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Introduction

The exploration of the outer regions of our Solar System has recently been

met by a growing interest from the scientific community worldwide. Several

missions so far have flown by all of the gas giants: Voyager 1 flew past Jupiter

and Saturn; Voyager 2 flew past Jupiter, Saturn, Uranus and Neptune. The

New Horizons mission made it all the way to Pluto and beyond. Even of

greater importance for planetary exploration were the Galileo and Cassini

missions, envisioned to explore the planetary systems of Jupiter and Saturn

respectively. These two missions allowed to take a very close look at the

planets and their inner characteristics such as their magnetosphere and sur-

face composition, but most interestingly they involved subsequent flybys of

the moons of both the planets, paving the way for the chapter of space explo-

ration that is to be written over the next decade. Following the wake of these

two missions, both NASA and ESA have set the exploration of planetary sys-

tems as a priority for the years to come: NASA’s Europa Clipper mission is

expected to begin in the first half of the 2020s, and will mostly consist in

repeated flybys of the jovian moon Europa to study its glacial surface [1];

the Jupiter Icy Moons Explorer (JUICE), by ESA, is planned for launch in

2022 and will investigate Jupiter’s atmosphere and magnetosphere together

with repeated flybys of the moons Europa, Ganymede and Callisto [2]. The

interest in exploring gas giants is motivated by the necessity of understanding

the evolution of such celestial bodies and the systems associated with them,

in the perspective of future research of exoplanets. Moreover, elaborations
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Introduction

of the data collected so far during past missions have shown that planetary

moons, while being covered by a thick layer of ice, might be concealing major

bodies of liquid water in the form of internal oceans. For this reason, one

of the main goals of such missions is to prove the existence of said oceans

and investigate the habitability of the moons, which in this specific context

means to investigate the moon’s suitability to hosting microorganisms similar

to those known and existing on Earth [1]. While missions are already being

developed to reach Jupiter, another good candidate for the same purposes is

the gas giant Saturn. Plumes of water vapor and ice have been observed to

be emitted from the souther pole of the saturnian moon Enceladus and to

be the main source of matter for the planet’s the E-ring [3]. The analysis of

the composition of said particles, operated by the Cassini spacecraft, concur

with the theory of an inner ocean, below Enceladus’s rocky surface and in

direct contact with its rocky core [3]. Other studies forecast the presence of

a liquid, salty-water ocean underneath the surface of Saturn’s largest moon

Titan, but analyses conducted so far are more speculative and lack empiric

proof [4].

The purpose of this work will be to provide the preliminary orbital design

of a mission to explore Saturn and, subsequently, its moons. The aim will

also be to explore new techniques, made available by modern technologies,

to achieve the mission’s goals in a more cost-efficient and better-performing

way, in comparison to other planetary missions realized in the past.
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Chapter 1

Problem statement

Interplanetary missions are highly complicated and articulated to design,

especially when compared with Earth-missions and satellites, due to the high

energy required to send a spacecraft outside of the Earth’s own gravity field

and towards other planets in the deep space. In this section we will analyze

some of the most basic key features of an interplanetary mission, without

diving too much into the details, but providing satisfactory notions about the

physics of the problem and the orders of magnitudes involved. Let’s begin by

saying that planets’ orbits are elliptical and have nonzero inclinations with

respect to the Sun’s equatorial plane; however, eccentricities and inclinations

of the planets are very small and neglecting them (which means assuming

planetary orbits to be circular, planar and Sun-centered) allows to speed up

early stages of computation obtaining results that are still accurate in the

terms of the orders of magnitude involved [5]. For this reason we will, for the

moment, assume that planetary orbits are circular, with a heliocentric radius

equivalent to the planet’s semimajor axis. The planets’ linear velocities and

orbital energies can be calculated as follows:

E = −µSun
2r

v =

√
µSun
r
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Chapter 1. Problem statement

Radius [km] Velocity [km/s] Energy [km2/s2]

Mercury 5.791 · 107 47.872 -1145.87

Venus 1.082 · 108 35.021 -613.22

Earth 1.496 · 108 29.785 -443.56

Mars 2.279 · 108 24.129 -291.11

Jupiter 7.783 · 108 13.058 -85.25

Saturn 1.427 · 109 9.645 -46.51

Uranus 2.870 · 109 6.799 -23.12

Neptune 4.498 · 109 5.432 -14.75

Table 1.1: Radius, velocity and orbital energy of the planets of the Solar

System

1.1 The Hohmann Transfer

1.1.1 Generalities

The Hohmann Transfer is the most efficient maneuver, in terms of propellant

consumption, to move a spacecraft from a lower circular orbit to a higher cir-

cular orbit, or viceversa [5]. As a known result from Tsiolkovsky’s equation,

the propellant mass required for a certain maneuver increases exponentially

with the magnitude of the ∆~v to be provided to the spacecraft, according to

the law:

∆m = mS/C

(
exp

(
∆v

g0Isp

)
− 1

)
Since carrying a high amount of fuel mass into space is expensive, it is nec-

essary to minimize the fuel consumption by minimizing the ∆~v that needs

to be provided: this is done through the Hohmann maneuver. The optimal

transfer orbit is tangent to both the inner and outer orbit, with its periapse

coinciding with the inner orbit’s radius and its apoapse with the outer orbit’s.
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Figure 1.1: Hohmann transfer [6]

A complete Hohmann maneuver consists in two impulses, both fired in the

direction of the satellite’s velocity: the first one puts the satellite onto the

elliptic transfer orbit, the second one circularizes the orbit once the satellite

has reached the desired altitude. The equations for the total ∆~v required are

the following:

aH =
r1 + r2

2

∆v =

∣∣∣∣∣
√
µ

(
2

r1

− 1

aH

)
−
√
µ

r1

∣∣∣∣∣+

∣∣∣∣∣
√
µ

(
2

r2

− 1

aH

)
−
√
µ

r2

∣∣∣∣∣
1.1.2 Interplanetary Hohmann Transfer

In the case of an interplanetary transfer, the formulation needs additional

development. It is not possible to launch a spacecraft directly into a he-

liocentric elliptic orbit around the Sun: the spacecraft needs to be put on

a parking orbit around the Earth, and subsequently moved into a hyper-

bolic orbit to exit the Earth’s sphere of influence with the desired velocity.

Let’s assume we want to send a spacecraft to Mars: subscripts ’E’ refer to
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the Earth and ’M’ to Mars. The ∆~v that the launcher needs to provide is

calculated as follows:

AH =
RE +RM

2

v∞ =

√
µSun

(
2

RE

− 1

AH

)
−
√
µSun
RE

∆vlauncher =

√
2µE
rp

+ v2
∞ −

√
µE
rp

with rp being the radius of the parking orbit around the Earth and AH the

semimajor axis of the elliptic transfer orbit around the Sun. The following

constants are known:

• µSun = 1.32712440018 · 1011 km3/s2

• µE = 398600.3 km3/s2

• rp = 6678 km (h=300 km, design parameter)

Assuming that we want to send a spacecraft onto an elliptic heliocentric orbit

with a given apoapse (AH), the ∆v required by the launcher is visualized in

the green curve in the plot in fig. 1.2. The red curve expresses the sum of

the ∆vlauncher and the v∞ at the sphere of influence of a hypothetical planet

whose heliocentric radius equals the given apoapse. When intersecting the

destination planet a similar problem arises: it is in fact necessary to define a

hyperbolic trajectory around that planet at whose periapse a ∆v is required

to move the spacecraft into a closed orbit, in order for it to stay captured

into the planet’s sphere of influence. For a constant value of the periapse

radius, the magnitude of the ∆vcapture increases monotonically with v∞. Even

though the graphs shown are qualitative, some interesting notions can be

extrapolated:

• the cost of launching a spacecraft to another planet increases with the

module of the difference between the planet’s radius and the Earth’s

own radius
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Figure 1.2: ∆v’s as function of the required apoapse

• a second variable to keep in mind is the v∞ at the sphere of influence

of the destination planet, which might give rise to a fuel-demanding

planetary capture.

This second aspect in particular requires alternative approaches for the mis-

sion design, in order to decrease the relative speed between spacecraft and

planet: the most common strategy involves performing a Planetary Flyby

which, as will be explained in the details in the following chapters, allows to

increase considerably the semimajor axis of the transfer orbit, decreasing the

relative speed between the spacecraft and the target planet.

Once the interplanetary transfer orbits have been defined, the hyperbolic

trajectories within the planetary spheres of influence are to be defined. The
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known parameters are:

• v∞ = |~vP − ~vS| as previously calculated;

• rP : periapse; it is a design parameter and can be chosen freely, with

the only obvious necessity that it be higher than the planet’s equatorial

radius to avoid impact. Different choices for rP only slightly affect the

total ∆v required.

The other parameters to describe the trajectory are calculated as follows:

• a = µ
v2∞

: semimajor axis of the hyperbola;

• s =
√
rP (rP + 2a) : impact parameter, distance between the planet’s

center of mass and the asymptotes of the hyperbola

• α0 = arctan
(
s
a

)
: angle between the asymptotes and the hyperbola’s

focal axis

• δ = π − 2α0 : turn angle of the asymptotes.

1.2 Flyby

A Flyby, also known as Gravity Assist, is a commonly used strategy in in-

terplanetary mission design, because it can provide the satellite with a ∆~v

without any propellant consumption. It allows therefore to reach areas of

the deep space that would not be achievable with state of the art propulsion

systems alone. Considering for example a satellite performing a flyby around

a planet of the inner Solar System, it is possible to characterize four different

orbits:

• pre-flyby elliptic orbit of the satellite around the Sun;

• elliptic orbit of the planet around the Sun;
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• hyperbolic orbit of the satellite around the selected planet;

• post-flyby elliptic orbit of the satellite around the Sun.

In the current analysis we are referring to the method of the patched conics,

according to which the orbits of the satellite (pre- and post-flyby) around

the Sun and the orbit around the planet are joined at the border of the

planet’s sphere of influence (SOI ), within which the planet is considered to

be the only gravity-field center, while outside of it the gravity center is the

Sun. Thanks to this approximation, which is good for a preliminary analysis,

it is possible to evaluate different two-body problems separately, for which

analytical solutions are provided. While referring to the orbits around the

Sun, it is safe to assume that the planetary sphere of influence coincides

with the planet itself, due to the radius of the SOI being several orders of

magnitude smaller than the other lengths involved. One approximation of

the radius of the sphere of influence is the following, in which ms is the mass

of the Sun, mp that of the planet and R the distance between the planet and

the Sun [6]:

rSOI = R

(
mp

ms

) 2
5

Once the intersection with the planet’s orbit has been found, it is necessary

to calculate the ∆v = ~vS − ~vP which corresponds to the hyperbolic excess

velocity of the planetary orbit ~v∞1. The planetary orbit is usually expressed

in a bidimensional frame with the first axis pointing along the planet’s ve-

locity (in the approximation of circular orbit) and the second axis pointing

at the Sun. With θ being the planet’s true anomaly, the directions of the

local frame of reference are:{
~w1 = − sin θî + cos θĵ

~w2 = − cos θî− sin θĵ

In this example we are assuming that the orbits lie on the same plane, there-

fore the flyby will also happen on the same plane, making it possible to
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neglect the out-of-plane components of vectors. The parameters of the hy-

perbolic trajectory around the planet are calculated just as explained in the

previous chapter. There is one additional degree of freedom depending on

the position of entry into the sphere of influence: the flyby can, in fact, be

performed on the Sun side or on the shaded side. In one case the angular

moment of the hyperbolic trajectory is opposed to that of the planet’s orbit

around the Sun, and lies on the negative z-semiaxis of the local frame; in the

other case they point at the same direction, with the angular moment lying

on the positive z-semiaxis. Once determined wether the flyby happens on

the shaded side or on the Sun side, it is possible to calculate the positions

of the perigee in the local frame and the direction of the outbound velocity.

Defining φ1 and φ2 the directions of inbound and outbound ~v∞ we have:

Positive angular moment Negative angular moment

β = φ1 − α0 β = φ1 + α0

~r p = rp{cos β, sin β} ~r p = rp{cos β, sin β}
φ2 = φ1 + δ φ2 = φ1 − δ
~v∞2 = v∞{cosφ2, sinφ2} ~v∞2 = v∞{cosφ2, sinφ2}

Once the outbound velocity is known, it will suffice to express it in inertial

coordinates and add it to the planet’s velocity to obtain the satellite’s post-

flyby velocity.

~v s2 = ~v p + ~v∞2

In first-order approximation, the position of the satellite will be the same

it was occupying before the flyby, which also coincides the planet’s position

at the intersection point. Knowing the position and the new velocity of the

satellite means knowing its state vector, from which it is possible to fully

determine the post-flyby orbit of the satellite.
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1.3 Cassini’s designed trajectory

To provide an example of what has been explained so far, we present the pre-

launch design of Cassini’s trajectory. The trajectory consisted in a VVEJGA-

1DSM scheme, whose specifics can be read in table 1.2. Together with plane-

tary flybys and the DSM between the subsequent flybys of Venus, the prelim-

inary desing accounted for 22 trajectory correction maneuvers (TCM); more

specifically, TCM-1 was implemented to correct launch errors, while TCM-9

through TCM-12 were to correct an Earth-bias deliberately built into the

trajectory to ensure a probability of impact with the Earth lower than 10−6

[7]. The overall trajectory, from launch to arrival at Saturn is visualized in

fig 1.3.

Figure 1.3: Cassini’s designed trajectory [7]
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Event Date s [km] ∆v [m/s]

Launch 15 Oct 1997 / /

TCM-1 30 Oct 1997 / 1.4

Venus-1 Flyby 26 Apr 1998 12302 /

DSM 3 Dec 1998 / 451.8

Venus-2 Flyby 24 Jun 1999 -9084 /

TCM-9 (V+10d) 4 Jul 1999 -9084 42.3

TCM-10 (E-30d) 19 Jul 1999 57510 4.9

TCM-11 (E-15d) 3 Aug 1999 10390 36.9

TCM-12 (E-6.5d) 11 Aug 1999 8954 13.0

Earth Flyby 18 Aug 1999 8954 /

Jupiter Flyby 30 Dec 2000 10896274 /

Saturn Encounter 1 Jul 2004 393160 /

Table 1.2: Major events in Cassini’s designed trajectory [7]
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Chapter 2

Optimization Algorithms

The problem of finding good and feasible launch windows when designing

an interplanetary mission is just as articulated as it is imprescindible. The

complexity is represented by the high number of independent variables in-

volved in the computation, together with the non-linearity of the problem

and with the impossibility of knowing a priori whether, for a given set of

the independent variables, a solution exists or not. The best approach to an

optimization problem begins therefore with the definition of a cost function

[8], through which it is possible to directly evaluate the ”goodness” of a cer-

tain combination of variables: when designing an interplanetary mission the

cost function is usually given by the cumulative ∆~v to be provided to the

spacecraft to reach its final destination. The problem turns into finding the

minimum value of the cost function over a multidimensional domain. When

the function is non-linear and non-differentiable, direct search methods are

to be implemented [8], which require to explore the domain in an iterative

search for best-fitting solutions. The requirements for an optimization algo-

rithm of this style can be summarized in the following four points [8]:

1. Ability to handle non-linear and multivariable functions

2. Parallelizability, in case of high computational costs demanded by fre-
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quent cost function evaluations

3. Easy choice of the independent variables of the problem

4. Good convergence properties.

2.1 Differential Evolution

2.1.1 General concepts

Differential Evolution is an algorithm that involves NP D-dimensional vec-

tors:

xi,G for i = 1, 2, ..., NP

with NP being the number of individuals (vectors) belonging to the G-th

generation and D the number of independent variables. A problem charac-

terised by 5 variables will therefore involve 5-dimensional individuals. The

initial generation (G = 0) can be generated randomly or, in case the position

of an optimal solution were known in advance with a certain error, the initial

generation can be created by adding to that solution a distribution of ran-

domly generated deviation vectors [8]. The Differential Evolution Algorithm

belongs to a class named Evolutionary Algorithms, which get their name from

being inspired by the way evolution happens with living species. With this

idea in mind, the code will proceed creating subsequent generations of in-

dividuals through the operations known as mutation, crossover and natural

selection.

• mutation: for each i -vector of the G-th generation, a mutant vector

vi,G+1 is generated as a linear combination of other vectors according

to the following relation: [8]

vi,G+1 = xr1,G + F (xr2,G − xr3,G)

16
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where G is a positive integer indicating the generation to which the

vectors belong, r1 6= r2 6= r3 6= i are also integers and F , the mutation

factor, is a real value that usually lies in the interval [0.4, 1] and controls

the length of the exploration vector (xr2,G − xr3,G) [9]

Figure 2.1: Generation of mutant vector in a 2D domain [8]

• crossover: to increase the diversity of the parameter vector [8] the

crossover operation has it inherit at least one parameter from the mu-

tant vector. With this purpose trial vector ui,G+1 is defined as follows

[8]:

ui,G+1 =

{
vi,G+1 if randb(j) ≤ CR or j = rnbr(i)

xi,G+1 if randb(j) > CR and j 6= rnbr(i)
for j = 1, ..., D

In the previous formula, randb(j) ∈ [0, 1] is a random real number

defined for every j-th component, while CR ∈ [0, 1] is the crossover

parameter, which regulates the probability for the vi,G+1 vector to pass

a parameter on to the next-generation vector. The integer rnbr(i) ∈
[1, D] makes sure that at least one parameter of the trial vector ui,G+1

is inherited from vi,G+1.

• natural selection: this last step evaluates the cost function for the

trial vector ui,G+1 so far calculated. If it produces a lower (or better

17
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Figure 2.2: Crossover operation with a 7D parameter vector [8]

performing) cost value, the vector ui,G+1 becomes the i-th member of

the generation G+1; if not, the vector xi,G is passed on to the next

generation instead.

The scheme proposed so far is the most basic and the first one that has been

developed. There exist different variants, whose efficiencies need to be tested,

since usually there appears to be no rule to determine which one works best.

Different implementation options involve an alternative formulation for the

mutation procedure. The one previously defined is defined DE/rand/1, other

options are the following [10]:

• DE/rand/2 : vi,G+1 = xr1,G + F (xr2,G − xr3,G) + F (xr4,G − xr5,G)

• DE/best/1 : vi,G+1 = xbest,G + F (xr1,G − xr2,G)

• DE/current to best/1 : vi,G+1 = xi,G+F (xbest,G−xi,G)+F (xr1,G−xr2,G)

• DE/best/2 : vi,G+1 = xbest,G + F (xr1,G − xr2,G) + F (xr3,G − xr4,G)

Other optimization techniques have been investigated. It can be proved,

both experimentally and analytically, that the convergence properties of the

18
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Differential Evolution algorithm strongly depend on user-defined parameters

such as F, CR and NP [9]. As far as the population number, the general rule

of thumb recommended by Storn and Price is to choose NP ∈ [5D, 10D];

nevertheless it is important, for the mutation operation to be successful, that

there be at least four or more elements in the population, according to the

mutation strategy adopted [8]. The choices for the F and CR parameter affect

the convergence speed of the algorithm: CR ≈ 1 is usually an inappropriate

choice, but good for a preliminary search of possible solutions [8]. If the

solution converges too quickly, it might be useful to increase the value of F to

force the code into looking for solutions farther away from the parent vectors.

Since the most appropriate choice for the design parameters usually depends

on the problem itself, another subclass of Differential Evolution algorithms

has been developed, according to which the design parameters mutate along

the code together with the variables of the problem. These are called Self-

Adaptive Algorithms, and consist in adding two additional components to

the element vector, which play the role of the F and CR parameters at each

DE iteration. Note that the calculation of new Fi,G+1 and CRi,G+1 is done

in advance, and the results are applied to the computation. An example is

the following [11]:

Fi,G+1 =

{
Fl + rand1 ∗ Fu if rand2 < τ1

F1,G if rand2 ≥ τ1

CRi,G+1 =

{
rand3 if rand4 < τ2

CR1,G if rand4 ≥ τ2

In the previous formulas, randj ∈ [0, 1] is a real number, while suggested

values are Fl = 0.1 and Fu = 0.9 in order to get an Fi,G+1 ∈ [0, 1], as it

usually happens in most cases, and τ1 = τ2 = 0.1 [11].
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2.1.2 Limits and drawbacks

A few comments on the most common drawbacks that can be encountered

while applying DE algorithms. Premature convergence is a phenomenon that

occurs quite frequently and, generally speaking, cannot be avoided actively.

It consists in the algorithm converging to a local optimal solution that is

however not optimal in the global domain: it is the multidimensional equiv-

alent of encountering a local minimum of a carthesian function, which might

not coincide with the global minimum. When a local minimum is encoun-

tered the algorithm does not proceed, and the population loses its diversity

as each vector tends to be replaced by the local optimum vector. The only

way out of local minima is running the algorithm several times, with different

randomly-generated initial populations: this way, since the algorithm itself

evolves stochastically, once the same set of parameters is encountered as a

optimum solution after several runs it can be considered to have good global

properties as well.

The problem of stagnation is another phenomenon that stalls the algorithm,

but happens for a different set of reasons, as investigated thoroughly in [12]:

when stagnation occurs the population is still diverse, but the code cannot

progress towards a better solution and remains stuck. This is due to the

lack of viable combinations of vectors to produce new individuals with a

better fitness value, therefore older-generation vectors are passed on to new

generations unaltered. When the population number NP is low, there only

exists a very limited number of combinations to produce mutant vectors, es-

pecially when the mutation factor F is kept constant. Moreover, it can be

easily shown that in the case F = 1 the number of distinct mutant vectors

is reduced by 50% [12], which happens because the same linear combination

of vectors is obtained for different vi,G+1 calculations: to avoid stagnation, it

is therefore recommended to avoid the case F = 1. As far as the crossover

coefficient, both the cases CR = 0 and CR = 1 are to be avoided: in the
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first, none of the elements of the mutant vector are passed on to the trial

vector ui,G+1, which will end being identical to the parent xi,G; in the latter

case, every element of ui,G+1 comes from the mutant vector: this way the

trial vector does not inherit any data from the parent and falls out of the

convergence area, only rarely producing better results.

In conclusion, Differential Evolution Algorithms are a efficient in the process

of analyzing multivariable problems, even though attention has to be paid by

the user and results need to be evaluated critically. A high population size

(NP) increases the diversity of the population itself, reducing both the risks

of stagnation and premature convergence, even though larger populations

make the whole computation more expensive: a tradeoff in the population

size is therefore needed.

2.2 Design Strategies for Multiple Flybys

So far some of the optimization techniques to handle multivariable problems

have been investigated; in this section a few examples will be given on how to

formulate the problem of designing a space mission which involves multiple

gravity assists. Two examples will be presented here: the Multiple Grav-

ity Assist (MGA) and Multiple Gravity Assist with Deep Space Maneuver

(MGA-DSM) [13]. Both methods are based on the patched conics approxi-

mation theorised by Minovitch and well explained in Curtis [6]; in both cases

the planet sequence cannot be optimized by the algorithm, but has to be

given by the user as an input. In the examples provided the orbits of the

planets are considered to be coplanar, out-of-plane components are therefore

neglected; however, simple adjustments allow to apply the same techniques

to the problem involving real ephemerides.
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2.2.1 Multiple Gravity Assist

The MSA strategy is easier conceptually and faster to implement compu-

tationally; however, since it involves a lower number of degrees of freedom,

the solutions provided by this method are, generally speaking, less opti-

mal in terms of global cost. The only variables involved are time variables:

more specifically, the ∆ti’s needed to fly from planet i − 1 to planet i, for

i = 0, ..., N . An additional degree of freedom is used: ∆t0 is the wait time

before launch, meaning the time that has to be waited from the moment in

which the planetary ephemerides are given. The indices are given such as:

• i = 0 : Earth;

• i = 1, ..., N − 1 : flyby planet(s);

• i = N : destination planet.

The first step, for a given combination of the variables, is to propagate the

orbits of the planets according to the following procedure (note that the

planetary ephemerides at t = 0 have to be given at the same instant for all

the planets):

Ti =
i∑

j=0

∆tj

[~r i(Ti), ~v i(Ti)] = f (~r i(0), ~v i(0), Ti)

The N transfer orbits are found as solutions to Lambert’s problem, according

to which once two position vectors and the time of flight are given, there

only exists one orbit that connects the two positions in the given time of

flight [14]. Incoming and outgoing velocity vectors are calculated from the

planet’s own velocity and the satellite’s velocity in the same position but on

the transfer orbits [13]:

~v∞−in = ~vS−in − ~vP
~v∞−out = ~vS−out − ~vP
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The two velocities will in general be different, following two different hyper-

bolic trajectories around the planet. The aim is to calculate the parameters

in order for the two hyperbolic arcs to have the same perigee: the velocity

difference between the two orbits will be compensated by an impulse pro-

vided by a chemical thruster. The procedure is the following [13], where µ is

to be intended as the gravity constant of the current i-th planet:

ain =
µ

v2
∞−in

aout =
µ

v2
∞−out

The turn angle δ can be calculated from the velocity vectors [13]:

δ = arccos

(
~v∞−in · ~v∞−out
v∞−inv∞−out

)
Once δ has been calculated, the two following equations can be combined

into a final single-variable equation [13]:
rP = ain (ein − 1) = aout (eout − 1)

δ = arcsin

(
1

ein

)
+ arcsin

(
1

eout

)
[
aout
ain

(eout − 1) + 1

]
sin

(
δ − arcsin

(
1

eout

))
− 1 = 0

In the last equation the only unknown variable is eout, which can be calculated

iteratively. Once calculated, it can be substituted into the other equations

to obtain all the parameters. The ∆v at perigee is can be calculated as [13]:

∆vfb =

∣∣∣∣√v2
∞−in +

2µ

rP
−
√
v2
∞−out +

2µ

rP

∣∣∣∣
At this point, the only step left is to compute the cost function which will

be object of optimization. Naming X the decision vector containing the

variables and C the cost function, this leads to [13]:

X = [∆t0, ...,∆tN ]
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C = f (X )

In this case, the cost function can simply be the sum of all the ∆vfb,i, when

trying to optimize the flybys reducing the fuel consumption and making them

as close as possible to a pure unpowered flyby [13]; alternatively, the ∆vlaunch

and v∞,N can be added to the cost, in order to obtain minimum solution in

terms of global propellant consumption.

2.2.2 Multiple Gravity Assist with Deep Space Ma-

neuver

The MGA design strategy might not be suitable for all missions, especially

when a high number of flybys are necessary. The MGA-DSM strategy consists

in performing a deep space maneuver some time after each planetary flyby;

the maneuver aims at targeting the next planet in the sequence, and the

time at which the maneuver is to be performed is another parameter for

the optimization. Therefore there will be a deep space maneuver for each

transfer sequence between planets, which in some cases can result in a lower

global mission cost [13]. For the launch sequence four parameters need to

be defined: the wait time ∆t0, the hyperbolic excess speed v∞, and right

ascension and declination angles α and β. The velocity vector at departure

from the Earth is calculated as [13]:

~v s = ~vE + v∞

[
cosα cos β î + sinα cos β ĵ + sin βk̂

]
As in the MGA strategy, each interplanetary transfer is characterized by

a ∆ti, which is the total time of flight from one planet to the following.

We define the burn index εi ∈ [0, 1], so that the maneuver will occur at

time εi∆ti from the last planetary departure. The entity of the ∆v will be

the modulus of the vectorial difference between the velocity of the satellite

before and after the maneuver; the post-maneuver orbit is calculated as the

solution to Lambert’s problem, which aims at targeting the next planet in a
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time equal to (1− εi) ∆ti. In practice, εi = 0 and εi = 1 mean applying the

DSM at departure and arrival respectively, so a more reasonable choice is

εi ∈ [0.01, 0.99] [13]. When each planet is reached, the incoming hyperbolic

excess velocity is given, as usual, as the difference between the velocity of the

spacecraft and that of the planet. Since the flyby is unpowered, the outgoing

velocity will have the same modulus. The degree of freedom for the flyby

can be alternatively the periapse radius of the hyperbola rP or the impact

factor s, as explained in the previous sections. The decision vector and cost

function, in this case, take the form [13]:

X = [∆t0, v∞, α, β,∆t1, ...,∆tN , ε1, ..., εN , rP1, ..., rPN ]

C = f (X )

Again, the cost function can be modelled to include only the total amount of

∆v required by the DSM’s, or the hyperbolic excess speed at departure and

arrival.

2.2.3 Problem Constraints

In optimization problems constraints are often used to ensure that the final

solution is not just theoretically correct, but also practically feasible [13].

Using constraints is preferable because they allow a higher level of smoothness

in the evaluation of the cost function, rather than just imposing limits on

the domain of the variables involved. In interplanetary mission design, the

most common constraints are applied to ensure altitude limits, to keep the

satellite from hitting the surface of a planet during a flyby, and low velocity

avoidance, to keep the satellite from entering into a low-energy planetary

orbit which might lead to planetary capture [13]. Constraints are introduced

adding to the cost function C a constraint function G that virtually increases

the global cost when the solution is close to one of the risky aforementioned

situations.
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In the case of altitude limit, an example of a constraint function is [15]:

G1 (X ) =
N∑
i=1

−2 log
rpi
kRPi

where rpi is the periapse of the hyperbolic orbit, RPi is the equatorial radius

of the planet and k is a multiplier that can be chosen according to how close

the spacecraft can fly to the planet’s surface [15], usually k = 1.05.

To avoid low velocity flyby, the energy of the planetary orbit is calculated

with a 10% uncertainty on the v∞; this is due to the fact that the planet’s

sphere of influence is a mathematical abstraction and does not exist in prac-

tice. When a closed orbit (E < 1) is obtained with 0.9v∞ a penalty factor is

added to the cost function [15]:

Ei =
(0.9v∞)2

2
− µP
RSOI

G2 (X ) =
N∑
i=1


0 if Ei ≥ 0

1

v∞,i
if Ei < 0

2.3 Preliminary Results

Some preliminary solutions where calculated as a base for further analysis for

this work. In both cases, the mission consisted in reaching Saturn performing

a planetary flyby around Jupiter, to increase the spacecraft’s semimajor axis

and reduce the relative speed at the encounter with Saturn. The two solu-

tions presented were calculated with the MGA strategy; no constraints were

added to the computation, as the results were to be further processed in the

following sections of this work. The planetary ephemerides were calculated

from the planets’ state vectors at a given time, after removing out-of-plane

components in order to obtain planar orbits. The keplerian parameters are

therefore affected by inaccuracies, and do not account for secular variations
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which, in a final analysis, should be included given the long times involved in

the mission. This will not affect the validity of the calculations carried out

subsequently, as they would only need to be corrected with the real plane-

tary ephemerides. The two solution only differ in the way the cost function

was formulated: in the first case a global optimum solution is searched, ac-

counting for the total cost of launch, maneuver and planetary capture; in the

secondo case, only the maneuver ∆v is minimized, resulting in a free Jupiter

flyby.

Global optimum: ∆v tot = ∆v launch + ∆v fb + v∞,S

Earth Jupiter Saturn

encounter date 19/07/2035 28/04/2038 26/10/2047

e 0.01136 0.04589 0.05377

i 0.0 0.0 0.0

ω (deg) 130.100 11.4535 92.003

Ω / / /

θ (rad) 3.0177 1.9407 3.185

a (km) 1.5194 · 108 7.7453 · 108 1.425 · 109

Table 2.1: Orbits of the planets involved

The current orbit sequence is visualized in fig. 2.3 and is obtained with the

following ∆v ’s:

• ∆v launch = 6.304 km/s;

• ∆v fb = −0.3584 km/s (fired against the spacecraft’s speed);

• v∞,S = 1.4245 km/s.

The flyby happens on the sun side. The incoming and outgoing orbits

are described in table 2.3:
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Transfer 1 Transfer 2

e 0.6729 0.3246

i 0.0 0.0

ω (deg) 302.745 96.2015

Ω / /

a (km) 4.69797 · 108 1.13382 · 109

θdeparture (rad) 0.00445 0.46159

θarrival (rad) 3.1399 3.1117

∆T (years) 2.78 9.50

Table 2.2: Transfer orbits 1 and 2

Incoming Flyby Outgoing Flyby

e 1.04882 1.00766

i 0.0 0.0

ω (deg) 156.8491 156.8491

Ω / /

a (km) 4.217 · 106 2.687 · 107

rP (km) 205871 205871

Table 2.3: Flyby orbits

1The perigee argument of the flyby orbit is to be intended as the angle measured from

Jupiter’s transversal velocity component and the position of the periapse of the hyperbolic

flyby orbit.
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Figure 2.3: Orbit sequence with global optimization
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Pure Flyby : ∆v fb → 0

Earth Jupiter Saturn

encounter date 13/10/2037 23/03/2040 19/02/2047

e 0.01136 0.04589 0.05377

i 0.0 0.0 0.0

ω (deg) 130.100 11.4535 92.003

Ω / / /

θ (rad) 4.1776 2.8938 3.0540

a (km) 1.5194 · 108 7.7453 · 108 1.425 · 109

Table 2.4: Orbits of the planets involved

Transfer 1 Transfer 2 Flyby Orbit

e 0.6880 0.4553 1.6851

i 0.0 0.0 0.0

ω (deg) 5.2134 88.6728 147.2442

Ω / / /

a (km) 4.8935 · 108 1.0319 · 109 3.9518 · 106

θdeparture (rad) 0.07414 1.54606 /

θarrival (rad) 3.0027 3.1121 /

∆T (years) 2.44 6.91 /

rP (km) / / 2.7072 · 106

Table 2.5: Transfer orbits 1 and 2 & Flyby orbit

The current orbit sequence is visualized in fig. 2.4 and is obtained with the

following ∆v ’s:

2The perigee argument of the flyby orbit is to be intended as the angle measured from

Jupiter’s transversal velocity component and the position of the periapse of the hyperbolic

flyby orbit.
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• ∆v launch = 6.435 km/s;

• ∆v fb = 6.08 · 10−12 km/s;

• v∞,S = 2.2102 km/s.

Figure 2.4: Orbit sequence with global optimization
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A few basic concepts can be extrapolated from the previous examples. First

of all, when implementing a global optimization technique we obtain the

best result in terms of total ∆v , but it is not possible to control each of the

terms that add up to the sum singularly: this results in a quite high ∆v fb,

which would require a considerable fuel burn. When optimizing the global

∆v the algorithm stabilizes on a solution that is very close to performing two

Homann’s transfer orbits, with the true anomaly θ going from values close to 0

at departure time to values close to π when approaching the destination: this

is only feasible with the additional degree of freedom given by the maneuver

at the periapse of the flyby orbit. In the second case, the flyby maneuver is

reduced to near-zero value resulting in a free flyby; as a consequence, there

is no a priori control over ∆v launch and v∞,S. As far as the first term is

concerned, the user will need to prune the solutions in order to find those

that grant a ∆v launch compatible with available launcher technology. The

v∞,S usually falls in the range [2, 3] km/s, depending on the real positions of

departure and arrival due to the planets’ ellipticity. The maneuver in Jupiter

apparently looks beneficial for the final encounter with Saturn, lowering the

hyperbolic excess velocity to v∞,S = 1.4245 km/s, which is better than what

can usually be accomplished with a pure flyby, but still suffers the high costs

required by the maneuver. Tests were run to try to find the solution with

the lowest hyperbolic excess speed at Saturn’s sphere of influence; the best

results obtained were around v∞,S ≈ 1.3 km/s, at the expenses of more

intense maneuvers in the other phases of the mission: this means that, in

order to reduce the relative velocity at the encounter with Saturn, other

strategies need to be implemented.
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Optimizing the Capture with

Low Thrust

In this chapter the results of the analysis conducted up to this point will be

elaborated and perfected. The Cassini Mission reached Saturn with a hyper-

bolic excess speed of v∞ = 5.6 km/s and, to have the spacecraft captured

into the sphere of influence of the planet, a ∆v = 622 m/s was necessary; this

required a consumption of 800 kg of propellant [7, 16], which had a severe

impact on the mass budget of the mission. Moreover, the spacecraft was put

onto a highly elliptic orbit around Saturn, requiring a second maneuver and

several subsequent flybys of Saturn’s moons to raise its periapse [16]. Since

the energy of the hyperbolic orbit entering Saturn’s sphere of influence is

directly proportional to the parameter c3 = v 2
∞, reducing the relative speed

means facilitating the capture maneuver. In order to do so, a low-thrust arc

will be inserted in the transfer orbit from Jupiter to Saturn: the low thrust

will be provided by an electric thruster; the main parameters involved will

be the acceleration α provided by the thruster, the orientation angle β of the

thrust vector, the time during which the thruster is turned on Tthr and the

delay time δ to be waited from the departure from Jupiter before turning on

the thruster. The parameters will be chosen according to the performances
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of different types of electric thrusters available on the market (ion thrusters,

Hall-effect thrusters...) and based on the best fitting parameters obtained by

the simulations.

3.1 Gaussian Planetary Equations

The method implemented to obtain the motion of the spacecraft along the

thrust arc consists in integrating the Gaussian Planetary Equations, which

can be derived for each one of the six classical orbital elements through the

Variation of Parameters (VoP) technique. First of all, it is necessary to

point out that applying a thrust arc for an extended period of time makes

it impossible to work with classic keplerian orbits: the spacecraft is subject

to non-conservative forces (the thrust) and keplerian theory does not apply.

During its motion along the thrust arc the spacecraft will occupy, at each

instant, a specific position in space ~r with a certain velocity ~v ; knowing the

state vector allows to calculate the keplerian parameters of the S/C in that

specific instant : this set of parameters will be called osculating parameters

and will correspond to an osculating orbit, which is a keplerian unperturbed

orbit, locally tangent to the spacecraft’s motion in the given position.

3.1.1 Variation of Parameters and derivation of the

equations

The Variation of Parameters method is based on the idea that the solution to

the perturbed system can be described by a sequence of solutions to the un-

perturbed system, meaning that in the perturbed system the parameters are

assumed to be time-varying [17]. The perturbations need to be small enough

to provide ”smooth” changes in the parameters; the osculating parameters

can be represented by a time-varying state vector ~c = (a, e, i,Ω, ω, θ). The

Gaussian Planetary Equations will be a system of 6 intertwined linear equa-
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tions that express the evolution of the keplerian parameters over time [17]:

d~c

dt
= f (~c, t)

The position and velocity vectors will be expressed as functions of the oscu-

lating parameters and time:

~r = ~x (~c, t)

~v = ~̇x (~c, t)

The equations of motions, for both the unperturbed and perturbed case, are

the following [17]:

~̈x (~c, t) +
µ~x (~c, t)

|~x (~c, t)|3
= 0

~̈x (~c, t) +
µ~x (~c, t)

|~x (~c, t)|3
= ~α

We can derive the equations to obtain the velocities in both perturbed and

unperturbed case [17]:

~̇x (~c, t) =
∂~x (~c, t)

∂t

~̇x (~c, t) =
∂~x (~c, t)

∂t
+

6∑
i=1

∂~x (~c, t)

∂ci

dci
dt

We want the osculating elements to correspond to the keplerian orbit that

has the same state vector both in the perturbed and unperturbed case: this

means that the two expressions for the velocity ~̇x must be equal. This trans-

lates into the condition of osculation [17]:

6∑
i=1

∂~x (~c, t)

∂ci

dci
dt

= 0

Deriving again to obtain the acceleration, and applying the condition of

osculation, we get [17]:

~̈x (~c, t) =
∂2~x (~c, t)

∂t2
+

6∑
i=1

∂~̇x (~c, t)

∂ci

dci
dt
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which inserted into the equation of motion leads to:

∂2~x (~c, t)

∂t2
+

6∑
i=1

∂~̇x (~c, t)

∂ci

dci
dt

+
µ~x (~c, t)

|~x (~c, t)|3
= ~α

Now remembering the equation of motion for the unperturbed case, the final

expression simplifies to [17]:

6∑
i=1

∂~̇x (~c, t)

∂ci

dci
dt

= ~α

This last expression provides a system of 3 linear differential equations and

is not enough to close the problem for all the 6 parameters. We take now the

scalar product of both members and ∂cj/∂~̇x with j = 1, ..., 6 to obtain [17]:

6∑
i=1

[
∂cj

∂~̇x

∂~̇x

∂ci

]
dci
dt

=
∂cj

∂~̇x
~α

With the 6 keplerian parameters being linearly independent, the term be-

tween square brackets [] reduces to the Kronecker function δj,i = 1 for j = i

and δj,i = 0 for j 6= i. It should be noted that the 6 parameters need not

to be the classic keplerian ones, but could be any set of 6 linearly indepen-

dent parameters that can generate a keplerian orbit. The final equation to

calculate the evolution in time of the parameters takes the form [17]:

dcj
dt

=
∂cj

∂~̇x
~α

The derivation for the rate of change of each of the parameters is long and

articulated and will not be presented here. Attention should be paid to the

fact that each parameter has to be derived with respect to the velocity com-

ponents, which need to be expressed in the same frame as the acceleration.

Detailed derivation can be found in several textbooks such as Vallado’s [17].

The form of the equations that will be implemented later in this work is the
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following [18]:

dΩ

dt
=

r

p

sin(θ + ω)

sin i
α̃z

dω

dt
= −1

e
cos θα̃x +

(
1 +

r

p

)
1

e
sin θα̃y −

r

p
cot i sin(θ + ω)α̃z

di

dt
=

r

p
cos(θ + ω)α̃z

da

dt
=

2a2

p

(
e sin θα̃x +

p

r
α̃y

)
de

dt
= sin θα̃x +

[(
1 +

r

p

)
cos θ + e

r

p

]
α̃y

dθ

dt
=

h

r2
+

√
p

a

[
cos θ

ean
α̃x −

(
1 +

r

p

)
sin θ

ean
α̃y

]
In the version of the equations presented above the acceleration terms have

been corrected to match the dimensions according to: (α̃x, α̃y, α̃z) = h/n2a3(αx, αy, αz).

To simplify the notation, the semiparameter p = a(1 − e2) has been used,

with the obvious assumption that the orbit be elliptic.

Figure 3.1: Comoving orbital frame of reference [6]

The frame of reference moves with the satellite, with the x axis along the

orbital radius and the z axis parallel to the angular moment. The components
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of the acceleration in the orbital frame will therefore be:
αx = α sin β

αy = α cos β

αz = 0

3.1.2 Dimensionless Gaussian Planetary Equations

The equations derived so far can be modified to improve the efficiency of

the calculations. Most of the keplerian parameters are dimensionless, others,

like the semimajor axis a, are not. The calculations would require several

operations between dimensionless parameters, usually close to unit value,

and parameters with values that are several orders of magnitude higher than

unity (all the parameters that express a length). The best way to approach

the integration is by using non-dimensional variables: from now on, plain

variables will be intended as dimensionless, while variables with a hat will

represent variables with the respective dimensions. The procedure follows

from the selection of a scale length a0 [18]:

• length: a0 = L =⇒ â = a0a

• time: ω0 =
√

µ
a30

=⇒ τ = ω0t̂

• velocity: v0 = a0ω0 =⇒ v̂ = v0v

• acceleration: α0 = a0ω
2
0 =⇒ α̂ = α0α

• angular moment: ĥ = a2
0ω0h

Dimensionless parameters like e and θ will be left unchanged. We introduce

the dimensionless parameter χ:

χ = 1 + e cos θ =
p

r

and point out the relation h =
√
p, that can be proved by:

ĥ2

µ
= p̂ =⇒ a4

0ω
2
0

µ
h2 = a0p =⇒ h =

√
p
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With these considerations, the non-dimensional GPE assume the form [18]:

dΩ

dτ
=

√
p

χ

sin(θ + ω)

sin i
αz

dω

dτ
=

√
p

e

{
− cos θαx +

(
1 +

1

χ

)
sin θαy −

e

χ
cot i sin(θ + ω)αz

}
di

dτ
=

√
p

χ
cos(θ + ω)αz

da

dτ
=

2a2

√
p
{e sin θαx + χαy}

de

dτ
=
√
p

{
sin θαx +

[(
1 +

1

χ

)
cos θ +

e

χ

]
αy

}
dθ

dτ
=

χ2

p3/2
+

√
p

e

{
cos θαx −

(
1 +

1

χ

)
sin θαy

}
At this point, a few last steps can be taken to simplify the equation. First of

all, in the hypothesis of working with planar orbits, there will be no need to

provide an out-of-plane component of the acceleration, which implies αz = 0

eliminating a few of the terms. It can be noticed that both the parameters

Ω and i depend entirely on αz: this means that two equations can be re-

moved from the computation, since the two parameters involved will remain

constant. It will prove to be convenient to work with two alternative param-

eters: the longitude l = θ+ω will be substituted to ω and the semiparameter

p = a(1− e2) will be substituted to e. While the derivative of the longitude

can be calculated adding the two GPE for θ and ω, the derivative of the

semiparameter needs to be calculated through the chain rule:

dp

dτ
=

da

dτ

(
1− e2

)
− 2ae

de

dτ

For each step of the integration the eccentricity can be derived from a and

p: e =
√

1− p/a. We finally get to the final form of the 4 GPE that will be
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used for the integration of the equations of motion [18]:

da

dτ
=

2a2

√
p
{e sin θαx + χαy}

dp

dτ
= 2

p3/2

χ
αy

dθ

dτ
=

χ2

p3/2
+

√
p

e

{
cos θαx −

(
1 +

1

χ

)
sin θαy

}
dl

dτ
=

χ2

p3/2

3.2 Low Thrust equations

In this chapter we will analyze different aspects of the low-thrust theory. As

mentioned previously, the aim of applying a low-thrust arc is to reduce the

relative velocity between the spacecraft and the target planet, in our case

Saturn. In order to do so, the thrust needs to be pointing along an optimal

direction to provide the desired variation in the parameters of the spacecraft’s

orbit. Assuming that we want to reach Saturn in a specific position, the

optimal solution to reduce the v∞ is to have the spacecraft put onto an orbit

that is tangent to Saturn’s at the intersection point. To minimize the v∞,

the parameters of the transfer orbit need to approach those of Saturn’s orbit,

with the upper bound of v∞ = 0 when the satellite is inserted into Saturn’s

orbit. In the following sections, the subscript ’S’ will indicate parameters of

Saturn’s orbit, while the subscript ’f’ will refer to the spacecraft’s parameters

after the thrust arc.

3.2.1 Circular Orbit approximation

Initially we will make the assumption of Jupiter’s and Saturn’s orbit being

circular. The real position of the planets will also be neglected for the time

being, as the main focus is to identify how to perform the thrust arc to
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optimize the capture. The purpose is to reach an altitude equal to Saturn’s

radius that is, in this case, aS; when in the intersection point we have:

aS =
af (1− e2

f )

1 + ef cos θf
=

pf
1 + ef cos θf

from which we can easily calculate:

cos θf =
1

ef

(
pf
aS
− 1

)
In the two equations above, θf is the true anomaly of the S/C at the inter-

section point with Saturn. We can discriminate between three cases:

• |cos θf | < 1: the spacecraft intersects Saturn’s orbit;

• |cos θf | = 1: the spacecraft’s orbit is tangent to Saturn’s orbit at it’s

apoapse;

• |cos θf | > 1: the spacecraft does not intersect Saturn’s orbit.

Notable Equations and Parametrization

• Tangency condition: the Γ curve

Let’s consider transfer orbits that are tangent to Saturn’s orbit. In this

circumstance cos θf = −1 so we obtain [18]:{
aS = af (1 + ef )

pf = af (1− e2
f )

In our analysis, the variables of the optimization will be af and pf ,

while ef can be calculated from the other two. The two variables will

be better expressed through the additional following parametrization

[18]:

ξ =
af
aS

η =
pf
aS
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Eliminating the parameter e from the equations above and substituting

the new variables leads to the formulation of the Γ curve [18]:

Γ : 2− 1

ξ
− η = 0

In the (ξ, η) plane this curve is the locus of points that correspond to

an orbit that has its apogee on Saturn’s orbit; all the points below the

curve correspond to orbits that intersect Saturn’s orbit, while those

lying above correspond to orbits that do not [18].

Figure 3.2: Γ curve [18]

• Relative Velocity: the σ parameter

When the final orbit reaches Saturn, meaning the two orbits do in-

tersect, we can calculate the relative velocity v∞ at the intersection

point. The velocities of both planet and S/C can be expressed in polar
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coordinates:

~vf =

{
1
√
pf
ef sin θf

}
ûr +

{
1
√
pf

(1 + ef cos θf )

}
ûθ

~vS =

{
1
√
aS

}
ûθ

and the module of v∞ needs to be calculated vectorially [18]:

v2
∞ =

(
1
√
pf
ef sin θf

)2

+

(
1
√
pf

(1 + ef cos θf )−
1
√
aS

)2

= −
1− e2

f

pf
+ 2

1 + ef cos θf
pf

+
1

aS
− 2

1 + ef cos θf
pf

√
pf
aS

=
3

aS
− 1

af
− 2

√
pf
a3
S

Defining the new parameter σ = asv
2
∞ and adopting the same variables

(ξ, η) introduced in the previous chapters, leads to [18]:

σ = 3− 1

ξ
− 2
√
η

Figure 3.3: Curves at constant values of σ [18]
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For a given σ, the intersection point between the curve at constant σ

and the Γ curve provides the semimajor axis and semiparameter of the

orbit, tangent to Saturn’s orbit, whose relative velocity corresponds

to σ. In such a case, with Saturn’s velocity being higher than the

spacecraft’s, we have [18]:

v∞ =
1
√
aS
− 1
√
pf

(1− ef )

√
σ = 1− 1− ef√

η

From this last equation we remind that we have [18]:

af (1− e2
f ) = aS =⇒ ef =

1

χ
− 1

and from the equation of the Γ curve [18]:

2− 1

ξ
= η

which lead to:
√
σ = 1−√η

This last equation explains that, in order to minimize σ, which is the

relative velocity, we need to maximize the semiparameter η.

• The transfer orbit does not reach Saturn

If the transfer orbit does not reach Saturn’s orbit, it means the apoapse

lies at a lower altitude than aS; in this case, the relative velocity v∞ is

defined as the difference between the spacecraft’s velocity at its apoapse

and Saturn’s velocity when it lies on the radial direction that joins the

Sun with the S/C [18]. When Saturn and the spacecraft have different

phases, the relative velocity is higher. Again we have:

v∞ =
1
√
aS
− 1
√
pf

(1− ef )
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A similar analysis to that in the previous section leads to [18]:

√
σ = 1−

√
η

ξ +
√
ξ (ξ − η)

η =

{
1

2ξ (1−
√
σ)

+
1

2

(
1−
√
σ
)}−2

Figure 3.4: Curves at constant values of σ; those which reach Saturn in green

and those who do not in blue [18]

Optimal Control Laws

The purpose of this section is to identify the most efficient way to apply the

thrust arc in order to produce the desired variations in the orbital param-

eters. Three main techniques will be investigated, which apply to different

circumstances that may characterize the unpropelled transfer orbit; as we

will see in future sections, combination of multiple control strategies are also

feasible.

• The transfer orbit intersects Saturn’s orbit

In this case, the best control strategy is to decrease σ until the tangency
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condition is reached. The most efficient way to do so is by moving in

the (ξ, η) plane perpendicularly to the curves at constant σ [18]. The

gradient of a curve at constant σ provides the perpendicular direction:

~n = ~∇σ =

(
∂σ

∂ξ
,
∂σ

∂η

)
=

(
1

ξ2
,− 1
√
η

)
This provides restrictions for the time-evolution of the variables [18]:

dξ

dτ
= λ

1

ξ2

dη

dτ
= −λ 1

√
η

=⇒ dξ

dτ

1
√
η

+
dη

dτ

1

ξ2
= 0

Remembering the dimensionless GPE’s and that (ξ, η) are proportional

to (a, p) leads to [18]:

da

dτ

√
aS
p

+
dp

dτ

a2
s

a2
= 0

Substituting the equations for the time derivatives and the decomposi-

tion for the acceleration vector we obtain [18]:

tc sin β + ts cos β = 0

where: 
tc = e sin θ

ts = χ+
a

3/2
S p5/2

χa4

⇐⇒


tc = e sin θ

ts = χ+
η5/2

χξ4

The optimal value for β is therefore [18]:{
sin β = Λts

cos β = Λtc
=⇒ β = arctan 2(Λts,−Λtc)

The absolute value of Λ can be any real number different from 0, so we

assume |Λ| = 1. The sign of Λ, however, needs to be chosen in order

to increase the semiparameter p [18]:

dp

dτ
= −

[
2
p3/2

χ
eα

]
Λ sin θ > 0

Therefore we choose Λ to have the opposite sign of sin θ [18].
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• The transfer orbit is tangent to Saturn’s orbit

When the transfer orbit already is tangent to Saturn’s orbit, it means

it represents a point that lies on the Γ curve: the best way to proceed

is to reduce σ moving the parameters of the S/C along the Γ curve.

The perpendicular direction to the curve is [18]:

~n = ~∇Γ =

(
∂Γ

∂ξ
,
∂Γ

∂η

)
=

(
1

ξ2
,−1

)
To move along the curve, we want the vector

~t =

(
dξ

dτ
,

dη

dτ

)
to be perpendicular to ~n . This leads to [18]:

dξ

dτ

1

ξ2
− dη

dτ
= 0

Similarly to what was done in the previous case, this leads to [18]:

tc sin β + ts cos β = 0

where: 
tc = e sin θ

ts = χ+
η2

χ

=⇒ β = arctan 2(Λts,−Λtc)

Again, we choose the absolute value of Λ in order to increase p:

dp

dτ
= −

[
2
p3/2

χ
eα

]
Λ sin θ > 0

Therefore we choose Λ to have the opposite sign of sin θ [18].

• The transfer orbit does not intersect Saturn’s orbit

When the transfer orbit does not intersect Saturn’s orbit, the thrust

must be provided in order to raise the apoapse to Saturn’s altitude.

Let in this case be [18]:

~n = ~∇
√
σ =

(
∂
√
σ

∂ξ
,
∂
√
σ

∂η

)
= (nξ, nη)
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And the equation that allow to reach the Γ curve moving along a curve

at constant σ is [18]:
dξ

dτ
nξ +

dη

dτ
nη = 0

Similarly to what was done in the previous cases, this leads to [18]:

tc sin β + ts cos β = 0

where:tc = eχ sin θ

ts = χ2 − η√
ξ(
√
ξ +
√
ξ − η)

=⇒ β = arctan 2(Λts,−Λtc)

Again, we choose the absolute value of Λ in order to increase p:

dp

dτ
= −

[
2p3/2eα

]
Λ sin θ > 0

Therefore we choose Λ to have the opposite sign of sin θ [18].

3.2.2 Elliptic orbits

In this section we will see how the equations developed in the previous sec-

tions can be extended and adapted for a problem that aims at intersecting a

target planet that lies on an elliptic orbit. The concepts and purpose are the

same as before, but a degree of approximation is removed in order to provide

more accurate results in the perspective of a future application of the the-

ory. The theory revolves around the assumption of optimizing the equations

for the real intersection point between the transfer orbit and Saturn’s orbit.

The subscripts used will be the same as those used previously, referring to

the keplerian parameters after the thrust arc; the angles θS and θf will refer

to the true anomalies of Saturn and the transfer orbit respectively, at the

intersection point r.

r =
aS(1− e2

S)

1 + eS cos θS
=

af (1− e2
f )

1 + ef cos θf
=

pS
1 + eS cos θS

=
pf

1 + ef cos θf
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Notable Equations and Parametrization

• Relative Velocity: the σ parameter

The velocities of both Saturn and the S/C are expressed in polar co-

ordinates, only in this case the radial component of Saturn’s velocity

will not be neglected:

~vf =

{
1
√
pf
ef sin θf

}
ûr +

{
1
√
pf

(1 + ef cos θf )

}
ûθ

~vS =

{
1
√
pS
eS sin θS

}
ûr +

{
1
√
pS

(1 + eS cos θS)

}
ûθ

and the module of v∞ needs to be calculated vectorially:

v2
∞ =

(
1 + ef cos θf√

pf
− 1 + eS cos θS√

pS

)2

+

(
ef sin θf√

pf
− eS sin θS√

pS

)2

=
1 + e2

f + 2ef cos θf

pf
+

1 + e2
S + 2eS cos θS

pS
+

− 2
√
pfpS

[(1 + ef cos θf )(1 + eS cos θS) + efeS sin θf sin θS]

=
4

r
− 1

af
− 1

aS
− 2

r

√
pfpS
r2
− 2

[
ef sin θf√

pf

eS sin θS√
pS

]
At this point the term between square brackets [] needs to be manip-

ulated a bit. Let’s remind that the radial velocity of an orbiting body

is expressed by the equation:

vr,i =
ei sin θi√

pi

We now take the equation of the orbital energy for an elliptic orbit, in

its dimensionless form, and divide it by the semiparameter p:

v2
r + v2

θ

2p
− 1

pr
= − 1

2pa

v2
r

p
=

2

pr
− 1

pa
− v2

θ

p
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and remind that the following relation holds for the normal component

of the velocity:
v2
θ

p
=

1

p

(
1 + e cos θ
√
p

)2

=
1

r2

which substituted into the last equation leads to the expression:

vr = ±
√

2

r
− 1

a
− p

r2

where the ± sign is chosen according to whether the radial velocity vr

is directed outwards (θ ∈ [0, π]) or inwards (θ ∈ [π, 2π]). This equation

for vr can be substituted into the last expression for the hyperbolic

excess velocity giving:

v2
∞ =

4

r
− 1

af
− 1

aS
− 2

r

√
pfpS
r2
∓ 2

√
2

r
− 1

af
− pf
r2

√
2

r
− 1

aS
− pS
r2

At this point we adopt a parametrization similar to that of section

3.2.1, for both transfer orbit and Saturn’s orbit:ξ =
af
r

η =
pf
r

φ =
aS
r

ψ =
pS
r

which lead to the final expression for σ:

σ = rv2
∞ = 4− 1

φ
− 1

ξ
− 2
√
ψη ∓ 2

√
2− 1

φ
− ψ

√
2− 1

ξ
− η

It is easy to verify that with the approximation of Saturn’s orbit being

circular (aS = pS = r) the last equation leads back to the original

formulation:

σ = aSv
2
∞ = 3− 1

ξ
− 2
√
η

• Tangency condition: the Γ curve

In the (ξ, η) plane, the Γ curve is the locus of points that correspond to
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the orbits that are tangent to Saturn’s orbit at the given intersection

point. Considering the orbit as elliptic, the tangency is granted when

the local velocity of the planet and that of the satellite are parallel.

Equivalently, the cross product of the two velocity vectors has to be

equal to zero. Since the orbits are planar, it will suffice to calculate the

out-of-plane component of said cross product and equate it to zero:

vrfvθS − vrSvθf = 0

We now multiply both terms by 1√
pfpS

and remembering that vθi√
pi

= 1
r

leads to:
1

r

(
vrf√
pf
− vrS√

pS

)
= 0

With the same substitution applied before, squaring the two terms of

the equation leads to:

Γφ,ψ :
1

φ
+ ψ − 1

ξ
− η = 0

Again, in case of circular orbit the last equation falls back into the case:

Γφ,ψ : 2− 1

ξ
− η = 0

Attention needs to be paid to the fact that the Γφ,ψ curve depends on

the position of the intersection point, through the parameter r. The

shape of the curve, in fact, will change slightly according to the real

position of the target planet on its elliptical orbit.

Optimal Control Laws

Assuming that, after performing a flyby around Jupiter, the transfer orbit

intersects Saturn’s orbit, we want to provide a version of the optimal control

equations presented earlier but applied to the case of an elliptic target orbit.
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• Reaching tangency condition

Again we want to move in the (ξ, η) plane perpendicularly to the curves

at constant σ. The gradient of a curve at constant σ in this case is:

~n = ~∇σ =

(
∂σ

∂ξ
,
∂σ

∂η

)
=

(
1

ξ2
(1∓H),−

√
ψ

η
±H

)
3

where:

H =

√
2− 1/φ− ψ
2− 1/ξ − η

And from analogous considerations to the circular orbit case, the equa-

tion for the optimal control is:

dξ

dτ

∂σ

∂η
− dη

dτ

∂σ

∂ξ
= 0

Which leads to:

tc sin β + ts cos β = 0

where: 
tc = e sin θ

ts = χ+
η2

χξ4

1∓H√
ψ/η ∓H

3

The optimal value for β is therefore:{
sin β = Λts

cos β = Λtc
=⇒ β = arctan 2(Λts,−Λtc)

with the identical considerations about Λ.

3The (∓) sign varies according to the orientations of radial velocities vrS and vrf :

when sin θf sin θS > 0, the (∓) becomes a minus (-), when sin θf sin θS < 0, becomes a

plus (+).
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• Maintaining tangency condition

The control law for moving along the Γφ,ψ curve is identical to the one

for the circular approximation case:

~n = ~∇Γφ,ψ =

(
∂Γφ,ψ
∂ξ

,
∂Γφ,ψ
∂η

)
=

(
1

ξ2
,−1

)
which also leads to:

tc = e sin θ

ts = χ+
η2

χ

=⇒ β = arctan 2(Λts,−Λtc)

With the usual considerations about Λ.
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Chapter 4

Implementation and Results

4.1 General concepts

In this chapter we will develop the results obtained in section 2.3 applying

the theory laid out in chapter 3 for an elliptic target orbit. The orbital

design considered will be the second one presented, involving a free flyby

around Jupiter; the parameter chosen as scale length is the heliocentric radius

of the intersection point between Saturn and the transfer orbit: a0 = r̂.

This choice proves to be efficient because it reduces all the length quantities

to values lower than 1, and with r = 1 the parameters (ξ, η) and (φ, ψ)

result numerically equal to the dimensionless values of (af , pf ) and (aS, pS)

respectively, avoiding additional manipulation for the parameters involved in

the optimal control. The Gaussian Planetary Equations will be solved using

MATLAB®/ Simulink implementing the Runge-Kutta(4,5) method (ode45).

In the simulation, the thrust appears in the form of a square wave with

amplitude equal to the acceleration in the time interval while the thruster

is on, and equal to zero when turned off; the simulation terminates when

the orbital radius of the transfer orbit reaches r = 1. The dimensionless

parameters of the transfer orbit are reported in table 4.1. As mentioned

previously, there are four main design drivers in the process of optimizing
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Transfer orbit 2

e 0.455335 a 0.6873765

i 0.0 θdeparture (rad) 1.546061

ω (deg) 88.6728 θarrival (rad) 3.112125

Ω / ∆T 1.365526

Table 4.1: Dimensionless parameters of the Jupiter-to-Saturn transfer orbit

the trajectory: the thrust direction angle β, the acceleration provided by

the thruster α, the time during which the thruster is turned on Tthr and the

time to be waited, from the departure from Jupiter, before turning on the

thruster δ. As seen in chapter 3, the angle β can be derived from the most

suitable optimal control laws, and is therefore defined in every circumstance.

As can be seen from the control laws for β, the angle is independent from the

acceleration provided: intuitively, this means that the acceleration does not

affect the path that joins different points along the Γ planecurve, but only

the time it requires the thruster to cover that path. In each of the analyses

presented the angle β was calculated in order to reach tangency condition

firs, at to move along the Γ curve subsequently. An example of the evolution

of the transfer orbit in the (ξ, η) plane is presented in fig. 4.1.
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Figure 4.1: Evolution along the (ξ, η) plane with α = 0.3 and Tthr = 5 years
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4.2 Optimal choices for α, Tthr and δ

Several simulations were run with a variety of values for each parameter:

the purpose is to identify significant correlations among the parameters and

optimal values for the implementation of the method that are not evident

from a first mathematical analysis. The test values for the acceleration are

α ∈ [0.2, 0.4] which correspond, for a spacecraft with a mass of 1000 kg,

to a thrust that falls in the range F ∈ [10, 25] mN; these values were cho-

sen based on the performances of a variety of ion thrusters and hall effect

thrusters currently available on the market [19] so that the thruster’s power

requirement would not exceed the indicative value of 400 W, which can be

provided through RTG’s. The values for Tthr correspond to several years of

activity, as electric thrusters usually have a life expectancy of above 2 years

[20, 21]. Hypothetically, should a thruster require a Tthr longer than its

own expected lifetime, more thrusters can be utilized in sequence to provide

thrust when the firs one(s) cease to function, as electric thrusters have a very

low impact on the mass budget of the mission.

4.2.1 Simulations with constant Tthr

In this first subcase, several simulations were run assuming a constant value

for Tthr = 2.5 years. The independent variable in the plots is the delay time

δ; curves are given for different values of α.

As can be noted from the graphs, a higher acceleration (meaning a higher

thrust) results in a much lower relative speed at the encounter. As a down-

side, a higher thrust implies a higher total flight time, as it can be visualized

in fig. 4.2. There is an optimal choice for the delay time δ: looking simul-

taneously at fig. 4.2 and 4.3, it can be noted that the minimum relative

velocity for each curve is reached when the thruster is turned on exactly 2.5

years before the end of the total fight time. This means that the optimal

position for the thrust arc is at the exact end of the transfer orbit.
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Figure 4.2: Total time of flight for different values of δ and α
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Figure 4.3: v∞ for different values of δ and α
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4.2.2 Simulations with constant α

In this second simulation, the acceleration parameter has been kept constant

to α = 0.3, while the time of thrust is the parameter that changes in the

different curves. Again the independent variable is the delay time δ.

In this case as well, the behavior of the curves is qualitatively similar: in-

creasing Tthr allows to reduce the v∞, at the expenses of a higher total flight

time, as can be seen in fig. 4.4. Once more, comparing fig. 4.4 and 4.5 the

optimal value for the delay δ appears to be the one consisting in placing the

thrust arc at the exact end of the transfer orbit. One interesting observation

about these last charts is the fact that for sufficiently high values of δ the

curves at different Tthr overlap: this makes sense because when the thruster

is turned on, for example, 2.5 years before reaching Saturn’s altitude, the

integration is not affected by how long the thruster can keep working, and

will stop once the condition r = 1 is reached, regardless of how long the

thruster could hypothetically keep working.
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Figure 4.4: Total time of flight for different values of δ and Tthr
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Figure 4.5: v∞ for different values of δ and Tthr
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4.2.3 Simulations with optimal δ values

It appears clear that the optimal location of the thrust arc is at the end of

the transfer orbit, regardless of the other parameters involved. The degree

of freedom of δ is here removed as, for each combination of parameters, the

δ value is chosen in order to provide the minimum v∞ of each curve. The

curves provide the relative velocity v∞ as function of the thrust time, for

different values of the acceleration, and can be visualized in fig. 4.6. The

curves are not drawn for the entire domain as the variable Tthr needed to be

discretized due to the high non-linearity of the problem and the insurgence

of some numerical instability around v∞ → 0.

From the bottom graph in fig. 4.6 the v∞ appears to have a quasi-linear

dependance from the time of thrust Tthr. A regression analysis is conducted

to verify the accuracy with which the curves could be approximated by a

straight line having the equation:

v∞ = m ∗ Tthr + q

The parameter R2 in tables 4.2 and 4.3 is called coefficient of determination

and represents the reliability with which the actual curve can be approx-

imated by the regression line: the best result is obtained when R2 = 1.

Moreover, from the equation of the regression line, we can extrapolate the

value of Tthr,max, which is the time of thrust that needs to be provided to,

hypothetically, reach the best condition v∞ ≈ 0.
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Figure 4.6: v∞ as function of Tthr for different values of α
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m q R2 Tthr,max (ys)

α = 0.20 -0.32317 2.13741 0.99834 6.614

α = 0.25 -0.41143 2.13307 0.99903 5.185

α = 0.30 -0.51230 2.15437 0.99957 4.205

α = 0.35 -0.60861 2.16363 0.99975 3.555

α = 0.40 -0.70551 2.17328 0.99989 3.080

Table 4.2: Regression line parameters calculated with all data points

Figure 4.7: Regression line calculated with all data points

As can be visualized in fig. 4.7, there is a better concurrence between curve

and regression line for higher values of α, but only because they were cal-

culated for a smaller number of data points closer to the respective value of

Tthr,max.
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m q R2 Tthr,max (ys)

α = 0.20 -0.29024 2.00037 0.99991 6.892

α = 0.25 -0.38258 2.01401 0.99998 5.264

α = 0.30 -0.49077 2.08275 0.99980 4.244

α = 0.35 -0.59212 2.11564 0.99993 3.573

α = 0.40 -0.69587 2.14922 0.99995 3.089

Table 4.3: Regression line parameters calculated with last 5 data points

Figure 4.8: Regression line calculated with last 5 data points

A better estimate can be calculated utilizing, for each curve, only the last 5

data points, obtaining a regression line that approximates the slope of the

curve at its final end (fig. 4.8). New simulations were run adopting, for

each value of the acceleration, the Tthr,max values extrapolated from table

66



Chapter 4. Implementation and Results

4.3: the results are visualized in fig. 4.9, where the v∞ is plotted versus

the delay time δ. The best results, expressed in table 4.4, show that the v∞

has been reduced by an additional order of magnitude, down to values of

the order of 10 m/s. The results calculated from the extrapolated data for

Tthr,max do not produce v∞ = 0 yet, meaning that there are errors that are

implicit within the approximation, but with further iterations and more data

points an exact final result could theoretically be calculated. Nevertheless,

the results provided are already very good in the perspective of minimizing

the relative velocity, and are only affected by the limitations given by the life

expectancy of real electric thrusters.

Figure 4.9: v∞ versus δ with optimal value for Tmax
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Tmax (ys) v∞,min (m/s)

α = 0.20 6.892 59.50

α = 0.25 5.264 11.83

α = 0.30 4.244 11.72

α = 0.35 3.573 11.68

α = 0.40 3.089 11.67

Table 4.4: Near-zero v∞ values for different accelerations
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Orbital Design of the Mission

In this section all the theory and the results developed so far will be applied

to the real case of designing the mission to Saturn: the parameters of the

design will not be speculative, but chosen from state-of-the-art pieces of

technology to evaluate the feasibility of the mission and its cost/outcome

ratio. The total mass of the spacecraft is assumed to be 1000 kg, while the

initial orbital design is that presented in section 2.3 involving a pure flyby

around Jupiter. The parameters of the transfer orbit are reported once again

in table 5.1.

Transfer orbit 2

e 0.455335 a 0.6873765

i 0.0 θdeparture (rad) 1.546061

ω (deg) 88.6728 θarrival (rad) 3.112125

Ω / ∆T 1.365526

Table 5.1: Dimensionless parameters of the Jupiter-to-Saturn transfer orbit
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5.1 Choices for α and Tthr

A few words will be spent here on state-of-the-art technology concerning

electric thrusters. Without getting into the details of the subject, which

would be out of the purpose of this work, we want to outline some of the main

features of electric thrusters to make a sensible choice about which one(s)

would fit in with the current mission requirements. In electric propulsion,

gas propellant is ionized and accelerated through electric and/or magnetic

fields to produce a mass flow, which is the driving force of the thrust. The

ionized particles are ejected very fast compared to the speeds that can be

reached with chemical propulsion, resulting in a much higher Specific Impulse

Isp = vout/g; on the other hand, the mass of the ionized gas is considerably

smaller compared to that of solid or liquid propellants in chemical motors,

making the net thrust several orders of magnitude lower. The main advantage

of electric propulsion is that the gas propellant is much lighter and easier to

deal with in space, resulting in lower launch costs and avoiding attitude-

related problems such as the sloshing of liquid fuel inside tanks. The main

drawback of electric propulsion is, though, the necessity of having a strong

and stable source of power that sustains the electro-magnetic field. This

can be easily done in Earth orbits, as the proximity of the Sun makes the

problem readily solved with solar arrays: the solar constant J = 1350 W/m2

provides a power output higher than 1 kW with only one m2 of solar arrays.

With the intensity of the solar radiation decreasing proportionally to the

distance R−2, it goes from approximately J = 50 W/m2 at Jupiter’s orbit

to J = 13.5 W/m2 at Saturn’s orbit, making it quite difficult to generate

power from sunlight with solar arrays without having a huge impact on the

mass budget. The best way to provide for the thruster’s and the satellite’s

power needs throughout the mission is given by Radioisotope Thermoelectric

Generators (RTG’s): these consist of a certain number of devices called

General Purpose Heating Source (GPHS), which exploit the natural decay of
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Plutonium 238 to produce thermal power. Each module of GPHS contains

four pellets of Pu-238 which produce 62.5 Wt each, for a total nominal output

of 250 Wt per module and a weight of approximately 1.43 kg [22].

Figure 5.1: GPHS unit (above) and RTG assemble (below) [22]

Thermal power can be converted into electric power through the Seebeck

effect, according to which when heat is transferred to the electric junction

of two different conductive materials it generates a voltage difference, which

results in electric current when connected to a load. State of the art GPHS-
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RTG’s contain a stack of 18 modules that can produce an electric power

output of 285 We at launch and weigh 55.9 kg [22]. These models of RTG’s

were utilized in both the Galileo and Cassini missions: the first one visited

Jupiter and was equipped with 2 RTG’s, the second visited Saturn and was

equipped with 3 RTG’s [23]. In both cases, the generators worked contin-

uously until the end of both missions, which lasted almost 14 years and 20

years respectively. Losses of power of around 7 W per year are to be ex-

pected, because of the progressive decay of Plutonium and the degradation

of Si-Ge thermocouples [23]. The appropriate thruster is therefore to be se-

lected according to its total power consumption, which needs to match the

capabilities of the RTG’s: assuming to install two RTGs to supply for the

thruster and the satellite’s other needs, a good choice would imply a power

requirement of 300-400 W maximum; within this upper bound, any thruster

that can provide the maximum thrust is eligible for the choice, as a higher

thrust allows to reach a lower v∞. Good choices might be the BHT-200 by

Busek, the HiVHAc developed by NASA, and the SPT-50 by OKB Fakel

[19]. Another interesting and newer model is the PPS®X00 currently being

developed at Safran: this Hall thruster is being designed to work within the

power range of [200,1000] W to meet a variety of performance requirements;

the optimal design point is at 650 W, providing 40 mN of thrust with an

efficiency equal to that of the best state-of-the-art models available [24]. The

PPS®X00 is expected to become available on the market by 2020 [24]; look-

ing at the operating envelope in fig. 5.2 we can get an estimate of the thrust

available with our problem constraints: assuming to use this thruster for the

mission, with a power input of 300 W we read a thrust output of 19 mN

and a specific impulse of 1150 s, since we are interested in maximizing the

thrust. This leads to the definition of the acceleration α = 0.3228, which

falls in the range of parameters previously investigated. As for the choice of

Tthr we plan on using only one thruster, and for lack of a better estimate we

assume a total functioning time of 2.5 years [20, 21].
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Figure 5.2: Operating envelope of the PPS®X00. Blue area: stare-of-the-art

thrusters currently available [24]

5.2 Launch windows

The problem is implemented and integrated with the choice of variables de-

scribed in the previous sections; the value for δ is that of best choice and

results in δ∗ = 0.967336 = 4.89789 years. The orbital design is visualized in

fig. 5.3, from which it can be noted that another problem arises: Saturn’s

altitude is reached and the tangency condition is satisfied, but the thrust

arc produced a delay in the total time of flight and in the longitude l of

the spacecraft at the end of the integration. The spacecraft reaches the de-

sired altitude in a total time of Ttot = 7.397 years and spanning an angle

of ∆θ = 1.6749 rad. The next step will be finding the optimal instant in

which the flyby around Jupiter is to be performed, in order to reach the ex-

act same position as Saturn in the desired time: in other words, finding the

optimal launch window for the transfer orbit. This will require to reiterate

the problem and the time windows previously calculated.
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Figure 5.3: Non-thrust and thrust transfer orbits
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5.2.1 Circular orbits approximation

When assuming that planetary orbits are circular, the longitude of the or-

biting body is given by a linear relation:

l(t) = l0 + ωt

where l0 is the initial position and ω the mean motion. In our case, on

23/03/2040:

l0J = 3.0937 ωJ = 1.69 · 10−8 rad/s

l0S = 3.2807 ωS = 6.77 · 10−9 rad/s

and the requirements are: ∆lJS = 1.6749 rad and Ttot = 7.397 years. The

following relation needs to be satisfied:

∆lJS + 2kπ = lS(t+ ∆Ttot)− lJ(t) = ∆l0 + ωS∆Ttot + (ωS − ωJ)t
t =

∆lJS −∆l0 − ωS∆Ttot
ωS − ωJ

+ kTJS

TJS =
2π

ωJ − ωS
= 6.2037 · 108 s

meaning that the desired condition repeats every TJS = 19.672 years.

5.2.2 Elliptic orbits

When handling elliptic orbits, the method presented above only provides an

estimate of the good launch window, but cannot calculate it with precision

as the mean motions of the planets vary with their positions along the tra-

jectory. To obtain a more precise solution it is possible to use the Differential

Evolution algorithm with a few modifications:

• T2 = TJS: the third element of the decision vector X is imposed to be

equal to the total desired time of flight for each member of the initial
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population. This way, newer individuals will evolve adapting the first

two components, while the third one will remain fixed at the desired

value.

• C = |∆θ − ∆lJS|: the cost function is calculated as the difference

between the desired ∆lJS and the angle ∆θ spanned by a hypothetical

transfer orbit that links Jupiter and Saturn without a thrust arc.

The solution can be calculated with an absolute error that is lower than

εl = 10−15, while the TJS remains unaltered.

5.2.3 Comments

Changing the time variables of the problem is necessary to physically en-

counter the target planet. The main problem is that this method does not

produce optimal conditions for the flyby: finding the best launch window to

optimize the thrust trajectory makes it impossible to launch the spacecraft

from the Earth and realize a free flyby around Jupiter without implementing

trajectory corrections along the way. This problem will be discussed further

in this chapter, for now it will suffice to keep it in mind. One additional is-

sue is that, in order to meet the target planet with the procedure outlined so

far, the keplerian parameters of the spacecraft at its departure from Jupiter

in the newly calculated launch window need to be the same as in the case

expressed by table 5.1 and fig. 5.3. This is virtually impossible, as the newly

calculated radius of the spacecraft, coinciding with Jupiter’s position vector,

will be slightly different from before, due to the ellipticity of Jupiter’s orbit.

The outgoing transfer orbit is computed as follows:

• e and a: remain unchanged;

• θ: it is calculated from the parameters e and a and the current radius

of Jupiter rJ ;
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• ω = lJ − θ

This technique still produces slight errors in the total flight time TJS, as the

true anomaly of the departing S/C, calculated from Jupiter’s real radius, is

slightly different from that in table 5.1. This problem is solved iteratively:

for each iteration new values of TJS and ∆lJS are calculated, from which

the corresponding launch window can be found through the DE algorithm.

At each iteration, the errors in the two parameters decrease as the optimal

solution is approached.

5.3 Results

Transfer orbit 2

Jupiter Flyby 08/03/2040 Arrival at Saturn 26/08/2047

e 0.455335 a (km) 1.03195 · 109

i 0.0 θdeparture (rad) 1.545474

ω (deg) 87.4732 ∆T (ys) 7.47279

Table 5.2: Parameters of the final Jupiter-to-Saturn transfer orbit

After a few iterations, the problem converges. The parameters of the

transfer orbit from Jupiter to Saturn are reported in table 5.2. The thruster

is turned on after δ∗ = 0.98139 = 4.97065 years; with the engine working

continuously for 2.5 years, there appears to be a small mismatch with the

total flight time, probably due to numerical imprecisions. This results in

almost 19 extra hours of unpowered flight before actually reaching Saturn:

the error is acceptable for now, compared with the time scales involved, and

can be optimized with more powerful calculators. The final trajectory can be

visualized in fig. 5.4, where the green transfer trajectory is the hypothetical

solution to Lambert’s problem than connects Jupiter and Saturn in the same

time, but without the thrust arc.
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Figure 5.4: Final transfer orbit with thrust arc
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The orbit with the thrust arc offers a better solution to the problem of

approaching Saturn, as it can be seen from the figure, because it is tangent to

Saturn’s orbit at the intersection point, while the normal transfer orbit is not.

The green trajectory reaches Saturn with v∞ = 2.12135 km/s, while with the

final design for the thrust orbit the hyperbolic excess speed is reduced to:

v∞ = 0.75696126 km/s

The final solution is affected by some numerical imperfections, which can

ideally be reduced to near-zero values with better numerical precision and

more iterations. The absolute errors on the ∆TJS and the ∆lJS, which are

the subjects of the iterations, are the following:

• ε∆T = −416.97 s: the S/C reaches the desired altitude 7 minutes before

the expected time;

• ε∆l = 4.099 · 10−08: there is an difference of about 66.55 km along

the perpendicular direction between the final position of the S/C and

the position occupied by Saturn (the equatorial radius of Saturn is

RS = 58232 km).

The keplerian osculating parameters, the angle of thrust β and the parameter

σ are represented in 5.5. Both a and p increase over time, while e decreases

because the orbit is being circularized. The angle β is defined only in the

thrust segment and equal to zero otherwise; at the end of the thrust leg the

optimal thrust angle is β = 0, meaning that to further reduce the relative

speed, an impulse should be given along the tangential direction, as the S/C

and Saturn are in the same position. The parameter σ, as representative of

the relative velocity, diminishes as it is expected to.
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Figure 5.5: Final transfer orbit with thrust arc

5.4 Redefinition of Transfer Orbit 1

As mentioned previously, recalculating the optimal time and position for

the flyby in Jupiter requires modifications to the Transfer Orbit from the

Earth, as the orbit calculated in previous sections does not match the new

requirements. Two options are explored to solve the problem: the first one

involves a powered flyby around Jupiter to meet the v∞ requirement at the

exit of the sphere of influence, the second one consists in a free flyby around

Jupiter, but requires a D.S.M. to inject the S/C into the appropriate transfer
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orbit that leads to said free flyby. In none of the cases will it be possible to

perform the entire mission without ∆v adjustments.

Powered Flyby

The solution with a powered flyby is obtained pruning the domain looking for

the solution that would grant both the minimum difference between the v∞

at arrival and departure from Jupiter, and the minimum ∆v to be provided

by the launcher when departing from the Earth. The parameters of the best

solution found are summarized in table 5.3:

Transfer orbit 1

Earth Departure 30/09/2037 Jupiter Flyby 08/03/2040

∆vBO (km/s) 6.4972 vin∞,J (km/s) 5.7309

e 0.68939 a (km) 4.9075 · 108

ω (deg) 4.6672 θdeparture (rad) -0.14972

∆T (ys) 2.4385 θarrival (rad) 2.9907

Table 5.3: Parameters of the Earth-to-Jupiter transfer orbit

The solution calculated in the previous section 5.3 consisted in a vout∞,J =

5.3917 km/s, which should be equal to the vin∞,J to allow for an unpowered

flyby: hence the necessity of a corrective maneuver. The corrective impulse

of ∆v = −0.170 km/s is applied at the perijove at a radius of rP = 2.7823·106

km. This maneuver, assuming a post-burn mass of mS/C = 1000 kg, would

burn approximately 60 kg of fuel mass, if realized by a liquid-propellant

thruster of Isp ≈ 300s. The amount of fuel required is acceptable, but cannot

overcome the necessity of carrying a liquid engine and its own inert mass all

the way to Jupiter.
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D.S.M. and pure Flyby

To have an unpowered flyby around Jupiter, the S/C needs to reach the

planet with a hyperbolic excess speed of exactly v∞ = 5.3917 km/s. For this

purpose, the theory outlined in section 3.2 can be applied: using Jupiter’s

radius as scale length a0, we draw a curve ΓJφ,ψ referred to Jupiter follow-

ing the formulation in section 3.2.2, and a curve ΓE referred to the Earth,

according to the formulation in section 3.2.1 and assuming a circular orbit

for the Earth in first approximation. A third curve, in green in fig. 5.6,

describes the locus of points that represent orbits that intersect Jupiter with

the desired v∞, meaning σ = 0.1771. The intersection between the green

Figure 5.6: ξ and η parameters of the Earth-to-Jupiter transfer orbit

and red curves corresponds to the orbit that reaches Jupiter with the desired

relative velocity and is quasi-tangent to the Earth’s orbit. Its parameters

are reported in table 5.4. The problem with this second option is that it

is not possible to launch the S/C directly into this orbit, because the flight

time between the launch from the Earth and the arrival at Jupiter might,
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Transfer orbit 1

Earth Departure TBD Jupiter Flyby 08/03/2040

e 0.68499 a (km) 4.8234 · 108

ω (deg) -0.08 θarrival (rad) 3.07355

Table 5.4: Parameters of the Earth-to-Jupiter transfer orbit

in general, not be equal to the flight time required to reach Jupiter on the

08/03/2040. For this reason, it might be necessary to put the S/C into a

parking orbit around the Sun, with an optimal phase angle with respect to

the Earth, or launch the S/C into an orbit that intersects the target orbit in

table 5.4, provide a ∆v to acquire it. In any case, the best solution needs to

get the spacecraft to Jupiter in the desired time, and minimize the sum of

∆v’s of launch and D.S.M. The solution will not be presented here. The two

solutions (from table 5.3 and 5.4 can be visualized in fig. 5.7.

Figure 5.7: Comparison between the two solutions for the T.O.1
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Capture

In the previous chapters, the aim was to reduce the relative speed between the

spacecraft and Saturn at the encounter. In this sections we want to describe

the real benefits of this choice, which consist in easing the capture procedure

of the spacecraft into Saturn’s gravity field. To avoid further propellant con-

sumption the capture will be performed by an Electrodynamic Tether (EDT);

the study of feasibility carried out in the following pages will not be strictly

rigorous, and will follow the procedures outlined by E. C. Lorenzini and J.

R. Sanmart́ın, the main experts and leading researchers in the field of EDT’s

for space applications. The first Tethered Satellite System was proposed to

NASA and the Italian Space Agency in the 1970’s by Mario Grossi, from

the Smithsonian Astrophysical Observatory, and Giuseppe Colombo, from

University of Padua (Italy) [25]. A Tethered Satellite System consists of a

satellite with a metallic cable incorporated and coiled during launch, which

needs to be deployed to perform the designated operations. The tether can

extend up to several dozens of kilometers (up to 300 km), depending on the

application [25]; tethers can be used to provide attitude stabilization and

control, perform orbital maneuvers and generate power through interactions

with space environmental plasma.
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6.1 Stability of Inert Tethers

We analyze briefly the dynamics of an Inert Tether, which is a tether that

does not interact electrically with the surrounding space environment and

is only subjected to the main gravity field. Once the satellite is positioned

into orbit and the tether is deployed, the orbital motion is described by the

system’s gravity center. Since gravity does not vary linearly with altitude, the

center of gravity does not generally coincide with the center of mass, and said

displacement becomes more evident the longer the tether is; for a satellite

consisting in two equal masses m1 = m2 = m and a tether length that is

relatively small compared to the orbital radius, center of mass and center of

gravity can be assumed to coincide [25]. The situation depicted in figure 6.1

Figure 6.1: Inert Tether in orbit [26]
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explains the net forces acting on the system: the lower mass m1 experiences

a stronger gravity force because it is closer to the main gravity field, but

on the other hand, being forced to rotate at the center’s orbital velocity

ω0 at a lower altitude, it experiences a lower centrifugal force. The opposite

situation happens to the higher mass m2. The net forces are counterbalanced

by the tension T on the tether, and the oscillations of the system due to

the gravity gradient are called librations. The motion of the single mass m

around the center of mass can be studied through the equations of proximity

of Clohessy-Wiltshire, where the mass is deployed in the orbital plane and

the only external force acting on it is the tension along the tether [26]:{
δẍ− 3n2δx− 2nδẏ = fx

δÿ + 2nδẋ = fy

where δx and δy are the coordinates of the mass with respect to the CM in

the orbital frame and fi the components of the tension per unit mass:
fx = −T cos θ

m

fy = −T sin θ

m

Adopting polar coordinates δx = l cos θ and δy = l sin θ and assuming the

tether to be fully deployed (l̇ = 0) leads to the following equation for the

libration angle θ around the local vertical [26]:

θ̈ + 3n2 sin θ cos θ = 0

from which we compute the pulsation of the oscillation ω0 =
√

3n. Imposing

the condition θ̈ = 0 leads to the positions of equilibrium θ = k π
2

with k =

0, ..., 3; assuming that the system is librating around one of the positions of

equilibrium θ0 we obtain:

θ̈ + 3n2 sin(θ0 + θ) cos(θ0 + θ) = 0
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from which it can be demonstrated that the only stable positions of equi-

librium are for θ0 = 0 and θ0 = π, because they produce a positive sign for

the damping term [26], otherwise the libration is amplified. The system is

therefore stable only when aligned with the local vertical.

6.2 Electrodynamic Tethers

6.2.1 Generalities

An Electrodynamic Tether (EDT) consists of a tether made of conductive

material which can interact with the planet’s electromagnetic field through

the insurgence of an electric field ~Em in the orbital frame, which is due to the

relative motion of the spacecraft and the planetary magnetic field ~B. The

electric field can be calculated as [27, 28]:

~Em = (~vs/c − ~vpl)× ~B

where ~vpl is the velocity of the plasma, which corotates around the planet

with the planet itself [28]. Therefore, considering a satellite into a circular

equatorial orbit, it is possible to define an orbital radius at which the electric

field changes direction: this corresponds to the stationary radius [28]:

as = 3

√
µS
Ω2
S

with µS and ΩS being the planet’s gravity constant and rotational angular

velocity respectively. At r = as the relative velocity is zero and there is no

induced electric field; in all other cases, the electric field produces a current I

on the conductive tether: the current interacts with the magnetic field giving

rise to a Lorentz drag force with the expression [27] [28]:

~F = I~l× ~B

where ~l is directed along the tether length and oriented according to ~Em.

It can be easily shown that for an equatorial circular orbit having r < as
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the Lorentz force acts in the opposite direction to that of the spacecraft’s

velocity, resulting in a sort of a viscous drag, while for r > as the force acts

in the same direction as that of the spacecraft’s velocity. Obviously with the

aim of having the S/C captured by the planet, we want it to pass as close as

possible to the planet to have the Lorentz force acting as a drag and reducing

the orbit’s eccentricity to a value lower than 1. In the case of this study, the

S/C will enter the planet’s sphere of influence into an orbit that will be

barely hyperbolic [28], thus the ~vs/c vector will have a radial component and

the discriminating radius as will not correspond to the stationary radius;

assuming the injection orbit to be parabolic, the new discriminating radius

can be calculated as [28, 29]:

rM = as

√
2as
rP

with rP being the periapse radius. rM is the radius below which the Lorentz

force acts as a drag.

6.2.2 The bare tether

We have so far explained the insurgence of an electric field ~Em when the TSS

moves relatively to the ambient plasma. To allow a current I to flow along

the tether, the circuit needs to be closed, and the way to do so is through

the ambient plasma itself [25]. Early EDT designs involved a big conductive

sphere at one end of the tether to work as the anode and collect electrons

from the plasma, while on the other side an electron gun would eject those

electrons back into the environment [30]: in this design, the tether acts as an

impedance between the two ends, but stays insulated from the environment.

The bare tether concept was suggested later in the 1990’s to allow a larger

electron collection: the tether would be left bare (free of insulation) and

free to interact with the ambient plasma, therefore acting like a gigantic and

efficient Langmuir probe with a small cross section compared to the length,
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that can extend up to tenths of kilometers [30]. The current induced on

the tether is the so called orbital-motion-limited current IOML. This current

is limited by the tether’s short circuit value σcEmA and is a function of a

characteristic length Lch, which gauges ohmic effects on the bare tether [30].

The expression for Lch is [30]:

4

3
eNe

pLch
π

√
2eEmLch
me

= σcEmA

where the following terms are involved:

• e, me, Ne: electron charge, mass and density in the plasma environment

respectively;

• p: perimeter of the tether;

• A: cross section of the tether;

• σc: electric conductivity of the tether.

Since it is more convenient to obtain lower values for Lch (as will be shown

later on), the preferable shape of the tether is that of a tape of width w

and thickness h, to reduce the A/p ratio. For a thickness h that’s negligible

compared to the width, the expression above reduces to [29]:

4

3
eNe

2wLch
π

√
2eEmLch
me

= σcEmwh =⇒ Lch ∝
h2/3E

1/3
m

N
2/3
e

The IOML current can be calculated through a length-averaged current value

iav [29]:
IOML

σcEmwh
= iav

(
L

Lch

)
where a small iav corresponds to negligible ohmic effects and iav ≈ 1 to

dominant ohmic effects. The value of iav as function of L/Lch (with L being
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the actual tether length) can be approximated by the following expressions

[29], while the exact function is visualized in fig. 6.2:

iav =


0.3(L/Lch)

3/2 for L/Lch � 1

L/4Lch for L/Lch ≤ 2

1− Lch/L for L/Lch > 2

Figure 6.2: Normalized current iav versus normalized tether length L/Lch

[28]

6.2.3 Saturnian Space Environment

As it has been highlighted in the previous chapters, the capture operation

performed by an Electrodynamic Tether strongly depends on the planetary

space environment, namely on the magnetic field ~B and the electron density

of the ambient plasma Ne. These factors are not yet very well known; here

we will provide some information over the most up-to-date data, collected
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during the Cassini mission and recently elaborated. Very simple models for

the two quantities will be proposed.

Magnetic Field ~B

Saturn’s magnetic field is significantly weaker than Jupiter’s: most studies

involving EDT planetary captures found in literature are performed around

Jupiter, and this poses the first challenge to the performance of the system

around Saturn. The magnetic field ~B is involved twice in the computa-

tion of the drag force which, in first approximation, leads to a squared-

proportionality law between F and B. The magnetic field measured on Sat-

urn’s surface is B0 = 21160 nT [31]; considering Saturn’s equatorial radius

RS = 60268 km leads to a magnetic dipole moment of:

| ~m| = 4.632 · 109 T · km3

Figure 6.3: Sketches of the Earth’s, Jupiter’s and Saturn’s magnetic field

lines

The magnetic dipole moment vector ~m has a tilt of less than 1° from Saturn’s

spin axis, and has an offset of 0.04 ± 0.02 RS along the same axis [31]; for

the purpose of this study the vector will be assumed to lie on the spin axis,

91



Chapter 6. Capture

along the positive z-axis of a Saturn-centric equatorial frame. Contrarily

to what happens on the Earth, the field lines of Saturn’s magnetic field

point downwards. With ~r being the orbital radius expressed in equatorial

coordinates, the vector ~B follows from the 3D dipole law:

~B = 3
( ~m · ~r)

r5
~r−

~m

r3

Electron Density Ne

The plasma environment around Saturn in extremely diverse and articulated:

it is complicated to provide a model that describes Ne with precision without

neglecting some aspects that concur to the complexity of the phenomenon.

The most detailed and up-to-date information about Saturn’s plasma am-

bient come from the observations of the spacecraft Cassini; we will provide

a brief description of Saturn’s outer magnetosphere and plasmasphere, and

secondly of its inner plasmasphere. Cassini was put onto Saturnian orbit in

July 2004, and the high ellipticity of the orbit allowed repeated studies of

the plasma populations in a broad range of radii from the planet’s center of

mass. Subsequent orbits were analyzed from December 2004 to March 2005,

over which the spacecraft maintained an out-of-plane displacement from the

planet’s equatorial plane within ±0.4RS [32]. The data from five different

orbits show a radial dependance in the electron density, with a maximum

around 5RS and good repeatability and small scatter farther beyond [32].

The density profiles inside the 5RS boundary are highly scattered (fig. 6.4).

This phenomenon suggests a plasma source injection into the planet’s envi-

ronment, which reaches steady-state around 5RS and distributes outwards

uniformly [32]; one unconfirmed possibility is that the moon Enceladus might

be itself the responsible for the plasma injection [32]. A simple power law

can be used to approximate the regular behavior of plasma density Ne versus
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Figure 6.4: Electron density profiles per each orbit [32]

the radial distance, expressed in Saturn radii [32]:

Ne = k

(
1

R

)α
with

{
k = 2.2 · 104 cm−3

α = 3.63± 0.05

This simple model also finds validation in the elaboration of Schippers [33],

within the so called ”Region 1” of the outer magnetosphere (fig. 6.5), where

data from several orbits were merged together into one curve that expresses

the radial dependance.

Figure 6.5: Median electron density profile versus orbital radius [33]
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The description of the inner plasma distribution is even more complicated:

it does not just follow a radial dependance but, as we will see, it is strongly

influenced by the inclination with respect to the equator. Moreover, with

Saturn having a very high rotational period of only less than 11 hours, the

corotating plasma is subject to strong and rapid variations due to the changes

in the conditions of illumination. Several radio occultations from Cassini were

analyzed by Kilore et al. [34] and represented in charts that try to summarize

the very complex behavior of plasmas in Saturn’s inner ionosphere. Fig. 6.6

Figure 6.6: Median electron density profiles for different inclinations [34]

shows that the electron density increases with latitude: the trend appears to

be evident and repeatable, regardless of other ambient conditions. Regard-

less of the latitude, the density profile seems to reach its maximum around

2000 km from the surface of the planet, and being as much as one order of

magnitude higher in the high-latitude range than in the low-latitude range.

Finally, fig. 6.7 shows that even within the same latitude range there are

variations due to the different conditions of illumination. Strangely enough,

in the case of mid-latitude regions, density profiles showed a higher density

at dawn than at dusk, as opposed to the curves in fig. 6.7 for low-latitude
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Figure 6.7: Median electron density profiles in dawn and dusk conditions [34]

regions: this is thought to be either due to the lack of more consistent data or

some undetected plasma-injection phenomenon that happened during night-

time [34]. In conclusion, it is clear that the choice of the orbit and the time

at which the satellite reaches its closest approach to the planet are of vital

importance in order to obtain the most desirable plasma density levels and

perform the capture procedure successfully.

6.2.4 Preliminary Tether Design

This section will present the approach developed and followed by Sanmart́ın

and Lorenzini, together with their coauthors in [28, 29], to give a preliminary

estimate of mass and dimensions of a tether system that could effectively

perform a planetary capture. In order to do so, the Lorentz drag needs to

be able to perform a work |Wd| to reduce the eccentricity from a hyperbolic

value eh > 1 to an elliptic value ee < 1. The specific energy of an orbit can

easily be expressed as a function of the eccentricity and the periapse radius

95



Chapter 6. Capture

[6]:

εi =
µ

2rp
(ei − 1)

Remembering that for a hyperbolic orbit the specific energy is a function

of the excess speed εh = v2
∞/2, and that the periapse radius does not vary

during the dragged arc (in first approximation), allows to express the drag

work as [29]:

|Wd| = MS/C
v2
∞
2
· eh − ee
eh − 1

⇒ |Wd|
mtv2

∞/2
=
MS/C

mt

· eh − ee
eh − 1

The rearranged expression on the right hand side is particularly useful be-

cause it reduces the problem to a limited number of dimensionless coefficients:

• MS/C

mt
: it is the ratio between the spacecraft’s mass and the tether mass;

• eh−ee
eh−1

: it depends on the eccentricities before and after the dragged

arc; eh is usually known and very close to 1: eh − 1→ 0;

• |Wd|
mtv2∞/2

: it is the dimensionless drag work, and it contains all the

dynamic effects of the drag force on the spacecraft’s trajectory.

The last term can be expressed as the product of dimensionless factors as

follows [28]:
|Wd|

mtv2
∞/2

= B∗s
2 ·W ∗

d

where [28]:

B∗s
2 =

σcB
2
sasvs

25/6ρcv2
∞

with σc and ρc being the tether’s conductivity and density respectively, and

the subscripts ’s’ referring to values at stationary orbit. The derivation of

the term W ∗
d is much more elaborate and is explained in detail in [28]; for the

purpose of this work it will suffice to say that the drag is calculated along a

parabolic trajectory: with the eccentricity being very close to 1 (before and

after the dragged arc) the error committed is small [29]. The orbit is assumed
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to be equatorial and prograde, with the magnetic field ~B perpendicular to

the orbital plane and to the tether. The analysis leads to [28]:

W ∗
d = 2r∗M

8/3

∫ r∗M

1

(r∗M − r∗)dr∗

r∗6
√
r∗ − 1

· < iav cos2 φ >

with rM defined in section 6.2.1 and r∗ being the dimensionless radius r∗ =

r/rP ; iav is the dimensionless current from section 6.2.2 and φ is the angle

between the direction of the tether and the perpendicular to the radius-

vector. When applying this theory to Saturn, as opposed to the case of

Jupiter which was originally analysed in [28], it is clear that the significantly

weaker magnetic field of Saturn poses a challenge to the capture procedure

because of the dependance from B2
s . This capture can be facilitated by

injecting the spacecraft into a retrograde orbit, therefore having a much

higher relative speed to the corotating plasma [29]; furthermore, the weaker

interaction with the magnetic field produces a smaller force ~F, avoiding the

spinning of the tether (otherwise necessary to counteract tether bowing),

which is here assumed to lie along the local vertical (φ = const) [29]. The

new expression for W ∗
d takes the form [29]:

W ∗
d = 2r∗M

8/3

∫ ∞
1

(r∗M + r∗)dr∗

r∗6
√
r∗ − 1

· < iav >

Assuming the periapse to be very close to the surface of Saturn and the

hyperbolic excess speed to be that of a non-thrust transfer orbit after a

Jupiter flyby (rP ≈ RS and v∞ ≈ 2.5) leads to:

eh − ee
eh − 1

·
MS/C

mt

=< iav > ·6.13

At periapse, the characteristic length defined above is Lch ≈ 26 km; designing

the tether to be 52 km long leads to iav = 0.5 at periapse, where the magnetic

field is at its strongest value. Assuming also, as in first approximation, that

the final orbit be exactly parabolic (ee = 1) provides:

MS/C

mt

≈ 3
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which is comparable to the values for a Jupiter application [29]. For a space-

craft mass of 1000 kg this leads to a tether mass mt = 333 kg, which in the

case of aluminium provides w = 24 cm for h = 10−2 mm.

We want now to analyse the possible benefits of reducing the hyperbolic

excess speed in comparison to the results that have previously been calcu-

lated in [29]: the dependance from v∞ is clear in the expression for B∗s
2. A

lower v∞ results in a value for the eccentricity that will be closer to unity;

specifically, maintaining in both cases the hypothesis rP ≈ RS we obtain

eIh = 1.009930 for vI∞ = 2.5 km/s and eIIh = 1.001589 for vII∞ = 1 km/s. The

reference value v∞ = 1 km/s has been chosen for a conservative analysis, even

though the relative speed, as it has been shown previously, can be reduced

to a lower value. We assume that none of the parameters involved change

besides the dimensions of the tether l and w: as a result of this assumption,

the characteristic length Lch stays unchanged as well as the result of the in-

tegral in the expression for W ∗
d , which was calculated with the hypothesis of

the orbits being parabolic. A comparison between the cases I and II with

different values for v∞ leads to the following equation:

eIh−e
I
e

eIh−1
· 1
mIt

eIIh −eIIe
eIIh −1

· 1
mIIt

=
< iIav >

< iIIav >
· 1

κ

with κ =
(
vI∞/v

II
∞
)2

= 6.25 with the aforementioned values. The possible

improvements to the capture procedure seem to be two:

• improving the eccentricity ratio to obtain a lower ee;

• reduce the tether mass mt.

Reducing the post-capture eccentricity

Having a reduced eccentricity value for the captured elliptic orbit would

result beneficial, as it would make the mission less likely to end with the
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spacecraft not captured by the planet and therefore flying aimlessly in the

deep space. Unfortunately, it can be shown analytically that reducing v∞

does not improve ee by a factor that is worth the struggle. Reiterating some

of the aforementioned expressions for the specific orbital energy it is possible

to express the eccentricity of a hyperbolic trajectory as:

eh =
rPv

2
∞

µ
+ 1

Substituting this expression into the previous one leads to:

eIh−e
I
e

rP v
I∞

2

µ
+1−1

· 1
mIt

eIIh −eIIe
rP v

II∞
2

µ
+1−1

· 1
mIIt

=
< iIav >

< iIIav >
· 1

κ

eIh − eIe
eIIh − eIIe

· 1

κ
=

1

κ
⇒ ∆eI = ∆eII

This means that the final eccentricity only diminishes because the initial

eccentricity eh is, in the second case, slightly lower (the total decrement is

less than 1%). This is motivated by the fact that the work of the Lorentz

force is the same, acting along the same parabolic trajectory. It is in fact

possible to reformulate the equations to reach the correlation:

∆ε =
µ

2rP
∆e

Reducing the tether mass

Reducing the tether mass mt is definitely of great interest for the entire

mission: assuming to have a constant space mass MS/C in both cases, a

lower tether mass allows for a higher mass fraction to be utilized for payload.

The two parameters that are object of the optimization are, as previously

said, length and width; the thickness is kept constant as well as the material

density. The calculations from previous sections remain valid, providing a

characteristic length of Lch = 26 km at periapse. We want the tether to
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be at most as long as it is in the first case analyzed (52 km), but preferably

shorter: according to figure 6.2 this requirement is fulfilled in the range where

the iav current is a linear function of the ratio L/Lch, which in the case of

a constant characteristic length translates into iav ∝ l. Moreover, in this

analysis we assume that the final orbit be barely elliptical (ee → 1) so that

the eccentricity ratios equal 1. These considerations result in:

mI
t

mII
t

= κ · l
II

lI

where κ is the same as in the previous case. Expressing the tether mass as

mt = ρlwh leads to the ultimate:

κ
wII

wI

(
lII

lI

)2

= 1

which can be interpreted as follows: in the case with a reduced hyperbolic

excess velocity, the capture is performed equivalently by an electrodynamic

tether that is κ times narrower (wI = κwII) or
√
κ times shorter (lI =

√
κlII).

Combination of the two are also possible, reducing both the dimensions,

following the plots in fig. 6.8 obtained reformulating the last equation. With

the mass mt being directly proportional to both w and l, the best solution

to reduce the total tether mass would be to leave the length unchanged and

reduce the width by a factor κ. Unfortunately, with the tether width being

of the order of magnitude of centimeters, it might not be safe to scale it

down too much to avoid the rupture of the tether. In this circumstance, the

width can be reduced to the minimum safe value, while a fraction of κ can

be ’implemented’ in a reduction of the tether length l.
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Figure 6.8: wII/wI versus lII/lI for different κ values
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Conclusions and future work

This work presented the preliminary design of a tethered mission to Saturn.

Initially, Differential Evolution Algorithms have been presented as a well

established and reliable means to prune the space of viable solutions in the

search for optimal launch windows. A mathematical theory has been laid

out to incorporate a thrust arc in the Jupiter-to-Saturn transfer orbit to

optimize the trajectory: the theory provides the optimal orientation for the

thrust angle and the Gaussian Planetary Equations allow to calculate the

evolution of the keplerian parameters, together with the spacecraft’s position

and velocity vectors, along the thrust arc. The main characteristics of the

mission are resumed in the following points:

• it is a small mission of 1000 kg, much less than the Cassini/Huygens

(wet mass ≈ 5600 kg [16]);

• it involves a flyby around Jupiter: wether the flyby will be powered or

unpowered, is yet to be determined;

• the spacecraft incorporates a low-thrust engine, which realizes a thrust

arc in the final part of the transfer orbit from Jupiter to Saturn: this

allows for a reduction of the hyperbolic excess speed at the encounter

with Saturn to values lower than 1 km/s;
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• the capture procedure is performed by an electrodynamic tether, whose

design is improved thanks to the lower hyperbolic excess speed, allowing

for a significant total mass fraction to be dedicated to payload.

Many aspects of the mission design need to be studied further in the details.

Future studies will be conducted in order to present a complete and fully

structured proposal. Some of the aspects that will be explored in the future

are the following:

• detailed formulation of the launch window, with specific focus on the

corrective maneuvers to be implemented to reach Jupiter with the de-

sired conditions (see section 5.4);

• formulation of a realistic mass flow expelled by the electric thruster

and the impact it has on the acceleration perceived by the spacecraft,

with an expected modification in the thrust arc;

• more accurate analysis of the hyperbolic trajectory of the spacecraft en-

tering Saturn’s sphere of influence, accounting for the planet’s inclina-

tion with respect to the equatorial plane and the non-perpendicularity

of the local magnetic field to the S/C’s trajectory;

• further improvement of the tether design, with the aim of using it as

a thruster to explore the Saturnian moon system, following the trail

presented in [35].

It ought to be mentioned that there is some skepticism in the scientific com-

munity about the reliability of tether systems, especially when performing a

capture procedure that only has one chance to be executed properly. When

passing through the hyperbolic perigee, any malfunction in the deployment

of the tether or in the electric circuit might lead to an inefficient dragged

arc and, as a consequence, the departure of the spacecraft from the planet.

Nevertheless, the reduced relative speed at the encounter with Saturn has
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a positive impact on the mission even in the hypothesis of using a chemi-

cal thruster to perform the capture procedure. Figure 7.1 shows that with

v∞ = 1 an elliptic, close orbit can be acquired with ∆v’s smaller than 100

m/s, therefore significantly easier to deal with than the 622 m/s required by

the Cassini spacecraft [7, 16].

Figure 7.1: Final eccentricity ee versus capture ∆v, with v∞ = 1

Despite the aspects that still need adjustment, the work conducted so far

has proven to give encouraging results, which could lead the way to the

exploration of the Gas Giants through smaller and cheaper missions in the

future.
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Calvo. Comparative Saturn-Versus-Jupiter tether operation. Journal

of Geophysical Research: Space Physics, 123(7):6026–6030, 2018. ISSN

2169-9380. doi: 10.1029/2018ja025574.

[30] Juan Ramón Sanmart́ın Losada, Enrico C Lorenzini, and Manuel

Mart́ınez Sánchez. Electrodynamic tether applications and constraints.

47:442–456, 2010. ISSN 0022-4650. doi: 10.2514/1.45352.

108



Bibliography

[31] E S Belenkaya, I I Alexeev, V V Kalegaev, and M S Blokhina. Definition

of Saturn’s magnetospheric model parameters for the Pioneer 11 flyby.

Annales Geophysicae, 24(3):1145–1156, 2006. ISSN 1432-0576. doi: 10.

5194/angeo-24-1145-2006.

[32] A M Persoon, D A Gurnett, W S Kurth, G B Hospodarsky, J B Groene,

P Canu, and M K Dougherty. Equatorial electron density measurements

in saturn’s inner magnetosphere. Geophysical research letters, 32(23),

2005. ISSN 0094-8276. doi: 10.1029/2005gl024294.
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