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1 Introduction
As we all know, consistency between modern cosmological observations and the
Einstein field equations of General Relativity necessarily requires the existence of a
positive cosmological constant Λ. Its introduction, on the one hand, is fundamental
for explaining the dominance of the dark energy, which is the actual source of
the current accelerated expansion of the Universe. On the other hand, even more
importantly, on a positive cosmological constant relies also the inflation phenomenon,
a phase of accelerated expansion of the Universe occurred 10−36 s after the Big
Bang and widely accepted as the solution of some flaws of the hot Big Bang models,
such as the flatness and horizon problems.

Recent cosmological observations on type Ia supernovae [1, 2] have however
shown that the rate of expansion during the inflationary epoch was much more
consistent than nowadays. This incongruity, together with other reasons related
to the inflation dynamics, suggested that the constant quantity put by hand into
the Einstein-Hilbert action cannot be the only contribution to Λ and that some
other mechanism that generates an effective cosmological constant must exist.
Among the many feasible candidates for this mechanism, the most intriguing one
is based on the introduction of one or more scalar fields with a nonvanishing
scalar potential V (φ), whose Lagrangian, −1

2∂
µφ∂µφ − V (φ), to be added to the

Einstein-Hilbert Lagrangian 1
16πG(R− 2Λ), clearly provides the net cosmological

constant Λ + 8πGV (φ0) when the scalar fields sit in the extremum φ0 of the
scalar potential. Since in the Standard Model of Fundamental Interactions no
fundamental scalar particle is present apart from the Higgs (whose vacuum energy
V (φ0) however induces a cosmological constant 120 orders of magnitude larger
than the observed one), such a scenario inevitably involves some new physics
beyond the Standard Model.

As a consequence, any theory that aspires to consistently extend the Standard
Model by means of new scalar fields must allow for the possibility of a positive
cosmological constant, dictated by a positive vacuum energy. Moreover, its value
should not be random, and should be possibly adjusted (also at the quantum
level) to the very small cosmological constant currently observed, without enforcing
unreasonable fine tunings.

At the present time, the most promising candidate for such an extended theory
is certainly String Theory [3, 4, 5]. It was born as a theoretical framework in which
the point-like particles of particle physics are replaced by one-dimensional vibrant
objects called strings, and has proven to be a very robust model for describing the
unification of all four interactions in nature in a consistent way with Quantum
Mechanics and General Relativity. Due to the strong internal coherence constraints,
nowadays are known just five 10-dimensional supersymmetric string theories, which
are actually deeply tied together by many duality relations and are even connected
to a different model in eleven dimensions, the so-called M-theory, which does not
involve strings at all.

Although the particle spectrum of string theories and M-theory is made of
a finite number of light states and an infinite tower of very massive excitations,
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fortunately both theories have a low-energy limit (describing just the lightest modes)
given by supergravity theories living in ten and eleven dimensions respectively. Since
the space-time on which we usually base our experience is 4-dimensional, however,
it is necessary to assume that the six or seven additional dimensions are small
and “compactified” in a finite volume, which is the reason why they have not been
detected yet. In particular, depending on how compactification is performed, we
obtain several 4-dimensional effective supergravity theories, which differ by both
matter content and amount of supersymmetry. This abundance of lower-dimensional
models underlies the rich content of String Theory and, most importantly, allows to
arrange many pleasant phenomenological features.

For example, the most trivial compactification of 11-dimensional supergravity,
in which the internal manifold is assumed to be the product of seven circles,
leads to a 4-dimensional supergravity theory with the maximum (N = 8) amount
of supersymmetry whose matter content and Lagrangian are completely fixed.
However, due to the quite unrealistic spectrum and the absence of a scalar potential,
this compactification is sufficient neither to provide phenomenologically viable
models nor to possibly support a positive effective cosmological constant. On the
other hand, one may consider more complicated compactifications, in which for
instance the product of seven circles is replaced by manifolds with more structure
(such as the seven-sphere). In this case higher-dimensional forms may acquire
nontrivial background fluxes, which lead to more complicated effective theories in
four dimensions, typically coming with non-abelian gauge symmetries and with a
scalar potential as a result of the more complicated geometry. The 4-dimensional
supergravities arising from such compactifications are indeed more suitable for
providing interesting phenomenology and their study is essential to understand
what specific compactification has been chosen by nature.

Unfortunately, however, not all 4-dimensional supergravities derive from the
11-dimensional landscape and, thanks to the many restrictions imposed by super-
symmetry invariance, the theories with a big number of supersymmetries turn out
to be the ones with a more traceable stringy origin. On the contrary, supergravity
models with just one supersymmetry are rather flexible and can accommodate
many interesting phenomenological features (also because are the only that include
chiral fermions), but have a mostly unclear connection to String Theory. As a
consequence, despite their unrealistic phenomenology, theories with a large amount
of supersymmetry play an important role in the context of flux compactifications and
are still at the center of current investigations, especially to obtain new information
about the issues String Theory is currently suffering from.

Among the problems that afflict String Theory, one of the most prominent
concerns the selection of a vacuum state compatible with a positive cosmological
constant, as required by the initial cosmological considerations. In fact, not only
we do not know the full vacuum structure of String Theory, but the simple task of
constructing a stable de Sitter vacuum in a supergravity theory with a traceable
stringy origin has proved to be extremely challenging. An intuitive reason for the
abundance of Minkowski and Anti de Sitter vacua and this apparent lack of de Sitter
ones is that supersymmetry can be possibly preserved only in presence of negative
cosmological constants, and thus a positive cosmological constant is always a signal
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of supersymmetry breaking. Throughout the years several attempts were made to
find stable de Sitter vacua in 4-dimensional compactified theories, and many of the
most studied models in the literature include contributions to the scalar potential
motivated by nonperturbative effects. For example, in the compactification of type
IIB supergravity, an explicit N = 1 framework [7], also known as KKLT scenario,
have been assembled and has shown to easily provide de Sitter solutions: however,
their stability is ensured only as long as both nonperturbative effects and D-branes
are introduced. Conversely, all known examples of de Sitter solutions in extended
supergravity models with a clear higher-dimensional origin (maximal supergravity
included) display tachyons, which, besides, are too large to guarantee a sufficiently
long inflationary period.

Therefore, analyzing the existence of stable de Sitter vacua in supergravity
theories with a traceable stringy origin, whether phenomenologically viable or not,
may give new information about the difficulty we are currently facing to generate
them in low energy string models. In particular, a possible discovery of stable
de Sitter solutions can eventually reveal which elements are actually really necessary
for guaranteeing positive cosmological constants and stability at the same time. The
scope of this thesis is thus to study a particular supergravity model to understand
whether stable de Sitter vacua may arise or not.

As a first step, we will focus on a very special model, namely the maximal
SO(8) gauged supergravities arising from compactifications of M-theory on the
seven-sphere and a consistent N = 1 truncation of them. Despite the unrealistic
spectrum, these theories are an efficient playground for understanding the occurrence
of de Sitter vacua, because they are really constrained and their matter content
is completely determined by supersymmetry, and thus many calculations can be
done analytically until the end. We will then extend the analysis to the so-called
STU-models, which are generalizations of the N = 1 models previously studied
and which mostly derive from M-theory compactifications as well. In particular,
we will first proceed with a general analysis, searching for stable dS vacua without
caring about the possible uplift to eleven dimensions. Secondly, we will restrict to a
subclass of these models for which the correspondence with maximal supergravity
as well as M-theory is nowadays clear. Relevantly, in contrast with the recent
literature [38, 42], our search will be based on scalar potentials containing only on
perturbative contributions, and nonperturbative effects will be totally excluded.

However, let us stress that the present work completely neglects many phe-
nomenological features that should be certainly present in a theory that aims to
fully reproduce all experimental observations. Apart from the unrealistic spectrum
and the lack of chiral fermions, we do not control whether the size of the cosmo-
logical constant is compatible with the desired hierarchy Λ� m2

gravitino � m2
scalars

required by current cosmological experiments. Moreover, the actual value of the
found cosmological constants is only classical and may acquire nontrivial quantum
corrections, which might actually produce radical changings. Although these and
many other issues are ignored, we will see firsthand that reproducing stable dS
vacua with a traceable uplift will be anyway extremely difficult. The thesis will be
structured as follows.
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• In the second chapter we provide a very basic introduction to supergravity theories
in four and eleven dimensions, paying particular attention to the supersymmetry
breaking mechanism and the production of effective cosmological constants by
matter couplings.
• In the third chapter we give a brief overview of the general method that allows
to reduce a higher-dimensional theory to four dimensions, specifying then the
discussion to the compactification leading to our STU-model.
• The fourth chapter contains a preliminary analysis of the STU-models, in which

the results for the truncations of the SO(8) supergravities are exposed and matched
with the recent literature.
• Finally, in the fifth chapter, which is the core of the thesis, we present the original
material on the search of stable dS vacua in STU-models, both in the general and
in the upliftable case.
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2 Supergravities in four and eleven dimensions
In this chapter we provide a very brief introduction to supergravity theories in four
and eleven dimensions. In summary, we first introduce minimal D = 4 supergravity
and discuss how a cosmological constant naturally arises in this context from the
coupling to matter fields. We then describe pure and gauged maximal supergravities
in four dimensions, ending with an overview of the low-energy limit of M-theory,
11-dimensional supergravity.

The scope of these sections is, on the one hand, to exhibit the conditions under
which a generic N = 1 supergravity theory coupled to chiral multiplets admits stable
(Anti) de Sitter vacua, either preserving or breaking supersymmetry. On the other
hand, the discussion aims to prepare a theoretical framework for the description of
how our 4-dimensional supergravity model derives from the 11-dimensional theory
upon dimensional compactifications, which will be the main content of the next
chapter.

2.1 Supersymmetry and supergravity

One of the most prosperous ideas for extending the Standard Model of Fundamental
Interactions relies on the concept of supersymmetry, i.e. a symmetry relating the
bosonic and fermionic degrees of freedom of a theory [8, 9, 10]. In fact, although there
is actually no direct evidence that supersymmetry is an exact symmetry of nature,
many Standard Model’s supersymmetric extensions are interesting candidates for
solving the so-called hierarchy problem, for guaranteeing the unification of the
Standard Model’s couplings at the GUT scale and for providing dark matter
candidates.

We remind that supersymmetry is defined in terms of N generators, acting on
the Hilbert space of a certain field theory and called supercharges QI , I = 1, . . . , N ,
which exchange bosonic and fermionic single-particle states as

QI |boson〉 = |fermion〉 , QI |fermion〉 = |boson〉 . (2.1)

These operators, obeying for consistency anti-commutation relations among them-
selves, transform as spin-1/2 objects, and, even though they satisfy a trivial com-
mutation relation with Poincaré space-time translations, they do not commute with
Lorentz generators. Therefore, they produce a space-time symmetry and cannot
be treated independently of the Poincaré generators, differently, for example, from
internal symmetries.

The anti-commuting algebra the supercharges enjoy admits irreducible represen-
tations via fermionic operators, the supermultiplets, whose dimension depends on N .
By (2.1), it is straightforward that each supermultiplet contains both bosons and
fermions, which have the same number of degrees of freedom and, if supersymmetry
is not spontaneously broken, even the same mass. The analysis in terms of supermul-
tiplets is particularly useful because, if a theory is invariant under supersymmetry,
its field content can be subdivided into supermultiplets and fully classified according
to them.
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Examples. By exploiting the explicit form of the supersymmetry algebra, one
can show that a generic massless supermultiplet of a theory invariant under N
supersymmetry transformations contains 2N on-shell complex degrees of freedom,
out of which 2N−1 are bosonic and 2N−1 are fermionic. In particular, the more the
number of supercharges increases, the longer the supermultiplets become.
• For instance, N = 1 supersymmetry admits chiral multiplets, whose (on-
shell) degrees of freedom are those of one Weyl fermion and one complex
scalar. Apart from multiplets with spin higher-than-2 particles, then, N = 1
supersymmetry presents vector multiplets, containing one vector and one Weyl
fermion, and graviton multiplets, consisting of one graviton and one spin-3/2
particle, the gravitino. Even gravitino multiplets, made of one gravitino and
one vector, are included. One can easily check that each of the mentioned
multiplets is characterized by 2 real bosonic and 2 real fermionic degrees of
freedom.
• In contrast, an N = 8 supersymmetric theory presents a more constrained
matter content and contains just one supermultiplet with at most spin-2
particles, whose degrees of freedom include 70 real scalars, 56 spinors, 28
vectors, 8 gravitinos and one graviton. Likewise, this multiplet has 28 real
bosonic and 28 real fermionic degrees of freedom.

Even though in principle the number of supersymmetry generators can assume
any integer value, by just taking into account the restrictions on the particles’ spin,
N cannot be arbitrarily large. In fact, in four dimensions any supermultiplet contains
particles with spin at least as large as 1

4N and thus, to describe local and interacting
theories, N can be at most as large as 4 for theories with maximal spin 1 (like gauge
theories) and as large as 8 for theories with maximal spin 2 (like gravity). For this
reason, N = 4 and N = 8 are, respectively, upper bounds for non-gravitational
and gravitational supersymmetric theories and represent the maximum amount of
supersymmetry those theories can enjoy, whence the term maximal supersymmetric
theories. Instead, supersymmetric theories (either including gravitons or not) with
just one supersymmetry are said to be minimal. In this thesis we will deal with
just minimal and maximal supersymmetry.

By definition, then, a supersymmetric model which is also invariant under
general coordinate transformations is called supergravity model [11, 12]. Even if
it is not trivial, it turns out, thanks to the supersymmetry algebra, that a theory
invariant under both supersymmetry and general coordinate transformations is
equivalent to a theory having local supersymmetry. In fact, the anti-commutator
between two supersymmetry transformations, which reads

{QIα, Q̄Jβ̇} = 2δIJσµ
αβ̇
Pµ , (2.2)

is proportional to a space-time translation. Hence, in theories with local super-
symmetry (where the spinorial infinitesimal supersymmetry parameters εα depend
on xµ) this anti-commutator is an infinitesimal translation whose parameters de-
pend on the space-time point. This means that locally supersymmetric models are
automatically invariant under local Lorentz transformations, and are nothing but
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theories of gravity. Thus, theories with local supersymmetry and General Relativity
are intimately tied together.

The spread interest for local supersymmetric theories is therefore justified by
the fact that, if supersymmetry is actually realized in nature, the theory that
correctly describes all interactions among elementary particles must be necessarily
a supergravity theory. Moreover, supergravity theories have a better ultraviolet
behavior than General Relativity, especially in theories with a large number of
supersymmetries.

Analogously to Yang-Mills theories where the gauging of a bosonic internal
symmetry requires the introduction of a gauge (vector) field, gauging supersymmetry
demands the introduction of a new suitable gauge connection. This field, on the
one hand, has to appear in proper covariant derivatives which eventually restore
the invariance of the action under local transformations. On the other hand, in
analogy with the gauge vector fields, it should transform into the derivative of
the infinitesimal supersymmetry parameter, which is actually a spinorial quantity.
Thus, the gauge field must be a vector-spinor ψαµ , which (on-shell) propagates
just two helicity 3/2 states. The field ψαµ is therefore an on-shell gravitino and
the supersymmetry of the theory further requires that a graviton sits in the same
supersymmetry multiplet. For this reason, local supersymmetry necessarily implies
the presence of at least a graviton multiplet, which is another way to understand the
already mentioned intimate connection between local supersymmetry and gravity.

We now expose the main features of the simplest supergravity model, N = 1
supergravity, which is the theory with the lowest possible number of local super-
symmetries.

2.2 N = 1 supergravity

Let us first analyze the most general field content an N = 1 supergravity model
can accommodate. Since we cannot build any locally supersymmetric Lagrangian
without including the gravitino, N = 1 supergravity must contain at least1 a
graviton multiplet, which we denote by (gµν , ψµ). If the graviton multiplet is the
sole content, the theory is also known as pure minimal supergravity.

In addition to the graviton multiplet, we can also insert other fields which will be
naturally coupled to gravity. As we will see, however, local supersymmetry imposes
many restrictions to the form of the total Lagrangian and gives rise to particular
interaction terms, in such a way that the whole theory is eventually specified just
by a little number of data. Apart from the graviton one, the multiplets which enter
N = 1 supergravity are the following.

• There can be nc chiral multiplets, each one made of one complex scalar
and one Majorana spinor, denoted by (φn, χn), n = 1, . . . , nc. The fermionic
degrees of freedom should play the role of ordinary matter fields in this
theory, while their superpartners, i.e. the corresponding scalars, are additional

1As we will explain soon, when supersymmetry is local, the gravitino cannot be contained in a
gravitino multiplet.
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particles not jet observed. Besides, chiral multiplets should also provide the
Higgs, which is the only scalar particle detected.

• There can be nv vector multiplets, made of one gauge boson (which should
reproduce ordinary Yang-Mills interactions) and one Majorana fermion, also
known as gaugino. However, as we will discuss in the next chapter, our N = 1
truncated model does not include any vector multiplet, and therefore vector
multiplets will no longer be considered in this section.

• Although in principle gravitino multiplets should be present in minimal
supergravity thanks to form of the supersymmetry algebra, it has been shown
that adding local supersymmetric interactions to the free gravitino multiplet
leads to undesired pathologies, like the existence of interactions propagating
with speed bigger than the speed of light, the improper set to zero of some
degrees of freedom or the need for the inclusion of higher-spin particles. Hence,
no gravitino multiplet can be inserted.

Once established which fields actually play a role in minimal supergravity, we
illustrate the most general locally supersymmetric Lagrangian (with at most two
space-time derivatives) regulating their dynamics. The total Lagrangian has the
form

Ltot(gµν , ψµ, φn, χn) = Lpure(gµν , ψµ) + Lmatter(gµν , ψµ, φn, χn) , (2.3)

where Lpure is a function of the sole graviton multiplet and is the only contribution
to Ltot in pure supergravity (and therefore it is independently invariant under local
supersymmetry transformations). In particular, this part includes the graviton
and the gravitino kinetic terms and appropriate interactions between them, mainly
deriving from the space-time covariantization of the kinetic part. It should be
stressed that, in four dimensions, the requirements of local supersymmetry invariance
and of at most two space-time derivatives completely fix Lpure, which does not
depend on any modifiable parameter.

On the contrary, Lmatter arises in presence of chiral supermultiplets and contains
the scalars and the spinors kinetic and interaction terms. In contrast to Lpure,
fortunately, these couplings are not completely determined by supersymmetry
and, as we will see, this relative freedom allows the existence of a quite arbitrary
cosmological constant.

We now examine independently the two pieces contributing to Ltot.

2.2.1 Pure supergravity action

In order to write a Lagrangian displaying also spinor derivatives in an invariant
form under general coordinate transformations, we should be able to covariantize
the spinor derivatives in analogy with the usual space-time covariantizations of
General Relativity. This procedure is necessary for the pure minimal supergravity
Lagrangian Lpure, due to the presence of a gravitino derivative.

The covariantization can be achieved by utilizing the so-called Cartan formal-
ism [13], in which the metric gµν is expressed in terms of the vielbein eaµ(x), defined
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by gµν(x) = eaµ(x)ebν(x)ηab. For each point xµ, these matrices encode the (always
existing) coordinate transformations mapping to the local inertial frame at that
point. Moreover, this formalism allows the definition of the spin connection ω a

µ b(x),
which can be expressed as a function of the vielbein and satisfies ω(ab) = 0 for
consistency.

Out of the spin connection we can construct the spinor covariant derivative

Dµχ ≡ ∂µχ+ 1
4ω

ab
µ γabχ , (2.4)

which, thanks to the spin connection’s properties, transforms covariantly under both
local Lorentz and general coordinate transformations. Since the gravitino is a vector-
spinor field and supergravity is invariant under general coordinate transformations,
the supergravity Lagrangian exhibits a gravitino covariant derivative, Dµψν , which
contains, in addition to the usual Levi-Civita connection term linked to the vector
index ν, also the right hand side of (2.4).

The pure supergravity Lagrangian can be written in a form manifestly invariant
under local space-time transformation as (up to 4-Fermi terms)

e−1Lpure = M2
P

2 R− 1
2ψµγ

µνρDνψρ , (2.5)

where e =
√
−det[gµν ], R is the Ricci scalar and MP = (8πGN )−1 is the (reduced)

Planck Mass. The former term is the usual Einstein-Hilbert Lagrangian, while
the derivative contribution within the latter reproduces the free gravitino action.
Because of the symmetry of Γρµν , just the spin connection further contributes to
the covariant derivative and induces a graviton-gravitino coupling, which is the
only present interaction apart from the 4-Fermi terms we neglected. Besides, one
can prove that this Lagrangian is invariant (up to total derivatives) under the
infinitesimal local supersymmetry transformations

δεψµ = MPDµε , δεe
a
µ = 1

2MP
ε̄γaψµ . (2.6)

We should note that no cosmological constant appears into Lpure unless we try to
modify the supersymmetry algebra into the (A)dS superalgebra. This modification
(which is actually feasible) leads to a new contribution proportional to ε into the
supersymmetry transformations (2.6) and gives rise, in addition to a cosmological
constant, also to a gravitino mass. In particular, it can be proved that only for AdS
we can write a consistent supersymmetric completion with a single supercharge.
However, in our N = 1 model a cosmological constant (and suitable modifications
of (2.6) giving rise to an (A)dS algebra) are dynamically generated by the coupling
to matter fields.

2.2.2 Matter couplings

The contribution Lmatter in (2.3) is completely specified by a few data which,
interestingly, are the same ones that fully determine a theory with the same matter
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content (except the graviton multiplet) in global supersymmetry. Therefore, the
imposition of local supersymmetry does not introduce neither other freedom nor
other restrictions on the choice of the theory parameters and just yields additional
couplings. Before explaining which kind of data is necessary to state, let us give a
few information about the scalar sector of Lmatter.

First, since we regard our supersymmetric theories as low-energy effective
models arising from a more fundamental theory, we do not have to worry about the
restrictions imposed by renormalizability. If renormalizability is not an issue, it turns
out that in a generic supersymmetric theory the scalar fields describe a nonlinear σ-
model based on a (Riemannian) target manifoldMsc. Their Lagrangian is therefore
characterized by non-minimal kinetic terms with the structure −gmn̄(φ)∂µφm∂µφn̄.
Besides, the scalar fields must be interpreted as coordinates onMsc with metric
gmn̄ and the total Lagrangian must be eventually invariant under general scalar
coordinates transformations φn → φ̃n(φm). However,Msc is not a generic complex
manifold of dimension nc and its structure is highly restricted by supersymmetry:
for N = 1 supersymmetry, for instance, Msc must be a Kähler manifold (and a
Kähler-Hodge manifold in supergravity). This means that its metric gmn must
satisfy

gmn = gm̄n̄ = 0 , (2.7)
gmn̄ = gn̄m = ∂m∂n̄K ≡ Kmn̄ , (2.8)

where K(φm, φn̄) is a (locally existing) real function called Kähler potential
with dimension two in mass. Hence in minimal supersymmetry (and supergravity)
the structure of the scalar manifold Msc is entirely expressed by the function
K(φm, φn̄), which is one of the information to specify in order to construct the
matter Lagrangian. If renormalizability of the (global) theory is requested, however,
the kinetic term must be minimal, i.e. gmn̄ = δmn̄ andMsc must be flat, and this
implies that the Kähler potential assumes the simple form K(φm, φn̄) =

∑nc
i=1 φ

iφī.
In both local and global supersymmetry, the masses of the chiral fields and all

their self-interaction terms (Yukawa as well as cubic and quartic scalar potentials)
are fully encoded in a single holomorphic function W (φn), the superpotential,
whose mass dimension is three. Renormalizability restrictsW (φn) to be a polynomial
of at most cubic order. It is relevant that
• the Kähler potential K(φm, φn̄) and
• the superpotential W (φm)

are actually the only information that completely determines Lmatter.

The simplest way to obtain the matter Lagrangian in supergravity is to start
from the corresponding globally supersymmetric Lagrangian and to perform certain
modifications on its terms. In fact, it can be shown that the total supergravity
Lagrangian (2.3) in presence of matter fields can be written as the sum between
the pure supergravity Lagrangian (2.5) and the global matter Lagrangian, after
having space-time covariantized the derivatives in the latter, “Kähler covariantized”
all derivatives, replaced the superpotential with the combination eK/2M

2
PW and

added new terms (out of which even a gravitino mass and new interactions) which
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eventually ensure the invariance of the total action under local supersymmetry
transformations. The end result of these modifications is schematically

e−1Ltot = M2
P

2 R− 1
2ψµγ

µνρDνψρ + · · · − V (φ), (2.9)

where the dots stand for the kinetic terms of the chiral multiplet, a gravitino mass
and interaction among all fields, except for the non-derivative scalar self-interactions
which are encoded in the scalar potential

V ≡ VF − VG = eK/M
2
P

[
gmn̄ (DmW ) (Dn̄W

∗)− 3 |W |2

M2
P

]
. (2.10)

In the last formula, the derivative Dm = ∂m − ∂mK/M2
P is covariant under Kähler

transformations

K(φm, φn̄)→ K(φm, φn̄) + h(φm) + h∗(φn̄), (2.11)

and enters just in the first contibution to the potential, VF , often called F-term,
because Fm ≡ DmW is exactly the auxiliary field (conventionally called F ) that
is needed to have the on-shell closure of the supersymmetry algebra. Both the
contributions VF and VG to the scalar potential are semi-positive definite (the former
thanks to the positive definiteness of the Kähler metric), and thus, in general, V is
neither positive nor negative definite.

We should note that the supergravity scalar potential (2.10), and even the total
Lagrangian (2.9), reduce to the corresponding global quantities in the global limit
MP →∞. Hence, the exponential and the term VG proportional to |W |2 in (2.10)
are supergravity corrections that vanish in global supersymmetry. However, as we
will discuss later, they crucially modify the vacuum selection and the cosmological
constant in local supersymmetry. Of these two correction, phenomenologically
speaking, the most relevant is the (semi-negative definite) term ∼ |W |2 which makes
the scalar potential no longer semi-positive definite (as it is in global supersymmetry,
since just VF contributes).

For the sake of completeness, let us mention that the introduction of vector
multiplets just adds a new contribution VD, called D-term, into the right hand side
of (2.10). This term, which is semi-positive definite as VF , depends on how the
vectors are coupled to the chiral multiplets by gaugings and its explicit structure
will be discussed in the example of section 2.4.1, once we will have introduced
gauged supergravity.

We have now all the elements to discuss supersymmetry breaking and to explain
how a cosmological constant is effectively produced in N = 1 supergravity by matter
couplings.

2.2.3 Supersymmetry breaking and cosmological constant

As we noticed, in a supersymmetric theory (based on a Minkowski vacuum state)
all the particles belonging to the same supermultiplet must exhibit the same mass.
Therefore, since we do not see any mass degeneracy in the elementary particle
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spectrum at least at energies of order 102 GeV, if supersymmetry is at all realized
in nature, it must be broken at low enough energy. There are in general two ways
supersymmetry can be broken: either spontaneously or explicitly.
• Supersymmetry is spontaneously broken [10, 11] if the theory is supersymmetric
but admits a (stable or metastable) supersymmetry breaking vacuum state,
i.e. a vacuum state |Ω〉 that is not left invariant by all the supersymmetry
transformation: QI |Ω〉 6= 0 for some I. In such a vacuum, one or more
scalars acquire a vacuum expectation value of the order of the supersymmetry
breaking scale.
• Supersymmetry is explicitly broken if the Lagrangian contains terms which do

not preserve supersymmetry by themselves. These terms should have positive
mass dimension, in order to be irrelevant in the far UV and so to not break the
nice UV properties of supersymmetric theories. In such a scenario, called soft
supersymmetry breaking, the supersymmetry breaking scale enters explicitly
in the Lagrangian.

Here we focus on the spontaneous way to break supersymmetry in the minimal
theory, also because soft supersymmetry breaking models can actually arise as low
energy descriptions of models where supersymmetry is broken spontaneously.

We first recall that a (Minkowski) vacuum is a Lorentz invariant state configura-
tion. This means that all field derivatives and all fields but scalar ones should vanish
in a vacuum state. For this reason, the only non trivial part of the Hamiltonian
which can be different from zero in a vacuum is the non-derivative scalar part, which,
by definition, is the scalar potential V . Therefore, the vacua of a theory, which are
the states where the energy is a critical point, are in one-to-one correspondence
with the critical points of V . In particular, the stable (or metastable) vacua are in
correspondence with the global (or local) minima of V .

Let us now study the condition a vacuum configuration should satisfy to
break the supersymmetry, both in the global and local case. We remind that
the supersymmetry transformation of a field operator Φ(x) can be written as
[ε̄Q,Φ(x)] = δsusyΦ(x). By applying the above definition, thus, a vacuum field
configuration Ω = {Φi} (in which at most the scalars are nonvanishing) breaks
supersymmetry if and only if it contains at least one field Φ̃ whose supersymmetry
variation

〈
Ω
∣∣∣δsusyΦ̃

∣∣∣Ω〉 =
〈

Ω
∣∣∣[ε̄Q, Φ̃]

∣∣∣Ω〉 ≡ 〈δsusyΦ̃
〉
is not zero. Since bosonic

fields transform in fermionic ones, for a bosonic field Φ̃ = Φbos we automatically
have 〈δsusyΦbos〉 = 〈fermions〉 = 0, and so Φ̃ cannot be bosonic. This implies that
all supersymmetry breaking can only come from the vacuum configurations that
produce a nonvanishing 〈δsusyΦfer〉.

By simply looking at the supersymmetry transformations of the chiral fermions
(proportional to F-terms) and the gauginos (proportional to D-terms), one deduces
that spontaneous supersymmetry breaking can only occur via a nonvanishing F-
term and/or a nonvanishing D-term, i.e. for a vacuum field configuration satisfying
VF 6= 0 and/or VD 6= 0 (see (2.10)). If, as in our model, we restrict to a theory
displaying just chiral multiplets, supersymmetry is spontaneously broken if and
only if 〈DmW 〉 6= 0 for some m.

12



Many comments are in order at this point. First of all, since in global super-
symmetry the scalar potential is V = VF + VD, and since VF and VD are both
semi-definite positive, a vacuum state preserves the supersymmetry if and only if V
evaluated at the vacuum, 〈V 〉, is zero. Conversely, supersymmetry is broken if and
only if its vacuum energy 〈V 〉 is bigger than zero. Hence, supersymmetric vacua
are indeed described by the zero’s of the scalar potential and the potential itself is
an useful order parameter of supersymmetry breaking.

As we anticipated, the situation in supergravity is extremely different due
to the scalar potential correction VG proportional to |W |2 in (2.10). In fact, in
supergravity, supersymmetry is preserved if both VF and VD are vanishing, but,
due to the presence of VG, this does not imply that V is zero. Thus, the only
useful information for establishing the spontaneous breaking is the F-term and
D-term values at the vacuum, while the whole scalar potential no longer fully
determines the breaking. However, if V is positive, we certainty can conclude that
supersymmetry is broken, because, due to the semi-negative definiteness of −VG, in
this case necessarily at least one between VF and VG must be different (and bigger)
than zero. Instead, if V is zero or negative no useful information can be extracted.

Let us now turn to the discussion about the cosmological constant, whose
introduction is actually indispensable for phenomenology. We recall that, in a
gravity theory described by a Lagrangian L, the cosmological constant Λ is defined
as the constant term that contributes to e−1L:

e−1L = M2
P

2 R+ · · · − Λ . (2.12)

The appearance of a cosmological constant in a theory admitting a certain vacuum
state |Ω〉 is intimately tied to the presence of a non-trivial scalar potential. In fact, if
we denote by φm0 the vacuum expectation value (VEV) of the scalar fields φm in |Ω〉,
the scalar potential expressed in terms of their vacuum fluctuation φ̃m = φm − φm0
is

V (φ0 + φ̃) = V (φ0) +
[
�����∂mV (φ0)φ̃m + 1

2∂m∂nV (φ0)φ̃mφ̃n + · · ·+ h.c.
]
. (2.13)

Hence, by comparing (2.9) and (2.12), it is straightforward that a cosmological
constant is effectively generated around the vacuum |Ω〉 if V (φ0) does not vanish,
and its value is exactly the scalar potential evaluated at the vacuum: Λ = V (φ0).

By the previous discussion on supersymmetry breaking, we conclude that a
globally supersymmetric theory can just admit either Minkowski stable vacua
(Λ = 0) preserving the supersymmetry or dS metastable vacua (Λ > 0) breaking
the supersymmetry.

As we mentioned, however, the coupling to gravity drastically modifies also this
scenario. Thanks to the contribution VG, supergravity can indeed exhibit even AdS
vacua (Λ < 0), either preserving or breaking supersymmetry. On the contrary, since
V > 0 implies supersymmetry breaking, a dS vacuum can just break supersymmetry,
which is a further confirmation of what we said at the end of section 2.2.1.

We should notice that, at least in the N = 1 theory, there is a strict connection
between the cosmological constant and the scale of supersymmetry breaking, which is
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actually a great problem in global supersymmetry. In fact, since the supersymmetric
partners of the particles in the Standard Model have not been observed yet, we
have to take a large scale of supersymmetry breaking, for example 1 TeV. This gives
a cosmological constant whose value is many orders of magnitude larger than the
observed one. This problem may be solved in supergravity theories, because, thanks
to VG, with an appropriate choice of the superpotential the resulting cosmological
constant may be small at will (although quantum corrections may radically change
its value).

Examples. Let us now provide two simple examples of Minkowski vacua, which, as
we will see in the last chapter, will be particularly relevant for the search of stable
dS vacua in our model. We focus in particular on a theory without vector multiplets,
in such a way that supersymmetry breaking can only occur when DnW 6= 0 for
some n.
(i) The simplest Minkowski vacuum is indeed a Minkowski supersymmetric vacuum,

φs, which satisfiesV (φs) = 0
DnW (φs) = ∂nW (φs) + ∂nK(φs)

M2
P

W (φs) = 0 for any n . (2.14)

A quick inspection of (2.10) tells us that also VG(φs) must vanish, and so it must
be W (φs) = 0. Therefore φs enjoys{

W (φs) = 0
∂nW (φs) = 0 for any n .

(2.15)

Interestingly, Minkowski supersymmetric vacua are always minima of the scalar
potential. To prove this fact, we notice that the Hessian matrix

V ′′ =
(
∂i∂j̄V ∂ī∂j̄V

∂i∂jV ∂ī∂jV

)
(2.16)

evaluated at φ = φs is block diagonal, given that each term in ∂i∂jV (φs)
presents a vanishing factor due to (2.15). For the upper-left diagonal block
we obtain, again taking account of (2.15) and that gmn̄ = Kmn̄, ∂i∂j̄V (φs) =
eK(φs)Kmn̄(φs)WimW

∗
j̄n̄
, where for compactness we wrote Wmn = ∂m∂nW (φs).

Therefore, using a matricial notation, ∂i∂j̄V (φs) = eK(φs)
(
WK(φs)W †

)
ij̄
, and

so ∂i∂j̄V (φs) is semi-positive definite because eK(φs) > 0 and, for any v ∈ C3, v 6=
0, we have v†WK(φs)W †v = (W †v)†K(φs)(W †v) ≥ 0 due to the positiveness of
K(φs) (remember thatMsc is Riemannian). Obviously also the lower-right block
∂ī∂jV is semi-positive definite and hence the Hessian matrix is semi-positive
definite. Let us notice that, if det [Wij ] 6= 0, (W †v)†K(φs)(W †v) > 0 and the
diagonal blocks are positive definite: in this case the Minkowski vacuum is even
a strict minimum of the potential.
This result was however expected from the stability of generic supersymmetry-
preserving vacua.
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(ii) Looking at (2.10), it is rather clear that the only other possible way to obtain a
vanishing V (φ0), in this case breaking supersymmetry, is to impose that at the
vacuum VF and VG are both different from zero and that they compensate each
other: VF = VG 6= 0. This means that it must be

Kmn̄(φ0)DmW (φ0)Dn̄W
∗(φ0) = 3 |W (φ0)|2

M2
P

. (2.17)

The simplest method to solve this equation is to suppose that that supersymmetry
is broken just along one fixed direction, for example φ1, i.e. D1W (φ0) 6= 0 and
DmW (φ0) = 0 for m 6= 1, in such a way that only one term survives in the sum
in the left hand side. With this assumption, (2.17) becomes indeed

K11̄(φ0)
∣∣∣∣∣∂1W (φ0) + ∂1K(φ0)

M2
P

W (φ0)
∣∣∣∣∣
2

= 3 |W (φ0)|2

M2
P

. (2.18)

This equation is automatically satisfied for any value of W (φ0) if ∂1W (φ0) = 0
and K11̄(φ0) |∂1K(φ0)|2 = 3M2

P . Therefore, in an N = 1 model where there is
at least one scalar field φT for which the Kähler potential fulfills the requirement

KT T̄ |∂TK|2 = 3M2
P , (2.19)

a vacuum state φn that enjoys the three conditions
DTW (φn) 6= 0
DmW (φn) = 0 for m 6= T

∂TW (φn) = 0 ,
(2.20)

is always a Minkowski vacuum which breaks supersymmetry just along the
T direction. Let us note that, by exploiting the explicit form of the Kähler
covariant derivative, (2.20) can be easily rewritten as

W (φn) 6= 0
DmW (φn) = 0 for m 6= T

∂TW (φn) = 0 .
(2.21)

Besides, if the Kähler potential has the form

K(φ) = K̃(φT ) + K̂(φn6=T ) (2.22)

where K̃ depends only on φT and K̂ depends only on the other fields, the
condition (2.19) on the Kähler potential must be checked just for K̃.
Such vacua, called no-scale vacua [11, 12, 14], will frequently appear in our model
because, as we will prove, our Kähler potential will satisfy the conditions (2.19)
and (2.22). In particular, their simple characterization in terms of the theory
parameters will be our starting point for finding stable dS vacua. Let us note
that the F-term evaluated at a no-scale vacuum is a function of φT , and the
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gravitino mass (which determines the supersymmetry breaking scale) is an
arbitrary parameter as long as the vacuum expectation value of φT is not fixed,
whence, indeed, the name “no-scale”.
Even more interestingly, also no scale vacua are always minima of the scalar
potential, fact that can be shown with a demonstration similar to the previous
one. Differently from the supersymmetric case, however, the stability of no-scale
vacua is a nontrivial fact, given that they are not supersymmetry-preserving.

Although by now we mentioned just Minkowski vacua, in N = 1 supergravity
obtaining even stable dS vacua is relatively easy, due to the huge freedom on the
definitions of the Kähler potential and the superpotential. However, it is difficult to
identify the origin of generic N = 1 theories in terms of an high energy string model.
Since our eventual aim is to find the uplift of supergravity vacua, we will focus on
the maximal theories, whose origin is well understood and whose structure is very
restricted by the requirement of supersymmetry invariance. Anyway, the above
analysis about minimal supergravity was not useless at all, because a consistent
truncation of our maximal theory will lead to an N = 1 model, which is the one we
will eventually examine.

2.3 N = 8 supergravity

In this section we provide a very short overview of ungauged maximal supergravity in
four dimensions [16, 19]. When no gauge interaction is present, the field content and
even the action of maximal supergravity are uniquely determined by the (strong)
requirement of local supersymmetry invariance, and, in contrast with minimal
supergravity, no scalar potential appears in the Lagrangian.

Let us first analyze which particles play a role in this theory. As we mentioned
in the example of section 2.1, the only possible (massless) N = 8 supermultiplet
with at most spin-2 particles is made of 70 real scalars, 56 spinors, 28 vectors, 8
gravitinos and one graviton, which therefore constitute the (completely fixed) field
content of maximal supergravity. We denote these fields by(

φijkl, χijk, A Λ
µ , ψ i

µ , e
a
µ

)
, (2.23)

where we left as understood the anti-symmetrization with respect to the indices
i, j, . . . , which assume 8 values and identify the transformation properties of
φijkl, χijk and ψ i

µ under the R-symmetry group (SU(8) for the maximal the-
ory [10]). On the contrary, both the 28 vectors, labeled by the index Λ = 1, . . . , 28,
and the graviton are real fields2 and therefore singlets of R-symmetry.

For being able to write down explicitly the maximal supergravity Lagrangian,
we have to provide a few indispensable information about the scalar and the vector
sectors of the theory.

The scalar sector of maximal supergravity (as of all supergravity theories with
N ≥ 3) is described by a G/H coset space σ-model, where G = E7(7) is the global

2Actually, the vectors can be written also as Aij and complex conjugates, with the self-duality
condition.
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isometry group of the theory and H = SU(8) (SU(8)/Z2, strictly speaking) is
its maximal compact subgroup [19]. In a convenient formulation of this σ-model
(particularly useful for applying the gauging procedure), the 70 scalar fields φijkl
parametrize an E7(7)-valued matrix V = V(x) taken in the fundamental 56 repre-
sentation of the group. However, due to the redundancy in parameterizing the coset
manifold G/H by an E7(7)-valued matrix, we have to require that the Lagrangian
of the theory is eventually invariant not only under global E7(7) transformations of
V (as in any σ-model), but also under local SU(8) transformations. Thanks to this
advantageous formulation, both of them act linearly on V and, respectively, from
the left and from the right as

δV N
M = Λα(tα) K

M V N
K − V K

M k
N

K , (2.24)

where Λα are constant parameters, (tα) N
M are the 133 generators of E7(7) in

the 56 representation, k N
M is a generic (x-valued) vector belonging to the SU(8)

algebra and the underlined indices refer to the behaviour under the subgroup
SU(8). An useful (although somewhat unconventional) parametrization of V , which
facilitates the coupling to fermions [16], makes use of the decomposition of the
fundamental 56 representation as 56→ 28+28′ and defines 56-dimensional complex
vectors V ij

M =
(
V ij

Λ ,VΣij
)
, M = 1, . . . , 56, Λ,Σ = 1, . . . , 28, labeled by the (28

independent) anti-symmetrized indices i, j = 1, . . . , 8. Together with their complex
conjugates denoted by VMij =

(
VΛij ,VΣ

ij

)
, these 28 + 28 vectors constitute the

56× 56 matrix

V N
M =

(
V ij
M ,VMkl

)
=

 V ij
Λ VΛkl

VΣij VΣ
kl

 , (2.25)

which transforms under global E7(7) from the left (with the index M) and under
local SU(8) from the right (with the indices ij in the 28 representation).

Obviously, since the SU(8) transformation is local, the derivative ∂µV ij
M (which

must enter somehow in the Lagrangian, for instance in the scalar kinetic term) does
not transform covariantly under SU(8). However, its covariantization is required to
eventually write the Lagrangian in a manifestly invariant form under local SU(8).
To render it covariant, we should define the composite SU(8) scalar connection

Q kl
µij = δ

[k
[i Q

l]
µj] , with Q j

µi = 2
3 i
(
VΛik∂µVΛjk − VΛ

ik∂µV
jk

Λ

)
, (2.26)

which is indeed such that the SU(8) covariant derivative

DµV ij
M = ∂µV ij

M −Q ij
µkl V

kl
M (2.27)

transforms under local SU(8) (and global E7(7)) as the matrix V ij
M . Out of this

derivative, we can construct an SU(8) (self-dual) tensor

Pµijkl = i
(
VΛij ∂µVΛ

kl − VΛ
ij ∂µVΛkl

)
, (2.28)

which will enter in the kinetic term of the scalars and can be shown to be invariant
under global E7(7).
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In a supergravity theory with N ≥ 3, the R-symmetry group is contained in
H, i.e. it must be H = H ′ × R where H ′ is some complement. In particular, in
maximal supergravity the two groups even coincide up to the discrete Z2 factor
which will play no role in the following. Therefore, the fermionic fields ψ i

µ and χijk
sit in local representations of H = SU(8) of dimensions 8 and 56 respectively, which
must be taken into account for writing a Lagrangian invariant local SU(8).

The discussion about the vector sector is somewhat complicated due to the so-
called electromagnetic duality in four dimensions [15, 18, 16], which we now briefly
summarize. Let us mention that a fundamental ingredient in the construction of
supergravity theories in a generic space-dimension D is the on-shell duality between
massless p-forms and (D − p− 2)-forms. In particular, in 4-dimensional maximal
supergravity, this fact translates in an on-shell duality between the 28 vector fields
A Λ
µ previously introduced, conventionally called electric, and their 28 on-shell

duals, called instead magnetic. To discuss this duality, we denote by F Λ
µν the 28

field strengths of the vectors A Λ
µ , and we define the corresponding 28 dual field

strengths by
GµνΛ = iεµνρσ

∂L
∂F Λ

ρσ

. (2.29)

For instance, in the free case of with canonical kinetic terms, these field strengths
are proportional to the Hodge duals of F Λ

µν , defined by F̃µνΛ = 1
4!εµνρσF

ρσΛ. The
definition of GµνΛ is particularly convenient because, in general, by making use of
both F Λ

µν and GµνΛ, the Bianchi identities and the equations of motion of L can
be cast in the same form and written respectively as

∂[µF
Λ

νρ] = 0 , (2.30)
∂[µGνρ]Λ = 0 . (2.31)

The last equation moreover implies that GµνΛ is a closed two-form (obvious in the
free case), which allows the introduction of the above-mentioned dual magnetic
fields AµΛ, defined at least locally as GµνΛ = 2∂[µAν]Λ.

It can be interesting to analyze which transformations (called duality transfor-
mations) on the field strengths leave invariant the preceding construction. Since
the two equations (2.30) and (2.31) are also homogeneous, they are invariant under
the following infinitesimal linear combination of the field strengths and their duals(

δFΛ

δGΛ

)
=
(

AΛ
Σ BΛΣ

CΛΣ D Σ
Λ

)(
FΣ

GΣ

)
, (2.32)

where A,B,C,D are constant 28×28 matrices which give rise to a (nonsingular) 56×
56 matrix belonging to GL(56,R). However, imposing that the sole equations (2.30)
and (2.31) are invariant is not sufficient (and actually meaningless), since GΛ
is defined in terms of FΛ (and of the Lagrangian) by equation (2.29), whose
invariance under duality transformations (2.32) must be required for consistency.
Besides, in general, we should allow also the other fields within the Lagrangian
to transform under duality transformations and impose that their field equations
are invariant as well. It can be shown that, if we require the invariance under
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duality transformations (2.32) of (2.29), (2.30), (2.31) and of all possible equations
of the other fields, the 56× 56 duality matrix must belong to a subgroup Gdual of
Sp(56,R), which is the group of matrices preserving the skew-symmetric matrix

ΩMN =
(

0 128
−128 0

)
. (2.33)

In maximal supergravity, in particular, the duality group Gdual is exactly the
isometry group of the scalar manifold, G = E7(7), properly embedded into Sp(56,R).
Moreover, it turns out that the vector fields and the (already discussed) scalar
fields are the only to be subject to the E7(7) duality transformations: the vectors
A M
µ ≡

(
A Λ
µ , AµΣ

)
collectively transform in the 56 representation of E7(7), and

the scalars as already specified in (2.24).
It should be noted that, although a duality transformation preserves by definition

all equations of motion, in general it does not preserve the Lagrangian: for this
reason, these dualities are said to be on-shell. More precisely, starting from a certain
Lagrangian, duality transformations define equivalence classes of Lagrangians that
lead to the same field equations and Bianchi identities.

We have now all ingredients to write the ungauged Lagrangian of N = 8
supergravity. As we just said, the Lagrangian is not invariant under the full
electromagnetic duality group E7(7), but at least its invariance should persist up
to terms proportional to the field equations. Actually, the Lagrangian invariance
turns out to be eventually respected only by a subgroup of E7(7) [18]. Moreover, the
Lagrangian will only contain the electric potentials A Λ

µ and not their magnetic duals
AµΛ (fact that manifestly breaks the full E7(7) duality group, but not necessarily
the invariance of the equations of motion).

A particularly simple formulation of the theory makes use of the complex
(anti-)self dual combinations of the field strength F Λ

µν , denoted by F∓ Λ
µν and

defined by
F Λ
µν = F+ Λ

µν + F− Λ
µν , F̃± Λ

µν = ±F± Λ
µν . (2.34)

In fact, in terms of F± Λ
µν , the ungauged Lagrangian [18] can be written as (using

the mostly minus metric signature, setting MP = 1 for compactness and neglecting
4-Fermi terms)

e−1L =− 1
2R−

1
2ε

µνρσ
(
ψ

i

µ γνDρψσi − ψ
i

µ

←−
Dργνψσi

)
− i

4
{
NΛΣF

+ Λ
µν F+µνΛ − N̄ΛΣF

− Λ
µν F−µνΛ}

− 1
12
∣∣Pijklµ

∣∣2 − 1
12

(
χijkγµDµχijk − χijk

←−
Dµγ

µχijk

)
−
√

2
12

{
χijkγ

νγµψνl

(
Pijklµ + P̂ijklµ

)
+ h.c.

}
+ F+ Λ

µν O
+µν
Λ + F− Λ

µν O
−µν
Λ

− i
[(
N − N̄

)−1]ΛΣ [
O+
µνΛO

+µν
Σ +O−µνΛO

−µν
Σ

]
,

(2.35)

where:
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• The matrices NΛΣ and O µν
Λ depend in general on the fields (in particular,

O µν
Λ contains just fermion bilinears and the possible superscripts “+” and

“−” mean the (anti-)self dual decomposition (2.34)). For a generic choice of
NΛΣ and O µν

Λ , the sum between the second, the fifth and the sixth lines
represents the most general gauge field Lagrangian which is at most quadratic
in the field strengths. For the maximal theory, however, E7(7) and SU(8)
covariance imposes many restrictions on NΛΣ and O µν

Λ , which turn out to
be completely determined in terms of ψ i

µ , χijk and V ij
Λ (see [18] for their

explicit form).
• Since fermions belong to a nontrivial representation of SU(8), the derivatives
Dµψ

i
µ and Dµχ

ijk are both space-time and SU(8) covariantized.
• The caret on P̂ ijklµ indicates the addition of other terms (that we do not
report here) which are necessary to eventually ensure local supersymmetry
invariance.

This Lagrangian is manifestly invariant under local SU(8) transformations and
the interaction terms that appear (in addition to the kinetic ones) are uniquely
fixed by local supersymmetry. Interestingly, the strong restriction of supersymmetry
invariance forbids the introduction of a scalar potential, which could have been
present if we had imposed just the other invariance constraints. Indeed, it can be
shown that the ungauged action is invariant under the following local supersymmetry
variations, parametrized by 8 infinitesimal spinorial parameters εi:

δψ i
µ = Dµεi + 1

4
√

2F̂− ij
µν γρσγµεj + 1

4χ
iklγaχjklγaγµε

j

+ 1
2
√

2ψµkγaχijkγaε−
1

576ε
ijklmnpqχklmγ

abχnpqγµγabεj ,

δχijk = − 2
√

2P̂ ijklµ γµεl + 3
2 F̂
− [ij
µν γµνεk] − 1

24
√

2εijklmnpqχlmnχpqrεr ,

δe a
µ = ε̄iγaψµi + ε̄iγ

aψ i
µ ,

δV ij
M = 2

√
2VMkl

(
ε̄[iχjkl] + 1

24ε
ijklmnpq ε̄mχnpq

)
,

δA M
µ = ΩMNV ij

N

(
ε̄kγµχijkl + 2

√
2ε̄iψµj

)
+ h.c. .

(2.36)

In these formulas, again, the caret on the field strengths stands for the addition of
suitable terms needed to guarantee local supersymmetry.

2.4 Gauged supergravity

As we noticed in the previous section, not only maximal supergravity has a field
content completely fixed by supersymmetry, but it does not admit even a scalar
potential. For this reason, this theory has a Minkowski (supersymmetric) ground
state and (A)dS vacua are totally absent.

However, it is always possible to deform a supergravity theory (maximal su-
pergravity included) by coupling the already present (non-)abelian vector fields to
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charges assigned to the elementary fields, maintaining at the same time supersym-
metry invariance. This procedure, also known as gauging, gives rise to the so-called
gauged supergravities [15, 16], which are still supersymmetric theories, but much
more flexible than the initial ones thanks to the huge freedom on how to perform
the gauge couplings. For instance, gauged maximal supergravity admits a scalar
potential, which may eventually support an effective cosmological constant, provide
mass terms for the fields and describe possible spontaneous supersymmetry breaking
scenarios. Moreover, as we will discuss in section 3.2, gauged maximal supergravity
still has a clear 11-dimensional origin, which is essential to establish the connection
between its possible vacua and M-theory.

The nice mentioned properties triggered our interest for these theories. Therefore,
in this section we briefly review the gauging procedure in supergravity and introduce
the embedding tensor formalism [15], which is completely general and applies almost
in the same way to all supergravity theories, independently of the space-time
dimension or the number of supercharges. In the last subsection we finally specify
the discussion to maximal supergravity, showing in particular that a scalar potential
and mass terms are generated by gaugings.

2.4.1 The gauging procedure

In this subsection we summarize the main features of the gauging procedure, without
entering in details about the construction of the diverse parts of the Lagrangian
or about the possible issues that arise from the modifications we introduce. In the
next subsection, instead, we will address the explicit constructions by exploiting
the embedding tensor formalism.

Let us start from a generic ungauged supergravity theory, i.e a supergravity
theory invariant under a generic number N of supersymmetry transformations in
which, however, the possible vectors are not coupled to the scalar fields by gaugings.
We should keep in mind mainly the reference example of maximal supergravity, or
the N = 1 supergravity model discussed in section 2.2 with the proper inclusion of
nv free vector multiplets (AIµ, λI), I = 1, . . . , nv, described by the minimal kinetic
term

Lvec = δIJ

[
−1

4F
I
µνF

µνJ − 1
2λ

I /DλJ
]
, (2.37)

to be added to (2.3) together with some interaction terms with the graviton
multiplet in order to eventually guarantee the local supersymmetry invariance (see
for instance [11, 12] for more details).

As we have seen, the scalar fields of a supergravity theory parametrize a nonlinear
σ-model based on the target manifoldMsc. Besides, it is quite common thatMsc
exhibits the structure of a coset space G/H (obligatory for N ≥ 3): in this particular
case the isometry group of the scalar manifold is simply given by G. Maximal
supergravity is indeed included in this context, given that its scalar manifold is
Msc = E7(7)/SU(8), with isometry group G = E7(7). We recall that, thanks to
the σ-model properties, if we denote by ξ̂iα(φ), i = 1, . . . , nc, α = 1, . . . ,dimG
the dimG killing vectors of G (which generate the infinitesimal isometries), the

21



supergravity Lagrangian is invariant under the scalar isometry transformations

φn → φn + δφn ≡ φn + Λαξ̂nα(φ) , (2.38)

where Λα is a constant parameter. In analogy with Yang-Mills theories, the gauging
procedure simply consists in choosing a subgroup G0 of the isometry group G and
in promoting the invariance of the Lagrangian under the corresponding isometry
transformations (2.38) from global to local. In other terms, we have to select the
subset of dimG0 (≤ dimG) Killing vectors ξiI generating the subgroup G0 (which,
in general, are linear combinations of ξ̂iα) and to impose the invariance of the
Lagrangian under the (more general) scalar isometry transformations

φn(x)→ φn(x) + ΛI(x)ξnI (φ(x)) , (2.39)

where now the parameters ΛI(x) depend on the space-time point.
Obviously, the new transformations (2.39) are not symmetries of the initial

theory, due to the presence of derivatives in the original Lagrangian. However, it
is sufficient to perform certain modifications on its terms to actually ensure the
theory invariance under both local isometries (2.39) and local supersymmetry.

(i) First, to guarantee the invariance under local isometries, we need to substitute
ordinary derivatives with gauge covariant derivatives. For instance the scalar
ones ∂µφn become

Dµφ
n ≡ ∂µφn + gAIµξ

n
I (φ) , (2.40)

where g is a dimensionless coupling constant and AIµ are dimG0 vector fields
already present in the theory. The covariant derivative (2.40) transforms
under local isometries exactly as the initial derivatives if and only if we require
that under local isometries the vectors transform as well, according to

δAIµ = ∂µΛI + gAMµ X
I

MN ΛN , (2.41)

where X I
MN are constants depending on how G0 is embedded into the global

group G and on G itself. However, the fact that the transformation law (2.41)
is different from the usual Yang-Mills one (namely, X I

MN is no longer anti-
symmetric in [MN ]), ruins the invariance of the vector kinetic terms, which,
as we will see, can be recovered by performing appropriate modifications on
the field strengths. Apart from this distinction, (2.41) shows that the index I
should be treated as an index in the adjoint representation of G0.

(ii) The application of (i) alone ensures the theory invariance under local isome-
tries, but produces a deformed Lagrangian no longer invariant under the
original local supersymmetry. In fact, for instance, under a supersymmetry
transformation extra contributions arise from the variations of the vector
fields in the covariant derivatives. In order to restore this invariance, we have
to introduce into the Lagrangian new fermionic mass terms (proportional to
g) and a scalar potential (proportional to g2) which, however, do not have to
break the local gauge symmetry (2.39) and (2.41). Besides, the supersymmetry
variations of the fermionic fields have to be modified as well, by inserting
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terms proportional to the gauge coupling g, whose structure must be strictly
connected to the inserted fermionic terms. Interestingly, these modifications
are sufficient and we do not need to introduce any other term proportional
higher powers of g for guaranteeing supersymmetry invariance.

Example. As an example, let us describe the result of the previous procedure
applied to minimal supergravity and write the gauge contribution VD to the scalar
potential, which was already quoted in section 2.2.2. For the sake of simplicity, we
suppose that G0 = G in such a way that all Killing vectors are gauged and that the
embedding of G0 into G is trivial.

First we should notice that, in presence of couplings between chiral and vector
multiplets, the most general vector kinetic term, in place of (2.37), assumes the
non-minimal form

Lvec = Re fIJ(φm)
[
−1

4F
I
µνF

µνJ − 1
2λ

I /DλJ
]
, (2.42)

where Re fIJ(φn) is the real part of a holomorphic function fIJ(φn), called gauge
kinetic function. Moreover, supersymmetry invariance requires also a (topological)
term proportional to the imaginary part of fIJ(φn) (see [10, 11] for details on it),
which is obliviously absent in the minimal case (2.37) in which fIJ(φn) = δIJ . For
G0 = G, the index I in (2.39-2.41) assumes dimG = dimG0 values and should
be regarded in the adjoint representation on G. Besides, in this simple case the
constants X I

MN turn out to be the structure constants of G, as will be clear by the
embedding tensor formalism.

In order to write the explicit form of VD, let us define the Killing prepotentials

PI = M2
P iξ

n
I

DnW

W
, (2.43)

which are dimG real functions of the scalar fields (one for each Killing vector).
With this premise, it can be shown that the D-term contribution to the scalar
potential can be expressed as

VD ≡
g2

2 Re fIJDIDJ , (2.44)

where the quantities DI = [Re f ]−1 IJ PJ assume the name DI because they are the
on-shell ausiliary fields (conventionally called DI) needed for the off-shell closure of
the supersymmetry algebra. We notice that VD is proportional to g2 (as it should
be) and that, as anticipated in the previous section, it is semi-positive definite.

Despite this clear construction, the gauging procedure presents some nontrivial
issues we have neglected so far. In the first place, many modifications have to be
made on the vector field strengths: not only because of the (mentioned) unusual
transformation law (2.41) of the vectors appearing in the covariant derivatives, but
also due to the fact that the other vectors entering in the Lagrangian may belong to
nontrivial representations of the gauge group G0. Besides, not all the combinations
of Killing vectors can be consistently gauged preserving the supersymmetry, i.e.
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just particular embeddings of G0 into G are feasible for obtaining a supersymmetric
theory. Fortunately, these complications can be effectively faced (and solved) by
utilizing the embedding tensor, which fully describes the embedding of the gauge
group into the global symmetry group and entirely parametrizes the action of gauged
supergravity.

2.4.2 The embedding tensor formalism

The embedding tensor formalism [15] allows to formulate the gauging of a supergrav-
ity theory, i.e. the above steps (i) and (ii), in a way which is manifestly covariant
under the global isometry group G. This formalism is particularly efficient in
maximal and half-maximal supergravities, thanks to the many restrictions that
supersymmetry imposes in these cases.

Let us firstly summarize the general transformations of the bosons under the
global isometry group G in a generic ungauged theory. As we have seen, the scalars
φn transform under G as δφn = Λαξ̂nα(φ), which is a nonlinear representation of
G as long as the Killing vectors are not proportional to φn. On the contrary, the
transformation of the vector fields AIµ is linear and is given by δAIµ = −Λα(tα) I

J AJµ,
where (tα) J

I denote the generators of g = LieG in a fundamental representation
Rv of dimension nv. In general, the bosonic sector can even contain higher-rank
p-forms (whose rank is however restricted by supersymmetry), which, analogously,
transform in particular linear representations of G.

As we said, gauging corresponds to promoting a subgroup G0 ⊂ G to a local
symmetry. In particular, this subgroup G0 can be defined by selecting within the
global symmetry algebra g a subset of dimG0 ≤ nv generators which give rise to a
subalgebra of g. Since we want to keep the procedure as general as possible, we
denote the general linear combination of generators of g spanning this subalgebra
by

XI = Θ α
I tα , I = 1, . . . , nv , (2.45)

by means of a constant tensor Θ α
I , the embedding tensor, which describes the

explicit embedding of the gauge group G0 into the global symmetry group G. We
can simply imagine this object as a constant (nv × dimG) matrix whose indices α
and I transform respectively in the adjoint representation and in the fundamental
representation Rv of G. Since in general dimG0 ≤ nv, just dimG0 out of the nv
generators XI are linearly independent, and therefore the rank of the matrix Θ α

I ,
which is dimG0, does not always assume its maximum value nv. Let us notice that,
using the notation of the previous subsection, Θ α

I are equivalently the coefficients
that determine the gauged Killing vectors ξiI in terms of the original ones ξ̂iα, i.e.
ξiI = Θ α

I ξ̂
i
α.

There are actually many advantages in utilizing the embedding tensor in order
to describe the gauging of a supergravity theory.
• First, this formalism allows to keep the entire construction formally G-
covariant. In fact, the deformed equations of motion remain manifestly
G-covariant if the embedding tensor is treated as a spurionic object that
simultaneously transforms under G according to the structure of its indices.
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Just upon specifying a particular gauge group of G0 we select a particular set
of Θ α

I , and the global symmetry group is broken.
• Moreover, the gaugings are entirely parametrized in terms of the constants

Θ α
I , which completely determine the deformed Lagrangian.

Before turning to the modifications to be done to the Lagrangian, we should
notice that the gauging procedure does not work for an arbitrary choice of the
embedding tensor. In fact, for instance, consistency with G0 being a group requires
that the generators (2.45) close into a subalgebra of g and this leads to nontrivial
(quadratic) constraints on the constants Θ α

I . It turns out that there are in general
two sets of constraints the embedding tensor should satisfy for ensuring both the
gauge and the supersymmetry invariance of the theory. Besides, these constraints
can be formulated as G-covariant homogeneous equations in Θ, which allows to
construct their solutions by purely group-theoretical methods. The first set of
constraints, linked to the closure of the gauge algebra, is quadratic in Θ, while the
second one, required by supersymmetry invariance, is just linear. Let us analyze in
detail each of them.

1. The first requirement (related to the consistency of the gauge theory) is
the invariance of Θ under the action of the local gauge symmetry group G0.
This request is highly nontrivial, because in general the indices I and α of
Θ α
I transform in two different representations of the gauge group (except in

D = 3 where the vector fields, and thus the index I, transform in the adjoint
representation). Since G0 is precisely defined as the projection with Θ, the
invariance of Θ under G0 can be expressed as

0 = δJΘ α
I ≡ Θ β

J δβΘ α
I = Θ β

J (tβ) K
I Θ α

K + Θ β
J f α

βγ Θ γ
I , (2.46)

where we used the fact that the generators in the adjoint representations
are given by the structure constants, i.e. (tα) γ

β = −f γ
αβ . The meaning of

this constraint becomes obvious if we contract (2.46) with a generator tα,
obtaining the equivalent relation

[XI , XJ ] = −X K
IJ XK . (2.47)

By considering the anti-symmetric part in [IJ ] on both side, it is straightfor-
ward that the commutator between the generators XI and XJ must be still a
generator belonging to the set {XI}, which therefore forms an algebra with
structure constants −X K

[IJ ] . On the other hand, upon symmetrization in
(MN) the left hand side trivially vanishes, while the right hand side does not,
and therefore we get the non-trivial relation

X K
(IJ) XK = 0 . (2.48)

Thus, the constraint (2.46) also implies that the symmetrized constantsX K
(IJ)

vanish upon contraction with another generator, which means that (2.46) is
in general stronger than the simple closure.
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2. In addition to the quadratic constraint (2.46), Θ must satisfy another linear
constraint required by the compatibility with supersymmetry. Its specific form
however depends on the number of space-time dimensions and supercharges
considered. In order to see how it may act, we notice that in general the
embedding tensor Θ α

I lives in the tensor product

Rv∗ ⊗Radj = Rv∗ ⊕ · · · , (2.49)

where Rv∗ is the representation conjugate to Rv and the dots symbolize
irreducible representations of G whose precise form depends on the particular
group and representations considered. Therefore, the linear constraint restricts
Θ to some of the representations appearing in the right hand side of (2.49),
as we will see explicitly in the case of maximal supergravity in the following
subsection.
However, interestingly, in many cases the linear constraint can be derived
by purely bosonic considerations related to the consistency of the deformed
tensor gauge algebra (2.47). For example, in D = 4 dimensions, it can be
proved [18] that the embedding tensor must enjoy

X P
(MN ΩK)P = 0 , ΩMN =

(
0 1nv

−1nv 0

)
. (2.50)

While it is rather straightforward to verify that the constraints are necessary, it has
to be checked case by case (i.e. for each dimension and number of supercharges)
that indeed they are sufficient to define a consistent gauging.

Let us now explain how the steps (i) and (ii) of the previous subsection can be
implemented to build the gauged Lagrangian according to the embedding tensor
formalism. As we anticipated in (i), the global symmetries associated to the
generators XI can be made local by substituting the derivatives with the standard
covariant derivatives. More precisely, for the scalars (which transform in nonlinear
representations of G), these derivatives are defined by (2.40), while for the fields
transforming in a linear representation R of G they can be constructed according to

Dµ ≡ ∂µ − gAIµXI , (2.51)

where XI are the generators of the gauge group in the linear representation R.
Let us notice that (2.40) reduces to (2.51) if also the scalars belong to a linear
representation of G. Having introduced the covariant derivatives, the theory should
be automatically invariant under the standard combined gauge transformations

δφn(x) = ΛI(x)ξnI (φ(x)) ,

δAIµ(x) ≡ (DµΛ(x))I = ∂µΛI(x) + gAMµ (x)X I
MN ΛN (x) ,

(2.52)

where ΛI(x) is a local parameter and, by definition, X I
MN ≡ (XM ) I

N = Θ α
M (tα) I

N .
Apart from the minimal couplings introduced by (2.51), as we mentioned in (i),

we need to modify the original vector kinetic terms, which are no longer invariant
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under (2.52) since they were invariant under global transformations. Thanks to the
fact that the new vector transformation laws are similar to the ones of a Yang-Mills
theory with structure constants −X I

[MN ] , the natural expectation for the new field
strength is

FIµν = 2∂[µA
I
ν] + gX I

[JK] A
J
µA

K
ν . (2.53)

However, due to the presence of a symmetric part in the commutator algebra (2.47),
it can be shown that the structure constants X I

[MN ] fail to satisfy the Jacobi
identities, which are indeed verified if and only if X I

(MN) = 0. As a consequence,
the standard non-abelian field strength (2.53) turns out to be not fully covariant (the
violation being proportional to the tensor X I

(MN) ) and the standard kinetic term
is not invariant. This issue has been solved (even in a covariant way, see [15]) by
introducing a set of two-form vector fields of the type BIJ

µν = B
(IJ)
[µν] and by defining

new field strengths HIµν = FIµν + gX I
(MN) B

MN
µν , which transform covariantly under

gauge transformations if we impose a proper transformation law for the two-form
BMN
µν . Obviously, these two-forms cannot simply be added to the field content

of the theory, since the number of degrees of freedom is carefully balanced by
supersymmetry. Thus, a priori, the presence of extra fields in the gauged theory
is an obstacle for the supersymmetric construction. Instead, miraculously, the
various contributions to the two-forms (coming from the field strengths and possible
additional topological terms) precisely combine into the Lagrangian to give rise
to a first-order field equation, which corresponds to the fact that the two-forms
are auxiliary fields that do not provide additional on-shell degrees of freedom (but
are just the on-shell duals of the (scalar) fields already present in the ungaged
theory). This construction holds even in presence of higher-rank p-forms in the
ungauged theory: the deformation leads to an entanglement of the p-forms and
the (p+ 1)-forms via the corresponding field strengths, and it turns out that the
additional fields are the on-shell duals of the fields already present in the ungauged
theory.

The discussed modifications produce a deformation of the original Lagrangian
which is compatible with the new local gauge group. As we said, the next step
(ii) is introducing further modifications that eventually render the Lagrangian
invariant also under (a possible deformation of) the original supersymmetry, which
is obviously broken due to extra contributions coming, for example, from the vector
supersymmetry variations in the covariant derivatives.

By applying the Noether procedure, the extra (unwanted) contributions can be
canceled by introducing the bilinear fermionic terms [15]

Lferm-mass = g
(
ψ
i
Aijψ

j + χABAiψ
i + χACABχ

B
)
, (2.54)

where φi and χA stand, respectively, for the gravitinos and the spin 1/2 fermions
and we have suppressed the Lorentz indices and the γ-matrices. The matrices
Aij , BAi and CAB are functions of the scalar fields (thus, they can contain fermionic
mass terms when the scalars assume a VEV) and should transform under proper
representations for ensuring the supersymmetry invariance of the theory (as we will

27



see in the explicit case of maximal supergravity). Besides, it can be shown that the
additional terms (2.54) are exactly sufficient to delete all supersymmetry violating
contributions in linear order of g if the supersymmetry transformations are modified
as (schematically)

δψi = δ0ψ
i − gAijεj , δχA = δ0χ

A − gBAiεi , (2.55)

where δ0 are the covariantized supersymmetry variations of the ungauged theory.
In fact, the fermionic shifts now present in the supersymmetry variations (2.55) are
needed to eliminate the Dµε contributions arising from the variations δ0 on (2.54).

Eventually, supersymmetry invariance at the order g2 implies the addition of a
scalar potential of the form

Lg2 ∝ −V = −g2
(
BAiBAi −AijAij

)
, (2.56)

needed to cancel the g2 contributions descending from the action of the fermionic
shifts in (2.55) on the bilinear fermionic terms (2.54) previously added into the
Lagrangian. As can be easily noticed, in general the scalar potential V is not
positive definite, and may in particular support dS and AdS vacua. However, the
consistent cancellation of all supersymmetry variations at the order g2 requests that
the fermionic matrices Aij , BAi and CAB satisfy some nontrivial algebraic identities,
and in particular the traceless condition

g2
(
BAiBAj −AikAjk

)
= 1
N
δijV . (2.57)

Relevantly, the introduction of the terms (2.54) and (2.56) not only is necessary
for ensuring local supersymmetry invariance, but even sufficient, since it turns
out that the stated transformations close without producing any term of order g3,
which, otherwise, should have been canceled by inserting into the Lagrangian some
contribution proportional to higher powers of g.

2.4.3 Gauged maximal supergravity

We now specify the preceding formalism to the case of maximal supergravity [16, 15],
explicitly identifying the constraints on the embedding tensor and the extra terms
to be added to the Lagrangian (2.35) in order to consistently perform the gauging
and maintain at the same time the supersymmetry invariance.

We start from the ungauged theory described in section 2.3, where the electric
and magnetic vector fields A M

µ =
(
A Λ
µ , AµΣ

)
transform in the fundamental 56

representation of the E7(7) duality group with generators (tα) N
M , α = 1, . . . , 133.

As we have already noted, in the conventional supergravity Lagrangian only the 28
electric potentials A Λ

µ appear, but for the gauging procedure we base ourselves on
all 56 gauge fields (this is furthermore indispensable in order to achieve a duality
covariant description of flux compactifications). Nevertheless, the correct balance
of degrees of on-shell physical freedom will be indeed realized in the end result.
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Following what we said in the previous subsection, the gauge group G0 must
be a subgroup of the global isometry group E7(7), and its generators XM , M =
1, . . . , 56, which couple to the gauge fields A M

µ , are decomposed in terms of the
133 independent E7(7) generators tα as XM = Θ α

M tα, by means of the embedding
tensor Θ α

M belonging to the 56× 133 representation of E7(7). The rank of Θ α
M ,

which equals dimG0, is expected to be smaller than 28, because the ungauged
Lagrangian should be based just on 28 vector fields to describe the physical degrees
of freedom (and this bound will turn out to be indeed satisfied).

An admissible embedding tensor is subject to the quadratic and linear constraints,
which ensure respectively that a proper subgroup of E7(7) is selected and that the
corresponding supergravity action remains supersymmetric. As we mentioned, these
constraints can be even characterized group theoretically. In fact, in maximal
supergravity, the embedding tensor transforms in the representation

56× 133 = 56 + 912 + 6480 (2.58)

of E7(7), and it can be shown [17] that the linear constraint required by supersym-
metry restricts Θ α

M to the 912 part in this decomposition. This means that, as
a matrix, Θ α

M has 912 independent components. Besides, this condition on the
representation is equivalent to the linear (and E7(7) covariant) equations

(tα) N
M Θ α

N = 0 , (tβtα) N
M Θ β

N + 1
2Θ α

M = 0 , (2.59)

where the index α is raised by the inverse of the E7(7) invariant metric ηαβ = tr [tαtβ].
On the other hand, by the general discussion of the previous section, the quadratic
constraint (2.46) takes the E7(7) covariant form

C α
MN ≡ f α

βγ Θ β
M Θ γ

N + (tβ) P
N Θ β

M Θ α
P = 0 , (2.60)

where f γ
αβ are the structure constants of E7(7). Obviously, C α

MN can be assigned
to irreducible representations contained in the 56× 56× 133 representation and,
by making use of the conditions given in (2.59), one can prove [16] that C α

MN must
belong to the 133 + 8645 part in that product. Therefore, the equations (2.59)
and (2.60), or, equivalently, the mentioned conditions in terms of group representa-
tions, explicitly determine the values that the constants Θ α

M can assume to ensure
a feasible gauging for maximal supergravity.

Let us now briefly discuss the modifications to be made on the ungauged
Lagrangian (2.35) and on the supersymmetry transformations (2.36) to guarantee
gauge and supersymmetry invariance. First of all, all field derivatives should be
substituted with the gauge covariant derivatives

Dµ = ∂µ − gA M
µ XM = ∂µ − g

(
A Λ
µ Θ α

Λ +AµΣΘΣα
)
τα , (2.61)

where τα are the generators of E(7)7 in the representation in which the fields
transform and we explicitly distinguished between electric and magnetic charges,
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denoted respectively by Θ α
Λ and ΘΣα. In this way, the theory is automatically

invariant (except for the terms containing the field strengths F M
µν ) under the

standard combined gauge transformations

δV N̄
M (x) = ΛK(x)X P

MK V N̄
P (x) ,

δAMµ (x) ≡ (DµΛ(x))M = ∂µΛM (x) + gANµ (x)X M
NP ΛP (x) .

(2.62)

In order to render invariant also the terms containing F M
µν , by following the outlined

general strategy, we need to define modified field strengths H M
µν , functions of

F M
µν and of a set of two-forms B α

µν . These two-forms B α
µν must be subject

to suitably chosen gauge transformation rules to ensure the covariance of H M
µν

under (2.62). The new field strengths H M
µν must appear into the Lagrangian in

place of F M
µν , together with some topological Chern−Simons-like term depending

on the vector fields and on the two-forms (see [16] for details on this). All terms
containing two-forms eventually combine to give rise to a first-order field equation,
meaning that they are the on-shell duals of the already present scalar fields, and
thus they do not provide any additional degree of freedom.

The terms we introduced so far are proportional to the gauge coupling g
and produce new unwanted variations (proportional to g) upon application of
the supersymmetry transformations (2.36). As we said, these variations can be
canceled if we introduce into the Lagrangian feasible masslike terms and define new
supersymmetry variations for the fermions. Indeed, these modifications generate
(among other terms) precisely the type of variations that may cancel the extra
unwanted contributions. The masslike terms to be inserted into (2.35) are written
as

e−1Lferm-mass = g

(√
2

2 A1ijψ
i

µ γ
µνψ j

ν + 1
6A

jkl
2i ψ

i

µ γ
µχijk +Aijk,lmn3 χjklχlmn

)
+ h.c. ,

(2.63)
where

Aijk,lmn3 =
√

2
144ε

ijkpqr[lmA
n]

2 (2.64)

and the new fermion variations to be added to (2.36) are

δgψ
i
µ =

√
2gA ij

1 γµεj ,

δgχ
ijk = −2gA ijk

2l εl .
(2.65)

Here, A1 and A2 are functions of the scalar fields transforming in proper represen-
tations of SU(8) and can be systematically constructed by exploiting the so-called
T-tensor formalism [16]. Although these modifications are sufficient to cancel the
unwanted terms to the linear order in g, the application of (2.65) on (2.63) produces
terms of order g2, which are fully compensated by adding to the Lagrangian the
scalar potential
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V = g2
(

1
24

∣∣∣A jkl
2i

∣∣∣2 − 3
4

∣∣∣Aij1 ∣∣∣2)
= 1

336g
2MMN

(
8P ijkl

M PMijkl + 9Q j
Mi Q

i
Nj

)
= 1

672g
2
(
X R
MN X S

PQ MMPMNQMRS + 7X Q
MN X N

PQ MMP
)
,

(2.66)

where we have introduced the real symmetric (and positive definite) field-dependent
56×56 matrixMMN ≡ V ij

M VNij+VMijV
ij

N and its inverseMMN = ΩMPΩNQMPQ.
It can be shown that the above-mentioned modifications are eventually enough to
close the new supersymmetry algebra also at the order g2 keeping the local gauge
invariance (2.62).

2.5 Eleven-dimensional supergravity

In this last part we present a brief overview of 11-dimensional supergravity [3, 4, 5],
which will be the starting point for the dimensional reductions leading to our
4-dimensional model. In the first subsection, we provide a few information about
its low-energy origin, in particular explaining why the 11-dimensional action can be
constructed without any recourse to M-theory. In the second subsection, instead,
we will describe field content of the theory and write explicitly the Lagrangian,
which turns out to be uniquely determined by local supersymmetry invariance.

2.5.1 The low-energy origin

The particle spectrum of a generic string theory is made of a finite number of
massless states and an infinite tower of massive excitations, whose mass must be at
a scale determined by a fundamental parameter, the string tension, approximately
of the order of the Planck mass (1019 GeV) in order for the graviton to interact with
the usual Newtonian strength. If we are interested in a low-energy phenomenological
description of the theory, however, it should not be necessary to describe the explicit
behaviour of the massive states and, therefore, it is natural to formulate an effective
action entirely based on the very light degrees of freedom. Unfortunately, due to
the rich structure of nonlocality typical of string theory, this exact effective action
is extremely complicated and, obviously, nonlocal.

Anyway, since each derivative corresponds to a suppression of a factor E/M
where M is the characteristic mass scale of the string theory, an expansion in the
number of derivatives (truncated to the first terms) represents an excellent low-
energy approximation of the effective action, despite the inevitable loss of the nice
UV properties of the exact string theory. Furthermore, in the extreme low-energy
limit, the leading terms of the effective action can be even constructed just from
invariance principles, i.e. gauge invariance and local supersymmetry, and hence the
action can be determined with a relatively little effort. The theories arising from
such an expansion are indeed supergravity theories and represent the low-energy
description of the lightest degrees of freedom of a string theory. To be precise, since
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string theories exist only in ten space-time dimensions, their low-energy limits are
10-dimensional supergravities. Instead, the theory we are going to face, supergravity
in eleven dimensions, derives from M-theory, which is the analogue of string theories
in eleven dimensions and is widely considered to be the master theory that contains
the various 10-dimensional string theories (and can be actually obtained by IIA
supergravity in the strong-coupling limit).

Let us examine how the above expansion can be done in practice. Given that
every derivative has the dimension of an inverse length, we would like to expand the
effective action in powers of (length)−1. If we denote by N∂ and Nf , respectively, the
number of derivatives and the number of fermions in a given term of the Lagrangian,
it turns out [4] that the integer number

n = N∂ + 1
2Nf (2.67)

precisely counts the powers of lengths in that term. Hence, terms of larger and larger
n are less and less relevant at high wavelengths. Moreover, it can be shown that
the n = 0 and n = 1 contributions are incompatible with supersymmetry in eleven
dimensions, and therefore the long wavelength behaviour is governed by terms with
n = 2, which can be determined just from supersymmetry invariance without any
recourse to M-theory. Besides, the addition of higher-order contributions (certainty
present in M-theory) implies the impossibility to restrict the Lagrangian to definite
values of n. In fact, if we introduce some term with n > 2, attempting to close the
supersymmetry algebra forces the inclusion of terms with higher and higher n. This
is the reason why, in the following, we will present the 11-dimensional supergravity
Lagrangian restricted just to the n = 2 contributions.

It should be noticed that, since the link to string theory was unknown when D =
11 supergravity was constructed for the first time, its evident lack of renormalizability
led to the belief that it does not approximate a consistent quantum field theory.
Nowadays, however, viewed as a low-energy limit of M-theory, D = 11 supergravity
actually possesses a well-defined quantum interpretation.

2.5.2 Field content and Lagrangian

Compared at least to the massless spectrum of the superstring theories in ten dimen-
sions, the field content of 11-dimensional supergravity is actually very simple [3].

• First, due to the presence of gravity, 11-dimensional supergravity obviously
contains the graviton. Since in D dimensions the graviton is a symmetric
traceless tensor of SO(D − 2), which is the little group for a massless particle,
the 11-dimensional graviton gMN has

(D − 2) ((D − 2) + 1)
2

∣∣∣
D=11

− 1 = 44 (2.68)

independent physical degrees of freedom. As we will see, supergravity in eleven
dimensions includes also spinors and, therefore, it is necessary to use the
vielbein (elfbein, in eleven dimensions) formalism and represent the graviton
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by the field EAM . Let us note that M,N, . . . and A,B, . . . are respectively
the curved and flat indices in eleven dimensions and transform nontrivially,
respectively, under general coordinate and local Lorentz transformations.

• The gauge field indispensable for local supersymmetry is the gravitino field
ΨM , which must be part of the field content. Apart from the explicit index M ,
the gravitino has an implicit spinor index α which makes ΨM a 32-components
Majorana spinor for every fixed value of M .
Once spinors are included, the little group in 11 dimensions becomes Spin(9)
(the covering group of SO(9)), whose spinor and vector representations have
respectively dimensions 16 and 9. Therefore an 11-dimensional vector-spinor
transforms in the product 9 × 16 = 128 + 16 (which, in four dimensions,
would have led to a spin 1/2 plus a spin 3/2 representation). However, the
local gauge invariance δΨM = ∂Mε of the free gravitino action

SΨ ∼
∫

ΨMΓMNP∂NΨP d11x (2.69)

ensures, as in four dimensions, that the gravitino physical degrees of freedom
correspond only to the 128 representation and are pure spin 3/2. So, in eleven
dimensions the gravitino has 128 independent physical polarization states.

• The missing 128− 44 = 84 bosonic degrees of freedom required by an honest
supergravity model are obtained by inserting a rank-3 antisymmetric tensor
AMNP , associated with the three-form A3. This field must appear in the
action with the usual invariance under the gauge transformations

A3 → A3 + dΛ2 , (2.70)

where Λ2 is a generic two-form. In fact, this invariance implies that the inde-
pendent polarizations are just transverse (as in the case of the electomagnetic
field) and their number is exactly

(D − 2)(D − 3)(D − 4)
3!

∣∣∣
D=11

= 84 . (2.71)

This value indeed matches the number of propagating degrees of freedom of
the gravitino, which is the only Fermi field in the theory.

In order to construct the classical action describing the dynamics of the above
fields, we have to take into account the requirements of general coordinate invariance
and local Lorentz invariance, together with the gauge invariance for the three-form
A3. Moreover, as we said in the previous section, we should restrict just to the terms
with n = 2, which can contain two derivatives and no fermionic fields, one derivative
and two fermionic fields or no derivatives and four fermionic fields. Together, the
mentioned constraints uniquely fix the Lagrangian up to some numeric coefficients,
which are fully determined by the request of local supersymmetry invariance. Hence,
the 11-dimensional supergravity action does not depend on any modifiable parameter
apart from an overall constant κ, however fixed by the gravitational strength.
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Without entering in details about the derivation, we now present the full 11-
dimensional Lagrangian (see for instance [12, 19]), which can be cast in the form

L(EAM ,ΨM , A3) = Lb(EAM , A3) + Lbf(EAM ,ΨM , A3) , (2.72)
where Lb depends only on the bosonic fields (and contains just terms with two
derivatives), while Lbf includes also gravitino terms. The bosonic part is

e−1Lb = 1
2κ2

[
R− 1

4! |F |
2 − 2

√
2

(144)2 e
−1εM1...M11FM1...M4FM5...M8AM9M10M11

]
(2.73)

where
• F is the field strength of A3, defined by F = dA3 or, in terms of explicit
components, FMNPQ = 4∂[MANPQ]. Thanks to the fact that the ordinary
derivatives commute, F is invariant under gauge transformations and therefore
the second term, which includes |F |2 ≡ FMNPQF

MNPQ, is automatically
gauge invariant
• the last term, called Chern−Simons term, is independent of the metric and
is gauge invariant as well, despite the explicit appearance of AMNP . In fact,
the action related to this term can be written as

SC−S = −
√

2
6κ2

∫
F ∧ F ∧A3 , (2.74)

and by taking the gauge variation δA3 = dθ, using F = dA3 as well as the
Bianchi identity dF = 0 and integrating by parts, we easily obtain δSC−S = 0.

The part including also the gravitino is

e−1Lbf = − 1
2κ2

[
ΨMΓMNPDN

(
1
2(ω + ω̂)

)
ΨP

−
√

2
192ΨM

(
ΓMNPQRS + 12ΓNPGMQGRS

)
ΨS(FNPQR + F̂NPQR)

] (2.75)

where DM (ω) is the covariant derivative with connection ω and we defined
ωMAB = ωMAB(e) +KMAB ,

ω̂MAB = ωMAB(e)− 1
4
(
ΨMγBΨA −ΨAγMΨB + ΨBγAΨM

)
,

KMAB = −1
4
(
ΨMγBΨA −ΨAγMΨB + ΨBγAΨM

)
+ 1

8ΨNΓNRMABΨR ,

F̂MNRS = FMNRS + 3
2
√

2Ψ[MΓNRΨS] .

(2.76)

The full action (2.72) is invariant under certain local supersymmetry transfor-
mations, which reduce to the original gauge symmetry δΨM = ∂Mε of the free
gravitino action when the graviton and the three-form are set to zero. In particular,
under this local supersymmetry, the fields transform according to

δEAM =1
2 ε̄Γ

AΨM ,

δΨM =DM (ω̂)ε+
√

2
288

(
ΓABCDM − 8ΓBCDδAM

)
F̂ABCDε ,

δAMNP =− 3
√

2
4 ε̄Γ[MNΨP ] .

(2.77)
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It is especially relevant that, in the interacting theory, local supersymmetry is
related to a set supercharges that form a 32-component Majorana-spinor. This is the
minimum amount of supersymmetry a theory can enjoy in eleven dimensions and so
there cannot be less supersymmetry than that. Besides, it can be shown that one
cannot introduce more supersymmetry charges without inserting spin-higher-than-2
particles. For this reason, the above Lagrangian contains the only allowed amount
of supersymmetry for an 11-dimensional theory describing particles with spin at
most equal to 2. Even more interestingly, we cannot construct any supersymmetric
theory with spin-higher-than-2 particles for D > 11.
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3 M-theory reductions to four dimensions
As we saw in section 2.5.1, the low-energy formulation of string theories and M-
theory leads naturally to supergravity models in a space-time with extra dimensions.
Out of these theories, 11-dimensional supergravity is of prominent importance
for our purposes, because it gives rise to the maximal D = 4 supergravities we
have described in the previous chapter as well as the isotropic models we will
eventually examine. Furthermore, the fact that the maximum dimension in which
one can consistently formulate a supersymmetric field theory is indeed eleven makes
11-dimensional supergravity even more interesting.

In order to get back the four ordinary dimensions in an extra-dimensional context
such as 11-dimensional supergravity, we have to require the extra dimensions to be
somehow hidden with respect to the ordinary energy and distance scales at which
we usually base our experience. This issue can be correctly addressed through the
concept of compactification, namely the assumption that the extra dimensions are
“compactified” in a geometric structure with a finite (and very small) volume. In
particular, a 4-dimensional compactified theory and its field content are strictly
related not only to initial higher-dimensional Lagrangian, but also to the chosen
geometry for the extra-dimensional (or internal) space. Thus, different kinds of
compactification give naturally rise to different 4-dimensional actions, which explains
the huge variety of lower-dimensional theories that can be derived starting from the
same higher-dimensional one.

This chapter is dedicated to the compactifications of 11-dimensional supergravity
leading to our 4-dimensional models. In the first section we therefore describe
the Kaluza–Klein dimensional reduction, which is the general mechanism for the
compactification of all theories with extra dimensions. In the second section we
instead specify the discussion to 11-dimensional supergravity, explicitly showing
that its structure naturally admits a compactification to four dimensions, in which
the internal space curvature may be either flat or positive. The last section finally
describes how our STU-models arise from the 11-dimensional theory upon orbifold
reductions.

3.1 Kaluza–Klein reductions

The Kaluza–Klein reduction [20, 21, 22] is a general method that allows to con-
struct a reduced theory in 4 space-time dimensions starting from a 4 + d = D
dimensional theory. In view of the compactification, we conveniently denote by
zM = (xµ, ym), M = 0, . . . , D − 1, the 4 + d space-time variables, where, as
usual, xµ stand for the ordinary 4-dimensional space-time variables, while ym (with
m = 1, . . . , d) represent the additional ones. In general, the D-dimensional model
depends on the set of fields {Φi(x, y)} (plus the metric gMN (x, y), if gravity is
present) and is described by the D-dimensional action

SD =
∫
d4xddy LD

(
{Φi(x, y)}, gMN (x, y)

)
. (3.1)
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The Kaluza–Klein reduction of the D-dimensional theory is based on the following
two assumptions.
(i) First, we require that the D-dimensional space-time on which the integral (3.1)

is defined can be written as the direct3 product M4 × Md, where M4 is a
4-dimensional manifold with coordinates xµ and usual signature (− + ++),
while Md is a d-dimensional compact space with coordinates ym and Euclidean
signature (+ · · ·+). If gravity is present, this request means that the combined
field equations of {Φi(x, y)} and gMN (x, y) must admit a so-called “ground-state”
solution in which the metric displays the diagonal form

〈gMN (x, y)〉 =
(
ĝµν(x) 0

0 g̃mn(y)

)
. (3.2)

In this case, the theory is said to exhibit “spontaneous compactification”, in the
sense that the structure of the theory itself spontaneously leads to a product space
M4×Md, where Md is ready to be compactified. Usually we further require that
the 4-dimensional space-time M4 possesses maximal symmetry, which implies
that it has a constant curvature R̂µνρσ = 1

3Λ (ĝµρĝνσ − ĝµσ ĝνρ) , and hence that
it is an Einstein space with Ricci tensor R̂µν = Λĝµν , being Λ its cosmological
constant. Instead, no requirement is in general posed on the compact manifold
Md, which can be Einstein, homogeneous or neither of the two.

(ii) Secondly, we assume that the x and y dependence of each field Φi(x, y) and of
the metric gMN (x, y) can be factorized according to

Φi(x, y) =
∑
n

φ
(n)
i (x)Y n(y) , gMN (x, y) =

∑
n

g
(n)
MN (x)Y n(y) , (3.3)

where the functions Y n(y) depend only on the internal coordinates and are the
same in the expansion of each field. As we will see soon, consistency of the
theory imposes that the functions Y n(y) are not arbitrary and are determined
by the structure of the internal manifold Md.

With these two assumption, the 4-dimensional reduced theory can be derived
substituting equations (3.3) in the D-dimensional the action (3.1) and performing
the integration over the variables ym which are constrained to the domain Md. In
this way we obtain the 4-dimensional action

S4 =
∫
M4

d4x

∫
Md

ddy LD

({∑
n

φ
(n)
i (x)Y n(y)

}
,
∑
n

g
(n)
MN (x)Y n(y)

)
, (3.4)

whose Lagrangian reads

L4 (x) =
∫
Md

ddy LD

({∑
n

φ
(n)
i (x)Y n(y)

}
,
∑
n

g
(n)
MN (x)Y n(y)

)
(3.5)

and therefore describes in general an infinite number of degrees of freedom, asso-
ciated to the new 4-dimensional fields φ(n)

i (x) and g(n)
MN (x). However, in order for

3In general the product is sufficient, but direct products will be considered for simplicity.
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the 4-dimensional theory to be meaningful, we have to further demand that the
equations of motion of the reduced Lagrangian L4, obtained from the D-dimensional
Lagrangian LD by means of (3.3), consistently describe a 4-dimensional theory, and
this imposes nontrivial constraints on the functions Y n(y). As we now prove in a
simple example, it turns out that these constraints are equivalent to the fact that
Y n(y) satisfies an eigenvalue equation of the form

4Y n = m2
nY

n , (3.6)

where 4 is the Laplace mass operator. This means that Y n(y) are harmonic
functions on the compact manifold Md. Hence, in general, the Kaluza–Klein
reduction directly proceeds through the expansion (3.3) in harmonics on Md, which
automatically implies the consistency of the 4-dimensional theory.
Example. As an example, let us apply the preceding construction to a very simple
case and discuss the consequences on the particle spectrum of the 4-dimensional
theory. We consider the 5-dimensional action of a free complex scalar field Φ(x, y)

S5 =
∫
d4x

∫
dy
[
−
(
∂MΦ

)∗ (
∂MΦ

)
−M2

0 Φ∗Φ
]

=
∫
d4x

∫
dy
[
−
(
∂µΦ

)∗(
∂µΦ

)
−
(
∂yΦ

)∗(
∂yΦ

)
−M2

0 Φ∗Φ
]
,

(3.7)

where M0 is the 5-dimensional mass and there is no gravitational background,
namely the metric gMN = ηMN is flat. Obviously the first Kaluza–Klein assumption
is verified, since for all solutions of the scalar field equations the metric gMN displays
the diagonal form (3.2), and the theory exhibits the spontaneous compactification
M4 ×M1. The simplest possibility is to compactify the fifth dimension on a circle
S1 of radius R, which is defined as the quotient space R/τ , where τ : R→ R is the
translation map y → y + 2πR. So, S1 can be essentially considered as the interval
[−πR, πR] with the ends identified. The structure of quotient space gives naturally
rise to periodic boundary conditions for the variable y, and thus our choice M1 = S1

implies Φ(x,−πR) = Φ(x, πR) for any xµ. Following the step (ii), we then have to
expand the 5-dimensional scalar field as

Φ(x, y) =
∑
n

φ(n)(x)Y n(y) , (3.8)

where {φ(n)(x)} is an infinite set of 4-dimensional scalar fields and periodicity implies
Y n(−πR) = Y n(πR). Substituting (3.8) in (3.7) we find the reduced Lagrangian in
four dimensions

L4 = −
∑
m,n

∂µφ(m)∗∂µφ
(n)
∫ πR

−πR
dy Y m∗Y n

−
∑
m,n

φ(m)∗φ(n)
∫ πR

−πR
dy

[
∂yY

m∗∂yY
n +M2

0Y
m∗Y n

]
,

(3.9)

whose equations of motion are consistent with a 4-dimensional theory describing an
infinite set of complex scalar fields φ(n) with masses mn if and only if{∫ πR

−πR dy Y
m∗Y n = δmn∫ πR

−πR dy
[
∂yY

m∗∂yY
n +M2

0Y
m∗Y n

]
= m2

nδmn .
(3.10)
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By means of the former equation, which is an orthonormality condition for the
functions Y n, the latter becomes

∫ πR
−πR dy

[
∂yY

m∗∂yY
n − (m2

n −M2
0 )Y m∗Y n

]
= 0.

Integrating by part the first term and using Y n(πR)− Y n(−πR) = 0 as well as the
fact that Y n(y) does not vanish identically, we find that Y n(y) must satisfy the
eigenvalue equation

− ∂2
yY

n(y) =
(
m2
n −M2

0

)
Y n(y) , (3.11)

which, as anticipated, is exactly (3.6) with 4 = −∂2
y . The solutions of this equation

are Y n(y) = A ei
√
m2

n−M2
0 y and taking account also of the periodicity condition

Y n(−πR) = Y n(πR) we conclude that mn is quantized according to

m2
n = M2

0 + n2

R2 , n ∈ Z . (3.12)

Due to the orthonormality constraint, the solutions Y n(y) of (3.10) assume the form

Y n(y) = 1
2πRe

iny
R , (3.13)

which are the very well-known harmonics on the circle. So, the Kaluza–Klein
compactification of a free 5-dimensional scalar field of massM0 on a circle simply led
to the 4-dimensional effective Lagrangian (3.9) describing an infinite but discrete set
(the so-called tower) of free scalar fields of square masses m2

n = M2
0 +n2/R2. These

modes comprehend a 4-dimensional scalar with the original massM0 (corresponding
to n = 0) and an infinite number of additional scalars, the so-called Kaluza–
Klein modes, whose masses are bigger than M0 and are quantized in units of the
fundamental mass R−1, determined by the “size” of the internal manifold and
therefore called compactification scale. In particular, the lightest degree of freedom
comes from the zero-eigenvalue mode of the equation (3.11), which is just a constant
function for such a simple compactification. Instead, the infinite nonzero Kaluza–
Klein modes start with mass ∼ R−1 and grow with the excitation order, and do not
conflict with the everyday sensation of inhabiting in a world with a finite number of
particles provided R is small with respect to M−1

0 , so that mn is much bigger than
M0 and cannot be observed at low energies. In the simplest higher-dimensional
phenomenological model, the general idea is that each Standard Model particle can
be identified with the zero-mode of the Kaluza–Klein tower and all heavier modes
are new particles beyond the Standard Model, which appear as copies of the lightest
particle with bigger and bigger mass.

Although many features of the compactification on a circle strongly depend
on the choice of this particularly simple manifold, the qualitative structure of the
spectrum we sketched in the above example is general and derives from constraining
the extra dimensions to a compactified structure with periodic boundary conditions.
In fact, this constraint selects a discrete number of eigenfunctions Y n(y) of (3.6)
corresponding to a quantized number of 4-dimensional modes, of which a finite set
comes from the zero-harmonics and an infinite (massive) tower from the nonzero-
ones. However, when the manifold is more complicated, the precise structure of
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the spectrum is not so trivial, because, for instance, also the zero-harmonics may
depend on y. When the manifold has a treatable structure such as a group coset,
anyway, the harmonic analysis can be done group theoretically and the spectrum
can be found analytically [20, 22].

Example. Let us explore another example in which we compactify the 5-dimensional
scalar Lagrangian (3.7) on a slightly more complicated manifold, namely an orbifold,
showing the mentioned difference on the particle spectrum. In general, “orbifolding”
is the procedure of reducing a fundamental domain by a set of identifications, such
as, for example, the Z2 transformation σ : R→ R acting on the line R as y → −y.
The compact space we focus on is the S1/Z2 orbifold, which is defined as the
quotient space S1/σ and can be viewed as the above circle [−πR, πR] in which the
points y and −y are further identified. Essentially, this identification leads to the
half-circle [0, πR], where the end points y = 0, πR are included but not identified
with each other. If we choose to compactify (3.7) on M1 = S1/Z2, the procedure
we did for S1 equally holds, except for the fact that we need to also require that
Φ(x, y) = Φ(x,−y), and so Y n(y) = Y n(−y). Noting that ei

ny
R = cos nyR + i sin ny

R ,
this requirement implies that the solutions of (3.10) are just

Y n(y) = 1
2πR cos ny

R
, n = 0, 1, 2, . . . , (3.14)

and that the masses mn of the 4-dimensional modes are still determined by (3.12)
but with n = 0, 1, 2, . . . . Therefore, the compactification on the orbifold S1/Z2
actually slightly modified the spectrum, since the Kaluza–Klein modes are reduced
by a factor 2 (however, the zero-mode with mass M0 remains).

Example. As a concrete, although somewhat unrealistic, example of the Kaluza–
Klein procedure on a gravitational background [20], we consider pure gravity in five
dimensions, described by the action

S5 = 1
2πκ2

∫
d4x dy

√
−ĝR̂ , (3.15)

being R̂ the Ricci scalar of the 5-dimensional metric ĝMN (x, y) and ĝ its determinant.
The field equations are the usual Einstein equations R̂MN − 1

2 ĝMNR̂ = 0, which
obviously admit the ground state solution 〈ĝMN 〉 = ηMN , and therefore the theory
exhibits (among the others) the spontaneous compactification M4 ×M1. For the
sake of simplicity, we choose to compactify the internal space M1 on the circle S1
of radius R and we consider the change of variables

ĝMN = φ−1/3
(
gµν + κ2AµAν κφAµ

κφAν φ

)
, (3.16)

which is simply a different (but convenient) way of defining the components of
ĝMN (x, y) in terms of the fields gµν(x, y), Aµ(x, y) and φ(x, y). Following the
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outlined general procedure, we have to assume the expansions

gµν(x, y) =
∞∑

n=−∞
g(n)
µν (x)Y n(y) ,

Aµ(x, y) =
∞∑

n=−∞
A(n)
µ (x)Y n(y) ,

φ(x, y) =
∞∑

n=−∞
φ(n)(x)Y n(y) ,

(3.17)

where, for consistency, Y n(y) are the harmonics on the circle given by (3.13) and the
reality of g(n)

µν , A(n)
µ and φ(n) imposes g(n)

µν
∗

= g
(−n)
µν , A(n)

µ
∗

= A
(−n)
µ and φ(n)∗ = φ(−n).

The 4-dimensional Lagrangian L4 is obtainable substituting (3.17) into (3.15) and
integrating over the variable y constrained to S1. In principle L4 depends on the
infinite set of fields g(n)

µν (x), A(n)
µ (x) and φ(n)(x), but we choose to set all fields to zero

retaining just the n = 0 ones, which, as we said in general, are the lightest and the
only observable provided R is small. Since on the circle the zero-harmonic Y 0(y) is
actually independent of the internal coordinate, this truncation is exactly equivalent
to rewriting the initial action eliminating the dependence of gµν(x, y), Aµ(x, y) and
φ(x, y) on the internal coordinates. After having computed the Christoffel symbols
in terms of g(0)

µν (x), A(0)
µ (x) and φ(0)(x), plugged their expression into (3.15) and

performed the integral over y, we find the 4-dimensional action

S4 =
∫
d4x

√
−g(0)

[
1
K2R

(0) − 1
4φ

(0)F (0)
µν F

(0)µν − 1
6K2φ(0)2∂

µφ(0)∂µφ
(0)
]
. (3.18)

Here, R(0) and g(0) are respectively the Ricci scalar and the determinant of g(0)
µν , we

have defined the field strength F (n)
µν = 2∂[µA

(n)
ν] , the indices are raised and lowered

by g(0)
µν and K2 = κ2/R has the meaning of 4-dimensional Newton constant and is

linked to κ by the volume of the internal space. As is clear looking at (3.18), the
equations of motion of the reduced (and truncated) theory consistently describe a
massless spin 2 field, g(0)

µν , a massless vector, A(0)
µ , and a massless scalar, φ(0), as a

consequence of the compactification.
We now take advantage of this simple model to discuss two general characteristics

of Kaluza–Klein reductions (that are indeed present here), i.e. the connection
between 4- and 5-dimensional symmetries and the consistency of the truncation we
have done.
(i) For what concerns the symmetries, we note that the reduced action (3.18)

is invariant under general coordinate transformations with parameter ξµ(0)(x),
which read δg

(0)
µν = 2∂(µξ

ρ
(0)g

(0)
ν)ρ + ξρ(0)∂ρg

(0)
µν , δA

(0)
µ = ∂µξ

ρ
(0)A

(0)
ρ + ξρ(0)∂ρA

(0)
µ

and δφ(0) = ξρ(0)∂ρφ
(0). Besides, thanks to the masslessness of A(0)

µ , (3.18) is
also invariant under local U(1) gauge transformations of A(0)

µ with parameter
κ−1ξ5

(0)(x), namely δA(0)
µ = κ−1∂µξ

5
(0). Even the global scale transformation with

parameter λ, acting as δA(0)
µ = λA

(0)
µ , δφ(0) = −2λφ(0), is a further symmetry of
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the 4-dimensional action. However, this global symmetry is not preserved by the
vacuum (in which, as we said, 〈g(0)

µν 〉 = ηµν , 〈A(0)
µ 〉 = 0 and 〈φ(0)〉 = 1) and so it

is spontaneously broken. Thanks to the Goldstone theorem, this spontaneous
symmetry breakdown provides one Goldstone boson, which is exactly φ(0).
The mentioned symmetries are not accidental at all, because, as we now see,
they are the 4-dimensional manifestation of the obvious invariance of the 5-
dimensional action (3.15) under general coordinate transformations, which act
on the 5-dimensional metric as

δĝMN = 2∂(Mξ
RĝN)R + ξR∂RĝMN , (3.19)

for any infinitesimal parameter ξM (x, y). In fact, consistency between the metric
expansion (3.17) and the transformation (3.19), together with the assumed
topology of the ground state, requires ξM (x, y) to be expandable in terms of the
harmonics on the circle Y n(y), in such a way that

ξµ(x, y) =
∞∑

n=−∞
ξµ(n)(x)Y n(y) , ξ5(x, y) =

∞∑
n=−∞

ξ5
(n)(x)Y n(y) . (3.20)

It is therefore clear that the general covariance of (3.18) derives from the original
invariance under (3.19) upon choosing ξµ(n) = 0 for n 6= 0 and ξ5

(n) = 0 for any n.
Moreover, the local U(1) gauge invariance of (3.18) under δA(0)

µ = κ−1∂µξ
5
(0)

corresponds to the initial general covariance with ξ5
(n) = 0 for n 6= 0 and ξµ(n) = 0

for any n.
This simple example explicitly shows a general feature of Kaluza–Klein reductions,
namely that what we perceive to be internal symmetries of the reduced theory
in four dimensions are really space-time symmetries in the extra dimensions.
Besides, the fact that the gauge group (U(1) in this case) coincides with isometry
group of the internal manifold (the circle) is not even accidental. Indeed, it turns
out that, in general, the n = 0 states of a theory compactified on a manifold
with isometry group G include Yang-Mills fields with gauge group G. Hence,
for instance, the search of phenomenologically suitable compactifications of
11-dimensional supergravity should be restricted to internal manifolds which
contain SU(3)× SU(2)×U(1) as a subgroup of the isometry group, in order to
take into account at least of the Standard Model gauge group.

(ii) The theory described by the Lagrangian (3.18) is not the full reduced theory,
since it is obtained by just considering the zero-modes. The actual theory that
results from retaining the n 6= 0 fields describes, in addition to the above massless
states, an infinite tower of charged, massive, purely spin-2 particles with charges
qn = nK/R and masses mn = |n| /R.
However, in general, we are not entitled to truncate a theory by setting to zero
some of its degrees of freedom Φ̂i (as we have done in this example for the massive
states), because nothing ensures that this truncation is consistent, namely that
the solutions of the field equations of the truncated theory plus Φ̂i = 0 are
also solutions of the equations of the original one. The compactification on the
circle (and, in general, on the n-tours Tn defined as the product of n circles)
is particularly fortunate, because, as we now prove, in this case truncating the
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theory to the n = 0 modes (which consists in eliminating the dependence on the
internal coordinates) is automatically consistent. In fact, let us schematically
denote by �Φext = fext(Φint,Φext) and �Φint = fint(Φint,Φext) the full equations
of motion for the fields Φext(x) (which depend just on the external coordinates)
and Φint(x, y) (which depend also on the internal coordinates). The fields Φext
can enter in fint(Φint,Φext) only if each term of fint(Φint,Φext) contains a field
Φint, and this implies fint(0,Φext) = 0. On the other hand, if fext(Φint,Φext)
includes some term with Φint, the dependence on Φint should be quadratic (i.e.
|Φint|2), in such a way that, thanks to the properties of Y n(y), the dependence on
y vanishes. Hence, the solutions of �Φext = fext(0,Φext) together with Φint = 0,
are also solutions of the initial equations, given that the initial equations for Φint
are trivially satisfied (thanks to fint(0,Φext) = 0), while the ones for Φext exactly
reduce to �Φext = fext(0,Φext). Therefore, the truncation to the n = 0 modes
(independent of y on the circle) indeed makes sense, and so the Lagrangian (3.18)
correctly describes the behaviour of the massless fields. Likewise, in the case
of the 5-dimensional free scalar action (3.7) compactified on the circle, the
truncation to the n = 0 modes would have been meaningful, and this is obvious
since the full reduced action describes an infinite set of noninteracting scalars.

Even though in the previous example a consistent truncation of the reduced
theory has been obtained taking fields to be independent of the extra coordinates, in
presence of more complicated compactifications (such as, for instance, S7) obtaining
a consistent low-energy truncated theory is not so trivial, because the n = 0 modes
are not independent of ym. However, at least for 11-dimensional supergravity, con-
sistent truncations with a finite number of fields actually exist, and are representable
by the ordinary supergravity theories in four dimensions, as we will discuss in the
next section.

3.2 M-theory on T 7 and S7

Not all higher-dimensional theories exhibit spontaneous compactification. In D = 11
supergravity, however, spontaneous compactification not only works, but the dimen-
sion four of the ordinary space-time is an output rather than an input [20]. Moreover,
this theory allows the possibility that extra dimensions are either topologically flat
or seven-spheres, and that, at the same, the ordinary 4-dimensional space-time has
maximal symmetry.

We now justify these statements by looking for solutions of the equations of
motion of 11-dimensional supergravity which might be candidates for a ground state
of the form (3.2), described by the direct productM4×M7 with coordinates (xµ, ym).
Since we are interested in obtaining a 4-dimensional theory which admits maximal
space-time symmetry, the vacuum solutions 〈gMN 〉, 〈FMNPQ〉 and 〈ΨM 〉 should be
invariant under SO(1, 4), Poincaré or SO(2, 3) as the cosmological constant of M4
is positive, zero or negative.
• First, the requirement of maximal symmetry implies that the vacuum expectation
value of any fermion should vanish, and so we focus on solutions in which
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〈ΨM 〉 = 0. This entails a considerable simplification, because the gravitino
field appears just in the piece Lbf of the total Lagrangian (2.72) and only in
pairs: this means that the equations of motion of the total Lagrangian plus the
condition ΨM = 0 coincide with the equations of motions of the sole bosonic
piece Lb. Varying (2.73) with respect to gMN and AMNP , these equations read

RMN −
1
2gMNR = 1

6

[
FMPQRF

PQR
N − 1

8gMNFPQRSF
PQRS

]
DMF

MNPQ = −
√

2
72 ε

M1...M8NPQFM1...M4FM5...M8 .

(3.21)

(3.22)

• Furthermore, maximal symmetry requires that all tensors in the solution have to
be invariant under the infinitesimal general coordinate transformation δixµ = kµi ,
generated by the Killing vectors kµi of one of the mentioned maximal isometry
groups. In other terms, we should restrict to the solutions of (3.21-3.22) in which
the Lie derivative of gMN and FMNPQ vanishes, namelyLkgMN (x, y) = kµi ∂µgMN (x, y) + (∂Mkµi )gµN + (∂Nkµi )gµM = 0

LkFMNPQ(x, y) = kµi ∂µFMNPQ(x, y)− 4(∂[Mk
µ
i )FNPQ]µ = 0 .

(3.23)

The solutions of (3.23), combined with the requirement of a ground state of the
form (3.2), are

gµν(x, y) = gµν(x)
gmn(x, y) = gmn(y)
gµn = 0

,


Fµνρσ(x, y) = Fµνρσ(x) = m(x)εµνρσ
Fmnpq(x, y) = Fmnpq(y)
Fµνρq = Fµνpq = Fµnpq = 0 .

(3.24)

In these formulas, the y-independence of gµν and the x-independence of gmn
derive from requiring that gMN is a product metric, whereas the y-independence
of Fµνρσ and the x-independence of Fmnpq are consequences of the Bianchi identity
∂[MFNPQR] = 0 and of Fµνρq = Fµνpq = Fµnpq = 0. Actually, it is important to
note that the maximal space-time symmetry requirement (3.23) alone would
not rule out the so-called “warped-product” solution gµν(x, y) = f(y)gµν(x).
However, in the following we shall confine our attention to f(y) = 1, also because
no solution with warp factor leads to manifolds M7 which are group cosets.
Moreover, the relation Fµνρσ(x) = m(x)εµνρσ descends from the fact that, up to
multiplicative constants, there is only one rank-4 antysimmetric tensor in four
dimensions.

Substituting (3.24) into (3.22), we find that our ground state solution must satisfy

DµF
µνρσ = 0 ,

DmF
mnpq = −

√
2m
72 εµνρσnpqabcdεµνρσFabcd =

√
2m
3 εnpqabcdFabcd ,

(3.25)

which are trivially verified if we assume the Freund–Rubin [23] ansatz{
Fµνρσ = mεµνρσ

Fmnpq = 0 ,
(3.26)
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i.e. that the internal components of FMNPQ vanish identically and the external ones
do not depend on x (in (3.26), in fact, m does not depend on x). Let us analyze the
consequences of this ansatz on the metric field equation (3.21). Contracting (3.21)
with gMN we obtain R = 1

72F
MNPQFMNPQ, and therefore we can rewrite (3.21) in

the equivalent form

RMN = 1
6

[
FMPQRF

PQR
N − 1

12gMNF
PQRSFPQRS

]
. (3.27)

Plugging the ansatz (3.26) into this equation, we find that the metric field equa-
tion (3.21) is satisfied if and only if the components of the Ricci tensor are

Rµν = 1
6

[
m2εµαβγε

αβγ
ν + 1

1224m2gµν

]
= −2

3m
2gµν ,

Rmn = − 1
72gmnm

2(−24) = 1
3m

2gmn ,

Rµn = 0 .

(3.28)

Therefore, any value of gMN and FMNPQ that fulfills equations (3.26) and (3.28)
determines a ground state solution M4 ×M7 in which M4 has maximal symmetry.
However, M4 and M7 defined in this way are not arbitrary, since further constraints
on both M4 and M7 derive from equation (3.28).
• First of all, also M7 should be an Einstein space, with signature (+ + + + + + +).
• Secondly, M4 cannot be an arbitrary maximally symmetric space, but either
AdS with cosmological constant −2m2/3 (if m 6= 0) or Minkowski (if m = 0).
Correspondingly, the 7-dimensional Einstein space M7 exhibits either positive
or flat curvature.

The important point is that complete Einstein spaces of positive curvature and
Euclidean signature are automatically compact [24] and hence spontaneous com-
pactification to four dimensions has indeed been achieved. Besides, the choice of
dimension four for the ordinary space-time is not ad hoc, but a consequence of
the field equations, since in (3.24) maximal symmetry singles out exactly the four-
dimensional Levi-Civita symbol. This, in turn, is dictated by the fact that the F
tensor has rank four, which is a result of D = 11 supersymmetry. Actually, we could
have alternatively requested that Fmnpq had rank four, and in this case we would
have obtained an acceptable ground state solutionM7×M4 with Fmnpq proportional
to εmnpq and Fµνρσ = 0. Thereby, 11-dimensional supergravity naturally admits
spontaneous compactification to both four and seven dimensions (in contrast with
the examples of section 3.1, in which the dimension four has been chosen by hand).

There are infinitely many 7-dimensional Einstein spaces with flat or positive
curvature. For instance, a possible flat choice is the seven-torus T 7, whose (abelian)
isometry group is [U(1)]7. Particularly simple and treatable manifolds with positive
curvature are homogeneous spaces corresponding to group cosets G/H, such as
S7, Mpqr and N010 (see [22, 20] for more details). Remarkably, the 4-dimensional
theories arising from such compactifications (and upon suitable truncations of the
massive modes) are nothing but the 4-dimensional gauged supergravities discussed
in the previous chapter [15].
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Figure 1: Gauged supergravities from dimensional reductions.

• For example, if we compactify 11-dimensional supergravity onM7 = T 7 keeping only
the dependence on the internal coordinates (i.e. making the consistent truncation
to the zero-modes and discarding the massive states, as discussed in section 3.1),
the result is exactly ungauged maximal supergravity in four dimensions. This was
explicitly shown by Cremmer and Julia in [19], where further duality and other
field transformations are performed in order to cast the reduced Lagrangian into its
manifestly E7(7) × SU(8) invariant form. Such a compactification corresponds to
the vertical arrow of the diagram in Figure 1.
• On the other hand, one may consider more complicated compactifications (the
diagonal arrow in Figure 1) where the torus is replaced by manifolds with more
structure (such as S7). In this situation, higher-dimensional p-form field strengths
F (p) may acquire nontrivial background fluxes CΣ =

∫
ΣF (p) along nontrivial circles

Σ of the internal manifold. All these compactifications, together with suitable
truncations of the massive modes, lead to more complicated effective theories in four
dimensions, which typically come with non-abelian gauge symmetries and which
turn out to be gauged supergravities. As we said, the most systematic approach
for constructing these theories is the gauging procedure described in section 2.4
and represented by the horizontal arrow in Figure 1. Fortunately, all different
gaugings are encoded in the embedding tensor, which, from the point of view of
flux compactifications, can be seen as a very compact tool to group all different
possible flux (or deformation) parameters CΣ, which are indeed connected to the
components of Θ α

M . Therefore, the gauging of a supergravity theory corresponds
to reducing 11-dimensional supergravity in presence of nontrivial background fluxes,
codified by the embedding tensor.
An example of such a construction is the standard G = SO(8) gauged theory,
proposed for the first time in [26], which derives from the S7 compactification of
11-dimensional supergravity, with SO(8) properly embedded into the global E7(7)
symmetry group. However, other 4-dimensional SO(8) gauged supergravities have
been recently discovered [27, 28] and it has been proven that actually none of them
descends from the 11-dimensional theory [29].
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3.3 STU-models from orbifold reductions

Apart from the SO(8) gauged supergravity arising from the compactification on the
seven-sphere, our interest is also triggered by the so-called STU-models [30], which
derive from M-theory compactifications as well, and, as we will see, consist in a
generalization of the SO(8) gauged theory properly truncated.

An STU-model is an N = 1 supergravity theory with no vector multiplet and
seven chiral multiplets {φi}, conventionally named S, T1, T2, T3, U1, U2, U3.
• The Kähler potential for these models is completely determined by the kind of
compactification they descend from, and can be written as the sum of seven
equal contributions, one for each supermultiplet (note that MP = 1):

K(φi, φj̄) = − log(S + S̄)−
3∑
i=1

log(Ti + T̄i)−
3∑
i=1

log(Ui + Ūi) . (3.29)

As we said in section 2.2.2, K defines the structure of the scalar manifoldMsc,
which has to be the direct product of seven identical factors M̂, since each
term in (3.29) has the same structure but depends on a different multiplet. We
can calculate at least the isometry group Ĝ of M̂, associated to the Kähler
potential K0 = − log(φ+ φ̄), by explicitly deriving the (homomorphic) Killing
vectors ξI(φ) of M̂ and their algebra. First, the Killing equation Lξgφφ̄ =
0, with gφφ̄ = ∂φ∂φ̄K0, is solved by the three independent Killing vectors
ξ0(φ) = i, ξ1(φ) = φ and ξ2(φ) = i

2φ
2, and therefore M̂ has dimension equal to

three. Defining as ξIf ≡ ξI∂φf + ξ̄I∂φ̄f the action of a Killing vector on a
generic function f(φ, φ̄) on the internal manifold, the Killing algebra reads
[ξI , ξJ ]f = f K

IJ ξKf , where the only nonvanishing structure constants are
f 0

01 = f 2
12 = f 1

20 = 1. Hence, since the real linear combinations ξ′0 = ξ0 − ξ1,
ξ′1 = ξ0− ξ1− ξ2, ξ′2 = ξ1 + ξ2 satisfy the algebra f ′ 0

01 = f ′ 0
12 = −f ′ 1

20 = 1, the
isometry group Ĝ coincides with SU(1, 1). Actually, it turns out that the factor
M̂ is the coset manifold SU(1, 1)/U(1) and therefore the scalars parametrize
the full manifold

Msc =
(SU(1, 1)

U(1)

)
× · · · ×

(SU(1, 1)
U(1)

)
︸ ︷︷ ︸

×7

. (3.30)

• On the contrary, the superpotential W (φi) is not fully determined by the
compactification and its structure can be either polynomial or not [42, 38]. In
particular, a polynomial structure (up to the seventh degree) arises naturally
from perturbative effects in the compactification in presence of fluxes, whereas a
nonperturbative contribution would contain, for instance, exponential terms. In
the following we will consider just polynomial superpotentials, whose coefficients
are directly connected with generalized flux parameters in the compactification
of the higher-dimensional theory [31]. However, as we will see when talking
about the uplift, only for particular choices of the coefficients the uplift of the
N = 1 vacua to eleven dimensions is actually clear at the present time.
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These STU-models derive from 11-dimensional supergravity upon compactifying
M7 on the orbifold T 7/(Z2×Z′2×Z′′2), where Z2, Z′2 and Z′′2 are parity transformations
we now specify, and upon truncating the result to the zero-modes (namely, imposing
that the fields do not depend on the internal coordinates). Each Z2 transformation
acts only on the internal coordinates (z4, . . . , z10), which parameterize the seven-
torus, as zM → PMzM , where PM can be either 1 or −1 according to the table:

z4 z5 z6 z7 z8 z9 z10

Z2 + − − − − + +
Z′2 + − − + + − −
Z′′2 − − + − + − +

For example, the first Z2 transformation sends (z4, z5, z6, z7, z8, z9, z10) into
(z4,−z5,−z6,−z7,−z8, z9, z10), and similarly for the others. As explained in the
example of section 3.1, if PM = −1, the orbifolding procedure induces (for each Z2
factor) the identification between zM and −zM , in such a way that, at the end, the
actual manifold T 7/(Z2×Z′2×Z′′2) is just a part of the full seven-torus T 7, obtained
indeed by the projection of T 7 under Z2 × Z′2 × Z′′2.

Let us analyze how the (bosonic) field content of the STU-models can be
recovered by reducing 11-dimensional supergravity on T 7/(Z2 × Z′2 × Z′′2) and why
considering an orbifold in place of the full seven-torus is essential.
• If we compactify 11-dimensional supergravity on the full T 7 discarding the massive

modes, the constitutive elements of the 11-dimensional supermultiplet give rise to a
huge (but finite) number of 4-dimensional fields, which can be listed treating the
indices of the internal coordinates as fixed. For example, in the bosonic sector, the
11-dimensional graviton gMN produces the 4-dimensional graviton gµν , 7 vectors
gµn and 28 scalars gmn, whereas the three-form AMNP generates a 4-dimensional
three-form Aµνρ, 7 two-forms Aµνp, 21 vectors Aµnp and 35 scalars Amnp. The
three-form Aµνρ just provides nondynamical degrees of freedom and the 7 two-forms
Aµνp are the on-shell duals of 7 real scalar fields. Therefore, the field content of
the reduced theory includes 70 real scalars, 28 vectors and one graviton, which,
together with the fermions, precisely constitute the massless N = 8 supermultiplet
of maximal supergravity (not by chance, 11-dimensional supergravity reduced on
T 7 is exactly ungauged maximal supergravity, as we said).
• Due to the projection Z2×Z′2×Z′′2, however, the compactification on T 7/(Z2×Z′2×Z′′2)
produces a lower number of fields. In fact, out of the above ones, remain only
the components which are invariant under Z2, Z′2 and Z′′2, since the others are
identified with their opposite and thus vanish. For instance, the component Aµ67 is
left invariant by Z2 but it is identified with its opposite by both Z′2 and Z ′′2 , and
therefore disappears. Applying this method to all components, one easily realizes
that the requirement of invariance under Z2 × Z′2 imposes that only survive (in
addition to gµν)
(a) 1 of the 7 vectors gµn
(b) 10 of the 28 scalars gmn
(c) 1 of the 7 two-forms Aµνn
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(d) 3 of the 21 vectors Aµnp
(e) 10 of the 28 scalars Amnp
In the following table are displayed the explicit components invariant under Z2×Z′2,
and only the ones which are not further invariant under Z′′2 are canceled.

Scalars Vectors Two-forms
��g56, ��g78, ���g9 10, ��gµ4 ���Aµν4
g44, g55, g66 ���Aµ56, ���Aµ78, ���Aµ9 10

g77, g88, g99, g10 10
A564, A784, A9 10 4, ���A579
A57 10, A589, ���A58 10,

A679, ���A67 10, ���A689, A68 10

Hence, the reduction on T 7/(Z2 × Z′2 × Z′′2) eventually provides a bosonic spectrum
made of the metric, 14 real scalars and no vector, which indeed constitute the bosonic
part of the graviton multiplet and of the 7 chiral multiplets of the STU-models.

We can easily prove that also the femionic counterparts indeed match the
expected amount of fields. For this purpose, we note that all 4-dimensional Fermi
fields must derive from the 11-dimensional gravitino Ψ α

M , which is a 32-component
Majorana vector-spinor and the only Fermi field of the higher-dimensional theory.
• Upon compactifying on T 7 and truncating to the n = 0 modes, the field Ψ α

M (x, y)
turns out to be decomposed as Ψ α

M (x, y) = ψ α̂i
M (x)⊗ ηAi (y), where α̂ = 1, . . . , 4

denotes the spinorial index of a 4-component Majorana spinor, the index i = 1, . . . , 8
spans the Killing spinors ηAi (y) (8 for T 7 and S7) and indicates the transformation
properties under the SU(8) R-symmetry group and A = 1, . . . , 8 is the spinorial
index of SO(7). For the torus and the sphere it is always possible to choose a
basis in which ηAi (y) is constant and furthermore ηAi (y) = δAi . Thus, the truncated
4-dimensional fields are 8 gravitinos ψ α̂i

µ (which should be indeed 4-components
Majorana vector-spinors) and 7×8 = 56 spinors ψ α̂i

M : these fields together correctly
compose the fermionic field content of maximal supergravity.
• On the other hand, if we instead compactify on T 7/(Z2 × Z′2 × Z′′2), just the fields

further invariant under Z2×Z′2×Z′′2 survive. In order to list the invariant components,
we note that the parity transformations act on both space-time and SU(8) indices,
and the two transformation rules zM → UMN z

N and ti → V i
j t
j (where, as we

said, UMN = δMN P
M ) are linked by the simple relation V i

j = UMN (γMN )ij . It is
therefore straightforward to see that also V i

j = δijP
′ i (so that ti → P ′ iti), where

P ′ i is either 1 or −1 according to the table:

1 2 3 4 5 6 7 8
Z2 + + + + − − − −
Z′2 + + − − + + − −
Z′′2 + − + − + − + −

As a consequence, all gravitinos ψ α̂i
µ except ψ α̂1

µ transform under at least one parity,
and so just ψ α̂1

µ remains upon compactifying on T 7/(Z2 × Z′2 × Z′′2). Moreover,
among the spinors ψ α̂i

M , the only invariant are those for which the transformations
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of the indices M and i coincide for all parities, and so, comparing the two above
tables, we deduce that just the 7 components

ψ α̂2
4 , ψ α̂3

10 , ψ α̂4
9 , ψ α̂5

8 , ψ α̂6
7 , ψ α̂7

6 , ψ α̂8
5 (3.31)

last. Hence, the field content includes 1 gravitino and 7 spinors, which, as predicted,
constitute the fermionic part of the graviton multiplet and of the 7 chiral multiplets.

Therefore, this kind of compactification ensures (at least) the correct field
content: however, although we do not give further details, this reduction gives
actually rise to an N = 1 Lagrangian with Kähler potential of the form (3.29) and
superpotential determined by flux parameters [31].
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4 STU-truncations of SO(8) supergravity
The discussion of chapters 2 and 3 has provided all fundamental ingredients for
analyzing the existence and properties of stable dS vacua in minimal and maximal
supergravities. As a first step, in this chapter, we begin the vacua analysis focusing
on the SO(8) gauged supergravity, which is the simplest possible deformation of
maximal supergravity and for which many results are already known by the old
and recent literature [25, 32, 33, 34, 35, 36], both analytically and numerically.
Actually, our investigation will concern not only the theories arising from the S7

compactification, but also the new SO(8) gauged supergravities that do not descend
from M-theory.

As we have seen in section 2.4.3, however, in all gauged supergravities the scalar
potential (2.66) depends quadratically on the embedding tensor and nonlinearly
on the 70 real scalars which parameterize the E7(7)-valued matrix V ij

M . Therefore,
even though the embedding tensor components Θ α

M are fixed at the proper values
for the SO(8) gauging, the analytic search of stationary points is anything but
straightforward, especially due to the huge number of scalars. For this reason, in
the following we do not consider the full SO(8) gauged theory, but, rather, we
concentrate on a consistent truncation of it leading to a particular STU-model, for
which the search is obviously much more manageable. Fortunately, the consistency
of the truncation ensures that all vacua of the truncated model are also vacua of
the full theory, although many other solutions of the full theory are necessarily cut
off. So, in the first section we give some details about the N = 1 model deriving
from such a truncation, while in the second we present our explicit analytic results,
also searching a correspondence with the present literature.

4.1 The N = 1 model

In analogy with the orbifolding procedure, our N = 1 truncation of SO(8) gauged
supergravity is based on the elimination of the field components which are not
invariant under a certain set of three parity transformation. Actually, these trans-
formations have been already introduced in section 3.3 for the fermionic sector and,
as we have seen, if interpreted as action on the extra dimensions, they are exactly
the projections that induce the orbifold T 7/(Z2 × Z′2 × Z′′2).

To explain how these transformations act on a generic field of maximal super-
gravity, we remind that its field content can be represented by(

φijkl, χijk, A ij
µ , ψ i

µ , gµν
)
, (4.1)

where the indices i, j, . . . assume 8 values and describe the transformation properties
under the SU(8) R-symmetry group. The three parity transformations, denoted by
Z2,Z′2 and Z′′2, act on each field ϕ in (4.1) as ϕ→ Pϕϕ, where Pϕ is either 1 or −1
depending on the structure of indices in ϕ. In particular, each Z2 parity transforms
the indices i, j, . . . according to the table on page 49 and thus, for instance, ψ 1

µ

is left invariant by all parity transformations, whereas ψ 5
µ is transformed into its

opposite just by Z2. Likewise, A 34
µ is left invariant by both Z2 and Z′2, but sent

into −A 34
µ by Z′′2, since only the index 4 changed.
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The N = 1 truncation is obtained from the initial SO(8) gauged theory by
identifying each field ϕ with its transformed Pϕϕ, for every parity transformation.
Therefore, if a component ϕ̃ is odd under at least one among Z2,Z′2 and Z′′2, in
the truncated theory ϕ̃ is imposed to be equal to −ϕ̃ and vanishes. Hence, as
anticipated at the beginning, the N = 1 model displays the sole field components
which are invariant under all three parity transformations.

Let us now analyze explicitly which components actually vanish in order to
provide the right STU-spectrum. Since the graviton gµν does not transform under
parity, it remains unchanged in the truncated model. Moreover, a quick inspection
of the above table tells us that only the gravitino component ψ 1

µ survives: together
with the graviton, ψ 1

µ therefore constitutes the only graviton multiplet of the STU-
model. On the contrary, the structure of Z2,Z′2 and Z′′2 implies that just the vectors
of the form A ii

µ are left invariant by all parities, and so, given the antisymmetry of
the indices i, j, . . . , no vector remains (this is indeed coherent with the expected
field content). Out of the 35 spinors χijk, the only invariant under Z2 have the
structure χĩj̃k̃ or χĩĵk̂ (where ĩ = 1, 2, 3, 4 and î = 5, 6, 7, 8), and are 4 + 24 = 28 in
total: of these, just 7 survive also under Z′2 and Z′′2. Similarly, the (real) scalars
invariant under Z2 are φĩj̃k̃l̃, φĩj̃k̂l̂ and φîĵk̂l̂ (1 + 36 + 1 = 38 in total), and 14 of
them eventually last. The following table summarizes the explicit components of
φijkl and χijk left, which properly combine into the 7 chiral multiplets (φi, χi) of
the STU-model.

Scalars Spinors
φ1234, φ1256, φ1278, χ234, χ256, χ278,
φ3456, φ3478, φ5678, χ357, χ368, χ458, χ478

φ1357, φ1368, φ1458, φ1467,
φ2358, φ2367, φ2457, φ2468

Remarkably, a generic truncation dictated by the invariance under parity trans-
formations Z2 is automatically consistent. In fact, let us collectively call Φe and Φo

the fields which are respectively even and odd under Z2. The equations of motions
of the full theory are schematically �Φe = fe(Φe,Φo) and �Φo = fo(Φe,Φo), where
Φe can enter in fo(Φe,Φo) only if every term in fo(Φe,Φo) contains Φo (in order
for fo(Φe,Φo) to be odd), and so fo(Φe, 0) = 0. On the other hand, Φo can appear
into fe(Φe,Φo) only quadratically, so that fe(Φe,Φo) is even. Thereby, setting
to zero the odd fields, the equation �Φo = fo(Φe,Φo) is trivially satisfied, while
�Φe = fe(Φe,Φo) reduces to �Φe = fe(Φe, 0), which is the equation of motion of
the truncated theory. As a consequence, imposing Φo = 0 is indeed consistent,
and the above Z × Z′2 × Z′′2 truncation of SO(8) gauged supergravity is actually
meaningful.

Once the N = 1 truncation has been performed, the SO(8) gauged supergravity
reduces to a particular STU-model, whose Kähler potential is fixed by (3.29) and
whose field content is made of (gµν , ψ 1

µ ) and of the 7 chiral multiplets (φi, χi). In
particular, the conditions on the embedding tensor which determine the SO(8) gaug-
ing translate into suitable conditions on the coefficients of the superpotential W (φi)
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of the truncated theory. For instance, the SO(8) gauging in absence of magnetic
duals (i.e. ΘΣα = 0 in equation (2.61)) produces the polynomial superpotential

W1(φi) = 1 + ST1T2T3 + U1U2T1T2 + U1U3T1T3 + U2U3T2T3

+ ST1U2U3 + ST2U1U3 + ST3U1U2 ,
(4.2)

made of the sum between 1 and a polynomial of the fourth degree in φi, in which
each coefficient is equal to 1. In contrast, the inclusion of the magnetic duals
introduces into the right-hand side of (4.2) a new contribution W2(φi), given by

W2(φi) = i
(
ST1T2T3U1U2U3 + U1U2U3 + SU3T3 + SU2T2 + SU1T1

+ T2T3U1 + T1T3U2 + T1T2U3
)
,

(4.3)

where each term is obtained “dualizing” the corresponding term in (4.2), namely
inserting the missing fields in that term and removing the ones originally present
(and multiplying by i). For instance, the second term in W2(φi), iU1U2U3, is the
dual of ST1T2T3 because the only missing fields in ST1T2T3 are exactly U1, U2, U3.
As a consequence, W2(φi) is a polynomial with imaginary coefficients made of a
seventh-degree term, iST1T2T3U1U2U3, dual to 1, and of a third-degree contribution,
dual to the remainder of W1(φi). While the STU-model with superpotential W1(φi)
is the truncation of the standard SO(8) gauged supergravity, in presence ofW (φi) =
W1(φi) +W2(φi) the full SO(8) theory does not descend from S7 compactification.

Interestingly enough, non-compact gauge versions of SO(8) supergravity, in which
SO(8) is replaced by SO(p, q) with p+ q = 8, admit similar consistent truncations
to STU-models. Moreover, the superpotential arising from such truncations is
obtainable by slightly modifying equations (4.2-4.3). In fact, if no magnetic dual is
added, the SO(p, q) gauged theory leads to a superpotential W1(φi) which differs
from (4.2) by the only fact that p of the 8 coefficients (arbitrarily chosen) are −1
in place of 1. Analogously, in presence of magnetic duals, the superpotential takes
also a contribution W2(φi), equal to (4.3) except for the fact that the duals of the
p terms in W1(φi) with coefficient −1 have now coefficient −i. Remarkably, also
these non-compact gaugings turn out to be upliftable to eleven dimensions [37],
when W (φi) = W1(φi).

The above specification of the superpotential in presence and absence of magnetic
duals completely determines the SO(p, q) reduced theories. Although the STU-
models descending from such truncations are very particular, in the following chapter
we will however consider generalizations of them, in which the coefficients can be
also different from ±1 or ±i and other polynomials (up to the seventh degree) are
allowed into both (4.2) and (4.3).

4.2 Vacua from the truncations of the N = 8 models
Now that we have described all necessary ingredients for our analysis, we can present
the results obtained for the truncation of a generic G = SO(p, q) gauging.

Some preliminary observations facilitated our work. First, since the superpoten-
tial appears uniquely in pairs into the scalar potential V of (2.10), an overall sign
in front of the superpotential produces the same V . By the above discussion it is
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therefore obvious that SO(7, 1) and SO(1, 7), SO(6, 2) and SO(2, 6), SO(5, 3) and
SO(3, 5) have respectively the same scalar potential, and thus the same vacua. So,
even though we should in principle perform the vacua analysis for each p = 1, . . . , 8
in order to study all non-compact gaugings, we can restrict to p = 4, 5, 6, 7, 8. More-
over, for each p fixed, it is not necessary to consider all combinations of p negative
coefficients in (4.2) and (4.3), because most of them can be obtained starting from
a certain combination and redefining the fields φi. Finally, given that the Kähler
potential (3.29) depends just on φi + φ̄i, it is particularly convenient to utilize as
independent variables the real and imaginary parts of S, Ti and Ui, defined by

S = s+ iσ, Ti = ti + iτi, Ui = ui + iνi . (4.4)

Let us first discuss the vacua in presence of magnetic duals, namely setting
W (φi) = W1(φi) + W2(φi) with the appropriate number of −1 coefficients. The
general expression for the extrema of the scalar potential cannot be found analytically,
and thus the best initial approach is to focus on the existence of critical points such
that σ = τi = νi = 0 and t1 = t2 = t3 ≡ t, u1 = u2 = u3 ≡ u (which are isotropic
solutions). This is indeed sufficient to reproduce many known vacua of the SO(p, q)
theories, reported in Table 1.

# Gauge group Gres SUSY Λ m2
(multiplicity)

i SO(8) SO(8) Yes −3 −2
3 (14)

ii SO(8) SO(7) No −25
√

5
16 2(1),−4

5 (6),−
2
5 (7)iii SO(7, 1) −5

4

iv SO(8) −4
v SO(7, 1) SO(6) No −1.38...

2(2),−1(5),−1
4 (4), 0(3)

vi SO(6, 2) SO(2)4 Yes 0 (1+u2)3

2u3 , (1+u2)3

8u3 (4), 0(9)

vii SO(5, 3) SO(3)× SO(5) No 3
4 4(2),−2(2), 2(5),

4
3 (4),−

2
3

viii SO(4, 4) SO(4)× SO(4) No 1 −2, 2(9), 1(4)

Table 1: Vacua of the truncated theory with magnetic duals satisfying σ = τi = νi = 0 and
t1 = t2 = t3, u1 = u2 = u3. When Λ 6= 0, the scalar masses are expressed in units of the
cosmological constant.

The Table shows the scalar mass spectrum (given by the eigenvalues of g−1∂2V ) and
the cosmological constant generated around the vacua, which either preserve or break
supersymmetry as specified in the fourth column. All these vacua have been already
classified, for example in [35, 36], and for each of them has also been calculated the
residual symmetry group Gres (made of the gauge symmetries not spontaneously
broken at the vacuum), reported for completeness in the third column.
• The solutions i, iii, vii, viii are located at the origin s = t = u = 1, and,
in particular, i is the well-known maximally supersymmetric AdS vacuum of
the SO(8) theory. Since in supergravity all AdS vacua satisfying the so-called
Breitelohner–Freedman bound |m2/Λ| < 3/4 possess real vacuum energy (al-
though m2 < 0) [11, 12], vacuum i is of course stable. On the contrary, vacua ii
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and iii are AdS with residual symmetry group SO(7), but for the 6 directions
with mass eigenvalues m2 = −4/5 the Breitenlohner–Freedman bound is not
respected, and so they are unstable. Similarly, iv and v are not stable due to
the presence of 5 mass eigenvalues m2 = −1.
• The solution vi is Minkowski (and supersymmetric) and actually refers to an
infinite set of vacua for which s = t = 1 and parametrized by the values of u.
In order to match the masses with the values m2 = (2, 1/2(4), 0(9)) displayed
in the references, we need to select particular values of u, in such a way that
(1+u2)3/u3 = 4. Moreover, as predicted by the general discussion of section 2.2.3,
these supersymmetric vacua are automatically stable.
• Finally, vii and viii are the only dS vacua and break spontaneously supersymmetry
(as they were expected to do): however, in spite of our desires, they are unstable.

As we said at the beginning, these vacua from the truncated theory are also
vacua of the N = 8 models, thanks to the consistency of the truncation we have
done. Anyway, the spectrum in Table 1 indicates only the masses of the 14 scalars
left upon the truncation, and therefore, for a full description of the N = 8 solutions,
we still need to understand the completion of the mass spectrum (also because
additional unstable directions might appear).

As a second step, we may look for critical points with nonvanishing imaginary
part. The simplest possible vacuum solutions (actually traceable with the minimum
effort) are those satisfying s = t = u and σ = τi ≡ τ = νi ≡ ν 6= 0: such vacua are
indeed present and summarized in Table 2. Besides, we are also forced to assume
s = t = u 6= 0, since the Kähler potential (3.29) is defined just for strictly positive
real parts.

# G Gres SUSY Λ m2
(multiplicity)

ix SO(8) SO(7) No −53/4 2(1),−4
5 (6),−

2
5 (7)

x SO(8) G2 Yes −108
25

√
2
5

4√3 4±
√

6
3 ,−11+

√
6

18 (6),
−11+

√
6

18 (6)xi SO(7, 1) − 12
25

√
1
5 (62
√

6− 117)

xii SO(7, 1) SO(7) No −2
√

2
√

3− 3 2(2),−1
3 (12)

Table 2: Vacua of the truncated theory with magnetic duals satisfying s = t = u and σ = τ = ν 6= 0.
When Λ 6= 0, the scalar masses are expressed in units of the cosmological constant.

All new vacua are AdS and the ones preserving supersymmetry have, as residual
symmetry group, a G2 subgroup of SO(7). It is interesting to note that vacuum ix
has the same features as ii (even the same mass spectrum), but thanks to the
different cosmological constant we can certainly conclude that ii and ix do not
coincide. Just ix does not respect the Breitenlohner–Freedman bound (as ii, after
all) and hence, at least from the N = 1 point of view, x, xi, xii are stable.

Despite its simplicity, this analysis has reproduced most of all simplest vacua for
the N = 8 landscape, even though the mass spectrum we provided is only partial.
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Let us now turn to the SO(p, q) gauged theories without magnetic duals, set-
ting therefore W (φi) = W1(φi). Repeating the two previous steps also with this
superpotential, we obtain respectively Tables 3 and 4.

# G Gres SUSY Λ m2
(multiplicity)

i’↔ i SO(8) SO(8) Yes −3
2 −2

3 (14)

ii↔ ix SO(8) SO(7) No −53/4

2 2(1),−4
5 (6),−

2
5 (7)

iii’↔ vii SO(5, 3) SO(3)× SO(5) No
4√3
2 4(2),−2(2), 2(5),

4
3 (4),−

2
3

iv’↔ viii SO(4, 4) SO(4)× SO(4) No 1
2 −2, 2(9), 1(4)

Table 3: Vacua of the truncated theory without magnetic duals satisfying σ = τi = νi = 0 and
t1 = t2 = t3, u1 = u2 = u3.

# G Gres SUSY Λ m2
(multiplicity)

v’↔ x SO(8) G(2) Yes −54
25

√
2
5

4√3 4±
√

6
3 ,−11+

√
6

18 (6),
−11+

√
6

18 (6)

vi’↔ ii SO(8) SO(7) No −25
√

5
32 2(1),−4

5 (6),−
2
5 (7)

Table 4: Vacua of the truncated theory without magnetic duals satisfying s = t = u and
σ = τ = ν 6= 0.

Interestingly, in absence of magnetic duals the number of vacua is drastically
reduced. In contrast with the previous case, for example, there is no vacuum
satisfying σ = τi = νi = 0 or (s = t = u and σ = τ = ν) for the SO(7, 1) and
SO(6, 2) gaugings. Moreover, also the original SO(8) vacuum iv with residual
symmetry group SO(6) disappears. All other vacua instead remain, included the
maximally supersymmetric ground state of the SO(8) theory. In particular, by
simply comparing the scalar square masses and the values of the cosmological
constant, we can deduce the correspondence between the vacua in presence and
absence of magnetic duals, reported in the first column of Tables 3 and 4.

For all the vacua found in absence of magnetic duals (Tables 3 and 4) the uplift
to eleven dimensions has been recently determined: for instance, the uplift of the
SO(5,3) and SO(4,4) solutions is described in [37], where explicit ansatzs for the
11-dimensional graviton and the three-form are provided. However, as we have
seen, none of such vacua is stable and exhibits a positive cosmological constant
at the same time. This difficulty of reproducing stable dS vacua derives from
the particular superpotential (4.2-4.3) we analyzed, and can be actually solved
considering generalizations of the superpotential where the coefficients are no longer
±1, but arbitrary. We will study such more general STU-models in the following
chapter, trying to not ruin, on the other hand, the vacua upliftability.
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5 Searching Minkowski and de Sitter vacua
The analysis in the previous chapter revealed that stable dS vacua are hardly
accessible from the STU-truncations of SO(8) gauged supergravity. A possible
remedy for this issue is to forget about the SO(8) origin of the STU-models and
to allow for completely generic polynomial superpotentials, hoping that, for some
values of the coefficients, dS stable vacua indeed arise. Although this search might
seem rather straightforward from the N = 1 point of view, vacua of too generic
STU-models actually do not have, at the present time, an interpretation in terms
of maximal supergravity and of M-theory, and therefore, despite their presence in
the N = 1 model, cannot be uplifted. Hence, the research of a compromise between
stability and upliftability is needed and will be the actual scope of this last chapter.

In particular, we first study the stability of dS vacua in a general STU-model,
without taking care about the possible uplift to eleven dimensions. In this context,
inspired by the line of investigation opened in [38, 39, 42], we provide a systematic
method for constructing stable dS solutions close to Minkowski vacua and show in
explicit examples that wide analytic classes of such vacua indeed exist. In contrast
with [42], we entirely base our search on polynomial superpotentials induced by
perturbative effects, proving therefore that nonperturbative contributions do not
bring anything new. We then constrain the superpotential to a very special class
of complex polynomials (whose uplift is actually clear nowadays) and repeat the
same analysis, looking for explicit realizations of stable vacua close to Minkowski
solutions. We will see firsthand that, in this case, stability is much less likely to
emerge and furthermore stable dS vacua seem to be completely absent.

5.1 General strategy
In this section we outline our general procedure for identifying the critical points of
the scalar potential (2.10) in an STU-model with a generic polynomial superpotential
(up to the seventh degree). Solving the extremality condition for arbitrary coefficients
is in fact absolutely impracticable: as we will see, however, we can combine two
crucial observations that transform the extremality conditions into a system of
quadratic equations in some of the superpotential couplings. Fortunately, these
considerations together drastically simplify the search of stable vacua.
• The first fact we use holds for any supergravity model in which the scalars span

an homogeneous space, just as (SU(1,1)/U(1))7, and has been proposed for the
first time in [40] and applied in [41] and in [35, 43] for the N = 4 and N = 8
landscapes respectively. In the maximal gauged theory, the underlying idea is
based on the fact that the embedding tensor Θ α

M determines the scalar potential,
which depends nonlinearly on the 70 scalar fields, but only quadratically on
Θ α
M itself. Besides, since the scalar manifold is the coset space E7(7)/SU(8), any

point can be mapped to a chosen base point by an E7(7) duality transformation.
Therefore, by a proper duality transformation acting on both the scalar fields
and the embedding tensor, we can map any critical point to the base point
of the scalar manifold, however changing the explicit form of the embedding
tensor at the same time (in such a way that the scalar potential is eventually
left invariant). This means that to find all vacua of the theory we can just solve
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the critical point conditions at the base point in terms of the embedding tensor
values allowed for the chosen gauging. The advantage of this procedure is that
we reduced the problem to a system of quadratic equations in the constants
Θ α
M , much simpler than minimizing a complicated nonlinear function of 70 real

variables.
Thanks to the structure of coset space of the scalar manifold, this formulation
is equally valid for the STU-models, with the only difference that the duality
transformations belong to the SU(1, 1)7 duality group and that the role of Θ α

M

is played by the coefficients of the superpotential, which, analogously, enter in the
scalar potential quadratically. Therefore, in order to find all vacua of a certain
STU-model, we can just restrict to the vacuum at the origin S = Ti = Ui = 1
keeping the superpotential coefficients as general as possible. In fact, all other
vacua are obtainable starting from the vacuum at the origin of STU-models
with different (and typically more complicated) coefficients, and then performing
suitable SU(1, 1)7 duality transformations, which take the coefficients to the
original values and, at the same time, the vacua far from the origin. Again, this
method converts the extremality condition into a system of quadratic equations
in the superpotential couplings, whose solution is much more accessible. However,
for nonperturbatively induced superpotentials such a search of solutions usually
implies a loss of generality.
• The second relevant fact we make use of is that not all the superpotential
couplings enter in the determination of the vacuum at the origin and of its
properties. In fact, let us define the fields Φα = (S − 1, Ti − 1, Ui − 1), which
at the origin obviously assume the value Φα = 0. The superpotential can be
conveniently expanded in terms of Φα around the origin as

W (Φα) = W̃0 + W̃αΦα + 1
2!W̃αβΦαΦβ + 1

3!W̃αβγΦαΦβΦγ + · · · , (5.1)

where W̃0, W̃α, W̃αβ and W̃αβγ are symmetric complex coefficients and the dots
represent additional contributions of the fourth, fifth, sixth and seventh degree
in Φα. Since in the scalar potential (2.10) at most the first derivatives of
W (Φα) appear, the critical point condition at the origin (determined by the first
derivatives ∂αV |Φ=0 and ∂ᾱV |Φ=0) depends at most on the second derivatives of
W (Φα) calculated for Φα = 0. Hence, W̃0, W̃α and W̃αβ are the only parameters
that establish the stationarity of the origin. Analogously, its stability, determined
by the second derivatives ∂α∂βV |Φ=0 and ∂α∂β̄V |Φ=0, depends at most on the
third derivatives of W (Φα) calculated for Φα = 0, and so just on W̃0, W̃α, W̃αβ

and W̃αβγ . As a consequence, all higher-degree terms in the dots affect neither
the stationarity nor the stability of the origin (nor the cosmological constant
Λ = V |Φ=0, fixed by W̃0 and W̃α): therefore, for our purposes, they can be
set to zero. This entails a considerable simplification, since we reduced the
huge number of original free parameters to the complex coefficients of a cubic
polynomial. However, the superpotential W (Φα) is a generalization of the
superpotentials (4.2-4.3) as long as every term in W (Φα) includes at most one
power of each field Φα: this constraint is essential to have any hope of finding a
correspondence with the N = 8 theory. So, it must be also W̃αα = W̃ααβ = 0.
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Thanks to the two above observations, the research of stable dS vacua in an
STU-model exactly coincides with the determination of feasible values for the
parameters W̃0, W̃α, W̃αβ and W̃αβγ which make the origin a stable critical point
with V |Φ=0 > 0. The number of free parameters is anyhow too large to proceed
immediately with an analytic search, and therefore we subdivide our study into two
stages.
(i) As a first step, we restrict the research to the isotropic sector, namely we constrain

the 14-dimensional space (S, Ti, Ui) on the subspace Ti = T and Ui = U , in such
a way that the resulting theory is an N = 1 model with 3 chiral multiplets for
which the Kähler potential (3.29) takes the form

K(φα) = − log(S + S̄)− 3 log(T + T̄ )− 3 log(U + Ū) . (5.2)

The superpotential deriving from such a constraint can be obtained setting
Ti = T and Ui = U in (5.1), and therefore can be written in terms of the shifted
fields Φα = (S − 1, T − 1, U − 1) as

W (Φα) = W0 +WαΦα + 1
2!WαβΦαΦβ + 1

3!WαβγΦαΦβΦγ + · · · , (5.3)

where, again, the terms into the dots do not affect the determination of the
vacua and can be put to zero. The new coefficients W0,Wα,Wαβ and Wαβγ of
the isotropic superpotential are of course connected to the isotropic versions of
the old coefficients W̃0, W̃α, W̃αβ and W̃αβγ . In fact, by expanding (5.1) with
the isotropic constraint, we easily figure out that

W0 = W̃0 , Wα = nαW̃α , Wαβ = nαnβW̃αβ , Wαβγ = nαnβnγW̃αβγ , (5.4)

where nS = 1 and nT = nU = 3. Moreover, the requirement W̃αα = W̃ααβ = 0
translates into WSS = WSSα = 0, but since there are three T -type and U -type
fields no additional restriction is requested for WTT , WTTα and WUU , WUUα.
The advantage of first studying the isotropic model descending from such identi-
fications relies on the relatively small number of free parameters. In fact, W0
and Wα lead to 1 + 3 complex coefficients, while, thanks to the symmetry of the
indices, Wαβ and Wαβγ include respectively just 3·4

2! − 1 = 5 and 3·4·5
3! − 3 = 7

independent parameters (1 and 3 are subtracted given that WSS and WSSα must
vanish). So, as long as the isotropic model is concerned, the vacuum at the
origin is determined by 16 complex parameters in total, and hence the analytic
search is indeed accessible.

(ii) However, due to the truncation we have done, in general not all the values of
W0,Wα,Wαβ and Wαβγ that make the origin a stable vacuum in the isotropic
model are related by (5.4) to values of W̃0, W̃α, W̃αβ and W̃αβγ that produce a
stable origin in the full model (instead, the inverse obviously holds). For this
reason, once we have found proper stability conditions for the isotropic model,
as a second step we need to check whether at least a subset of them actually
persist also in the full one. In any case, this analysis eventually determines only
isotropic values of W̃0, W̃α, W̃αβ and W̃αβγ , and so more general solutions for
which, for instance, W̃Ti 6= W̃Tj for i 6= j, are automatically ruled out, although
they probably exist.

59



Inspired by the line of research of [38, 42], in the next section we apply the
above steps according to the following general strategy. First of all, we find
the most general expression for Minkowski supersymmetric and Minkowski no-
scale vacua in terms of the parameters W0,Wα,Wαβ and Wαβγ of the isotropic
model. We then deform these conditions introducing two small perturbation
parameters ε and λ, representing respectively the supersymmetry breaking scale
and the cosmological constant, and look for regions in the plane (ε, λ) in which
the perturbed coefficients W0(ε, λ),Wα(ε, λ),Wαβ(ε, λ) and Wαβγ(ε, λ) generate a
stable dS origin. Finally, we check whether, for any subregion, the corresponding
parameters W̃0(ε, λ), W̃α(ε, λ), W̃αβ(ε, λ) and W̃αβγ(ε, λ) defined by (5.4) induce a
stable dS origin also in the full model.

This strategy is applied in two cases. In the following section we consider
a general superpotential of the form (5.3) with the only necessary constraint
WSS = WSSα = 0, depending therefore on 16 complex parameters. Instead, in
the next section we further demand that the superpotential belongs to a very
special class of complex polynomials, which ensures that the possible vacua have an
interpretation in terms of maximal supergravity and of M-theory.

5.2 A systematic procedure for building dS vacua

In this section we present in detail our general method for establishing the conditions
for stable dS vacua in our STU-models. As anticipated, we start from the isotropic
truncation defined by the Kähler potential (5.2) and the superpotential (5.3),
depending in total on 16 free complex parameters.

In place of requiring the stationarity condition and the positiveness of Λ and
randomly choosing the other parameters hoping that stable solutions arise, a good
first step towards our goal may be the one of determining the values ofW0,Wα,Wαβ

and Wαβγ that produce Minkowski vacua. In fact, supersymmetric Minkowski
vacua are relatively easy to find and, since the Kähler potential fulfills the no-scale
requirement (2.19), also no-scale vacua are potentially present. Moreover, as we
saw, both supersymmetric and no-scale Minkowski vacua are automatically minima
of the scalar potential, and so are (marginally) stable: it is therefore reasonable to
expect that, sufficiently closely to these vacua, stable dS solutions indeed emerge.
In particular, no-scale vacua especially trigger our interest since they already break
supersymmetry, as any dS vacuum should do.

5.2.1 General Minkowski solutions

Let us describe the general conditions for a Minkowski vacuum in terms of W
derivatives, both in the supersymmetric and in the no-scale case.
(i) A supersymmetric Minkowski origin has to satisfy (2.15), and therefore is

completely identified by the choice

W0 = Wα = 0 , (5.5)

whereas all the other 12 complex higher derivatives Wαβ , Wαβγ stay completely
arbitrary. The above choice already implies that ∂αV |Φ=0 and ∂ᾱV |Φ=0 vanish,

60



and so the origin is automatically a stationary point for any value of the
additional parameters. Moreover, as we proved, the condition (5.5) guarantees
the semi-positiveness of the Hessian matrix and, hence, marginal stability.

(ii) On the other hand, a no-scale origin enjoys (2.21) with φT = T , which implies
W0 6= 0, WS = 1

2W0, WT = 0, WU = 3
2W0. In contrast with the supersymmetric

case, however, these conditions do not automatically ensure stationarity. Thus,
we need to explicitly impose the constraint ∂αV |Φ=0 = ∂ᾱV |Φ=0 = 0, which,
taking into account the above no-scale condition, translates into the additional 6
real conditions WST = WTU = WTT = 0. As a consequence, a no-scale vacuum
at the origin is determined by{

W0 6= 0 , WS = 1
2W0 , WU = 3

2W0

WT = WST = WTU = WTT = 0 ,
(5.6)

and, as we said, is always (marginally) stable for any choice of the remaining
9 complex parameters. Although we have selected T as the supersymmetry
breaking field, also U could have been a good candidate, thanks to the structure
of the Kähler potential. Instead, the no-scale requirement (5.5) for the field S is
incompatible with the stationarity condition, and thus no Minkowski solution
breaking supersymmetry just along S exists (this is essentially due to the absence
of the factor 3 in front of log(S + S̄) in (5.2), which prevents the possibility
that ∂αV |Φ=0 = 0 unless W0 = 0).

5.2.2 Perturbing Minkowski vacua

In order to find stable dS vacua, we now need to construct a consistent ansatz to
move away from the supersymmetric and no-scale Minkowski solutions (5.5-5.6).
We therefore introduce two real perturbation parameters, ε and λ: the former is
supposed to represent the scale of supersymmetry breaking (dictated by the size
of the F-terms), while the latter can be used to regulate the value cosmological
constant once the former is fixed. We then have to properly define perturbed
coefficients W0(ε, λ),Wα(ε, λ),Wαβ(ε, λ),Wαβγ(ε, λ) that reduce to (5.5) or (5.6) in
the limit ε, λ→ 0, and that hopefully determine a stable dS origin for some values
of ε and λ. Such coefficients can be systematically constructed as follows.
(a) First, we arbitrarily fix the functions W0(ε, λ) and Wα(ε, λ), with the only

requirement that, in the limit ε, λ→ 0, they reproduce either supersymmetric or
no-scale Minkowski solutions. Alternatively, in place of directly fixing Wα(ε, λ),
we can also define perturbed F-terms Fα|Φ=0(ε, λ) = Wα(ε, λ) +Kα|Φ=0W0(ε, λ),
which must tend either to the Minkowski supersymmetric or to the no-scale
F-terms when ε, λ→ 0. By solving the above equation, we can indeed determine
Wα(ε, λ), which automatically reduces to (5.5) or (5.6) in the Minkowski limit.
This first step completely establishes 4 complex parameters.

(b) In order to fulfill the critical point condition, we then impose the 3 complex
equations Vα ≡ ∂αV |Φ=0 = 0, which, by hermitian conjugation, immediately
imply ∂ᾱV |Φ=0 = 0. Given that the 5 complex parameters Wαβ enter linearly
in Vα, these equations are easy to solve by fixing 3 of the Wαβ, for example
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WST ,WTT and WTU , in terms of the other 2 and of ε and λ. For consistency, in
particular, in the no-scale case we should recover, for ε, λ→ 0, the conditions
on WST ,WTT and WTU in (5.6), actually deriving from stationarity as well. On
the contrary, the parameters WSU and WUU stay completely arbitrary.

(c) In order to significantly simplify the problem of getting all positive eigenvalues
for the scalar mass matrix

m2 = g−1∂2V =
(
Kαγ̄∂γ̄∂βV Kαγ̄∂γ̄∂β̄V

Kᾱγ∂γ∂βV Kᾱγ∂γ∂β̄V

)
(5.7)

and hence construct proper minima of the potential, it might be useful to observe
thatm2 becomes block diagonal at the origin upon imposing Vαβ ≡ ∂α∂βV |Φ=0 =
0, which consist in 5 independent complex conditions, given that VSS automati-
cally vanishes due to WSS = WSSα = 0. Since in the second derivatives of V the
7 coefficientsWαβγ appear linearly, it is straightforward to solve Vαβ = 0 in terms
of 5 of the Wαβγ , for example WSTT ,WSTU ,WTTT ,WTTU ,WTUU , in such a way
that they can be expressed in terms of ε and λ and ofWSU , WUU , WSUU , WUUU .
Therefore, with the assumption that (5.7) is block diagonal, the whole super-
potential is fixed in terms of the perturbation parameters and of WSU , WUU ,
WSUU , WUUU , which are the only coefficients left.
However, in general, it is not necessary to enforce the block diagonality condition,
because stable dS vacua actually happen to arise even if Vαβ is different from
zero. Nevertheless, stability is much more likely to emerge if the off-diagonal
blocks vanish, and this can be easily understood taking into account that the
off-diagonal blocks are one the hermitian conjugate of the other, and thus they
provide a negative definite contribution to the determinant of m2. Moreover, it
is obvious that such an assumption implies a pairwise organization of the mass
spectrum, which will possess at most 3 distinct eigenvalues.

(d) Steps (a), (b) and (c) determined a stationary deformation of the initial
Minkowski origin, which can be either dS or AdS (and either stable or un-
stable) depending on the values remaining parameters. As a final step, we
plot the positiveness of the eigenvalues of (5.7) as well as the positiveness of
Λ = V |Φ=0 in the plane (ε, λ), and we look for feasible values of WSU , WUU ,
WSUU ,WUUU that produce, in the plane (ε, λ), regions where an overlap between
stability and positiveness of Λ indeed arises. For such values of WSU , WUU ,
WSUU , WUUU the superpotential is completely fixed in terms of ε and λ and the
theory admits a class of stable dS vacua.

Once proper values for the parametersW0(ε, λ),Wα(ε, λ),Wαβ(ε, λ),Wαβγ(ε, λ) have
been selected, we then must check whether the corresponding parameters W̃0(ε, λ),
W̃α(ε, λ), W̃αβ(ε, λ), W̃αβγ(ε, λ) defined by (5.4) produce a (marginally) stable dS
origin also in the full STU-model. Actually this is not obvious at all, since 8 of the
14 direction have been truncated and some of them may display negative eigenvalues.
In fact in many explicit computations where the block-diagonal condition was either
fulfilled or not, we found that, although dS vacua were present in the isotropic
model, none of them remained stable also in the full one.
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5.2.3 Three relevant examples

We now present two concrete analytic examples of stable dS solutions obtained by
utilizing the technical machinery outlined in the previous subsection: the former will
concern stable vacua close to Minkowski supersymmetric solutions, while the latter
to no-scale. In order to facilitate the production of stable vacua, both examples
display a block diagonal mass matrix. We then propose a third explicit realization
of stable dS vacua without enforcing block diagonality: however, the off-diagonal
blocks will be required to be smaller than the diagonal ones.

(1) In order to construct a simple instance of vacua close to Minkowski supersymmetric
solutions, we select the coefficients W0(ε, λ) and Wα(ε, λ) according to the trivial
prescription

W0 = 2iε , (FS , FT , FU )|Φ=0 = (ε, λ, 0) , (5.8)

which leads to (WS ,WT ,WU ) = ((1 + i)ε, λ + 3iε, 3iε). Obviously, this choice is
consistent with a Minkowski supersymmetric vacuum (5.5) in the limit ε, λ → 0
and induces the cosmological constant

Λ = V |Φ=0 = 1
96(−6ε2 + λ2) , (5.9)

which is positive for |λ| >
√

6|ε|. Following the step (b), we then have to impose
the 3 complex stationarity conditions Vα = 0, which can be solved by fixing the 3
parameters

WST =λ2 − 6iε2 + (3 + 3i)λε
2λ , WTT = 2λ+ 9iε3

λ2 ,

WTU =
3
(
λ2 − 2WSU ε+ (3 + 3i)ε2 + 3iλε

)
2λ ,

(5.10)

as functions of ε, λ and WSU ,WUU . Furthermore, the block diagonality of the mass
matrix, namely Vαβ = 0, determines WSTT ,WSTU ,WTTT ,WTTU ,WTUU in terms
of ε, λ and WSU ,WUU ,WSUU ,WUUU , and their explicit expressions are

WSTT =λ− 9 (1− i) ε3

2λ2 − 6iε2

λ
+ 3ε

2 ,

WSTU =
3
(
λ2 + 2WSU (λ− (1 + i)ε)

)
4λ ,

WTTT =
3
(
λ4 + 18ε4 + 9iλε3 − 3λ2ε2 − 2iλ3ε

)
2λ3 ,

WTTU =
3
(
2λ3 + 2WSU ε(−2λ+ 3iε) + 9ε3 + 6(1 + i)λε2

)
2λ2 ,

WTUU =
3
(
λ2 − 2WSUU ε+WUU (λ+ (1− i)ε)

)
2λ .

(5.11)

Let us now study the stability of the origin. Interestingly, thanks to the particularly
simple choice (5.8), the positiveness of the mass matrix turns out to be independent
of the residual parameters WSU ,WUU ,WSUU ,WUUU , which therefore can be just
set to zero for simplicity. However, this independence does not occur in general,
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(a) Isotropic model (b) Full STU-model

Figure 2: Stability of the origin as a function of the parameters ε and λ for the nearly-Minkowski
supersymmetric vacuum. Blue represents Λ > 0, purple represents stability for the
isotropic sector, while green represents (marginal) stability in the full model.

and is actually strictly related to the form (5.8) of the F-terms. Since the Hessian
matrix is block diagonal and the upper-left block is the conjugate of the down-right,
we can analyze just the former, ∂α∂β̄V , which reads

36ε4+6λ2ε2+λ4

384λ2 − ε(36ε4+6λ2ε2+λ4)
128λ3 −3(1+i)ε2(3ε2+iλ2)

64λ2

− ε(36ε4+6λ2ε2+λ4)
128λ3

324ε6+54λ2ε4+27λ4ε2−2λ6

384λ4
9(1+i)ε3(3ε2+iλ2)

64λ3

3(1+i)ε2(3iε2+λ2)
64λ2

9(1−i)ε3(3ε2−iλ2)
64λ3

54ε4+27λ2ε2+λ4

128λ2

 . (5.12)

and whose positiveness, when ε, λ 6= 0, depends only on the ratio λ/ε, given that
1
ε2∂α∂β̄V is a function of just λ/ε. In effect, by explicitly calculating the eigenvalues
(or, alternatively, by utilizing the Sylvester’s criterion) we deduce that (5.12) is
positive definite if and only if |λ| < 3|ε|, which is therefore the stability condition
for the isotropic sector.
Combining the two conditions above, we conclude that strictly stable dS solutions
are indeed present in the region

√
6|ε| < |λ| < 3|ε| at least for the isotropic model,

as represented in Figure 2(a). In particular, the plot can be seen as a polar plot, in
which the origin corresponds to a supersymmetric Minkowski point and the polar
angle arctan(λ/ε) identifies solutions with the same cosmological constant and mass
spectrum up to a multiplicative factor. For instance, along the direction defined by
λ/ε = 5/2 the cosmological constant is Λ = 1

348ε
2, while the approximate (halved)

mass spectrum, given by the eigenvalues of Kαγ̄∂γ̄∂βV , reads

(0.580 ε2, 0.140 ε2, 0.0124 ε2) . (5.13)

However, let us note that, although we can adjust ε to make the cosmological
constant small at will, the ratio between Λ and the gravitino mass eK |Φ=0|W0|2 =
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2−7(2ε)2 = ε2/32 is fixed and is only of the order of 10−1, and therefore this example
is not suitable for a realistic phenomenology, in which the gravitino mass should be
much bigger than Λ.
Looking at the mass spectrum (5.13), and also at the Hessian matrix (5.12), it is
straightforward to realize that the Minkowski origin obtained in the limit ε, λ→ 0 has
6 flat directions. This is quite obvious since we have set WSU ,WUU ,WSUU ,WUUU

to zero, and hence the superpotential vanishes identically in the limit ε, λ→ 0. Of
course, the vanishing of the eigenvalues does not occur in general. In fact, if we had
chosen, for example, WSU = 1 and WUU = WSUU = WUUU = 0, the mass spectrum
along the direction λ/ε = 5/2 would have been a more complicated function of ε,
which in the limit ε→ 0 would had assumed the approximate form(

0.0617− 0.0551 ε+ 0.165 ε2 +O(ε3) ,
0.0617− 0.315 ε+ 5.827 ε2 +O(ε3)) ,
0.0129 ε2 +O(ε3)

)
.

(5.14)

In this case the superpotential does not vanish identically for ε, λ → 0, and ac-
tually the Minkowski origin has just 2 flat directions, corresponding to the 2
copies of the eigenvalue 0.0129ε2 + O(ε3). This result is in accordance with a
general no-go theorem, proven in [38], establishing that one can obtain stable vacua
perturbing a supersymmetric Minkowski vacuum only if the original Minkowski
vacuum exhibits at least 2 massless direction. Thus, also scanning all the values
of WSU ,WUU ,WSUU ,WUUU , there is no hope of finding strictly stable Minkowski
vacua for ε, λ→ 0.
Eventually, it is interesting to point out that the origin (ε, λ) = 0 in the plot
represents a different supersymmetric Minkowski solution for each direction along
which one approaches it, namely the Minkowski point depends on the ratio λ/ε:
in fact, choosing λ/ε 6= 5/2, we would have gotten different values for the mass
spectrum (5.14), which would not have approached to (0.0617, 0.0617, 0) for ε→ 0.

As a final step, we should check whether the found stability persists in the STU-model
with parameters W̃0(ε, λ), W̃α(ε, λ), W̃αβ(ε, λ), W̃αβγ(ε, λ) defined by (5.4). First,
it is convenient to note that, in place of calculating all these coefficients using (5.4),
we can equivalently reconstruct the full superpotential (5.1) by just substituting
T → 1

3(T1 +T2 +T3) and U → 1
3(U1 +U2 +U3) in the isotropic superpotential (5.3).

Anyway, it can be shown that this isotropic choice of the coefficients in the full
superpotential implies that the full Hessian matrix has automatically rank 10 in
place of 14, and so 4 eigenvalues are zero and strict stability is ruled out. As a
consequence, out method only allows for marginal stability and actually excluded
strictly stable vacua from the beginning.
The determination of the full Hessian is straightforward, but it turns out that the
off-diagonal blocks do not vanish, although the condition on Wαβ(ε, λ) made the
isotropic Hessian block diagonal. Nonetheless, the computation of the positiveness
can be done analytically (also making use of the Sylvester’s criterion) and, remark-
ably, at least in this example the remaining 10 eigenvalues are positive in the same
region as the isotropic truncation, namely if and only if |λ| < 3|ε|, as depicted in
Figure 2(b). Our procedure therefore led to a class of marginally stable solutions.
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(a) Isotropic model (b) Full model

Figure 3: Stability of the origin as a function of the parameters ε and λ for a nearly-no-scale model.
Blue represents Λ > 0, purple represents stability for the isotropic sector, while green
represents (marginal) stability in the full model.

(2) To show in a simple example that stable dS solutions can emerge also around
no-scale vacua, it is sufficient to choose the following values for W0 and Fα:

W0 = 1 ,
(
FS , FT , FU

)∣∣
Φ=0=

(
ε, KT |Φ=0W0 + (1 + i)ε, λ

)
. (5.15)

The corresponding parameters, (WS ,WT ,WU ) = (ε+ 1
2 , (1 + i)ε, λ+ 3

2), are indeed
coherent with the no-scale requirement (5.6) when ε, λ→ 0, and induce the cosmo-
logical constant

Λ = V |Φ=0 = 1
96
(
ε(−3 + 5ε) + λ2

)
, (5.16)

which is positive outside the ellipse ε(−3 + 5ε) + λ2 = 0 in the plane (ε, λ). Let us
note that both the expressions (5.9) and (5.16) of Λ are quadratic in ε and λ, and
not by chance: in fact V |Φ=0 depends at most quadratically on W0 and Wα, which
were chosen to be linear in ε and λ.
By imposing stationarity and block diagonality, we can find explicit expressions for
the coefficientsWST ,WTT ,WTU andWSTT ,WSTU ,WTTT ,WTTU ,WTUU in terms of
the perturbation parameters and of WSU ,WUU ,WSUU ,WUUU . However, due to the
more complicated form (5.15) of the F-terms, we cannot repeat the same analytic
study as before, and thus we are forced to investigate stability only numerically,
i.e. plotting the positiveness of m2 as a function of ε and λ for suitable choices of
WSU ,WUU ,WSUU ,WUUU . In particular, the values

WSU = ε+ 3
4 , WUU = λ+ 3

2 , WSUU = WUUU = 0 , (5.17)

are compatible with stability and produce the pattern shown in Figure 3(a), for
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which the superposition of stable regions (purple) and dS regions (blue) is clear.
This means that stable dS vacua are of course present in the isotropic sector.
In [38, 41] similar explicit realizations of stable dS vacua close to a no-scale points
were provided, but only either in presence of exponential contributions to the
superpotential or of a Polonyi field. Anyhow, this example, and many other
examples that can be constructed likewise, prove that generating nonperturbatively
the superpotential (as well as introducing Polonyi fields) is unnecessary for producing
stable dS vacua in the isotropic sector.
As we saw in the previous example, as long as the full STU-model is concerned,
strict stability is no longer guaranteed, since the full mass matrix (which is not block
diagonal anymore) acquires 4 vanishing eigenvalues deriving from the isotropic choice
of the coefficients. In any case, as represented in Figure 3(b), the additional 10
eigenvalues are simultaneously positive in a subregion of the original stability region,
meaning that this model admits at least marginally stable dS vacua. Interestingly,
even though the width of the stability area decreases, it looks like that just AdS
vacua are infected by instability4: this phenomenon systematically occurred in many
explicit computations, but we cannot exclude that it is related to the particular
choices of the parameters we have done.

(3) As we anticipated at the beginning, block diagonality is not mandatory (though
very useful), since we can easily construct also examples of stable dS vacua in which
Vαβ 6= 0 for some α, β. This possibility was explicitly shown in [38, 41], but, again,
only in presence of nonperturbative superpotentials or Polonyi fields. However,
as we said, the off-diagonal block Vαβ always takes a negative contribution to the
determinant of the full matrix, and therefore, if |Vαβ| > |Vᾱβ|, a positive determinant
can arise only for some miraculous conspiracy. As a consequence, stable vacua are
quite likely to emerge just for configurations in which the off-diagonal blocks are
small with respect to the diagonal ones.
A simple example of stable dS vacua where block diagonality is not enforced can be
obtained utilizing the same coefficients as in (2), except the ones that determined
Vαβ = 0, namely WSTT ,WSTU ,WTTT ,WTTU ,WTUU . These parameters can be
fixed demanding instead that the off-diagonal block Vαβ has a precise structure that
makes |Vαβ| . |Vᾱβ| near the origin (ε, λ) = 0, such as, for instance, the diagonal
structure

Vαβ =

 0 0 0
0 εj 0
0 0 εk

 , (5.18)

where the exponents j, k should be sufficiently big (note that, as we said, VSS must
automatically vanish as a direct consequence of WSS = WSSα = 0). With this
choice, it turns out that, if at least one between j and k is 1, no stable solution arises:
this is highly reasonable, given that the diagonal blocks are of order ε2, exactly
as in (5.12), and thus are smaller than Vαβ near the origin. On the contrary, if
j, k ≥ 2, stable vacua begin to emerge and, as depicted in Figure 4 for j = k = 2, 4, 6,
some of them also persist in the full STU-model up the usual 4 flat directions. In

4Here, the discussion of the stability of AdS vacua is linked to the positiveness of m2, and we
did not check whether some of them however respect the Breitenlohner–Freedman bound.
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(a) Isotropic model for j = k = 2 (b) Full model for j = k = 2

(c) Isotropic model for j = k = 4 (d) Full model for j = k = 4

(e) Isotropic model for j = k = 6 (f) Full model for j = k = 6

Figure 4: Stability of the origin as a function of the parameters ε and λ for a nearly-no-scale model
with off-diagonal contributions. Blue represents Λ > 0, purple represents stability for
the isotropic sector, while green represents (marginal) stability in the full model.
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particular, the larger are j and k, the smaller are the off-diagonal contributions and,
therefore, the more the stability region approaches to the one of previous example.
Remarkably, also in this case just AdS vacua become unstable.
This strategy for constructing stable dS vacua in presence of off-diagonal contribu-
tions equally holds for much more complicated structures of Vαβ and provides stable
solutions as long as |Vαβ| is at most of the order of the diagonal terms. Actually,
the outlined method provides stable vacua much more easily (and systematically)
than randomly choosing the values of WSTT ,WSTU ,WTTT ,WTTU ,WTUU .
It is important to point out that off-diagonal contributions are interesting because
they allow for a completely general mass spectrum, not necessarily pairwise organized.
Moreover, we can even adjust the values of Vαβ in order to regulate the splitting
of those eigenvalues that were originally degenerate: however, too large splittings,
dictated by too big off diagonal terms, eventually lead to instability.

The above examples have shown that many realizations of (marginally) stable dS
vacua can be constructed with the minimum effort in general STU-models. However,
whether it is actually possible to adjust the parameters in order to obtain phe-
nomenologically viable examples with the desired hierarchy Λ� m2

grav � m2
scalars

still remains to be seen. Besides, unfortunately, all the previous superpotentials are
too generic to have a clear N = 8 interpretation and therefore none of the vacua we
have found is upliftable.

5.3 Stable vacua from upliftable superpotentials

We now particularize the preceding discussion to superpotentials belonging to a very
special class of complex polynomials, whose coefficients actually have an interpreta-
tion in terms of maximal supergravity as well as of M-theory flux compactifications.
In the isotropic sector, these superpotentials display the form

W (φα) = W ′0

+ i
(
W ′SS +W ′TT +W ′UU

)
+W ′STST +W ′SUSU +W ′TTT

2 +W ′TUTU +W ′UUU
2

+ i
(
W ′STTST

2 +W ′STUSTU +W ′SUUSU
2 +W ′TTTT

3

+W ′TTUT
2U +W ′TUUTU

2 +W ′UUUU
3) ,

(5.19)

where the parameters W ′0,W ′α,W ′αβ,W ′αβγ are no longer complex, but only real. As
can be easily noted, W (φα) is the most general polynomial of the third degree, with
the restriction WSS = WSSα = 0 and with real or purely imaginary coefficients for
even- or odd-degree terms respectively. The constraint on the coefficients clearly
halves the number of independent parameters, and in fact W ′0,W ′α,W ′αβ,W ′αβγ are
16 real numbers in place of the 32 of the general superpotential (5.3). This restricted
freedom on the superpotential makes the research of stable dS vacua extremely
problematic, also because the general method described in the previous section
(based on 32 free real parameters) cannot be applied anymore and must be properly
adapted.
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The first step for matching our general strategy and the particular superpoten-
tial (5.19) is translating the reality of W ′0,W ′α,W ′αβ,W ′αβγ into 16 real conditions
on the real and imaginary parts of the 16 complex parameters W0,Wα,Wαβ,Wαβγ

of the general superpotential (5.3). This can be done by expanding the explicit
expression of (5.3) in terms of S, T, U and requiring that the coefficients in front
of even-degree terms are real (leading to 6 conditions) and that the ones in front
of odd-degree terms are imaginary (leading to other 10 conditions). After proper
manipulations, the end result can be expressed as

ReWSU = ReWS − ReWST

ReWTU = −ReWST + ReWT − ReWTT

ReWUU = −ReWS + 2 ReWST − ReWT + ReWTT + ReWU

ImWUU = −3 ImW0 + 3 ImWS − 2 ImWST − 2 ImWSU

+3 ImWT − ImWTT − 2 ImWTU + 3 ImWU

ReWSTT = ReWSTU = ReWSUU = 0
ReWTTT = ReWTTU = ReWTUU = ReWUUU = 0

ImWSTU = ImWST − ImWSTT

ImWSUU = − ImWST + ImWSTT + ImWSU

ImWTTU = − ImWSTT + ImWTT − ImWTTT

ImWTUU = − ImWST + 2 ImWSTT − ImWTT + ImWTTT + ImWTU

ImWUUU = −3 ImW0 + 3 ImWS − 3 ImWSTT − 3 ImWSU + 3 ImWT

− ImWTTT − 3 ImWTU + 3 ImWU .

(5.20)
As one can immediately notice, the conditions fix all the coefficients appearing in
the left hand sides of (5.20) as functions of the remaining ones. In particular, the
constraints are subdivided into three blocks: the first gives 4 conditions for Wαβ,
the second shows that all the 7 real parts of Wαβγ must vanish, while the third fixes
the imaginary parts of 5 of Wαβγ . Among these conditions, the fact that ReWαβγ is
zero can be easily understood taking into account that, since the maximum degree
of (5.3) is 3, the only contributions to the imaginary parts of W ′αβγ derive from the
real parts of Wαβγ , which therefore must vanish.

Equations (5.20) correctly select only 16 free real parameters and, fortunately,
are just linear in W0,Wα,Wαβ,Wαβγ . From now on we will assume that (5.20) is
imposed, in such a way that the superpotential automatically exhibits the upliftable
form and depends just on the following independent coefficients:

Real parts Imaginary parts
W0 W0

WS WT WU WS WT WU

WST ���WSU WT T ���WT U ���WUU WST WSU WT T WT U ���WUU

���WST T ���WST U ���WSUU ���WT T T ���WT T U ���WT UU ���WUUU WST T ���WST U ���WSUU WT T T ���WT T U ���WT UU ���WUUU

Our general strategy demands, as a second step, the characterization of Minkowski
supersymmetric and no-scale vacua in presence of the new superpotential: these
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vacua will be then properly perturbed to hopefully extract stable dS solutions.

5.3.1 Upliftable Minkowski solutions

Both Minkowki superymmetric and no-scale upliftable solutions can be obtained
considering simultaneously the general Minkowski conditions (5.5-5.6) and the
upliftability requirement (5.20).
(i) For example, Minkowski supersymmetric vacua satisfy W0 = Wα = 0 and

therefore, by just looking at the preceding table, it is clear that the only free
parameters on which they depend are ReWST ,ReWTT and ImWST , ImWSU ,
ImWTT , ImWTU , ImWSTT , ImWTTT (8 in total). The 16 additional parameters
are functions of these and can be determined substituting W0 = Wα = 0
into (5.20).
Once the substitutions have been performed and the parameters have been
plugged in (5.3), the most general superpotential leading to a Minkowski super-
symmetric origin can be eventually cast in the upliftable form (5.19) and the
above requirements translate into the 8 constraints

W ′0 = 0
W ′U = −W ′S −W ′T
W ′SU = −W ′ST
W ′TU = −W ′ST − 2W ′TT
W ′UU = W ′ST +W ′TT
W ′SUU = −W ′S −W ′STT −W ′STU
W ′TUU = −2W ′STT −W ′STU −W ′T − 3W ′TTT − 2W ′TTU
W ′UUU = W ′S + 2W ′STT +W ′STU +W ′T + 2W ′TTT +W ′TTU ,

(5.21)

which completely determine W ′0,W ′U ,W ′SU ,W ′TU ,W ′UU ,W ′SUU ,W ′TUU ,W ′UUU in
terms of the 8 remaining coefficients. Correctly, the dependent parameters are
8, since W0 = Wα = 0 exactly gives 8 real conditions. Moreover, as we said, the
(marginal) stability of the origin in this case is automatically assured.

(ii) No-scale vacua can be extracted similarly, with the only difference that the
no-scale requirement (5.6) is more restrictive, because it also contains WST =
WTU = WTT = 0 (which must be imposed to guarantee stationarity). However,
upliftability already provides a condition relating WT ,WST ,WTU and WTT , i.e.
the second equation in (5.20), which may be in contrast with WST = WTU =
WTT = 0. Fortunately, since also WT = 0 for a no-scale vacuum, the second
equation in (5.20) is automatically satisfied and so no-scale vacua are indeed
compatible with the upliftable form of the superpotential. As a consequence, for
a no-scale vacuum upliftability leads to just 7 additional independent constraints
(in place of 8), and by means of the above table we can easily deduce that the
only free parameters left are W0 6= 0, ImWSU , ImWSTT , ImWTTT , the others
being completely fixed by (5.6) and (5.20).
By substituting equations (5.6) and (5.20) into the general form (5.3), the
most general superpotential with a no-scale origin assumes the upliftable struc-
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ture (5.19) with the constraints

W ′0 = W ′T = 0
W ′S 6= −W ′SU +W ′STT −W ′SUU
W ′U = −W ′STT +W ′SUU
W ′ST = W ′TT = W ′TU = 0
W ′UU = W ′SU
W ′STU = −2W ′STT
W ′TTU = −W ′STT − 3W ′TTT
W ′TUU = 2W ′STT + 3W ′TTT
W ′UUU = W ′S −W ′STT −W ′TTT ,

(5.22)

which completely determine 12−1 = 11 dependent parameters, correctly deriving
from the 12 real no-scale conditions WS = 1

2W0, WU = 3
2W0 and WT = WST =

WTU = WTT = 0, one of which, as we said, is automatically satisfied by the
upliftable structure. Moreover, the second equation in (5.22) is the counterpart
of the remaining condition W0 6= 0. Also in this case, the (marginal) stability of
the origin is automatic.

5.3.2 Searching stable dS vacua

We are now ready to perturb Minkowski solutions in order to reach (A)dS vacua,
maintaining at the same time the upliftable form of the superpotential. First, a
very naive count of the free coefficients in above table shows that, if the ansatz to
move away from Minkowski solutions is arbitrary, there is not a sufficient number of
parameters to simultaneously fulfill the stationarity condition (leading in general to
6 independent real constraints) and the block diagonality of the mass matrix (fixing
in general other 5 × 2 = 10 real parameters). Therefore, we will be necessarily
forced to analyze general solutions where the off-diagonal pieces Vαβ are indeed
present, which drastically reduces the probability of getting stable vacua. However,
as we have seen, the fact Vαβ 6= 0 does not prevent the arising positive eigenvalues
as long as the off diagonal blocks are at most of the order of the diagonal ones.

Since no-scale vacua already break supersymmetry (as any dS vacuum should
do), in the following our search will focus on deformations of no-scale solutions.
There are infinitely many consistent ansatzs to move away from a no-scale vacuum,
among which the simplest is introducing just one deformation parameter ε, to be
added (either multiplied by i or not) to the right hand side some of the equations
WS = 1

2W0, WU = 3
2W0 and WT = 0 that define a no-scale origin. Let us analyze

in three explicit examples whether this kind of deformations can lead to stable dS
vacua for some values of ε.

(1) As a first try, we consider the ansatz

W0 6= 0 , WS = 1
2W0 , WT = iε , WU = 3

2W0 , (5.23)
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in which we just added an imaginary contribution to WT and which completely
fixes WS ,WT and WU . Equation (5.23) also sets the cosmological constant

Λ = 1
96ε(ε− 3 ImW0) , (5.24)

correctly vanishing in the limit ε → 0. We have now to solve the stationarity
condition Vα = 0 by fixing some of the parameters that are not yet determined
by the upliftability requirements (5.20), summarized in the Table on page 70.
The explicit computation of Vα shows that the only possibility that leads to a
non-negative definite cosmological is to select the 6 conditions

ReW0 = ReWST = ReWTT = 0 ,

ImWST = ε

2 , ImWTT = 2ε , ImWTU = 3ε
2 ,

(5.25)

which, consistently, reduce to the no-scale stationarity WST = WTU = WTT = 0
in the limit ε → 0. Therefore, looking at the Table, we immediately deduce
that the only 4 parameters left are ImW0 6= 0, ImWSU , ImWSTT , ImWTTT ,
which, as we said, are not sufficient to eliminate the off-diagonal blocks of the
Hessian matrix. Anyhow, since there is still a chance of obtaining positive eigen-
values, we analyze the positive definiteness of the mass matrix as a function of
ImW0, ImWSU , ImWSTT , ImWTTT , searching for values that produce all positive
eigenvalues in the region where Λ > 0. For this purpose, we conveniently plot the
positiveness of Λ and the simultaneous positiveness of all eigenvalues as a function
of ε and ImW0, manipulating then ImWSU , ImWSTT , ImWTTT , as depicted in
Figure 5 for some fixed values of ImWSU , ImWSTT , ImWTTT .
As can be immediately seen, there exist values of ImW0, ImWSU , ImWSTT ,
ImWTTT that make the origin stable for continuous sets of ε, but, oddly, in
all cases these stable solutions systematically emerge in the region where Λ ≤ 0. We
have checked many other values of the parameters, but it looks like that our initial
ansatz is actually always incompatible with stable dS vacua. However, this difficulty
of obtaining stable dS solutions may be due to the particularly simple deformation
we have assumed, and stable dS vacua might still appear properly modifying (5.23).

(2) Therefore, as a second attempt, we study the consequences the more complicated
ansatz

W0 6= 0 , WS = 1
2W0 + iε , WT = iε , WU = 3

2W0 + iε , (5.26)

which is very similar to the one in the second example of section 5.2.3, provided we
set λ = ε. In fact, as can be immediately verified, also this ansatz easily produces
stable dS vacua if upliftability is not enforced. The cosmological constant fixed by
equation (5.26) reads

Λ = 1
96ε(5ε− 3 ImW0) , (5.27)
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(a) A = (1, 0, 0) (b) A = (1,−1, 0)

(c) A = (1,−1, 1) (d) A = (2, 0, 0)

(e) A = (2,−1, 0) (f) A = (2,−1, 1)

Figure 5: Stability of the origin as a function of the parameters ε (x-axis) and ImW0 (y-axis)
for fixed values of A = (ImWSU , ImWST T , ImWT T T ) in a nearly-no-scale model with
ansatz (5.23). Blue represents Λ > 0, while purple represents stability.

74



(a) A = (0, 0, 0) (b) A = (1, 0, 0)

(c) A = (2, 0, 0) (d) A = (3, 0, 0)

Figure 6: Stability of the origin as a function of the parameters ε (x-axis) and ImW0 (y-axis)
for fixed values of A = (ImWST , ImWST T , ImWT T T ) in a nearly-no-scale model with
ansatz (5.26). Blue represents Λ > 0, while purple represents stability.

and stationarity can be guaranteed by setting

ReW0 = ReWST = ReWTT = 0 ,

ImWSU = 3
4 ImW0

(
2 ImWST

ε
− 1
)
− ImWST + 4 ,

ImWTT =
2ε
(
3 ImW0

2 + 4 ImW0(ImWST − 2ε)− 6ε2
)

3 ImW0
2 ,

ImWTU = 3 ImW0
2(ImWST + ε)− 2 ImW0ε(4 ImWST + ε) + 12ε3

3 ImW0
2 .

(5.28)

As a consequence, the remaining free parameters to be scanned in order to find
stable dS vacua are ImW0 6= 0, ImWST , ImWSTT , ImWTTT . In analogy with the
preceding example, we represent the positiveness of Λ and of the mass matrix as
a function of ε and ImW0, varying ImWST , ImWSTT , ImWTTT , as illustrated in
Figure 6. By the above diagrams and by many other instances analyzed, we figure
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out that, in the few cases in which stable vacua arise, they regularly emerge where
Λ ≤ 0. Moreover, interestingly, we did not find any stable vacuum for nonvanishing
values of ImWSTT , ImWTTT , because they give positive contributions to the off-
diagonal block of the mass matrix. Therefore, also this ansatz seems to completely
rule out upliftable stable dS solutions, although they are certainly present when
the superpotential is not constrained by (5.20).

(3) One way to force dS vacua to appear is to select the perturbation ansatz and/or
the stationarity condition in such a way that the cosmological constant is positive
for any choice of the remaining parameters. As a third try, hence, let us consider

W0 6= 0 , WS = 1
2W0 + iε , WT = 0 , WU = 3

2W0 + iε , (5.29)

which induces the cosmological constant Λ = 1
24ε

2, always positive for ε 6= 0. There
are two possibilities to solve the stationarity condition Vα = 0 fixing 6 of the free
parameters, and the simplest one is to select

ReW0 = ReWST = ReWTT = 0 ,

ImWSU = 3 ImW0 ImWST

2ε + 2ε ,

ImWTT = 4ε(ImW0(6 ImWST − 9ε) + 4ε(ImWST − 3ε))
(3 ImW0 + 2ε)2 ,

ImWTU =
3
(
3 ImW0

2 ImWST − 4 ImW0 ImWST ε− 4ε2(ImWST − 2ε)
)

(3 ImW0 + 2ε)2 .

(5.30)

As a consequence, like in the previous example, the remaining parameters are
ImW0 6= 0, ImWST , ImWSTT , ImWTTT . Given that the initial ansatz already
implies Λ > 0 as long as ε 6= 0, in order to find stable dS solutions we just need
to investigate the simultaneous positiveness of Hessian eigenvalues outside the
line ε = 0. A convenient strategy is to plot the simultaneous positiveness of the
first 5 eigenvalues and of the sixth one separately as a function of ε and ImW0,
manipulating then the remaining parameters ImWST , ImWSTT , ImWTTT to find
an overlap between the two regions. Anyway, as can be immediately seen in Figure 7,
for some mysterious conspiracy the latter region seems to always emerge within the
complement of the former, and therefore the two never intersect. We thus conclude
that the ansatz (5.29) is not suitable for stable dS vacua as well.

All the previous attempts, as well as many other instances we have analyzed but
not reported, explicitly showed that obtaining stable dS vacua is highly nontrivial
in presence of upliftable superpotentials. Besides, we did not even study the full
STU-model, since the difficulty of getting stable dS solutions already turned up
while examining its isotropic truncation.

We should however stress that, even though block diagonality was not enforced,
stable upliftable vacua did arise (and also very easily). Therefore, the upliftability
condition (5.20) actually does not preclude stability itself: on the contrary, for
some miracle, it systematically prevents the simultaneous appearance of a positive
cosmological constant and all positive eigenvalues. The many explicit examples we
investigated, together with the fact that at the present time no upliftable stable
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(a) A = (1, 0, 0) (b) A = (1, 0,−1)

(c) A = (−1,−1,−1) (d) A = (2, 0, 0)

(e) A = (2, 1,−1) (f) A = (2,−1,−1)

Figure 7: Stability of the origin as a function of the parameters ε (x-axis) and ImW0 (y-axis)
for fixed values of A = (ImWST , ImWST T , ImWT T T ) in a nearly-no-scale model with
ansatz (5.29). Blue represents the positiveness of the first 5 eigenvalues, while purple
represents the positiveness of the sixth one.
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dS vacuum is known for these models, actually lead to believe that this systematic
absence is not random, but it derives from a more general result (not yet proved) that
totally excludes, in these STU-models, the existence of stable dS vacua upliftable
to eleven dimensions.
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6 Conclusions and outlook
Motivated by the need of understanding the origin of stable dS vacua in String
Theory, in this thesis we studied the conditions for the occurrence of stable dS
solutions in particular N = 1 supergravity models, the STU-models. We first
restricted ourselves to the theories deriving from the truncations of the SO(8)
gauged supergravity and reproduced most of the results in the literature, none of
which, unfortunately, includes stable vacua with a positive cosmological constant.
We then extended the analysis to generic STU-models, searching for stable dS vacua
close to Minkowski supersymmetric and no-scale solutions. However, although many
(marginally) stable dS vacua have been found without requiring the upliftable form
of the superpotential, for all explicit examples with a clear higher-dimensional origin
stability and positiveness of the cosmological constant seemed to be completely
incompatible. This is a further evidence of the difficulty of reproducing stable
dS vacua in String Theory, but it does not necessarily mean that such upliftable
solutions are absent. Indeed, we can extend our analysis in various directions that
might hopefully lead to the desired result.

First of all, in the general STU-models we considered just isotropic conditions on
the parameters W̃0(ε, λ), W̃α(ε, λ), W̃αβ(ε, λ) and W̃αβγ(ε, λ), which not only ruled
out many possible solutions, but also automatically implied marginal stability. In
fact, if the coefficients are isotropic, the 14× 14 Hessian matrix (2.16) immediately
acquires rank 10 in place of 14, because obviously just 2 of the 6 rows corresponding to
T1, T2, T3 and U1, U2, U3 are linearly independent (and likewise for the conjugates). A
possible idea to obtain strictly stable vacua is to start from fixed isotropic coefficients
that lead to marginally stable vacua and to add to them further perturbative
contributions depending on ε and λ in such a way that isotropy is canceled. In
particular, it should be sufficient to insert different terms into WT2 , WT3 and WU2 ,
WU3 : if these terms are small around the origin (i.e. at most of the order ε2 and
λ2), it is reasonable to expect that the 4 previously vanishing eigenvalues become
small and maybe positive.

Secondly, we have chosen the perturbation ansatzs quite randomly, and most of
the times we were forced to proceed with numerical analyses. However, it could
be interesting to understand whether a systematic study of all ansatzs can be
performed (at least of the linear ones) and whether some of them allow to carry out
an analytic analysis, which may give useful information about the relation between
stability and positiveness of Λ.

Furthermore, in nearly all the examples the size of the cosmological constant has
not been compared with the gravitino and the scalar square masses, and therefore
we do not know whether the desired inequality Λ � m2

grav � m2
scalars can be

respected. In this context, constructing an explicit example which exhibits this
phenomenologically viable hierarchy can be of great interest.

Finally, let us note that we have actually studied just isotropic truncations
of upliftable STU-models, and so the absence of stable dS vacua concerns just
upliftable superpotentials with isotropic coefficients. It is possible that, for full
STU-models with non-isotropic coefficients, upliftable stable dS vacua arise.

If also these further investigations prove to be insufficient, however, the evidence
of the absence of upliftable dS vacua will be even stronger.
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