′

)︁)︃
,

(4.98)

where Λ is a constant. Plugging them into the equation for ∂uϕ
+ yields the additional constraint:

t′′′′ − 4
t′′t′′′

t′
+ 3

t′′3

t′2
= 0 , (4.99)

which is exactly the equation of motion for a Schwarzian theory. To recover the Schwarzian

action, we plug the partially integrated out fields (4.98) into the line defect contribution (4.95),

obtaining:

S∂ =

∫︂
du Tr

[︂
B2
SL(2)

]︂
= −4Λ2

∫︂
duSch (t, u) . (4.100)

25 We choose the defect of length β and really close the boundary of the spacetime. Notice that it can always
be moved near the boundary thanks to the topological properties of the theory away from the defect.

26 Even if they were not, they can be set this way — without loss of generality — owing once again to the
topological nature of the BF theory [24].
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To find out the value of Λ, let us relate the Lagrange multiplier ϕ with the dilaton Φ. If we

compare (4.93) and (4.70), we naively obtain the relation ϕ = iΦ; however, looking at (4.70), we

see that in order for Φ to enforce an AdS spacetime once integrated out, it must be integrated over

imaginary values — instead of real values – when we are working in the Euclidean. Therefore,

we should fix its value at the boundary in the Euclidean not to Φren/ε, but rather to
27 −iΦren/ε.

By using the relations t′ ≈ 1 and t′′ ≈ 0 — obtained from (4.73) — and applying them to (4.98),

we obtain the following relation:

ϕ ≈ Λ

ε
= iΦ =⇒ Λ = Φren . (4.101)

By rescaling (4.100), we can see that the line defect makes the dynamics equivalent to the one

the Schwarzian mode coming from the Gibbons–Hawking–York boundary term:

S∂ =
1

4Φren

∫︂ β

0
du Tr

[︂
B2
SL(2)

]︂
= −Φren

∫︂ β

0
duSch (t(u), u) . (4.102)

In summary, we have that the BF action

SBF
SL(2) = −i

∫︂
Tr
[︁
BSL(2)FSL(2)

]︁
+

1

4Φren

∫︂ β

0
du Tr

[︂
B2
SL(2)

]︂
(4.103)

is equivalent — boundary terms included — to the one of the JT gravity in (4.70). Notice also

that while we introduced the boundary term (4.102) as a line defect contribution, it is essentially

the same as modifying the boundary conditions for the ASL(2) and BSL(2) fields. In particular,

varying (4.103), we see that the variational problem is well defined with the following boundary

conditions:

2iΦren δASL(2)

⃓⃓
∂
− δBSL(2)du

⃓⃓
∂
= 0 . (4.104)

Finally, let us put together the gravitational and SU(2) contributions, in order to express

the whole (4.70) as a single SL(2,R)× SU(2) BF theory. We can write the complete algebra of

the SL(2,R)× SU(2) BF theory, with its Casimir, as:

[Pa, Pb] = εabJ , [Pa, J ] = εabPb , [Ti, Tj ] = −εijkTk

C
SL(2)×SU(2)
2 = 2PaPa − 2J2 − 2TiTi .

(4.105)

The choice of the gauge field and Lagrange multiplier is:

ASL(2)×SU(2) =
1

ℓ
eaPa − ωJ +BiTi BSL(2)×SU(2) = 2ℓϕaPa − 2ϕJ + biTi . (4.106)

27 The sign in front of the i is not important.
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Plugging everything in (4.88) yields:

SBF
SL(2)×SU(2) = −i

∫︂
−ϕ
(︃
dω +

1

ℓ2
e0 ∧ e1

)︃
+ ϕa

(︂
dea + εab ω ∧ eb

)︂
+Tr [bH] + S∂ ; (4.107)

here we deliberately confuse the generators Ti of the SU(2) algebra with their representatives

Ti = iσi/2 in the fundamental representation, such that H = H iTi, b = biTi and Tr[TiTj ] =

−δij/2. To find S∂ , we use the boundary conditions (4.104) and (4.48); the latter can be

rewritten in terms of the BF theory fields B and b as:

2iΦren δB|∂ − δb du|∂ = 0 . (4.108)

Notice that the conditions above closely resemble (4.104); this is not by chance, as we will

explain in section 5.3. Putting everything back together, we can finally rewrite the action (4.70)

— along with the correct boundary terms that reproduces the generalized Schwarzian (4.84) —

as:

SBF
SL(2)×SU(2) = −i

∫︂
Tr
[︁
BSL(2)×SU(2)FSL(2)×SU(2)

]︁
+

1

4Φren

∫︂ β

0
du Tr

[︂
B2
SL(2)×SU(2)

]︂
,

2iΦren δASL(2)×SU(2)

⃓⃓
∂
− δBSL(2)×SU(2)du

⃓⃓
∂
= 0 .

(4.109)

5 The complete 1d boundary theory

5.1 Dimensional reduction of the fermions

As we have shown above in section 4, studying only the dimensional reduction of the bosons is

not enough to distinguish between the behavior of the supersymmetric and non-supersymmetric

attractors. Therefore we will now perform the dimensional reduction of the fermionic terms of the

original supergravity action (2.1). Given the complexity of performing a complete dimensional

reduction of the fermionic terms, we will proceed as in section 4.4: we focus only on the terms

that are quadratic in the fluctuations of the fermions above their background. Since the classical

solution is fully bosonic — i.e. the fermionic background is vanishing — we only need to consider

terms that are quadratic in the fermions, replacing all the other (bosonic) fields with their

classical values. This kills the interactions the fermions have with the scalars and SU(2) gauge

field, as well as the four-fermions terms.

Let us now start from the dimensional reduction of the gravitinos contributions. Their 4d

kinetic term, at the quadratic level, is given by the first line of S4d
ferm from (2.2):

e−1L = −κ−2ψAMΓMNP∇NψAP . (5.1)

In order to gauge the superisometry of the AdS2 × S2 solutions, it is convenient to combine the
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two spinors ψ1 (left-handed) and ψ2 (right-handed) into a single Dirac spinor, similarly to what

is done in (3.7) (in section 3.2) in order to solve the Killing spinor equation. More explicitly,

following [26, 27], we decompose:

ψ1
m + iei argZ0ψ2m =

√︃
2

ℓ
χ1/4Ψk

m ⊗ ηk ,

ψ1
a + iei argZ0ψ2a =

√︃
2

ℓ

GN
W 2

0

χ1/4λk ⊗ γˆ︁aηk .
(5.2)

The 2d spinors Ψk
m(x

µ) and λk(xµ) are respectively the 2d gravitinos and dilatinos. The index

k = 1, 2 — which is summed over28 — labels the Killing spinors ηk of the sphere S2:

η1(θ, ϕ) = e
i
2
θσ1e

1
2
ϕσ13

(︄
1

i

)︄
, η2(θ, ϕ) = e

i
2
θσ1e

1
2
ϕσ13

(︄
1

−i

)︄
; (5.3)

they satisfy the Killing spinor equations

∂θηk =
i

2
σ1ηk ,

(︃
∂ϕ −

1

2
cos θσ13

)︃
ηk =

i

2
sin θσ3ηk , (5.4)

which are exactly the angular part of (3.10). As a consequence, any spinor of the form (· · · )k⊗ηk
satisfies29:

ea
α∇α(· · · )k ⊗ ηk =

(︃
i

2
Γˆ︁aγ3 + 1

4
W−1/2

∞ χ3/4∂m logχΓˆ︁aΓˆ︁m)︃ (· · · )k ⊗ ηk . (5.5)

Notice that the χ1/4 in (5.2) have been chosen such that the factors of ∂m logχ — coming from

the spin connection (4.5) — cancel; the other numerical prefactors have been chosen future

convenience, in order to obtain a final action which is as similar as possible to N = 4 JT super-

gravity. Notice also that while the two radial components are independent, the two spherical

components of the 4d gravitinos are related to each other.

We can now plug (5.2) into the Lagrangian (5.1). Defining the 1-form Ψk := Ψkµdx
µ, such

that

Ψk ∧Ψk′ = ΨkmΨ
k′
ne
m ∧ en = ΨkmΨ

k′
nεmn

√
−g d2x , (5.6)

and integrating over θ and ϕ using ∫︂
S2

dΩ ηk
†ηk

′
= 8πδk

′
k , (5.7)

28 The position of the index k — downstairs or upstairs — is not important and we will move it freely; we will
keep k upstairs for spinors and downstairs for their conjugates for consistency. When two of such indices are
contracted, we will sum over them as usual.

29 One might expect also a term proportional to B from the spin connection (4.5); however, it is negligible in
the small B approximation at the order we are working at (and would provide in (5.19) the correct gravitinos-B
interaction that appears in (5.35)).
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yields the following contribution to the 2d action:

Skin
ψ =

∫︂
2

ℓ

W 2
0

GN

χ

W 2
0

iΨk ∧Ψk

+

∫︂
−

[︄
2
χ

W 2
0

λk

(︄
∇(g) −

1

2ℓ

(︃
χ

W 2
0

)︃−3/4

γ3/e∧

)︄
Ψk + h.c.

]︄
,

(5.8)

where

∇(g) = d− 1

2
ω(g)γ3∧ (5.9)

is the gravitational covariant exterior derivative and /e := γ ˆ︁mem.
Next, we have the interaction term between the gravitinos and the graviphoton field strength:

e−1L = −κ−2F−I
µν IIJX

J
(︂
(ψ1µ)cψ2

ν − ψ2
µ
(︁
ψ1ν
)︁c)︂

+ h.c.

=
1

4κ2
T−µν

(︂(︁
ψ1

µ

)︁c
ψ2ν − ψ2µ

(︁
ψ1

ν

)︁c)︂
+ h.c.

=
1

4κ2

(︂
T−µν(︁ψ1

µ

)︁c
ψ2ν − T+µν(ψ2µ)

cψ1
ν

)︂
+ h.c. .

(5.10)

Notice that this piece depends explicitly on the graviphoton field strength T−, and thus can

distinguish whether we are working in the near-horizon of a BPS or fake-BPS black hole. As

explained before, we can simply replace Tµν− with its classical value (3.5):

4πT− = iκ2Z (1 + i⋆) (sin θdθ ∧ dϕ) ,

T− ˆ︁mˆ︁n
= −κ

2

4π
Zχ−1εˆ︁mˆ︁n =

κ2

4π
Zχ−1εmn ,

(5.11)

with the central charge Z0 = 2κ−2qIX0
I . Plugging in the dimensional reduction ansatz (5.2)

and integrating over θ and ϕ produces the following contribution to the 2d action:

SEM
ψ =

∫︂
−ζ 2

ℓ

W 2
0

GN

(︃
χ

W 2
0

)︃1/2

iΨk ∧Ψk . (5.12)

We see that the parameter ζ (introduced in (3.11)), which controls whether the attractor is

supersymmetric (ζ = 1) or not (0 ≤ ζ < 1), appears explicitly in the action; this was to be

expected, given the explicit appearance of the graviphoton field strength in the interaction.

Next, let us focus on the gauginos ξA
i; we choose the dimensional reduction ansatz:

ξ1
i
=

√︃
ℓ

2
W

1/4
0 χ−3/8Ξki ⊗ ηk ,

iei argZ0ξ2
i =

√︃
ℓ

2
W

1/4
0 χ−3/8Ξki ⊗ ηk ,

(5.13)
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where Ξki(xµ) and Ξki(xµ) are 2d spinors and we will use once again the notation (i) = i, i to

collectively denote both components. Notice that once again the factor χ−3/8 is needed to cancel

the ∂m logχ factors coming from the spin connection. The dimensional reduction of the kinetic

term of the gauginos,

e−1L = −1

4
g0ijξA

i
/∇ξAj + h.c. , (5.14)

yields30:

Skin
ξ =− πW 2

0

∫︂
⋆1 g0(i)(j)Ξk

(i)
/∇(g)Ξ

k(i)

− πW 2
0

∫︂
⋆1

(︃
χ

W 2
0

)︃−3/4

g0(i)(j)Ξk
(i) i

ℓ
γ3Ξ

k(i) ,

(5.15)

where /∇(g) = γ ˆ︁m∇(g)m is the (slashed) 2d gravitational covariant derivative. Finally, we are left

with the interaction term between gauginos, gravitinos and the graviphoton field strength:

e−1L = κ−2F−IMN
I0IJ∇iX

J
ξ
Ai
ΓMψBNεAB + h.c. . (5.16)

By using the holomorphicity of the central charge — ∇iZ = 0 — and plugging in the ansatz for

the dimensional reduction, we get the interaction terms:

SEM
ξ =

∫︂
i∂(i)|Z0|

W0

ℓ

(︃
χ

W 2
0

)︃−3/8

Ξk
(i)
/e ∧Ψk + h.c.

+

∫︂
⋆1 i∂(i)|Z0|

GN
W0ℓ

(︃
χ

W 2
0

)︃−9/8

Ξk
(i)
λk + h.c. .

(5.17)

We notice that once again, as expected, these terms distinguish between supersymmetric and

non-supersymmetric attractors. In particular, supersymmetric attractors are fixed points of the

attractor flow satisfying ∂i|Z0| = ∂i|Z0| = 0, while this is not true for the non-supersymmetric

case.

5.2 Simplifying the action

At last, we can finally put together the four contributions (5.8), (5.12), (5.15) and (5.17);

linearizing the dilaton around (4.13), we get the following fermionic terms to add to the 2d

30 Ξk
(i)

denotes the Dirac conjugate of the spinor, as for the gravitinos Ψk.
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bosonic action31 (4.63):

S2d
fer =

∫︂
⋆1

Φ

2

(︃
−4

ℓ
(2− ζ) i ⋆

(︂
Ψk ∧Ψk

)︂
+

2

ℓ2
∆fer

)︃
+

∫︂
2

ℓ

W 2
0

GN
(1− ζ) iΨk ∧Ψk +

(︂
−2λkDΨk + h.c.

)︂
+

∫︂
⋆1

(︃
−πW 2

0 g0(i)(j)Ξk
(i)
(︃
/∇+

i

ℓ
γ3

)︃
Ξk

(j)

)︃
+

∫︂
i
W0

ℓ
∂(i)|Z0|Ξk

(i)
(︃
/e ∧Ψk +

GN
W 2

0

λk ⋆ 1

)︃
+ h.c. ,

(5.18)

where ∆fer are the fermionic dynamical corrections to the AdS radius (which we will not write

down explicitly) and

D = d− 1

2
γ3ω ∧ −

1

2ℓ
γ3/e∧ (5.19)

is the PSU(1, 1|2) gauge covariant derivative. Before discussing the different behavior of the

fermions for supersymmetric and non-supersymmetric attractors, let us impose the macroscopic

limit, so that the dynamical fermionic corrections to the AdS radius ∆ferm become negligible.

Notice that the macroscopic limit also makes the interaction term ∼ Ξk
(i)
λk small; however, we

still keep it in the action as it makes it easier to identify the role of the dilatinos in the near-

extremal dynamics. Putting together (4.63) and (5.18), we get the total action that determines,

at the quadratic level, the dynamics of the near-extremal black holes:

S2d =Stop + Sbulk ,

Stop =

∫︂
⋆1

Φ

2

(︃
R+

2

ℓ2
− 4

ℓ
(2− ζ)i ⋆

(︂
Ψk ∧Ψk

)︂)︃
− 2

∫︂ (︂
λkDΨk + h.c.

)︂
+

∫︂
I0IJφ

I ˜︁fJ +

∫︂
Tr [bH] + Stop

∂ ,

Sbulk =

∫︂
⋆1

(︃
−4πW 2

0 g0ij∂
µzi∂µz

j − 1

4GNℓ2
˜︂M2

(i)(j)z
(i)z(j)

)︃
+

∫︂
⋆1

(︃
−πW 2

0 g0(i)(j)Ξk
(i)
(︃
/∇+

i

ℓ
γ3

)︃
Ξk

(j)
)︃

+
2W 2

0

GNℓ
(1− ζ)

∫︂
iΨk ∧Ψk

+ ∂(i)|Z0|
∫︂

Ξk
(i)
(︃
/e ∧Ψk +

2GN
W0ℓ

λk ⋆ 1

)︃
+ h.c. ;

(5.20)

where Stop
∂ is the boundary term for the action Stop, which is given by

Stop
∂ =

∫︂
∂
du
√
−h Φ|r∂ K −

GN
4W 3

0

∫︂
∂
du Tr

[︁
b2
]︁
+ (fermions) . (5.21)

31 From now on, we drop the subscript (g) on the spin connection ω(g) and the covariant derivative ∇(g).
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As we did for (4.69), we split the contributions to the 2d action into two pieces: Stop is a fully

topological theory, since integrating out the Lagrange multipliers Φ, λk, φ
I and b leaves only

the boundary terms; Sbulk is instead a usual 2d action, which essentially contributes only to the

extremal entropy and energy of the system, as it was for the bulk term in (4.69). Looking at

(5.20), we see that the fermionic terms do actually distinguish between the supersymmetric and

non-supersymmetric attractors. In particular, what really differentiates between the attractors

are the last two lines of Sbulk in (5.20): both terms vanish when the attractor is supersymmetric

— given that ζ = 1 and ∂i|Z0| = ∂i|Z0| = 0 — and become relevant only for non-supersymmetric

attractors. The main fermions that are responsible for the different behaviors in the two cases

are the gravitinos Ψk and the dilatinos λk (which are the corresponding Lagrange multipliers).

In fact, while all the other fields can be separated32 into “topological” fields and “bulk” fields,

this is not the case for Ψk and λk, given that they appear in both Stop and Sbulk.

Topological Bulk

gµν ,Φ, a
I , φI , B, b

SUSY←−−− Ψk, λk
non-SUSY−−−−−−→ z(i),Ξk(i)

The actual roles of Ψk and λk are determined by whether or not we are expanding around a

supersymmetric attractor. For a supersymmetric attractor, the last two lines of Sbulk in (5.20)

become 0, and thus the gravitinos and the dilatinos are fully “topological” fields; the final action

which determines the dynamics thus becomes:

S2d
SUSY =Stop

SUSY + Sbulk
SUSY ,

Stop
SUSY =

∫︂
⋆1

Φ

2

(︃
R+

2

ℓ2
− 4

ℓ
i ⋆
(︂
Ψk ∧Ψk

)︂)︃
− 2

∫︂ (︂
λkDΨk + h.c.

)︂
+

∫︂
I0IJφ

I ˜︁fJ +

∫︂
Tr [bH] + Stop

∂,SUSY ,

Sbulk
SUSY =

∫︂
⋆1

(︃
−4πW 2

0 g0ij∂
µzi∂µz

j − 1

4GNℓ2
M2

(i)(j)z
(i)z(j)

)︃
+

∫︂
⋆1

(︃
−πW 2

0 g0(i)(j)Ξk
(i)
(︃
/∇+

i

ℓ
γ3

)︃
Ξk

(j)
)︃
.

(5.22)

Notice that the ∼ Ξk
(i)
γ3Ξk

(j) term is actually just the mass term for fermions with a mass

matrix πg0(i)(j)/ℓ (once normalizing the kinetic term by sending Ξk
(j) → Ξk

(j)/W 2
0 ). To see

this, one simply needs to redefine the 2d γ matrices as

γt → iγ′r , γr → iγ′t , (5.23)

32 Technically, as highlighted in section 4.4, the scalars zi do actually appear in the “topological” action in˜︁fI thanks to the gauge kinetic term. Since their main contribution is however still in the “bulk” term, we will
consider them as “bulk” fields.
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obtaining:33:

− i
ℓ
Ξk

(i)
γ3Ξ

k(j) + h.c.→ −1

ℓ
Ξ
′
k

(i)
Ξk

(j)
+ h.c. . (5.24)

These masses are of the order of the Kaluza–Klein masses (see section 4.1) which we have

excluded in our analysis of the near-extremal (i.e. lowest energy) excitations, and therefore we

will ignore the gauginos contribution to the partition function.

If we consider a non-supersymmetric attractor instead, the last two lines of (5.20) become

relevant and, in particular, the gravitinos acquire a mass through the term ∼ Ψk ∧ Ψk, since

ζ < 1. In particular, exploiting once again the same γ matrices redefinition (5.23), the mass

term can be rewritten as

2W 2
0

GNℓ
(1− ζ)

∫︂
iΨk ∧Ψk =

2W 2
0

GNℓ
(1− ζ)

∫︂
⋆1Ψ

′
kµγ

′µνΨk
ν , (5.25)

which is the standard form of the mass term [14] for Rarita–Schwinger fields of mass

mΨ =
2W 2

0

GNℓ
(1− ζ) . (5.26)

For large black holes, the gravitinos mass becomes much greater34 than the energy scale of the

Schwarzian energy scale, i.e. mΨ ≫ Φ−1
ren; we therefore conclude that the gravitinos degrees

of freedom cannot be excited at the energy scale that dominates the near-extremal limit and

thus we will consider their contribution negligible (together with their corresponding Lagrange

multipliers, the dilatinos). The final action which determines the dynamics is therefore35:

S2d
non-SUSY =Stop

non-SUSY + Sbulk
non-SUSY ,

Stop
non-SUSY =

∫︂
⋆1

Φ

2

(︃
R+

2

ℓ2

)︃
+

∫︂
I0IJφ

I ˜︁fJ +

∫︂
Tr [bH] + Stop

∂,bos ,

Sbulk
non-SUSY =

∫︂
⋆1

(︃
−4πW 2

0 g0ij∂
µzi∂µz

j − 1

4GNℓ2
˜︂M2

(i)(j)z
(i)z(j)

)︃
+

∫︂
⋆1

(︃
−πW 2

0 g0(i)(j)Ξk
(i)
(︃
/∇+

i

ℓ
γ3

)︃
Ξk

(j)
)︃
,

(5.27)

where Stop
∂,bos is given by (5.21) and Sbulk

non-SUSY = Sbulk
SUSY ≡ Sbulk. The dilatinos and gravitinos are

thus ignored like all the other massive Kaluza–Klein modes that would belong to the “bulk”.

Finally, as in section 4.5, we point out that Sbulk only contributes to the extremal energy

33 For Ξ
′
k

(i)
we mean the Dirac conjugate of the spinor using γ′t in place of γt.

34 One might worry in principle that, if ζ is close enough to 1, the mass of the gravitinos is comparable (and not
much greater) than the energy scale Φ−1

ren of the near-extremal dynamics; this however can be avoided for large
enough black holes. Notice also that if we consider for example the theory described at the end of section 2.4,
we have ζ = 0 for the non-BPS attractors (see (2.42)); hence, at least for this example, there is no such problem.
We will therefore assume mΨ ≫ Φ−1

ren always.
35 As explained before, we also ignore the ∼ Ξk

(i)
λk interaction, which is negligible in the macroscopic limit.
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and entropy of the black holes and does not influence the spectrum. The scalar contribution

is in fact the same as in section 4.5, while the gauginos have a mass of the same order of the

Kaluza–Klein modes and can thus be neglected.

5.3 Boundary action as a BF theory

Let us now analyze the two terms Stop
SUSY and Stop

non-SUSY. In the non-supersymmetric case,

we see that Stop
non-SUSY is the same as Stop

bos from (4.69); as we already showed in section 4.7, this

is the action of a SL(2,R) × SU(2) BF theory, whose contribution to the partition function is

topological. In the supersymmetric case, we will once again follow the steps of 4.7, generalizing

the BF theory to a super-BF theory (as done in [8]).

A super-BF theory is a theory of the form:

SsBF = −i
∫︂

Str [BF] + S∂ ; (5.28)

here F = dA − A ∧ A and B are respectively the field strength and the Lie-algebra-valued

Lagrange multiplier of a gauge theory with supergroup (instead of a group) G. Str denotes

the supertrace over the generators TA; writing the Casimir as C2 = gABTATB, we define the

supertrace as Str [TATB] := (−1)|TA| (︁gAB)︁−1
, where |TA| = 0, 1 for bosonic and fermionic gen-

erators respectively [8]. Once again, integrating over B forces F = 0, setting the bulk term to

0 and making the dynamics determined only by the boundary term S∂ . Focusing on the case

at hand, we can recover Stop
SUSY by picking the supergroup PSU(1, 1|2) [8], as hinted by the

superisometries of the extremal solution analyzed in section 3.2. The algebra psu(1, 1|2) is given
by [8]:

[Lm, Ln] = (m− n)Lm+n ,

[Lm, Gp
α] =

(︂m
2
− α

)︂
Gp

α+m ,

[Ti, Gp
α] = − i

2
(σi)p

qGq
α ,

{Gpα, Gqβ} = 2δp
qLα+β − 2(α− β)(σi)qpTi .

[Ti, Tj ] = −εijkTk ,[︁
Lm, G

p
α

]︁
=
(︂m
2
− α

)︂
G
p
α+m ,[︁

Ti, G
p
α

]︁
=
i

2
(σ∗i )

p
qG

q
α ,

(5.29)

Here L0, L+1 and L−1 are the bosonic generators of the sl(2,R) sub-algebra, Ti are the bosonic

generators of the su(2) sub-algebra and Gp
α and G

q
β are the fermionic generators of psu(1, 1|2),

with p, q = 1, 2 and α, β = +1/2,−1/2.

In order to simplify the calculations, we first redefine the generators of SL(2,R) as in (4.90).

Then, when dealing with the fermionic quantities Gp
α and G

q
β, it is convenient not to write

explicitly the p and α indices, in order to ease the notation; we will always contract the α indices

from “south-west” to “north-east”, while we will always contract the p indices from “north-west”

to “south-east”. As an example, if we have the two fermionic quantities ψp
α and χpα, we will

write χψ := χpαψp
α. We choose the indices of the Pauli matrices such that σi = (σi)p

q. Finally,
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we introduce the following 2d Euclidean gamma matrices with indices γ := (γ)αβ:

γ0 = σ1 , γ1 = −σ3 , γ3 = γ0γ1 = iσ2 . (5.30)

This allows us to rewrite the algebra (5.29) in a more concise form, making the calculations

more manageable:

[Pa, J ] = εabPb ,

[Pa, G] =
1

2
εabγbG ,

[Ti, Tj ] = −εijkTk

[Pa, Pb] = εabJ ,[︁
Pa, G

]︁
=

1

2
εabGγ

⊤
b ,

[Ti, G] =
i

2
σiG

[J,G] = −1

2
γ3G ,[︁

J,G
]︁
= −1

2
Gγ⊤3 ,[︁

Ti, G
]︁
= G

(︃
i

2
σi

)︃†
,{︁

G,G
}︁
= 2

(︂
J + γaPa − iγ3σ⊤i Ti

)︂
.

(5.31)

The PSU(1, 1|2) gauge field APSU(1,1|2) and Lagrange multiplier BPSU(1,1|2) are then chosen as

follows:

APSU(1,1|2) =
1

ℓ
eaPa − ωJ +BiTi +

1√
ℓ

(︁
ΨG−GΨ

)︁
,

BPSU(1,1|2) =2ℓϕaPa − 2ϕJ + biTi +
√
ℓ
(︁
λγ3G−Gγ3λ

)︁
.

(5.32)

Using the Casimir [8]

C
PSU(1,1|2)
2 = 2PaPa − 2J2 − 2TiTi −

1

2
Gγ3G+

1

2
Gγ⊤3 G , (5.33)

we get the following PSU(1, 1|2) super-BF theory:

SBF
PSU(1,1|2) =− i

∫︂
−ϕ
(︃
dω +

1

ℓ2
e0 ∧ e1 − 2

ℓ
Ψ ∧Ψ

)︃
− i
∫︂
ϕa
(︂
dea + εab ω ∧ eb + 2Ψ ∧ γaΨ

)︂
− i
∫︂

Tr [bH] +
2

ℓ
Ψ ∧ γ3b⊤Ψ+ (−2λDΨ+ h.c.) ,

(5.34)

where the PSU(1, 1|2) covariant exterior derivative

D = d− 1

2
γ3ω ∧ −

1

2ℓ
γ3/e ∧ −B∧ (5.35)

generalizes the expression (5.19), obtained while considering terms like∼ ΨΨB negligible. Notice

that once again we are not distinguishing between the generators of SU(2) and their represen-

tative in the fundamental representation, as in (4.107). After a Wick rotation, a redefinition

of the gamma matrices and while neglecting the terms of the third order in the fluctuations

(∼ ΨΨB,ΨΨb), the action (5.34) is exactly equal to the bulk of the action Stop
SUSY obtained via
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dimensional reduction. As in section 4.7, using (4.94) one can see that the super-JT gravity

dilaton Φ is related to ϕ by ϕ = iΦ. Notice that the terms ∼ ΨΨB,ΨΨb can also be obtained

from the dimensional reduction, provided that we do not ignore the terms dependent on B

and H in the 4d spin connection (4.5). Notice also that, as expected, the bosonic part of the

PSU(1, 1|2) super-BF theory is exactly the SL(2,R)× SU(2) BF theory.

We are once again left to find the appropriate boundary terms that generate the dynamics; let

us start from the PSU(1, 1|2) BF theory arising from supersymmetric attractors. We know that,

in order to glue correctly the NHR and FAR region (and get the Gauss–Bonnet term generating

the extremal entropy), we must impose Dirichlet boundary conditions on the metric gµν and

the dilaton Φ; these in turn generate, via the Gibbons–Hawking–York boundary term, the usual

Schwarzian action. In the SL(2,R) BF theory formulation of JT gravity, the Schwarzian mode

arises from the presence of a defect, which is equivalent to imposing the mixed boundary condi-

tions (4.104). In the PSU(1, 1|2) theory we thus have to impose the same boundary conditions

at least for the SL(2,R) component of the PSU(1, 1|2) gauge field. By applying supersymmetry

transformations to (4.104) — which in BF language are just gauge transformations along the

fermionic directions of PSU(1, 1|2) — we can send the SL(2,R) components ASL(2) and BSL(2)

respectively to ASU(2) ≡ B and BSU(2) ≡ b, as well as to the other fermionic components of the

fields APSU(1,1|2). Therefore, for consistency, we must extend the boundary conditions (4.104)

to:

2iΦren δAPSU(1,1|2)
⃓⃓
∂
− δBPSU(1,1|2)du

⃓⃓
∂
= 0 . (5.36)

Alternatively, this means that we must introduce a defect in the super-BF theory which acts in

the same way as (4.95) but along all of the components of the PSU(1, 1|2) gauge field.

Although these boundary conditions were obtained via supersymmetric considerations, in

principle they come just from the gluing of the NHR and FAR region to get a consistent space-

time. Therefore, the bosonic part of (5.36) should still hold true when we consider just the

bosonic part of the PSU(1, 1|2) BF theory, i.e. the SL(2,R) × SU(2) BF theory describing

black holes close to the non-supersymmetric attractors. This justifies our choice of boundary

conditions (4.108), which in turn justifies the arbitrary choice of boundary conditions (4.48)

(needed to recover the effective action of a particle moving in an SU(2) group manifold).

To sum up, we can write the effective theory describing the dynamics of near-extremal black

holes around supersymmetric attractors as:

SBF
PSU(1,1|2) = −i

∫︂
Tr
[︁
BPSU(1,1|2)FPSU(1,1|2)

]︁
+

1

4Φren

∫︂ β

0
du Tr

[︂
B2
PSU(1,1|2)

]︂
,

2iΦren δAPSU(1,1|2)
⃓⃓
∂
− δBPSU(1,1|2)du

⃓⃓
∂
= 0 .

(5.37)

The PSU(1, 1|2) BF theory with the boundary conditions above has been shown in [8] to be

equivalent to a N = 4 super-Schwarzian (3.20) with energy scaleMPSU(1,1|2) = Φ−1
ren, as expected
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from the symmetry considerations of section 3.3. This was done by studying and matching the

transformation of the BF theory and the N = 4 Schwarzian under gauge transformations and

super-diffeomorphisms respectively. As for the theory around non-supersymmetric attractors,

the fermions are not present and thus we only get an SL(2,R)× SU(2) bosonic BF theory:

SBF
SL(2)×SU(2) = −i

∫︂
Tr
[︁
BSL(2)×SU(2)FSL(2)×SU(2)

]︁
+

1

4Φren

∫︂ β

0
du Tr

[︂
B2
SL(2)×SU(2)

]︂
,

2iΦren δASL(2)×SU(2)

⃓⃓
∂
− δBSL(2)×SU(2)du

⃓⃓
∂
= 0 .

(5.38)

As shown in section 4.7, this is equivalent to the action of a Schwarzian together with a particle

on an SU(2) group manifold (3.18), with energy scales MSL(2) =MSU(2) = Φ−1
ren.

At last, we point out that we obtained these (super)-BF theories by assuming, in the match-

ing between the NHR and FAR boundary (4.22), that the approximation (3.1) is valid. Despite

this, the resulting effective Schwarzian theories coincide with those obtained by symmetry con-

siderations in section 3, which were obtained without assuming the approximation (3.1). The

associated energy scale Φ−1
ren depends only on W0, that is only on the properties of the attractors

(electric charges and values of the scalars at the attractor), and not on other properties of the

extremal solutions at infinity. Therefore, it seems reasonable to assume that the mechanism

that differentiates between the attractors — the gravitinos becoming massless/massive — still

remains what sets apart the boundary theories near supersymmetric/non-supersymmetric at-

tractors. Finally, the symmetry considerations of section 3 hold even in the presence of non-zero

magnetic charges. Since W0 =
√
VBH

⃓⃓
r→−∞ characterizes the attractors also in the presence

of magnetic charges, we argue that the generalized Schwarzians we obtained are still describing

correctly the near-extremal excitations, with the same energy scale Φ−1
ren.

6 Analysis of the Schwarzian theories

6.1 The path integral measure

We are now ready to determine the spectra of the black holes from their corresponding

generalized Schwarzian theories. The grand-canonical partition functions for the black holes

will be determined by evaluating the corresponding path integrals at 1-loop, expanding around

the classical saddles of the generalized Schwarzian theories; after an inverse Laplace transform,

we will then isolate the density of states ρ(E, J) of the black holes. Notice that one can also

calculate the grand-canonical partition functions in other ways. For example, one can evaluate

directly the partition functions of the (super-)BF theories on a disk; this approach has been

followed in [24] for a simple Schwarzian mode. Alternatively, for the case of the N = 4 super-

Schwarzian, [8] shows — on the basis of [45] — how one can obtain the same results by canonical

quantization of the phase space of theory, namely SDiff(S1|4)/PSU(1, 1|2).

We will now briefly focus on the path integral measure for the Schwarzian theories. Under-
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standing over what space we are integrating over has a twofold importance. First, when one

calculates the 1-loop determinants for Schwarzian theories, one usually gets some zero modes;

these can be then gauge fixed away only by knowing what gauge freedom one has, which in turn

comes from the properties of the space we are integrating over. Second, if we manage to show

that we are integrating over a symplectic manifold, the path integral turns out to be 1-loop

exact. This is a consequence of the Duistermaat–Heckman theorem, which applies fermionic

localization to symplectic (super-)manifolds with a U(1) symmetry, which in our case is due to

the periodicity u→ u+ β of Euclidean time [13].

To start, let us sum up the results of section 3, 4 and 5. The dynamics of near-extremal

black holes around (static) non-supersymmetric attractors is given — up to extremal energy

and entropy shifts — by the action of a Schwarzian mode36 and of a particle moving on an

SU(2) group manifold:

SSL(2)×SU(2) = −Φren

∫︂ β

0
du

(︃
Sch

(︃
tan

πτ

β
, u

)︃
+Tr

[︂(︁
g−1g′

)︁2]︂)︃
. (6.1)

Here τ(u) is an element of τ(u) ∈ Diff(S1), i.e. a map with τ(β) − τ(0) = β and τ ′(u) > 0,

g(u) maps the time u to a group element of SU(2) and Φren sets the energy scale of the theory.

If we expand around supersymmetric attractors instead, we get the action of an N = 4 super-

Schwarzian, whose bosonic part is exactly given by (6.1):

SPSU(1,1|2) =− Φren

∫︂ β

0
duSchN=4 (τ, g, η, η)

=− Φren

∫︂ β

0
du

(︃
Sch

(︃
tan

πτ

β
, u

)︃
+Tr

[︂(︁
g−1g′

)︁2]︂)︃
+ (fermions) ,

(6.2)

where ηp(u) and ηp(u) (p = 1, 2) are fermionic modes. The N = 4 super-Schwarzian was first

described in [34, 35]; it arises from the anomalous part of the transformation of the super stress-

energy tensor under N = 4 SU(2)-extended superconformal transformations in 2d SCFTs. The

corresponding Schwarzian action can then be obtained by integrating the anomalous part of

the transformations in superspace. Notice that the N = 4 super-Schwarzian is invariant under

PSU(1, 1|2) transformations (i.e. global superconformal transformations), similarly to how the

Schwarzian is invariant under SL(2,R) transformations (i.e. global conformal transformations);

its bosonic part also coincides with the action of a Schwarzian plus a particle moving in an

SU(2) group manifold, as expected from the fact that PSU(1, 1|2) has SL(2,R)× SU(2) as its

bosonic subgroup. We will not explicitly write down the fully non-linear fermionic terms in (6.2)

(see [48] for details), because for the 1-loop calculations one just needs the quadratic expansion

around the classical saddles (with η = η = 0).

36 Note that the Schwarzian mode itself can be written in terms of a particle moving on an SL(2,R) group
manifold [46]. The Schwarzian is also equivalent to a particle moving on the hyperbolic plane, in the presence
of a large magnetic (Euclidean) or electric (Lorentzian) field [47, 24]; this equivalence is particularly useful when
discussing the bulk dual to partially entangled states in the SYK model [47].
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Let us now focus on the non-supersymmetric attractors. The Schwarzian part of the action

is described by the function τ(u) ∈ Diff(S1). The action is however invariant under an SL(2,R)

transformation sending

Sch (t(u), u)→ Sch

(︃
at(u) + b

ct(u) + d
, u

)︃
. (6.3)

In JT gravity, this invariance is due to the possibility of having equivalent choices of the IR cutoffs

thanks to the invariance of the Poincaré half-plane (that is, Euclidean AdS2) metric (4.73) under

diffeomorphisms given by SL(2,R) transformations. Hence, the phase space of the Schwarzian

mode — i.e. the space over which we will integrate in the path integral — is Diff(S1)/SL(2,R).

This quotient in turn is exactly the one needed to eliminate the zero modes arising in the 1-

loop expansion of the Schwarzian action. We also have that Diff(S1)/SL(2,R) is a symplectic

manifold with a U(1) symmetry; one way to see this [13] is to show that Diff(S1)/SL(2,R) can be

constructed as the coadjoint orbit of the Virasoro group, which guarantees both the conditions

above37. As a consequence, the Duistermaat–Heckman theorem implies that the path integral

for the Schwarzian mode is 1-loop exact[13].

As for the SU(2) component of (6.1), the function g(u) is a function that maps each value

of u to an element of SU(2). Its boundary conditions are not periodic, in order to account for

the angular velocity of the black hole (see (4.83)):

g(β) = e−2iΩT3βg(0) . (6.4)

We can however make a change of variable such that:

g(u) =e−2iΩT3u˜︁g(u) ,˜︁g(β) =˜︁g(0) . (6.5)

This way, ˜︁g maps S1 to a loop in SU(2), that is ˜︁g ∈ loop(SU(2)). Additionally, Tr
[︂(︁
g−1g′

)︁2]︂
is

invariant under global SU(2) transformations, which is just a consequence of the spherical sym-

metry of the extremal solutions; we thus need to quotient loop(SU(2)) by SU(2). As explained

in [49], loop(SU(2))/SU(2) is Kähler and thus possesses a symplectic form, so that we can apply

the Duistermaat–Heckman theorem. We will therefore integrate over loop(SU(2))/SU(2). No-

tice that this is also expected since the boundary gauge transformations of an SU(2) BF theory

are parameterized by loop(SU(2))/SU(2) [8]. Therefore, we have that the partition function

ZSL(2)×SU(2) =

∫︂
Dτ

[︃
Diff(S1)

SL(2,R)

]︃
Dg

[︃
loop(SU(2))

SU(2)

]︃
e−SSL(2)×SU(2)(τ,g) (6.6)

is 1-loop exact. Finally, notice also that, as pointed out once again in [13], we can get both the

actions of the Schwarzian and the particle moving on a group manifold and their corresponding

symplectic manifolds by considering coadjoint orbits of an SU(2) Virasoro–Kac–Moody algebra

37 This construction of the symplectic space also provides the Schwarzian action directly.
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(instead of considering the SL(2,R) and SU(2) components separately).

A similar reasoning also holds for the case of a supersymmetric attractor. The functions τ , g,

η and η parameterizes the superdiffeomorphisms SDiff(S1|4) [34, 35], with the super-Schwarzian

being invariant under superconformal PSU(1, 1|2) transformations. We will thus integrate over

the quotient SDiff(S1|4)/PSU(1, 1|2). Notice also that one can also directly build the N = 4

super-Schwarzian theory exactly through the coadjoint orbit method [50] of an N = 4 super-

Virasoro algebra, showing that SDiff(S1|4)/PSU(1, 1|2) is a symplectic manifold with a U(1)

symmetry and the Duistermaat–Heckman theorem applies. We therefore get the 1-loop exact

partition function:

ZPSU(1,1|2) =

∫︂
DτDgDηDη

[︄
Diff(S1|4)

PSU(1, 1|2)

]︄
e−SPSU(1,1|2)(τ,g,η,η) . (6.7)

Finally, we write here the boundary conditions for η and η (rewriting also the one for τ and g

for convenience) [8]:

τ(β) = τ(0) , g(β) = e−2iΩT3βg(0) , η(β) = −e−2iΩT3βη(0) . (6.8)

As always, the fermions are chosen to be antiperiodic in Euclidean time, hence the − sign;

additionally, we also have the exponential factor due to the SU(2) holonomy.

6.2 The classical contribution

We will now calculate the partition functions in two steps, mainly following [8, 28]: first —

in this section — we evaluate the contribution of the classical saddles; then — in section 6.3

— we expand the action to second order in the fluctuations and compute the 1-loop quantum

corrections. Since the classical bosonic saddles are the same for both generalized Schwarzians,

we will treat only the non-supersymmetric theory in this section, with everything still true for

the supersymmetric case with η = η = 0. The equation of motion of SSL(2)×SU(2), from (6.1),

are given by

τ ′′′′

τ ′2
− 4

τ ′′′τ ′′

τ ′3
+ 3

τ ′′3

τ ′4
+

4π2

β2
τ ′′ = 0 ,

g′′ − g′g†g′ = 0 ,

(6.9)

which can be rewritten in the more convenient form:[︃
Sch

(︃
tan

πτ

β
, u

)︃]︃′
= 0 ,

(︂
g†g′

)︂′
= 0 . (6.10)
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The classical solutions, once enforcing the boundary conditions (6.8), are labeled by an integer

n, and represent the various saddles with angular velocities Ωn = Ω+ 2πin/β:

τ(u) = u , g(u) = e−2iΩnT3u . (6.11)

Notice that these solutions are not invariant under a generic SL(2,R) × SU(2) transforma-

tion, despite the invariance of the generalized Schwarzian actions under such a transformation.

The only transformations leaving (6.11) unchanged are U(1) rotations along T3 of g(u), which

correspond to rotations of the original 4d black hole along its axis of rotation. Hence the clas-

sical saddles (6.11) minimizing the action break the SL(2,R) × SU(2)/PSU(1, 1|2) symmetry

of the generalized Schwarzians down to just a U(1) ∈ SU(2). The generalized Schwarzians thus

implements correctly the symmetry breaking pattern of the near-horizon geometry, described

in section 3, with the generalized Schwarzian modes interpreted as “Goldstone bosons” of the

symmetry breaking.

Plugging (6.11) into the action yields the classical partition function:

Zcl(β,Ω) :=Zcl
SL(2)×SU(2) = Zcl

PSU(1,1|2)

=eS∗−βE∗
∑︂
n∈Z

e
Φren

2π2

β

(︃
1+β2

π2

(︂
Ω+ 2πi

β
n
)︂2

)︃
.

(6.12)

In the equation above we added back the (classical) extremal energy E∗ and entropy S∗, which

cannot be obtained from the generalized Schwarzian theory. These terms arise from the joint

contribution of the Gauss–Bonnet term of JT gravity, the action of the FAR region, the scalars

z(i) and the gauginos Ξ(i) and all the other massive Kaluza–Klein modes that we have ignored in

the dimensional reduction (possibly including logarithmic corrections [51, 52]). However, notice

that both terms do not influence the qualitative features of the spectrum: the S∗ term acts only

as a proportionality constant, while the βE∗ terms simply shifts the energies of the spectrum.

We will now briefly analyze the classical thermodynamics of the black holes, for later com-

parison with the quantum corrected ones (see section 6.4). For simplicity, we will just study

the properties of the thermodynamic potentials, without extracting the spectrum of the states

(as we will do later for the quantum corrected partition functions). By using the relation

Zcl(β,Ω) = exp (−βG) — where G is the grand-canonical free energy — we obtain (via Legendre

transforms) the following thermodynamic quantities:

G = E∗ − TS∗ − 2π2ΦrenT
2 − 2ΦrenΩ

2 + . . . ,

S = S∗ + 4π2ΦrenT + . . . ,

E = E∗ + 2π2ΦrenT
2 + 2ΦrenΩ

2 + . . . .

(6.13)

This is the typical expansion of the thermodynamic potentials for near-extremal black holes. In
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particular we notice that there is an extremal entropy S∗; one therefore expect a degeneracy of

the ground state, i.e. there should be many different microstates corresponding to the extremal

black hole. We also see that — as usual for classical extremal black holes — we have a breakdown

of the thermodynamic for small temperatures. In particular, the black holes radiate Hawking

quanta with an average energy Eγ ∼ T . When T ≲ 1/
(︁
2π2Φren

)︁
, the energy above extremality

of the black hole is less than the energy needed to emit a Hawking quantum: E − E∗ ∼ Eγ ;

the near-extremal black hole thus cannot radiate and it cannot behave as a thermodynamic

object, signaling a breakdown in the semiclassical thermodynamic description. One possible

workaround is to assume that there is indeed a gap of the order

∆Egap ∼
1

2π2Φren
(6.14)

in the energy spectrum of the black holes, with no microstates with energies between E∗ and

E∗ + ∆Egap. Another possibility is instead that, once accounting for the quantum effects of

gravity, the energy E from (6.13) is modified in such a way that E ≳ T down to extremality,

i.e. the thermodynamic description never breaks down and the black holes are always well-

behaved. As we will show in section 6.4, these two possibilities are realized, for supersymmetric

and non-supersymmetric attractors respectively.

6.3 1-loop quantum corrections

We will now compute the quantum corrections to the partition functions. This requires ex-

panding the action around the classical saddles and calculating the 1-loop determinants, properly

regularized and with the zero modes gauge fixed away. We will first analyze the 1-loop con-

tributions of the SL(2,R) and SU(2) modes, which are the same both for supersymmetric and

non-supersymmetric attractors.

The classical solutions for τ and g are given by (6.11); we thus introduce the fluctuations:

τ(u) = u+ δτ(u) , g(u) = e−2iΩnT3ueδg1(u)T1eδg2(u)T2eδg3(u)T3 . (6.15)

Plugging (6.15) into the action (6.1) yields:

δSSL(2)×SU(2) = δSSL(2) + δSSU(2) ,

δSSL(2) =
Φren

2

∫︂ β

0
du

(︃
δτ ′′2 − 4π2

β2
δτ ′2

)︃
,

δSSU(2) =
Φren

2

∫︂ β

0
du
(︁
δg′21 + δg′22 + δg′23 − 2iΩn

(︁
δg2δg

′
1 − δg′2δg1

)︁)︁
,

(6.16)

To calculate the 1-loop determinants, we first rescale u → βu in order to eliminate the depen-

dence on β of the extremum of integration; notice that this also require scaling δτ → βδτ in

order to keep τ an element of Diff(S1). Focusing first on the δSSL(2) component, the rescaled
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action and corresponding 1-loop determinant are given by:

δSSL(2) =
1

2

Φren

β

∫︂ 1

0
du
(︁
δτ ′′2 − 4π2δτ ′2

)︁
,

detSL(2) = det

[︃
Φren

β

(︃
d4

du4
+ 4π2

d2

du2

)︃]︃
.

(6.17)

We can evaluate the determinant as the product of all the eigenvalues λτ of the equation:

Φren

β

(︃
d4

du4
+ 4π2

d2

du2

)︃
δτ(u) = λτδτ(u) . (6.18)

We can obtain the eigenvalues λτ by means of Fourier series, which amounts to replacing d/du→
2πim with m ∈ Z. The eigenvalues are thus:

λτ =
Φren

β
(2π)4m2

(︁
m2 − 1

)︁
, m ∈ Z . (6.19)

We see the appearance of three zero-modes, for values of m = 0,±1; these are exactly the modes

corresponding to infinitesimal SL(2,R) transformations of τ(u) = u. They can therefore be

gauge fixed away, exhausting all the SL(2,R) gauge freedom, so that the determinant is well

defined:

detSL(2) =
∏︂

m̸=0,±1

Φren

β
(2π)4m2

(︁
m2 − 1

)︁
. (6.20)

Finally, to obtain a finite result, we need to regularize the infinite product. This can be achieved

through ζ-function regularization [53, 54]; in particular, we can use the formulas:

∞∏︂
m=1

x−2 = x−2ζ(0) = x ,

∞∏︂
m=1

my = e−yζ
′(0) = (2π)y/2 . (6.21)

As we are only interested in the dependence on β and Φren, we neglect the other terms in the

product, which — after regularization — would provide only a shift in extremal entropy of the

black hole. We thus obtain the 1-loop determinant:

detSL(2) =

(︃
β

Φren

)︃3

. (6.22)

Going back to the SU(2) component instead, we have the action (after rescaling):

δSSU(2) =
1

2

Φren

β

∫︂ 1

0
du
(︁
δg′21 + δg′22 + δg′23 − 2iβΩn

(︁
δg2δg

′
1 − δg′2δg1

)︁)︁
. (6.23)

To calculate the 1-loop determinant detSU(2), it is convenient to diagonalize the kinetic terms

by introducing the combinations δg± = δg1± iδg2; this way the kinetic term is diagonal and we
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can express the 1-loop determinant as:

detSU(2) =det

[︃
Φren

β

(︃
− d2

du2

)︃]︃
·

· det
[︃
Φren

β

(︃
− d2

du2
− 2βΩn

d

du

)︃]︃
det

[︃
Φren

β

(︃
− d2

du2
+ 2βΩn

d

du

)︃]︃
.

(6.24)

The three sets of eigenvalues λ3, λ± of the respective three determinants are:

λ3 =
Φren

β
4π2m2 , λ± =

Φren

β
4π2m2

(︃
1∓ iβΩn

πm

)︃
, (6.25)

where m ∈ Z. We see that once again we have zero-modes for m = 0; these are exactly the

modes which correspond to global SU(2) rotations of g(u) and which can be gauge fixed away,

using all the SU(2) gauge freedom. The determinant is therefore:

detSU(2) =
∏︂
m̸=0

(︃
Φren

β

)︃3 (︁
4π2m6

)︁(︄
1− (iβΩn)

2

π2m2

)︄
. (6.26)

In order to get a finite expression, we will once again employ ζ-function regularization, together

with the expression:

sin(x) = x

∞∏︂
m=1

(︃
1− x2

π2m2

)︃
. (6.27)

Up to an overall constant — once again shifting the extremal entropy and regularization depen-

dent — we get:

detSU(2) =

(︃
β

Φren

)︃3(︃sin (2πα)

α+ n

)︃2

, (6.28)

where we introduced the parameter α defined by:

2πiα := βΩ =⇒ 2πi (α+ n) = βΩn . (6.29)

We are now just left to evaluate the 1-loop quantum corrections related to the fermionic

modes, present only in the case of supersymmetric attractors. This requires expanding the

N = 4 super-Schwarzian to second order in the fermionic terms. This procedure has been

carried out in [8, 48]; here we will simply quote the results, referring the reader to section 3.2 of

[8] for more details. The quadratic part of the action yields:

δSη = Φren

∫︂ β

0
du δη

(︃
2∂3u + 4Ωn∂

2
u +

2π2

β2

(︃
1 +

β2Ω2
n

π2

)︃
∂u

)︃
δη . (6.30)

We then further rescale the action by sending u→ βu and η →
√
βη; the 1-loop determinant is
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thus:

detfer =

(︃
det

[︃
Φren

β

(︃
2
d3

du3
+ 4Ωnβ

d2

du2
+ 2π2

(︃
1 +

β2Ω2
n

π2

)︃
d

du

)︃]︃)︃2

, (6.31)

where the square comes from the fact that we have two sets of modes, for p = 1, 2. Notice that

this time we should impose antiperiodic boundary conditions on the spinor, i.e. we should take

half-integers values for m ∈ (2Z + 1)/2 in the Fourier series sending d/du→ 2πim. The 1-loop

determinants (up to a proportionality constant38) turns out to be [8]:

detfer =

(︃
β

Φren

)︃4 2

π3
cos(πα)2

(1− 4(α+ n)2)2
. (6.32)

Notice that this requires gauge fixing the zero-modes arising from the m = ±1/2 eigenvalues

using the residual (fermionic) gauge freedom that one has from the PSU(1, 1|2) quotient. Notice
also that once again one can use ζ-function regularization to obtain a finite result, together with

the formula: ∏︂
m=...,− 5

2
,− 3

2
, 3
2
, 5
2
,...

(︃
1− α+ n

m

)︃
=

cos(πα)

1− 4(α+ n)2
. (6.33)

We can now finally obtain the 1-loop quantum corrected partition functions, which thanks

to fermionic localization are 1-loop exact. In the case of non-supersymmetric attractors, we get:

Z
1-loop
SL(2)×SU(2)(β, α) =Zcl ·

(︁
detSL(2)

)︁−1/2 (︁
detSU(2)

)︁−1/2

=eS∗−βE∗
∑︂
n∈Z

(︃
Φren

β

)︃3(︃ α+ n

sin(2πα)

)︃
e
Φren

2π2

β (1−4(α+n)2) .
(6.34)

As for supersymmetric attractors, instead, we have:

Z
1-loop
PSU(1,1|2)(β, α) =Zcl ·

(︁
detSL(2)

)︁−1/2 (︁
detSU(2)

)︁−1/2
(detfer)

=eS∗−βE∗
∑︂
n∈Z

β

Φren

2

π3
(α+ n) cot(πα)

(1− 4(α+ n)2)2
e
Φren

2π2

β (1−4(α+n)2) .
(6.35)

The main difference between the partition functions is the different scaling in Φren/β. As pointed

out in [13], the origin of the prefactors (Φren/β)
# lies in the gauge fixing of the zero-modes; for

each bosonic zero-mode that is gauge fixed away, one gets a factor (Φren/β)
1/2 in front of the

classical partition function, while for each fermionic mode one gets a factor (Φren/β)
−1/2. In the

case of SL(2,R)×SU(2), one gauge fixes 6 bosonic modes, 3 coming from the SL(2,R) invariance

of the Schwarzian derivative and 3 from the SU(2) invariance of the trace under SU(2) rotations;

thus we get the prefactor (Φren/β)
3. As for PSU(1, 1|2), we have a total of 6 bosonic generators

and 8 fermionic generators in PSU(1, 1|2) which leave the N = 4 super-Schwarzian invariant;

we thus get the prefactor β/Φren. However, we still need to perform the 1-loop determinant in

38 This proportionality constant is chosen such that the extremal entropy is exactly S∗, see the end of this
section.
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order to get the correct dependence on α.

Notice also that the prefactor eS∗ in front of Zcl would be multiplied by an arbitrary normal-

ization constant which is dependent on the regularization scheme of the 1-loop determinants;

since this can only shift by a finite amount the extremal entropy and cannot influence the qual-

itative features of the spectrum, we will not care about it and simply redefine S∗ in such a way

that it remains the extremal entropy. This highlights the fact that the Schwarzian action does

not describe the extremal black holes themselves; rather, the Schwarzian is just an effective

description of their near-extremal excitations. Nevertheless, super-Schwarzians have also been

used in recent attempts [55, 56] to reproduce the microstate counting of BPS black holes using

the gravitational path integral. In particular, the super-Schwarzians arise when regularizing

gravitational zero-modes by turning on a small temperature; for discussion about this approach

and its validity, see [55, 56, 57, 58].

Finally, before extracting the density of states ρ(E, J), let us briefly discuss what we can

already learn from (6.34) and (6.35). In particular, the extremal microstates can be counted by

sending β → ∞, allowing us to see how the 1-loop corrections (dependent on β) influence the

extremal entropy of the black holes. Let us start from the non-supersymmetric case. Sending

β →∞ in (6.34) is a bit tricky: in fact, we would like to replace

e
Φren

2π2

β (1−4(α+n)2) β→∞−−−→ 1 + . . . , (6.36)

since we cannot perform the sum over n analytically when the exponential is present; however,

this leads us to divergent sums over n, since the terms with |n| ≳
√︁
β/Φren are not suppressed

anymore by the exponential. Hence we will regularize the sum by summing over just |n| ≲√︁
β/Φren, i.e. over the terms that does not receive an exponential suppression. This way we

have:

e−S∗+βE∗Z
1-loop
SL(2)×SU(2)(β, α) ≈

′∑︂
n∈Z

(︃
Φren

β

)︃3(︃ α+ n

sin(2πα)

)︃
∼
(︃

β

Φren

)︃−2
β→∞−−−→ 0 , (6.37)

where the ′ over the summation
∑︁′

n∈Z highlights that we are summing over |n| ≲
√︁
β/Φren.

Notice that adding more terms from the Taylor series of the exponential in (6.36) does not

modify the result, since these additional terms are further suppressed as β →∞. Hence (6.37)

signals that there is only a single microstate of extremal energy, in contrast to what one expects

from the classical analysis of section 6.2. In the supersymmetric case, instead, we can use (6.36)

directly, since the sum over n in (6.35) does not diverge as n→∞. The expression we get is

e−S∗+βE∗Z
1-loop
PSU(1,1|2)(β, α) ≈

∑︂
n∈Z

β

Φren

2

π3
(α+ n) cot(πα)

(1− 4(α+ n)2)2
, (6.38)
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which apparently diverges as β →∞. However, if we perform the sum over n, we have

∑︂
n∈Z

(α+ n)

(1− 4(α+ n)2)2
= 0 , (6.39)

so we do not actually get an infinite degeneracy at extremality. This suggests that we have to

Taylor expand further the exponential (6.36) as follows [28]:

e
Φren

2π2

β (1−4(α+n)2) β→∞−−−→ 1 +
2π2Φren

β

(︁
1− 4(α+ n)2

)︁
+ . . . . (6.40)

By plugging (6.40) in (6.35), we get:

Z
1-loop
PSU(1,1|2)(β, α) ≈ e

S∗−βE∗
∑︂
n∈Z

2β

π3Φren

(α+ n) cot(πα)

(1− 4(α+ n)2)2

(︃
1 +

2π2Φren

β

(︁
1− 4(α+ n)2

)︁)︃
≈ eS∗−βE∗

∑︂
n∈Z

4

π

(α+ n) cot(πα)

(1− 4(α+ n)2)
.

(6.41)

This sum over n is now divergent, once again because we are still considering values of |n| ≳√︁
β/Φren which would be suppressed by the exponential. We can proceed as before, summing

over just |n| ≲
√︁
β/Φren to regularize the sum. This way we get [8, 28]:

′∑︂
n∈Z

(α+ n)

(1− 4(α+ n)2)
=

+
√
β/Φren∑︂

−
√
β/Φren

(α+ n)

(1− 4(α+ n)2)

β→∞−−−→ π

4
tan(πα) . (6.42)

The supersymmetric partition function in the β →∞ limits thus becomes:

e−S∗+βE∗Z
1-loop
PSU(1,1|2)(β, α)

β→∞−−−→ 1 ; (6.43)

hence, in the supersymmetric case, the extremal entropy remains finite and there is a degeneracy

in the ground states of the theory. Notice once again that considering additional terms in the

Taylor series (6.40) would not change the result, since they would be further suppressed in β.

6.4 Spectra of the black holes

We are now finally ready to calculate the quantum corrected spectra of the black holes. The

partition functions (6.34) and (6.35) are partition functions for black holes in a “grand-canonical”

ensemble with fixed temperature T and angular velocity Ω (along the z axis), but fixed electric

and magnetic charges; we can thus write them as39:

Z(β,Ω) = Tr
[︂
e−βĤ+2βΩĴ3

]︂
, (6.44)

39 The 2 factor in 2βΩĴ3 is due to our normalization of the angular velocity in (4.42).
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where Ĥ is the Hamiltonian operator and Ĵ3 is the angular momentum operator along the z

axis. From the grand-canonical partition function Z(β,Ω) we are interested in extracting the

microcanonical partition function ρ(E, j3), i.e. the energy density of states (or spectrum) of the

black holes for fixed energy E and angular momentum j3.

The most direct approach one can take is to express ρ(E, j3) directly in terms of Z(β,Ω). 4d

spherical symmetry (i.e. 2d SU(2) gauge symmetry) implies that the Hamiltonian operator Ĥ

can only be a function of the total angular momentum operator Ĵ
2
= Ĵ

2
1 + Ĵ

2
2 + Ĵ

2
3, and not

of the single components Ĵ i separately. Given that
[︂
Ĵ
2
, Ĵ3

]︂
= 0 and thus

[︂
H, Ĵ3

]︂
= 0, we can

expand (6.44) as:

Z(β, α) =Tr
[︂
e−βĤ+4πiαĴ3

]︂
=

∫︂ ∞

0
dE e−βE

∫︂ +∞

−∞
dj3 e

4πiαj3 Tr
E,j3 fixed

[1]

=

∫︂ ∞

0
dE e−βE

∫︂ +∞

−∞
dj3 e

4πiαj3ρ(E, j3) ,

(6.45)

where we assumed that the zero-point energy is such that Ĥ |Ω⟩ = 0 (with |Ω⟩ the lowest energy
states). The grand-canonical partition function is therefore the Laplace transform with respect

to E and the Fourier transform with respect to j3 of the spectrum ρ(E, j3) of the black holes,

i.e. of the probability density of finding a black hole with energy E and angular momentum j3.

We can get ρ(E, j3) back by performing an inverse Laplace transform and an inverse Fourier

transform. Notice in particular that introducing α instead of Ω allows us to perform the inverse

transforms in any order; this would have not been possible had we kept Ω instead of α, since we

would have had the appearance of βΩ in the coefficient of the Fourier transform, forcing us to

perform first the inverse Fourier transform (rather than the Laplace transform).

The problem with the above approach is that performing both the inverse Laplace transform

and inverse Fourier transform can get quite cumbersome. We can try to circumvent this difficulty

by guessing that the spectrum ρ(E, j3) is organized as a sum over SU(2) representations40:

ρ(E, j3) =
∑︂

J=N/2

⎡⎣ρ(E, J) +J∑︂
j′3=−J

δ
(︁
j3 − j′3

)︁⎤⎦ . (6.46)

Here ρ(E, J) is the probability density of finding a black hole with energy E and total angular

momentum Ĵ
2
= J(J+ 1). This allows us to rewrite (6.45) as:

Z(β, α) =

∫︂ ∞

0
dE e−βE

∑︂
J∈N/2

χJ(α)ρ(E, J) , (6.47)

40 We consider J = N/2 for both supersymmetric and non-supersymmetric attractors; this is due to the fact
that we have fermions in our theory, even around non-supersymmetric attractors. Had we considered a 4d gravity
theory without fermions, we would have just kept J = N, as done for example in [7].
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where the SU(2) character is defined as:

χJ(α) =

+J∑︂
j3=−J

e4πiαm =
sin ((2J+ 1)2πα)

sin (2πα)
. (6.48)

This way, we can obtain ρ(E, J) by first performing an inverse Laplace transform and then

identifying the χJ(α) and what factors multiply them, instead of performing the inverse Fourier

transform. The choice of the expansion (6.46) is up to know just an educated guess, which will

turn out to be correct; as shown at the end of this section, however, such an expansion in SU(2)

representations can be justified from the point of view of an SU(2) BF theory on a disk.

Let us now proceed by starting from the SL(2,R)×SU(2) generalized Schwarzian. Performing

the inverse Laplace transform of (6.34) yields:

Z
1-loop
SL(2)×SU(2)(E, α) =e

S∗ Φ
2
ren

2π2
E

sin 2πα
θ(E)·

·
+∞∑︂

n=−∞

α+ n

1− 4(α+ n)2
I2

(︂√︁
8π2ΦrenE

√︁
1− 4(α+ n)2

)︂
,

(6.49)

where we defined the energy above extremality E := E− E∗ to write a more concise expression.

Here θ is the Heaviside theta and I2 is the second modified Bessel function of the first kind.

Next, we rewrite the expression above by the means of the relation (3.42) of [8], obtained by

applying the Poisson summation formula to the second line of (6.49):

+∞∑︂
n=−∞

α+ n

1− 4(α+ n)2
I2

(︂√︁
8π2ΦrenE

√︁
1− 4(α+ n)2

)︂
=

+∞∑︂
m=1

m

8πΦrenE
sin(2πmα) sinh

(︂
π
√︁
8ΦrenE −m2

)︂
θ

(︃
E − m2

8Φren

)︃
.

(6.50)

In particular, notice the presence of the θ function: it arises in the computation of the Fourier

transform with respect to n, once expanding for asymptotically large values the Bessel function

I2 and closing the complex contour. Plugging back into (6.49) yields:

Z
1-loop
SL(2)×SU(2)(E, α) =e

S∗ Φren

16π3
·

·
+∞∑︂
m=1

m
sin(2πmα)

sin(2πα)
sinh

(︂
π
√︁
8ΦrenE −m2

)︂
θ

(︃
E − m2

8Φren

)︃
.

(6.51)

We now notice that we can rewrite the coefficient sin(2πmα)/ sin(2πα) in terms of the characters

χJ(α) as:
sin(2πmα)

sin(2πα)
= χJ(α) , J =

m− 1

2
. (6.52)
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Comparison with (6.47) allows us to extract the spectrum for near-extremal black holes around

the non-supersymmetric attractors41:

ρnon-SUSY(E, J) =e
S∗ Φren

16π3
(2J+ 1) ρc

(︃
E, J+

1

2

)︃
,

ρc (E, J) := sinh

[︄
2π
√︁

2Φren

√︄
E−

(︃
E∗ +

J2

2Φren

)︃]︄
θ

[︃
E−

(︃
E∗ +

J2

2Φren

)︃]︃
,

(6.53)

with J ∈ N/2. Note that when going from (6.51) to (6.53) we should further redefine E∗ →
E∗−1/8Φren, such that the ground state energy is still E∗; however, we will not do so in order to

make the comparison with the spectrum around supersymmetric attractors (6.60) clearer. We

can see that, after adding the gravitational quantum corrections, the spectrum has no discrete

components. This implies that there is no extremal degeneracy in the spectrum — there is just

a single extremal microstate — and there is no mass gap, in agreement with the analysis in the

β →∞ limit of the partition function in section 6.3. This is in contrast with the classical result,

which predicts an extremal entropy of Area/4GN — i.e. the presence of a huge degeneracy of

extremal microstates — and possibly a mass gap (6.14).

Focusing now on supersymmetric attractors, the analysis of the spectrum of the N = 4 has

already been performed in [8, 28]. The inverse Laplace transform of (6.35) is given by:

Z
1-loop
PSU(1,1|2)(E, α) =e

S∗ 4 cot(πα)

π

+∞∑︂
n=−∞

α+ n

1− 4(α+ n)2
·

·
[︃
δ(E) +

1

2π2Φren
∂Eδ(E) +

1

E
I2

(︂√︁
8π2ΦrenE

√︁
1− 4(α+ n)2

)︂]︃
.

(6.54)

The inverse Laplace transform contains both a continuum and a discrete part. The discrete part

— which contributes only at extremality — seems rather problematic due to the presence of the

∂Eδ(E), which arises from the β multiplying the exponential in (6.35). As discussed already in

the previous section 6.3, this apparent paradoxical behavior at extremality is due to the fact

that we have yet to perform the sum over n, and we freely exchanged the sum and the inverse

Laplace transform without any care. As shown in section 6.3, we actually have just an extremal

41 In [8], the spectrum of an SL(2,R)×SU(2) generalized Schwarzian appears slightly modified, with J2 replaced
by J(J+1) in ρc; one might expect this, since in the BF formulation we get the Casimir of SU(2), C2 ∼ J(J+1), in
the expression of the energy. Given that we sum over J+1/2 and not over J, we have J(J+1) = (J+1/2)2 − 1/4;
their spectrum is therefore equivalent to our result up to a shift in extremal energy of 1/8Φren (which as always
we do not care about).
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entropy S∗ when taking β →∞; hence we will just replace (6.54) with42:

Z
1-loop
PSU(1,1|2)(E, α) =e

S∗δ(E) + eS∗
4 cot(πα)

π

+∞∑︂
n=−∞

α+ n

1− 4(α+ n)2
·

·
[︃
1

E
I2

(︂√︁
8π2ΦrenE

√︁
1− 4(α+ n)2

)︂]︃
.

(6.55)

We can once again simplify the term with the Bessel function I2 in the above expression using

(6.50), obtaining:

Z
1-loop
PSU(1,1|2)(E, α) =e

S∗δ(E) + eS∗
1

2π2ΦrenE2
·

·
+∞∑︂
m=1

m
sin(2πmα)

tan(2πα)
sinh

(︂
π
√︁
8ΦrenE −m2

)︂
θ

(︃
E − m2

8Φren

)︃
.

(6.56)

We are just left to reconstruct the coefficients in terms of the characteristics χJ(α). For the

δ(E), we simply notice that 1 = χ0(α): hence the δ(E) is the contribution of the ground state

of total angular momentum J = 0. For the sin(2πmα)/ tan(πα), we recognize43 [8]:

sin(2πmα)

tan(πα)
=
(︁
χJ(α) + 2χJ−1/2(α) + χJ−1(α)

)︁
, J =

m

2
, m ≥ 1

2
. (6.57)

Notice that the appearance of the combination χJ(α) + 2χJ−1/2(α) +χJ−1(α) is to be expected.

The N = 4 super-Schwarzian is a supersymmetric quantum mechanics and thus we expect the

spectrum to be organized in N = 4 supermultiplets [8]. In particular, we have 4 fermionic

generators of the super-translations:

{︁
Qp, Q

q}︁
= 2δqpĤ , {Qp, Qq} =

{︁
Q
p
, Q

q}︁
= 0 ; (6.58)

when acting on a state |J⟩ of angular momentum J, two of them will act as an SU(2) doublet

of lowering operators (sending J → J − 1/2) and two will act as an SU(2) doublet of raising

operator (sending J → J + 1/2), while leaving the energy E of the state unchanged. They also

annihilate the ground state, defined as the state |Ω⟩ such that Ĥ |Ω⟩ = 0. The spectrum of

the PSU(1, 1|2) theory will thus be organized into N = 4 supermultiplets, containing both

bosonic and fermionic states of the same energy. They can be constructed by starting with a

state of maximum spin J and acting with the two lowering operators, obtaining the following

supermultiplets:

J = J⊕ 2

(︃
J− 1

2

)︃
⊕ J− 1 , J ≥ 1 ,

1

2
=

1

2
⊕ 0 .

(6.59)

42 See [28] for a more in depth explanation and a slightly different derivation of the same result.
43 Notice that χ−1/2(α) = 0 [28], so that for J = 1/2 we get only χ1/2(α) + 2χ0(α).
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Additionally, the fact that all the supercharges Q and Q annihilate the ground state implies that

the ground state is by itself a full BPS state, i.e. it is its own supermultiplet (thus explaining

why we get just the combination χ0(α)δ(E)). Finally, we get the following spectrum for near-

extremal black holes around supersymmetric attractors:

ρSUSY(E, J) =e
S∗δJ,0δ(E− E∗) +

eS∗

π2Φren(E− E∗)2
·

·
[︃
Jρc(E, J) + 2

(︃
J+

1

2

)︃
ρc

(︃
E, J+

1

2

)︃
+ (J+ 1) ρc (E, J+ 1)

]︃
,

(6.60)

where J ∈ N/2 and where we used once again the function ρc(E, J) defined in (6.53). We see

that (6.60) is quite different from (6.53). The main difference is the presence of the δ(E − E∗),

signaling that in the supersymmetric case we do indeed have a degeneracy of the ground state,

similarly to the classical analysis. We then have a continuum of states of growing energies,

organized by multiplets; they are separated by a gap ∆Egap with no states from the lowest

energy discrete states at E = E∗, with:

∆Egap =
1

8Φren
=

1

8

GN
W 3

0

. (6.61)

This is exactly the mass gap (6.14) that was argued directly from the classical thermodynamics.

Notice that the gap is determined by the value of the superpotential at the horizon W0 =

W (zi0, z
i
0), which in turn is just a function of the electric and magnetic charges of the black hole

(qI and pI) and of the values of the scalars zi0 at the attractor of the flow; in particular, these

are the quantities that characterize the near-horizon of the extremal black holes, and there is

no dependence on quantities set at spatial infinity. Once again, we see that the problem of the

mass gap, arising in the classical regime and signaling the breakdown of the thermodynamic

description, is actually solved by the gravitational quantum corrections. Notice that some

examples of black holes microstates counting in string theory suggest exactly the presence of

a mass gap and of a degeneracy in the ground state [5, 6]. These qualitative features of the

spectrum thus appear to be a consequence of supersymmetry, rather than general properties of

generic near-extremal black holes.

For comparison between non-supersymmetric and supersymmetric attractors, we plot in Fig-

ure 144 the behavior of ρnon-SUSY and ρSUSY. In particular, notice the presence of the δ(E− E∗)

in the supersymmetric J = 0 spectrum (together with the mass gap ∆Egap = 1/8Φren), which

is not present in the non-supersymmetric one. One can also notice a kink of ρSUSY(E, 1/2) for

the supersymmetric spectrum at E−E∗ = 1/8Φren; this is due to the contributions coming from

different N = 4 supermultiplets to the same J (and happens for all the J in the supersymmetric

case, even if it is not evident in the plot for J = 0, 1, 3/2).

44 Due to the different multiplicative factors of ρc in (6.53) and (6.60), we have rescaled the y axis differently
so that one can better compare the qualitative features of the two spectra.
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Figure 1: Energy density of states (or spectrum) ρ(E, J) for near-extremal black holes around non-
supersymmetric (on the left) and supersymmetric (on the right) attractors, as a function of the black
hole energy E; we set the extremal energy E∗ = 0 and plotted the spectra for values of total angular
momentum J = 0, 1/2, 1, 3/2.

At last, let us briefly discuss why the spectrum is organized as a sum over SU(2) representa-

tions — weighted by their characters — by starting directly from the BF theories. Let us start

by considering a pure SU(2) BF theory, which arises around non-supersymmetric attractors

(see section 4.7). Since we want to calculate the partition function on a disk, we will proceed

with radial quantization, using r as the radius and t as our (periodic) angular coordinate. To

quantize the gauge theory, we will follow [40]. To avoid dealing with ghosts, we can pick the

Coulomb gauge:

D0H01 = ∂0H01 − [B0, H01] = 0 . (6.62)

In canonical quantization, this equation must be imposed as a constraint on the wavefunction

(or more precisely wavefunctional) Ψ
[︁
Bi

0(x)
]︁
; as an operator equation, it becomes:[︃

∂0
δ

δBi
0(x)

+ εijkB
j
0(x)

δ

δBk
0(x)

]︃
Ψ = 0 . (6.63)

The above equation is solved by wavefunctions of the form:

Ψ
[︁
Bi

0(x)
]︁
= Ψ

[︂
Pe

∮︁ β
0 dtB0

]︂
= Ψ

[︂
e−2iΩβT3

]︂
, (6.64)

i.e. the wavefunction is just a function of the holonomy of the SU(2) gauge field (4.42). In

other words, we have that the Hilbert space of states is exactly the space of L2 functions on

SU(2). Using the Peter-Weyl theorem, L2(SU(2)) can be decomposed into matrix elements of

the unitary irreducible representations of SU(2), and a natural basis for such a space is provided

by the characters in the unitary irreducible representations χJ

(︂
e
∮︁ β
0 dtB0

)︂
[40]. This allows us to

expand the trace over the Hilbert space — used to define the partition functions — as a sum

over representations.
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The partition function of the BF theory on the disk can be obtained by gluing together the

contribution of a cylinder and of an infinitesimal cap [40]. The Hamiltonian of the theory is

given just by (minus) the boundary term (or defect) (4.79) and is simply a function of Tr
[︁
b2
]︁
.

The b fields are proportional to the conjugate momenta to the B0 (up to an −2i factor); in

canonical quantization, they act as functional derivatives on the wavefunctions and thus — in

the chosen basis of irreducible representations — they act simply as the generators of SU(2):

bi = 2
δ

δBi
0

=⇒ bi χJ

(︂
Pe

∮︁ β
0 dtB0

)︂
= 2χJ

(︂
Ti Pe

∮︁ β
0 dtB0

)︂
. (6.65)

Since
∑︁

i TiT
i = C2(J) = J(J + 1), the Hamiltonian is diagonalized in the chosen basis and

depends only on J. It can be shown [41] that the grand-canonical partition function of an SU(2)

BF theory on a disk is of the form:

Z(β, α) =
∑︂

J∈N/2

(2J+ 1)χJ(α)e
−βh(J) , (6.66)

where h(J) is some function closely related to the Hamiltonian (which we will not determine

explicitly here). This matches exactly the expansion (6.47), and also predicts the factor 2J+ 1

that appears in (6.53).

As for the PSU(1, 1|2) BF theory, things get more complicated since PSU(1, 1|2) is non-

compact. As shown in [24], however, similar relations as the one used above still hold for

non-compact groups, once appropriately generalized45. Heuristically, we expect the partition

function of the PSU(1, 1|2) super-BF theory on a disk to behave similarly to the partition

function on a disk of a generic BF theory with a compact gauge group, that is to be organized

as a sum over PSU(1, 1|2) representations like above:

Z(β, α) =
∑︂
R

dim(R)χR (β, α) e−βh̃(C2(R)) ; (6.67)

here R is a generic PSU(1, 1|2) representation, χR is the character of such a representation and

h̃(C2(R)) is a function of the Casimir of the representation. Notice that while we write
∑︁

R

for the purpose of our discussion (as for usual compact gauge groups), for non-compact groups

one should consider an integral over continuous representations, rather than a sum over discrete

ones [24]. As showed in (6.59), each N = 4 supermultiplet (i.e. irreducible representation of

PSU(1, 1|2)) contains four SU(2) irreducible representations. Therefore, we expect to be able

to rewrite the partition function — isolating the SU(2) contribution — using (6.59) as [8, 28]

Z(β, α) =
∑︂

J∈N/2

8J
[︁
χJ(α) + 2χJ−1/2(α) + χJ−1(α)

]︁
(. . .) ; (6.68)

45 In particular, [24] generalized the above procedure to an SL(2,R) theory, describing yet another way to
quantize the Schwarzian.
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in particular, notice the 8J prefactor, coming from the sum of the dimensions of the four SU(2)

representations:

8J = (2J+ 1) + 2

(︃
2

(︃
J− 1

2

)︃
+ 1

)︃
+ (2 (J− 1) + 1) . (6.69)

The above expressions match exactly (6.57), together with the factor m = 2J = 8J/4 present in

(6.56).

To sum up, we calculated the quantum corrected 1-loop exact partition functions of the

generalized Schwarzian theories; then we extracted the spectra ρ(E, J) (plotted in Figure 1),

i.e. the probability of finding a black hole with energy E and total angular momentum J. The

quantum corrections calculated using the Schwarzian theories profoundly modify the thermody-

namics of the black holes. In particular, the thermodynamics around supersymmetric attractors

is still similar to the classical thermodynamics: we have a degeneracy in the ground state —

as predicted by the Bekenstein–Hawking area law — together with a mass gap where no state

is present. In contrast, the spectrum around non-supersymmetric attractors strongly deviates

from the classical prediction: the entropy S goes to −∞ as T → 0, and there is just a single

non-degenerate ground state. The behavior around supersymmetric attractors supports what

has been argued in [5, 6] from string construction of supersymmetric extremal black holes; the

behavior around non-supersymmetric attractors is instead quite different, suggesting that the

presence of an extremal degeneracy and of a mass gap is a consequence of supersymmetry, rather

than a general property of black holes.

7 Discussion and outlook

7.1 Results of this work

Before discussing some open questions, let us briefly summarize the results of this work. We

obtained the 1d effective theories describing near-extremal and near-BPS black holes in N = 2

ungauged supergravity (without hypermultiplets), in a 4d asymptotically flat background. We

focused both on BPS and on so called “fake-BPS” static black holes — which we reviewed

in section 2 — in the context of the N = 2 black hole attractor mechanism. The latter are

extremal black holes whose geometry satisfies first order differential equations, despite not being

supersymmetric. They can be obtained via very simple changes from BPS ones, as simple as

flipping the sign of a charge. In particular, we worked at fixed values of the electric charges

and with no magnetic charges, looking at near-extremal black holes which are slowly rotating.

We then used the 1d effective theories to calculate the quantum corrected (and 1-loop exact)

partition function and energy density of states; notice that we neglected all the corrections to the

extremal entropy and energy of the black holes, focusing only on the qualitative features of the

spectra. These effective theories are generalizations of the usual Schwarzian action appearing

in the description of near-extremal black holes in Einstein–Maxwell theory, including additional

gauge and fermionic degrees of freedom.
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We followed two different approaches to obtain the generalized Schwarzians. First — in

section 3 — we studied the symmetry breaking pattern in the near-horizon of the extremal black

holes, guessing the 1d theory in the spirit of effective field theories. Then — in sections 4 and 5

— we performed the Kaluza–Klein dimensional reduction from the original 4d supergravity to a

2d dilaton gravity; in the near-extremal limit, the latter becomes a generalized JT gravity, itself

related to a generalized Schwarzian. The near-extremal dynamics around non-supersymmetric

attractors is described by the action of a Schwarzian mode and a particle moving on SU(2),

realizing the SL(2,R)×SU(2)→ ∅×U(1) symmetry breaking; as for supersymmetric attractors,

the dynamics is determined by the N = 4 super-Schwarzian, realizing the PSU(1, 1|2) →
∅× U(1) symmetry breaking.

In both approaches, we emphasized that we cannot focus only on the bosonic side of the

theories, but we need also an analysis of the fermionic side to correctly differentiate between the

near-extremal dynamics around supersymmetric and non-supersymmetric attractors. This can

be understood directly from the original 4d action (2.1): the bosonic part of the supergravity

action, in fact, does not distinguish between supersymmetric and non-supersymmetric attractors

(while the kinetic NIJ might change, it does not alter the calculations of the effective theories).

Near-BPS and near-extremal dynamics can only be distinguished by the quantities that

appear directly in the supersymmetric transformations, such as the graviphoton field strength T−

given in (2.26); T− however appears explicitly only in the fermionic part of the 4d supergravity

action. To distinguish the two cases we introduced in (3.11) the parameter ζ, which measures

how “far” — in terms of distance from the BPS bound on the mass — the extremal solution is

from a truly BPS one; we have ζ = 1 for supersymmetric attractors, while the BPS bound on

the black hole mass implies 0 ≤ ζ < 1 for non-supersymmetric attractors. In the analysis of the

symmetries, what sets supersymmetric and non-supersymmetric attractors apart are exactly the

superisometries (i.e. the supersymmetries preserved by the solution), which are only present for

ζ = 1. In the dimensional reduction approach, the two attractors can be distinguished only when

considering the gravitinos and the gauginos quadratic contributions. In particular, the gravitinos

play a central role. From their 4d kinetic term and the interaction with the graviphoton field

strength, they receive a mass term proportional to (1 − ζ). Therefore they become heavy and

thus negligible — for small energies above extremality — for the non-supersymmetric attractors,

while they remain massless — supplementing the fermionic part of N = 4 JT supergravity —

in the case of supersymmetric attractors.

In the dimensional reduction approach, we found particularly useful to relate the generalized

JT gravity to a 2d BF theory, a topological gauge theory. This highlights the topological nature

of the reduced 2d theory, simplifying the process of relating it to a generalized Schwarzian. This,

together with supersymmetry, has also been fundamental in imposing the correct mixed bound-

ary conditions for the 2d action, needed to properly recover the correct generalized Schwarzians

from the JT gravities; we will discuss more in depth this delicate (and still not fully understood)
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point later in section 7.3.

Finally, in section 6, we analyzed the partition functions of the effective Schwarzians and

extracted the energy density of the states in the two cases. The partition functions are actually

1-loop exact: since we are integrating over (super-)symplectic manifolds with an U(1) symmetry

(given by Euclidean time translations) in the path integrals, we can apply the Duistermaat–

Heckman theorem [13], localizing the path integrals. The 1-loop determinants all have zero-

modes, due to the invariance of the generalized Schwarzian under “generalized” SL(2,R) trans-

formations; in the path integral, however, we quotient exactly over these symmetries of the gener-

alized Schwarzians, and thus the zero-modes can be gauge fixed away. Extracting the spectrum,

we see that the problem of the mass gap and the breakdown of the semiclassical thermodynamic

limit we have discussed in section 1 is solved once we add the gravitational quantum corrections.

The solution is different depending on whether we are around a supersymmetric attractor or

not: in the former case, we have a degenerate ground state separated by a mass gap from the

other continuous states (hence there are no non-extremal black holes that cannot emit Hawking

quanta); in the latter case, the quantum corrections remove the extremal degeneracy and raise

the energy such that black holes can always radiate (and the thermodynamic description never

breaks down). This shows that the mass gap, first conjectured from black holes constructions

in string theory, is closely related to supersymmetry. This suggests that, in general, we have to

be careful when extending considerations coming from supersymmetry to non-supersymmetric

black holes, already at the qualitative level. We also see that the semiclassical prediction —

from the Euclidean path integral — is still a good approximation when supersymmetry is pre-

served; vice-versa, when supersymmetry is broken, the quantum corrections dramatically alter

the semiclassical thermodynamics, and in particular the Bekenstein–Hawking area law. These

results agree with the analysis of [7, 8, 9, 10], where near-extremal and near-BPS black holes

were studied separately in different theories.

Finally, we notice that this is not the only example where quantum corrections coming from

the gravitational side solve some of the paradoxes arising in the semiclassical treatment of black

holes. In fact, a similar situation has been highlighted in [59] regarding the information paradox.

In particular, in a simplified 2d setup, it has been shown that the Page curve can be recovered just

from the gravitational path integral, once replica wormholes are included in the entanglement

entropy calculation.

7.2 Near-CFT1 duals, SYK and matrix models

We now discuss some possible directions of future work. For starters, an interesting idea is

to study the Near-AdS2/Near-CFT1 correspondence in the cases of JT gravity coupled to an

SU(2) gauge field and of N = 4 JT supergravity, searching for holographic models describing

the near-extremal and near-BPS dynamics respectively. As for N = 0, 1, 2 JT (super)gravities,

it has been shown that the N = 0, 1, 2 super-Schwarzians can be obtained in slightly different
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ways: as the low-energy, strong-coupling conformal limit of SYK-like models [60, 44] and as

double-scaled single-cut matrix models [23, 61, 28].

The SYK model is a 1d model of N Majorana fermions, interacting via q-particle couplings

picked randomly from a Gaussian distribution; one can then perform a quenched or annealed

average over the couplings to evaluate the thermodynamic potentials and the correlation func-

tions [62, 63, 64]. In the large-N , strong coupling regime the SYK develops reparameterization

invariance, typical of a “1d CFT”; the effective action describing the low-energy limit of the

model is exactly the Schwarzian action [11, 12]. While currently there is no clear way to re-

late directly the SYK model to a bulk gravitational description, it is believed that the SYK

model may be a good candidate for a holographic UV completion of JT gravity; for some recent

progress in relating the boundary SYK to the gravitational bulk, see [24]. There have been

various generalizations of the SYK model in the last decade. For example, the SYK model has

been generalized in the cases of N = 1 and N = 2 supersymmetry [44], and the connection with

the N = 1, 2 super-Schwarzians has been established. The latter in particular arises from N = 2

JT supergravity, which in turn can appear in the dimensional reduction of near-BPS higher di-

mensional black holes (see for example near-BPS black holes in 5d supergravity [9]). Therefore,

it could be interesting to formulate a N = 4 generalization of the SYK model and study its

relation to the N = 4 super-Schwarzian. There are also generalizations of the SYK model which

instead add invariance under some global symmetry group, without including supersymmetry

[65, 66, 67]; hence one might hope that a similar setup with SU(2) symmetry would contain the

Schwarzian mode together with the particle moving on SU(2) in its low energy, conformal limit.

Another interesting question would be to understand the role of the gravitinos in the bound-

ary dual, or in other words what is the mechanism in the boundary that leads either to the

N = 4 super-Schwarzian or just to its bosonic part, depending on whether we expand around

supersymmetric or non-supersymmetric attractors. Since the gravitino sources the supercurrent

of the dual field theory, a massless/massive gravitino should correspond to a conserved/broken

supercurrent, respectively.

As for matrix models, instead, it was first shown in [23] that JT gravity is equivalent to double-

scaled matrix model. A matrix model is a 1d quantum mechanical system, whose Hamiltonian

is a random N ×N matrix; one then averages over all the possible matrices weighted by some

potential. In the large-N limit, the model reproduces the partition functions of JT gravity with

various boundary conditions. In particular, as highlighted in [23], one gets from the matrix

model the full sum over different topologies that arises when evaluating the non-perturbative

corrections to the JT gravity partition function. This correspondence has also been expanded

to N = 1 and N = 2 JT supergravity, in [61] and (very recently) in [28] respectively. One can

therefore pose the same questions as for the generalized SYK models: can we formulate a N = 4

generalization of the matrix models (and its correspondence with the sum over topologies of

N = 4 JT supergravity) and what mechanism differentiate between supersymmetric and non-
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supersymmetric attractors directly in the matrix model? Some step towards answering the

former are also discussed in [28].

7.3 Propagation of the boundary conditions

A delicate point that remains to be clarified is how to pick the boundary conditions of the

NHR region. These boundary conditions determine the 1d effective boundary theory, which in

turn determines the near-extremal dynamics and the black hole spectrum. Understanding how

we should choose the boundary conditions is therefore at the core of understanding the behavior

of black holes near-extremality in any dimension. While in principle one can pick “by hand” the

appropriate boundary condition based on the symmetry considerations of section 3, we would

like to better understand the underlying physical mechanism.

Regarding the gravitational boundary conditions, one typically assumes Dirichlet boundary

conditions for the metric and the dilaton [12]; the idea is that NHR and FAR region should

be joined at their boundary, which must therefore coincide. The Dirichlet boundary conditions

forces us to add the Gibbons–Hawking–York boundary term, which is also essential to recover

the classical extremal entropy of the black holes. While this choice reproduces correctly the

Schwarzian mode (the “Goldstone boson” of the broken SL(2,R) symmetry), it is not particu-

larly clear how it should be generalized for other fields. Another question is whether it is correct

to do this at the level of the 2d action, or whether we should already separate the NHR and

FAR region in the original 4d theory. This is particularly problematic since the 2d SU(2) gauge

field is itself part of the 4d metric; therefore, if we simply applied Dirichlet boundary conditions

for the 4d metric, we would get the Dirichlet boundary conditions not only for the dilaton and

the 2d metric, but also for the SU(2) gauge field (which would make the SU(2) contribution

trivial).

A procedure for finding the boundary conditions of other fields has been proposed in [7, 8, 10].

The proposal is to “propagate” the boundary conditions at infinity up to the NHR boundary

by using the equation of motion. As we discussed in more details in section 4.3, we find that

this procedure does not yield consistent boundary conditions (let alone reproduce the boundary

conditions needed for the N = 4 super-Schwarzian). This contradiction with the results of [7, 8,

10] is unclear to us at the moment. Notice that another way to check the validity of the claim of

[7, 8, 10] could be to repeat the propagation for the metric and the dilaton; if propagating the

boundary conditions is a correct procedure, we should expect to recover the Dirichlet boundary

conditions. Once again, we could also ask what changes if we do this procedure in 4d (and not

in the dimensionally reduced 2d theory).

Finally, as we explained in section 5.3, we decided to pick the boundary conditions by using

insights from the supersymmetric theory. The Dirichlet boundary conditions for the metric and

the dilaton are converted to mixed boundary conditions in the first order BF formulation of

JT gravity for the SL(2,R) gauge field ASL(2). Then, in the PSU(1, 1|2) BF theory, super-
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symmetry imposes the same boundary conditions on both the SU(2) gauge field ASU(2) ≡ B

and the other fermionic components. Finally, since the SL(2,R)× SU(2) BF theory is just the

bosonic part of the PSU(1, 1|2) BF theory, we also impose the same boundary conditions for

the gauge field in that case. The problem with this approach is that it is not easily generalizable

to other fields or to other boundary conditions at infinity (such as fixing the field strength).

For example, the electromagnetic U(1) gauge fields do not combine in a unique BF theory with

the gravitational SL(2,R) components, and thus we cannot use supersymmetry to relate the

boundary conditions of the two fields. One possible workaround could be to consider the U(1)

gauge fields as the gauged isometry coming from the Kaluza–Klein reduction of a higher di-

mensional theory. This way, we could get some black holes with a larger set of near-horizon

supersymmetries in this higher dimensional theory, with superisometry group G containing the

subgroup SL(2,R)×U(1)nV +1 ⊂ G. The resulting super-BF theory describing the near-horizon

dynamics will therefore be based on G. This way, we can use the enhanced set of supersym-

metric transformations to relate the boundary conditions for the SL(2,R) gauge field ASL(2)

to the boundary conditions for the U(1) gauge fields AU(1) ≡ aI , similarly to how we used

the PSU(1, 1|2) supersymmetries to obtain the ASU(2) ≡ B boundary conditions as explained

above (5.36) in the PSU(1, 1|2) super-BF theory. This way, since we expect the same boundary

conditions to hold for the bosonic sector even when no supersymmetry is present, we have also

obtained the boundary conditions for the U(1) gauge fields even when no supersymmetry is

present. The main problem with this workaround is that it does not tell us what precisely is the

meaning of gluing the NHR and FAR region together; another drawback is that it still cannot

be applied if we do not fix the holonomy of the U(1) gauge fields at infinity (but choose some

other boundary conditions instead).

7.4 Different kinds of backgrounds

In this work we used two different approaches to find the 1d effective theory describing the

near-extremal black holes: first, we studied the symmetry of the extremal solutions; second,

we performed a Kaluza–Klein dimensional reduction from 4d to 2d. Both these approaches are

quite general, and thus an interesting direction is to apply them to different black hole solutions

(or maybe even to different spacetimes altogether). These black holes solutions may differ for

the number of dimensions, for their matter content, for their preserved supersymmetries and for

the value of their cosmological constant.

For example, black holes in an AdS background have been studied in [8, 9]; depending on

the preserved supersymmetries, they admit a near-BPS limit described by N = 2 [9] and N = 4

[8] super-Schwarzians. More exotic black holes have also been studied: for example, [68] focuses

on Einstein–Maxwell theory in presence of a positive cosmological constant. Depending on how

the near-extremal limit is taken, one can get three different near-horizon geometries: the usual

AdS2×S2 and the two unusual dS2×S2 and Mink2×S2. The AdS2×S2 arises when the inner

and outer horizons of the black holes coincide (as usual for typical extremal black holes), and
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is related to the Schwarzian action. The dS2 × S2 arises when the outer horizon coincides with

the cosmological dS horizon. As is often the case for de Sitter spaces, dS JT gravity is harder

to make sense of than regular (AdS) JT gravity; some recent developments are described in [42,

69, 70], highlighting also a connection to complex SYK models. Finally, the Mink2 × S2 arises

from a particular limit where the three horizons coincide; it appears to be connected to the so

called Callan–Giddings–Harvey–Strominger (CGHS) model, a 2d dilaton gravity which admits

a flat background [69]. In turn, the CGHS model is related to the action of a Schwarzian mode

together with a particle moving on a U(1) group manifold [69]. Quantization of this theory

has been performed in [71]; similarly to the cases of other non-supersymmetric Schwarzians,

quantum corrections strongly modify the spectrum at low temperature, removing the extremal

degeneracy and leaving only a single extremal microstate. This is to be expected from the

relation between this generalized Schwarzian and the near-extremal black holes in dS; the latter

in fact are non-supersymmetric, and thus from the result of this work we would expect that their

entropy deviates from the semiclassical Bekenstein–Hawking area law due to growing quantum

corrections as T → 0.

80





References

[1] J. D. Bekenstein. “Black Holes and Entropy”. In: Phys. Rev. D 7 (8 Apr. 1973), pp. 2333–

2346. doi: 10.1103/PhysRevD.7.2333. url: https://link.aps.org/doi/10.1103/

PhysRevD.7.2333.

[2] G. W. Gibbons and S. W. Hawking. “Action integrals and partition functions in quantum

gravity”. In: Phys. Rev. D 15 (10 May 1977), pp. 2752–2756. doi: 10.1103/PhysRevD.

15.2752. url: https://link.aps.org/doi/10.1103/PhysRevD.15.2752.

[3] J. Preskill et al. “Limitations on the statistical description of black holes”. In: Modern

Physics Letters A 06.26 (1991), pp. 2353–2361. doi: 10.1142/S0217732391002773.

[4] D. N. Page. “Thermodynamics of near extreme black holes”. In: Sept. 2000. arXiv: hep-

th/0012020.

[5] C. G. Callan and J. M. Maldacena. “D-brane approach to black hole quantum mechanics”.

In: Nucl. Phys. B 472 (1996), pp. 591–610. doi: 10.1016/0550-3213(96)00225-8. arXiv:

hep-th/9602043.

[6] J. M. Maldacena and L. Susskind. “D-branes and fat black holes”. In: Nucl. Phys. B 475

(1996), pp. 679–690. doi: 10.1016/0550-3213(96)00323-9. arXiv: hep-th/9604042.

[7] L. V. Iliesiu and G. J. Turiaci. “The statistical mechanics of near-extremal black holes”. In:

JHEP 05 (2021), p. 145. doi: 10.1007/JHEP05(2021)145. arXiv: 2003.02860 [hep-th].

[8] M. Heydeman et al. “The statistical mechanics of near-BPS black holes”. In: J. Phys. A

55.1 (2022), p. 014004. doi: 10.1088/1751-8121/ac3be9. arXiv: 2011.01953 [hep-th].

[9] J. Boruch et al. “BPS and near-BPS black holes in AdS5 and their spectrum in N = 4

SYM”. In: (Mar. 2022). arXiv: 2203.01331 [hep-th].

[10] L. V. Iliesiu, S. Murthy, and G. J. Turiaci. “Revisiting the Logarithmic Corrections to the

Black Hole Entropy”. In: (Sept. 2022). arXiv: 2209.13608 [hep-th].

[11] J. Maldacena, D. Stanford, and Z. Yang. “Conformal symmetry and its breaking in two

dimensional Nearly Anti-de-Sitter space”. In: PTEP 2016.12 (2016), p. 12C104. doi: 10.

1093/ptep/ptw124. arXiv: 1606.01857 [hep-th].
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