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SOMMARIO 

 

Lo scopo di questa tesi è lo studio del metodo per la separazione delle impurità nel silicio fuso attraverso 

l’applicazione di un campo elettromagnetico. Questo approccio sfrutta la differenza di conduttività che 

esiste tra le impurità e lo stesso silicio fuso. L’analisi è fatta usando il metodo degli elementi finiti con 

implementazione in MATLAB, concentrandosi sui casi in cui la frequenza della corrente di 

alimentazione dell’induttore è di 1 kHz e 11 kHz. Risultati precedenti, ottenuti usando metodi spettrali, 

sono serviti per comparare e validare i risultati ottenuti. 

È stato inoltre portato a termine uno studio termico sui conduttori componenti l’induttore, sempre 

utilizzando il metodo degli elementi finiti implementato in MATLAB. 

I risultati confermano che l’uso di un campo elettromagnetico è un metodo valido per la separazione 

delle impurità nel silicio fuso. 
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ABSTRACT 

 

The aim of this work is the study of the method for the separation of impurities in the molten silicon by 

the application of an electromagnetic (EM) field. This approach takes advantage of the differences in 

electrical conductivity of the impurities and the molten silicon. The analysis is performed using finite 

element method (FEM) with the particular simulations implemented in the MATLAB environment. The 

focus has been taken to the 1 kHz and 11 kHz power supply cases. Previous results using spectral 

methods were used to compare and validate the MATLAB FE solutions. 

Additionally, a thermal study of the conductor load has been carried out using FEM method in the 

MATLAB environment.  

The results confirm that using the electromagnetic field is a valid approach for the EM separation of 

impurities from the molten silicon. 
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1 INTRODUCTION 

1.1 Energy outlook 

The non-sustainable nature of fossil fuels leads naturally to a challenge to find a new source of energy. 

For this reason renewable energies research is growing fast. The world’s cumulative PV (photovoltaic) 

capacity surpassed the impressive 100-GW installed, achieving over 102 GW in 2012 (See Figure 1-1) 

[1]. 

 

 

Figure 1-1: Evolution of global cumulative renewable installed capacity 2000-

2012 [MW] 

 

It is known that the PV is capable of producing as much annual electrical energy as 16 coal power plants 

or nuclear reactors of 1 GW each. Every year these PV installations save more than 53 million tons of 

CO2. PV remains, after hydro and wind power, the third most important renewable energy source in 

terms of globally installed capacity [2]. 

In the scenario 2012-2035 from IEA (International Energy Agency), the largest addition of renewable 

energy will be made by wind (~1250 GW) followed by PV (~750 GW) and hydro (~740 GW). 

The PV market is variable but it is strongly lead by the c-Si (crystalline silicon) technology which is 

expected to maintain its market share at 80% for the next 20 years (See Figure 1-2) [1]. 
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Figure 1-2: PV modules production capacity until 2017 (MW; %) 

 

For this reason, a lot of investment have been done in this market in attempts to find new improved 

production methods and recycling processes for the PV silicon. 

1.2 Production of Silicon 

The most common way of producing metallurgic grade silicon is the carbothermic reduction of quartz 

to obtain silicon with typical purity of 98.5%. The production process involves submerged electric arc 

furnaces where a crucible is filled with quartz and carbon materials. Silicon is released in the 

carbothermic reduction of silica according to the overall reaction: 

 

    𝑆𝑖𝑂2 (𝑠𝑜𝑙𝑖𝑑) + 2𝐶(𝑠𝑜𝑙𝑖𝑑) = 𝑆𝑖(𝑙𝑖𝑞𝑢𝑖𝑑) + 2𝐶𝑂(𝑔𝑎𝑠) (1.1) 

 

The purity of metallurgic grade silicon is not sufficient for direct use, so a further refining is necessary. 

Nowadays there are three reliable methods for the industrial production of the next purity stage material 

called poly-silicon: 

 Siemens process: the most popular process developed in the late 1950s is based on the thermal 

decomposition of trichlorosilane at 1100 °C on a heated silicon rod or filament placed inside a 

deposition chamber. 

 Carbide Komatsu Process: is a recent process (1980s) in which the trichlorosilane has been 

replaced by monosilane SiH4, but the principle of decomposition on a heated silicon rod inside 

a closed deposition chamber is maintained. 

 Ethyl Corporation process: this third process has been developed in 1980s to 1990s and also 

making use of monosilane SiH4. The heated silicon rod in the closed reaction chamber has 

been replaced by a fluidized bed of heated silicon particles. The particles act as seeds on which 
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SiH4 is continuously decomposed to larger granules of hyper pure silicon. Unlike the two first 

mentioned this process is a continuous one. 

 

These processes are expensive and produce a hyper-pure material, with impurities in the order of a ppb 

(parts per billion), ppt (parts per trillion) [3]. Whereas this high level of purity is a standard for the 

semiconductor industry, for the production of solar cell is not necessary. This is why new methods for 

the purification of the metallurgic grade silicon have been investigated. 

1.3 Electromagnetic processes 

Electromagnetic processes are widely used nowadays for electromagnetic treatments of materials. These 

methods are preferred more than traditional treatment because of their better performance, and often 

because these are the only possible ways to operate. Some examples of these treatments are: 

 Improvement of surface quality of cast steel: the improvement of the surface quality of 

continuously cast steel is possible directly at the continuous casting stage, which will 

provide a large amount of energy saving due to the elimination of the process of reheating 

slabs and the process of surface treatment. An alternative process for improving the 

surface quality has been found by use of an alternate magnetic field imposed from the 

coils outside of the mold. The reduction of the contact pressure between the mold and the 

molten metal due to the magnetic pressure is the main crucial factor to obtain a good 

surface quality in this process. 

 Induction cold crucible: the cold crucible is composed of a water cooled segmented crucible 

containing a charge to be melted, surrounded by an induction coil. The charge is levitated 

in the crucible using the magnetic pressure. This process enables melting of the charge 

without contamination from the crucible under a controlled inert gas atmosphere. The cold 

crucible is indispensable for melting metals with high melting points and chemically 

reactive properties [4]. 

 Bimetallic slab: in order to produce a bimetallic slab in continuous casting process, a DC 

(direct current) magnetic field, which has the function to dump the fluid motion, has been 

applied [5]. 

 Electrolytic aluminium production: for the production of aluminum, the electrolysis process 

is used to free the metal from the CO2 [6]. 

These are only few of the possible application of the electromagnetic processes of materials. 
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2 METHODS FOR THE 

SEPARATION OF IMPURITIES 

Here, a list for the most common separation methods with a short explanation will be given. 

2.1 Sedimentation 

The gravity or centrifugal sedimentation processes are widely used for water treatment, but they find 

application also in the purification of molten metals. The disadvantage is that these methods are limited 

to inclusion sizes larger than 100 𝜇m. 

2.2 Directional solidification 

A reliable method for producing the multi-crystalline silicon for the PV industry is the directional 

solidification. In this method, the molten silicon is solidified in controlled conditions to achieve a planar 

solidification front with a well defined interface between the solid and the liquid phases. Since the 

solubility of major impurities is higher in the liquid than in the solid phase, directional solidification 

works as a purification process where the impurities are retained in the liquid phase. 

The impurity content in solid phase CS during the crystallization is given by Scheil equation [7]: 

 

    𝐶𝑆 = 𝑘𝑒  𝐶0 (1 − 𝑓𝑠)
𝑘𝑒−1 (2.1) 

 

Where: 

C0 is the initial content coefficient of impurities in the silicon  

fs is the solidified fraction 

ke is the effective segregation coefficient 

2.3 Filtration of inclusions with ceramic foam filters 

Filtration in metallurgy is a process of removing inclusions by forcing molten metal through a porous 

material. 
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In CFF (Ceramic Foam Filters), there are two mechanisms of filtration: 

 Cake filtration: the bigger particles in the melt are retained on the surface of the filter where they 

build up, forming an increasing thicker cake. This layer act as a filter for the incoming particles. 

 Deep-bed filtration: In this case, the separation is effected through the particle deposition 

throughout the entire depth of the filter. 

 

For this reasons, cake filtration is also known as surface filtration, whereas bed filtration is also known 

as depth filtration. 

CFF are commonly used in industry for filtering a variety of molten metals, including aluminium, iron, 

magnesium and copper. There are no industrial uses of CFF for the purification of silicon, but the 

experiments point out as a possible way to operate [8]. 

2.4 Electromagnetic separation 

In the electromagnetic separation, an EM field is applied in order to induce currents that, interacting 

with the magnetic field, create forces in the silicon. The conductivity of the molten silicon at room 

temperature is low, but for the molten silicon is high enough (approximately the same conductivity of 

the steel) to induce a significant amount of current in the melt. The Lorentz force (See Chap 3.1.2) acts 

on the melt pushing it accordingly. The result is that the impurities are pushed in the opposite direction 

(See Figure 2-1). In this figure it can be seen that the current in the melt avoids the not conductive 

particle. The magnetic field B is applied in the direction out of the plane. The resultant Lorentz force is 

indicated with f expressed as: 

 

    𝒇 = 𝒋 ⨯ 𝑩 (2.2) 

 

The force 𝐟  acting on the particle is sometimes called the Archimedes electromagnetic force. 

 

J

J=0

B

B B

B

f

fa
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Figure 2-1: Forces acting on a non conductive particle immersed in the molten 

silicon 

 

In the electromagnetic separation there is more than one possible way to operate. For example it is 

possible to create the Lorentz force by an induced current or by an injected current. Four methods of 

electromagnetic separation can be distinguished [9] as listed in Table 2-1. 

 

Injection current separation Induced current separation 

Pinch-effect 

separation 

Separation in a crossed EM  field Travelling magnetic 

field separation 

Induction coil 

separation 

 

Table 2-1: Electromagnetic separation methods in liquid metal 

2.4.1 Pinch-effect separation 

The electrodes are inserted into the melt and the self-induced magnetic field of the injected current 

provides the source of the Lorentz force. An example is the Figure 2-2. The Lorentz force attempts to 

compress the conductor material (the pinch effect) producing the pressure distribution in the liquid. As 

a result, the effective pressure via the Archimedes electromagnetic force acts in the opposite direction 

and moves inclusions toward the walls of the conductor. 

 

f

B 

j

 

Figure 2-2: Pinch-effect in a liquid conductor 

2.4.2 Separation in a crossed EM field 

In this method, electrodes are inserted into the melt to create a current density, and an external magnetic 

field is applied to produce the Lorentz force density as shown in the Figure 2-3. In laboratory tests this 

method gives very good results due to the available large magnetic field (up to 1T). If this magnetic 
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field is created using permanent magnets, they have to be cooled down below the Curie point, and that 

can be a technical problem. 

 

f

B0

j

 

Figure 2-3: Example of a system using crossed EM field 

2.4.3 Travelling magnetic field 

In this case, the travelling magnetic field is created in a tube containing the liquid metal with a system 

similar to a linear motor, producing a non zero steady state Lorentz force component in addition to the 

time oscillating part. 

This method is not as efficient as the previous, but the force can be distributed over significantly larger 

volumes. To improve the separation efficiency it could be necessary to use more tubes of smaller 

diameters, but this means a larger contact area with the melt and therefore more contaminations. Despite 

this, the traveling magnetic field method is the only electromagnetic separation method that is currently 

in industrial use (e.g., at Pechiney Group in France for the production of aluminium). 

2.4.4 Induction coil 

The system is formed by an external coil and a crucible with the melt inside. The coil is fed by an AC 

current that induces a current with an opposite direction in the melt. The Lorentz force is given by the 

interaction of the current and the total magnetic flux. Due to the skin effect, the force is concentrated 

on the boundary of the melt (See Figure 2-4). 

 



Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014 

8 Methods for the Separation of Impurities 

B

f

J

 

Figure 2-4: Cross section of an induction system 
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3 ELECTROMAGNETIC PROBLEM 

3.1 Electromagnetic Theory 

Here, the theory applied for the construction of the model implemented in MATLAB, is presented. 

3.1.1 Constitutive Relations 

Constitutive relations describe the medium’s properties and effects when two physical quantities are 

related. In electromagnetics, there are four fundamental constitutive relationships to describe the 

response of a medium to a variety of electromagnetic input: 

 

    𝑱 = 𝜎𝑬 (3.1) 

    𝑫 = 𝜀𝑬 (3.2) 

    𝑩 = 𝜇𝑯 (3.3) 

    𝑴 = 𝜒𝑯 (3.4) 

 

Where: 

J is the current density [
𝐴

𝑚2] 

D is the displacement field [
𝐶

𝑚2] 

E is the electric field [
𝑉

𝑚
] 

B is the magnetic field [𝑇] = [
𝑊𝑏

𝑚2] 

H is the magnetic field strength [
𝐴

𝑚
] 

M is the magnetic dipole moment [
𝐴

𝑚
] 

 

And also: 

σ is the electric conductivity 

ε is the dielectric permittivity 

µ is the magnetic permeability 

χ is the magnetic susceptibility. 
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In these equation it is assumed that the medium is linear and isotropic, so the coefficients are not tensors 

but real numbers. 

To be observed that equations 3.3 and 3.4 are not independent, but are related by: 

 

    𝜇 = 𝜇0(1 + 𝜒) (3.5) 

3.1.2 Lorentz force 

The Lorentz force is the combination of electric and magnetic forces on a point charge due to 

electromagnetic fields. If a particle of charge q moves with a velocity v in the presence of an electric 

field E and a magnetic field B, then it will experience a force given by: 

 

    𝑭 = 𝑞(𝑬 + 𝒗 ⨯ 𝑩) (3.6) 

3.1.3 Ampere’s Law 

The Ampere’s law states that the integral around a closed path of the component of the magnetic field 

tangent to the direction of the path equals µ0 times the current intercepted by the area within the path, 

or in integral notation: 

 

   
 ∮ 𝑩⦁𝑑𝒍

𝐶

= µ0 ∬ 𝑱⦁𝒅𝑺
𝑆

= µ0 𝑰 (3.7) 

 

Using the Stokes’ theorem (See Appendix 1) the equation 3.7 can be written as 

 

    𝛻 ⨯ 𝑩 = µ0 𝑱 (3.8) 

3.1.4 Faraday’s Law 

Faraday’s law of induction states that the induced magnetomotive force (mmf) e in a coil is proportional 

to the negative of the rate of change of magnetic flux: 

 

   
 𝑒 = −

𝑑𝜙𝐵

𝑑𝑡
 (3.9) 
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3.1.5 Electrostatic Potential 

The electrostatic potential is defined as follow: 

 

   
 𝑉𝐵 − 𝑉𝐴 = ∫ 𝑬⦁𝒅𝒍

𝐵

𝐴

 (3.10) 

 

If E is generated by a stationary distribution of charge the field is conservative. In this case, the 

electrostatic potential does not depend on the path to go from A to B but only from the points A and B. 

3.1.6 Gauss’ Theorem in Electrostatic 

Gauss's theorem states that the surface integral of the electrostatic field D over closed surface is equal 

to the charge enclosed by that surface. That is  

 

   
 ∯ 𝑫⦁𝒅𝑺

𝑆

= ∭ 𝜌
𝑉

𝑑𝑉 (3.11) 

 

Where 𝜌 is the charge per unit volume. 

3.1.7 Magnetostatic Potential 

Almost like in the electrostatic case, in magnetostatics it is also possible to define a potential: 

 

   
 𝑉𝑄 − 𝑉𝑃 = −

1

𝜇0

∫ 𝑩⦁𝒅𝒍
𝑄

𝑃

 (3.12) 

3.1.8 Gauss’ Theorem in Magnetostatic 

As done in electrostatic: 

 

 

This means that there are no sources of magnetic field (there are no monopoles). 

   
 ∯ 𝑩⦁𝒅𝑺

𝑆

= 0 (3.13) 
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3.1.9 Poisson's and Laplace's Equations  

The equation 3.19 can be written, considering the constitutive relation 3.2 as 

 

   
 𝛻⦁𝑬 =

𝜌

𝜀
 (3.14) 

 

However, E can be expressed as: 

 

    𝐸 = −𝛻𝑉 (3.15) 

 

Therefore, 

 

   
 𝛻2𝑉 =

𝜌

𝜀
 (3.16) 

 

This is the Poisson’s equation. This, in the case where the charge density is zero becomes: 

 

    𝛻2𝑉 = 0 (3.17) 

 

Which is generally known as Laplace's equation. 

3.1.10 Maxwell's Equation 

This first Maxwell’s equation describes the electrostatic field and is derived immediately from Gauss's 

theorem (equation 3.11), in fact applying the divergence theorem (See equation 7.1): 

 

   
 ∯ 𝑫⦁𝒅𝑺

𝑆

= ∭ (𝛻⦁𝑫)
𝑉

𝑑𝑉 = ∭ 𝜌
𝑉

𝑑𝑉 (3.18) 

 

Therefore, rewriting the first Maxwell equation in differential form: 

 

    𝛻⦁𝑫 = 𝜌 (3.19) 
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As seen in chapter 3.1.8, and unlike the electrostatic field, magnetic fields have no sources or sinks, so 

the magnetic lines of force are closed curves. The surface integral of the magnetic field over a closed 

surface is zero (the field is solenoidal), and therefore, equation (3.13), in differential form becomes: 

 

    𝛻⦁𝑩 = 0 (3.20) 

 

This is namely Maxwell’s second equation. 

Since ∇⦁B=0 (equation 3.20), it is reasonable to assume that exists a vector A such as: 

 

    𝑩 = 𝛻 ⨯ 𝑨 (3.21) 

 

The A vector is called vector potential. 

A is not unique because taking ∇X, with X to be a scalar, it satisfies the equation 3.21, since: 

 

    𝛻 ⨯ (𝛻𝑋) = 0 (3.22) 

 

The third Maxwell’s equation is derived from Ampère's theorem (See 3.1.2) that in the general case it 

must be read 

 

   
 ∮ 𝑯⦁𝒅𝒍

𝜕𝑆

= ∬ (
𝜕𝑫

𝜕𝑡
+ 𝑱) ⦁𝒅𝑺

𝑆

 (3.23) 

 

Applying the Stokes’ theorem (equation 7.1) at the left-hand side of 3.23: 

 

   
 ∬ (𝛻 ⨯ 𝑯)⦁𝒅𝑺

𝑆

= ∬ (
𝜕𝑫

𝜕𝑡
+ 𝑱) ⦁𝒅𝑺

𝑆

 (3.24) 

 

Therefore, we obtain the third Maxwell’s equation 

 

   
 𝛻 ⨯ 𝑯 =

𝜕𝑫

𝜕𝑡
+ 𝑱 (3.25) 

 

The fourth Maxwell’s equation is derived from the laws of electromagnetic induction. Starting from the 

Faraday’s law (equation 3.9) and taking curl of both sides of the equation we have: 
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 𝛻 ⨯ 𝑬 = −𝛻 ⨯ (
𝜕𝝓

𝜕𝑡
) = −

𝜕

𝜕𝑡
(𝛻 ⨯ 𝝓) = −

𝜕𝑩

𝜕𝑡
 (3.26) 

 

Rewriting, we have the fourth Maxwell’s equation: 

 

   
 𝛻 ⨯ 𝑬 +

𝜕𝑩

𝜕𝑡
= 0 (3.27) 

3.1.11 Skin Effect 

Skin effect is the tendency of an alternating electric current to become distributed such that the current 

density is larger near the surface of the conductor, and decreases with greater depths. The skin effect 

causes the effective resistance of the conductor to increase at higher frequencies where the skin depth 

is smaller, thus reducing the available section for the current to flow. The skin effect is due to opposing 

eddy currents induced by the changing magnetic field resulting from the alternating current. At 50 Hz 

in copper, the skin depth is about 10 mm. At high frequencies, the skin depth becomes much smaller. 

Because the interior of a large conductor carries so little of the current, tubular conductors such as pipe 

can be used to save weight and cost. 

The skin depth can be computed with the equation 3.28. 

 

   

 𝛿 = √
2𝜌

𝜇𝜔
 (3.28) 

 

In Figure 3-1, is represented the trend of the skin depth for copper and silicon (at melting point), varying 

the frequency. 
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Figure 3-1: Skin depth in the silicon and copper 

 

3.2 MATLAB 

The MATLAB environment is very various and can be used for a large variety of applications, but here 

some useful information will be given regarding the study under consideration. 

3.2.1 Introduction 

MATLAB (abbreviation of matrix laboratory) is a numerical computing environment and fourth-

generation programming language, developed by MathWorks. MATLAB allows matrix manipulations, 

plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing 

with programs written in other languages, including C, C++, Java, and Fortran [10]. 

With MATLAB is possible to solve differential equation, in particular the following: 

 First order ODEs (Ordinary Differential Equation) with the ode series solvers (the most used 

are the ode15s, the ode45 that use Runge-Kutta and the ode113 that uses the Adams method) 

[11] 

 Higher order ODEs (rewriting each equation as an equivalent system of first order ODE) [11] 

 Systems of parabolic and elliptic PDEs (Partial Differential Equation) in 1D with the pdepe 

function [12] 

 Systems of elliptic, parabolic, hyperbolic, eigenvalue and non-linear equations with the PDE 

toolbox [13]. 
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3.2.2 PDE toolbox 

The solutions of simple PDEs on complicated geometries can rarely be expressed in terms of elementary 

functions, but it is possible to have an approximate solution for these problems discretizing the domain 

and finding an approximate solution for every element. For example, the Partial Differential Equation 

Toolbox algorithm is a PDE solver that uses FEM for problems defined on bounded domains in the 

plane. 

The first step to solve a problem with the PDE toolbox is to describe a complicated geometry and 

generate a mesh on it. Then, it is necessary to discretize the PDE on the mesh and build an equation for 

the discrete approximation of the solution.  

The PDE toolbox provides an easy-to-use graphical tool to describe complicated domains and generate 

triangular meshes. It also discretizes PDEs, finds discrete solutions and plots results [14] 

The types of equation that the PDE tool can manage are [14]: 

1. Elliptic equation: 

 

    −𝛻 ∙ (𝑐𝛻𝑢) + 𝑎𝑢 = 𝑓 (3.29) 

 

2. Parabolic equation: 

 

   
 𝑑

𝜕𝑢

𝜕𝑡
− 𝛻 ∙ (𝑐𝛻𝑢) + 𝑎𝑢 = 𝑓 (3.30) 

 

3. Hyperbolic equation: 

 

   
 𝑑

𝜕2𝑢

𝜕𝑡2
− 𝛻 ∙ (𝑐𝛻𝑢) + 𝑎𝑢 = 𝑓 (3.31) 

 

4. Eigenvalue equation: 

 

    −𝛻 ∙ (𝑐𝛻𝑢) + 𝑎𝑢 = 𝜆𝑑𝑢 (3.32) 

 

5. Nonlinear equation: 

 

    −𝛻 ∙ (𝑐(𝑢)𝛻𝑢) + 𝑎(𝑢)𝑢 = 𝑓(𝑢) (3.33) 

 

6. System of N equations (for example the system of elliptic equation with N=2 is): 
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−𝛻 ∙ (𝑐11𝛻𝑢1) − 𝛻 ∙ (𝑐12𝛻𝑢2) + 𝑎11𝑢1 + 𝑎12𝑢2 = 𝑓1 

−𝛻 ∙ (𝑐21𝛻𝑢1) − 𝛻 ∙ (𝑐22𝛻𝑢2) + 𝑎21𝑢1 + 𝑎22𝑢2 = 𝑓2 
(3.34) 

 

With the PDE toolbox it is possible to solve only a system with N=2, but there are no limits 

using command line functions. 

 

The boundary conditions for the equations from one to five are [14]: 

A. Dirichlet: 

 

    ℎ𝑢 = 𝑟 (3.35) 

 

B. Generalized Neumann: 

 

    �⃗� ∙ (𝑐𝛻𝑢) + 𝑞𝑢 = 𝑔 (3.36) 

 

Where n⃗  is the outward unit vector. 

 

Referring to the system (3.34), the boundary conditions are expressed as follow [14]: 

 

A. Dirichlet: 

 

   

 
ℎ11𝑢1 + ℎ12𝑢2 = 𝑟1 

ℎ21𝑢1 + ℎ22𝑢2 = 𝑟2 
(3.37) 

 

B. Generalized Neumann: 

 

   

 
�⃗� ∙ (𝑐11𝛻𝑢1) + �⃗� ∙ (𝑐12𝛻𝑢2) + 𝑞11𝑢1 + 𝑞12𝑢2 = 𝑔1 

�⃗� ∙ (𝑐21𝛻𝑢1) + �⃗� ∙ (𝑐22𝛻𝑢2) + 𝑞21𝑢1 + 𝑞22𝑢2 = 𝑔2 
(3.38) 

 

C. Mixed: 

 

   

 
ℎ11𝑢1 + ℎ12𝑢2 = 𝑟1 

�⃗� ∙ (𝑐11𝛻𝑢1) + �⃗� ∙ (𝑐12𝛻𝑢2) + 𝑞11𝑢1 + 𝑞12𝑢2 = 𝑔1 + ℎ11𝜇 
(3.39) 
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�⃗� ∙ (𝑐21𝛻𝑢1) + �⃗� ∙ (𝑐22𝛻𝑢2) + 𝑞21𝑢1 + 𝑞22𝑢2 = 𝑔2 + ℎ12𝜇 

 

Where µ is computed such the Dirichlet boundary conditions is satisfied. 

3.3 Electromagnetic Model 

As will be seen in chapter 3.5.1, the system is axisymmetric, so it is possible to implement a 2D 

axisymmetric model. 

We start from the third Maxwell’s equation (3.25). The time derivative of the displacement field can be 

neglected when (equation 7.10, appendix 1): 

 

   
 |𝜔

𝑟𝑚𝑎𝑥

𝑐
| = |2𝜋 ∙ 11 ∙ 103

1 ∙ 10−3

3 ∙ 105
| ≈ 1 ∙ 10−4 ≪ 1 (3.40) 

 

Therefore, it is possible to neglect this term without affecting the results, and the 3.25 becomes: 

 

    𝛻 ⨯ 𝑯 = 𝑱 (3.41) 

 

Now, taking the fourth Maxwell’s equation (equation 3.27) and using the definition of vector potential 

(equation 3.21), we obtain: 

 

   
 𝛻 ⨯ (𝑬 +

𝜕𝑨

𝜕𝑡
) = 0 (3.42) 

 

So it is possible to define a scalar potential such that: 

 

   
 𝑬 +

𝜕𝑨

𝜕𝑡
= −𝛻𝑉 (3.43) 

 

Since we are using the axisymmetric model, the vector potential A has only the component along the 𝜑 

axis 

 

    𝑨 = 𝑨𝝋 ∙ 𝒆𝝋 (3.44) 

 

Now, continuing from 3.41 and using the constitutive relation 3.1 and the equation 3.43: 
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 𝛻 ⨯ 𝑯 = 𝑱 = 𝜎𝑬 = 𝜎 (−

𝜕𝑨

𝜕𝑡
− 𝛻𝑉) (3.45) 

 

In the equation above, the first term in parenthesis, represents the induced current, and the second term, 

the given current. 

The J applied is sinusoidal, and the material, for approximation, can be considered linear, so the vector 

potential is also sinusoidal. In these conditions, the time derivative of A take the form: 

 

   
 

𝜕𝑨

𝜕𝑡
=

𝜕

𝜕𝑡
(𝑨𝝋 ∙ 𝑒𝑗𝜔𝑡) ∙ 𝒆𝝋 = (𝑗𝜔𝑨𝝋 ∙ 𝑒𝑗𝜔𝑡) ∙ 𝒆𝝋 (3.46) 

 

Therefore, it is possible to rewrite the last term of 3.45 as follow 

 

   
 𝛻 ⨯ 𝑯 = 𝜎 (−

𝜕𝑨

𝜕𝑡
− 𝛻𝑉) = (−𝑗𝜎𝜔𝑨𝝋 + 𝑱𝝋) ∙ 𝑒𝑗𝜔𝑡  (3.47) 

 

The equation 3.41 can be rewritten also as 

 

   
 𝛻 ⨯ 𝑯 = 𝛻 ⨯ (

1

𝜇
𝑩) = 𝛻 ⨯ (

1

𝜇
𝛻 ⨯ 𝑨) (3.48) 

 

The curl of A in cylindrical coordinates takes the form: 

 

   

 𝛻 ⨯ 𝑨 =
1

𝑟
||

𝒆𝒓 𝑟𝒆𝝋 𝒆𝒛

𝜕

𝜕𝑟

𝜕

𝜕𝜑

𝜕

𝜕𝑧
0 𝑟𝑨𝝋 0

|| = 𝒆𝒓 (−
𝜕𝑨𝝋

𝜕𝑧
) + 𝒆𝒛

1

𝑟
(

𝜕

𝜕𝑟
(𝑟𝑨𝝋)) (3.49) 

 

Now that ∇ ⨯ 𝐀 is in explicit form, we can write out all the equation 3.48 as following: 
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𝛻 ⨯ 𝑯 = 𝛻 ⨯ (
1

𝜇
𝛻 ⨯ 𝑨) =

1

𝑟 |

|

𝒆𝒓 𝑟𝒆𝝋 𝒆𝒛

𝜕

𝜕𝑟

𝜕

𝜕𝜑

𝜕

𝜕𝑧

−
1

𝜇

𝜕𝑨𝝋

𝜕𝑧
0

1

𝑟𝜇

𝜕

𝜕𝑟
(𝑟𝑨𝝋)

|

|

=
1

𝑟
𝒆𝒓 [

𝜕

𝜕𝜑
(

1

𝑟𝜇

𝜕

𝜕𝑟
(𝑟𝑨𝝋))]

− 𝒆𝝋 [
𝜕

𝜕𝑟
(

1

𝑟𝜇

𝜕

𝜕𝑟
(𝑟𝑨𝝋)) +

𝜕

𝜕𝑧
(
1

𝜇

𝜕𝑨𝝋

𝜕𝑧
)]

+
1

𝑟
𝒆𝒛 [

𝜕

𝜕𝜑
(
1

𝜇

𝜕𝑨𝝋

𝜕𝑧
)] 

(3.50) 

 

Due to the 2D axisymmetric case, the current has only 𝐀𝛗, component along the φ axis, so the other 

term vanishes. 

 

   

 𝛻 ⨯ 𝑯 = 𝒆𝝋 [−
𝜕

𝜕𝑟
(

1

𝑟𝜇

𝜕

𝜕𝑟
(𝑟𝑨𝝋)) −

𝜕

𝜕𝑧
(
1

𝜇

𝜕𝑨𝝋

𝜕𝑧
)] (3.51) 

 

Introducing then the Psi function 

 

    𝝍 = (𝜓𝑟 + 𝑗𝜓𝑖)(𝑐𝑜𝑠𝜔𝑡 + 𝑗𝑠𝑖𝑛𝜔𝑡) = 𝑨𝝋𝑟 (3.52) 

 

With equation 3.51, the Psi function formulation takes the form: 

 

   
 𝛻 ⨯ 𝑯 = 𝒆𝝋 [−

𝜕

𝜕𝑟
(

1

𝑟𝜇

𝜕𝝍

𝜕𝑟
) −

𝜕

𝜕𝑧
(

1

𝑟𝜇

𝜕𝝍

𝜕𝑧
)] (3.53) 

 

Now we can combine 3.47 rewritten using the Psi function with 3.53 to obtain the equation for the 

system. 

 

   
 −

𝜕

𝜕𝑟
(

1

𝑟𝜇

𝜕𝝍

𝜕𝑟
) −

𝜕

𝜕𝑧
(

1

𝑟𝜇

𝜕𝝍

𝜕𝑧
) = −𝑗

𝜎𝜔

𝑟
𝝍 + 𝑱(𝑠) (3.54) 

 

It is now easy to see the analogy with the elliptic equation of the PDE toolbox (equation (3.29)). 
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Figure 3-2: comparison from the electromagnetic model and the elliptic equation in 

the PDE tool 

 

Where u is 𝛙. 

The boundary conditions to implement are easily derived observing the equation (3.52). On the z axis, 

we have r=0, so the Psi function becomes zero, while the other edges are far away enough to consider 

the vector potential equal to zero, so here again the Psi function is equal to zero. 

Once computed the solution, we can compute the other vectors of interest: 

 

 Induction field from the equation 3.21 

 

   

 𝑩 = 𝛻 ⨯ 𝑨 = 𝛻 ⨯ (
𝝍

𝒓
) =

1

𝑟 |
|

𝒆𝒓 𝑟𝒆𝝋 𝒆𝒛

𝜕

𝜕𝑟

𝜕

𝜕𝜑

𝜕

𝜕𝑧

0 𝑟
1

𝑟
𝝍 0

|
|
= (−

1

𝑟

𝜕𝝍

𝜕𝑧
) 𝒆𝒓 + (

1

𝑟

𝜕𝝍

𝜕𝑟
) 𝒆𝒛 (3.55) 

 

 Density of current induced from the equation 3.47 

 

   
 𝑱𝒊𝒏𝒅 = −𝑗𝜎𝜔𝑨𝝋 = −𝑗

𝜎𝜔

𝑟
𝝍 (3.56) 

 

 Lorentz force in the molten silicon. Rewriting the vectors as a function of sine and cosine, and 

taking the real part: 

 

   

 

ℜ(𝑩) =
1

𝑟
[(

𝜕𝜓𝑖

𝜕𝑧
) 𝑠𝑖𝑛(𝜔𝑡) − (

𝜕𝜓𝑟

𝜕𝑧
) 𝑐𝑜𝑠(𝜔𝑡)] 𝒆𝒓

+
1

𝑟
[(

𝜕𝜓𝑟

𝜕𝑟
) 𝑐𝑜𝑠(𝜔𝑡) − (

𝜕𝜓𝑖

𝜕𝑟
) 𝑠𝑖𝑛(𝜔𝑡)] 𝒆𝒛 

(3.57) 

 

   
 ℜ(𝑱) =

𝜎𝜔

𝑟
(𝜓𝑖 ∙ 𝑐𝑜𝑠(𝜔𝑡) + 𝜓𝑟 ∙ 𝑠𝑖𝑛(𝜔𝑡))𝒆𝜑 (3.58) 

 

Therefore, the force takes the form 
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𝑭 = ℜ(𝑱) ⨯ ℜ(𝑩)

=
𝜎𝜔

𝑟2
[𝜓𝑖 ∙ 𝑐𝑜𝑠2(𝜔𝑡)

𝜕𝜓𝑟

𝜕𝑟
− 𝜓𝑟 ∙ 𝑠𝑖𝑛2(𝜔𝑡)

𝜕𝜓𝑖

𝜕𝑟

+ 𝑠𝑖𝑛(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡) (𝜓𝑟

𝜕𝜓𝑟

𝜕𝑟
− 𝜓𝑖

𝜕𝜓𝑖

𝜕𝑧
)] 𝒆𝒓

+
𝜎𝜔

𝑟2
[𝜓𝑖 ∙ 𝑐𝑜𝑠2(𝜔𝑡)

𝜕𝜓𝑟

𝜕𝑧
− 𝜓𝑟 ∙ 𝑠𝑖𝑛2(𝜔𝑡)

𝜕𝜓𝑖

𝜕𝑧

+ 𝑠𝑖𝑛(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡) (−𝜓𝑟

𝜕𝜓𝑟

𝜕𝑟
+ 𝜓𝑖

𝜕𝜓𝑖

𝜕𝑧
)] 𝒆𝒛 

(3.59) 

 

The average value of the force in a period can be calculated using the trigonometric identities 

(See Appendix 2), so it equals to: 

 

 

 Specific Joule power can be calculated from the current density 

 

   

 
𝑝 =

ℜ(𝑱)2

𝜎
=

𝜎𝜔2

𝑟2
(𝜓𝑖

2 ∙ 𝑐𝑜𝑠2(𝜔𝑡) + 𝜓𝑟
2 ∙ 𝑠𝑖𝑛2(𝜔𝑡)

+ 2𝜓𝑟𝜓𝑖𝑠𝑖𝑛(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡)) 

(3.61) 

 

and the average value is the following 

 

   
 𝑝𝑎𝑣𝑔 =

𝜎𝜔2

2𝑟2
(𝜓𝑟

2 + 𝜓𝑖
2) (3.62) 

 

3.4 MATLAB Simple Case 

Now that we have written out the electromagnetic model, we just have to build it in MATLAB, but 

before starting with the crucible system, we want to make sure that the model is correct. To verify that, 

the simple case of a sphere is taken into consideration. The aim is to compute the induced current in the 

sphere with a numerical solution and compare it with the exact analytical solution. 

   
 𝑭𝒂𝒗𝒈 =

𝜎𝜔

2𝑟2
[𝜓𝑖

𝜕𝜓𝑟

𝜕𝑟
− 𝜓𝑟

𝜕𝜓𝑖

𝜕𝑟
] 𝒆𝒓 +

𝜎𝜔

2𝑟2
[𝜓𝑖

𝜕𝜓𝑟

𝜕𝑧
− 𝜓𝑟

𝜕𝜓𝑖

𝜕𝑧
] 𝒆𝒛 (3.60) 
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3.4.1 Geometry 

The system is composed of a sphere surrounded by a single coil (Figure 3-3). The analytical solution 

that we will see in the next chapter (3.4.2) assumes that the conductor is a filament. For this reason, the 

conductor in the simulation is very small. 

 

 

Figure 3-3: Sphere and coil 

 

The sphere is made of silicon and the coil of aluminium. The dimensions are shown in Figure 3-4. 

 

60

2

75

r

z

 

Figure 3-4: Dimensions of the sphere and coil system in a half section of the system 

3.4.2 Analytic test case 

The analytical solution is given in spherical coordinates and has the following form [15]: 
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 𝐴𝜑(𝑅, 𝜗) = 𝑒𝑗𝑤𝑥
𝜇𝑜𝐼𝑠𝑠𝑖𝑛(𝜗𝑠)

2√𝑗𝑝𝑅𝑅0

∑ 𝐶𝑛𝐼𝑛+½(√𝑗𝑝𝑅)𝑃𝑛
1(𝑐𝑜𝑠𝜗)

∞

𝑛=1

 (3.63) 

 

Where: 

 

   

 𝐶𝑛 =
2𝑛 + 1

𝑛(𝑛 + 1)
(
𝑅0

𝑅𝑠

)
𝑛 𝑃𝑛

1(𝑐𝑜𝑠𝜗𝑠)

𝐼𝑛−½(√𝑗𝑝𝑅0)
 (3.64) 

    𝑝 = 𝜎𝜇𝑜𝜔 (3.65) 

 

And: 

 𝑅0 is the radius of the sphere 

 𝑅𝑠 and 𝜗𝑠 are the filament position 

 𝑅  and 𝜗  are the position where to compute the current 

 𝐼𝑠 and 𝜔 are current amplitude and the angular frequency 

 𝑛 is the harmonic number 

 𝐼𝑛+½ and 𝐼𝑛−½ are the modified Bessel functions of complex argument 

 𝑃𝑛
1 the Legendre polynomial. 

3.4.3 Numerical 

All the simulations, as said before, are created with MATLAB, but not with the GUI (Graphical User 

Interface) of the PDE toolbox, but writing all at command line. In this way is necessary to decompose 

the geometry by arc and lines. The decomposition of geometry is shown in Figure 3-5. 
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Figure 3-5: Decomposed geometry for the sphere case 

 

In the figure we can also see the numbering for lines in blue, for points in black and for sub-domains in 

red. 

Once the geometry has been created, is necessary to discretize the domain. For this purpose is used an 

adaptive mesh. This MATLAB function has the advantage to densify the mesh when necessary, so 

taking the same number of triangles, it is possible to achieve a better solution. In Figure 3-6 is shown 

the mesh for this problem, in particular the changes in size of the triangles for a current frequency of 

6kHz. 

 

 

Figure 3-6: Details of the mesh in the sphere and in the conductor 

 

This mesh is made of 130k triangles of first order. 
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3.4.4 Solution 

The simulation is made with a current of 1000A and a frequency of 6000Hz. The result of the simulation 

in MATLAB is shown in Figure 3-7, where it is possible to see the current density in the sphere. 

 

 

Figure 3-7: Current density distribution in the sphere 

 

To compare the results, the current density is calculated on three surfaces: the equatorial plane, a cone 

with an angle of 30 degrees and another cone with an angle of 60 degrees (Figure 3-8). 

 

0°

30°

60°

 

Figure 3-8: Surfaces chosen for the calculation of the current density for the 

comparison 
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The Figure 3-9 shows the comparisons from the analytical and the numerical solution. 

 

 

Figure 3-9: Density of current in the analytical and numerical solution in the 

sphere (left axis) and relative errors (right axis) 

 

It can be seen that the results are accurate, with the exception of the zone in the proximity of the centre. 

This is probably due to the singularity in 𝑟 = 0. In general this zone is not so important in our case 

because the magnitude of current and magnetic field are low compared with the current in the skin 

depth, so even more for the forces. We can conclude that this model is accurate. 

3.5 Electromagnetic crucible set up in MATLAB 

Following what has been done for the sphere in chapter 3.4.3, we can do the same for the crucible 

system. 

3.5.1 Geometry 

The system studied in this work is very simple (See Figure 3-10). 
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a b c

coil graphite

silicon

water

 

Figure 3-10: a) view of the system. b) Half section of the system. c) Transversal 

section of the system 

 

Externally there is the coil, composed by 10 turns made of copper. The effective value of the current in 

the coil is fixed at 385 A. With this current, two frequencies have been applied: 1 kHz and 11 kHz. 

Concentric to the coil there is the crucible of graphite. The purpose of a graphite crucible is to provide 

a non-reactive vessel that will survive the high temperatures needed for metal melting and processing. 

This offers a stable container that does not react with the metals at high temperatures. Inside the crucible, 

there is the silicon. In addition, in Figure 3-10 we can see that the coil is not made of solid copper, but 

it has a hole to permit the water-cooling. This does not affect the electric conduction because at the 

frequency we are considering, there is no current in the center of the conductor due to the skin effect. 

The silicon core is a small cylinder, with a diameter of 4 cm and a height of 6.5 cm (See Figure 3-11). 

From this is possible to calculate the weight of the molten silicon as follow. 

 

    𝑊 = 𝑉𝜌 = 𝜋𝑟2 ℎ𝜌 = 𝜋(2−3 )2 6.5−3 ∙ 2580 = 0.210[𝑘𝑔] (3.66) 

 

As said before, the system is small, in fact, only 200 grams of silicon is melted in the crucible, but once 

this configuration is studied, it will be easy to use the same model to a bigger system. 
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Figure 3-11: Half section of the system 

 

As it can be seen from Figure 3-11, the system has a symmetry on the z axis that will be exploited for 

the construction of the model, so an axisymmetric model can be implemented, with the advantage that 

only a 2D model has to be studied, and consequently a reduction of the computational time. 

The characteristics of the materials used in the simulation are grouped in the next table. 

 

 Conductivity 

𝜎 [𝛺 ∙ 𝑚] 

Relative magnetic 

permeability 

𝜇𝑟 [−] 

Density 

𝜌 [
𝑘𝑔

𝑚3
] 

Silicon 1.23 ∙ 106 1 2560 

Graphite 8.65 ∙ 104 1 2160 

Copper 4.1 ∙ 107 1 8920 

Air 0 1 0 

Water 0 1 1000 

Table 3-1: Characteristics of the materials used in the simulations 

 

The program for the simulation used for the 11 kHz case can be seen in appendix 3. 
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3.5.2 Mesh 

We start decomposing the geometry of half system. The result can be seen in Figure 3-12, where it is 

shown the domain of the simulations. 

 

 

Figure 3-12: Decomposed geometry for the system silicon-crucible-turns 

 

In the same figure, in the green box there is the particular of the crucible and the turns. All the 

dimensions are shown in chapter 3.5.1. In Figure 3-12, in the lower purple box, is represented the 

numeration for the lower conductor. Every conductor has two subdomains, the external for the copper 

and the internal for the water. The numeration for points, lines and sub-domains of the other conductors, 

follows the same rule as for the one presented in Figure 3-12. In the other two upper purple boxes, there 

is the particular of the lower and the upper edge of the silicon cylinder. These edges are rounded to 

avoid false results in these areas. 

Once created the geometry, the system must be subdivided. The mesh is not the same for the 1 kHz case 

and for the 11 kHz case. This is due to the different frequency that means different skin layer depth. For 

example, the 11 kHz case has 64% more triangles than the 1 kHz (250 k against 140 k), but for the first 

case, the triangle on the axis are larger than the ones in the second case, because they are more 

concentrated in the skin layer (See Figure 3-13 and Figure 3-14). 
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Figure 3-13: Mesh in the domain for the 1 kHz case (140 k triangles). Particular for 

the upper edge of the silicon and for the lower conductor 

 

 

Figure 3-14: Mesh in the domain for the 11 kHz case (250 k triangles). Particular 

for the upper edge of the silicon and for the lower conductor 
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3.5.3 Current distribution 

The effective current applied in the system is 385 A. It is to be remembered that the current introduced 

in MATLAB through the equation 3.54, is an imposed current. To this term must be added the induced 

current that opposes to the cause that creates it. The result is a reduction of the total current. It is possible 

to summarize all that as follows: 

 

    𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅 + 𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅 = 𝑰𝒕𝒐𝒕𝒂𝒍 (3.67) 

 

Considering now the current induced, it is possible to rewrite it as a function of the imposed one, and 

in the case of a single coil system, it can be written as 

 

   
 𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅 =

𝑽𝒊𝒏𝒅𝒖𝒄𝒆𝒅

𝑅
=  −

𝐿

𝑅
 
𝑑

𝑑𝑡
(𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅) = 𝑿 ∙ 𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅 (3.68) 

 

where 𝐗 is a complex number and in the general case it depends on the value of the current itself. Since 

our system is linear, the 𝐗 factor is constant. The assumption of the linear system is considered to be a 

good initial approximation. 

Taking into consideration the entire coil composed of ten turns, 𝐗 takes the form of a ten by ten matrix, 

and the 3.68 becomes 

 

   

 

[
 
 
 
𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟏

𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟐

⋮
𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟏𝟎]

 
 
 

= [

𝑿𝟏−𝟏 𝑿𝟏−𝟐 ⋯ 𝑿𝟏−𝟏𝟎

𝑿𝟐−𝟏 𝑿𝟐−𝟐 ⋯ 𝑿𝟐−𝟏𝟎

⋮ ⋮ ⋱ ⋮
𝑿𝟏𝟎−𝟏 𝑿𝟏𝟎−𝟐 ⋯ 𝑿𝟏𝟎−𝟏𝟎

] ∙

[
 
 
 
 
𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅𝟏

𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅𝟐

⋮
𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅𝟏𝟎]

 
 
 
 

 (3.69) 

 

The coefficients of the matrix can be simply found imposing 1 A current only in one turn at a time, and 

then computing the induced ones. 

For the first turn for example, the first column of the matrix can be computed as follow: 

 

   

 

[
 
 
 
𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟏

𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟐

⋮
𝑰𝒊𝒏𝒅𝒖𝒄𝒆𝒅𝟏𝟎]

 
 
 

=  [

𝑿𝟏−𝟏 𝑿𝟏−𝟐 ⋯ 𝑿𝟏−𝟏𝟎

𝑿𝟐−𝟏 𝑿𝟐−𝟐 ⋯ 𝑿𝟐−𝟏𝟎

⋮ ⋮ ⋱ ⋮
𝑿𝟏𝟎−𝟏 𝑿𝟏𝟎−𝟐 ⋯ 𝑿𝟏𝟎−𝟏𝟎

] ∙ [

1
0
⋮
0

] = [

𝑿𝟏−𝟏

𝑿𝟐−𝟏

⋮
𝑿𝟏𝟎−𝟏

] (3.70) 

 

To find the current that must be imposed to have the total one equal to 385 A is now simple. Combining 

equation 3.67 with equation 3.68: 

 

    [𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅] + [𝑿] ∙ [𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅] = ([𝐼𝑛] + [𝑿]) ∙ [𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅] = [𝑰𝒕𝒐𝒕𝒂𝒍] (3.71) 
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Where 𝐼𝑛 is the identity matrix. 

The current to impose will be 

 

    [𝑰𝒊𝒎𝒑𝒐𝒔𝒆𝒅] = ([𝐼𝑛] + [𝑿])−1 ∙ [𝑰𝒕𝒐𝒕𝒂𝒍] (3.72) 

3.5.4 Solution 

Once computed ψ, it is possible to compute the induction with the equation 3.55. The results of the two 

cases can be seen in Figure 3-15. 

 

 

Figure 3-15: induction field in the crucible system for the 1 kHz case (on the left) 

and for the 11 kHz case (on the right) 

 

The maximum value of the induction field is almost the same for both cases, but for the higher frequency 

one, it is possible to see that the skin effect does not permit to the induction field to penetrate inside the 

silicon like in the other case. 

The density of current can be computed with the equation 3.56. The result is shown in the Figure 3-16, 

where it is possible to see, first of all, how the current is concentrated in the corner for the 11 kHz, and 

second, the difference from the maximum values of the density of current. We can already have an idea 

on how the forces are distributed in the two cases. 
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Figure 3-16: Density of current in the silicon for the 1 kHz case (on the left) and 

for the 11 kHz case (on the right) 

 

Another important variable to analyse is the specific joule power transmitted to the silicon. This tells us 

how and where the silicon is being heated. Using the equation 3.61, are obtained the results presented 

in Figure 3-17. 

 

 

Figure 3-17: Specific joule power in the silicon for the 1 kHz case (on the left) and 

for the 11 kHz case (on the right) 

 

As expected, the specific joule power is concentrated in the corners for the 11 kHz case, but despite 

that, much more power is transmitted in this case. Integrating the results obtained in Figure 3-17 in the 

volume of silicon, it is possible to see that for the 1 kHz case, there are 85 W dissipated as joule power, 

and 614 W in the other case. 

The forces along the 𝑟 and 𝑧 axis (there are no forces in the 𝜑 axis due to the axisymmetric model 

implemented) can be computed with the equation 3.60. In the Figure 3-18, it is possible to see the results, 

with the vectors, to understand also the direction of the force. The first thing to notice is that the 

maximum magnitude is almost 10 times bigger in the 11 kHz case. The second thing to notice is the 

different distribution of the forces. For the 1 kHz case, the maximum is located in the center, while in 

the other case, in the corners. 
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Figure 3-18: magnitude of the average forces in the silicon for the 1 kHz case (on 

the left) and for the 11 kHz case (on the right) 

 

In Figure 3-19, it is possible to observe the particular of the r and z components of the forces. 

 

 

Figure 3-19: magnitude of the average forces in the silicon along the r and z axis 

for the 1 kHz case (first and third figures) and for the 11 kHz case (second and 

fourth figures 
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4 THERMAL PROBLEM 

The aim of the thermal simulation is to better understand the system from the thermal point of view as 

well. In particular, the focus is on the conductors. The specific joule power is taken from the previous 

simulations and introduced in these simulations as heating source. 

4.1 Thermal Theory 

It is easy to derive the heat transfer equation directly in cylindrical coordinates. 

The energy balance in a volume can generally be written as 

 

       𝐸𝑠𝑡𝑜𝑟𝑒𝑑 = 𝐸𝑖𝑛 − 𝐸𝑜𝑢𝑡 + 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑  (4.1) 

 

With obvious meaning of the terms. 

Taking a control volume in cylindrical coordinates and writing the energy flowing in and out from the 

faces, we have the situation described in Figure 4-1. 

 

qz

qz+dz

qr

qr+dr

q +d 

q 

 

Figure 4-1: energy flowing through the control volume 
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The energy generated in the volume can be expressed as: 

 

    𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 =  𝑞 ∙ 𝑉 = 𝑞 ∙ 𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 (4.2) 

 

Where q is the rate of specific energy generation. 

On the other hand, the energy stored can be expressed as: 

 

   
 𝐸𝑠𝑡𝑜𝑟𝑒𝑑 =  𝜌(𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 )𝐶𝑝

𝜕𝑇

𝜕𝑡
 (4.3) 

 

Where ρ is the volume density and 𝐶𝑝 is the heat capacity 

Now, rewriting equation 4.1 

 

   

 
𝜌(𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 )𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑞𝑟 + 𝑞𝜑 + 𝑞𝑧 − 𝑞𝑟+𝑑𝑟 − 𝑞𝜑+𝑑𝜑 − 𝑞𝑧+𝑑𝑧 + 𝑞𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 

(4.4) 

 

The amount of energy flowing out to the control volume, can be expressed using the Taylor series 

expansion as follow: 

 

   

 

𝑞𝑟+𝑑𝑟 = 𝑞𝑟 +
𝜕𝑞𝑟

𝜕𝑟
𝑑𝑟 

𝑞𝜑+𝑑𝜑 = 𝑞𝜑 +
𝜕𝑞𝜑

𝜕𝜑
𝑑𝜑 

𝑞𝑧+𝑑𝑧 = 𝑞𝑧 +
𝜕𝑞𝑧

𝜕𝑧
𝑑𝑧 

(4.5) 

 

and the equation 4.4 becomes 

 

   
 𝜌(𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 )𝐶𝑝

𝜕𝑇

𝜕𝑡
= −

𝜕𝑞𝑟

𝜕𝑟
𝑑𝑟 −

𝜕𝑞𝜑

𝜕𝜑
𝑑𝜑 −

𝜕𝑞𝑧

𝜕𝑧
𝑑𝑧 + 𝑞𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 (4.6) 

 

We can write now the energy flowing 𝑞𝑟, 𝑞φ and 𝑞z through the Fourier’s law: 

 

   
 𝑞𝑟 = −𝑘

𝜕𝑇

𝜕𝑟
𝑟 𝑑𝜑 𝑑𝑧 (4.7) 
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𝑞𝜑 = −𝑘
𝜕𝑇

𝑟𝜕𝜑
𝑑𝑟 𝑑𝑧 

𝑞𝑧 = −𝑘
𝜕𝑇

𝜕𝑧
𝑑𝑟 𝑟 𝑑𝜑 

 

where k is the heat transfer coefficient. In 4.7 there are three equations. In all of them, the first part of 

the right term (−k
∂𝑇

∂
) is the flux, while the second part is the cross section where this flux goes through. 

Putting together 4.6 and 4.7: 

 

   

 

𝜌(𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 )𝐶𝑝

𝜕𝑇

𝜕𝑡

= +
𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) 𝑑𝑟 𝑑𝜑 𝑑𝑧 +

𝜕

𝜕𝜑
(𝑘 

𝜕𝑇

𝑟𝜕𝜑
)𝑑𝑟 𝑑𝜑 𝑑𝑧

+
𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) 𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 + 𝑞𝑑𝑟 𝑟 𝑑𝜑 𝑑𝑧 

(4.8) 

 

Now we can drop out the volume, to obtain the heat equation in cylindrical coordinates. 

 

 

The boundary conditions implemented in a thermal problem can be one of the following: 

 Constant surface temperature: this is he the simplest boundary condition to deal with and can 

be expressed as: 

 

    𝑇 = 𝑇𝑠 (4.10) 

 

 Constant surface heat flux: if we are introducing a known amount of heat in the system, we 

can use this boundary condition: 

 

    −𝑘𝛻𝑇 = 𝑞 (4.11) 

 

 Adiabatic surface: to implement a surface that does not permit to the energy to pass by, we 

impose the normal flux equal to zero as follow 

 

    −𝑘𝛻𝑇 = 0 (4.12) 

 

 Convection surface: if we have a surface surrounded by a fluid, the right boundary condition 

to use is the following 

   
 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟2

𝜕

𝜕𝜑
(𝑘 

𝜕𝑇

𝑟𝜕𝜑
) +

𝜕

𝜕𝑧
(𝑘 

𝜕𝑇

𝜕𝑧
) + 𝑞 (4.9) 
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    −𝑘𝛻𝑇 = ℎ(𝑇∞ − 𝑇) (4.13) 

 

Where h is the convection coefficient from the surface and the fluid, and 𝑇∞ is the temperature 

of the fluid far from the surface. 

 

 Radiation surface: when the temperature is high, we must take into consideration the flux due 

to the radiation. This boundary condition can be expressed as: 

 

    −𝑘𝛻𝑇 = 𝜎𝜀(𝑇∞
4 − 𝑇4) (4.14) 

 

Where σ is the Stefan-Boltzmann constant, ε is the emissivity coefficient of the material, and 

𝑇∞ is the temperature of the surrounding surfaces. 

4.2 Thermal Model 

In the thermal model of the conductors, the interest is not in the time dependence, but in the maximum 

temperature achieved after a long enough amount of time, so in the steady-state. For this reason, from 

the equation 4.9, the left term that express the time dependence must be neglected, and the equation 

becomes: 

 

   
 

1

𝑟

𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟2

𝜕

𝜕𝜑
(𝑘 

𝜕𝑇

𝑟𝜕𝜑
) +

𝜕

𝜕𝑧
(𝑘 

𝜕𝑇

𝜕𝑧
) + 𝑞 = 0 (4.15) 

 

Now, since we are considering a 2D axisymmetric case, the derivation along the φ  axis of the 

temperature, is zero 

 

   
 

1

𝑟

𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) +

𝜕

𝜕𝑧
(𝑘 

𝜕𝑇

𝜕𝑧
) + 𝑞 = 0 (4.16) 

 

Multiplying by r, the previous formula can be rewritten as: 

 

   
 −

𝜕

𝜕𝑟
(𝑘 𝑟

𝜕𝑇

𝜕𝑟
) −

𝜕

𝜕𝑧
(𝑘 𝑟 

𝜕𝑇

𝜕𝑧
) = 𝑞𝑟 (4.17) 

 

It is easy now to see the similarity with the equation accepted in the PDE tool (equation (3.29)). 
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= 0  

Figure 4-2: comparison from the thermic model and the elliptic equation in the PDE 

tool 

 

The q term in equation 4.17 is the specific heat source, which in this case, is given from the 

electromagnetic simulations. 

 

a b c
 

Figure 4-3: specific joule power for the first conductor (a), sixth conductor (b) 

and tenth conductor (c) for the 11 kHz case 

 

In Figure 4-3 it is possible to see the specific joule power for the first conductor (the upper one), the 

sixth conductor (in the middle) and the tenth conductor (the lower one). 

Because we are using the specific joule power from the electromagnetic simulations, we will use the 

same mesh, which for the thermal problem is fine enough. The way to proceed, is to solve a turn at a 

time, in order to compute the total energy given to the water and to update that for the next turn. 

Internally the conductor, there is the hole to permit the water cooling. We can assume a velocity of the 

fluid of v = 0.2 [
𝑚

𝑠
], that corresponds to a flow rate of  

 

   
 𝑓𝑟 = 𝑣 ∙ 𝑡 ∙ 𝑆 = 𝑣 ∙ 3600 ∙ 𝜋 ∙ 𝑟2 = 0.0141 [

𝑚3

ℎ
] (4.18) 

 

Considering then the inflow temperature of the water at 20°C, we can investigate to see if the flow is 

laminar or turbulent. The Reynolds number and the Prandtl number are given from: 

 

   
 𝑅𝑒 =

𝜌 ∙ 𝑣 ∙ 𝐷

𝜇
≈ 1000 (4.19) 
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 𝑃𝑟 =
𝜇 ∙ 𝑐𝑝

𝑘
≈ 7 (4.20) 

 

where: 

 𝜌 is the density of the fluid [
𝑘𝑔

𝑚3] 

 𝜇 is the dynamic viscosity of the fluid [
𝑘𝑔

𝑚∙𝑠
] 

 𝑐𝑝 is the specific heat capacity constant pressure [
𝐽

𝑘𝑔∙𝐾
] 

 𝑘 is the thermal conductivity [
𝑊

𝑚∙𝐾
] 

 𝐷 is the diameter of the hole [𝑚] 

 

We know that the flow in a pipe is turbulent when the Reynolds number is greater than 2300 and the 

Prandtl number is greater than 0.7, but the circuit is short, so there is not enough space to become 

laminar. Therefore we can say that the flow is turbulent, which means that the thermal exchange 

coefficient is high enough to consider the internal surface at constant temperature (the temperature of 

the water). The boundary condition to express that, is the one in the equation 4.10. The temperature 

applied for this boundary conditions is calculated between one coil section and the next one. 

Considering now the external surface, we have to implement the convection and radiation boundary 

condition. The convection coefficient h is computed for every turn and is given by: 

 

   
 ℎ =

𝑁𝑢 ∙ 𝑘

𝐷𝑒
 (4.21) 

 

where: 

 𝑁𝑢 is the Nusselt number given by 

 

   

 𝑁𝑢 =

(

 
 
 0.6 + (0.387 ∙ 𝑅𝑎

1
6⁄ )

(1 + (
0.559
𝑃𝑟

)

9
16⁄

)

8
27⁄

 

)

 
 
 

2

 (4.22) 

 

 𝑅𝑎 is the Rayleigh number given by 

 

    𝑅𝑎 = 𝑃𝑟 ∙ 𝐺𝑟 (4.23) 

 

 𝐺𝑟 is the Grashof number given by 

 

   
 𝐺𝑟 =

𝐷𝑒3 ∙ 𝜌2 ∙ 9.81 ∙ 𝛥𝑇 ∙ 𝛽

𝜇2
 (4.24) 
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 𝐷𝑒 is the external diameter of the conductor 

 

 ΔT is the difference from the surface temperature of the conductor and the temperature of the 

air supposed at 20 °C 

 

 β is the expansion coefficient [
1

𝐾
] 

 

The other coefficients have the same meaning as in the case of the water. 

Once calculated the h coefficient, we can express the boundary condition on the external boundary 

simply putting together the equation 4.13 and 4.14. The result is: 

 

 

Due to the fourth power in the temperature of this boundary condition, a nonlinear solver must be used 

for this problem. 

Once the solution is computed, it is easy to calculate how much power goes in the water and how much 

in the ambient. This can be done computing the flux in the solution, but since we know the temperature 

in all the points on the external surface, it is easier and more accurate to use the formula 4.25 to compute 

the power that goes outside; then, knowing the total power generated in every turn, subtract the previous 

result to obtain the power transmitted to the water. 

The characteristics of the materials used in the thermal simulations are grouped in the next table. 

 

 
Thermal 

conductivity 

Specific Heat 

Capacity at 

Constant 

Pressure 

Dynamic 

viscosity 
Density 

Expansion 

coefficient 

 𝑘 [
𝑊

𝑚 ∗ 𝐾
] 𝑐𝑝 [

𝐽

𝐾𝑔 ∗ 𝐾
] 𝜇 [

𝑘𝑔

𝑚 ∗ 𝑠
] 𝜌 [

𝑘𝑔

𝑚3
] 𝛽 [

1

𝐾
] 

Copper 391 − − − − 

Air 2.624 ∗ 10−2∗
 1004.9∗ 1.846 ∗ 10−5∗

 1.177∗ 1.75 ∗ 10−3∗
 

Water − 4.1818 ∗ 103∗∗
 − 998.21∗∗ − 

∗the coefficients in the table for the air are given at 300K. In the simulations, , the coefficients are 

interpolated at the exact temperature  

∗∗ the coefficients in the table for the water are given at 20°C. In the simulations, the coefficients are 

interpolated at the exact temperature 

Table 4-1: Characteristics of the materials used in the simulations 

 

    −𝑘𝛻𝑇 = ℎ(𝑇∞ − 𝑇) + 𝜎𝜀(𝑇∞
4 − 𝑇4) (4.25) 
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4.3 Solution 

The solutions are obtained varying the water velocity between 0.05 and 0.5 m/s. This is done in order 

to see the changes in temperature through the coil varying the water cooling. 

With the minimum velocity, the temperatures are shown in Figure 4-4 (for convenience, the figure is 

rotated 90° clockwise and divided in two parts). 

 

 

Figure 4-4: temperatures and powers in the coil with a water velocity of 0.05 m/s 

 

From this figure, it is possible to see that the power transmitted to the ambient is very low compared 

with the one given to the water. This is because the temperatures reached are low to transmit a large 

amount of power with convection and radiation. In addition, as expected, the joule power generated in 

the lower and upper conductor (1 and 10) are greater than the other because of the skin effect (the first 

conductor has almost 40% more power than the third one). Another thing to notice is that the 

temperature gained by the water travelling through the coil is only 10.7°C even with a velocity of the 

fluid so low. This is due to the large heat capacity of the water. 

 

 

Figure 4-5: Particular of the temperature for the lower conductor (1), middle 

conductor (5) and upper conductor (10) 

 

The high thermal coefficient of the copper makes that the maximum difference in temperature in the 

cross section of the coil is very small (a tenth of a degree) as can be seen in Figure 4-5. In the same 

figure are also plotted the vectors corresponding to the gradient of the temperature (the flux). From 

these can be seen that almost all the thermal flux goes inside the conductor, in the water. 
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Figure 4-6: Details of the temperatures in the coil varying the velocity of the water 

 

In Figure 4-6 it is possible to observe other results obtained varying the velocity of the water. For a fluid 

velocity of 0.5 [𝑚 𝑠⁄ ], that corresponds to a flow rate of 2.35 [𝑙 𝑚𝑖𝑛⁄ ], the ∆𝑇 of the water is only 

1.1°𝐶. 
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5 CONCLUSIONS 

The aim of this study was to take confidence in the use of the PDEtool and to study the system for the 

separation of impurities in the molten silicon by the application of EM induction. In particular, the 

problem has been solved using finite element methods on a 2D axisymmetric model, and implemented 

in the MATLAB environment. The code has been written from scratch, and also a useful function for 

the export of the result from MATLAB to Tecplot has been created (see Appendix 3, function 

“pdetool2tecplot”). 

For the electromagnetic problem, the focus has been taken to the 1 kHz and 11 kHz power supply cases. 

The results show that the joule power generated in the silicon are 85 W for the former case and 614 W 

for the latter. Due to the skin effect, the distribution of this power is very different in the two cases. In 

the first one, it is almost constant for a fixed value of the r axis, while for the 11 kHz case, it is 

concentrated in the corners. Taking a look at the forces, it is possible to see that despite the fact that in 

a period of the current they act inside as well as outside the silicon, there is an average component that 

compress the molten metal and push the impurities at the boundary. Moreover, the maximum magnitude 

of the forces are almost ten times bigger in the 11 kHz case, while the distribution is similar to the 

distribution of the specific joule power. 

Once solved the electromagnetic problem, the focus has been taken on the thermal problem. The input 

were the specific joule power computed previously in the 11 kHz case. To see the changes in 

temperature through the coil varying the water cooling, the solutions are obtained varying the fluid 

velocity between 0.05 and 0.5 m/s. The results show that almost all of the power generated in the turns, 

goes in the water, and a very small amount is dissipated in the ambient due to convection and radiation. 

It is also possible to see that, a small fluid velocity in enough to contain the difference in temperature 

of the water between inlet and outlet (with a velocity of 0.05m/s, the temperature gained by the water 

travelling through the coil is only 10.7°C). 

Previous results using spectral methods were used, so it was possible to compare and validate the 

MATLAB FE solutions. 

In conclusion, this study confirm that using the electromagnetic field is a valid approach for the EM 

separation of impurities from the molten silicon. 
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7 APPENDICES 
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APPENDIX 1 

Stokes’ theorem 

Let be 

S: an oriented, piecewise smooth surface 

∂S: a curve that bounds S 

F: a vector field whose components have continuous derivatives in an open region of ℝ3 containing 

S. 

Then: 

 

   
 ∬ (𝛻 ⨯ 𝑭)⦁𝑑𝑺

𝑆

= ∮ 𝑭⦁𝑑𝒍
𝜕𝑆

 (7.1) 

 

Divergence theorem 

Let V be a subset of ℝn which is compact and has a piecewise smooth boundary S. If F is a continuously 

differentiable vector field defined on a neighbourhood of V, then we have: 

 

   
 ∭ (𝛻 ⨯ 𝑭)𝑑𝑉

𝑉

= ∯ 𝑭 • 𝑑𝑺
𝑆

 (7.2) 

 

Therefore, with this theorem is possible to transform a volume integral (left side) in a surface integral 

(right side) where the left side represent the total of the source in the volume while the right side 

represent the total flow across the surface. 

 

Quasi-stationary approximation 

We can consider the third Maxwell’s equation (3.25) we know that it is possible to simplify in: 

 

    𝛻 ⨯ 𝑯 = 𝑱 (7.3) 
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However, we can obviously ask ourselves when this approximation is legitimate. 

The possibility to neglect the time derivative depends not only from the magnitude of the vector, but 

also from the velocity of variation of that vector. Therefore, neglecting the time derivative of the 

displacement field is much more acceptable when the variation is slow. 

To neglect the time derivative means to neglect the retard of propagation, namely the temporal 

variations of the variables that propagates instantaneously in all the points of the system. It is obvious 

that, for neglecting the delay time, the system must be considered geometrically limited. 

Given a pair of points P and P0 belonging to the system under consideration, we call: 

 

    𝑟𝑚𝑎𝑥 = 𝑚𝑎𝑥(|𝑃 − 𝑃0|) (7.4) 

   
 𝑡𝑚𝑎𝑥 =

𝑟𝑚𝑎𝑥

𝑐
 (7.5) 

 

where c is the speed of light in vacuum. 

If the relations of negligibility is verified for distances equal to rmax, even more so it will be for all other 

value of the distance r. 

Neglecting the time delay means, as said, suppose that the causes that originate the field do not vary in 

the time interval under consideration, namely: 

 

    𝑱(𝑃, 𝑡 − 𝑡𝑚𝑎𝑥) ≈  𝑱(𝑃, 𝑡) (7.6) 

 

Considering the series expansion 7.6 can be rewritten in the form: 

 

   
 |

𝜕𝑱(𝑃, 𝑡)

𝜕𝑡

𝑟𝑚𝑎𝑥

𝑐
| ≪ |𝑱(𝑃, 𝑡)| (7.7) 

 

If we consider the sinusoidal case with pulse ω, it is possible to write: 

 

    𝑱(𝑃, 𝑡) =  𝑱(𝑃)𝑐𝑜𝑠(𝜔𝑡 + 𝜑) (7.8) 

   
 

𝜕𝑱(𝑃, 𝑡)

𝜕𝑡
=  −𝜔𝑱(𝑃)𝑠𝑖𝑛(𝜔𝑡 + 𝜑) (7.9) 

 

So 7.7 is verified when 

 

   
 |𝜔

𝑟𝑚𝑎𝑥

𝑐
| ≪ 1 (7.10) 
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This is the condition to neglect the time derivative of the displacement field in the third Maxwell’s 

equation. 
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APPENDIX 2 

Identities in Cartesian coordinates 

 Gradient of a scalar 

 

   
 𝛻𝑓 = (

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
) (7.11) 

 

 Divergence of a vector 

 

   
 𝛻𝑭 =

𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧

𝜕𝑧
 (7.12) 

 

 Curl of a vector 

 

   

 𝛻 ⨯ 𝑭 = ||

𝒆𝒙 𝒆𝒚 𝒆𝒛

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐹𝑥 𝐹𝑦 𝐹𝑧

|| (7.13) 

 

Identities in cylindrical coordinates 

 Gradient of a scalar 

 

   
 𝛻𝑓 = (

𝜕𝑓

𝜕𝑟
,
1

𝑟

𝜕𝑓

𝜕𝜑
,
𝜕𝑓

𝜕𝑧
) (7.14) 

 

 Divergence of a vector 

 

   
 𝛻𝑭 =

1

𝑟

𝜕

𝜕𝑟
(𝑟𝐹𝑟) +

1

𝑟

𝜕𝐹𝜑

𝜕𝜑
+

𝜕𝐹𝑧

𝜕𝑧
 (7.15) 

 

 Curl of a vector 
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 𝛻 ⨯ 𝑭 =
1

𝑟
||

𝒆𝒓 𝑟𝒆𝝋 𝒆𝒛

𝜕

𝜕𝑟

𝜕

𝜕𝜑

𝜕

𝜕𝑧
𝐹𝑟 𝑟𝐹𝜑 𝐹𝑧

|| (7.16) 

 

Trigonometric Identities 

 

   
 𝑠𝑖𝑛2(𝑢) =

1 − 𝑐𝑜𝑠(2𝑢)

2
 (7.17) 

 

   
 𝑐𝑜𝑠2(𝑢) =

1 + 𝑐𝑜𝑠(2𝑢)

2
 (7.18) 

 

   
 𝑠𝑖𝑛(𝑢)𝑐𝑜𝑠(𝑢) =

1

2
𝑠𝑖𝑛(2𝑢) (7.19) 
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APPENDIX 3 

Main function “Solve” 

function Solve 

clc 

clear variables 

%Choice = 0     compute:    geometry  ->   mesh  ->   solution  ->   calculation  ->   

tecplot write 

%Choice = 1     compute:                              solution  ->   calculation  ->   

tecplot write 

%Choice = 2     compute:                                             calculation  ->   

tecplot write 

Choice = 2;     nomefile = '11000Hz';    %name for the output 

% Creation of the name of the matrices, so if I chance theinput file, I do 

% not clear the other solution computed 

Result_name = ['(',nomefile,')_Result.mat']; 

 

if ( Choice==0 ) || ( Choice==1 ) 

    if ( Choice==0 ) 

%% GEOMETRY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        ti = clock; 

        fprintf('\n   ---Geometry construction---'); 

        %Construction of geometry matrices 

        [ b, g, Materials, Turns ] = bgMT_Construction2( 0 ); 

        %plot the geometry 

        figure(1); 

        pdegplot(g) 

        axis equal 

        %load the X matrix before delete it so if the geometry is not 

        %changed, I can use that one instead of recompute it again 

        if exist(Result_name,'file')==2 

            load(Result_name,'X') 

        end 

        save(Result_name,'Materials','Turns','b','g'); 

        tf = clock; 

        fprintf('    COMPLETED in %4.1f s\n',etime(tf,ti)); 

%% MESH %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        ti = clock; 

        fprintf('\n   ---Mesh construction---\n'); 

        MaxIter = 15; 

        Iimposed = Turns(2,:);%The current imposed is the peak value 

        [ a, c, f, ~ ] = acfdConstruction( Iimposed ); 

        [~,p,e,t]=adaptmesh(g,b,c,a,f,'MesherVersion','R2013a','Ngen',MaxIter); 

        [p,e,t]=refinemesh(g,p,e,t);    [p,e,t]=refinemesh(g,p,e,t); 

        %Plot the mesh 

        figure(2); 

        pdemesh(p,e,t) 

        drawnow 

        axis equal 

        fprintf('Number of triangles in the mesh = %6.f\n', size(t,2)); 
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        %save the area of triangles, so when I need it, I don't have to 

        %compute it again 

        [A,~,~,~] = pdetrg(p,t); 

        save(Result_name,'p','e','t','A','-append'); 

        tf = clock; 

        fprintf('    COMPLETED in %4.1f s\n',etime(tf,ti)); 

%% X MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% X*Iimposed = Iinduced 

        ti = clock; 

        nt = size(Turns,2); 

        %The computation of the X matrix takes a while, so it is computed 

        %only if needed 

        compute = 1; 

        if exist('X','var')==1 

            if size(X,2)==nt 

                C = eye(nt) + X; 

                Iideal = ones(1,nt); 

                Iimposed = +( C\Iideal.' ).'; 

                [ a, c, f, ~ ] = acfdConstruction( Iimposed ); 

                u = assempde(b,p,e,t,c,a,f); 

                [I, ~] = ComputeI( u );%vector of currents obtained in the turns 

                Ireal = Iimposed + I; 

                error = (Ireal-Iideal)./Ireal; 

                if sum( abs( error ) ) < 1e-4 

                    compute = 0; 

                end 

            else 

                compute = 1; 

            end 

        else 

            compute = 1; 

        end 

        %Computation of X matrix 

        if compute == 1 

            fprintf('\n   ---Matrix X construction---\n'); 

            X = zeros(nt); 

            for k=1:nt 

                Iimposed = zeros(1,nt); 

                Iimposed(1,k) = 1; 

                [ a, c, f, ~ ] = acfdConstruction( Iimposed ); 

                u = assempde(b,p,e,t,c,a,f); 

                [I, ~] = ComputeI( u ); 

                X(:,k) = I; 

                fprintf('%2.0f ',nt-k); 

            end 

        end 

        save(Result_name,'X','-append'); 

        tf = clock; 

        fprintf('    COMPLETED in %4.1f s\n',etime(tf,ti)); 

    else 

        if exist(Result_name,'file')~=2 

            warndlg(['The matrices does not exist for ',nomefile,'.'], ['Error in 

',mfilename,'.m.']); 

            return 

        end 
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        load(Result_name,'Materials','Turns','b','g','p','e','t','A','X') 

    end 

%% SOLUTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    ti = clock; 

    fprintf('\n   ---Computation of solution---\n'); 

    % construction of the matrix with the currents I want to impose 

    turns_index = Turns(1,:); 

    nt = size(turns_index,2); 

    Iideal = Turns(2,:); 

    C = eye(nt) + X; 

    Iimposed = +( C\Iideal.' ).'; 

    [ a, c, f, ~ ] = acfdConstruction( Iimposed ); 

    u = assempde(b,p,e,t,c,a,f); 

    [I, V] = ComputeI( u );        %vector of currents obtained in the turns 

    Ireal = Iimposed + I; 

    error = (Ireal-Iideal)./Ireal;                       %computation of the error 

    fprintf('Error on the current = %6.5f \n', sum(abs(error))); 

    save(Result_name,'u','I','Iimposed','V','error','-append'); 

    tf = clock; 

    fprintf('    COMPLETED in %4.1f s\n',etime(tf,ti)); 

elseif ( Choice==2 ) 

    if exist(Result_name,'file')~=2 

        warndlg(['The matrices does not exist for ',nomefile,'.'], ['Error in 

',mfilename,'.m.']); 

        return 

    end 

    

load(Result_name,'Materials','Turns','b','g','p','e','t','A','u','I','Iimposed','V','

error') 

else 

    warndlg('Variable Choice must be an integer from 0 to 2', ['Error in 

',mfilename,'.m.']); 

    return 

end 

%% CALCOLI %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

nt = size(t,2);%number of triangles 

np = size(p,2);%number of points 

freq = Turns(5,1); 

Ireal = Iimposed + I; 

omega = 2*pi*freq; 

sd = unique(t(4,:)); 

ns = size(sd,2);%number of subdomains 

mt = unique(Materials(1,:)); 

nm = size(mt,2);%number of materials 

PSIfi = u;%evaluated on points 

PSIfi_t = pdeintrp(p,t,PSIfi);%interpolation on triangles 

Afi_p = PSIfi./(p(1,:))'; 

%In the previous formula there is a division by zero on the axis, so the 

%nans must be replaced 

[Afi_p] = replace_nan (p, e, t, Afi_p); 

Afi_t = pdeintrp(p,t,Afi_p); 

%gradient of PSI function 

[Dr_PSIfi,Dz_PSIfi] = pdegrad(p,t,PSIfi);%evaluated on triangles 

%coordinates of the center of triangles 

xpts=(p(1,t(1,:))+p(1,t(2,:))+p(1,t(3,:)))/3; 
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ypts=(p(2,t(1,:))+p(2,t(2,:))+p(2,t(3,:)))/3; 

%Induction 

Br = abs( -Dz_PSIfi./xpts );%evaluated on triangles 

Bz = abs( Dr_PSIfi./xpts );%evaluated on triangles 

%Forces 

Fr = (imag(PSIfi_t).*real(Dr_PSIfi) - 

real(PSIfi_t).*imag(Dr_PSIfi)).*omega.*Materials(3,t(4,:))./(2*xpts.^2); 

Fz = (imag(PSIfi_t).*real(Dz_PSIfi) - 

real(PSIfi_t).*imag(Dz_PSIfi)).*omega.*Materials(3,t(4,:))./(2*xpts.^2); 

sigma_t = Materials(3,t(4,:)); 

%J induced (instant value) 

Jind = -1i*omega.*sigma_t.*Afi_t; 

%J imposed 

Jimp = zeros(1,nt); 

for k=1:size(Turns,2) 

    Jimp1 = Iimposed(1,k)/Turns(3,k); 

    i_t = pdesdt(t,Turns(1,k)); 

    Jimp(1,i_t) = Jimp1; 

end 

%J real 

Jreal = Jimp + Jind; 

%J real (mean value) 

Jreal_m = abs(Jreal)./sqrt(2); 

Ireal_mean = abs(mean(Ireal))/sqrt(2); 

%Magnitude of induction field 

B_magn = sqrt(Br.^2 + Bz.^2); 

%Magnitude of force 

F = sqrt(Fr.^2 + Fz.^2); 

%Specific power 

Pspec = Jreal_m.^2./Materials(3,t(4,:)); 

Pspec(isnan(Pspec))=0; 

i_t_s = pdesdt(t,2); 

%The power is integrated in the silicon 

[ ~, Power ] = u_Integral1( p, t, Pspec, i_t_s ); 

%% WRITING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%The results are written to a file for the plotting of the results in 

%tecplot 

pdetool2tecplot (nomefile, p, e, t, Br, Bz, B_magn, Jreal_m, Fr, Fz, F, Pspec,... 

                    'VarName', {'r' 'z' 'Br' 'Bz' 'B' 'J' 'Fr' 'Fz' 'F' 'Pspec'},... 

                    'ZonesName',{'Air' 'Silicon' 'Graphite' 'Copper' 'Copper' 

'Copper' 'Copper' 'Copper' 'Copper' 'Copper' 'Copper' 'Copper' 'Copper' 'Water' 

'Water' 'Water' 'Water' 'Water' 'Water' 'Water' 'Water' 'Water' 'Water'},... 

                    'DSAD',{'Frequency'; 'Current'; 'Power'},{freq; Ireal_mean; Power 

},... 

                    'Title', nomefile); 

%For the vector plotting of the forces, an additional file is written with 

%a grid mesh 

nomefile_grid = [nomefile,'_grid']; 

xgrid = linspace(0,1,10); 

ygrid = linspace(0,1,40); 

pdetool2tecplot (nomefile_grid, p, e, t, Fr, Fz,... 

                    'grid','xy',xgrid,ygrid,... 

                    'VarName', {'r' 'z' 'Fr1' 'Fz1'},... 

                    'Subdomain', 2,... 

                    'ZonesName', {'Silicon_grid'},... 
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                    'Title', nomefile_grid); 

end 

%% SUBFUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [var] = replace_nan (p, e, t, var) 

    var = var.'; 

    np = size(p,2); 

    nt = size(t,2); 

    nvar = size(var,2); 

    i_nan = find(isnan(var)==1); 

    n_nan = size(i_nan,2); 

 

    while n_nan~=0 

        if size(nvar)==nt 

            for k=1:n_nan 

                tri = i_nan(1,k); 

                ntl=pdeent(t,tri); 

                sum = 0; 

                h = 0; 

                for j=1:size(ntl,2) 

                    if ~isnan(var(1,ntl(1,j))) 

                        sum = sum + var(1,ntl(1,j)); 

                        h = h + 1; 

                    end 

                end 

                if sum~=0 

                    sum = sum / h; 

                    var(1,tri) = sum; 

                end 

            end 

        else 

            for k=1:n_nan 

                point = i_nan(1,k); 

                i_e1 = ( find( e(1,:)==point ) ); 

                i_e2 = ( find( e(2,:)==point ) ); 

                i_e = unique([i_e1, i_e2]); 

                i_p = unique( [e(1,i_e) e(2,i_e)] ); 

                sum = 0; 

                h = 0; 

                for j=1:size(i_p,2) 

                    if ~isnan(var(1,i_p(1,j))) 

                        sum = sum + var(1,i_p(1,j)); 

                        h = h + 1; 

                    end 

                end 

                if sum~=0 

                    sum = sum / h; 

                    var(1,point) = sum; 

                end 

            end 

 

        end 

        i_nan = find(isnan(var)==1); 

        n_nan = size(i_nan,2); 

    end 
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    var = var.'; 

end 

Function “acfdConstruction” 

function [ a, c, f, d ] = acfdConstruction( Iimposed ) 

%   Given the matrix Materials.mat and Turns.mat created in 

%   bgMT_Construction2.m, the function creates the matrices "a", "c", "f" e 

%   "d" for the computation of the solution. 

%   For a reference on the form of Materials.mat and Turns.mat, see the 

%   function bgMT_Construction2.m 

 

%Take the matrices from the caller function 

Materials = evalin('caller','Materials'); 

Turns = evalin('caller','Turns'); 

freq = Turns(5,1); 

omega = 2*pi*freq; 

% "a", "c", "f" e "d" are char vectors. They are initialized empty 

a = ''; 

c = ''; 

f = ''; 

d = ''; 

%Start writing in them 

for i=1:size(Materials,2) 

    %Creating "a" 

    if Materials(3,i)~=0 

        a = [a,strcat('i.*',num2str(Materials(3,i)*omega,'%g'),'./x')]; 

    else 

        a = [a,'0.0']; 

    end 

    %Creating "c" 

    c = [c,strcat('1./(x.*',num2str(Materials(2,i),'%g'),')')]; 

    %Creating "f" 

    T_i = find(Turns(1,:)==i); 

    if isempty(T_i) 

        f = [f,'0.0']; 

    else 

        f = [f,num2str(Iimposed(1,T_i)/Turns(3,T_i))]; 

    end 

    %Creating "d" 

    d = [d,'1.0']; 

    %In the vectors, between two coefficients, there must be an exclamation 

    %mark 

    if i~=size(Materials,2) 

        a = [a,'!']; 

        c = [c,'!']; 

        f = [f,'!']; 

        d = [d,'!']; 

    end 

end 

%the vectors must have the same size, so add some spaces in the shorter 
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%ones 

k = max( [size(a,2); size(c,2); size(d,2); size(f,2)] ); 

for i=size(a,2):k-1 

    a = [a,' ']; 

    i = i+1; 

end 

for i=size(c,2):k-1 

    c = [c,' ']; 

    i = i+1; 

end 

for i=size(d,2):k-1 

    d = [d,' ']; 

    i = i+1; 

end 

for i=size(f,2):k-1 

    f = [f,' ']; 

    i = i+1; 

end 

end 

Function “bgMT_Construction2” 

 

function [ b, g, Materials, Turns ] = bgMT_Construction2( fig_yn ) 

%This function creates the matrices used in the solver ("b", "g") and for 

%the computations 

%fig_yn = 1 to plot the geometry 

%% DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%geometry data 

S_crd = [   0       2; 

            -3      3.53]/100; 

GB_crd = [  0       2.7; 

            -4.8    -3]/100; 

GL_crd = [  2       2.7; 

            -3     6.5]/100; 

T_crd = [   5       5; 

            -8     7.4]/100; 

nt = 10;%Number of turns 

dc = 1/100;%Diameter of conductor 

dc1 = 0.5/100;%diameter of hole in conductor [m] 

racc = 0.1/100;%radius of rounded angle in silicon 

% general data 

freq = 11000; 

mu0 = 4*pi*1e-7; 

 

%Material 1: data air 

murA = 1; muA = mu0*murA;%magnetic permeability 

sigmaA = 0;%Conductivity [Ohm*m] 

densityA = nan;%mass density [kg/m^3] 

ThCoA = nan;%thermal conductivity k [W/m*K] 

SpHeCaA = nan;%specific heat capacity Cp [J/kg*K] 
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alphaA = nan;%coefficient of temperature for conductivity [k^-1] 

tsA = nan;%temperature at which the sigma is given [K] 

epsilonA = nan;%Emissivity 

 

%Material 2: data silicon 

murS = 1; muS = mu0*murS; 

sigmaS = 1.23e6; 

densityS = 2560; 

ThCoS = 149; 

SpHeCaS = 710; 

alphaS = -70e-3; 

tsS = 1000; 

epsilonS = 0.3; 

 

%Material 3: data graphite 

murG = 1; muG = mu0*murG; 

sigmaG = 8.65e4; 

densityG = 2160; 

ThCoG = 80; 

SpHeCaG = 710; 

alphaG = -5e-3; 

tsG = 320; 

epsilonG = 0.75; 

 

%Material 4: data copper 

murC = 1; muC = mu0*murC; 

sigmaC = 4.1e7; 

densityC = 8920; 

ThCoC = 391; 

SpHeCaC = 390; 

alphaC = 3.93e-3; 

tsC = 320; 

epsilonC = 0.03; 

 

IC = 385*sqrt(2);%Peak value of the current 

SC = pi*dc^2/4-pi*dc1^2/4;%Section of the conductor 

 

%data water 

murW = 1; muW = mu0*murW; 

sigmaW = 0; 

densityW = 1000; 

ThCoW = 580; 

SpHeCaW = 4185; 

alphaW = 0; 

tsW = 0; 

epsilonW = nan; 

%% GEOMETRY COEFFICIENTS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Center coordinates of turns 

Tx_crd = linspace(T_crd(1,1),T_crd(1,2),nt); 

Ty_crd = linspace(T_crd(2,1),T_crd(2,2),nt); 

%Limit of the entities in the domain for the creation of the domain itself 

xmax = max( [max(S_crd(1,:)), max(GB_crd(1,:)), max(GL_crd(1,:)), max(S_crd(1,:)), 

max(T_crd(1,:))] ); 

ymin = min( [min(S_crd(2,:)), min(GB_crd(2,:)), min(GL_crd(2,:)), min(S_crd(2,:)), 

min(T_crd(2,:))] ); 
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ymax = max( [max(S_crd(2,:)), max(GB_crd(2,:)), max(GL_crd(2,:)), max(S_crd(2,:)), 

max(T_crd(2,:))] ); 

h = ymax - ymin; 

A_crd = [   0,      xmax*5;     %creation of domain 

            ymin-h, ymax+h]; 

num_seg = 16+4*nt; 

%% CREATION OF g %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%"g" is the matrix that describes the geometry 

%Matrix with coordinates of points [x,y] 

Points_rept = [ min(A_crd(1,:))         max(A_crd(2,:));        %Point 1 

                max(A_crd(1,:))         max(A_crd(2,:));        %Point 2 

                max(A_crd(1,:))         min(A_crd(2,:));        %Point 3 

                min(A_crd(1,:))         min(A_crd(2,:));        %Point 4 

                min(A_crd(1,:))         min(GB_crd(2,:));       %Point 5 

                min(A_crd(1,:))         max(GB_crd(2,:));       %Point 6 

                min(A_crd(1,:))         max(S_crd(2,:));        %Point 7 

                max(GL_crd(1,:))        min(GB_crd(2,:));       %Point 8 

                max(GL_crd(1,:))        max(GL_crd(2,:));       %Point 9 

                min(GL_crd(1,:))        max(GL_crd(2,:));       %Point 10 

                max(S_crd(1,:))         max(S_crd(2,:))-racc;   %Point 11 

                max(S_crd(1,:))         min(S_crd(2,:))+racc;   %Point 12 

                max(S_crd(1,:))-racc    max(S_crd(2,:));        %Point 13 

                max(S_crd(1,:))-racc    min(S_crd(2,:))];       %Point 14 

 

%Matrix with the segments of rectangles 

%[point start, point end, subdomain on left, subdomain on right] 

seg_rept = [    1   2   0   1;      %Segment 1 

                2   3   0   1;      %Segment 2 

                3   4   0   1;      %Segment 3 

                4   5   0   1;      %Segment 4 

                5   6   0   3;      %Segment 5 

                6   7   0   2;      %Segment 6 

                7   1   0   1;      %Segment 7 

                5   8   3   1;      %Segment 8 

                8   9   3   1;      %Segment 9 

                9   10  3   1;      %Segment 10 

                10  11  3   1;      %Segment 11 

                11  12  3   2;      %Segment 12 

                14  6   3   2;      %Segment 13 

                7   13  1   2];     %Segment 14 

 

%g contrain the information of all the segments 

%if the segment is a line, the column for that segment is: 

%row1   2 

%row2   x coordinate of the first point 

%row3   x coordinate of the second point 

%row4   y coordinate of the first point 

%row5   y coordinate of the second point 

%row6   subdomain on the left 

%row7   subdomain on the right 

g = zeros(12,num_seg); 

for k=1:size(seg_rept,1) 

    g(1,k) = 2; 

    g(2,k) = Points_rept(seg_rept(k,1),1); 

    g(3,k) = Points_rept(seg_rept(k,2),1); 
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    g(4,k) = Points_rept(seg_rept(k,1),2); 

    g(5,k) = Points_rept(seg_rept(k,2),2); 

    g(6,k) = seg_rept(k,3); 

    g(7,k) = seg_rept(k,4); 

end 

 

%if the segment is an arc, the column for that segment is: 

%row1   1 

%row2   x coordinate of the first point 

%row3   x coordinate of the second point 

%row4   y coordinate of the first point 

%row5   y coordinate of the second point 

%row6   subdomain on the left 

%row7   subdomain on the right 

%row8   x coordinate of the center 

%row9   y coordinate of the center 

%row10  radius of the arc 

 

i_sub = max( [ seg_rept(:,3)', seg_rept(:,4)' ] ); 

n_rect = i_sub; 

i_seg = size(seg_rept,1); 

 

%Write rounded segment 15 

i_seg = i_seg +1; 

p1 = 11; 

p2 = 13; 

g(1,i_seg) = 1; 

g(2,i_seg) = Points_rept(p1,1); 

g(3,i_seg) = Points_rept(p2,1); 

g(4,i_seg) = Points_rept(p1,2); 

g(5,i_seg) = Points_rept(p2,2); 

g(6,i_seg) = 2; 

g(7,i_seg) = 1; 

g(8,i_seg) = Points_rept(p2,1); 

g(9,i_seg) = Points_rept(p1,2); 

g(10,i_seg) = racc; 

 

% %Write rounded segment 16 

i_seg = i_seg +1; 

p1 = 14; 

p2 = 12; 

g(1,i_seg) = 1; 

g(2,i_seg) = Points_rept(p1,1); 

g(3,i_seg) = Points_rept(p2,1); 

g(4,i_seg) = Points_rept(p1,2); 

g(5,i_seg) = Points_rept(p2,2); 

g(6,i_seg) = 2; 

g(7,i_seg) = 3; 

g(8,i_seg) = Points_rept(p1,1); 

g(9,i_seg) = Points_rept(p2,2); 

g(10,i_seg) = racc; 

 

%write the turns (external circle) 

for k=1:nt 

    i_sub = i_sub + 1; 
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    xc = Tx_crd(1,k); 

    yc = Ty_crd(1,k); 

    rc = dc/2; 

    teta = 0; 

    for j=1:4 

        i_seg = i_seg +1; 

        g(1,i_seg) = 1; 

        g(2,i_seg) = xc+rc*cos(teta); 

        g(3,i_seg) = xc+rc*cos(teta+pi/2); 

        g(4,i_seg) = yc+rc*sin(teta); 

        g(5,i_seg) = yc+rc*sin(teta+pi/2); 

        teta = teta + pi/2; 

        g(6,i_seg) = i_sub; 

        g(7,i_seg) = 1; 

        g(8,i_seg) = xc; 

        g(9,i_seg) = yc; 

        g(10,i_seg) = rc; 

    end 

end 

 

%write water (internal circle) 

for k=1:nt 

    i_sub = i_sub + 1; 

    xc = Tx_crd(1,k); 

    yc = Ty_crd(1,k); 

    rc = dc1/2; 

    teta = 0; 

    for j=1:4 

        i_seg = i_seg +1; 

        g(1,i_seg) = 1; 

        g(2,i_seg) = xc+rc*cos(teta); 

        g(3,i_seg) = xc+rc*cos(teta+pi/2); 

        g(4,i_seg) = yc+rc*sin(teta); 

        g(5,i_seg) = yc+rc*sin(teta+pi/2); 

        teta = teta + pi/2; 

        g(6,i_seg) = i_sub; 

        g(7,i_seg) = i_sub-nt; 

        g(8,i_seg) = xc; 

        g(9,i_seg) = yc; 

        g(10,i_seg) = rc; 

    end 

end 

 

nsd = i_sub;%Number of subdomains 

num_seg = size(g,2);%Number of segments 

 

%plot the geometry to see if it is right 

if fig_yn 

    figure(100) 

    pdegplot(g,'subdomainLabels','on') 

    axis equal 

end 

%% CREATION OF b %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%"b" is a matrix that describes the boundary conditions 

%First I create a "Bound" matrix 
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%Column1   segment 

%Column2   1=dirichlet (h*u=r)   0=neumann (n*c*grad(u)+q*u=g) 

%Column3   h (o q) 

%Column4   r (o g) 

 

Bound = {   '1',            '1',            '1',            '0'; 

            '2',            '1',            '1',            '0'; 

            '3',            '1',            '1',            '0'; 

            '4',            '1',            '1',            '0'; 

            '5',            '1',            '1',            '0'; 

            '6',            '1',            '1',            '0'; 

            '7',            '1',            '1',            '0'     }; 

 

%the "b" matrix is made of ASCII characters 

%For example, if the boundary condition is Neumann, the column is: 

%row1   1 

%row2   0 

%row3   Number of digit in the q coefficient 

%row4   Number of digit in the g coefficient 

%row5 to row(5+row3) contains the ascii number corresponding to the numbers of q 

%row(5+row3+1) to row(5+row3+1+row4) is like the above row but for g 

b = zeros(10,num_seg); 

intern_seg = [  0   1   1   1   1   1   48  48  49  48]'; 

for k=1:num_seg 

    b(:,k) = intern_seg; 

end 

%Routine for the creation of "b" 

for k=1:size(Bound,1) 

    if isnumeric(str2double(Bound{k,1})) 

        seg = str2double(Bound{k,1}); 

        b(1,seg) = 1; 

        if strcmp(Bound{k,2},'1')    % Dirichlet 

            h_coeff = Bound{k,3}; 

            r_coeff = Bound{k,4}; 

            b(5,seg) = length(h_coeff); 

            b(6,seg) = length(r_coeff); 

            pos = 9; 

            for j=1:length(h_coeff) 

                b(pos,seg) = invchar(h_coeff(1,j)); 

                pos = pos+1; 

            end 

            for j=1:length(r_coeff) 

                b(pos,seg) = invchar(r_coeff(1,j)); 

                pos = pos+1; 

            end 

        elseif strcmp(Bound{k,2},'0')    % Neumann 

            b(2,seg) = 0; 

            q_coeff = Bound{k,3}; 

            g_coeff = Bound{k,4}; 

            b(3,seg) = length(q_coeff); 

            b(4,seg) = length(g_coeff); 

            pos = 5; 

            for j=1:length(q_coeff) 

                b(pos,seg) = invchar(q_coeff(1,j)); 

                pos = pos+1; 



Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014 

Appendices   65 

            end 

            for j=1:length(g_coeff) 

                b(pos,seg) = invchar(g_coeff(1,j)); 

                pos = pos+1; 

            end 

        else 

            warndlg('Second column of matrix Bound must be 0 or 1', ['Error in 

',mfilename,'.m.']); 

            return 

        end 

    else 

        warndlg('First column of matrix Bound must be a number', ['Error in 

',mfilename,'.m.']); 

        return 

    end 

 

end 

%% CREATION OF “Materials” MATRIX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%subdomains 

%subdomain 1 = Air 

%subdomain 2 = Silicon 

%subdomain 3 = Graphite 

%subdomain 4-... = TurnS 

%nsd = number of subdomains (air, 2*graphite, silicon, nt turns) 

material_subd = zeros(1,nsd); 

%subdomain          1       2       3       4       5       6       7       8       

... 

%subdomain example: 

%subdomain = [      1,      2,      3,      4,      4,      4,      4,      4,      

... 

%the meaning of the numbers is: 

%           1 per Air 

%           2 per Silicon 

%           3 per Graphite 

%           4 per Copper 

%           5 per Water 

 

material_subd(1,1:3) = [1, 2, 3]; 

for i=4:(nt+3) 

    material_subd(1,i) = 4; 

end 

for i=(nt+4):(nsd) 

    material_subd(1,i) = 5; 

end 

 

 

%The matrix Materials.mat is formed like that: 

%Material                                       1        2        3        4        

... 

%Mu                                             mu1      mu2      mu3      mu4      

... 

%Sigma                                          sigma1   sigma2   sigma3   sigma4   

... 

%Density                                        dens1    dens2    dens3    dens4    

... 
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%Thermal conductivity                           k1       k2       k3       k4       

... 

%Specific Heat Capacity                         c1       c2       c3       c4       

... 

%Coefficient of temperature for conductivity    alpha1   alpha2   alpha3   alpha4   

... 

%Temperature at which the sigma is given        Ta1      Ta2      Ta3      Ta4      

... 

%Emissivity                                     epsilon1 epsilon2 epsilon3 epsilon4 

... 

Materials = [material_subd;zeros(5,nsd)]; 

for i=1:nsd 

    switch Materials(1,i) 

        case 1  %Air 

            Materials(2:9,i) = 

[muA;sigmaA;densityA;ThCoA;SpHeCaA;alphaA;tsA;epsilonA]; 

        case 2  %Silicon 

            Materials(2:9,i) = 

[muS;sigmaS;densityS;ThCoS;SpHeCaS;alphaS;tsS;epsilonS]; 

        case 3  %Graphite 

            Materials(2:9,i) = 

[muG;sigmaG;densityG;ThCoG;SpHeCaG;alphaG;tsG;epsilonG]; 

        case 4  %Copper 

            Materials(2:9,i) = 

[muC;sigmaC;densityC;ThCoC;SpHeCaC;alphaC;tsC;epsilonC]; 

        case 5  %Water 

            Materials(2:9,i) = 

[muW;sigmaW;densityW;ThCoW;SpHeCaW;alphaW;tsW;epsilonW]; 

    end 

end 

%% Turns.mat %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%The matrix Turns.mat is formed like that: 

%Subdomain          S1      S2      S3      S4      S5      S6      ... 

%Current            I1      I2      I3      I4      I5      I6      ... 

%Section            S1      S2      S3      S4      S5      S6      ... 

%Radius of turn     R1      R2      R3      R4      R5      R6      ... 

%frequency          f       f       f       f       f       f       ... 

%diameter of cond   dc1     dc2     dc3     dc4     dc5     dc6     ... 

%Diameter of hole   dh1     dh2     dh3     dh4     dh5     dh6     ... 

Turns = zeros(5,nt); 

 

for k=1:(nt) 

    Turns(1:7,k) = [k+n_rect, IC, SC, Tx_crd(1,k), freq, dc, dc1]; 

end 

end 

function charcode = invchar(c) 

    charcode = find(char(0:255) == c) - 1; 

end 



Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014 

Appendices   67 

Function “ComputeI” 

function [ I, V ] = ComputeI( u ) 

%Given the solution, this function compute the current in the turns 

 

%Here are taken the matrices from the calle function 

p = evalin('caller','p'); 

t = evalin('caller','t'); 

Materials = evalin('caller','Materials'); 

Turns = evalin('caller','Turns'); 

[A,~,~,~] = pdetrg(p,t); 

%% COMPUTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

turns_index = Turns(1,:); 

omega = 2*pi*Turns(5,1); 

PSIfi = u; 

Afi_p = PSIfi./(p(1,:))';%On the axis there are divisions by zero, so the 

Afi_p(isnan(Afi_p)) = 0;%nans are replaced with zero 

Afi_t = pdeintrp(p,t,Afi_p); 

%Initialization of the current and voltage vectors to zero 

I = zeros(1,size(turns_index,2)); 

V = I; 

%Iteration through the turns 

for k=1:size(turns_index,2);%k is the subdomain number 

    i_t = pdesdt(t,turns_index(1,k));%index of triangles in subdomain k 

    for h=1:size(i_t,2) 

        J = -1i*omega*Materials(3,t(4,i_t(1,h)))*Afi_t(1,i_t(1,h)); 

        area = A(1,i_t(1,h)); 

        I(1,k) = I(1,k) + area*J; 

    end 

    V(1,k) = 2*pi*Turns(4,k)*I(1,k)/(Materials(3,turns_index(1,k))*Turns(3,k)); 

end 

end 

Function “u_Integral1” 

function [ Area_integral, Volume_integral ] = u_Integral1( varargin ) 

%This function integrates the solution on the area and on the volume. If no 

%indices of triangles are given, the function integrates in all the domain 

%[ Area_integral, Volume_integral ] = u_Integral( p, t, u ) 

%[ Area_integral, Volume_integral ] = u_Integral( p, t, u, i_t ) 

 

if nargin==3 

    p = varargin{1}; 

    t = varargin{2}; 

    u = varargin{3}; 

    i_t = (1:1:size(t,2)); 

elseif nargin==4 

    i_t = varargin{4}; 

    p = varargin{1}; 



Electromagnetic Separation Of Impurities In Molten Silicon – Giorgio Zorzi – 2014 

68 Appendices 

    t = varargin{2}(:,i_t); 

    u = varargin{3}(:,i_t); 

else 

    error('Wrong number of variables in input.\n'); 

end 

xpts=(p(1,t(1,:))+p(1,t(2,:))+p(1,t(3,:)))/3; 

[A,~,~,~] = pdetrg(p,t); 

temp = A.*u; 

Area_integral = sum(temp); 

temp = temp.*2.*pi.*xpts; 

Volume_integral = sum(temp); 

 

end 

Function “pdetool2tecplot” 

function [] = pdetool2tecplot (name_out, p, e, t, varargin) 

%% PDETOOL2TECPLOT (name_out, p, e, t, V1, V2, ..., Options)  

%Given an output of the pdetool ( p, e, t, and variable), this function 

%creates a file (txt or binary) readable by tecplot. 

%The min function call is pdetool2tecplot (name_out, p, e, t), where: 

%name_out is a string rappresenting the name of the output file 

%p, e and t have the same meaning as in the pdetool 

%Optionally it is possible to add Variables and Options 

%pdetool(name_out, p, e, t, V, Options) where: 

% V are variables. The variables must have the same the same number of 

% elements as p or t. It is possible to add as many variables as you 

% want. If a variable is a complex number, the variable will be splitted 

% in real and imaginary part. 

% Options can be one of follow elements 

%     'Precision': Must be used if you want to specify the number of 

%     digits saved after the point. It must be a positive integer number. 

%     For default 6 digits are saved after the point. The max in a double 

%     precision number are 15, so a number greater than that will be set 

%     to 15. For example you can format the numbers like this 8.95672e6 

%     (5 digits after the point) as follow: 

%         pdetool2tecplot2('prova', p, e, t, 'Precision', 5) 

%     'Subdomain': It is possible to not copy all the subdomains in the 

%     file. The argument of this option must be a number or a vector of 

%     numbers. If not specified, all the domains will be included. 

%     For example if you want to save only the subdomain 2 and 7 you can 

%     do that as follow: 

%         pdetool2tecplot2 ('prova', p, e, t, 'Subdomain', [2, 7]) 

%     'Division': It is possible to divide the subdomains, so TecPlot can 

%     manage them separately. The argument must be 'Yes'(Default) or 'No'. 

%         pdetool2tecplot2 ('prova', p, e, t,... 

%                     'Division', 'No') 

%     'VarName': It is possible to specify the names of the variables. 

%     The input must be a cell array of strings and the number of strings 

%     must be equal to the number of variables (or the number of 

%     variables +2 if you want to include the names of x and y axes). 
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%     In the following example the names of the axes are included. 

%         pdetool2tecplot2 ('prova', p, e, t, Var1, Var2,... 

%                  'VarName', {'r' 'z' 'Pressure' 'Temperature'}) 

%     'ZonesName': It is possible to specify the names of the zones. The 

%     input must be a cell array of strings and the number of strings 

%     must be equal to the number of zones. If you choose to not divide 

%     the subdomains there will be only a zone, otherwise there will be a 

%     zone for each subdomain. 

%     You can specify the names as follow: 

%         pdetool2tecplot2 ('prova', p, e, t, Var1, Var2,... 

%                     'Subdomain', [1,2,3],... 

%                     'ZonesName',{'Air' 'Silicon' 'Graphite'}); 

%     'ZAD' means "Zone Auxiliary Data". It is possible to specify 

%     auxiliary data in order to use it in tecplot. You need to specify 

%     the name of the variable and the value of the variable for each 

%     zone. 

%     The call must be 

%         'ZAD', Names, Values, 

%     where: 

%     "Names" is a cell array and have dimensions nv by 1 where nv is the 

%     number of Variables. 

%     "Values" is a cell array and have dimensions nv by nz where nz is 

%     the number of zones. 

%     For example I can save the total flux from external boundary and 

%     the total flux from internal boundary for the 2 zone as follow 

%      pdetool2tecplot2 ('prova', p, e, t, Temp,... 

%         'ZAD',{'ext_flux';'int_flux'},{flu_ext1, flu_ext2; flu_int1, flu_int2 },... 

%           'ZonesName',{'Cond1' 'Cond2'}); 

%     'DSAD' means "DataSet Auxiliary Data". It is similar to ZAD, 

%     with the difference that this data is common for all the dataset, 

%     so you don't need data for each Zone. The syntax is symilar to the 

%     previous, but this time nz = 1. 

%     'Title': To specify the title of the plot. The argument must be a 

%     string 

%     You can set the title as follow 

%         pdetool2tecplot2 ('prova', p, e, t,... 

%                     'Title', 'round plate') 

%     'Time': It is possible to specify at whitch the the simulation is 

%     taken, so is simple to manage them with tecplot (for example to 

%     create an animation). The time must be expressed in seconds. 

%     You can specify the time as follow 

%         pdetool2tecplot2 ('prova', p, e, t, Var1,... 

%                     'Time',0.0001) 

%     'TypeOut': It is possible to save the output file as a binary or a 

%     txt file. The advantage af a binary file is to save space on the HD 

%     (usually a half). The argument of this option can be 

%         'ASCII' to save the txt file 

%         'binary' (Default) to save the binary file 

%         'both' to save both the txt and binary file 

%     Writing the binary file is possible only if Tecplot is installed in 

%     the computer. 

%     Example 

%         pdetool2tecplot2 ('prova', p, e, t, Var1,... 

%                     'TypeOut','both') 
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%     'Grid': is possible to interpolate the value of the FE mesh into a 

%     mapped mesh. After "Grid" you have to specify if the grid start 

%     from the x or y values ('xy' or 'yx'). Then you have to specify the 

%     two vectors of coordinates. The vectors are taken from 0 to 1. The 

%     function will expand the points on all the domain. For example you 

%     can specify as follow 

%         pdetool2tecplot ('Example_grid', p, e, t, u,... 

%                     'grid','xy',x,y,... 

%                     'subdomain',2,... 

%                     'title', 'Sphere'); 

%% ERRORS AND CONTROL OF INPUT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%generate error if the name of the file is not a string 

if ~ischar(name_out) 

    error('The name of the file must be a string.') 

end 

%remove blank spaces in the name 

name_out = sscanf(name_out,'%s'); 

%remove the extension (if present) 

if size(name_out,2)>=5 

    if (strcmpi(name_out((end-3):end), '.plt') ) 

        name_out(end-3:end) = []; 

    end 

end 

%create the name for ASCII and binary file 

name_out_ascii = [name_out,'_ASCII.plt']; 

name_out_bin = [name_out,'_bin.plt']; 

 

nt = size(t,2);%number of triangles 

np = size(p,2);%number of points 

sd = unique(t(4,:));%subdomains 

xpts=(p(1,t(1,:))+p(1,t(2,:))+p(1,t(3,:)))/3; 

ypts=(p(2,t(1,:))+p(2,t(2,:))+p(2,t(3,:)))/3; 

nin_varargin = length(varargin);%number of input variables 

%% CONTROL OF THE INPUT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%generate error if the number of input are not enough 

narginchk(4, inf) 

if nin_varargin > 0 

    k = 1; 

    flagvals = {'Precision' 'Subdomain' 'Division' 'VarName' 'Title' 'Grid' '-Space' 

'TypeOut' 'Time' 'ZonesName' 'ZAD' 'DSAD'}; 

    nflagvals = size(flagvals,2); 

    flag_value = cell(1,nflagvals); 

    i = 1; 

 

    %DEFAUL VALUES AND FLAGS 

    %Precision 

    Precision_value = 6;%default value for precision 

    %SubDomain 

    SubDomains = sd;%default 

    %Division 

    Division_flag = {'yes' 'no'}; 

    Division = 1;%default value 

    %Title 

    Title = 'DATA';%Default 

    %Grid 
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    grid_flag = {'xy' 'yx'};%Possible flag values for grid 

    %-Space 

    min_space = false;%default value for flag "-Space" 

    %TypeOut 

    TypeOut_flag = {'ASCII' 'binary' 'both'}; %Possible flags values for TypeOut 

    TypeOut = 2;%default value 

    %Time 

    Time = nan; 

    %ZonesName 

    ZonesName = {}; 

 

    Variables = {}; 

    Var_Name = {'x' 'y'}; 

    nod_cell = {'n' 'n'}; 

    while i<=nin_varargin 

        if ischar( varargin{i} ) 

            %deblank flag 

            flag = sscanf(varargin{i},'%s'); 

            foundflag = strcmpi(flag,flagvals); 

            % If the flag not existent -> error 

            if ~any(foundflag) 

                error(['Unknown Flag "',flag,'".']); 

            end 

            %if a flag is found more than 1 time -> error 

            if sum(strcmpi(flag_value,varargin{i}))~=0 

                error(['Flag "',flag,'" repeated.']); 

            end 

            %the next value must be assigned to the flag 

            i = i+1; 

            if i > nin_varargin 

                error(['Too few arguments for "',varargin{i-1},'".']); 

            end 

            %Check if the argument is ok 

            switch find(foundflag==1) 

                case 1%Precision 

                    try 

                        if ~isreal(varargin{i})||~(varargin{i}>0) 

                            error('Invalid precision.'); 

                        end 

                    catch 

                        error('Invalid precision.'); 

                    end 

                    flag_value{foundflag} = varargin{i}; 

                    if varargin{i} > 15 

                        Precision_value = 15; 

                    else 

                        Precision_value = varargin{i}; 

                    end 

                case 2%Subdomain 

                    try 

                        if size(intersect(varargin{i},sd),2)~=size(varargin{i},2) 

                            error('Invalid subdomain.'); 

                        end 

                    catch 

                        error('Invalid subdomain.'); 
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                    end 

                    SubDomains = sort(varargin{i}); 

                case 3%Division 

                    Choice_Division = find(strcmpi(varargin{i},Division_flag)==1); 

                    if isempty(Choice_Division) 

                        error('Invalid division value.'); 

                    else 

                        flag_value{foundflag} = varargin{i}; 

                        Division = Choice_Division; 

                    end 

                case 4%Var_Name 

                    if ~iscell(varargin{i}) 

                        error('Var_Name value is not a cell.'); 

                    end 

                    for k=1:size(varargin{i},2) 

                        if ~ischar(varargin{i}{k}) 

                            error('One of the Var_Name values is not a string.'); 

                        end 

                    end 

                    flag_value{foundflag} = varargin{i}; 

                case 5%Title 

                    if ~ischar(varargin{i}) 

                        error('Title argument is not a string.'); 

                    end 

                    Title = varargin{i}; 

                case 6%Grid 

                    flag_value{foundflag} = varargin{i-1}; 

                    %Grid must have 4 arguments in total 

                    if i+2 > nin_varargin 

                        error('Too few arguments for "Grid".'); 

                    end 

                    if ischar(varargin{i}) % 

                        grid_flag_value = varargin{i}; 

                        grid_mod = find(strcmpi(grid_flag_value,grid_flag)==1); 

                        %control if the flag exist 

                        if isempty(grid_mod) 

                            error(['The value (',grid_flag_value,') specified for 

"Grid" is not a valid value']); 

                        end 

                        i = i+1; 

                        Grid{1} = varargin{i}; 

                        i = i+1; 

                        Grid{2} = varargin{i}; 

                        %control if are numbers 

                        if ~( isnumeric(Grid{1}) && isnumeric(Grid{2}) ) 

                            error('"Grid" arguments are not numbers.'); 

                        end 

                        %control if are two points 

                        if all(size(Grid{1})==1) && all(size(Grid{2})==1) 

                            error('The arguments for "Grid" are two points.'); 

                        end 

                        %control if are row vectors 

                        if ~( size(Grid{1},1) && size(Grid{2},1) ) 

                            error(['For ',grid_flag_value,' you must specify two row 

vectors']); 
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                        end 

                        %are sorted? 

                        if ~issorted(Grid{1})||~issorted(Grid{2}) 

                            Grid{1} = sort(Grid{1}); 

                            Grid{2} = sort(Grid{2}); 

                            warning('The vectors were not sorted.'); 

                        end 

                        if any( Grid{1}>1 ) || any( Grid{1}<0 ) || any( Grid{2}>1 ) 

|| any( Grid{2}<0 ) 

                            error(['For ',grid_flag_value,' the values cannot be >1 

or <0.']); 

                        end 

                    else 

                        error('For "Grid" you need to specify also "xy" or "yx".'); 

                    end 

                case 7%Space 

                    min_space = true; 

                    i = i - 1; 

                case 8%binary 

                    choice_TypeOut = find(strcmpi(varargin{i},TypeOut_flag)==1); 

                    if isempty(choice_TypeOut) 

                        error('Invalid "choice_TypeOut" value.'); 

                    else 

                        TypeOut = choice_TypeOut; 

                    end 

                case 9%Time 

                    if isequal(size(varargin{i}),[1,1]) && isnumeric(varargin{i}) 

                        Time = varargin{i}; 

                    else 

                        error('Invalid "Time" value.'); 

                    end 

                case 10%ZonesName 

                    if ~iscell(varargin{i}) 

                        error('"ZonesName" value is not a cell.'); 

                    end 

                    for k=1:size(varargin{i},2) 

                        if ~ischar(varargin{i}{k}) 

                            error('One of the "ZonesName" values is not a string.'); 

                        end 

                    end 

                    ZonesName = varargin{i}; 

                case 11%ZAD ex: 'ZAD', 'Name', [Value/Values] 

                    ZAD.name = varargin{i}; 

                    i = i + 1; 

                    ZAD.values = varargin{i}; 

                case 12%DSAD ex: 'DSAD', 'Name', [Value/Values] 

                    DSAD.name = varargin{i}; 

                    i = i + 1; 

                    DSAD.values = varargin{i}; 

            end 

        else 

            %generate error if the values are matrix 

            if all(size( varargin{i} ) > 1 ) 

                error(['The variable "',inputname(i+4),'" is a matrix.']) 

            end 
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            %Creation of a vector with the name of variables. 

            %If the name can't be readed, give the number of input 

            if strcmp(inputname(i+4),'') 

                sd_name{k} = num2str(i+4); %#ok<AGROW> 

            else 

                sd_name{k} = inputname(i+4); %#ok<AGROW> 

            end 

            %generate error if the values varargin have not the same dimensions of p 

or t 

            if ~any(size( varargin{i} ) == np ) && ~any(size( varargin{i} ) == nt ) 

                error(['The length of the input variable "',sd_name{k},'" is 

different from the length of p or t.']) 

            end 

            if isreal(varargin{i}) 

                %creation of a vector that tell me if the variable in on nodes or 

cell centered 

                if any( size( varargin{i} ) == nt ) 

                    nod_cell{k+2} = 'c'; 

                else 

                    nod_cell{k+2} = 'n'; 

                end 

 

                %All the variables are row vectors 

                if size( varargin{i}, 1 ) == 1 

                    Variables{k} = varargin{i}; %#ok<AGROW> 

                else 

                    Variables{k} = varargin{i}.'; %#ok<AGROW> 

                end 

 

                %Build the Var_Name variable. If the names are specified, the 

                %value will be overwritten 

                if strcmp(inputname(i+4),'') 

                    Var_Name{k+2} = num2str(i+4); 

                else 

                    Var_Name{k+2} = inputname(i+4); 

                end 

                k = k + 1; 

            else %if not a real number, split in real and imaginary 

                %creation of a vector that tell me if the variable in on nodes or 

cell centered 

                if any( size( varargin{i} ) == nt ) 

                    nod_cell{k+2} = 'c'; 

                    nod_cell{k+3} = 'c'; 

                else 

                    nod_cell{k+2} = 'n'; 

                    nod_cell{k+3} = 'n'; 

                end 

                %All the variables are row vectors 

                if size( varargin{i}, 1 ) == 1 

                    Variables{k} = real(varargin{i}); %#ok<AGROW> 

                    Variables{k+1} = imag(varargin{i}); %#ok<AGROW> 

                else 

                    Variables{k} = real(varargin{i}.'); %#ok<AGROW> 

                    Variables{k+1} = imag(varargin{i}.'); %#ok<AGROW> 

                end 
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                %Build the Var_Name variable. If the names are specified, the 

                %value will be overwritten 

                if strcmp(inputname(i+4),'') 

                    Var_Name{k+2} = [num2str(i+4),' - real']; 

                    Var_Name{k+3} = [num2str(i+4),' - imag']; 

                else 

                    Var_Name{k+2} = [inputname(i+4),' - real']; 

                    Var_Name{k+3} = [inputname(i+4),' - imag']; 

                end 

                k = k + 2; 

            end 

        end 

        i = i+1; 

    end 

 

% Control of fighting flags 

    %no 'Division' and 'Grid' at the same time 

    if ~isempty(flag_value{3})&&~isempty(flag_value{6}) 

        error('"Division" and "Grid" cannot be set at the same time.'); 

    end 

    %no '-Space' and 'Grid' at the same time 

    if ~isempty(flag_value{7})&&~isempty(flag_value{6}) 

        error('"-Space" and "Grid" cannot be set at the same time.'); 

    end 

    nin_Variable = length(Variables); 

    % set value 'Precision' 

    Precision = ['%+.',num2str(Precision_value),'e']; 

    % set Var_Name 

    if ~isempty(flag_value{4}) 

        if size(flag_value{4},2)==nin_Variable+2 

            k=1; i=1; 

        elseif size(flag_value{4},2)==nin_Variable 

            k=3; i=1; 

        else 

            error('Wrong number of Var_Name Values. Complex values?'); 

        end 

        while k <= nin_Variable + 2 

            Var_Name{k} = flag_value{4}{i}; 

            k = k+1; i=i+1; 

        end 

    end 

    % Set Grid 

    if ~isempty(flag_value{6}) 

        status = 1; 

        %div_flag 'yes' 'no' 

        if Division==1 %if division == yes 

            warning('With "Grid" is not possible to divide the domain. Division set 

to "no".'); 

            Division = 2;%division set to no 

        end 

        if grid_mod == 1 

            [POINTS_X, POINTS_Y] = points_matrix_xy ( ); 

            if status==0 

                [POINTS_X, POINTS_Y] = points_matrix_yx ( ); 

                if status==1 
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                    warning('The "Grid" method has been changed from "xy" to "yx".'); 

                else 

                    error('The domain has holes or irregularities.'); 

                end 

            end 

        else 

            [POINTS_X, POINTS_Y] = points_matrix_yx ( ); 

        end 

    end 

    %Number of Zones 

    if Division == 2%div_flag 'yes' 'no' 

        n_Zones = 1; 

    else 

        n_Zones = size(SubDomains,2); 

    end 

    % set ZonesName 

    if size(ZonesName,2)>0 

        if size(ZonesName,2)~=n_Zones 

            error('Wrong number of "ZonesName" Values.'); 

        end 

    else 

        ZonesName = cell(1,n_Zones); 

        if n_Zones==1 

            ZonesName{1} = ''; 

            for k=1:size(SubDomains,2) 

                ZonesName{1} = strcat(ZonesName{1},num2str(SubDomains(k)),','); 

            end 

            %remove the last , 

            ZonesName{1}(end) = []; 

        else 

            for k=1:n_Zones 

                ZonesName{k} = num2str(SubDomains(k)); 

            end 

        end 

    end 

    %Control of Zone AuxData 

    if exist('ZAD','var') 

        if size(ZAD.name,1)~=size(ZAD.values,1) 

            error('Number of Names for "ZAD" different from number of Values'); 

        end 

        if size(ZAD.values,2)~=n_Zones 

            error('Number of Values for "ZAD" different from number of Zones'); 

        end 

    end 

    %Control of Dataset AuxData 

    if exist('DSAD','var') 

        if size(DSAD.name,1)~=size(DSAD.values,1) 

            error('Number of Names for "DSAD" different from number of Values'); 

        end 

        if size(DSAD.values,2)~=1 

            error('Number of Values for "DSAD" different from number of Zones'); 

        end 

    end 

end 

%% OPEN FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%free some space 

clear varargin 

%Open the file 

[fileID, message]= fopen(name_out_ascii,'w'); 

%generate error if the file is not opened 

if fileID < 0 

    error(['Fail to open the file to write. ',message]); 

end 

%% WRITE FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%write the format. New line after 10 numbers 

number = [Precision,'\t']; 

format = repmat(number,1,10); 

format = [format,'\n']; 

fprintf (fileID,'TITLE= "%s"\n', Title); 

%Initialize some char variables 

str_time = ''; 

str_name_variables = ''; 

str_nodal = ''; 

str_cell = ''; 

write_node_order = false; 

write_strings() 

fprintf (fileID, '%s\n',str_name_variables); 

 

if isempty(flag_value{6}) 

%% WRITE FILE – FE TRIANGLE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    str_zone = 'ZONETYPE = FETRIANGLE, DATAPACKING = BLOCK'; 

    %div_flag 'yes' 'no' 

    if Division==2 

        if ~isequal(SubDomains,sd) 

            write_zone_red (1, SubDomains ); 

        else 

            write_zone ( 1 ); 

        end 

    else 

        for k=1:size(SubDomains,2) 

            if k==1 

                fprintf('Writing subdomain: '); 

            else 

                for h=1:l_z+1 

                    fprintf('\b'); 

                end 

            end 

            fprintf('%s\n',ZonesName{k}); 

            write_zone_red (k, SubDomains(k) ); 

            l_z = length(ZonesName{k}); 

        end 

    end 

else 

%% WRITE FILE – ORDERED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    str_zone = 'ZONETYPE = ORDERED, DATAPACKING = BLOCK'; 

    write_zone_ordered ( 1 ) 

end 

%before closing the file, the dataset aux data must be written 

write_DSAD; 

fclose(fileID); 
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%% OUTPUT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%If the binary is needed and tecplot is installed, create the file 

if TypeOut==2 || TypeOut==3 

    command = ['preplot ',name_out_ascii,' ',name_out_bin]; 

    status_bin = dos(command); 

end 

switch TypeOut 

    case 1%ASCII 

        fprintf('ASCII file "%s" created.\n',name_out_ascii); 

    case 2%binary 

        if status_bin~=-1 

            delete(name_out_ascii); 

            fprintf('Binary file "%s" created.\n',name_out_bin); 

        else 

            warning('Binary file not created. (Maybe you do not have TecPlot 

installed). Created the ASCII file"%s" instead',name_out_ascii); 

%             warning('progr:Nneg','Input N=%d must be positive\n',N); 

        end 

    case 3%both 

        if status_bin~=-1 

            fprintf('ASCII file "%s" created.\n',name_out_ascii); 

            fprintf('Binary file "%s" created.\n',name_out_bin); 

        else 

            fprintf('ASCII file "%s" created.\n',name_out_ascii); 

            warning('Binary file not created. (Maybe you do not have TecPlot 

installed)'); 

        end 

end 

%% NESTED FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function write_ZAD (Zone_Number) 

        if exist('ZAD','var') 

            for kk=1:size(ZAD.name,1) 

                name = ZAD.name{kk,1}; 

                Value = ZAD.values{kk,Zone_Number}; 

                if isnumeric(name) 

                    name = num2str(name); 

                end 

                if isnumeric(Value) 

                    Value = num2str(Value); 

                end 

                str_ZAD = ['AUXDATA ',name,' = "',Value,'"']; 

                fprintf (fileID,'%s\n',str_ZAD); 

            end 

        end 

    end 

    function write_DSAD 

        if exist('DSAD','var') 

            for kk=1:size(DSAD.name,1) 

                name = DSAD.name{kk,1}; 

                Value = DSAD.values{kk,1}; 

                if isnumeric(name) 

                    name = num2str(name); 

                end 

                if isnumeric(Value) 

                    Value = num2str(Value); 
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                end 

                str_DSAD = ['DATASETAUXDATA ',name,' = "',Value,'"']; 

                fprintf (fileID,'%s\n',str_DSAD); 

            end 

        end 

    end 

%% WRITE STRINGS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function write_strings() 

        if ~isnan(Time) 

            str_time = sprintf('SOLUTIONTIME = %s',num2str(Time)); 

        end 

        %Condition when to write node order 

        if min_space == false 

            if ~isequal(SubDomains,sd) 

                write_node_order = true; 

            elseif Division==1%div_flag 'yes' 'no' 

                write_node_order = true; 

            end 

        end 

        %Write str_name_variables 

        str_name_variables = 'VARIABLES ='; 

        for kk=1:size(Var_Name,2) 

            str_name_variables = strcat(str_name_variables,sprintf (' 

"%s"',Var_Name{kk})); 

        end 

        if write_node_order==true && isempty(flag_value{6}) 

            str_name_variables = strcat(str_name_variables,sprintf (' "%s"','Node-

Order')); 

        end 

        % write str_nodal 

        nodal = find(strcmpi(nod_cell,'n')==1); 

        str_nodal = 'VARLOCATION = (['; 

        for kk=1:size(nodal,2) 

            str_nodal = strcat(str_nodal,num2str(nodal(kk))); 

            if kk==2 && write_node_order==true && isempty(flag_value{6}) 

                str_nodal = strcat(str_nodal,',3'); 

            end 

            if kk~=size(nodal,2) 

                str_nodal = strcat(str_nodal,', '); 

            else 

                if write_node_order==true && isempty(flag_value{6}) 

                    str_nodal = strcat(str_nodal,',',num2str(nin_Variable+3),']= 

NODAL)'); 

                else 

                    str_nodal = strcat(str_nodal,']= NODAL)'); 

                end 

            end 

        end 

        % write str_cell 

        cellcentered = find(strcmpi(nod_cell,'c')==1); 

        if any(cellcentered>0) 

            str_cell = 'VARLOCATION = (['; 

            for kk=1:size(cellcentered,2) 

                str_cell = strcat(str_cell,num2str(cellcentered(kk))); 

                if kk~=size(cellcentered,2) 
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                    str_cell = strcat(str_cell,','); 

                end 

            end 

            str_cell = strcat(str_cell,']= CELLCENTERED)'); 

        end 

    end 

%% WRITE ZONE REDUCED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function write_zone_red (Zone, SubDomains ) 

        zone_name = ZonesName{Zone}; 

        [int, cont] = pdesdp(p,e,t,SubDomains); 

        i_p = [int cont]; 

        i_t = pdesdt(t,SubDomains); 

        p_red = p(:,i_p); 

        np_red = size(p_red,2); 

        nt_red = size( t(:,i_t),2 ); 

        fprintf (fileID, '\n\n#ZONE %s\n',zone_name); 

        fprintf (fileID,'ZONE T ="%s", N = %d, E = %d', zone_name, np_red, nt_red); 

        fprintf (fileID,'%s\n',str_time); 

        write_ZAD(Zone); 

        if write_node_order==true 

            fprintf (fileID, sprintf(', NV = %s\n',num2str(nin_Variable+3))); 

        else 

            fprintf (fileID,'\n'); 

        end 

        fprintf (fileID,'%s\n',str_nodal); 

        if ~strcmp(str_cell,'') 

            fprintf (fileID,'%s\n',str_cell); 

        end 

        fprintf (fileID,'%s\n',str_zone); 

        %write x points 

        fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{1}); 

        fprintf (fileID, format, p(1,i_p)); 

        fprintf (fileID, '\n'); 

        %write y points 

        fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{2}); 

        fprintf (fileID, format, p(2,i_p)); 

        fprintf (fileID, '\n'); 

        %write other variables 

        for j=1:length(Variables) 

            fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{j+2}); 

            if size(Variables{j},2)==np 

                fprintf (fileID, format, Variables{j}(1,i_p)); 

            elseif size(Variables{j},2)==nt 

                fprintf (fileID, format, Variables{j}(1,i_t)); 

            else 

                error('Error in write.'); 

            end 

            fprintf (fileID, '\n'); 

        end 

        %write "Node-Order" 

        if write_node_order==true 

            fprintf (fileID, '\n\n#ZONE %s - VARIABLE "Node-Order"\n',zone_name); 

            format_NO = [repmat('%d\t',1,10),'\n']; 

            fprintf (fileID, format_NO, i_p); 

            fprintf (fileID, '\n'); 
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        else 

            t_red = new_t (t(1:3,i_t), i_p); 

        end 

        %Write the connectivity list 

        fprintf (fileID, '\n\n#ZONE %s - CONNECTIVITY LIST\n',zone_name); 

        if write_node_order==true 

            fprintf (fileID, '%-d\t%-d\t%-d\n', t(1:3,i_t) ); 

        else 

            fprintf (fileID, '%-d\t%-d\t%-d\n', t_red ); 

        end 

        fprintf (fileID, '\n\n\n\n'); 

    end 

%% WRITE ZONE ENTIRE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function write_zone (Zone ) 

        zone_name = ZonesName{Zone}; 

        fprintf (fileID, '\n\n#ZONE %s\n',zone_name); 

        fprintf (fileID,'ZONE T ="%s", N = %d, E = %d \n', zone_name, np, nt); 

        fprintf (fileID,'%s\n',str_time); 

        write_ZAD(Zone); 

        fprintf (fileID,'%s\n',str_nodal); 

        if ~strcmp(str_cell,'') 

            fprintf (fileID,'%s\n',str_cell); 

        end 

        fprintf (fileID,'%s\n',str_zone); 

        %write x points 

        fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{1}); 

        fprintf (fileID, format, p(1,:)); 

        fprintf (fileID, '\n'); 

        %write y points 

        fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{2}); 

        fprintf (fileID, format, p(2,:)); 

        fprintf (fileID, '\n'); 

        %write other variables 

        for j=1:length(Variables) 

            fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{j+2}); 

            fprintf (fileID, format, Variables{j}); 

            fprintf (fileID, '\n'); 

        end 

        %Write the connectivity list 

        fprintf (fileID, '\n\n#ZONE %s - CONNECTIVITY LIST\n',zone_name); 

        fprintf (fileID, '%-5d\t%-5d\t%-5d\n', t(1:3,:) ); 

        fprintf (fileID, '\n\n\n\n'); 

 

    end 

%% WRITE ZONE ORDERED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function write_zone_ordered (Zone ) 

        zone_name = ZonesName{Zone}; 

        I = size( POINTS_X,2 ); 

        J = size( POINTS_X,1 ); 

        K = 1; 

        fprintf (fileID, '\n\n#ZONE %s\n',zone_name); 

        fprintf (fileID,'ZONE T ="%s"\n', zone_name); 

        fprintf (fileID,'%s\n',str_time); 

        write_ZAD(Zone); 

        fprintf (fileID,'I = %i, J = %i, K = %i \n', I, J, K); 
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        fprintf (fileID,'%s\n',str_zone); 

        format_ord = [repmat(number, 1, J), '\n']; 

        %write x points 

        fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{1}); 

        fprintf (fileID, format_ord, POINTS_X.'); 

        %write y points 

        fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{2}); 

        fprintf (fileID, format_ord, POINTS_Y.'); 

        for j=1:length(Variables) 

            fprintf (fileID, '\n\n#ZONE %s - VARIABLE %s\n',zone_name,Var_Name{j+2}); 

            if size(Variables{j},2)==np 

                uI = scatteredInterpolant(p(1,:).',p(2,:).',Variables{j}.','linear'); 

            else 

                uI = scatteredInterpolant(xpts(:),ypts(:),Variables{j}(:),'linear'); 

            end 

            V_ord = uI(POINTS_X, POINTS_Y); 

            fprintf (fileID, format_ord, V_ord.'); 

        end 

    end 

%% CONSTRUCT MATRIX OF POINTS FOR THE GRID %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [POINTS_X, POINTS_Y] = points_matrix_yx ( ) 

    status = 1; 

    [int, cont] = pdesdp(p,e,t,SubDomains); 

    i_p = [int cont]; 

    i_t = pdesdt(t,SubDomains); 

    p_red = p(:,i_p); 

    x_min = min(p_red(1,:)); x_max = max(p_red(1,:)); Dx = x_max - x_min; 

    y_min = min(p_red(2,:)); y_max = max(p_red(2,:)); Dy = y_max - y_min; 

    x_uni = Grid{1}; 

    y_uni = Grid{2}; 

    nx = size(x_uni,2); 

    ny = size(y_uni,2); 

    %creation of y vector 

    y = y_min + y_uni*Dy; 

    %take all the edges. In this way I can exclude easily all internal 

    %edges 

    logic = ismember(e(6:7,:),SubDomains); 

    i_e = find( xor(logic(1,:),logic(2,:)) ); 

    i_p_e = unique([e(1,i_e),e(2,i_e)]); 

    ne = size(i_e,2); 

    for kk=1:ny 

        %find the two edges that contain that y value 

        e1_found = false; 

        e2_found = false; 

        for j=1:ne 

            p1 = e(1,i_e(1,j)); 

            p2 = e(2,i_e(1,j)); 

            if ( (p(2,p1) > y(1,kk))&&(p(2,p2) < y(1,kk)) )||( (p(2,p1) < 

y(1,kk))&&(p(2,p2) > y(1,kk)) ) 

                if e1_found == false 

                    e1 = j; 

                    e1_found = true; 

                elseif e2_found == false 

                    e2 = j; 

                    e2_found = true; 
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                else 

                    status = 0; 

                    return 

                end 

            end 

        end 

        if e1_found == false 

            %find distance from 2 points in y 

            if kk==1 

                dist = 2*abs(y(1,1)-y(1,2)); 

            elseif kk==ny 

                dist = 2*abs(y(1,ny-1)-y(1,ny)); 

            else 

                dist = abs(y(1,kk-1)-y(1,kk+1)); 

            end 

            %introduction error 

            er = dist/50; 

            %find all edges in that error 

            ptemp = p(:,i_p_e); 

            ind = find(abs(ptemp(2,:)-y(1,kk))<er); 

            if isempty(ind) 

                status = 0; 

                return 

            end 

            %find min e max in x of these points 

            [~,Imin] = min(ptemp(1,ind)); 

            [~,Imax] = max(ptemp(1,ind)); 

            pmin = i_p_e(1,ind(1,Imin)); 

            pmax = i_p_e(1,ind(1,Imax)); 

            x1 = p(1,pmin); 

            x2 = p(1,pmax); 

        else 

            %trovo x1 

            p1 = e(1,i_e(1,e1)); 

            p2 = e(2,i_e(1,e1)); 

            x1 = p(1,p1) + (p(1,p2)-p(1,p1))*((p(2,p1)-y(1,kk)))/(p(2,p1)-p(2,p2)); 

            %trovo x2 

            p1 = e(1,i_e(1,e2)); 

            p2 = e(2,i_e(1,e2)); 

            x2 = p(1,p1) + (p(1,p2)-p(1,p1))*((p(2,p1)-y(1,kk)))/(p(2,p1)-p(2,p2)); 

        end 

        Dx = abs(x2 - x1); 

        x = min([x1, x2]) + x_uni*Dx; 

        POINTS_X(kk,:) = x; 

        POINTS_Y(kk,:) = ones(1,size(x,2))*y(1,kk); 

    end 

end 

function [POINTS_X, POINTS_Y] = points_matrix_xy ( ) 

    status = 1; 

    [int, cont] = pdesdp(p,e,t,SubDomains); 

    i_p = [int cont]; 

    i_t = pdesdt(t,SubDomains); 

    p_red = p(:,i_p); 

    x_min = min(p_red(1,:)); x_max = max(p_red(1,:)); Dx = x_max - x_min; 

    y_min = min(p_red(2,:)); y_max = max(p_red(2,:)); 
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    x_uni = Grid{1}; 

    y_uni = Grid{2}; 

    nx = size(x_uni,2); 

    ny = size(y_uni,2); 

    %creation of x vector 

    x = x_min + x_uni*Dx; 

    %take all the edges. In this way I can exclude easily all internal 

    %edges 

    logic = ismember(e(6:7,:),SubDomains); 

    i_e = find( xor(logic(1,:),logic(2,:)) ); 

    i_p_e = unique([e(1,i_e),e(2,i_e)]); 

    ne = size(i_e,2); 

    for kk=1:nx 

        %find the two edges that contain that y value 

        e1_found = false; 

        e2_found = false; 

        for j=1:ne 

            p1 = e(1,i_e(1,j)); 

            p2 = e(2,i_e(1,j)); 

            if ( (p(1,p1) > x(1,kk))&&(p(1,p2) < x(1,kk)) )||( (p(1,p1) < 

x(1,kk))&&(p(1,p2) > x(1,kk)) ) 

                if e1_found == false 

                    e1 = j; 

                    e1_found = true; 

                elseif e2_found == false 

                    e2 = j; 

                    e2_found = true; 

                else 

                    status = 0; 

                    return 

                end 

            end 

        end 

        if e1_found == false 

            %find distance from 2 points in y 

            if kk==1 

                dist = 2*abs(x(1,1)-x(1,2)); 

            elseif kk==nx 

                dist = 2*abs(x(1,nx-1)-x(1,nx)); 

            else 

                dist = abs(x(1,kk-1)-x(1,kk+1)); 

            end 

            %introduction error 

            er = dist/20; 

            %find all edges in that error 

            ptemp = p(:,i_p_e); 

            ind = find(abs(ptemp(1,:)-x(1,kk))<er); 

            if isempty(ind) 

                status = 0; 

                return 

            end 

            %find min e max in y of these points 

            [~,Imin] = min(ptemp(2,ind)); 

            [~,Imax] = max(ptemp(2,ind)); 
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            pmin = i_p_e(1,ind(1,Imin)); 

            pmax = i_p_e(1,ind(1,Imax)); 

            y1 = p(2,pmin); 

            y2 = p(2,pmax); 

        end 

        %interpolation 

        if e1_found == true 

            %trovo y1 

            p1 = e(1,i_e(1,e1)); 

            p2 = e(2,i_e(1,e1)); 

            y1 = p(2,p1) + (p(2,p2)-p(2,p1))*((p(1,p1)-x(1,kk)))/(p(1,p1)-p(1,p2)); 

            %trovo y2 

            p1 = e(1,i_e(1,e2)); 

            p2 = e(2,i_e(1,e2)); 

            y2 = p(2,p1) + (p(2,p2)-p(2,p1))*((p(1,p1)-x(1,kk)))/(p(1,p1)-p(1,p2)); 

        end 

        Dy = abs(y2 - y1); 

        y = min([y1, y2]) + y_uni*Dy; 

        POINTS_Y(:,kk) = y.'; 

        POINTS_X(:,kk) = (ones(1,size(y,2))*x(1,kk)).'; 

    end 

    POINTS_Y = flipud(POINTS_Y);%Only to have the points in the right order 

    POINTS_X = flipud(POINTS_X); 

end 

end 

%% OTHER FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function temp_t1 = new_t (temp_t, i_p) 

    nt_k = size(temp_t,2); 

    np_k = size(i_p,2); 

    np1_max = max( max( temp_t(1:3,:) ) ); 

    temp_t1 = zeros(3, nt_k); 

    i_p_ind = zeros(1,np1_max); 

    k = 0; 

    for h=1:3 

        for j=1:nt_k 

            if i_p_ind(1,temp_t(h,j))==0 && k<=np_k 

                i_p_ind(1,temp_t(h,j)) = find(i_p==temp_t(h,j),1,'first'); 

                k = k+1; 

            end 

            temp_t1(h,j) = i_p_ind(1,temp_t(h,j)); 

        end 

    end 

end 


