
UNIVERSITÀ DEGLI STUDI DI

PADOVA
(IN COLLABORATION WITH GREENWICH

UNIVERSITY)

DEPARTMENT OF INDUSTRIAL ENGINEERING

MASTER DEGREE COURSE IN ELECTRICAL ENGINEERING

ELECTROMAGNETIC SEPARATION OF

IMPURITIES IN MOLTEN SILICON

SUPERVISOR:

Dr. Michele Forzan

GRADUATE:

Giorgio Zorzi

CO-SUPERVISOR (at Greenwich University):

Dr. Valdis Bojarevics

AY 2013/2014

ii

 iii

SOMMARIO

Lo scopo di questa tesi è lo studio del metodo per la separazione delle impurità nel silicio fuso attraverso

l’applicazione di un campo elettromagnetico. Questo approccio sfrutta la differenza di conduttività che

esiste tra le impurità e lo stesso silicio fuso. L’analisi è fatta usando il metodo degli elementi finiti con

implementazione in MATLAB, concentrandosi sui casi in cui la frequenza della corrente di

alimentazione dell’induttore è di 1 kHz e 11 kHz. Risultati precedenti, ottenuti usando metodi spettrali,

sono serviti per comparare e validare i risultati ottenuti.

È stato inoltre portato a termine uno studio termico sui conduttori componenti l’induttore, sempre

utilizzando il metodo degli elementi finiti implementato in MATLAB.

I risultati confermano che l’uso di un campo elettromagnetico è un metodo valido per la separazione

delle impurità nel silicio fuso.

iv

ABSTRACT

The aim of this work is the study of the method for the separation of impurities in the molten silicon by

the application of an electromagnetic (EM) field. This approach takes advantage of the differences in

electrical conductivity of the impurities and the molten silicon. The analysis is performed using finite

element method (FEM) with the particular simulations implemented in the MATLAB environment. The

focus has been taken to the 1 kHz and 11 kHz power supply cases. Previous results using spectral

methods were used to compare and validate the MATLAB FE solutions.

Additionally, a thermal study of the conductor load has been carried out using FEM method in the

MATLAB environment.

The results confirm that using the electromagnetic field is a valid approach for the EM separation of

impurities from the molten silicon.

 v

RINGRAZIAMENTI

Un ringraziamento va al mio relatore, il Prof. Michele Forzan, che, oltre a farmi scoprire il mondo del

riscaldamento ad induzione, mi ha aiutato per la stesura di questa tesi.

Un altro grande ringraziamento va al supervisor presso Greenwich University, il Prof. Valdis

Bojarevics, il quale, anche quando sommerso dal lavoro ha sempre trovato un momento da dedicarmi.

Questa tesi è anche frutto della sua gentilezza, disponibilità e dei suoi preziosi consigli.

Un ringraziamento particolare va a mia madre Maria Teresa e mio padre Giacomo, che mi hanno sempre

sostenuto durante il mio percorso, non solo accademico, ma anche di crescita personale. Devo

sicuramente a loro quello che sono oggi.

Ringrazio anche mia sorella Angela e suo marito Marco per il loro aiuto e per aver messo al mondo i

miei meravigliosi nipotini Gabriele e Filippo.

Un grande ringraziamento va ad Andrea, un caro amico che nonostante sostenga l’inutilità dello studio,

si è sempre fatto in quattro nel momento del bisogno.

Nei miei ringraziamenti, ovviamente, non poteva non mancare Lei, la fonte della mia ispirazione

giornaliera, la bussola della mia esistenza, la mia gioia più grande, Lia. Grazie per esserci sempre e per

credere in me più di quanto faccia io.

Ringrazio e chiedo scusa a tutti gli altri amici che non ho citato in queste poche righe, ma che rimarranno

sempre nel mio cuore.

vi

CONTENTS

1 INTRODUCTION .. 1

1.1 ENERGY OUTLOOK .. 1

1.2 PRODUCTION OF SILICON .. 2

1.3 ELECTROMAGNETIC PROCESSES .. 3

2 METHODS FOR THE SEPARATION OF IMPURITIES .. 4

2.1 SEDIMENTATION.. 4

2.2 DIRECTIONAL SOLIDIFICATION .. 4

2.3 FILTRATION OF INCLUSIONS WITH CERAMIC FOAM FILTERS ... 4

2.4 ELECTROMAGNETIC SEPARATION .. 5

2.4.1 Pinch-effect separation ... 6

2.4.2 Separation in a crossed EM field.. 6

2.4.3 Travelling magnetic field .. 7

2.4.4 Induction coil .. 7

3 ELECTROMAGNETIC PROBLEM ... 9

3.1 ELECTROMAGNETIC THEORY .. 9

3.1.1 Constitutive Relations ... 9

3.1.2 Lorentz force ... 10

3.1.3 Ampere’s Law ... 10

3.1.4 Faraday’s Law.. 10

3.1.5 Electrostatic Potential .. 11

3.1.6 Gauss’ Theorem in Electrostatic .. 11

3.1.7 Magnetostatic Potential .. 11

3.1.8 Gauss’ Theorem in Magnetostatic .. 11

3.1.9 Poisson's and Laplace's Equations ... 12

3.1.10 Maxwell's Equation .. 12

3.1.11 Skin layer .. 14

3.2 MATLAB ... 15

3.2.1 Introduction .. 15

3.2.2 PDE toolbox ... 16

3.3 ELECTROMAGNETIC MODEL .. 18

3.4 MATLAB SIMPLE CASE ... 22

 vii

3.4.1 Geometry .. 23

3.4.2 Analytic test case .. 23

3.4.3 Numerical ... 24

3.4.4 Solution ... 26

3.5 ELECTROMAGNETIC CRUCIBLE SET UP IN MATLAB ... 27

3.5.1 Geometry .. 27

3.5.2 Mesh ... 30

3.5.3 Current distribution .. 32

3.5.4 Solution ... 33

4 THERMAL PROBLEM .. 36

4.1 THERMAL THEORY .. 36

4.2 THERMAL MODEL ... 39

4.3 SOLUTION .. 43

5 CONCLUSIONS .. 45

6 REFERENCES ... 46

7 APPENDICES .. 47

APPENDIX 1 ... 48

STOKES’ THEOREM .. 48

DIVERGENCE THEOREM ... 48

QUASI-STATIONARY APPROXIMATION ... 48

APPENDIX 2 ... 51

IDENTITIES IN CARTESIAN COORDINATES .. 51

IDENTITIES IN CYLINDRICAL COORDINATES ... 51

TRIGONOMETRIC IDENTITIES ... 52

APPENDIX 3 ... 53

MAIN FUNCTION “SOLVE” ... 53

FUNCTION “ACFDCONSTRUCTION” ... 58

FUNCTION “BGMT_CONSTRUCTION2” .. 59

FUNCTION “COMPUTEI” .. 67

FUNCTION “U_INTEGRAL1” ... 67

FUNCTION “PDETOOL2TECPLOT” ... 68

viii

LIST OF FIGURES

FIGURE 1-1: EVOLUTION OF GLOBAL CUMULATIVE RENEWABLE INSTALLED CAPACITY 2000-2012

[MW] ... 1

FIGURE 1-2: PV MODULES PRODUCTION CAPACITY UNTIL 2017 (MW; %) .. 2

FIGURE 2-1: FORCES ACTING ON A NON CONDUCTIVE PARTICLE IMMERSED IN THE MOLTEN SILICON 6

FIGURE 2-2: PINCH-EFFECT IN A LIQUID CONDUCTOR .. 6

FIGURE 2-3: EXAMPLE OF A SYSTEM USING CROSSED EM FIELD .. 7

FIGURE 2-4: CROSS SECTION OF AN INDUCTION SYSTEM .. 8

FIGURE 3-1: SKIN DEPTH IN THE SILICON AND COPPER ERROR! BOOKMARK NOT DEFINED.

FIGURE 3-2: COMPARISON FROM THE ELECTROMAGNETIC MODEL AND THE ELLIPTIC EQUATION IN THE

PDE TOOL .. 21

FIGURE 3-3: SPHERE AND COIL .. 23

FIGURE 3-4: DIMENSIONS OF THE SPHERE AND COIL SYSTEM IN A HALF SECTION OF THE SYSTEM 23

FIGURE 3-5: DECOMPOSED GEOMETRY FOR THE SPHERE CASE... 25

FIGURE 3-6: DETAILS OF THE MESH IN THE SPHERE AND IN THE CONDUCTORERROR! BOOKMARK NOT

DEFINED.

FIGURE 3-7: CURRENT DENSITY DISTRIBUTION IN THE SPHERE .. 26

FIGURE 3-8: SURFACES CHOSEN FOR THE CALCULATION OF THE CURRENT DENSITY FOR THE COMPARISON

 ... 26

FIGURE 3-9: DENSITY OF CURRENT IN THE ANALYTICAL AND NUMERICAL SOLUTION IN THE SPHERE (LEFT

AXIS) AND RELATIVE ERRORS (RIGHT AXIS) .. 27

FIGURE 3-10: A) VIEW OF THE SYSTEM. B) HALF SECTION OF THE SYSTEM. C) TRANSVERSAL SECTION OF

THE SYSTEM ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 3-11: HALF SECTION OF THE SYSTEM .. 29

FIGURE 3-12: DECOMPOSED GEOMETRY FOR THE SYSTEM SILICON-CRUCIBLE-TURNS 30

FIGURE 3-13: MESH IN THE DOMAIN FOR THE 1 KHZ CASE (140 K TRIANGLES). PARTICULAR FOR THE

UPPER EDGE OF THE SILICON AND FOR THE LOWER CONDUCTOR .. 31

FIGURE 3-14: MESH IN THE DOMAIN FOR THE 11 KHZ CASE (250 K TRIANGLES). PARTICULAR FOR THE

UPPER EDGE OF THE SILICON AND FOR THE LOWER CONDUCTOR .. 31

FIGURE 3-15: INDUCTION FIELD IN THE CRUCIBLE SYSTEM FOR THE 1 KHZ CASE (ON THE LEFT) AND FOR

THE 11 KHZ CASE (ON THE RIGHT) .. 33

FIGURE 3-16: DENSITY OF CURRENT IN THE SILICON FOR THE 1 KHZ CASE (ON THE LEFT) AND FOR THE 11

KHZ CASE (ON THE RIGHT) ... 34

FIGURE 3-17: SPECIFIC JOULE POWER IN THE SILICON FOR THE 1 KHZ CASE (ON THE LEFT) AND FOR THE

11 KHZ CASE (ON THE RIGHT) ... 34

 ix

FIGURE 3-18: MAGNITUDE OF THE AVERAGE FORCES IN THE SILICON FOR THE 1 KHZ CASE (ON THE LEFT)

AND FOR THE 11 KHZ CASE (ON THE RIGHT) ... 35

FIGURE 3-19: MAGNITUDE OF THE AVERAGE FORCES IN THE SILICON ALONG THE R AND Z AXIS FOR THE 1

KHZ CASE (FIRST AND THIRD FIGURES) AND FOR THE 11 KHZ CASE (SECOND AND FOURTH FIGURES)

 ... ERROR! BOOKMARK NOT DEFINED.

FIGURE 4-1: ENERGY FLOWING THROUGH THE CONTROL VOLUME ... 36

FIGURE 4-2: COMPARISON FROM THE THERMIC MODEL AND THE ELLIPTIC EQUATION IN THE PDE

TOOL .. 40

FIGURE 4-3: SPECIFIC JOULE POWER FOR THE FIRST CONDUCTOR (A), SIXTH CONDUCTOR (B) AND TENTH

CONDUCTOR (C) FOR THE 11 KHZ CASE ERROR! BOOKMARK NOT DEFINED.

FIGURE 4-4: TEMPERATURES AND POWERS IN THE COIL WITH A WATER VELOCITY OF 0.05 M/S 43

FIGURE 4-5: PARTICULAR OF THE TEMPERATURE FOR THE LOWER CONDUCTOR (1), MIDDLE CONDUCTOR

(5) AND UPPER CONDUCTOR (10) .. 43

FIGURE 4-6: DETAILS OF THE TEMPERATURES IN THE COIL VARYING THE VELOCITY OF THE WATER 44

x

LIST OF ABBREVIATIONS AND ACRONYMS

SYMBOL DESCRIPTION

CFF Ceramic Foam Filters

CPV Concentration Photovoltaic

c-Si Crystalline Silicon

DC Direct Current

EPM Electromagnetic Processing of Materials

FEM Finite Element Method

GUI Graphical User Interface

GW Giga Watt (10E9 W)

HCPV High Concentration Photovoltaic

LCPV Low Concentration Photovoltaic

ODE Ordinary Differential Equations

OPV Organic Photovoltaic

PDE Partial Differential Equation

ppb Parts per billion (1/10E9)

ppm Parts per million (1/10E6)

ppt Parts per trillion (1/10E12)

PV Photovoltaic

TF Thin Film

 xi

LIST OF APPENDICES

APPENDIX 1 ... 48

APPENDIX 2 ... 51

APPENDIX 3 ... 53

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Introduction 1

1 INTRODUCTION

1.1 Energy outlook

The non-sustainable nature of fossil fuels leads naturally to a challenge to find a new source of energy.

For this reason renewable energies research is growing fast. The world’s cumulative PV (photovoltaic)

capacity surpassed the impressive 100-GW installed, achieving over 102 GW in 2012 (See Figure 1-1)

[1].

Figure 1-1: Evolution of global cumulative renewable installed capacity 2000-

2012 [MW]

It is known that the PV is capable of producing as much annual electrical energy as 16 coal power plants

or nuclear reactors of 1 GW each. Every year these PV installations save more than 53 million tons of

CO2. PV remains, after hydro and wind power, the third most important renewable energy source in

terms of globally installed capacity [2].

In the scenario 2012-2035 from IEA (International Energy Agency), the largest addition of renewable

energy will be made by wind (~1250 GW) followed by PV (~750 GW) and hydro (~740 GW).

The PV market is variable but it is strongly lead by the c-Si (crystalline silicon) technology which is

expected to maintain its market share at 80% for the next 20 years (See Figure 1-2) [1].

0

20

40

60

80

100

120

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

C
u

m
u

la
ti

v
e

 c
a

p
a

ci
ty

 [
G

W
] ROW

MEA
China
Americas
APAC

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

2 Introduction

Figure 1-2: PV modules production capacity until 2017 (MW; %)

For this reason, a lot of investment have been done in this market in attempts to find new improved

production methods and recycling processes for the PV silicon.

1.2 Production of Silicon

The most common way of producing metallurgic grade silicon is the carbothermic reduction of quartz

to obtain silicon with typical purity of 98.5%. The production process involves submerged electric arc

furnaces where a crucible is filled with quartz and carbon materials. Silicon is released in the

carbothermic reduction of silica according to the overall reaction:

 𝑆𝑖𝑂2 (𝑠𝑜𝑙𝑖𝑑) + 2𝐶(𝑠𝑜𝑙𝑖𝑑) = 𝑆𝑖(𝑙𝑖𝑞𝑢𝑖𝑑) + 2𝐶𝑂(𝑔𝑎𝑠) (1.1)

The purity of metallurgic grade silicon is not sufficient for direct use, so a further refining is necessary.

Nowadays there are three reliable methods for the industrial production of the next purity stage material

called poly-silicon:

 Siemens process: the most popular process developed in the late 1950s is based on the thermal

decomposition of trichlorosilane at 1100 °C on a heated silicon rod or filament placed inside a

deposition chamber.

 Carbide Komatsu Process: is a recent process (1980s) in which the trichlorosilane has been

replaced by monosilane SiH4, but the principle of decomposition on a heated silicon rod inside

a closed deposition chamber is maintained.

 Ethyl Corporation process: this third process has been developed in 1980s to 1990s and also

making use of monosilane SiH4. The heated silicon rod in the closed reaction chamber has

been replaced by a fluidized bed of heated silicon particles. The particles act as seeds on which

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Introduction 3

SiH4 is continuously decomposed to larger granules of hyper pure silicon. Unlike the two first

mentioned this process is a continuous one.

These processes are expensive and produce a hyper-pure material, with impurities in the order of a ppb

(parts per billion), ppt (parts per trillion) [3]. Whereas this high level of purity is a standard for the

semiconductor industry, for the production of solar cell is not necessary. This is why new methods for

the purification of the metallurgic grade silicon have been investigated.

1.3 Electromagnetic processes

Electromagnetic processes are widely used nowadays for electromagnetic treatments of materials. These

methods are preferred more than traditional treatment because of their better performance, and often

because these are the only possible ways to operate. Some examples of these treatments are:

 Improvement of surface quality of cast steel: the improvement of the surface quality of

continuously cast steel is possible directly at the continuous casting stage, which will

provide a large amount of energy saving due to the elimination of the process of reheating

slabs and the process of surface treatment. An alternative process for improving the

surface quality has been found by use of an alternate magnetic field imposed from the

coils outside of the mold. The reduction of the contact pressure between the mold and the

molten metal due to the magnetic pressure is the main crucial factor to obtain a good

surface quality in this process.

 Induction cold crucible: the cold crucible is composed of a water cooled segmented crucible

containing a charge to be melted, surrounded by an induction coil. The charge is levitated

in the crucible using the magnetic pressure. This process enables melting of the charge

without contamination from the crucible under a controlled inert gas atmosphere. The cold

crucible is indispensable for melting metals with high melting points and chemically

reactive properties [4].

 Bimetallic slab: in order to produce a bimetallic slab in continuous casting process, a DC

(direct current) magnetic field, which has the function to dump the fluid motion, has been

applied [5].

 Electrolytic aluminium production: for the production of aluminum, the electrolysis process

is used to free the metal from the CO2 [6].

These are only few of the possible application of the electromagnetic processes of materials.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

4 Methods for the Separation of Impurities

2 METHODS FOR THE

SEPARATION OF IMPURITIES

Here, a list for the most common separation methods with a short explanation will be given.

2.1 Sedimentation

The gravity or centrifugal sedimentation processes are widely used for water treatment, but they find

application also in the purification of molten metals. The disadvantage is that these methods are limited

to inclusion sizes larger than 100 𝜇m.

2.2 Directional solidification

A reliable method for producing the multi-crystalline silicon for the PV industry is the directional

solidification. In this method, the molten silicon is solidified in controlled conditions to achieve a planar

solidification front with a well defined interface between the solid and the liquid phases. Since the

solubility of major impurities is higher in the liquid than in the solid phase, directional solidification

works as a purification process where the impurities are retained in the liquid phase.

The impurity content in solid phase CS during the crystallization is given by Scheil equation [7]:

 𝐶𝑆 = 𝑘𝑒 𝐶0 (1 − 𝑓𝑠)
𝑘𝑒−1 (2.1)

Where:

C0 is the initial content coefficient of impurities in the silicon

fs is the solidified fraction

ke is the effective segregation coefficient

2.3 Filtration of inclusions with ceramic foam filters

Filtration in metallurgy is a process of removing inclusions by forcing molten metal through a porous

material.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Methods for the Separation of Impurities 5

In CFF (Ceramic Foam Filters), there are two mechanisms of filtration:

 Cake filtration: the bigger particles in the melt are retained on the surface of the filter where they

build up, forming an increasing thicker cake. This layer act as a filter for the incoming particles.

 Deep-bed filtration: In this case, the separation is effected through the particle deposition

throughout the entire depth of the filter.

For this reasons, cake filtration is also known as surface filtration, whereas bed filtration is also known

as depth filtration.

CFF are commonly used in industry for filtering a variety of molten metals, including aluminium, iron,

magnesium and copper. There are no industrial uses of CFF for the purification of silicon, but the

experiments point out as a possible way to operate [8].

2.4 Electromagnetic separation

In the electromagnetic separation, an EM field is applied in order to induce currents that, interacting

with the magnetic field, create forces in the silicon. The conductivity of the molten silicon at room

temperature is low, but for the molten silicon is high enough (approximately the same conductivity of

the steel) to induce a significant amount of current in the melt. The Lorentz force (See Chap 3.1.2) acts

on the melt pushing it accordingly. The result is that the impurities are pushed in the opposite direction

(See Figure 2-1). In this figure it can be seen that the current in the melt avoids the not conductive

particle. The magnetic field B is applied in the direction out of the plane. The resultant Lorentz force is

indicated with f expressed as:

 𝒇 = 𝒋 ⨯ 𝑩 (2.2)

The force 𝐟 acting on the particle is sometimes called the Archimedes electromagnetic force.

J

J=0

B

B B

B

f

fa

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

6 Methods for the Separation of Impurities

Figure 2-1: Forces acting on a non conductive particle immersed in the molten

silicon

In the electromagnetic separation there is more than one possible way to operate. For example it is

possible to create the Lorentz force by an induced current or by an injected current. Four methods of

electromagnetic separation can be distinguished [9] as listed in Table 2-1.

Injection current separation Induced current separation

Pinch-effect

separation

Separation in a crossed EM field Travelling magnetic

field separation

Induction coil

separation

Table 2-1: Electromagnetic separation methods in liquid metal

2.4.1 Pinch-effect separation

The electrodes are inserted into the melt and the self-induced magnetic field of the injected current

provides the source of the Lorentz force. An example is the Figure 2-2. The Lorentz force attempts to

compress the conductor material (the pinch effect) producing the pressure distribution in the liquid. As

a result, the effective pressure via the Archimedes electromagnetic force acts in the opposite direction

and moves inclusions toward the walls of the conductor.

f

B

j

Figure 2-2: Pinch-effect in a liquid conductor

2.4.2 Separation in a crossed EM field

In this method, electrodes are inserted into the melt to create a current density, and an external magnetic

field is applied to produce the Lorentz force density as shown in the Figure 2-3. In laboratory tests this

method gives very good results due to the available large magnetic field (up to 1T). If this magnetic

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Methods for the Separation of Impurities 7

field is created using permanent magnets, they have to be cooled down below the Curie point, and that

can be a technical problem.

f

B0

j

Figure 2-3: Example of a system using crossed EM field

2.4.3 Travelling magnetic field

In this case, the travelling magnetic field is created in a tube containing the liquid metal with a system

similar to a linear motor, producing a non zero steady state Lorentz force component in addition to the

time oscillating part.

This method is not as efficient as the previous, but the force can be distributed over significantly larger

volumes. To improve the separation efficiency it could be necessary to use more tubes of smaller

diameters, but this means a larger contact area with the melt and therefore more contaminations. Despite

this, the traveling magnetic field method is the only electromagnetic separation method that is currently

in industrial use (e.g., at Pechiney Group in France for the production of aluminium).

2.4.4 Induction coil

The system is formed by an external coil and a crucible with the melt inside. The coil is fed by an AC

current that induces a current with an opposite direction in the melt. The Lorentz force is given by the

interaction of the current and the total magnetic flux. Due to the skin effect, the force is concentrated

on the boundary of the melt (See Figure 2-4).

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

8 Methods for the Separation of Impurities

B

f

J

Figure 2-4: Cross section of an induction system

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 9

3 ELECTROMAGNETIC PROBLEM

3.1 Electromagnetic Theory

Here, the theory applied for the construction of the model implemented in MATLAB, is presented.

3.1.1 Constitutive Relations

Constitutive relations describe the medium’s properties and effects when two physical quantities are

related. In electromagnetics, there are four fundamental constitutive relationships to describe the

response of a medium to a variety of electromagnetic input:

 𝑱 = 𝜎𝑬 (3.1)

 𝑫 = 𝜀𝑬 (3.2)

 𝑩 = 𝜇𝑯 (3.3)

 𝑴 = 𝜒𝑯 (3.4)

Where:

J is the current density [
𝐴

𝑚2]

D is the displacement field [
𝐶

𝑚2]

E is the electric field [
𝑉

𝑚
]

B is the magnetic field [𝑇] = [
𝑊𝑏

𝑚2]

H is the magnetic field strength [
𝐴

𝑚
]

M is the magnetic dipole moment [
𝐴

𝑚
]

And also:

σ is the electric conductivity

ε is the dielectric permittivity

µ is the magnetic permeability

χ is the magnetic susceptibility.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

10 Electromagnetic Problem

In these equation it is assumed that the medium is linear and isotropic, so the coefficients are not tensors

but real numbers.

To be observed that equations 3.3 and 3.4 are not independent, but are related by:

 𝜇 = 𝜇0(1 + 𝜒) (3.5)

3.1.2 Lorentz force

The Lorentz force is the combination of electric and magnetic forces on a point charge due to

electromagnetic fields. If a particle of charge q moves with a velocity v in the presence of an electric

field E and a magnetic field B, then it will experience a force given by:

 𝑭 = 𝑞(𝑬 + 𝒗 ⨯ 𝑩) (3.6)

3.1.3 Ampere’s Law

The Ampere’s law states that the integral around a closed path of the component of the magnetic field

tangent to the direction of the path equals µ0 times the current intercepted by the area within the path,

or in integral notation:

 ∮ 𝑩⦁𝑑𝒍

𝐶

= µ0 ∬ 𝑱⦁𝒅𝑺
𝑆

= µ0 𝑰 (3.7)

Using the Stokes’ theorem (See Appendix 1) the equation 3.7 can be written as

 𝛻 ⨯ 𝑩 = µ0 𝑱 (3.8)

3.1.4 Faraday’s Law

Faraday’s law of induction states that the induced magnetomotive force (mmf) e in a coil is proportional

to the negative of the rate of change of magnetic flux:

 𝑒 = −

𝑑𝜙𝐵

𝑑𝑡
 (3.9)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 11

3.1.5 Electrostatic Potential

The electrostatic potential is defined as follow:

 𝑉𝐵 − 𝑉𝐴 = ∫ 𝑬⦁𝒅𝒍

𝐵

𝐴

 (3.10)

If E is generated by a stationary distribution of charge the field is conservative. In this case, the

electrostatic potential does not depend on the path to go from A to B but only from the points A and B.

3.1.6 Gauss’ Theorem in Electrostatic

Gauss's theorem states that the surface integral of the electrostatic field D over closed surface is equal

to the charge enclosed by that surface. That is

 ∯ 𝑫⦁𝒅𝑺

𝑆

= ∭ 𝜌
𝑉

𝑑𝑉 (3.11)

Where 𝜌 is the charge per unit volume.

3.1.7 Magnetostatic Potential

Almost like in the electrostatic case, in magnetostatics it is also possible to define a potential:

 𝑉𝑄 − 𝑉𝑃 = −

1

𝜇0

∫ 𝑩⦁𝒅𝒍
𝑄

𝑃

 (3.12)

3.1.8 Gauss’ Theorem in Magnetostatic

As done in electrostatic:

This means that there are no sources of magnetic field (there are no monopoles).

 ∯ 𝑩⦁𝒅𝑺

𝑆

= 0 (3.13)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

12 Electromagnetic Problem

3.1.9 Poisson's and Laplace's Equations

The equation 3.19 can be written, considering the constitutive relation 3.2 as

 𝛻⦁𝑬 =

𝜌

𝜀
 (3.14)

However, E can be expressed as:

 𝐸 = −𝛻𝑉 (3.15)

Therefore,

 𝛻2𝑉 =

𝜌

𝜀
 (3.16)

This is the Poisson’s equation. This, in the case where the charge density is zero becomes:

 𝛻2𝑉 = 0 (3.17)

Which is generally known as Laplace's equation.

3.1.10 Maxwell's Equation

This first Maxwell’s equation describes the electrostatic field and is derived immediately from Gauss's

theorem (equation 3.11), in fact applying the divergence theorem (See equation 7.1):

 ∯ 𝑫⦁𝒅𝑺

𝑆

= ∭ (𝛻⦁𝑫)
𝑉

𝑑𝑉 = ∭ 𝜌
𝑉

𝑑𝑉 (3.18)

Therefore, rewriting the first Maxwell equation in differential form:

 𝛻⦁𝑫 = 𝜌 (3.19)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 13

As seen in chapter 3.1.8, and unlike the electrostatic field, magnetic fields have no sources or sinks, so

the magnetic lines of force are closed curves. The surface integral of the magnetic field over a closed

surface is zero (the field is solenoidal), and therefore, equation (3.13), in differential form becomes:

 𝛻⦁𝑩 = 0 (3.20)

This is namely Maxwell’s second equation.

Since ∇⦁B=0 (equation 3.20), it is reasonable to assume that exists a vector A such as:

 𝑩 = 𝛻 ⨯ 𝑨 (3.21)

The A vector is called vector potential.

A is not unique because taking ∇X, with X to be a scalar, it satisfies the equation 3.21, since:

 𝛻 ⨯ (𝛻𝑋) = 0 (3.22)

The third Maxwell’s equation is derived from Ampère's theorem (See 3.1.2) that in the general case it

must be read

 ∮ 𝑯⦁𝒅𝒍

𝜕𝑆

= ∬ (
𝜕𝑫

𝜕𝑡
+ 𝑱) ⦁𝒅𝑺

𝑆

 (3.23)

Applying the Stokes’ theorem (equation 7.1) at the left-hand side of 3.23:

 ∬ (𝛻 ⨯ 𝑯)⦁𝒅𝑺

𝑆

= ∬ (
𝜕𝑫

𝜕𝑡
+ 𝑱) ⦁𝒅𝑺

𝑆

 (3.24)

Therefore, we obtain the third Maxwell’s equation

 𝛻 ⨯ 𝑯 =

𝜕𝑫

𝜕𝑡
+ 𝑱 (3.25)

The fourth Maxwell’s equation is derived from the laws of electromagnetic induction. Starting from the

Faraday’s law (equation 3.9) and taking curl of both sides of the equation we have:

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

14 Electromagnetic Problem

 𝛻 ⨯ 𝑬 = −𝛻 ⨯ (
𝜕𝝓

𝜕𝑡
) = −

𝜕

𝜕𝑡
(𝛻 ⨯ 𝝓) = −

𝜕𝑩

𝜕𝑡
 (3.26)

Rewriting, we have the fourth Maxwell’s equation:

 𝛻 ⨯ 𝑬 +

𝜕𝑩

𝜕𝑡
= 0 (3.27)

3.1.11 Skin Effect

Skin effect is the tendency of an alternating electric current to become distributed such that the current

density is larger near the surface of the conductor, and decreases with greater depths. The skin effect

causes the effective resistance of the conductor to increase at higher frequencies where the skin depth

is smaller, thus reducing the available section for the current to flow. The skin effect is due to opposing

eddy currents induced by the changing magnetic field resulting from the alternating current. At 50 Hz

in copper, the skin depth is about 10 mm. At high frequencies, the skin depth becomes much smaller.

Because the interior of a large conductor carries so little of the current, tubular conductors such as pipe

can be used to save weight and cost.

The skin depth can be computed with the equation 3.28.

 𝛿 = √
2𝜌

𝜇𝜔
 (3.28)

In Figure 3-1, is represented the trend of the skin depth for copper and silicon (at melting point), varying

the frequency.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 15

101100 102 103 104 105 106

101

100

102

10-1

10-2

103

Frequency [Hz]

Sk
in

 d
ep

th
 [

m
m

]

Figure 3-1: Skin depth in the silicon and copper

3.2 MATLAB

The MATLAB environment is very various and can be used for a large variety of applications, but here

some useful information will be given regarding the study under consideration.

3.2.1 Introduction

MATLAB (abbreviation of matrix laboratory) is a numerical computing environment and fourth-

generation programming language, developed by MathWorks. MATLAB allows matrix manipulations,

plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing

with programs written in other languages, including C, C++, Java, and Fortran [10].

With MATLAB is possible to solve differential equation, in particular the following:

 First order ODEs (Ordinary Differential Equation) with the ode series solvers (the most used

are the ode15s, the ode45 that use Runge-Kutta and the ode113 that uses the Adams method)

[11]

 Higher order ODEs (rewriting each equation as an equivalent system of first order ODE) [11]

 Systems of parabolic and elliptic PDEs (Partial Differential Equation) in 1D with the pdepe

function [12]

 Systems of elliptic, parabolic, hyperbolic, eigenvalue and non-linear equations with the PDE

toolbox [13].

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

16 Electromagnetic Problem

3.2.2 PDE toolbox

The solutions of simple PDEs on complicated geometries can rarely be expressed in terms of elementary

functions, but it is possible to have an approximate solution for these problems discretizing the domain

and finding an approximate solution for every element. For example, the Partial Differential Equation

Toolbox algorithm is a PDE solver that uses FEM for problems defined on bounded domains in the

plane.

The first step to solve a problem with the PDE toolbox is to describe a complicated geometry and

generate a mesh on it. Then, it is necessary to discretize the PDE on the mesh and build an equation for

the discrete approximation of the solution.

The PDE toolbox provides an easy-to-use graphical tool to describe complicated domains and generate

triangular meshes. It also discretizes PDEs, finds discrete solutions and plots results [14]

The types of equation that the PDE tool can manage are [14]:

1. Elliptic equation:

 −𝛻 ∙ (𝑐𝛻𝑢) + 𝑎𝑢 = 𝑓 (3.29)

2. Parabolic equation:

 𝑑

𝜕𝑢

𝜕𝑡
− 𝛻 ∙ (𝑐𝛻𝑢) + 𝑎𝑢 = 𝑓 (3.30)

3. Hyperbolic equation:

 𝑑

𝜕2𝑢

𝜕𝑡2
− 𝛻 ∙ (𝑐𝛻𝑢) + 𝑎𝑢 = 𝑓 (3.31)

4. Eigenvalue equation:

 −𝛻 ∙ (𝑐𝛻𝑢) + 𝑎𝑢 = 𝜆𝑑𝑢 (3.32)

5. Nonlinear equation:

 −𝛻 ∙ (𝑐(𝑢)𝛻𝑢) + 𝑎(𝑢)𝑢 = 𝑓(𝑢) (3.33)

6. System of N equations (for example the system of elliptic equation with N=2 is):

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 17

−𝛻 ∙ (𝑐11𝛻𝑢1) − 𝛻 ∙ (𝑐12𝛻𝑢2) + 𝑎11𝑢1 + 𝑎12𝑢2 = 𝑓1

−𝛻 ∙ (𝑐21𝛻𝑢1) − 𝛻 ∙ (𝑐22𝛻𝑢2) + 𝑎21𝑢1 + 𝑎22𝑢2 = 𝑓2
(3.34)

With the PDE toolbox it is possible to solve only a system with N=2, but there are no limits

using command line functions.

The boundary conditions for the equations from one to five are [14]:

A. Dirichlet:

 ℎ𝑢 = 𝑟 (3.35)

B. Generalized Neumann:

 �⃗� ∙ (𝑐𝛻𝑢) + 𝑞𝑢 = 𝑔 (3.36)

Where n⃗ is the outward unit vector.

Referring to the system (3.34), the boundary conditions are expressed as follow [14]:

A. Dirichlet:

ℎ11𝑢1 + ℎ12𝑢2 = 𝑟1

ℎ21𝑢1 + ℎ22𝑢2 = 𝑟2
(3.37)

B. Generalized Neumann:

�⃗� ∙ (𝑐11𝛻𝑢1) + �⃗� ∙ (𝑐12𝛻𝑢2) + 𝑞11𝑢1 + 𝑞12𝑢2 = 𝑔1

�⃗� ∙ (𝑐21𝛻𝑢1) + �⃗� ∙ (𝑐22𝛻𝑢2) + 𝑞21𝑢1 + 𝑞22𝑢2 = 𝑔2
(3.38)

C. Mixed:

ℎ11𝑢1 + ℎ12𝑢2 = 𝑟1

�⃗� ∙ (𝑐11𝛻𝑢1) + �⃗� ∙ (𝑐12𝛻𝑢2) + 𝑞11𝑢1 + 𝑞12𝑢2 = 𝑔1 + ℎ11𝜇
(3.39)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

18 Electromagnetic Problem

�⃗� ∙ (𝑐21𝛻𝑢1) + �⃗� ∙ (𝑐22𝛻𝑢2) + 𝑞21𝑢1 + 𝑞22𝑢2 = 𝑔2 + ℎ12𝜇

Where µ is computed such the Dirichlet boundary conditions is satisfied.

3.3 Electromagnetic Model

As will be seen in chapter 3.5.1, the system is axisymmetric, so it is possible to implement a 2D

axisymmetric model.

We start from the third Maxwell’s equation (3.25). The time derivative of the displacement field can be

neglected when (equation 7.10, appendix 1):

 |𝜔

𝑟𝑚𝑎𝑥

𝑐
| = |2𝜋 ∙ 11 ∙ 103

1 ∙ 10−3

3 ∙ 105
| ≈ 1 ∙ 10−4 ≪ 1 (3.40)

Therefore, it is possible to neglect this term without affecting the results, and the 3.25 becomes:

 𝛻 ⨯ 𝑯 = 𝑱 (3.41)

Now, taking the fourth Maxwell’s equation (equation 3.27) and using the definition of vector potential

(equation 3.21), we obtain:

 𝛻 ⨯ (𝑬 +

𝜕𝑨

𝜕𝑡
) = 0 (3.42)

So it is possible to define a scalar potential such that:

 𝑬 +

𝜕𝑨

𝜕𝑡
= −𝛻𝑉 (3.43)

Since we are using the axisymmetric model, the vector potential A has only the component along the 𝜑

axis

 𝑨 = 𝑨𝝋 ∙ 𝒆𝝋 (3.44)

Now, continuing from 3.41 and using the constitutive relation 3.1 and the equation 3.43:

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 19

 𝛻 ⨯ 𝑯 = 𝑱 = 𝜎𝑬 = 𝜎 (−

𝜕𝑨

𝜕𝑡
− 𝛻𝑉) (3.45)

In the equation above, the first term in parenthesis, represents the induced current, and the second term,

the given current.

The J applied is sinusoidal, and the material, for approximation, can be considered linear, so the vector

potential is also sinusoidal. In these conditions, the time derivative of A take the form:

𝜕𝑨

𝜕𝑡
=

𝜕

𝜕𝑡
(𝑨𝝋 ∙ 𝑒𝑗𝜔𝑡) ∙ 𝒆𝝋 = (𝑗𝜔𝑨𝝋 ∙ 𝑒𝑗𝜔𝑡) ∙ 𝒆𝝋 (3.46)

Therefore, it is possible to rewrite the last term of 3.45 as follow

 𝛻 ⨯ 𝑯 = 𝜎 (−

𝜕𝑨

𝜕𝑡
− 𝛻𝑉) = (−𝑗𝜎𝜔𝑨𝝋 + 𝑱𝝋) ∙ 𝑒𝑗𝜔𝑡 (3.47)

The equation 3.41 can be rewritten also as

 𝛻 ⨯ 𝑯 = 𝛻 ⨯ (

1

𝜇
𝑩) = 𝛻 ⨯ (

1

𝜇
𝛻 ⨯ 𝑨) (3.48)

The curl of A in cylindrical coordinates takes the form:

 𝛻 ⨯ 𝑨 =
1

𝑟
||

𝒆𝒓 𝑟𝒆𝝋 𝒆𝒛

𝜕

𝜕𝑟

𝜕

𝜕𝜑

𝜕

𝜕𝑧
0 𝑟𝑨𝝋 0

|| = 𝒆𝒓 (−
𝜕𝑨𝝋

𝜕𝑧
) + 𝒆𝒛

1

𝑟
(

𝜕

𝜕𝑟
(𝑟𝑨𝝋)) (3.49)

Now that ∇ ⨯ 𝐀 is in explicit form, we can write out all the equation 3.48 as following:

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

20 Electromagnetic Problem

𝛻 ⨯ 𝑯 = 𝛻 ⨯ (
1

𝜇
𝛻 ⨯ 𝑨) =

1

𝑟 |

|

𝒆𝒓 𝑟𝒆𝝋 𝒆𝒛

𝜕

𝜕𝑟

𝜕

𝜕𝜑

𝜕

𝜕𝑧

−
1

𝜇

𝜕𝑨𝝋

𝜕𝑧
0

1

𝑟𝜇

𝜕

𝜕𝑟
(𝑟𝑨𝝋)

|

|

=
1

𝑟
𝒆𝒓 [

𝜕

𝜕𝜑
(

1

𝑟𝜇

𝜕

𝜕𝑟
(𝑟𝑨𝝋))]

− 𝒆𝝋 [
𝜕

𝜕𝑟
(

1

𝑟𝜇

𝜕

𝜕𝑟
(𝑟𝑨𝝋)) +

𝜕

𝜕𝑧
(
1

𝜇

𝜕𝑨𝝋

𝜕𝑧
)]

+
1

𝑟
𝒆𝒛 [

𝜕

𝜕𝜑
(
1

𝜇

𝜕𝑨𝝋

𝜕𝑧
)]

(3.50)

Due to the 2D axisymmetric case, the current has only 𝐀𝛗, component along the φ axis, so the other

term vanishes.

 𝛻 ⨯ 𝑯 = 𝒆𝝋 [−
𝜕

𝜕𝑟
(

1

𝑟𝜇

𝜕

𝜕𝑟
(𝑟𝑨𝝋)) −

𝜕

𝜕𝑧
(
1

𝜇

𝜕𝑨𝝋

𝜕𝑧
)] (3.51)

Introducing then the Psi function

 𝝍 = (𝜓𝑟 + 𝑗𝜓𝑖)(𝑐𝑜𝑠𝜔𝑡 + 𝑗𝑠𝑖𝑛𝜔𝑡) = 𝑨𝝋𝑟 (3.52)

With equation 3.51, the Psi function formulation takes the form:

 𝛻 ⨯ 𝑯 = 𝒆𝝋 [−

𝜕

𝜕𝑟
(

1

𝑟𝜇

𝜕𝝍

𝜕𝑟
) −

𝜕

𝜕𝑧
(

1

𝑟𝜇

𝜕𝝍

𝜕𝑧
)] (3.53)

Now we can combine 3.47 rewritten using the Psi function with 3.53 to obtain the equation for the

system.

 −

𝜕

𝜕𝑟
(

1

𝑟𝜇

𝜕𝝍

𝜕𝑟
) −

𝜕

𝜕𝑧
(

1

𝑟𝜇

𝜕𝝍

𝜕𝑧
) = −𝑗

𝜎𝜔

𝑟
𝝍 + 𝑱(𝑠) (3.54)

It is now easy to see the analogy with the elliptic equation of the PDE toolbox (equation (3.29)).

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 21

Figure 3-2: comparison from the electromagnetic model and the elliptic equation in

the PDE tool

Where u is 𝛙.

The boundary conditions to implement are easily derived observing the equation (3.52). On the z axis,

we have r=0, so the Psi function becomes zero, while the other edges are far away enough to consider

the vector potential equal to zero, so here again the Psi function is equal to zero.

Once computed the solution, we can compute the other vectors of interest:

 Induction field from the equation 3.21

 𝑩 = 𝛻 ⨯ 𝑨 = 𝛻 ⨯ (
𝝍

𝒓
) =

1

𝑟 |
|

𝒆𝒓 𝑟𝒆𝝋 𝒆𝒛

𝜕

𝜕𝑟

𝜕

𝜕𝜑

𝜕

𝜕𝑧

0 𝑟
1

𝑟
𝝍 0

|
|
= (−

1

𝑟

𝜕𝝍

𝜕𝑧
) 𝒆𝒓 + (

1

𝑟

𝜕𝝍

𝜕𝑟
) 𝒆𝒛 (3.55)

 Density of current induced from the equation 3.47

 𝑱𝒊𝒏𝒅 = −𝑗𝜎𝜔𝑨𝝋 = −𝑗

𝜎𝜔

𝑟
𝝍 (3.56)

 Lorentz force in the molten silicon. Rewriting the vectors as a function of sine and cosine, and

taking the real part:

ℜ(𝑩) =
1

𝑟
[(

𝜕𝜓𝑖

𝜕𝑧
) 𝑠𝑖𝑛(𝜔𝑡) − (

𝜕𝜓𝑟

𝜕𝑧
) 𝑐𝑜𝑠(𝜔𝑡)] 𝒆𝒓

+
1

𝑟
[(

𝜕𝜓𝑟

𝜕𝑟
) 𝑐𝑜𝑠(𝜔𝑡) − (

𝜕𝜓𝑖

𝜕𝑟
) 𝑠𝑖𝑛(𝜔𝑡)] 𝒆𝒛

(3.57)

 ℜ(𝑱) =

𝜎𝜔

𝑟
(𝜓𝑖 ∙ 𝑐𝑜𝑠(𝜔𝑡) + 𝜓𝑟 ∙ 𝑠𝑖𝑛(𝜔𝑡))𝒆𝜑 (3.58)

Therefore, the force takes the form

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

22 Electromagnetic Problem

𝑭 = ℜ(𝑱) ⨯ ℜ(𝑩)

=
𝜎𝜔

𝑟2
[𝜓𝑖 ∙ 𝑐𝑜𝑠2(𝜔𝑡)

𝜕𝜓𝑟

𝜕𝑟
− 𝜓𝑟 ∙ 𝑠𝑖𝑛2(𝜔𝑡)

𝜕𝜓𝑖

𝜕𝑟

+ 𝑠𝑖𝑛(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡) (𝜓𝑟

𝜕𝜓𝑟

𝜕𝑟
− 𝜓𝑖

𝜕𝜓𝑖

𝜕𝑧
)] 𝒆𝒓

+
𝜎𝜔

𝑟2
[𝜓𝑖 ∙ 𝑐𝑜𝑠2(𝜔𝑡)

𝜕𝜓𝑟

𝜕𝑧
− 𝜓𝑟 ∙ 𝑠𝑖𝑛2(𝜔𝑡)

𝜕𝜓𝑖

𝜕𝑧

+ 𝑠𝑖𝑛(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡) (−𝜓𝑟

𝜕𝜓𝑟

𝜕𝑟
+ 𝜓𝑖

𝜕𝜓𝑖

𝜕𝑧
)] 𝒆𝒛

(3.59)

The average value of the force in a period can be calculated using the trigonometric identities

(See Appendix 2), so it equals to:

 Specific Joule power can be calculated from the current density

𝑝 =

ℜ(𝑱)2

𝜎
=

𝜎𝜔2

𝑟2
(𝜓𝑖

2 ∙ 𝑐𝑜𝑠2(𝜔𝑡) + 𝜓𝑟
2 ∙ 𝑠𝑖𝑛2(𝜔𝑡)

+ 2𝜓𝑟𝜓𝑖𝑠𝑖𝑛(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡))

(3.61)

and the average value is the following

 𝑝𝑎𝑣𝑔 =

𝜎𝜔2

2𝑟2
(𝜓𝑟

2 + 𝜓𝑖
2) (3.62)

3.4 MATLAB Simple Case

Now that we have written out the electromagnetic model, we just have to build it in MATLAB, but

before starting with the crucible system, we want to make sure that the model is correct. To verify that,

the simple case of a sphere is taken into consideration. The aim is to compute the induced current in the

sphere with a numerical solution and compare it with the exact analytical solution.

 𝑭𝒂𝒗𝒈 =

𝜎𝜔

2𝑟2
[𝜓𝑖

𝜕𝜓𝑟

𝜕𝑟
− 𝜓𝑟

𝜕𝜓𝑖

𝜕𝑟
] 𝒆𝒓 +

𝜎𝜔

2𝑟2
[𝜓𝑖

𝜕𝜓𝑟

𝜕𝑧
− 𝜓𝑟

𝜕𝜓𝑖

𝜕𝑧
] 𝒆𝒛 (3.60)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 23

3.4.1 Geometry

The system is composed of a sphere surrounded by a single coil (Figure 3-3). The analytical solution

that we will see in the next chapter (3.4.2) assumes that the conductor is a filament. For this reason, the

conductor in the simulation is very small.

Figure 3-3: Sphere and coil

The sphere is made of silicon and the coil of aluminium. The dimensions are shown in Figure 3-4.

60

2

75

r

z

Figure 3-4: Dimensions of the sphere and coil system in a half section of the system

3.4.2 Analytic test case

The analytical solution is given in spherical coordinates and has the following form [15]:

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

24 Electromagnetic Problem

 𝐴𝜑(𝑅, 𝜗) = 𝑒𝑗𝑤𝑥
𝜇𝑜𝐼𝑠𝑠𝑖𝑛(𝜗𝑠)

2√𝑗𝑝𝑅𝑅0

∑ 𝐶𝑛𝐼𝑛+½(√𝑗𝑝𝑅)𝑃𝑛
1(𝑐𝑜𝑠𝜗)

∞

𝑛=1

 (3.63)

Where:

 𝐶𝑛 =
2𝑛 + 1

𝑛(𝑛 + 1)
(
𝑅0

𝑅𝑠

)
𝑛 𝑃𝑛

1(𝑐𝑜𝑠𝜗𝑠)

𝐼𝑛−½(√𝑗𝑝𝑅0)
 (3.64)

 𝑝 = 𝜎𝜇𝑜𝜔 (3.65)

And:

 𝑅0 is the radius of the sphere

 𝑅𝑠 and 𝜗𝑠 are the filament position

 𝑅 and 𝜗 are the position where to compute the current

 𝐼𝑠 and 𝜔 are current amplitude and the angular frequency

 𝑛 is the harmonic number

 𝐼𝑛+½ and 𝐼𝑛−½ are the modified Bessel functions of complex argument

 𝑃𝑛
1 the Legendre polynomial.

3.4.3 Numerical

All the simulations, as said before, are created with MATLAB, but not with the GUI (Graphical User

Interface) of the PDE toolbox, but writing all at command line. In this way is necessary to decompose

the geometry by arc and lines. The decomposition of geometry is shown in Figure 3-5.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 25

1

2

3

4

5

6

7

8
11

12

10

9

1 2

34

5

6

7

8

9

10

11

1

2

3

 Lines
 Points
 Sub-domains

Figure 3-5: Decomposed geometry for the sphere case

In the figure we can also see the numbering for lines in blue, for points in black and for sub-domains in

red.

Once the geometry has been created, is necessary to discretize the domain. For this purpose is used an

adaptive mesh. This MATLAB function has the advantage to densify the mesh when necessary, so

taking the same number of triangles, it is possible to achieve a better solution. In Figure 3-6 is shown

the mesh for this problem, in particular the changes in size of the triangles for a current frequency of

6kHz.

Figure 3-6: Details of the mesh in the sphere and in the conductor

This mesh is made of 130k triangles of first order.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

26 Electromagnetic Problem

3.4.4 Solution

The simulation is made with a current of 1000A and a frequency of 6000Hz. The result of the simulation

in MATLAB is shown in Figure 3-7, where it is possible to see the current density in the sphere.

Figure 3-7: Current density distribution in the sphere

To compare the results, the current density is calculated on three surfaces: the equatorial plane, a cone

with an angle of 30 degrees and another cone with an angle of 60 degrees (Figure 3-8).

0°

30°

60°

Figure 3-8: Surfaces chosen for the calculation of the current density for the

comparison

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 27

The Figure 3-9 shows the comparisons from the analytical and the numerical solution.

Figure 3-9: Density of current in the analytical and numerical solution in the

sphere (left axis) and relative errors (right axis)

It can be seen that the results are accurate, with the exception of the zone in the proximity of the centre.

This is probably due to the singularity in 𝑟 = 0. In general this zone is not so important in our case

because the magnitude of current and magnetic field are low compared with the current in the skin

depth, so even more for the forces. We can conclude that this model is accurate.

3.5 Electromagnetic crucible set up in MATLAB

Following what has been done for the sphere in chapter 3.4.3, we can do the same for the crucible

system.

3.5.1 Geometry

The system studied in this work is very simple (See Figure 3-10).

-10

-8

-6

-4

-2

0

2

4

6

8

-2,5E+06

-2,0E+06

-1,5E+06

-1,0E+06

-5,0E+05

0,0E+00

5,0E+05

0 0,01 0,02 0,03 0,04

re
la

ti
ve

 e
rr

o
r

[%
]

D
en

si
ty

 o
f

C
u

rr
en

t
[A

/m
m

^
2

]

Radius [m]

J analitic 0°
J numeric 0°
J analitic 30°
J numeric 30°
J analitic 60°
J numeric 60°
Relative error 0°
Relative error 30°
Relative error 60°

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

28 Electromagnetic Problem

a b c

coil graphite

silicon

water

Figure 3-10: a) view of the system. b) Half section of the system. c) Transversal

section of the system

Externally there is the coil, composed by 10 turns made of copper. The effective value of the current in

the coil is fixed at 385 A. With this current, two frequencies have been applied: 1 kHz and 11 kHz.

Concentric to the coil there is the crucible of graphite. The purpose of a graphite crucible is to provide

a non-reactive vessel that will survive the high temperatures needed for metal melting and processing.

This offers a stable container that does not react with the metals at high temperatures. Inside the crucible,

there is the silicon. In addition, in Figure 3-10 we can see that the coil is not made of solid copper, but

it has a hole to permit the water-cooling. This does not affect the electric conduction because at the

frequency we are considering, there is no current in the center of the conductor due to the skin effect.

The silicon core is a small cylinder, with a diameter of 4 cm and a height of 6.5 cm (See Figure 3-11).

From this is possible to calculate the weight of the molten silicon as follow.

 𝑊 = 𝑉𝜌 = 𝜋𝑟2 ℎ𝜌 = 𝜋(2−3)2 6.5−3 ∙ 2580 = 0.210[𝑘𝑔] (3.66)

As said before, the system is small, in fact, only 200 grams of silicon is melted in the crucible, but once

this configuration is studied, it will be easy to use the same model to a bigger system.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 29

r

z

Figure 3-11: Half section of the system

As it can be seen from Figure 3-11, the system has a symmetry on the z axis that will be exploited for

the construction of the model, so an axisymmetric model can be implemented, with the advantage that

only a 2D model has to be studied, and consequently a reduction of the computational time.

The characteristics of the materials used in the simulation are grouped in the next table.

 Conductivity

𝜎 [𝛺 ∙ 𝑚]

Relative magnetic

permeability

𝜇𝑟 [−]

Density

𝜌 [
𝑘𝑔

𝑚3
]

Silicon 1.23 ∙ 106 1 2560

Graphite 8.65 ∙ 104 1 2160

Copper 4.1 ∙ 107 1 8920

Air 0 1 0

Water 0 1 1000

Table 3-1: Characteristics of the materials used in the simulations

The program for the simulation used for the 11 kHz case can be seen in appendix 3.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

30 Electromagnetic Problem

3.5.2 Mesh

We start decomposing the geometry of half system. The result can be seen in Figure 3-12, where it is

shown the domain of the simulations.

Figure 3-12: Decomposed geometry for the system silicon-crucible-turns

In the same figure, in the green box there is the particular of the crucible and the turns. All the

dimensions are shown in chapter 3.5.1. In Figure 3-12, in the lower purple box, is represented the

numeration for the lower conductor. Every conductor has two subdomains, the external for the copper

and the internal for the water. The numeration for points, lines and sub-domains of the other conductors,

follows the same rule as for the one presented in Figure 3-12. In the other two upper purple boxes, there

is the particular of the lower and the upper edge of the silicon cylinder. These edges are rounded to

avoid false results in these areas.

Once created the geometry, the system must be subdivided. The mesh is not the same for the 1 kHz case

and for the 11 kHz case. This is due to the different frequency that means different skin layer depth. For

example, the 11 kHz case has 64% more triangles than the 1 kHz (250 k against 140 k), but for the first

case, the triangle on the axis are larger than the ones in the second case, because they are more

concentrated in the skin layer (See Figure 3-13 and Figure 3-14).

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 31

Figure 3-13: Mesh in the domain for the 1 kHz case (140 k triangles). Particular for

the upper edge of the silicon and for the lower conductor

Figure 3-14: Mesh in the domain for the 11 kHz case (250 k triangles). Particular

for the upper edge of the silicon and for the lower conductor

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

32 Electromagnetic Problem

3.5.3 Current distribution

The effective current applied in the system is 385 A. It is to be remembered that the current introduced

in MATLAB through the equation 3.54, is an imposed current. To this term must be added the induced

current that opposes to the cause that creates it. The result is a reduction of the total current. It is possible

to summarize all that as follows:

 𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅 + 𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅 = 𝑰𝒕𝒐𝒕𝒂𝒍 (3.67)

Considering now the current induced, it is possible to rewrite it as a function of the imposed one, and

in the case of a single coil system, it can be written as

 𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅 =

𝑽𝒊𝒏𝒅𝒖𝒄𝒆𝒅

𝑅
= −

𝐿

𝑅

𝑑

𝑑𝑡
(𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅) = 𝑿 ∙ 𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅 (3.68)

where 𝐗 is a complex number and in the general case it depends on the value of the current itself. Since

our system is linear, the 𝐗 factor is constant. The assumption of the linear system is considered to be a

good initial approximation.

Taking into consideration the entire coil composed of ten turns, 𝐗 takes the form of a ten by ten matrix,

and the 3.68 becomes

[

𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟏

𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟐

⋮
𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟏𝟎]

= [

𝑿𝟏−𝟏 𝑿𝟏−𝟐 ⋯ 𝑿𝟏−𝟏𝟎

𝑿𝟐−𝟏 𝑿𝟐−𝟐 ⋯ 𝑿𝟐−𝟏𝟎

⋮ ⋮ ⋱ ⋮
𝑿𝟏𝟎−𝟏 𝑿𝟏𝟎−𝟐 ⋯ 𝑿𝟏𝟎−𝟏𝟎

] ∙

[

𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅𝟏

𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅𝟐

⋮
𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅𝟏𝟎]

 (3.69)

The coefficients of the matrix can be simply found imposing 1 A current only in one turn at a time, and

then computing the induced ones.

For the first turn for example, the first column of the matrix can be computed as follow:

[

𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟏

𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟐

⋮
𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟏𝟎]

= [

𝑿𝟏−𝟏 𝑿𝟏−𝟐 ⋯ 𝑿𝟏−𝟏𝟎

𝑿𝟐−𝟏 𝑿𝟐−𝟐 ⋯ 𝑿𝟐−𝟏𝟎

⋮ ⋮ ⋱ ⋮
𝑿𝟏𝟎−𝟏 𝑿𝟏𝟎−𝟐 ⋯ 𝑿𝟏𝟎−𝟏𝟎

] ∙ [

1
0
⋮
0

] = [

𝑿𝟏−𝟏

𝑿𝟐−𝟏

⋮
𝑿𝟏𝟎−𝟏

] (3.70)

To find the current that must be imposed to have the total one equal to 385 A is now simple. Combining

equation 3.67 with equation 3.68:

 [𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅] + [𝑿] ∙ [𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅] = ([𝐼𝑛] + [𝑿]) ∙ [𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅] = [𝑰𝒕𝒐𝒕𝒂𝒍] (3.71)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 33

Where 𝐼𝑛 is the identity matrix.

The current to impose will be

 [𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅] = ([𝐼𝑛] + [𝑿])−1 ∙ [𝑰𝒕𝒐𝒕𝒂𝒍] (3.72)

3.5.4 Solution

Once computed ψ, it is possible to compute the induction with the equation 3.55. The results of the two

cases can be seen in Figure 3-15.

Figure 3-15: induction field in the crucible system for the 1 kHz case (on the left)

and for the 11 kHz case (on the right)

The maximum value of the induction field is almost the same for both cases, but for the higher frequency

one, it is possible to see that the skin effect does not permit to the induction field to penetrate inside the

silicon like in the other case.

The density of current can be computed with the equation 3.56. The result is shown in the Figure 3-16,

where it is possible to see, first of all, how the current is concentrated in the corner for the 11 kHz, and

second, the difference from the maximum values of the density of current. We can already have an idea

on how the forces are distributed in the two cases.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

34 Electromagnetic Problem

Figure 3-16: Density of current in the silicon for the 1 kHz case (on the left) and

for the 11 kHz case (on the right)

Another important variable to analyse is the specific joule power transmitted to the silicon. This tells us

how and where the silicon is being heated. Using the equation 3.61, are obtained the results presented

in Figure 3-17.

Figure 3-17: Specific joule power in the silicon for the 1 kHz case (on the left) and

for the 11 kHz case (on the right)

As expected, the specific joule power is concentrated in the corners for the 11 kHz case, but despite

that, much more power is transmitted in this case. Integrating the results obtained in Figure 3-17 in the

volume of silicon, it is possible to see that for the 1 kHz case, there are 85 W dissipated as joule power,

and 614 W in the other case.

The forces along the 𝑟 and 𝑧 axis (there are no forces in the 𝜑 axis due to the axisymmetric model

implemented) can be computed with the equation 3.60. In the Figure 3-18, it is possible to see the results,

with the vectors, to understand also the direction of the force. The first thing to notice is that the

maximum magnitude is almost 10 times bigger in the 11 kHz case. The second thing to notice is the

different distribution of the forces. For the 1 kHz case, the maximum is located in the center, while in

the other case, in the corners.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Electromagnetic Problem 35

Figure 3-18: magnitude of the average forces in the silicon for the 1 kHz case (on

the left) and for the 11 kHz case (on the right)

In Figure 3-19, it is possible to observe the particular of the r and z components of the forces.

Figure 3-19: magnitude of the average forces in the silicon along the r and z axis

for the 1 kHz case (first and third figures) and for the 11 kHz case (second and

fourth figures

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

36 Thermal Problem

4 THERMAL PROBLEM

The aim of the thermal simulation is to better understand the system from the thermal point of view as

well. In particular, the focus is on the conductors. The specific joule power is taken from the previous

simulations and introduced in these simulations as heating source.

4.1 Thermal Theory

It is easy to derive the heat transfer equation directly in cylindrical coordinates.

The energy balance in a volume can generally be written as

 𝐸𝑠𝑡𝑜𝑟𝑒𝑑 = 𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 + 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 (4.1)

With obvious meaning of the terms.

Taking a control volume in cylindrical coordinates and writing the energy flowing in and out from the

faces, we have the situation described in Figure 4-1.

qz

qz+dz

qr

qr+dr

q +d

q

Figure 4-1: energy flowing through the control volume

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Thermal Problem 37

The energy generated in the volume can be expressed as:

 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 = 𝑞 ∙ 𝑉 = 𝑞 ∙ 𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 (4.2)

Where q is the rate of specific energy generation.

On the other hand, the energy stored can be expressed as:

 𝐸𝑠𝑡𝑜𝑟𝑒𝑑 = 𝜌(𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧)𝐶𝑝

𝜕𝑇

𝜕𝑡
 (4.3)

Where ρ is the volume density and 𝐶𝑝 is the heat capacity

Now, rewriting equation 4.1

𝜌(𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧)𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑞𝑟 + 𝑞𝜑 + 𝑞𝑧 − 𝑞𝑟+𝑑𝑟 − 𝑞𝜑+𝑑𝜑 − 𝑞𝑧+𝑑𝑧 + 𝑞𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧

(4.4)

The amount of energy flowing out to the control volume, can be expressed using the Taylor series

expansion as follow:

𝑞𝑟+𝑑𝑟 = 𝑞𝑟 +
𝜕𝑞𝑟

𝜕𝑟
𝑑𝑟

𝑞𝜑+𝑑𝜑 = 𝑞𝜑 +
𝜕𝑞𝜑

𝜕𝜑
𝑑𝜑

𝑞𝑧+𝑑𝑧 = 𝑞𝑧 +
𝜕𝑞𝑧

𝜕𝑧
𝑑𝑧

(4.5)

and the equation 4.4 becomes

 𝜌(𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧)𝐶𝑝

𝜕𝑇

𝜕𝑡
= −

𝜕𝑞𝑟

𝜕𝑟
𝑑𝑟 −

𝜕𝑞𝜑

𝜕𝜑
𝑑𝜑 −

𝜕𝑞𝑧

𝜕𝑧
𝑑𝑧 + 𝑞𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 (4.6)

We can write now the energy flowing 𝑞𝑟, 𝑞φ and 𝑞z through the Fourier’s law:

 𝑞𝑟 = −𝑘

𝜕𝑇

𝜕𝑟
𝑟 𝑑𝜑 𝑑𝑧 (4.7)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

38 Thermal Problem

𝑞𝜑 = −𝑘
𝜕𝑇

𝑟𝜕𝜑
𝑑𝑟 𝑑𝑧

𝑞𝑧 = −𝑘
𝜕𝑇

𝜕𝑧
𝑑𝑟 𝑟 𝑑𝜑

where k is the heat transfer coefficient. In 4.7 there are three equations. In all of them, the first part of

the right term (−k
∂𝑇

∂
) is the flux, while the second part is the cross section where this flux goes through.

Putting together 4.6 and 4.7:

𝜌(𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧)𝐶𝑝

𝜕𝑇

𝜕𝑡

= +
𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) 𝑑𝑟 𝑑𝜑 𝑑𝑧 +

𝜕

𝜕𝜑
(𝑘

𝜕𝑇

𝑟𝜕𝜑
)𝑑𝑟 𝑑𝜑 𝑑𝑧

+
𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) 𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 + 𝑞𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧

(4.8)

Now we can drop out the volume, to obtain the heat equation in cylindrical coordinates.

The boundary conditions implemented in a thermal problem can be one of the following:

 Constant surface temperature: this is he the simplest boundary condition to deal with and can

be expressed as:

 𝑇 = 𝑇𝑠 (4.10)

 Constant surface heat flux: if we are introducing a known amount of heat in the system, we

can use this boundary condition:

 −𝑘𝛻𝑇 = 𝑞 (4.11)

 Adiabatic surface: to implement a surface that does not permit to the energy to pass by, we

impose the normal flux equal to zero as follow

 −𝑘𝛻𝑇 = 0 (4.12)

 Convection surface: if we have a surface surrounded by a fluid, the right boundary condition

to use is the following

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟2

𝜕

𝜕𝜑
(𝑘

𝜕𝑇

𝑟𝜕𝜑
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + 𝑞 (4.9)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Thermal Problem 39

 −𝑘𝛻𝑇 = ℎ(𝑇∞ − 𝑇) (4.13)

Where h is the convection coefficient from the surface and the fluid, and 𝑇∞ is the temperature

of the fluid far from the surface.

 Radiation surface: when the temperature is high, we must take into consideration the flux due

to the radiation. This boundary condition can be expressed as:

 −𝑘𝛻𝑇 = 𝜎𝜀(𝑇∞
4 − 𝑇4) (4.14)

Where σ is the Stefan-Boltzmann constant, ε is the emissivity coefficient of the material, and

𝑇∞ is the temperature of the surrounding surfaces.

4.2 Thermal Model

In the thermal model of the conductors, the interest is not in the time dependence, but in the maximum

temperature achieved after a long enough amount of time, so in the steady-state. For this reason, from

the equation 4.9, the left term that express the time dependence must be neglected, and the equation

becomes:

1

𝑟

𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟2

𝜕

𝜕𝜑
(𝑘

𝜕𝑇

𝑟𝜕𝜑
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + 𝑞 = 0 (4.15)

Now, since we are considering a 2D axisymmetric case, the derivation along the φ axis of the

temperature, is zero

1

𝑟

𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + 𝑞 = 0 (4.16)

Multiplying by r, the previous formula can be rewritten as:

 −

𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) −

𝜕

𝜕𝑧
(𝑘 𝑟

𝜕𝑇

𝜕𝑧
) = 𝑞𝑟 (4.17)

It is easy now to see the similarity with the equation accepted in the PDE tool (equation (3.29)).

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

40 Thermal Problem

= 0

Figure 4-2: comparison from the thermic model and the elliptic equation in the PDE

tool

The q term in equation 4.17 is the specific heat source, which in this case, is given from the

electromagnetic simulations.

a b c

Figure 4-3: specific joule power for the first conductor (a), sixth conductor (b)

and tenth conductor (c) for the 11 kHz case

In Figure 4-3 it is possible to see the specific joule power for the first conductor (the upper one), the

sixth conductor (in the middle) and the tenth conductor (the lower one).

Because we are using the specific joule power from the electromagnetic simulations, we will use the

same mesh, which for the thermal problem is fine enough. The way to proceed, is to solve a turn at a

time, in order to compute the total energy given to the water and to update that for the next turn.

Internally the conductor, there is the hole to permit the water cooling. We can assume a velocity of the

fluid of v = 0.2 [
𝑚

𝑠
], that corresponds to a flow rate of

 𝑓𝑟 = 𝑣 ∙ 𝑡 ∙ 𝑆 = 𝑣 ∙ 3600 ∙ 𝜋 ∙ 𝑟2 = 0.0141 [

𝑚3

ℎ
] (4.18)

Considering then the inflow temperature of the water at 20°C, we can investigate to see if the flow is

laminar or turbulent. The Reynolds number and the Prandtl number are given from:

 𝑅𝑒 =

𝜌 ∙ 𝑣 ∙ 𝐷

𝜇
≈ 1000 (4.19)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Thermal Problem 41

 𝑃𝑟 =
𝜇 ∙ 𝑐𝑝

𝑘
≈ 7 (4.20)

where:

 𝜌 is the density of the fluid [
𝑘𝑔

𝑚3]

 𝜇 is the dynamic viscosity of the fluid [
𝑘𝑔

𝑚∙𝑠
]

 𝑐𝑝 is the specific heat capacity constant pressure [
𝐽

𝑘𝑔∙𝐾
]

 𝑘 is the thermal conductivity [
𝑊

𝑚∙𝐾
]

 𝐷 is the diameter of the hole [𝑚]

We know that the flow in a pipe is turbulent when the Reynolds number is greater than 2300 and the

Prandtl number is greater than 0.7, but the circuit is short, so there is not enough space to become

laminar. Therefore we can say that the flow is turbulent, which means that the thermal exchange

coefficient is high enough to consider the internal surface at constant temperature (the temperature of

the water). The boundary condition to express that, is the one in the equation 4.10. The temperature

applied for this boundary conditions is calculated between one coil section and the next one.

Considering now the external surface, we have to implement the convection and radiation boundary

condition. The convection coefficient h is computed for every turn and is given by:

 ℎ =

𝑁𝑢 ∙ 𝑘

𝐷𝑒
 (4.21)

where:

 𝑁𝑢 is the Nusselt number given by

 𝑁𝑢 =

(

 0.6 + (0.387 ∙ 𝑅𝑎

1
6⁄)

(1 + (
0.559
𝑃𝑟

)

9
16⁄

)

8
27⁄

)

2

 (4.22)

 𝑅𝑎 is the Rayleigh number given by

 𝑅𝑎 = 𝑃𝑟 ∙ 𝐺𝑟 (4.23)

 𝐺𝑟 is the Grashof number given by

 𝐺𝑟 =

𝐷𝑒3 ∙ 𝜌2 ∙ 9.81 ∙ 𝛥𝑇 ∙ 𝛽

𝜇2
 (4.24)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

42 Thermal Problem

 𝐷𝑒 is the external diameter of the conductor

 ΔT is the difference from the surface temperature of the conductor and the temperature of the

air supposed at 20 °C

 β is the expansion coefficient [
1

𝐾
]

The other coefficients have the same meaning as in the case of the water.

Once calculated the h coefficient, we can express the boundary condition on the external boundary

simply putting together the equation 4.13 and 4.14. The result is:

Due to the fourth power in the temperature of this boundary condition, a nonlinear solver must be used

for this problem.

Once the solution is computed, it is easy to calculate how much power goes in the water and how much

in the ambient. This can be done computing the flux in the solution, but since we know the temperature

in all the points on the external surface, it is easier and more accurate to use the formula 4.25 to compute

the power that goes outside; then, knowing the total power generated in every turn, subtract the previous

result to obtain the power transmitted to the water.

The characteristics of the materials used in the thermal simulations are grouped in the next table.

Thermal

conductivity

Specific Heat

Capacity at

Constant

Pressure

Dynamic

viscosity
Density

Expansion

coefficient

 𝑘 [
𝑊

𝑚 ∗ 𝐾
] 𝑐𝑝 [

𝐽

𝐾𝑔 ∗ 𝐾
] 𝜇 [

𝑘𝑔

𝑚 ∗ 𝑠
] 𝜌 [

𝑘𝑔

𝑚3
] 𝛽 [

1

𝐾
]

Copper 391 − − − −

Air 2.624 ∗ 10−2∗
 1004.9∗ 1.846 ∗ 10−5∗

 1.177∗ 1.75 ∗ 10−3∗

Water − 4.1818 ∗ 103∗∗
 − 998.21∗∗ −

∗the coefficients in the table for the air are given at 300K. In the simulations, , the coefficients are

interpolated at the exact temperature

∗∗ the coefficients in the table for the water are given at 20°C. In the simulations, the coefficients are

interpolated at the exact temperature

Table 4-1: Characteristics of the materials used in the simulations

 −𝑘𝛻𝑇 = ℎ(𝑇∞ − 𝑇) + 𝜎𝜀(𝑇∞
4 − 𝑇4) (4.25)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Thermal Problem 43

4.3 Solution

The solutions are obtained varying the water velocity between 0.05 and 0.5 m/s. This is done in order

to see the changes in temperature through the coil varying the water cooling.

With the minimum velocity, the temperatures are shown in Figure 4-4 (for convenience, the figure is

rotated 90° clockwise and divided in two parts).

Figure 4-4: temperatures and powers in the coil with a water velocity of 0.05 m/s

From this figure, it is possible to see that the power transmitted to the ambient is very low compared

with the one given to the water. This is because the temperatures reached are low to transmit a large

amount of power with convection and radiation. In addition, as expected, the joule power generated in

the lower and upper conductor (1 and 10) are greater than the other because of the skin effect (the first

conductor has almost 40% more power than the third one). Another thing to notice is that the

temperature gained by the water travelling through the coil is only 10.7°C even with a velocity of the

fluid so low. This is due to the large heat capacity of the water.

Figure 4-5: Particular of the temperature for the lower conductor (1), middle

conductor (5) and upper conductor (10)

The high thermal coefficient of the copper makes that the maximum difference in temperature in the

cross section of the coil is very small (a tenth of a degree) as can be seen in Figure 4-5. In the same

figure are also plotted the vectors corresponding to the gradient of the temperature (the flux). From

these can be seen that almost all the thermal flux goes inside the conductor, in the water.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

44 Thermal Problem

Figure 4-6: Details of the temperatures in the coil varying the velocity of the water

In Figure 4-6 it is possible to observe other results obtained varying the velocity of the water. For a fluid

velocity of 0.5 [𝑚 𝑠⁄], that corresponds to a flow rate of 2.35 [𝑙 𝑚𝑖𝑛⁄], the ∆𝑇 of the water is only

1.1°𝐶.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Conclusions 45

5 CONCLUSIONS

The aim of this study was to take confidence in the use of the PDEtool and to study the system for the

separation of impurities in the molten silicon by the application of EM induction. In particular, the

problem has been solved using finite element methods on a 2D axisymmetric model, and implemented

in the MATLAB environment. The code has been written from scratch, and also a useful function for

the export of the result from MATLAB to Tecplot has been created (see Appendix 3, function

“pdetool2tecplot”).

For the electromagnetic problem, the focus has been taken to the 1 kHz and 11 kHz power supply cases.

The results show that the joule power generated in the silicon are 85 W for the former case and 614 W

for the latter. Due to the skin effect, the distribution of this power is very different in the two cases. In

the first one, it is almost constant for a fixed value of the r axis, while for the 11 kHz case, it is

concentrated in the corners. Taking a look at the forces, it is possible to see that despite the fact that in

a period of the current they act inside as well as outside the silicon, there is an average component that

compress the molten metal and push the impurities at the boundary. Moreover, the maximum magnitude

of the forces are almost ten times bigger in the 11 kHz case, while the distribution is similar to the

distribution of the specific joule power.

Once solved the electromagnetic problem, the focus has been taken on the thermal problem. The input

were the specific joule power computed previously in the 11 kHz case. To see the changes in

temperature through the coil varying the water cooling, the solutions are obtained varying the fluid

velocity between 0.05 and 0.5 m/s. The results show that almost all of the power generated in the turns,

goes in the water, and a very small amount is dissipated in the ambient due to convection and radiation.

It is also possible to see that, a small fluid velocity in enough to contain the difference in temperature

of the water between inlet and outlet (with a velocity of 0.05m/s, the temperature gained by the water

travelling through the coil is only 10.7°C).

Previous results using spectral methods were used, so it was possible to compare and validate the

MATLAB FE solutions.

In conclusion, this study confirm that using the electromagnetic field is a valid approach for the EM

separation of impurities from the molten silicon.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

46 References

6 REFERENCES

[1] International Energy Agency, World Energy Outlook 2013, 2013.

[2] European Photovoltaic Industry Association, Global Market Outlook For Photovoltaic 2013-

2017, 2013, pp. 5-14. http://www.epia.org/fileadmin/user_upload/Publications/GMO_2013_-

_Final_PDF.pdf.

[3] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, USA: Wiley,

2011, pp. 169-215.

[4] V. Bojarevics, K. Pericleous, M. Wickins and R. Harding, “The Development and Experimental

Validation of a Numerical Model of an Induction Skull Melting Furnace,” Metallurgical and

Material Transactions B, vol. 35B, pp. 1-19, 2003.

[5] S. Asai, “Recent development and prospect of electromagnetic processing of materials,” Science

and technology of advanced materials, pp. 191-200, 2000.

[6] V. Bojarevics and A. Roy, “Effect on Magnetic Forces on Bubble Transport and MHD Stability

of Aluminium Electrolysis Cells,” Magnetohydrodynamics, vol. 48, no. 1, pp. 125-136, 2012.

[7] E. Scheil, Metallkd, vol. 34, 1942.

[8] A. Çiftja, “Solar silicon refining; Inclusions, settling, filtration, wetting,” Trondheim, 2009.

[9] S. Makarov, R. Ludwig and D. Apelian, “Electromagnetic Separation Techniques in Metal

Casting. I. Conventional Methods,” IEEE Transactions on Magnetics, vol. 36, no. 4, 2000.

[10] “Wikipedia,” [Online]. http://en.wikipedia.org/wiki/MATLAB. [Accessed 14 May 2014].

[11] “Ordinary Differential Equations,” MathWorks, [Online].

http://www.mathworks.co.uk/help/matlab/math/ordinary-differential-equations.html. [Accessed

14 May 2014].

[12] MathWorks, “pdepe,” [Online]. http://www.mathworks.co.uk/help/matlab/ref/pdepe.html.

[Accessed 14 May 2014].

[13] MathWorks, “pdetool,” [Online]. http://www.mathworks.co.uk/help/pde/ug/pdetool.html.

[Accessed 14 May 2014].

[14] MathWorks, “PDE Toolbox Help”.

[15] V. Bojarevics, K. Pericleous and M. Cross, “Modeling the Dynamics of Magnetic

Semilevitation Melting,” Metallurgical and material transactions B, vol. 31B, pp. 179-189,

2000.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 47

7 APPENDICES

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

48 Appendices

APPENDIX 1

Stokes’ theorem

Let be

S: an oriented, piecewise smooth surface

∂S: a curve that bounds S

F: a vector field whose components have continuous derivatives in an open region of ℝ3 containing

S.

Then:

 ∬ (𝛻 ⨯ 𝑭)⦁𝑑𝑺

𝑆

= ∮ 𝑭⦁𝑑𝒍
𝜕𝑆

 (7.1)

Divergence theorem

Let V be a subset of ℝn which is compact and has a piecewise smooth boundary S. If F is a continuously

differentiable vector field defined on a neighbourhood of V, then we have:

 ∭ (𝛻 ⨯ 𝑭)𝑑𝑉

𝑉

= ∯ 𝑭 • 𝑑𝑺
𝑆

 (7.2)

Therefore, with this theorem is possible to transform a volume integral (left side) in a surface integral

(right side) where the left side represent the total of the source in the volume while the right side

represent the total flow across the surface.

Quasi-stationary approximation

We can consider the third Maxwell’s equation (3.25) we know that it is possible to simplify in:

 𝛻 ⨯ 𝑯 = 𝑱 (7.3)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 49

However, we can obviously ask ourselves when this approximation is legitimate.

The possibility to neglect the time derivative depends not only from the magnitude of the vector, but

also from the velocity of variation of that vector. Therefore, neglecting the time derivative of the

displacement field is much more acceptable when the variation is slow.

To neglect the time derivative means to neglect the retard of propagation, namely the temporal

variations of the variables that propagates instantaneously in all the points of the system. It is obvious

that, for neglecting the delay time, the system must be considered geometrically limited.

Given a pair of points P and P0 belonging to the system under consideration, we call:

 𝑟𝑚𝑎𝑥 = 𝑚𝑎𝑥(|𝑃 − 𝑃0|) (7.4)

 𝑡𝑚𝑎𝑥 =

𝑟𝑚𝑎𝑥

𝑐
 (7.5)

where c is the speed of light in vacuum.

If the relations of negligibility is verified for distances equal to rmax, even more so it will be for all other

value of the distance r.

Neglecting the time delay means, as said, suppose that the causes that originate the field do not vary in

the time interval under consideration, namely:

 𝑱(𝑃, 𝑡 − 𝑡𝑚𝑎𝑥) ≈ 𝑱(𝑃, 𝑡) (7.6)

Considering the series expansion 7.6 can be rewritten in the form:

 |

𝜕𝑱(𝑃, 𝑡)

𝜕𝑡

𝑟𝑚𝑎𝑥

𝑐
| ≪ |𝑱(𝑃, 𝑡)| (7.7)

If we consider the sinusoidal case with pulse ω, it is possible to write:

 𝑱(𝑃, 𝑡) = 𝑱(𝑃)𝑐𝑜𝑠(𝜔𝑡 + 𝜑) (7.8)

𝜕𝑱(𝑃, 𝑡)

𝜕𝑡
= −𝜔𝑱(𝑃)𝑠𝑖𝑛(𝜔𝑡 + 𝜑) (7.9)

So 7.7 is verified when

 |𝜔

𝑟𝑚𝑎𝑥

𝑐
| ≪ 1 (7.10)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

50 Appendices

This is the condition to neglect the time derivative of the displacement field in the third Maxwell’s

equation.

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 51

APPENDIX 2

Identities in Cartesian coordinates

 Gradient of a scalar

 𝛻𝑓 = (

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
) (7.11)

 Divergence of a vector

 𝛻𝑭 =

𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧

𝜕𝑧
 (7.12)

 Curl of a vector

 𝛻 ⨯ 𝑭 = ||

𝒆𝒙 𝒆𝒚 𝒆𝒛

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐹𝑥 𝐹𝑦 𝐹𝑧

|| (7.13)

Identities in cylindrical coordinates

 Gradient of a scalar

 𝛻𝑓 = (

𝜕𝑓

𝜕𝑟
,
1

𝑟

𝜕𝑓

𝜕𝜑
,
𝜕𝑓

𝜕𝑧
) (7.14)

 Divergence of a vector

 𝛻𝑭 =

1

𝑟

𝜕

𝜕𝑟
(𝑟𝐹𝑟) +

1

𝑟

𝜕𝐹𝜑

𝜕𝜑
+

𝜕𝐹𝑧

𝜕𝑧
 (7.15)

 Curl of a vector

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

52 Appendices

 𝛻 ⨯ 𝑭 =
1

𝑟
||

𝒆𝒓 𝑟𝒆𝝋 𝒆𝒛

𝜕

𝜕𝑟

𝜕

𝜕𝜑

𝜕

𝜕𝑧
𝐹𝑟 𝑟𝐹𝜑 𝐹𝑧

|| (7.16)

Trigonometric Identities

 𝑠𝑖𝑛2(𝑢) =

1 − 𝑐𝑜𝑠(2𝑢)

2
 (7.17)

 𝑐𝑜𝑠2(𝑢) =

1 + 𝑐𝑜𝑠(2𝑢)

2
 (7.18)

 𝑠𝑖𝑛(𝑢)𝑐𝑜𝑠(𝑢) =

1

2
𝑠𝑖𝑛(2𝑢) (7.19)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 53

APPENDIX 3

Main function “Solve”

function Solve

clc

clear variables

%Choice = 0 compute: geometry -> mesh -> solution -> calculation ->

tecplot write

%Choice = 1 compute: solution -> calculation ->

tecplot write

%Choice = 2 compute: calculation ->

tecplot write

Choice = 2; nomefile = '11000Hz'; %name for the output

% Creation of the name of the matrices, so if I chance theinput file, I do

% not clear the other solution computed

Result_name = ['(',nomefile,')_Result.mat'];

if (Choice==0) || (Choice==1)

 if (Choice==0)

%% GEOMETRY %%%

 ti = clock;

 fprintf('\n ---Geometry construction---');

 %Construction of geometry matrices

 [b, g, Materials, Turns] = bgMT_Construction2(0);

 %plot the geometry

 figure(1);

 pdegplot(g)

 axis equal

 %load the X matrix before delete it so if the geometry is not

 %changed, I can use that one instead of recompute it again

 if exist(Result_name,'file')==2

 load(Result_name,'X')

 end

 save(Result_name,'Materials','Turns','b','g');

 tf = clock;

 fprintf(' COMPLETED in %4.1f s\n',etime(tf,ti));

%% MESH %%%

 ti = clock;

 fprintf('\n ---Mesh construction---\n');

 MaxIter = 15;

 Iimposed = Turns(2,:);%The current imposed is the peak value

 [a, c, f, ~] = acfdConstruction(Iimposed);

 [~,p,e,t]=adaptmesh(g,b,c,a,f,'MesherVersion','R2013a','Ngen',MaxIter);

 [p,e,t]=refinemesh(g,p,e,t); [p,e,t]=refinemesh(g,p,e,t);

 %Plot the mesh

 figure(2);

 pdemesh(p,e,t)

 drawnow

 axis equal

 fprintf('Number of triangles in the mesh = %6.f\n', size(t,2));

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

54 Appendices

 %save the area of triangles, so when I need it, I don't have to

 %compute it again

 [A,~,~,~] = pdetrg(p,t);

 save(Result_name,'p','e','t','A','-append');

 tf = clock;

 fprintf(' COMPLETED in %4.1f s\n',etime(tf,ti));

%% X MATRIX %%%

% X*Iimposed = Iinduced

 ti = clock;

 nt = size(Turns,2);

 %The computation of the X matrix takes a while, so it is computed

 %only if needed

 compute = 1;

 if exist('X','var')==1

 if size(X,2)==nt

 C = eye(nt) + X;

 Iideal = ones(1,nt);

 Iimposed = +(C\Iideal.').';

 [a, c, f, ~] = acfdConstruction(Iimposed);

 u = assempde(b,p,e,t,c,a,f);

 [I, ~] = ComputeI(u);%vector of currents obtained in the turns

 Ireal = Iimposed + I;

 error = (Ireal-Iideal)./Ireal;

 if sum(abs(error)) < 1e-4

 compute = 0;

 end

 else

 compute = 1;

 end

 else

 compute = 1;

 end

 %Computation of X matrix

 if compute == 1

 fprintf('\n ---Matrix X construction---\n');

 X = zeros(nt);

 for k=1:nt

 Iimposed = zeros(1,nt);

 Iimposed(1,k) = 1;

 [a, c, f, ~] = acfdConstruction(Iimposed);

 u = assempde(b,p,e,t,c,a,f);

 [I, ~] = ComputeI(u);

 X(:,k) = I;

 fprintf('%2.0f ',nt-k);

 end

 end

 save(Result_name,'X','-append');

 tf = clock;

 fprintf(' COMPLETED in %4.1f s\n',etime(tf,ti));

 else

 if exist(Result_name,'file')~=2

 warndlg(['The matrices does not exist for ',nomefile,'.'], ['Error in

',mfilename,'.m.']);

 return

 end

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 55

 load(Result_name,'Materials','Turns','b','g','p','e','t','A','X')

 end

%% SOLUTION %%%

 ti = clock;

 fprintf('\n ---Computation of solution---\n');

 % construction of the matrix with the currents I want to impose

 turns_index = Turns(1,:);

 nt = size(turns_index,2);

 Iideal = Turns(2,:);

 C = eye(nt) + X;

 Iimposed = +(C\Iideal.').';

 [a, c, f, ~] = acfdConstruction(Iimposed);

 u = assempde(b,p,e,t,c,a,f);

 [I, V] = ComputeI(u); %vector of currents obtained in the turns

 Ireal = Iimposed + I;

 error = (Ireal-Iideal)./Ireal; %computation of the error

 fprintf('Error on the current = %6.5f \n', sum(abs(error)));

 save(Result_name,'u','I','Iimposed','V','error','-append');

 tf = clock;

 fprintf(' COMPLETED in %4.1f s\n',etime(tf,ti));

elseif (Choice==2)

 if exist(Result_name,'file')~=2

 warndlg(['The matrices does not exist for ',nomefile,'.'], ['Error in

',mfilename,'.m.']);

 return

 end

load(Result_name,'Materials','Turns','b','g','p','e','t','A','u','I','Iimposed','V','

error')

else

 warndlg('Variable Choice must be an integer from 0 to 2', ['Error in

',mfilename,'.m.']);

 return

end

%% CALCOLI %%

nt = size(t,2);%number of triangles

np = size(p,2);%number of points

freq = Turns(5,1);

Ireal = Iimposed + I;

omega = 2*pi*freq;

sd = unique(t(4,:));

ns = size(sd,2);%number of subdomains

mt = unique(Materials(1,:));

nm = size(mt,2);%number of materials

PSIfi = u;%evaluated on points

PSIfi_t = pdeintrp(p,t,PSIfi);%interpolation on triangles

Afi_p = PSIfi./(p(1,:))';

%In the previous formula there is a division by zero on the axis, so the

%nans must be replaced

[Afi_p] = replace_nan (p, e, t, Afi_p);

Afi_t = pdeintrp(p,t,Afi_p);

%gradient of PSI function

[Dr_PSIfi,Dz_PSIfi] = pdegrad(p,t,PSIfi);%evaluated on triangles

%coordinates of the center of triangles

xpts=(p(1,t(1,:))+p(1,t(2,:))+p(1,t(3,:)))/3;

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

56 Appendices

ypts=(p(2,t(1,:))+p(2,t(2,:))+p(2,t(3,:)))/3;

%Induction

Br = abs(-Dz_PSIfi./xpts);%evaluated on triangles

Bz = abs(Dr_PSIfi./xpts);%evaluated on triangles

%Forces

Fr = (imag(PSIfi_t).*real(Dr_PSIfi) -

real(PSIfi_t).*imag(Dr_PSIfi)).*omega.*Materials(3,t(4,:))./(2*xpts.^2);

Fz = (imag(PSIfi_t).*real(Dz_PSIfi) -

real(PSIfi_t).*imag(Dz_PSIfi)).*omega.*Materials(3,t(4,:))./(2*xpts.^2);

sigma_t = Materials(3,t(4,:));

%J induced (instant value)

Jind = -1i*omega.*sigma_t.*Afi_t;

%J imposed

Jimp = zeros(1,nt);

for k=1:size(Turns,2)

 Jimp1 = Iimposed(1,k)/Turns(3,k);

 i_t = pdesdt(t,Turns(1,k));

 Jimp(1,i_t) = Jimp1;

end

%J real

Jreal = Jimp + Jind;

%J real (mean value)

Jreal_m = abs(Jreal)./sqrt(2);

Ireal_mean = abs(mean(Ireal))/sqrt(2);

%Magnitude of induction field

B_magn = sqrt(Br.^2 + Bz.^2);

%Magnitude of force

F = sqrt(Fr.^2 + Fz.^2);

%Specific power

Pspec = Jreal_m.^2./Materials(3,t(4,:));

Pspec(isnan(Pspec))=0;

i_t_s = pdesdt(t,2);

%The power is integrated in the silicon

[~, Power] = u_Integral1(p, t, Pspec, i_t_s);

%% WRITING %%

%The results are written to a file for the plotting of the results in

%tecplot

pdetool2tecplot (nomefile, p, e, t, Br, Bz, B_magn, Jreal_m, Fr, Fz, F, Pspec,...

 'VarName', {'r' 'z' 'Br' 'Bz' 'B' 'J' 'Fr' 'Fz' 'F' 'Pspec'},...

 'ZonesName',{'Air' 'Silicon' 'Graphite' 'Copper' 'Copper'

'Copper' 'Copper' 'Copper' 'Copper' 'Copper' 'Copper' 'Copper' 'Copper' 'Water'

'Water' 'Water' 'Water' 'Water' 'Water' 'Water' 'Water' 'Water' 'Water'},...

 'DSAD',{'Frequency'; 'Current'; 'Power'},{freq; Ireal_mean; Power

},...

 'Title', nomefile);

%For the vector plotting of the forces, an additional file is written with

%a grid mesh

nomefile_grid = [nomefile,'_grid'];

xgrid = linspace(0,1,10);

ygrid = linspace(0,1,40);

pdetool2tecplot (nomefile_grid, p, e, t, Fr, Fz,...

 'grid','xy',xgrid,ygrid,...

 'VarName', {'r' 'z' 'Fr1' 'Fz1'},...

 'Subdomain', 2,...

 'ZonesName', {'Silicon_grid'},...

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 57

 'Title', nomefile_grid);

end

%% SUBFUNCTIONS %%%

function [var] = replace_nan (p, e, t, var)

 var = var.';

 np = size(p,2);

 nt = size(t,2);

 nvar = size(var,2);

 i_nan = find(isnan(var)==1);

 n_nan = size(i_nan,2);

 while n_nan~=0

 if size(nvar)==nt

 for k=1:n_nan

 tri = i_nan(1,k);

 ntl=pdeent(t,tri);

 sum = 0;

 h = 0;

 for j=1:size(ntl,2)

 if ~isnan(var(1,ntl(1,j)))

 sum = sum + var(1,ntl(1,j));

 h = h + 1;

 end

 end

 if sum~=0

 sum = sum / h;

 var(1,tri) = sum;

 end

 end

 else

 for k=1:n_nan

 point = i_nan(1,k);

 i_e1 = (find(e(1,:)==point));

 i_e2 = (find(e(2,:)==point));

 i_e = unique([i_e1, i_e2]);

 i_p = unique([e(1,i_e) e(2,i_e)]);

 sum = 0;

 h = 0;

 for j=1:size(i_p,2)

 if ~isnan(var(1,i_p(1,j)))

 sum = sum + var(1,i_p(1,j));

 h = h + 1;

 end

 end

 if sum~=0

 sum = sum / h;

 var(1,point) = sum;

 end

 end

 end

 i_nan = find(isnan(var)==1);

 n_nan = size(i_nan,2);

 end

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

58 Appendices

 var = var.';

end

Function “acfdConstruction”

function [a, c, f, d] = acfdConstruction(Iimposed)

% Given the matrix Materials.mat and Turns.mat created in

% bgMT_Construction2.m, the function creates the matrices "a", "c", "f" e

% "d" for the computation of the solution.

% For a reference on the form of Materials.mat and Turns.mat, see the

% function bgMT_Construction2.m

%Take the matrices from the caller function

Materials = evalin('caller','Materials');

Turns = evalin('caller','Turns');

freq = Turns(5,1);

omega = 2*pi*freq;

% "a", "c", "f" e "d" are char vectors. They are initialized empty

a = '';

c = '';

f = '';

d = '';

%Start writing in them

for i=1:size(Materials,2)

 %Creating "a"

 if Materials(3,i)~=0

 a = [a,strcat('i.*',num2str(Materials(3,i)*omega,'%g'),'./x')];

 else

 a = [a,'0.0'];

 end

 %Creating "c"

 c = [c,strcat('1./(x.*',num2str(Materials(2,i),'%g'),')')];

 %Creating "f"

 T_i = find(Turns(1,:)==i);

 if isempty(T_i)

 f = [f,'0.0'];

 else

 f = [f,num2str(Iimposed(1,T_i)/Turns(3,T_i))];

 end

 %Creating "d"

 d = [d,'1.0'];

 %In the vectors, between two coefficients, there must be an exclamation

 %mark

 if i~=size(Materials,2)

 a = [a,'!'];

 c = [c,'!'];

 f = [f,'!'];

 d = [d,'!'];

 end

end

%the vectors must have the same size, so add some spaces in the shorter

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 59

%ones

k = max([size(a,2); size(c,2); size(d,2); size(f,2)]);

for i=size(a,2):k-1

 a = [a,' '];

 i = i+1;

end

for i=size(c,2):k-1

 c = [c,' '];

 i = i+1;

end

for i=size(d,2):k-1

 d = [d,' '];

 i = i+1;

end

for i=size(f,2):k-1

 f = [f,' '];

 i = i+1;

end

end

Function “bgMT_Construction2”

function [b, g, Materials, Turns] = bgMT_Construction2(fig_yn)

%This function creates the matrices used in the solver ("b", "g") and for

%the computations

%fig_yn = 1 to plot the geometry

%% DATA %%%

%%geometry data

S_crd = [0 2;

 -3 3.53]/100;

GB_crd = [0 2.7;

 -4.8 -3]/100;

GL_crd = [2 2.7;

 -3 6.5]/100;

T_crd = [5 5;

 -8 7.4]/100;

nt = 10;%Number of turns

dc = 1/100;%Diameter of conductor

dc1 = 0.5/100;%diameter of hole in conductor [m]

racc = 0.1/100;%radius of rounded angle in silicon

% general data

freq = 11000;

mu0 = 4*pi*1e-7;

%Material 1: data air

murA = 1; muA = mu0*murA;%magnetic permeability

sigmaA = 0;%Conductivity [Ohm*m]

densityA = nan;%mass density [kg/m^3]

ThCoA = nan;%thermal conductivity k [W/m*K]

SpHeCaA = nan;%specific heat capacity Cp [J/kg*K]

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

60 Appendices

alphaA = nan;%coefficient of temperature for conductivity [k^-1]

tsA = nan;%temperature at which the sigma is given [K]

epsilonA = nan;%Emissivity

%Material 2: data silicon

murS = 1; muS = mu0*murS;

sigmaS = 1.23e6;

densityS = 2560;

ThCoS = 149;

SpHeCaS = 710;

alphaS = -70e-3;

tsS = 1000;

epsilonS = 0.3;

%Material 3: data graphite

murG = 1; muG = mu0*murG;

sigmaG = 8.65e4;

densityG = 2160;

ThCoG = 80;

SpHeCaG = 710;

alphaG = -5e-3;

tsG = 320;

epsilonG = 0.75;

%Material 4: data copper

murC = 1; muC = mu0*murC;

sigmaC = 4.1e7;

densityC = 8920;

ThCoC = 391;

SpHeCaC = 390;

alphaC = 3.93e-3;

tsC = 320;

epsilonC = 0.03;

IC = 385*sqrt(2);%Peak value of the current

SC = pi*dc^2/4-pi*dc1^2/4;%Section of the conductor

%data water

murW = 1; muW = mu0*murW;

sigmaW = 0;

densityW = 1000;

ThCoW = 580;

SpHeCaW = 4185;

alphaW = 0;

tsW = 0;

epsilonW = nan;

%% GEOMETRY COEFFICIENTS%%%

%Center coordinates of turns

Tx_crd = linspace(T_crd(1,1),T_crd(1,2),nt);

Ty_crd = linspace(T_crd(2,1),T_crd(2,2),nt);

%Limit of the entities in the domain for the creation of the domain itself

xmax = max([max(S_crd(1,:)), max(GB_crd(1,:)), max(GL_crd(1,:)), max(S_crd(1,:)),

max(T_crd(1,:))]);

ymin = min([min(S_crd(2,:)), min(GB_crd(2,:)), min(GL_crd(2,:)), min(S_crd(2,:)),

min(T_crd(2,:))]);

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 61

ymax = max([max(S_crd(2,:)), max(GB_crd(2,:)), max(GL_crd(2,:)), max(S_crd(2,:)),

max(T_crd(2,:))]);

h = ymax - ymin;

A_crd = [0, xmax*5; %creation of domain

 ymin-h, ymax+h];

num_seg = 16+4*nt;

%% CREATION OF g %%

%"g" is the matrix that describes the geometry

%Matrix with coordinates of points [x,y]

Points_rept = [min(A_crd(1,:)) max(A_crd(2,:)); %Point 1

 max(A_crd(1,:)) max(A_crd(2,:)); %Point 2

 max(A_crd(1,:)) min(A_crd(2,:)); %Point 3

 min(A_crd(1,:)) min(A_crd(2,:)); %Point 4

 min(A_crd(1,:)) min(GB_crd(2,:)); %Point 5

 min(A_crd(1,:)) max(GB_crd(2,:)); %Point 6

 min(A_crd(1,:)) max(S_crd(2,:)); %Point 7

 max(GL_crd(1,:)) min(GB_crd(2,:)); %Point 8

 max(GL_crd(1,:)) max(GL_crd(2,:)); %Point 9

 min(GL_crd(1,:)) max(GL_crd(2,:)); %Point 10

 max(S_crd(1,:)) max(S_crd(2,:))-racc; %Point 11

 max(S_crd(1,:)) min(S_crd(2,:))+racc; %Point 12

 max(S_crd(1,:))-racc max(S_crd(2,:)); %Point 13

 max(S_crd(1,:))-racc min(S_crd(2,:))]; %Point 14

%Matrix with the segments of rectangles

%[point start, point end, subdomain on left, subdomain on right]

seg_rept = [1 2 0 1; %Segment 1

 2 3 0 1; %Segment 2

 3 4 0 1; %Segment 3

 4 5 0 1; %Segment 4

 5 6 0 3; %Segment 5

 6 7 0 2; %Segment 6

 7 1 0 1; %Segment 7

 5 8 3 1; %Segment 8

 8 9 3 1; %Segment 9

 9 10 3 1; %Segment 10

 10 11 3 1; %Segment 11

 11 12 3 2; %Segment 12

 14 6 3 2; %Segment 13

 7 13 1 2]; %Segment 14

%g contrain the information of all the segments

%if the segment is a line, the column for that segment is:

%row1 2

%row2 x coordinate of the first point

%row3 x coordinate of the second point

%row4 y coordinate of the first point

%row5 y coordinate of the second point

%row6 subdomain on the left

%row7 subdomain on the right

g = zeros(12,num_seg);

for k=1:size(seg_rept,1)

 g(1,k) = 2;

 g(2,k) = Points_rept(seg_rept(k,1),1);

 g(3,k) = Points_rept(seg_rept(k,2),1);

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

62 Appendices

 g(4,k) = Points_rept(seg_rept(k,1),2);

 g(5,k) = Points_rept(seg_rept(k,2),2);

 g(6,k) = seg_rept(k,3);

 g(7,k) = seg_rept(k,4);

end

%if the segment is an arc, the column for that segment is:

%row1 1

%row2 x coordinate of the first point

%row3 x coordinate of the second point

%row4 y coordinate of the first point

%row5 y coordinate of the second point

%row6 subdomain on the left

%row7 subdomain on the right

%row8 x coordinate of the center

%row9 y coordinate of the center

%row10 radius of the arc

i_sub = max([seg_rept(:,3)', seg_rept(:,4)']);

n_rect = i_sub;

i_seg = size(seg_rept,1);

%Write rounded segment 15

i_seg = i_seg +1;

p1 = 11;

p2 = 13;

g(1,i_seg) = 1;

g(2,i_seg) = Points_rept(p1,1);

g(3,i_seg) = Points_rept(p2,1);

g(4,i_seg) = Points_rept(p1,2);

g(5,i_seg) = Points_rept(p2,2);

g(6,i_seg) = 2;

g(7,i_seg) = 1;

g(8,i_seg) = Points_rept(p2,1);

g(9,i_seg) = Points_rept(p1,2);

g(10,i_seg) = racc;

% %Write rounded segment 16

i_seg = i_seg +1;

p1 = 14;

p2 = 12;

g(1,i_seg) = 1;

g(2,i_seg) = Points_rept(p1,1);

g(3,i_seg) = Points_rept(p2,1);

g(4,i_seg) = Points_rept(p1,2);

g(5,i_seg) = Points_rept(p2,2);

g(6,i_seg) = 2;

g(7,i_seg) = 3;

g(8,i_seg) = Points_rept(p1,1);

g(9,i_seg) = Points_rept(p2,2);

g(10,i_seg) = racc;

%write the turns (external circle)

for k=1:nt

 i_sub = i_sub + 1;

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 63

 xc = Tx_crd(1,k);

 yc = Ty_crd(1,k);

 rc = dc/2;

 teta = 0;

 for j=1:4

 i_seg = i_seg +1;

 g(1,i_seg) = 1;

 g(2,i_seg) = xc+rc*cos(teta);

 g(3,i_seg) = xc+rc*cos(teta+pi/2);

 g(4,i_seg) = yc+rc*sin(teta);

 g(5,i_seg) = yc+rc*sin(teta+pi/2);

 teta = teta + pi/2;

 g(6,i_seg) = i_sub;

 g(7,i_seg) = 1;

 g(8,i_seg) = xc;

 g(9,i_seg) = yc;

 g(10,i_seg) = rc;

 end

end

%write water (internal circle)

for k=1:nt

 i_sub = i_sub + 1;

 xc = Tx_crd(1,k);

 yc = Ty_crd(1,k);

 rc = dc1/2;

 teta = 0;

 for j=1:4

 i_seg = i_seg +1;

 g(1,i_seg) = 1;

 g(2,i_seg) = xc+rc*cos(teta);

 g(3,i_seg) = xc+rc*cos(teta+pi/2);

 g(4,i_seg) = yc+rc*sin(teta);

 g(5,i_seg) = yc+rc*sin(teta+pi/2);

 teta = teta + pi/2;

 g(6,i_seg) = i_sub;

 g(7,i_seg) = i_sub-nt;

 g(8,i_seg) = xc;

 g(9,i_seg) = yc;

 g(10,i_seg) = rc;

 end

end

nsd = i_sub;%Number of subdomains

num_seg = size(g,2);%Number of segments

%plot the geometry to see if it is right

if fig_yn

 figure(100)

 pdegplot(g,'subdomainLabels','on')

 axis equal

end

%% CREATION OF b %%

%"b" is a matrix that describes the boundary conditions

%First I create a "Bound" matrix

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

64 Appendices

%Column1 segment

%Column2 1=dirichlet (h*u=r) 0=neumann (n*c*grad(u)+q*u=g)

%Column3 h (o q)

%Column4 r (o g)

Bound = { '1', '1', '1', '0';

 '2', '1', '1', '0';

 '3', '1', '1', '0';

 '4', '1', '1', '0';

 '5', '1', '1', '0';

 '6', '1', '1', '0';

 '7', '1', '1', '0' };

%the "b" matrix is made of ASCII characters

%For example, if the boundary condition is Neumann, the column is:

%row1 1

%row2 0

%row3 Number of digit in the q coefficient

%row4 Number of digit in the g coefficient

%row5 to row(5+row3) contains the ascii number corresponding to the numbers of q

%row(5+row3+1) to row(5+row3+1+row4) is like the above row but for g

b = zeros(10,num_seg);

intern_seg = [0 1 1 1 1 1 48 48 49 48]';

for k=1:num_seg

 b(:,k) = intern_seg;

end

%Routine for the creation of "b"

for k=1:size(Bound,1)

 if isnumeric(str2double(Bound{k,1}))

 seg = str2double(Bound{k,1});

 b(1,seg) = 1;

 if strcmp(Bound{k,2},'1') % Dirichlet

 h_coeff = Bound{k,3};

 r_coeff = Bound{k,4};

 b(5,seg) = length(h_coeff);

 b(6,seg) = length(r_coeff);

 pos = 9;

 for j=1:length(h_coeff)

 b(pos,seg) = invchar(h_coeff(1,j));

 pos = pos+1;

 end

 for j=1:length(r_coeff)

 b(pos,seg) = invchar(r_coeff(1,j));

 pos = pos+1;

 end

 elseif strcmp(Bound{k,2},'0') % Neumann

 b(2,seg) = 0;

 q_coeff = Bound{k,3};

 g_coeff = Bound{k,4};

 b(3,seg) = length(q_coeff);

 b(4,seg) = length(g_coeff);

 pos = 5;

 for j=1:length(q_coeff)

 b(pos,seg) = invchar(q_coeff(1,j));

 pos = pos+1;

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 65

 end

 for j=1:length(g_coeff)

 b(pos,seg) = invchar(g_coeff(1,j));

 pos = pos+1;

 end

 else

 warndlg('Second column of matrix Bound must be 0 or 1', ['Error in

',mfilename,'.m.']);

 return

 end

 else

 warndlg('First column of matrix Bound must be a number', ['Error in

',mfilename,'.m.']);

 return

 end

end

%% CREATION OF “Materials” MATRIX %%%

%subdomains

%subdomain 1 = Air

%subdomain 2 = Silicon

%subdomain 3 = Graphite

%subdomain 4-... = TurnS

%nsd = number of subdomains (air, 2*graphite, silicon, nt turns)

material_subd = zeros(1,nsd);

%subdomain 1 2 3 4 5 6 7 8

...

%subdomain example:

%subdomain = [1, 2, 3, 4, 4, 4, 4, 4,

...

%the meaning of the numbers is:

% 1 per Air

% 2 per Silicon

% 3 per Graphite

% 4 per Copper

% 5 per Water

material_subd(1,1:3) = [1, 2, 3];

for i=4:(nt+3)

 material_subd(1,i) = 4;

end

for i=(nt+4):(nsd)

 material_subd(1,i) = 5;

end

%The matrix Materials.mat is formed like that:

%Material 1 2 3 4

...

%Mu mu1 mu2 mu3 mu4

...

%Sigma sigma1 sigma2 sigma3 sigma4

...

%Density dens1 dens2 dens3 dens4

...

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

66 Appendices

%Thermal conductivity k1 k2 k3 k4

...

%Specific Heat Capacity c1 c2 c3 c4

...

%Coefficient of temperature for conductivity alpha1 alpha2 alpha3 alpha4

...

%Temperature at which the sigma is given Ta1 Ta2 Ta3 Ta4

...

%Emissivity epsilon1 epsilon2 epsilon3 epsilon4

...

Materials = [material_subd;zeros(5,nsd)];

for i=1:nsd

 switch Materials(1,i)

 case 1 %Air

 Materials(2:9,i) =

[muA;sigmaA;densityA;ThCoA;SpHeCaA;alphaA;tsA;epsilonA];

 case 2 %Silicon

 Materials(2:9,i) =

[muS;sigmaS;densityS;ThCoS;SpHeCaS;alphaS;tsS;epsilonS];

 case 3 %Graphite

 Materials(2:9,i) =

[muG;sigmaG;densityG;ThCoG;SpHeCaG;alphaG;tsG;epsilonG];

 case 4 %Copper

 Materials(2:9,i) =

[muC;sigmaC;densityC;ThCoC;SpHeCaC;alphaC;tsC;epsilonC];

 case 5 %Water

 Materials(2:9,i) =

[muW;sigmaW;densityW;ThCoW;SpHeCaW;alphaW;tsW;epsilonW];

 end

end

%% Turns.mat %%

%The matrix Turns.mat is formed like that:

%Subdomain S1 S2 S3 S4 S5 S6 ...

%Current I1 I2 I3 I4 I5 I6 ...

%Section S1 S2 S3 S4 S5 S6 ...

%Radius of turn R1 R2 R3 R4 R5 R6 ...

%frequency f f f f f f ...

%diameter of cond dc1 dc2 dc3 dc4 dc5 dc6 ...

%Diameter of hole dh1 dh2 dh3 dh4 dh5 dh6 ...

Turns = zeros(5,nt);

for k=1:(nt)

 Turns(1:7,k) = [k+n_rect, IC, SC, Tx_crd(1,k), freq, dc, dc1];

end

end

function charcode = invchar(c)

 charcode = find(char(0:255) == c) - 1;

end

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 67

Function “ComputeI”

function [I, V] = ComputeI(u)

%Given the solution, this function compute the current in the turns

%Here are taken the matrices from the calle function

p = evalin('caller','p');

t = evalin('caller','t');

Materials = evalin('caller','Materials');

Turns = evalin('caller','Turns');

[A,~,~,~] = pdetrg(p,t);

%% COMPUTATION %%

turns_index = Turns(1,:);

omega = 2*pi*Turns(5,1);

PSIfi = u;

Afi_p = PSIfi./(p(1,:))';%On the axis there are divisions by zero, so the

Afi_p(isnan(Afi_p)) = 0;%nans are replaced with zero

Afi_t = pdeintrp(p,t,Afi_p);

%Initialization of the current and voltage vectors to zero

I = zeros(1,size(turns_index,2));

V = I;

%Iteration through the turns

for k=1:size(turns_index,2);%k is the subdomain number

 i_t = pdesdt(t,turns_index(1,k));%index of triangles in subdomain k

 for h=1:size(i_t,2)

 J = -1i*omega*Materials(3,t(4,i_t(1,h)))*Afi_t(1,i_t(1,h));

 area = A(1,i_t(1,h));

 I(1,k) = I(1,k) + area*J;

 end

 V(1,k) = 2*pi*Turns(4,k)*I(1,k)/(Materials(3,turns_index(1,k))*Turns(3,k));

end

end

Function “u_Integral1”

function [Area_integral, Volume_integral] = u_Integral1(varargin)

%This function integrates the solution on the area and on the volume. If no

%indices of triangles are given, the function integrates in all the domain

%[Area_integral, Volume_integral] = u_Integral(p, t, u)

%[Area_integral, Volume_integral] = u_Integral(p, t, u, i_t)

if nargin==3

 p = varargin{1};

 t = varargin{2};

 u = varargin{3};

 i_t = (1:1:size(t,2));

elseif nargin==4

 i_t = varargin{4};

 p = varargin{1};

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

68 Appendices

 t = varargin{2}(:,i_t);

 u = varargin{3}(:,i_t);

else

 error('Wrong number of variables in input.\n');

end

xpts=(p(1,t(1,:))+p(1,t(2,:))+p(1,t(3,:)))/3;

[A,~,~,~] = pdetrg(p,t);

temp = A.*u;

Area_integral = sum(temp);

temp = temp.*2.*pi.*xpts;

Volume_integral = sum(temp);

end

Function “pdetool2tecplot”

function [] = pdetool2tecplot (name_out, p, e, t, varargin)

%% PDETOOL2TECPLOT (name_out, p, e, t, V1, V2, ..., Options)

%Given an output of the pdetool (p, e, t, and variable), this function

%creates a file (txt or binary) readable by tecplot.

%The min function call is pdetool2tecplot (name_out, p, e, t), where:

%name_out is a string rappresenting the name of the output file

%p, e and t have the same meaning as in the pdetool

%Optionally it is possible to add Variables and Options

%pdetool(name_out, p, e, t, V, Options) where:

% V are variables. The variables must have the same the same number of

% elements as p or t. It is possible to add as many variables as you

% want. If a variable is a complex number, the variable will be splitted

% in real and imaginary part.

% Options can be one of follow elements

% 'Precision': Must be used if you want to specify the number of

% digits saved after the point. It must be a positive integer number.

% For default 6 digits are saved after the point. The max in a double

% precision number are 15, so a number greater than that will be set

% to 15. For example you can format the numbers like this 8.95672e6

% (5 digits after the point) as follow:

% pdetool2tecplot2('prova', p, e, t, 'Precision', 5)

% 'Subdomain': It is possible to not copy all the subdomains in the

% file. The argument of this option must be a number or a vector of

% numbers. If not specified, all the domains will be included.

% For example if you want to save only the subdomain 2 and 7 you can

% do that as follow:

% pdetool2tecplot2 ('prova', p, e, t, 'Subdomain', [2, 7])

% 'Division': It is possible to divide the subdomains, so TecPlot can

% manage them separately. The argument must be 'Yes'(Default) or 'No'.

% pdetool2tecplot2 ('prova', p, e, t,...

% 'Division', 'No')

% 'VarName': It is possible to specify the names of the variables.

% The input must be a cell array of strings and the number of strings

% must be equal to the number of variables (or the number of

% variables +2 if you want to include the names of x and y axes).

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 69

% In the following example the names of the axes are included.

% pdetool2tecplot2 ('prova', p, e, t, Var1, Var2,...

% 'VarName', {'r' 'z' 'Pressure' 'Temperature'})

% 'ZonesName': It is possible to specify the names of the zones. The

% input must be a cell array of strings and the number of strings

% must be equal to the number of zones. If you choose to not divide

% the subdomains there will be only a zone, otherwise there will be a

% zone for each subdomain.

% You can specify the names as follow:

% pdetool2tecplot2 ('prova', p, e, t, Var1, Var2,...

% 'Subdomain', [1,2,3],...

% 'ZonesName',{'Air' 'Silicon' 'Graphite'});

% 'ZAD' means "Zone Auxiliary Data". It is possible to specify

% auxiliary data in order to use it in tecplot. You need to specify

% the name of the variable and the value of the variable for each

% zone.

% The call must be

% 'ZAD', Names, Values,

% where:

% "Names" is a cell array and have dimensions nv by 1 where nv is the

% number of Variables.

% "Values" is a cell array and have dimensions nv by nz where nz is

% the number of zones.

% For example I can save the total flux from external boundary and

% the total flux from internal boundary for the 2 zone as follow

% pdetool2tecplot2 ('prova', p, e, t, Temp,...

% 'ZAD',{'ext_flux';'int_flux'},{flu_ext1, flu_ext2; flu_int1, flu_int2 },...

% 'ZonesName',{'Cond1' 'Cond2'});

% 'DSAD' means "DataSet Auxiliary Data". It is similar to ZAD,

% with the difference that this data is common for all the dataset,

% so you don't need data for each Zone. The syntax is symilar to the

% previous, but this time nz = 1.

% 'Title': To specify the title of the plot. The argument must be a

% string

% You can set the title as follow

% pdetool2tecplot2 ('prova', p, e, t,...

% 'Title', 'round plate')

% 'Time': It is possible to specify at whitch the the simulation is

% taken, so is simple to manage them with tecplot (for example to

% create an animation). The time must be expressed in seconds.

% You can specify the time as follow

% pdetool2tecplot2 ('prova', p, e, t, Var1,...

% 'Time',0.0001)

% 'TypeOut': It is possible to save the output file as a binary or a

% txt file. The advantage af a binary file is to save space on the HD

% (usually a half). The argument of this option can be

% 'ASCII' to save the txt file

% 'binary' (Default) to save the binary file

% 'both' to save both the txt and binary file

% Writing the binary file is possible only if Tecplot is installed in

% the computer.

% Example

% pdetool2tecplot2 ('prova', p, e, t, Var1,...

% 'TypeOut','both')

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

70 Appendices

% 'Grid': is possible to interpolate the value of the FE mesh into a

% mapped mesh. After "Grid" you have to specify if the grid start

% from the x or y values ('xy' or 'yx'). Then you have to specify the

% two vectors of coordinates. The vectors are taken from 0 to 1. The

% function will expand the points on all the domain. For example you

% can specify as follow

% pdetool2tecplot ('Example_grid', p, e, t, u,...

% 'grid','xy',x,y,...

% 'subdomain',2,...

% 'title', 'Sphere');

%% ERRORS AND CONTROL OF INPUT %%

%generate error if the name of the file is not a string

if ~ischar(name_out)

 error('The name of the file must be a string.')

end

%remove blank spaces in the name

name_out = sscanf(name_out,'%s');

%remove the extension (if present)

if size(name_out,2)>=5

 if (strcmpi(name_out((end-3):end), '.plt'))

 name_out(end-3:end) = [];

 end

end

%create the name for ASCII and binary file

name_out_ascii = [name_out,'_ASCII.plt'];

name_out_bin = [name_out,'_bin.plt'];

nt = size(t,2);%number of triangles

np = size(p,2);%number of points

sd = unique(t(4,:));%subdomains

xpts=(p(1,t(1,:))+p(1,t(2,:))+p(1,t(3,:)))/3;

ypts=(p(2,t(1,:))+p(2,t(2,:))+p(2,t(3,:)))/3;

nin_varargin = length(varargin);%number of input variables

%% CONTROL OF THE INPUT %%%

%generate error if the number of input are not enough

narginchk(4, inf)

if nin_varargin > 0

 k = 1;

 flagvals = {'Precision' 'Subdomain' 'Division' 'VarName' 'Title' 'Grid' '-Space'

'TypeOut' 'Time' 'ZonesName' 'ZAD' 'DSAD'};

 nflagvals = size(flagvals,2);

 flag_value = cell(1,nflagvals);

 i = 1;

 %DEFAUL VALUES AND FLAGS

 %Precision

 Precision_value = 6;%default value for precision

 %SubDomain

 SubDomains = sd;%default

 %Division

 Division_flag = {'yes' 'no'};

 Division = 1;%default value

 %Title

 Title = 'DATA';%Default

 %Grid

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 71

 grid_flag = {'xy' 'yx'};%Possible flag values for grid

 %-Space

 min_space = false;%default value for flag "-Space"

 %TypeOut

 TypeOut_flag = {'ASCII' 'binary' 'both'}; %Possible flags values for TypeOut

 TypeOut = 2;%default value

 %Time

 Time = nan;

 %ZonesName

 ZonesName = {};

 Variables = {};

 Var_Name = {'x' 'y'};

 nod_cell = {'n' 'n'};

 while i<=nin_varargin

 if ischar(varargin{i})

 %deblank flag

 flag = sscanf(varargin{i},'%s');

 foundflag = strcmpi(flag,flagvals);

 % If the flag not existent -> error

 if ~any(foundflag)

 error(['Unknown Flag "',flag,'".']);

 end

 %if a flag is found more than 1 time -> error

 if sum(strcmpi(flag_value,varargin{i}))~=0

 error(['Flag "',flag,'" repeated.']);

 end

 %the next value must be assigned to the flag

 i = i+1;

 if i > nin_varargin

 error(['Too few arguments for "',varargin{i-1},'".']);

 end

 %Check if the argument is ok

 switch find(foundflag==1)

 case 1%Precision

 try

 if ~isreal(varargin{i})||~(varargin{i}>0)

 error('Invalid precision.');

 end

 catch

 error('Invalid precision.');

 end

 flag_value{foundflag} = varargin{i};

 if varargin{i} > 15

 Precision_value = 15;

 else

 Precision_value = varargin{i};

 end

 case 2%Subdomain

 try

 if size(intersect(varargin{i},sd),2)~=size(varargin{i},2)

 error('Invalid subdomain.');

 end

 catch

 error('Invalid subdomain.');

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

72 Appendices

 end

 SubDomains = sort(varargin{i});

 case 3%Division

 Choice_Division = find(strcmpi(varargin{i},Division_flag)==1);

 if isempty(Choice_Division)

 error('Invalid division value.');

 else

 flag_value{foundflag} = varargin{i};

 Division = Choice_Division;

 end

 case 4%Var_Name

 if ~iscell(varargin{i})

 error('Var_Name value is not a cell.');

 end

 for k=1:size(varargin{i},2)

 if ~ischar(varargin{i}{k})

 error('One of the Var_Name values is not a string.');

 end

 end

 flag_value{foundflag} = varargin{i};

 case 5%Title

 if ~ischar(varargin{i})

 error('Title argument is not a string.');

 end

 Title = varargin{i};

 case 6%Grid

 flag_value{foundflag} = varargin{i-1};

 %Grid must have 4 arguments in total

 if i+2 > nin_varargin

 error('Too few arguments for "Grid".');

 end

 if ischar(varargin{i}) %

 grid_flag_value = varargin{i};

 grid_mod = find(strcmpi(grid_flag_value,grid_flag)==1);

 %control if the flag exist

 if isempty(grid_mod)

 error(['The value (',grid_flag_value,') specified for

"Grid" is not a valid value']);

 end

 i = i+1;

 Grid{1} = varargin{i};

 i = i+1;

 Grid{2} = varargin{i};

 %control if are numbers

 if ~(isnumeric(Grid{1}) && isnumeric(Grid{2}))

 error('"Grid" arguments are not numbers.');

 end

 %control if are two points

 if all(size(Grid{1})==1) && all(size(Grid{2})==1)

 error('The arguments for "Grid" are two points.');

 end

 %control if are row vectors

 if ~(size(Grid{1},1) && size(Grid{2},1))

 error(['For ',grid_flag_value,' you must specify two row

vectors']);

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 73

 end

 %are sorted?

 if ~issorted(Grid{1})||~issorted(Grid{2})

 Grid{1} = sort(Grid{1});

 Grid{2} = sort(Grid{2});

 warning('The vectors were not sorted.');

 end

 if any(Grid{1}>1) || any(Grid{1}<0) || any(Grid{2}>1)

|| any(Grid{2}<0)

 error(['For ',grid_flag_value,' the values cannot be >1

or <0.']);

 end

 else

 error('For "Grid" you need to specify also "xy" or "yx".');

 end

 case 7%Space

 min_space = true;

 i = i - 1;

 case 8%binary

 choice_TypeOut = find(strcmpi(varargin{i},TypeOut_flag)==1);

 if isempty(choice_TypeOut)

 error('Invalid "choice_TypeOut" value.');

 else

 TypeOut = choice_TypeOut;

 end

 case 9%Time

 if isequal(size(varargin{i}),[1,1]) && isnumeric(varargin{i})

 Time = varargin{i};

 else

 error('Invalid "Time" value.');

 end

 case 10%ZonesName

 if ~iscell(varargin{i})

 error('"ZonesName" value is not a cell.');

 end

 for k=1:size(varargin{i},2)

 if ~ischar(varargin{i}{k})

 error('One of the "ZonesName" values is not a string.');

 end

 end

 ZonesName = varargin{i};

 case 11%ZAD ex: 'ZAD', 'Name', [Value/Values]

 ZAD.name = varargin{i};

 i = i + 1;

 ZAD.values = varargin{i};

 case 12%DSAD ex: 'DSAD', 'Name', [Value/Values]

 DSAD.name = varargin{i};

 i = i + 1;

 DSAD.values = varargin{i};

 end

 else

 %generate error if the values are matrix

 if all(size(varargin{i}) > 1)

 error(['The variable "',inputname(i+4),'" is a matrix.'])

 end

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

74 Appendices

 %Creation of a vector with the name of variables.

 %If the name can't be readed, give the number of input

 if strcmp(inputname(i+4),'')

 sd_name{k} = num2str(i+4); %#ok<AGROW>

 else

 sd_name{k} = inputname(i+4); %#ok<AGROW>

 end

 %generate error if the values varargin have not the same dimensions of p

or t

 if ~any(size(varargin{i}) == np) && ~any(size(varargin{i}) == nt)

 error(['The length of the input variable "',sd_name{k},'" is

different from the length of p or t.'])

 end

 if isreal(varargin{i})

 %creation of a vector that tell me if the variable in on nodes or

cell centered

 if any(size(varargin{i}) == nt)

 nod_cell{k+2} = 'c';

 else

 nod_cell{k+2} = 'n';

 end

 %All the variables are row vectors

 if size(varargin{i}, 1) == 1

 Variables{k} = varargin{i}; %#ok<AGROW>

 else

 Variables{k} = varargin{i}.'; %#ok<AGROW>

 end

 %Build the Var_Name variable. If the names are specified, the

 %value will be overwritten

 if strcmp(inputname(i+4),'')

 Var_Name{k+2} = num2str(i+4);

 else

 Var_Name{k+2} = inputname(i+4);

 end

 k = k + 1;

 else %if not a real number, split in real and imaginary

 %creation of a vector that tell me if the variable in on nodes or

cell centered

 if any(size(varargin{i}) == nt)

 nod_cell{k+2} = 'c';

 nod_cell{k+3} = 'c';

 else

 nod_cell{k+2} = 'n';

 nod_cell{k+3} = 'n';

 end

 %All the variables are row vectors

 if size(varargin{i}, 1) == 1

 Variables{k} = real(varargin{i}); %#ok<AGROW>

 Variables{k+1} = imag(varargin{i}); %#ok<AGROW>

 else

 Variables{k} = real(varargin{i}.'); %#ok<AGROW>

 Variables{k+1} = imag(varargin{i}.'); %#ok<AGROW>

 end

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 75

 %Build the Var_Name variable. If the names are specified, the

 %value will be overwritten

 if strcmp(inputname(i+4),'')

 Var_Name{k+2} = [num2str(i+4),' - real'];

 Var_Name{k+3} = [num2str(i+4),' - imag'];

 else

 Var_Name{k+2} = [inputname(i+4),' - real'];

 Var_Name{k+3} = [inputname(i+4),' - imag'];

 end

 k = k + 2;

 end

 end

 i = i+1;

 end

% Control of fighting flags

 %no 'Division' and 'Grid' at the same time

 if ~isempty(flag_value{3})&&~isempty(flag_value{6})

 error('"Division" and "Grid" cannot be set at the same time.');

 end

 %no '-Space' and 'Grid' at the same time

 if ~isempty(flag_value{7})&&~isempty(flag_value{6})

 error('"-Space" and "Grid" cannot be set at the same time.');

 end

 nin_Variable = length(Variables);

 % set value 'Precision'

 Precision = ['%+.',num2str(Precision_value),'e'];

 % set Var_Name

 if ~isempty(flag_value{4})

 if size(flag_value{4},2)==nin_Variable+2

 k=1; i=1;

 elseif size(flag_value{4},2)==nin_Variable

 k=3; i=1;

 else

 error('Wrong number of Var_Name Values. Complex values?');

 end

 while k <= nin_Variable + 2

 Var_Name{k} = flag_value{4}{i};

 k = k+1; i=i+1;

 end

 end

 % Set Grid

 if ~isempty(flag_value{6})

 status = 1;

 %div_flag 'yes' 'no'

 if Division==1 %if division == yes

 warning('With "Grid" is not possible to divide the domain. Division set

to "no".');

 Division = 2;%division set to no

 end

 if grid_mod == 1

 [POINTS_X, POINTS_Y] = points_matrix_xy ();

 if status==0

 [POINTS_X, POINTS_Y] = points_matrix_yx ();

 if status==1

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

76 Appendices

 warning('The "Grid" method has been changed from "xy" to "yx".');

 else

 error('The domain has holes or irregularities.');

 end

 end

 else

 [POINTS_X, POINTS_Y] = points_matrix_yx ();

 end

 end

 %Number of Zones

 if Division == 2%div_flag 'yes' 'no'

 n_Zones = 1;

 else

 n_Zones = size(SubDomains,2);

 end

 % set ZonesName

 if size(ZonesName,2)>0

 if size(ZonesName,2)~=n_Zones

 error('Wrong number of "ZonesName" Values.');

 end

 else

 ZonesName = cell(1,n_Zones);

 if n_Zones==1

 ZonesName{1} = '';

 for k=1:size(SubDomains,2)

 ZonesName{1} = strcat(ZonesName{1},num2str(SubDomains(k)),',');

 end

 %remove the last ,

 ZonesName{1}(end) = [];

 else

 for k=1:n_Zones

 ZonesName{k} = num2str(SubDomains(k));

 end

 end

 end

 %Control of Zone AuxData

 if exist('ZAD','var')

 if size(ZAD.name,1)~=size(ZAD.values,1)

 error('Number of Names for "ZAD" different from number of Values');

 end

 if size(ZAD.values,2)~=n_Zones

 error('Number of Values for "ZAD" different from number of Zones');

 end

 end

 %Control of Dataset AuxData

 if exist('DSAD','var')

 if size(DSAD.name,1)~=size(DSAD.values,1)

 error('Number of Names for "DSAD" different from number of Values');

 end

 if size(DSAD.values,2)~=1

 error('Number of Values for "DSAD" different from number of Zones');

 end

 end

end

%% OPEN FILE %%

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 77

%free some space

clear varargin

%Open the file

[fileID, message]= fopen(name_out_ascii,'w');

%generate error if the file is not opened

if fileID < 0

 error(['Fail to open the file to write. ',message]);

end

%% WRITE FILE %%%

%write the format. New line after 10 numbers

number = [Precision,'\t'];

format = repmat(number,1,10);

format = [format,'\n'];

fprintf (fileID,'TITLE= "%s"\n', Title);

%Initialize some char variables

str_time = '';

str_name_variables = '';

str_nodal = '';

str_cell = '';

write_node_order = false;

write_strings()

fprintf (fileID, '%s\n',str_name_variables);

if isempty(flag_value{6})

%% WRITE FILE – FE TRIANGLE %%%

 str_zone = 'ZONETYPE = FETRIANGLE, DATAPACKING = BLOCK';

 %div_flag 'yes' 'no'

 if Division==2

 if ~isequal(SubDomains,sd)

 write_zone_red (1, SubDomains);

 else

 write_zone (1);

 end

 else

 for k=1:size(SubDomains,2)

 if k==1

 fprintf('Writing subdomain: ');

 else

 for h=1:l_z+1

 fprintf('\b');

 end

 end

 fprintf('%s\n',ZonesName{k});

 write_zone_red (k, SubDomains(k));

 l_z = length(ZonesName{k});

 end

 end

else

%% WRITE FILE – ORDERED %%%

 str_zone = 'ZONETYPE = ORDERED, DATAPACKING = BLOCK';

 write_zone_ordered (1)

end

%before closing the file, the dataset aux data must be written

write_DSAD;

fclose(fileID);

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

78 Appendices

%% OUTPUT %%%

%If the binary is needed and tecplot is installed, create the file

if TypeOut==2 || TypeOut==3

 command = ['preplot ',name_out_ascii,' ',name_out_bin];

 status_bin = dos(command);

end

switch TypeOut

 case 1%ASCII

 fprintf('ASCII file "%s" created.\n',name_out_ascii);

 case 2%binary

 if status_bin~=-1

 delete(name_out_ascii);

 fprintf('Binary file "%s" created.\n',name_out_bin);

 else

 warning('Binary file not created. (Maybe you do not have TecPlot

installed). Created the ASCII file"%s" instead',name_out_ascii);

% warning('progr:Nneg','Input N=%d must be positive\n',N);

 end

 case 3%both

 if status_bin~=-1

 fprintf('ASCII file "%s" created.\n',name_out_ascii);

 fprintf('Binary file "%s" created.\n',name_out_bin);

 else

 fprintf('ASCII file "%s" created.\n',name_out_ascii);

 warning('Binary file not created. (Maybe you do not have TecPlot

installed)');

 end

end

%% NESTED FUNCTIONS %%%

 function write_ZAD (Zone_Number)

 if exist('ZAD','var')

 for kk=1:size(ZAD.name,1)

 name = ZAD.name{kk,1};

 Value = ZAD.values{kk,Zone_Number};

 if isnumeric(name)

 name = num2str(name);

 end

 if isnumeric(Value)

 Value = num2str(Value);

 end

 str_ZAD = ['AUXDATA ',name,' = "',Value,'"'];

 fprintf (fileID,'%s\n',str_ZAD);

 end

 end

 end

 function write_DSAD

 if exist('DSAD','var')

 for kk=1:size(DSAD.name,1)

 name = DSAD.name{kk,1};

 Value = DSAD.values{kk,1};

 if isnumeric(name)

 name = num2str(name);

 end

 if isnumeric(Value)

 Value = num2str(Value);

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 79

 end

 str_DSAD = ['DATASETAUXDATA ',name,' = "',Value,'"'];

 fprintf (fileID,'%s\n',str_DSAD);

 end

 end

 end

%% WRITE STRINGS %%

 function write_strings()

 if ~isnan(Time)

 str_time = sprintf('SOLUTIONTIME = %s',num2str(Time));

 end

 %Condition when to write node order

 if min_space == false

 if ~isequal(SubDomains,sd)

 write_node_order = true;

 elseif Division==1%div_flag 'yes' 'no'

 write_node_order = true;

 end

 end

 %Write str_name_variables

 str_name_variables = 'VARIABLES =';

 for kk=1:size(Var_Name,2)

 str_name_variables = strcat(str_name_variables,sprintf ('

"%s"',Var_Name{kk}));

 end

 if write_node_order==true && isempty(flag_value{6})

 str_name_variables = strcat(str_name_variables,sprintf (' "%s"','Node-

Order'));

 end

 % write str_nodal

 nodal = find(strcmpi(nod_cell,'n')==1);

 str_nodal = 'VARLOCATION = ([';

 for kk=1:size(nodal,2)

 str_nodal = strcat(str_nodal,num2str(nodal(kk)));

 if kk==2 && write_node_order==true && isempty(flag_value{6})

 str_nodal = strcat(str_nodal,',3');

 end

 if kk~=size(nodal,2)

 str_nodal = strcat(str_nodal,', ');

 else

 if write_node_order==true && isempty(flag_value{6})

 str_nodal = strcat(str_nodal,',',num2str(nin_Variable+3),']=

NODAL)');

 else

 str_nodal = strcat(str_nodal,']= NODAL)');

 end

 end

 end

 % write str_cell

 cellcentered = find(strcmpi(nod_cell,'c')==1);

 if any(cellcentered>0)

 str_cell = 'VARLOCATION = ([';

 for kk=1:size(cellcentered,2)

 str_cell = strcat(str_cell,num2str(cellcentered(kk)));

 if kk~=size(cellcentered,2)

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

80 Appendices

 str_cell = strcat(str_cell,',');

 end

 end

 str_cell = strcat(str_cell,']= CELLCENTERED)');

 end

 end

%% WRITE ZONE REDUCED %%%

 function write_zone_red (Zone, SubDomains)

 zone_name = ZonesName{Zone};

 [int, cont] = pdesdp(p,e,t,SubDomains);

 i_p = [int cont];

 i_t = pdesdt(t,SubDomains);

 p_red = p(:,i_p);

 np_red = size(p_red,2);

 nt_red = size(t(:,i_t),2);

 fprintf (fileID, '\n\n#ZONE %s\n',zone_name);

 fprintf (fileID,'ZONE T ="%s", N = %d, E = %d', zone_name, np_red, nt_red);

 fprintf (fileID,'%s\n',str_time);

 write_ZAD(Zone);

 if write_node_order==true

 fprintf (fileID, sprintf(', NV = %s\n',num2str(nin_Variable+3)));

 else

 fprintf (fileID,'\n');

 end

 fprintf (fileID,'%s\n',str_nodal);

 if ~strcmp(str_cell,'')

 fprintf (fileID,'%s\n',str_cell);

 end

 fprintf (fileID,'%s\n',str_zone);

 %write x points

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{1});

 fprintf (fileID, format, p(1,i_p));

 fprintf (fileID, '\n');

 %write y points

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{2});

 fprintf (fileID, format, p(2,i_p));

 fprintf (fileID, '\n');

 %write other variables

 for j=1:length(Variables)

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{j+2});

 if size(Variables{j},2)==np

 fprintf (fileID, format, Variables{j}(1,i_p));

 elseif size(Variables{j},2)==nt

 fprintf (fileID, format, Variables{j}(1,i_t));

 else

 error('Error in write.');

 end

 fprintf (fileID, '\n');

 end

 %write "Node-Order"

 if write_node_order==true

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE "Node-Order"\n',zone_name);

 format_NO = [repmat('%d\t',1,10),'\n'];

 fprintf (fileID, format_NO, i_p);

 fprintf (fileID, '\n');

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 81

 else

 t_red = new_t (t(1:3,i_t), i_p);

 end

 %Write the connectivity list

 fprintf (fileID, '\n\n#ZONE %s - CONNECTIVITY LIST\n',zone_name);

 if write_node_order==true

 fprintf (fileID, '%-d\t%-d\t%-d\n', t(1:3,i_t));

 else

 fprintf (fileID, '%-d\t%-d\t%-d\n', t_red);

 end

 fprintf (fileID, '\n\n\n\n');

 end

%% WRITE ZONE ENTIRE %%

 function write_zone (Zone)

 zone_name = ZonesName{Zone};

 fprintf (fileID, '\n\n#ZONE %s\n',zone_name);

 fprintf (fileID,'ZONE T ="%s", N = %d, E = %d \n', zone_name, np, nt);

 fprintf (fileID,'%s\n',str_time);

 write_ZAD(Zone);

 fprintf (fileID,'%s\n',str_nodal);

 if ~strcmp(str_cell,'')

 fprintf (fileID,'%s\n',str_cell);

 end

 fprintf (fileID,'%s\n',str_zone);

 %write x points

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{1});

 fprintf (fileID, format, p(1,:));

 fprintf (fileID, '\n');

 %write y points

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{2});

 fprintf (fileID, format, p(2,:));

 fprintf (fileID, '\n');

 %write other variables

 for j=1:length(Variables)

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{j+2});

 fprintf (fileID, format, Variables{j});

 fprintf (fileID, '\n');

 end

 %Write the connectivity list

 fprintf (fileID, '\n\n#ZONE %s - CONNECTIVITY LIST\n',zone_name);

 fprintf (fileID, '%-5d\t%-5d\t%-5d\n', t(1:3,:));

 fprintf (fileID, '\n\n\n\n');

 end

%% WRITE ZONE ORDERED %%%

 function write_zone_ordered (Zone)

 zone_name = ZonesName{Zone};

 I = size(POINTS_X,2);

 J = size(POINTS_X,1);

 K = 1;

 fprintf (fileID, '\n\n#ZONE %s\n',zone_name);

 fprintf (fileID,'ZONE T ="%s"\n', zone_name);

 fprintf (fileID,'%s\n',str_time);

 write_ZAD(Zone);

 fprintf (fileID,'I = %i, J = %i, K = %i \n', I, J, K);

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

82 Appendices

 fprintf (fileID,'%s\n',str_zone);

 format_ord = [repmat(number, 1, J), '\n'];

 %write x points

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{1});

 fprintf (fileID, format_ord, POINTS_X.');

 %write y points

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{2});

 fprintf (fileID, format_ord, POINTS_Y.');

 for j=1:length(Variables)

 fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{j+2});

 if size(Variables{j},2)==np

 uI = scatteredInterpolant(p(1,:).',p(2,:).',Variables{j}.','linear');

 else

 uI = scatteredInterpolant(xpts(:),ypts(:),Variables{j}(:),'linear');

 end

 V_ord = uI(POINTS_X, POINTS_Y);

 fprintf (fileID, format_ord, V_ord.');

 end

 end

%% CONSTRUCT MATRIX OF POINTS FOR THE GRID %%

function [POINTS_X, POINTS_Y] = points_matrix_yx ()

 status = 1;

 [int, cont] = pdesdp(p,e,t,SubDomains);

 i_p = [int cont];

 i_t = pdesdt(t,SubDomains);

 p_red = p(:,i_p);

 x_min = min(p_red(1,:)); x_max = max(p_red(1,:)); Dx = x_max - x_min;

 y_min = min(p_red(2,:)); y_max = max(p_red(2,:)); Dy = y_max - y_min;

 x_uni = Grid{1};

 y_uni = Grid{2};

 nx = size(x_uni,2);

 ny = size(y_uni,2);

 %creation of y vector

 y = y_min + y_uni*Dy;

 %take all the edges. In this way I can exclude easily all internal

 %edges

 logic = ismember(e(6:7,:),SubDomains);

 i_e = find(xor(logic(1,:),logic(2,:)));

 i_p_e = unique([e(1,i_e),e(2,i_e)]);

 ne = size(i_e,2);

 for kk=1:ny

 %find the two edges that contain that y value

 e1_found = false;

 e2_found = false;

 for j=1:ne

 p1 = e(1,i_e(1,j));

 p2 = e(2,i_e(1,j));

 if ((p(2,p1) > y(1,kk))&&(p(2,p2) < y(1,kk)))||((p(2,p1) <

y(1,kk))&&(p(2,p2) > y(1,kk)))

 if e1_found == false

 e1 = j;

 e1_found = true;

 elseif e2_found == false

 e2 = j;

 e2_found = true;

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 83

 else

 status = 0;

 return

 end

 end

 end

 if e1_found == false

 %find distance from 2 points in y

 if kk==1

 dist = 2*abs(y(1,1)-y(1,2));

 elseif kk==ny

 dist = 2*abs(y(1,ny-1)-y(1,ny));

 else

 dist = abs(y(1,kk-1)-y(1,kk+1));

 end

 %introduction error

 er = dist/50;

 %find all edges in that error

 ptemp = p(:,i_p_e);

 ind = find(abs(ptemp(2,:)-y(1,kk))<er);

 if isempty(ind)

 status = 0;

 return

 end

 %find min e max in x of these points

 [~,Imin] = min(ptemp(1,ind));

 [~,Imax] = max(ptemp(1,ind));

 pmin = i_p_e(1,ind(1,Imin));

 pmax = i_p_e(1,ind(1,Imax));

 x1 = p(1,pmin);

 x2 = p(1,pmax);

 else

 %trovo x1

 p1 = e(1,i_e(1,e1));

 p2 = e(2,i_e(1,e1));

 x1 = p(1,p1) + (p(1,p2)-p(1,p1))*((p(2,p1)-y(1,kk)))/(p(2,p1)-p(2,p2));

 %trovo x2

 p1 = e(1,i_e(1,e2));

 p2 = e(2,i_e(1,e2));

 x2 = p(1,p1) + (p(1,p2)-p(1,p1))*((p(2,p1)-y(1,kk)))/(p(2,p1)-p(2,p2));

 end

 Dx = abs(x2 - x1);

 x = min([x1, x2]) + x_uni*Dx;

 POINTS_X(kk,:) = x;

 POINTS_Y(kk,:) = ones(1,size(x,2))*y(1,kk);

 end

end

function [POINTS_X, POINTS_Y] = points_matrix_xy ()

 status = 1;

 [int, cont] = pdesdp(p,e,t,SubDomains);

 i_p = [int cont];

 i_t = pdesdt(t,SubDomains);

 p_red = p(:,i_p);

 x_min = min(p_red(1,:)); x_max = max(p_red(1,:)); Dx = x_max - x_min;

 y_min = min(p_red(2,:)); y_max = max(p_red(2,:));

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

84 Appendices

 x_uni = Grid{1};

 y_uni = Grid{2};

 nx = size(x_uni,2);

 ny = size(y_uni,2);

 %creation of x vector

 x = x_min + x_uni*Dx;

 %take all the edges. In this way I can exclude easily all internal

 %edges

 logic = ismember(e(6:7,:),SubDomains);

 i_e = find(xor(logic(1,:),logic(2,:)));

 i_p_e = unique([e(1,i_e),e(2,i_e)]);

 ne = size(i_e,2);

 for kk=1:nx

 %find the two edges that contain that y value

 e1_found = false;

 e2_found = false;

 for j=1:ne

 p1 = e(1,i_e(1,j));

 p2 = e(2,i_e(1,j));

 if ((p(1,p1) > x(1,kk))&&(p(1,p2) < x(1,kk)))||((p(1,p1) <

x(1,kk))&&(p(1,p2) > x(1,kk)))

 if e1_found == false

 e1 = j;

 e1_found = true;

 elseif e2_found == false

 e2 = j;

 e2_found = true;

 else

 status = 0;

 return

 end

 end

 end

 if e1_found == false

 %find distance from 2 points in y

 if kk==1

 dist = 2*abs(x(1,1)-x(1,2));

 elseif kk==nx

 dist = 2*abs(x(1,nx-1)-x(1,nx));

 else

 dist = abs(x(1,kk-1)-x(1,kk+1));

 end

 %introduction error

 er = dist/20;

 %find all edges in that error

 ptemp = p(:,i_p_e);

 ind = find(abs(ptemp(1,:)-x(1,kk))<er);

 if isempty(ind)

 status = 0;

 return

 end

 %find min e max in y of these points

 [~,Imin] = min(ptemp(2,ind));

 [~,Imax] = max(ptemp(2,ind));

Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014

Appendices 85

 pmin = i_p_e(1,ind(1,Imin));

 pmax = i_p_e(1,ind(1,Imax));

 y1 = p(2,pmin);

 y2 = p(2,pmax);

 end

 %interpolation

 if e1_found == true

 %trovo y1

 p1 = e(1,i_e(1,e1));

 p2 = e(2,i_e(1,e1));

 y1 = p(2,p1) + (p(2,p2)-p(2,p1))*((p(1,p1)-x(1,kk)))/(p(1,p1)-p(1,p2));

 %trovo y2

 p1 = e(1,i_e(1,e2));

 p2 = e(2,i_e(1,e2));

 y2 = p(2,p1) + (p(2,p2)-p(2,p1))*((p(1,p1)-x(1,kk)))/(p(1,p1)-p(1,p2));

 end

 Dy = abs(y2 - y1);

 y = min([y1, y2]) + y_uni*Dy;

 POINTS_Y(:,kk) = y.';

 POINTS_X(:,kk) = (ones(1,size(y,2))*x(1,kk)).';

 end

 POINTS_Y = flipud(POINTS_Y);%Only to have the points in the right order

 POINTS_X = flipud(POINTS_X);

end

end

%% OTHER FUNCTIONS %%

function temp_t1 = new_t (temp_t, i_p)

 nt_k = size(temp_t,2);

 np_k = size(i_p,2);

 np1_max = max(max(temp_t(1:3,:)));

 temp_t1 = zeros(3, nt_k);

 i_p_ind = zeros(1,np1_max);

 k = 0;

 for h=1:3

 for j=1:nt_k

 if i_p_ind(1,temp_t(h,j))==0 && k<=np_k

 i_p_ind(1,temp_t(h,j)) = find(i_p==temp_t(h,j),1,'first');

 k = k+1;

 end

 temp_t1(h,j) = i_p_ind(1,temp_t(h,j));

 end

 end

end

