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Abstract 

English version 

Sharks are excellent indicators of ocean environmental health and suitable shark’s 

conservation depends on well-informed population assessments. Scientific surveys and 

fisheries monitoring are adequate to define population status, but species-specific indices of 

abundance and distribution, coming from this source, are rare for most shark species. That is 

the reason why boost media-based remote monitoring with machine learning helps scientists 

of several areas. Previous work (Jenrette et al. Shark detection and classification with Machine 

Learning) based on hierarchical locators and classifiers reaches about 70% species-

classification accuracy. We managed to improve this method by replacing every classifier with 

an ensemble composed of CNNs that have been trained with several activation functions. 

 

Versione italiana 

Gli squali sono eccellenti indicatori della salute degli oceani e un’appropriata conservazione di 

questa specie dipende da una ben informata valutazione della popolazione. Sondaggi scientifici 

e controllo della pesca risultano essere metodi adeguati per definire lo stato della popolazione, 

ma indici che misurano la ricchezza e la distribuzione degli squali negli oceani sono difficilmente 

ottenibili da queste fonti per molte specie. Per questo motivo incrementare il monitoraggio con 

tecniche di machine learning risulta utile per gli studiosi di diverse aree scientifiche. In un lavoro 

precedente (Jenrette et al. Shark detection and classification with Machine Learning) si è riusciti 

ad ottenere accuracy intorno al 70% nella classificazione delle specie. Questo metodo è stato 

migliorato, in collaborazione con I ricercatori che hanno sviluppato il progetto sopracitato, 

sostituendo le reti neurali di classificazione e localizzazione con ensembles di CNNs rese 

parzialmente indipendenti attraverso la modifica delle funzioni di attivazione. 

 

 

 

 

 



   

 

3 

 

INTRODUCTION: 

Shark’s health is constantly challenged by growing fishing pressure, as well as poor 

management and conservation as a result of data paucity, insufficient taxonomic knowledge 

and underdeveloped monitoring methods [1]. Due to the high cost of shark monitoring via 

surveying and fisheries, exacerbated by large home ranges of some species [2], sharks remain 

an extremely data deficient group of marine animals [3] [1]. A recent study [4] produced a 

hierarchical CNN-based detector called “Shark Detector”. It can generate, detect and classify 

shark-sourced visual media and efficiently post-process Baited Remote Underwater Videos 

(BRUVs), camera trap images, Remotely Operated underwater Vehicle (ROV) footage and 

shared social media by removing irrelevant content and classifying shark species. However, 

shark’s classification is not a straightforward process for machine learning since many 

morphologically diverse and data-poor shark species can be found in nature. For this reason 

the purpose of this work is to improve the performance of the Shark Detector. 

In order to obtain more reliable results, we replaced single models with network ensembles: 

based on [5], a good way to obtain partially independent classifiers is to replace the CNNs’ 

original activation function layers with different ones. The hierarchical structure of the entire 

Shark Detector was re-implemented according to the high-performance ensemble method 

proposed by Nanni et al. [5]. 
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1. ESSENTIAL KNOWLEDGE FROM RELATED WORK 

1.1 Shark Detector: original structure 

The original pipeline of the Shark Detector (referred as SD from now on) is composed by three 

main components: 

1.  Shark Locator (SL): an object detection model that locates shark subjects in images 

and draws bounding boxes around them; 

2. Shark Identifier (SI): a stronger binary classifier which can determine with greater 

accuracy which images depict sharks and which not; 

3. Shark Classifiers (SCs): multiclass models that classify shark images by genus and 

species. 

The shark training images used to develop these models were mainly sourced from sharkPulse, 

a crowd-sourcing platform which mines and aggregates shark’s media from social networks, 

citizen science and projects, users' submission and other electronic archives [3]. 

Shark Locator 

This model locates and extracts shark subjects by cropping one or multiple of them from 

pictures, thus creating new images for the dataset. Thank to this processes, two goals are 

achieved: noisy backgrounds, which challenge the training process, are removed and multiple-

subject images are split in several single-subject images. In this way, during the SI training 

process, the shark dataset can be boosted (from 24,546 to 53,345 images), while during media 

detection all subjects can be classified individually. To build the SL, Jenriette and his team 

sourced Tensorflow's Model Garden [6] and used a Faster Region-based Convolutional Neural 

Network (Faster-RCNN) algorithm. The model was trained with the Common Objects in 

Context (COCO) dataset (consisting of 236 shark images) to detect and draw boxes around 

sharks [7][8]. 

Shark Identifier 

This step consists in a binary sorting model. The SI filters out non-shark images before the 

remaining ones are taxonomically classified by the following models. Jenriette and his team 

sourced 53,345 shark images from Instagram and sharkPulse and 50,260 non-shark pictures 

just from Instagram. The original Shark Identifier learns key shark features from training 

images by optimizing the binary cross-entropy loss function [9]. In order to reduce the number 

http://sharkpulse.cnre.vt.edu/
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of required training steps, a pre-trained model was incorporated (this is known as transfer 

learning). The SI was pre-trained with the VGG16 network, which is trained on 1.28 million 

images with 1000 categories.  

To increase accuracy, image augmentation techniques like shifting, shearing, zooming and 

rotation were applied [10][11]. The pre-trained network was modified in order to perform fine-

tuning and the output neurons (shark and non-shark) were normalized with the SoftMax 

activation function [12]. The model was trained with 90% of the training dataset and validated 

on the remaining 10% over 10 epochs.  

Shark Classifier 

The last component of the Shark Detector is a hierarchical classification framework to classify 

shark images taxonomically. It is composed by a genus-specific and several species-specific 

models, one for each genus. Filtered shark images are ingested by the genus-specific classifier 

(GSC), that redirects them to the correct species-specific classifier (SSCg), which then labels 

them with the most likely species.  

The Shark Classifier was trained with the sharkPulse database, images cropped with the SL and 

Instagram images. Thus, the database consists in 84 genera and 219 species and contains 

36,722 genus-labeled images and 19,243 species-labeled images with an average of 167 

images per species. It was estimated that an average of 433 ± 47 images is needed to produce 

at least 50% recall for the GSC and in the same way the tests show that an average of 161 ± 41 

images is necessary to produce at least 50% recall for the SSCs. Jenriette and his team used 

these averages as training data quantity thresholds for the SC. The models were optimized 

with the categorical cross-entropy function to learn shark features and DenseNet201 was 

incorporated as a pre-trained network for multi-class classification. Tests show that the 

sigmoid activation function leads to a higher test accuracy compared to ReLU. 

In conclusion, the SD is able to detect 26 genus and 47 species that meet the training data 

thresholds. 

For more details on SD implementations refer to [4]. 
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1.2 Stochastic activation function  

Activation functions (AFs) play a crucial role in discriminative capabilities of CNNs and the 

design of such new functions is an active area of research. Activation functions can be divided 

into two types: static or dynamic. The first ones consider all neurons and layers as identical, 

the second learn their own parameters for each layer or even each neuron independently. 

Although dynamic activation functions perform better in some applications, an increasing 

number of trainable parameters can lead to overfitting. [5] 

A recent study [5] proposed a new method to obtain a high-performing classifier ensemble: 

every AF of each model of the ensemble is chosen randomly from a set that includes several 

different AFs. This method was called “Stochastic Selection of Activation Layer for CNNs” 

(SSAL). For more details regarding the AFs included and their definition see [5]. SSAL method 

reaches good results: 

1. the SSAL ensembles always perform better than the stand-alone methods, so SSAL is a good 

way to build partially independent models; 

2. the ReLu AF, that is canon when utilizing ResNet50, is not the best. However, there is not an 

AF that performs always better than the others, therefore an ensemble is the only way to 

ensure that the best results are included. 

3. single models designed by meaning of SSAL perform better than base-line models and a little 

worse than ensembles. 

4. small SSAL ensembles (three models) strongly outperform stand-alone approaches and 

reach performances comparable to “heavier” ensembles (10 or 20 models). 
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1.3 YOLO v4 

YOLO, or You Only Look Once, is a fast object detection family of algorithms that is often used 

in real-time applications. The basic idea proposed by Joseph Redmon [15] is the first of many 

iterations this architecture has gone through: YOLO combines what was once a multi-step 

process in a single neural network that performs both classification and prediction of bounding 

boxes for detected objects. One of the newer versions of this architecture, called YOLO 

version4 (YOLOv4, hereinafter referred just as YOLO), is mainly composed of three parts:  

1. backbone: it is the deep learning architecture that acts as a feature extractor. It is 

usually a classification model, for example ResNet50; 

2.  neck: it basically collects feature maps from different stages of the backbones; 

3.  head: it finds the region where the object might be present, but it does not give any 

information about the object present. 
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2. PROPOSED METHOD 

This work aims to apply the SSAL method to the Shark Detector. To achieve this each 

component of the SD (SL, SI, GSC and SSCs), that originally was a single classifier, becomes an 

ensemble of classifiers. These new components are called Shark Locator Ensemble (SLE), Shark 

Identifier Ensemble (SIE), Genus Shark Classifier Ensemble (GSCE) and Species Shark Classifier 

Ensembles (SSCEs). The entire detection framework, consisting of SLE, SIE, GSCE and SSCEs is 

referred to as Shark Detector Ensembles (SDEs). 

 

2.1 SIE, GSCE and SSCEs 

The development of the classifier ensembles is similar to each classification step of the SDEs 

and is mainly composed of three steps: 

1. Create partially independent classifiers  

For each classification component of the SDEs (SIE, GSCE, SSCEs) we applied the SSAL 

method on three ensembles, each composed by: 

▫ 15 Resnet50 [16]; 

▫ 5 MobileNetv2 [17]; 

▫ 5 GoogleNet [18]. 

These networks were pre-trained on the imageNet dataset [13]. We chose to train 

more ResNet50-based models because, based on Nanni et al. unpublished data, 

ResNet50 is more sensitive than other models regarding AF changing. However, in 

order to obtain networks that are as independent as possible, we included some other 

models. 

2. Train networks  

All models’ input layer size is 224x224 pixels, on three color levels (Red, Green, Blue). 

We resized all the images to fit the models’ input layer. SIE, GSCE and SSCE models 

were trained over 20 epochs. All models were trained with SGDM [14] optimizer and 

we set the initial learning rate to 3x10-4. 

The last three fully-connected layers were modified in order to have the correct 

number of output neurons which were normalized with the SoftMax [12] activation 

function, therefore their output could be interpreted as a probability.  
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The datasets composition is reported in tables 5.1, 5.2 and 5.3. 

3. Evaluate ensembles 

We created several ensembles that include a variable number of models, for a total of 

25 ensembles. We evaluated all the ensembles to understand which are the best ones 

and which are the most recurrent models among those. In order to better evaluate the 

performance of the ensembles, we calculated three metrics: accuracy, precision and 

recall. The first one measures how many patterns are correctly predicted by the 

classifier over the total number of patterns; second one represents what proportion of 

positive identifications are actually correct while last one shows what proportion of 

actual positive are identified correctly. 

 

2.2 SLE 

As for the SLE development, we proceeded as following:  

1. Create partially independent locators 

We used each one of the trained network of SIE as backbone for YOLOv4, thus creating 

an ensemble of locator.  

2. Train networks  

We trained these models on 700 shark images, each containing a variable number of 

bounding boxes, from one to seven.  

3. Create all possible ensembles of locators: 

As it was done for SIE, SGCE and SSCEs, we recombined the trained networks in several 

ensembles. 

4. Merge bounding boxes from ensembles of locators 

Unlike the classification results, merging bounding boxes from several locators are not 

trivial. Main problem is that there is not a priori knowledge of which bounding boxes, 

created by different locators, are related to the same subject in the image.  To solve 

this problem, given N total bounding boxes as the output of the SLE, we iterated a 

clustering algorithm N times, setting at each iteration the number of output clusters 

equal to N. For each iteration we calculated the sum of the distances between all 

bounding boxes and all clusters. The algorithm calculates the distance between two 

patterns as a function of the Euclidian distance between the centers and the 

intersection over union (IoU) of the two bounding boxes. This value decreases with the 
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increase of the number of output clusters, but it presents a significant step in 

correspondence of the effective number of subjects in the image.  After calculating the 

number S of subjects in the image and the relative clusters Ci, the algorithm merges all 

bounding boxes of Ci in S bounding boxes, computed as the mean of all bounding 

boxes in Ci. 

5. Evaluate ensembles 

At this stage we evaluated how many subjects had been found by the locator and the 

IoU between the ground-truth bounding boxes and the predicted ones.  
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3. APPLICATION AND RESULTS 

3.1 SIE 

It is not trivial that ensembles with several classifiers perform better than smaller ones. That is 

why we tested several ensembles that differ in size and composition. We evaluated the 

accuracy for each ensemble by putting it in relation to how many and which classifiers are 

more present.  

 

On the horizontal axes the names of ensembles are shown. The letters represent the following 

models: 

▫ “r”: SSAL-modified ResNet50; 

▫ “g”: SSAL-modified GoogleNet; 

▫ “m”: SSAL-modified MobileNetv2; 

and the numbers how many of those models are included.  

All ensembles were sorted by the accuracy  value. Accuracy, recall and precision values of all 

ensembles are represented by the blue, yellow and grey line respectively, while the orange 

bars show the number of classifiers in correspondence of the metrics values. We can observe 

that: 
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▫ In most cases, bigger ensembles perform better than smaller ones; 

▫ The biggest ensemble is not the best one; 

▫ Ensembles composed by 10 classifiers reach accuracy values comparable with the best 

ensemble; 

▫ Among the ensembles containing the same number of classifiers, the better ranked 

are the ones containing more SSAL-modified ResNet50 in combination with SSAL-

modified MobileNet.   

For more detailed results see table 5.4 and 5.5. 

 

3.2 GSCE 

As shown in table [5.2], data quantity is badly distributed among classes. An unbalanced 

training set could lead to inaccurate classifier: the classifier could be pushed to ignore the less 

represented classes, because the classification error on those weights significantly less than 

the one on most represented classes. In order to determine if this problem is present and, if 

needed, pinpoint the minimum quantity of patterns that are necessary to obtain a well-trained 

network, we trained a smaller ensemble consisting of five SSAL-modified ResNet50 and five 

SSAL-modified MobileNetv2 on the GSCE dataset over all its 85 classes. Then, we tested all 

possible ensembles and we discovered that the one formed by all the trained classifiers 

performs better than all the others and it reaches an accuracy of to 84.73%. We calculated the 

accuracy for each class individually and we find out that the following eight genera present an 

accuracy value lower or equal to 50%: Holohalaelurus, Mollisquama, Odontaspis, Parmaturus, 

Pristis, Proscyllium, Pseudocarcharias, Pseudotriakis. Since these genera cannot be treated 

individually, we grouped them together in a class called other genera. After that, we trained 

the GSCE on the datasets with merged genera. The following chart represents the performance 

of the GSCEs. It can be observed from that the general trend is similar to the SIEs one and the 

considerations aforementioned apply. 
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3.3 SSCEs 

As shown in table 5.3, there are many genera that contain only one labeled species: in these 

cases, there is not enough data to train a local SSCE and the classification stops at genus level. 

For the remaining 41 genera, the problem of unbalanced species data quantity also recurred, 

so we trained a smaller ensemble of classifiers consisting of five SSAL-ResNet50 and five SSAL-

MobileNetv2. 

As for GSCE, we evaluated which species are well represented in the SSCE dataset by using the 

small ensemble: the SSCEs that did not reach an overall accuracy of 50% or with a single-

species accuracy lower or equal to 50% have not been included in the final SSCEs training.  

For the remaining classes, SSCEs was trained. 

At time of writing, we cannot provide the training results of neither SSCEs nor SLE due the 

large amount of time that these trainings require. At the moment, we are training the smallest 

ensemble in order to understand which SSCEs should be trained. After that, we will proceed to 

train SLE and select the best ensemble in order to assemble the entire SDE pipeline. 
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4. CONCLUSIONS 

The proposed method was found to be effective in improving the performance of both SI and 

GSC. The binary classification task can be now performed with an accuracy of 98.47%, while 

the original SI reaches approximately 91% accuracy. The genus classification task can be 

performed with an accuracy of 85.33%, outperforming GSC by about 15%. The performance 

increase due to the use of ensembles is remarkable especially for GSC: its networks reach an 

accuracy value of 81.06% while its best ensemble gets up to 85.33%; SIE presents a 

performance increase lower than the GSCE: the single networks of SIE are able to classify with 

an accuracy of 98% while its best ensemble, that includes 15 models, increased this value of 

0.47%. SSCEs and SLE are still under development due the high computing time that is required 

to train such complex models. However, the excellent results obtained until now give us a 

reason to be optimistic. More tests and results will follow. 
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5. APPENDICIES 

5.1 SIE dataset  

Classes Patterns 

Shark 64449 
Not Shark 50260 

Total 114709 

 

5.2 GSCE dataset    

Class Patterns Class Patterns 

Aculeola  32 Hypogaleus  16 
Alopias  1226 Isistius  80 

Anoxypristis  27 Isogomphodon  28 

Apristurus  244 Isurus  1635 

Asymbolus  420 Lamna  405 

Atelomycterus  102 Loxodon  115 

Brachaelurus  479 Megachasma  349 

Callorhinchus  145 Mitsukurina  51 

Carcharhinus  5700 Mollisquama  5 

Carcharias  2404 Mustelus  677 

Carcharodon  2245 Nebrius  343 

Centrophorus  178 Negaprion  905 

Centroscyllium  44 Notorynchus  307 

Centroscymnus  90 Odontaspis  66 

Cephaloscyllium  861 Orectolobus  2021 

Cetorhinus  638 Oxynotus  109 

Chaenogaleus  149 Parascyllium  100 

Chiloscyllium  326 Parmaturus  12 

Chimaera  241 Poroderma  404 

Chlamydoselachus  116 Prionace  985 

Cirrhigaleus  90 Pristiophorus  19 

Dalatias  187 Pristis  84 

Deania  118 Proscyllium  23 

Echinorhinus  516d Pseudocarcharias  33 

Etmopterus  233 Pseudoginglymostoma  37 

Eucrossorhinus  404 Pseudotriakis  15 

Eusphyra  76 Rhincodon  1649 

Galeocerdo  1115 Rhizoprionodon  398 

Galeorhinus  791 Schroederichthys  147 

Galeus  575 Scoliodon  73 

Ginglymostoma  1142 Scyliorhinus  964 

Glyphis  82 Scymnodon  21 

Gollum  18 Somniosus  103 

Halaelurus  41 Sphyrna  1591 

Haploblepharus  691 Squaliolus  23 

Hemigaleus  54 Squalus  1044 

Hemipristis  149 Squatina  316 

Hemiscyllium  308 Stegostoma  343 

Heptranchias  77 Sutorectus  50 

Heterodontus  2244 Triaenodon  1857 

Hexanchus  987 Triakis  1146 

Holohalaelurus  15 Trigonognathus  11 

Hydrolagus  436   

Total:  44576 
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5.3 SSCEs dataset 
Genus Number of classes Total patterns 

Aculeola 1 4 

Alopias 3 527 

Apristurus 6 41 

Asymbolus 4 30 

Atelomycterus 2 33 

Brachaelurus 2 461 

Callorhinchus 3 3 

Carcharhinus 24 3800 

Carcharias 1 2405 

Carcharodon 1 2290 

Centrophorus 5 30 

Centroscyllium 2 8 

Centroscymnus 4 11 

Cephaloscyllium 4 663 

Cetorhinus 1 642 

Chaenogaleus 1 1 

Chiloscyllium 5 299 

Chimaera 1 4 

Chlamydoselachus 1 6 

Cirrhigaleus 2 5 

Dalatias 1 44 

Deania 2 12 

Echinorhinus 2 458 

Etmopterus 7 25 

Eucrossorhinus 1 416 

Eusphyra 1 7 

Galeocerdo 1 1117 

Galeorhinus 1 791 

Galeus 1 376 

Ginglymostoma 2 945 

Glyphis 2 9 

Gollum 1 3 

Haploblepharus 4 680 

Hemigaleus 2 6 

Hemipristis 1 13 

Hemiscyllium 8 217 

Heptranchias 1 18 

Heterodontus 7 2180 

Hexanchus 3 800 

Hydrolagus 3 391 

Hypogaleus 1 2 

Isistius 1 30 

Isurus 2 1422 

Lamna 2 241 

Loxodon 1 18 

Megachasma 1 349 

Mitsukurina 1 8 

Mollisquama 1 1 

Mustelus 12 522 

Nebrius 1 343 

Negaprion 2 240 

Notorynchus 1 307 

Odontaspis 1 38 

Orectolobus 9 1939 

Oxynotus 2 43 

Parascyllium 3 33 

Poroderma 2 374 
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Prionace 1 990 

Pristiophorus 2 8 

Pseudocarcharias 1 1 

Pseudoginglymostoma 1 3 

Rhincodon 1 1602 

Rhizoprionodon 7 344 

Schroederichthys 2 38 

Scoliodon 1 3 

Scyliorhinus 3 472 

Somniosus 3 30 

Sphyrna 7 954 

Squaliolus 1 1 

Squalus 10 312 

Squatina 12 298 

Stegostoma 1 277 

Sutorectus 1 26 

Triaenodon 1 1786 

Triakis 4 1059 

Total 226 33885 

 

 

5.4 SIE single networks results 

model accuracy precision recall 

SSAL-ResNet50 

97.71% 97.90% 97.99% 
97.83% 98.29% 97.83% 

97.93% 98.49% 97.81% 

97.92% 98.03% 98.24% 

97.74% 97.86% 98.08% 

98.06% 98.48% 98.05% 

97.95% 98.40% 97.94% 

97.81% 98.04% 98.04% 

97.93% 98.20% 98.08% 

97.92% 98.35% 97.92% 

97.95% 98.37% 97.97% 

97.84% 98.25% 97.89% 

98.02% 98.26% 98.19% 

97.93% 98.27% 98.02% 
 97.90% 98.23% 98.00% 

SSAL-MobileNetv2 

97.61% 97.98% 97.74% 
97.20% 97.79% 97.21% 

97.20% 96.69% 98.26% 

97.32% 98.02% 97.20% 

97.57% 98.01% 97.64% 

SSAL-GoogleNet 

96.80% 97.00% 97.26% 
97.27% 98.05% 97.09% 

96.84% 98.27% 96.15% 

97.05% 97.00% 97.70% 

97.44% 97.35% 98.05% 
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5.5 SIEs results 

name accuracy precision recall SSAL-
Resnet50 

SSAL-
MobileNet 

SSAL-
GoogleNet 

Total 
classifier 

r3 98,20% 98,61% 98,18% 3 0 0 3 

m3 97,99% 98,14% 98,25% 0 3 0 3 

g3 97,50% 98,23% 97,31% 0 0 3 3 

r2m1 98,28% 98,58% 98,34% 2 1 0 3 

r2g1 98,12% 98,40% 98,22% 2 0 1 3 

r1m2 98,12% 98,52% 98,12% 1 2 0 3 

r1g2 97,88% 98,29% 97,92% 1 0 2 3 

r1m1g1 98,10% 98,38% 98,22% 1 1 1 3 

r5 98,29% 98,59% 98,36% 5 0 0 5 

m5 98,09% 98,39% 98,18% 0 5 0 5 

g5 97,76% 98,18% 97,81% 0 0 5 5 

r3m2 98,33% 98,72% 98,29% 3 2 0 5 

r3g2 98,25% 98,61% 98,26% 3 0 2 5 

r1m3g1 98,19% 98,38% 98,37% 1 3 1 5 

r1m1g3 98,07% 98,62% 97,92% 1 1 3 5 

r10 98,36% 98,72% 98,35% 10 0 0 10 

r5m5 98,45% 98,75% 98,47% 5 5 0 10 

r4m3g3 98,36% 98,71% 98,35% 4 3 3 10 

r4m4g2 98,42% 98,75% 98,41% 4 4 2 10 

r15 98,38% 98,74% 98,35% 15 0 0 15 

r10m5 98,47% 98,81% 98,45% 10 5 0 15 

r10g5 98,40% 98,74% 98,39% 10 0 5 15 

r5m5g5 98,37% 98,68% 98,39% 5 5 5 15 

r10m5g5 98,46% 98,80% 98,45% 10 5 5 20 

r15m5g5 98,47% 98,81% 98,45% 15 5 5 25 
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5.6 GSCE single networks results 
model precision recall accuracy 

SSAL-ResNet50 

79.21% 73.17% 79.65% 
79.44% 71.83% 79.63% 

80.03% 72.51% 80.17% 

79.20% 73.55% 80.10% 

81.15% 74.04% 80.67% 

80.16% 72.90% 79.28% 

80.62% 73.36% 79.82% 

82.35% 74.54% 80.62% 

80.71% 73.35% 79.95% 

80.56% 72.55% 80.11% 

80.39% 73.97% 80.38% 

79.82% 73.81% 81.06% 

79.70% 70.18% 78.97% 

80.40% 71.77% 79.78% 

81.61% 73.93% 80.79% 

SSAL-MobileNetv2 

77.96% 69.54% 77.16% 
78.38% 69.58% 77.05% 

78.46% 69.14% 76.71% 

78.21% 70.68% 77.86% 

77.10% 70.54% 77.09% 

SSAL-GoogleNet 

73.12% 60.77% 71.19% 
71.52% 65.26% 73.42% 

74.22% 62.09% 71.97% 

74.11% 65.93% 73.07% 

75.09% 61.56% 72.01% 
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5.7 GSCEs results 

ensemble accuracy precision recall  SSAL-
ResNet50 

SSAL-
MobileNet 

SSAL-
GoogleNet 

Total 
classifiers 

r3 82.54% 84.72% 74.78% 3 0 0 3 

m3 81.47% 84.16% 73.55% 0 3 0 3 

g3 77.54% 81.84% 68.04% 0 0 3 3 

r2m1 83.09% 85.88% 75.99% 2 1 0 3 

r2g1 82.30% 84.70% 74.12% 2 0 1 3 

r1m2 82.88% 85.91% 75.47% 1 2 0 3 

r1g2 80.86% 83.74% 72.63% 1 0 2 3 

r1m1g1 82.33% 85.64% 74.30% 1 1 1 3 

r5 83.66% 86.25% 76.54% 5 0 0 5 

m5 82.71% 85.86% 75.49% 0 5 0 5 

g5 79.34% 83.82% 70.29% 0 0 5 5 

r3m2 84.07% 87.36% 76.71% 3 2 0 5 

r3g2 83.06% 85.71% 74.47% 3 0 2 5 

r1m3g1 83.70% 87.28% 75.83% 1 3 1 5 

r1m1g3 82.34% 86.46% 74.16% 1 1 3 5 

r10 84.27% 86.73% 77.47% 10 0 0 10 

r5m5 85.10% 87.91% 78.17% 5 5 0 10 

r4m3g3 84.75% 88.26% 76.88% 4 3 3 10 

r4m4g2 84.98% 88.77% 77.56% 4 4 2 10 

r15 84.36% 86.60% 77.17% 15 0 0 15 

r10m5 85.33% 88.11% 78.42% 10 5 0 15 

r10g5 84.69% 87.70% 77.34% 10 0 5 15 

r5m5g5 85.01% 88.62% 77.69% 5 5 5 15 

r10m5g5 85.33% 88.48% 77.92% 10 5 5 20 

r15m5g5 85.24% 88.27% 77.80% 15 5 5 25 

 

 

6. DATA AVAIBILITY 

Code for building, training and testing all models are available on GitHub at 

https://github.com/Elia503/SDE. Trained models are available in a Google Drive folder at 

https://drive.google.com/drive/folders/1PNbhIzFL2oofV1i6WlRdX8J_47uuSQLD?usp=sharing. 

Dataset is not yet available because it is protected by copyright laws. 

 

 

 

 

https://github.com/Elia503/SDE
https://drive.google.com/drive/folders/1PNbhIzFL2oofV1i6WlRdX8J_47uuSQLD?usp=sharing
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