
University of Padua

Mathematics Department "Tullio Levi-Civita"

Master Degree in Computer Science

Greedy Approach to Compute Alignments of
Process Models and Event Logs

Master Thesis

Supervisor

Prof.Massimiliano de Leoni

Student

Sofia Chiarello

Academic Year 2022-2023

Sofia Chiarello: Greedy Approach to Compute Alignments of Process Models and Event
Logs, Master Thesis, © December 2023.

"Si manana soy yo, mamà, si manana no vuelvo, destruyelo todo"

— Cristina Torres Càceres

To my parents

Summary

In Process Mining, computing alignments is a Conformance Checking technique to
compare a process model with an event log of the same process to pinpoint difference
between how the model would prescribe the process to be executed, and how the event
log states the process has been executed. The complexity of this problem is naturally
exponential with respect to the size of the model, and benefits can be achieved using
divide-and-conquer approaches: the model is decomposed into small fragment for which
we can compute alignments. This thesis compares the time to compute alignments
using the traditional approaches and our decomposition-based approaches to identify
the possible benefits. The results are also compared with different approaches based
on process-model decompositions.

v

Acknowledgments

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Massimiliano de Leoni,
relatore della mia tesi, per l’aiuto e il sostegno durante lo sviluppo di questo progetto.
Inoltre, grazie alle sue lezioni, mi ha permesso di appassionarmi a questa materia.

Desidero ringraziare con affetto i miei genitori, Patrizia e Primo, che mi hanno sup-
portato sempre durante il mio percorso di studi e nella vita, questo traguardo lo devo a
loro. Mio fratello Matteo, il quale è stato una spalla su cui contare durante tutta la
mia crescita.

Ho inoltre desiderio di ringraziare tutti i miei amici, con i quali ho condiviso molte
esperienze. In particolare Giada, la quale è passata da semplice compagna di progetto a
una delle mie migliori amiche.

Alla mia grande famiglia va un grande grazie, soprattutto alle mie due nonne, Luisa e
Pia, le quali hanno contribuito a crescermi e a rendermi la donna che sono oggi.

Ultimo ma non per importanza, va un caloroso ringraziamento al mio compagno Fabio,
il quale è stato al mio fianco in ogni momento, la sua presenza è stata fondamentale
per la mia motivazione e per la riuscita di questo traguardo.

Padova, December 2023 Sofia Chiarello

vii

Contents

1 Introduction 1

2 Process Mining Fundamentals 5
2.1 Process Mining . 5
2.2 Notations and Definitions . 6

2.2.1 Basic Notations . 6
2.2.2 Petri Net . 6
2.2.3 Event Logs . 9

2.3 Tools for Process Mining . 10
2.3.1 ProM . 10
2.3.2 XES . 10

3 Conformance Checking 13
3.1 Preliminaries . 13

3.1.1 Token-Replay Conformance Checking 14
3.1.2 Alignment-Based Conformance Checking 15
3.1.3 Conformance Checking Algorithm 19

3.2 Decomposition-Based Approach . 21
3.2.1 Decomposition in Conformance Checking 22
3.2.2 Decomposition Algorithms for Splitting Petri Nets 27
3.2.3 Decomposition-Based Algorithms for Conformance Checking . 31

4 Greedy Approach to Compute Alignments of Process Models and
Events Logs 37
4.1 Algorithm . 37

4.1.1 Improved Algorithm . 42
4.2 Implementation . 44

4.2.1 Splitting Petri Net and Event Log 44
4.2.2 Computing Subalignments . 45
4.2.3 Checking Conflicts . 49
4.2.4 Merging Subalignments . 51

4.3 Implementation Problems Encountered 51
4.3.1 Empty Subtraces . 51
4.3.2 Memory Issue . 53

5 Experiments 55
5.1 Preliminary Steps . 55
5.2 Results . 57

5.2.1 Noiseless Scenario . 57

ix

x CONTENTS

5.2.2 Noisy Scenario . 58
5.3 Discussion and Future Works . 64

6 Conclusions 67

References 69

List of Figures

1.1 Example of a huge process model. 2

2.1 Positioning of the three main types of Process Mining: Discovery, Con-
formance Checking, Enhancement. 6

2.2 The elevator behavior modeled as Petri net. Source: [2] 7
2.3 An example of an event log. Source: [3] 9
2.4 Meta-model of XES expressed using UML class diagrams. Source: [3] 11

3.1 Replaying of trace σ1 = ⟨a, d, c, e, h⟩ on the net N . The various stages
of replay are represented with the according four counters: p (produced
tokens), c (consumed tokens), m (missing tokens), and r (remaining
tokens). Source: [3] . 16

3.2 Petri Net N2. Source: [3] . 17
3.3 Visualization of the result of "Replay a log on Petri Net for conformance

analysis" plug-in of ProM software. We can see for each line, the
alignment corresponding to a trace. 20

3.4 Synchronous product Petri net. In gray is pictured the original net; in
yellow the transitions corresponding to activities in the trace, and in
green the synchronous transitions. 20

3.5 Configuration of the parameters to build alignments in the plug-in
"Replay a log on Petri Net for conformance analysis". Note that the
standard configuration uses the Iterative A* technique. 21

3.6 Petri net with n parallel activities. 22
3.7 A possible decomposition of the net in Figure 3.6. 22
3.8 System net SN1. Source: [1] . 23
3.9 Valid decomposition D1 of the system net SN1. Source: [1] 23
3.10 Labeled Petri net. Source: [7] . 27
3.11 Maximal decomposition of the system net shown in 3.10. Source: [7] . 28
3.12 A Petri net, its workflow graph and the RPST and SESE decomposition.

(a) Petri net. (b) Workflow Graph and SESE decomposition. (c) RPST.
Source: [7] . 28

3.13 Example of bridging technique. (a) Petri net with a SESE decomposition.
(b) A SESE decomposition. (c) A SESE decomposition with bridging.
Source: [9] . 30

3.14 Overview of the Recomposing Replay Algorithm. Source: [1] 33
3.15 New decomposition D2 after one recomposing interation. Source: [1] . 33

4.1 System Net SN2 . 38

xi

xii LIST OF FIGURES

4.2 Decomposition D2 of the Petri net SN2 depicted in Figure 4.1 39
4.3 Visualization of the result of our approach implemented in ProM. Here

the moves of all alignments are projected into occurrences of activities. 42
4.4 Other visualization of the result of our approach implemented in ProM.

The plug-in provides the alignments computed using our approach. The
green moves are synchronous moves, the purple ones are model moves
instead yellow ones are log moves. 42

4.5 Visualization of ProM to select our algorithm 44
4.6 Visualization of the configuration for splitting a Petri net from the

plug-in "Split Accepting Petri Net". On the right is possible to select
which decomposition strategy use. 45

4.7 Visualization of the starting of the plug-in "Replay a Log on Petri Net
for All Optimal Alignments" in Prom 46

4.8 Visualization of the result of "Replay a Log on Petri Net for All Optimal
Alignments" plug-in. It is computed all the possible alignments of trace
case_9 from fitness 1 to fitness equal to 0.8 46

4.9 Array of subalignments of trace γ0 and Petri net SN2. Each column
corresponds to a subnet. In the first row are present the optimal
subalignments computed. 48

4.10 Array of subalignments of trace γ0 and Petri net SN2 after one iteration,
i.e. computing the next-best subalignment operation. The subalignments
of subnet number four is selected, so its next-best is stored in the second
row. 48

4.11 Petri net SN3 . 48
4.12 Decomposition D3 of System Net SN3 in picture 4.11. 49
4.13 Representation of algorithm to check conflicts. In the first iteration,

it checks the d synchronous move. As it is present also in the next
subalignment, the cursor is updated to this position. In the following
iteration, the d log move is checked. There is a conflict as the next
alignment presents a d synchronous move. 50

4.14 Example of three subnets of the System net SN2 modified in order to
solve the issue of empty alignments. In (1) it is pictured the initial
subnet; in (2) the final subnet and in (3) the generic case. The added
part is highlighted. 52

5.1 Petri Net P0 of dataset. It presents 206 activities and 92 gateways. . . 56
5.2 Visualization of the noise configuration of plug-in "Add, Swap and

Remove Events" implemented in ProM. 57
5.3 Graph representing computation time for each algorithm in noiseless

scenario. The processes are ordered by number of activities. For each of
them the time expressed in seconds are compared with three methods. 59

5.4 Graphs representing percentage of pseudo-alignments computed by
Greedy Approach and Recomposition Replay. The first graph presents
the traces with 6% of noise, the second one presents the traces with
14% of noise. With complex nets and more noise, Recomposition Replay
results touch almost the 100% of pseudo-alignments. 61

5.5 Graph representing computation time for each algorithm in a scenario
with noise equal to 6%. The processes are ordered by number of activities.
For each of them the time expressed in seconds are compared with three
methods. Note that times are shown in a logarithmic scale. 61

5.6 Graph representing fitness values for each algorithm in a scenario with
noise equal to 6%. The processes are ordered by number of activities.
The fitness are computed for decomposition approaches using just the
traces which produce alignment (i.e. exact fitness can be calculated).
Note that all three techniques return the same results for each model. 62

5.7 Graph representing computation time for each algorithm in a scenario
with noise equal to 14%. The processes are ordered by number of
activities. For each of them the time expressed in seconds are compared
with three methods. Note that times are shown in a logarithmic scale. 63

5.8 Graph representing fitness values for each algorithm in a scenario with
noise equal to 14%. The processes are ordered by number of activities.
The fitness are computed for decomposition approaches using just the
traces which produce alignment (i.e. exact fitness can be calculated). . 64

5.9 Naive representation of searching tree to check all possible subalignments
combination. The subalignments are depicted using letters. In the
root are present the combination of just optimal subalignments. Then
subalignment A, B and C are selected sequentially to compute their
next-best alignments. The search goes on by selecting one subalignments
and computing its next-best. 66

List of Tables

5.1 Characteristics of the synthetic nets. 56
5.2 Results about Greedy Approach for Decomposed Replay in noiseless

scenario. 58
5.3 Results about computation time and fitness between three algorithms

in noiseless scenario. 59
5.4 Results about Greedy Approach for Decomposed Replay 60
5.5 Results about computation time and fitness between three algorithms

with noise=6% . 62
5.6 Results about computation time and fitness between three algorithms

with noise=14% . 63

xiii

Chapter 1

Introduction

Nowadays, informatics systems are rapidly spreading and their expanding capabilities
are well characterizes by Moore’s law. Moore1 predicted in 1965 that the number of
components in integrated circuits would double every year. The growth has indeed be
exponential in the last fifty years. These improvements have resulted in an enormous
growth of the digital universe. Organizations of all kinds embrace this revolution and
adopt information systems not only to simplify work procedures but also to collect data.

Data are generated by every operation we perform daily. The data recorded by
organization devices may be linked to the new oil. Data represents a powerful tool to
improve firms’ businesses and processes. The growth of the digital universe is not only
related to static data, but also makes it possible to record and analyze events about
processes. This represents a complete history of past operations performed and can
provide insights into what needs improvement and how we can achieve that. However,
raw data is not useful, as its information is masked by its complexity. We need a way
to exploit this data in a meaningful way, for example, to provide insights, identify
bottlenecks, anticipate problems, record policy violations, recommend countermeasures,
and streamline processes. Process Mining discipline aims to do exactly this.

Process Mining has emerged as a highly active research area in recent years, and its
interest continues to grow. It provides various analysis techniques capable of handling
data and offering visual representations and insights for interpretation and understand-
ing. Process Mining is often regarded as an intersection of multiple studies fields,
including Computer Science, Data Mining, Economics, and more. It is frequently seen
as a link connecting Data Science and Process Science.

One of the significant area within Process Mining is Conformance Checking. Con-
formance Checking is the problem of detecting deviations between how processes are
executed in reality and how processes are allowed to be performed based on norms,
regulations, and protocols. Event logs serve as the starting point of Process Mining
in general, and Conformance Checking in particular: they record the events that
occurred in the various executions of processes, while the set of allowed executions are
summarized in process models. By comparing an event log with the process model of
the same process, differences in behaviors can be detected. Intuitively, Conformance
Checking serves as an essential tool for identifying problems.

1Gordon Moore was an American businessman and co-founded of Intel Corporation

1

2 Chapter 1

Figure 1.1: Example of a huge process model.

Conformance Checking techniques are exponential with the respect to the size of the
model, making it challenging to scale when dealing with very large models. Figure 1.1
provides an example of the considerable size that a process model can reach.

In response to this complexity challenge, various new approaches have been de-
veloped. One category of such approaches involves decomposing the process model
into smaller parts for which Conformance Checking is performed: in this way, one
single exponential problem is decomposed into a collection of smaller problems, with
evident benefits for the complexity. While early works related to decomposition-based
Conformance Checking have shown satisfactory results, there is still room for improve-
ment, especially in cases where number of sub-models is unavoidably large. This thesis
introduces a novel technique that utilizes a decomposition-based approach to perform
Conformance Checking, aiming to address some weaknesses found in state-of-the-art
methods and serve as a valid alternative to them.

Once we implemented our novel algorithm, we conducted a series of experiments to
assess its effectiveness compared to existing methods. The experiments were conducted
in two scenarios: noiseless, where traces perfectly fit the model, and noisy, where there
are discrepancies between the modeled and observed behaviors. We evaluated the
overall fitness value and computational times using a dataset of ten different processes
computed by three different algorithms: our novel approach, the existing monolithic
procedure and the more recent decomposition-based approach called Recomposing
Replay algorithm. The results indicate that our approach could serve as a valid
alternative to the decomposition-based method, particularly in noisy scenario, as
it demonstrated faster computational times. However, it is important to note that
the monolithic approach still outperforms both algorithms in terms of speed and
accuracy. This superiority is attributed to the utilization of a really recent version of
the monolithic algorithm, which has been significantly improved, rendering existing
decomposition-based experiments obsolete. Nevertheless, we have actively explored
ways to enhance our approach for better results. We are confident that in very complex
models, its computational times could be further reduced compared to traditional
algorithms.

3

Document Outline
The present document is organized as follows:

Chapter 2: to encourage a better understanding, this chapter provides Process Mining
fundamentals such as process model and event logs.

Chapter 3: this chapter explains in detail the Conformance Checking problems,
providing examples of the existing techniques. In the second part of the chapter,
we go in-depth with decomposition-based approach applied to Conformance
Checking.

Chapter 4: here we present our method and how we addressed the challenges that
we encountered in order to develop an effective algorithm.

Chapter 5: in this chapter we present the results obtained by evaluating our method’s
performance using a synthetic dataset. The results are also compared with the
existing tools.

Chapter 6: finally, we summarize our observations to evaluate the performance of
our method in different situations, and we will draw our conclusions.

Chapter 2

Process Mining Fundamentals

In this chapter we aim to present the basic notions of Process Mining, including his historical
developments, objectives and tools useful in the next chapters

2.1 Process Mining

Process Mining is a research field positioned between data science and business process
modeling and analysis. Its goal is to extract meaningful insights from data collected
by information systems, such as identifying bottleneck, providing insights, anticipating
problems, recommending countermeasure and streamline processes. The starting point
of Process Mining is the event log. We assume that for all processes is it possible to
record sequentially the activities performed. For example, in the process of booking a
hotel room, each action, like paying with a credit card, can be stored in a dataset to
represent the process executions. These recordings are stored in event logs, acting as
a register of past executions of the process. Each operation is recorded as an event,
representing one execution of an activity, often with additional information such as
the resource (person or device performing that action) or the timestamp. Event logs
serves as the basis for three main types of Process Mining:

∗ Discovery: Discovery techniques automatically generate a model from an event
log without any a-priori information. For example, the α-algorithm produces a
model that precisely illustrates how procedures are executed. If the data includes
information about resources, resource-related models can also be discovered.

∗ Conformance Checking: This approach verifies if the real process executions
conform to the discovered model. It involves comparing the event log with the
process model of the same process to detect deviations and measure their severity.
Chapter 3 will focus on this topic.

∗ Enhancement: Enhancement aims to improve or extend an existing process
model using information from the event log. For instance, by leveraging timestamp
information in the event log, the model can be extended to identify bottlenecks,
frequencies and throughput times.

We can see the workflow of Process Mining analysis in Figure 2.1.

5

6 Chapter 2

Figure 2.1: Positioning of the three main types of Process Mining: Discovery, Conformance
Checking, Enhancement.

2.2 Notations and Definitions
In this chapter, we present the preliminary definitions that will be used later in this
thesis. Some basic mathematic definitions will be recalled. Then, we describe the basic
concepts related to Process Mining as process models and event logs.

2.2.1 Basic Notations
The following definitions are basic Process Mining notations used to be more mathe-
matically precise in the more complex concepts like Petri net and Event Log1.

Definition 2.2.1 (Multisets). Let X be a set, a multiset of X is a mapping M : X → N .
B(X) denotes the set of all multisets over X.
Let M and M ′ be multisets over X. M contains M ′, denoted M ≥M ′, if and only if
∀x∈XM(x) ≥M ′(x).
The union of M and M ′ is denoted M +M ′, and is defined by ∀x∈X(M +M ′)(x) =
M(x) +M ′(x).
The difference between M and M ′ is denoted M −M ′ and is defined by ∀x∈X(M −
M ′)(x) = (M(x)−M ′(x)) max 0.
Note that (M −M ′) +M ′ = M only holds if M ≥M ′. For sets X and X ′ such that
X ′ ⊆ X, we consider every set X ′ to be an element of B(X), where ∀x∈X′X ′(x) = 1
and ∀x∈X\X′X ′(x) = 0.

Definition 2.2.2 (Projection on sequences and multisets). Let X be a set, let X ′ ⊆ X
be a subset of X, let σ ∈ X∗ be a sequence over X, and let M ∈ B(X) be a multiset over
X. With σ ↾X′ we denote the projection of σ on X ′, e.g. ⟨x, x, y, y, y, z⟩ ↾{x,z}= ⟨x, x, z⟩.
with M ↾X′ we denote the projection of M on X ′, e.g. [x2, y3, z] ↾{x,z}= [x2, z].

Definition 2.2.3 (Function domains and ranges). Let f ∈ X ↛ X ′ be a partial
function. With dom(f) ⊆ X we denote the set of elements from X that are mapped
onto some value in X ′ by f . With rng(f) ⊆ X ′ we denote the set of elements in X ′

that are mapped onto by some value in X, i.e., rng(f) = {f(x)|x ∈ dom(f)}.

2.2.2 Petri Net
In Process Mining, processes are represented using process models. There are many
modelling languages to depict process: Business Process Modelling Notation (BPMN),

1The definitions provided has been taken from [1]

2.2. NOTATIONS AND DEFINITIONS 7

Figure 2.2: The elevator behavior modeled as Petri net. Source: [2]

Event-Driven Process Chains (EPCs), Unified Modeling Language (UML), Yet Another
Workflow Language (YAWL) are some examples.

The most often-used process modelling notation is Petri nets. Petri nets are very
simple and well-studied models, so in this thesis we use them to illustrate examples.

Definition 2.2.4 (Petri net). A Petri net is a tuple N = (P, T, F) with P the set of
places, T the set of transitions, P ∩ T = ∅ and F = (PxT) ∪ (TxP) the set of arcs,
which is sometimes referred to as the flow relation.

Graphically, places are visualized by circles, whereas transitions are visualized
by squares. We modelled the behavior of an elevator using the Petri net figured
in 2.2. The elevator moves to five floors and can stop in any of them. We de-
note this model as N1 = (P1, T1, F1), and we represent each floor with a place, so
the set of places is P1 = {floor0, f loor1, f loor2, f loor3, f loor4}. The set of tran-
sitions is T1 = {move01,move10, ...,move34} which models the actions of the el-
evator: for example it can move from floor0 to floor1. The set of arcs is F1 =
{(floor0,move01), .., (move34, f loor4)}. Arcs represent the direction of elevator’s
moves.

8 Chapter 2

The state of a Petri net is called a marking, and corresponds to a multiset of places.
A marking is typically visualized by putting as many so-called tokens (black dots) at a
place as the place occurs in the marking. For example, a possible marking of the net
N1 is [floor2] which is visualized by one token at place floor2.

Definition 2.2.5 (Marking). Let N = (P, T, F) be a Petri net. A marking M is a
multiset of places, i.e. M ∈ B(P).

Let N = (P, T, F) be a Petri net. For a node n ∈ P ∪ T (a place or a transition),
·n = {n′|(n′, n) ∈ F} denotes the set of input nodes and n· = {n′|(n, n′) ∈ F} denotes
the set of output nodes. Transitions can change the distribution of tokens over the
places. For example, transition move23 can take the token from floor2 and put a new
token on place floor3. This causes a change of distribution of tokens that corresponds
to the state transition in which the elevator moves from the second to the third floor.
We call this the firing of transition move23. The firing of transition is subjected by
rules, that will follow more precisely.

A transition t ∈ T is enabled by a marking M if and only if each of its input places
·t contains at least one token in M , that is, if and only if M ≥ ·t. An enabled transition
may fire by removing one token from each of the input places ·t and producing one
token at each of the output places t·. The firing of an enabled transition t in marking
M is denoted as (N,M)[t⟩(N,M ′), where M ′ = (M − ·t) + t· is the resulting new
marking. A marking M ′ is reachable from a marking M if and only if there is a
sequence of transitions σ = ⟨t1, t2, ..., tn⟩ ∈ T ∗such that ∀0≤i<n(N,M i)[ti+1⟩(N,M i+1)
with M0 = M and Mn = M ′.

In order to make more readable activities performed in processes, we use Labeled
Petri net. It follows the definition.

Definition 2.2.6 (Labeled Petri net). A labeled Petri net N = (P, T, F, l) is a Petri
net (P, T, F) with labeling function l ∈ T ↛ UA where UA is some universe of activity
labels. Let σv = ⟨a1, a2, ..., an⟩ ∈ U∗

A be a sequence of activities. (N,M)[σv ◁ (N,M ′)
if and only if there is a sequence σ ∈ T ∗ such that (N,M)[σ⟩(N,M ′) and l(σ) = σv.

The labeling function is used to map each transition to the corresponding activity
in the process. A transition t is called invisible if and only if it is not mapped to any
activity label by the labeling function, that is, if and only if t /∈ dom(l). Otherwise,
transition t is visible and corresponds to an observable activity a = l(t).

In Process Mining we are more interested in process with an initial state and a
well-defined final state. We say that a firing sequence is complete when it starts from
a marking containing an initial place and ends in a marking only containing the final
places. For example, in Figure 2.2 if we assume as initial place floor0 and final place
floor4, a complete firing sequence can be ⟨move01,move12,move23,move34⟩. The
notion of System Net is provided to include the concepts of initial and final state.

Definition 2.2.7 (System net). System net is a triplet SN = (N, I,O) where N =
(P, T, F, l) is a labeled Petri net, I ∈ B(P) is the initial marking and O ∈ B(P) is the
final marking. USN is the universe of system nets.

More notations about System Net are given:

2.2. NOTATIONS AND DEFINITIONS 9

Figure 2.3: An example of an event log. Source: [3]

Definition 2.2.8 (System net notations). Let SN = (N, I,O) ∈ USN be a system net
with N = (P, T, F, l).

∗ Tv(SN) = dom(l) is the set of visible transitions in SN .

∗ Av(SN) = rng(l) is the set of corresponding observable activities in SN .

∗ Tu
v (SN) = {t ∈ Tv(SN)|∀t′∈Tv(SN)l(t) = l(t′) ⇒ t = t′} is the set of unique

visible transitions in SN (such that no other transition has the same visible
label).

∗ Au
v (SN) = {l(t)|t ∈ Tu

v (SN)} is the set of corresponding unique observable
activities in SN .

2.2.3 Event Logs
As already mentioned, the starting point of Process Mining is the event log. In event
log is stored the amount of data representing the execution of a particular process.
An event log is a multiset of traces. Each trace is a complete execution of activities
in the process. In Figure 2.3 we can see an example of an event log about a process
related to the handling of requests for compensation. Here we refer to each trace
as case. Each trace consists in a list of ordered events which represent an execution
of the process. Events represent the activities executed, that can be linked to the
transitions of the model in a second moment. In our example, events are enriched
with other additional information, called attributes, such as resources, timestamps or
additional data elements recorded with the event log. In case id: 1 the first event is
related to the activity register request, performed by resource Pete at 11:02 of the 12th
December 2010, and it costs 20. The additional information is more used in the third
type of Process Mining, the Enhancement. In this thesis we will abstract from such
information and limit conformance to solely the control flow aspect.

The followings are the formal definitions about the concepts described above.

10 Chapter 2

Definition 2.2.9 (Traces). Let SN = (N, I,O) ∈ USN be a system net. ϕ(SN) =
{σv|(N, I)[σv ◁ (N,O)} is the set of visible traces starting in marking I and ending in
marking O. ϕf (SN) = {σ|(N, I)[σ⟩(N,O)} is the corresponding set of complete firing
sequences.

Definition 2.2.10 (Event Log). An event log L ∈ B(A∗) is a multiset of traces, where
A is a set of activities.

The standard about storing events logs is XES (eXtensible Event Stream) . In the
next section we will describe this format in detail.

2.3 Tools for Process Mining

2.3.1 ProM

ProM (short for Process Mining framework) is an Open Source framework for Process
Mining algorithms. It has become the de facto standard Process Mining platform in the
academic world by establishing an active, recognized community of contributors and
users. This platform is extensible and platform independent as it is implemented in Java.

In 2002, several researchers were building simple prototypes to experiment with
process discovery techniques. It became apparent that building a dedicated Process
Mining tool for every newly conceived Process discovery method was not practical. This
realization led to the development of the ProM framework, a "plug-able" environment
for Process Mining algorithms, with the goal of creating a common basis for all kind of
techniques. The first version of ProM framework was released in 2004, using MXML
as input format for representing event logs. The current version is ProM 6, released in
2010, based on a new architecture and utilizing the XES format.

One significant upgrade of ProM 6 is its ability to distribute the execution of plug-ins
over multiple computers. This feature enhances performance and allows ProM to be
offered as a service. The ProM environment is composed by many plug-ins, each
providing different functionalities. Currently, there are over 1500 plug-ins available.
Developers can create numerous plug-ins, and loading them in ProM as users can
utilize them. Plug-ins are distributed over so-called packages and can be chained
into composite plug-ins. Packages contain related sets of plug-ins. ProM 6 includes
a package manager for adding, removing, and updating packages. Users should only
load packages that are relevant to the tasks they want to perform.

2.3.2 XES

As mentioned earlier, event logs are the starting point of Process Mining analysis,
and various formats exist to store this event data. Until 2010, the de facto standard
was MXML (Mining eXtensible Markup Language), which emerged in 2003 and was
adopted by the early version of ProM tool. While this approach worked reasonably
well, it presented various extensibility limitations. This led to the development of the
XES (eXtensible Event Stream) format. XES was adopted in 2010 by the IEEE Task
Force on Process Mining and has since become the de facto exchange format of event
logs. The IEEE Standards Organization is currently evaluating XES with the aim of
turning it into an official IEEE standard [3]. Its success is attribute to fact that it is

2.3. TOOLS FOR PROCESS MINING 11

Figure 2.4: Meta-model of XES expressed using UML class diagrams. Source: [3]

less restrictive than its predecessor and is truly extensible.

The XES meta-model, expressed in terms of a UML class diagram, is pictured in
Figure 2.4. An XES document contains one log formed by any number of traces. Each
trace describes a sequential list of events. The log, its traces, and its events may have
any number of attributes, which may also be nested. An event can have any number
of attributes, and there is no fixed set of mandatory attributes. However, to provide
semantics for such attributes, the log refers to so-called extensions. For example, the
Time extension defines a timestamp attribute of type dataTime. It is possible to define
domain-specific extensions to be more expressive for the user.

Another important feature of XES is that it supports the classifier concept. The
classifier is a function that maps the attributes of an event onto a label used in the
resulting process model. Each classifier is specified by a list of attributes. Any two
events that have the identical values with respect to these attributes are considered to
be equal for that classifier.

Every tool we use in this thesis fully supports the XES standard. Moreover, this is
the format we use to create the dataset for experiments.

Chapter 3

Conformance Checking

In this chapter we present the area of Conformance Checking and techniques to approach
the problem. Then we show how to apply decomposition-based approaches to Conformace
Checking. This includes the procedures to split the model in a valid way and the existing
decomposition-based algorithms

3.1 Preliminaries

Conformance Checking is one of the three main areas of Process Mining. This thesis is
specifically focused on this area.
Conformance Checking techniques establish connections between events in the event
log and activities in the process model, comparing both to identify commonalities
and discrepancies. In essence, these techniques analyze observed process executions
in comparison to the modeled behavior, providing global conformance measures to
quantify the overall conformance of the model and log. Conformance Checking can
be related to the standard ISO 9000:2008, which requires organization to model their
operational processes. This standard aims to mitigate risks and regulate processes
in modern companies, making Process Mining a valuable tool, especially in business
alignment and auditing fields.

The objective of business alignment is to effective alignment of information
systems with real business processes. Process Mining contributes to improving this
alignment by analyzing actual business processes, diagnosing discrepancies, and pro-
viding insights on enhancing the support offered by information systems.

Auditing involves evaluating organizations and their processes to verify the validity
and reliability of information. This is done to check whether business processes are ex-
ecuted within certain boundaries set by managers, governments, and other stakeholders.

Conformance Checking techniques play a crucial role in both fields by helping detect
fraud, malpractice, risks, and inefficiencies. They contribute to the evolution of a new
form of auditing that evaluates all events in a business process while the process is
still ongoing.

13

14 Chapter 3

As already written above, Conformance Checking is useful to detect discrepancies.
We can divide these deviations in desirable and undesirable. When the procedures
encoded in the process models are inefficient, we can see desirable deviations. Un-
desiderable deviations appear when the procedures are established and solid, but process
actors do not comply them.
Basically, Conformance Checking can establish if the model used to represent a certain
process is a good model. We use four quality dimensions to determine the quality of a
process mining model: fitness, simplicity, precision, and generalization [3]. To create a
good model we should balance all these aspects:

∗ A model with good fitness allows for the behavior seen in the event log. A model
has a perfect fitness if all traces in the log can be replayed by the model from
beginning to end. There are different ways to define fitness, we will see them in
detail in the following sections.

∗ The simplicity dimension refers to the fact that the best model is the simplest
model that can explain the behavior seen in the log. The complexity of the model
could be defined by the number of nodes and arcs in the underlying graph.

∗ A model is precise if it does not allow for "too much" behavior. A model
that is not precise is under fitting. Under fitting is the problem that the model
over-generalizes the example behavior in the log.

∗ A model should generalize and not restrict behavior to the examples seen in the
log. A model that does not generalize is over fitting. Over fitting is the problem
that a very specific model is generated whereas it is obvious that the log only
holds example behavior.

Another important use of Conformance Checking is the evaluation of discovery
algorithms. In the first area of Process Mining, discovery, we mine the event log to
create model. There are several algorithms to produce process models. It is possible
to evaluate each model produced by different algorithms using Conformance Checking.
In this way, we can detect the best model to continue the analysis.

We provide the two most famous conformance checking algorithms: token replay
and alignment-based conformance checking. In this thesis, we use the fitness measure
to quantify the quality of the model. In both algorithm descriptions, an accurate
definition of fitness metric is provided. We preferred the alignment-based approach
as it can pinpoint exactly when and where deviations occurred.

3.1.1 Token-Replay Conformance Checking

Replay means that we use process model and event log as inputs then we compare the
behaviors observed in the log with the ones performed by the model. Token replay
approach consist in taking a trace from the log and try to replay it in the model [3].
To understand better how the algorithm works, we describe an example, figured in
Image 3.1 where the various stages of replay are represented. When we perform token
replay, four counters are taking in consideration:

∗ produced tokens (p);

∗ consumed tokens (c);

3.1. PRELIMINARIES 15

∗ missing tokens (m);

∗ remaining tokens (r).

Initially, p = c = 0 and all places are empty. Then the environment produces a token
for place start. Consequently, counter p is incremented by 1, as one token is being
produced. Let consider reproducing the trace σ1 = ⟨a, d, c, e, h⟩.

The first transition we have to fire is a. This is possible. Since a consumes one token
and produces two tokens, we update c by incrementing by 1 and p by incrementing by
2. The resulting configuration is p = 3, c = 1, m = 0, r = 0. At this point we try to
replay second event d, but this is not possible as the transition is not enabled. We need
to add a token in place2 to fire d, so we record this missing token by incrementing m
by 1 and by updating p and c. We are in the third stage of the image. The following
activities c, e, h can be easily performed by the model without adding any new token,
so we skip to the last configuration showed in the figure. After replaying the last
event, we have p = 6, c = 5, m = 1, and r = 0. In the final state [p2, end] the
environment consumes the token from place end. However, a token is left in place
p2, so counter r is incrementing by 1. Hence the final result is p = c = 6 and m = r = 1.

The final configuration of counters provides information about non-conformance.
There was a situation in which d occurred but could not happen according to the
model
(m = 1) and there was a situation in which d was supposed to happen but did not
occur according to the log (r = 1).

Moreover, using the counters we can compute fitness according to the following
formula:

fitness(σ,N) =
1

2

(︂
1− m

c

)︂
+

1

2

(︃
1− r

p

)︃
In our example, fitness(σ1, N) = 1

2

(︁
1− 1

6

)︁
+ 1

2

(︁
1− 1

6

)︁
= 0, 833.

It is possible to compute the fitness of an event log using replay token approach
with the following more generic formula:

fitness(L,N) =
1

2

(︃
1−

∑︁
σ∈L L(σ) ∗mN,σ

sumσ∈LL(σ) ∗ cN,σ

)︃
+

1

2

(︃
1− sumσ∈LL(σ) ∗ rN,σ

sumσ∈LL(σ) ∗ pN,σ

)︃
The value of fitness is between 0 (very poor fitness) and 1 (perfect fitness).

3.1.2 Alignment-Based Conformance Checking
Token replay is a really easy algorithm to understand and can be implemented efficiently.
However, this approach has also some limitations. First, it is Petri net specific, and
can only be applied to other representations after their conversions. Moreover, if a
case does not fit, the method does not create a corresponding path through the model.
We would like to map observed behavior onto modeled behavior to provide better
diagnostics and to relate also non-fitting cases to the model. In other words, we would
like to pinpoint deviations in terms of activities not executed at the right time. The
concept of alignments is introduced to overcome these drawbacks. The main idea is
to find an execution of the model that is close as possible to the observed trace. We

16 Chapter 3

Figure 3.1: Replaying of trace σ1 = ⟨a, d, c, e, h⟩ on the net N . The various stages of
replay are represented with the according four counters: p (produced tokens), c
(consumed tokens), m (missing tokens), and r (remaining tokens). Source: [3]

3.1. PRELIMINARIES 17

Figure 3.2: Petri Net N2. Source: [3]

explain this concept by making of an example. Let consider the easy Petri net N2 in
Figure 3.2 and trace σ2 = ⟨a, d, b, e, h⟩. We compute the following alignment:

γ1 =
a ≫ d b e h

a c d ≫ e h

The first row corresponds to the trace in the event log whereas the second row corre-
sponds to a firing sequence in the model. Our intention is to try to mimic an activity
in the model by using an activity in the trace. If an activity in the model cannot be
mimicked by an activity in the log, then the symbol ≫ (no step) appears in the top
row. Similarly, if an activity in the log cannot be mimicked by an activity in the model,
then a ≫ (no step) appears in the bottom row. In our example, the trace starts with
activity a. Our model also begins with transition a. Hence, we can perform this move
both on log and model size. Instead in second column, the model fires transition c
before d, exposing an incoherence with the log, as it is not possible for the model to
make a d move immediately after a. In forth column, it is possible to see a log move:
the log activity b is performed after d, but the model could not mimic this behavior.
It is also possible to perform invisible transitions, in this case we use the symbol τ .

To be more precise, we define a move as a pair (a,m) where the first element a
refers to the activity in the log and the second element m refers to the transition in
the net. The following is the definition of possible moves in an alignment:

Definition 3.1.1 (Legal moves). Let L ∈ B(A∗) be an event log and let SN =
(N, I,O) ∈ USN be a system net with N = (P, T, F, l). ALM = {(a, (a, t))|a ∈ A ∧ t ∈
T ∧ l(t) = a} ∪ {(≫, (a, t))|a ∈ A ∧ t ∈ T ∧ l(t) = a} ∪ {(≫, (τ, t))|t ∈ T ∧ t\ ∈
dom(l)} ∪ {(a,≫)|a ∈ A} is the set of legal moves. The function α ∈ ALM → A ∪ {τ}
provides the activity (possibly τ) associated with a move: for all t ∈ T and a ∈ A

∗ α(a, (a, t)) = a : synchronous move;

∗ α(≫, (a, t)) = a : model move;

∗ α(≫, (τ, t)) = τ : invisible move;

∗ α(a,≫) = a : log move.

An alignment is a sequence of moves. This means that, after removing all ≫
symbols, the first row corresponds to a log trace and the bottom row corresponds to a
firing sequence in the net from initial marking to final marking.

18 Chapter 3

Definition 3.1.2 (Alignment). Let L ∈ B(A∗) be an event log with A ⊆ UA, let
σL ∈ L be a log trace and σM ∈ ϕf (SN) a complete firing sequence of system net
SN. An alignment of σL and σM is a sequence γ ∈ A∗

LM such that the projection on
the first element (ignoring any ≫) yields σL and the projection on the last element
(ignoring any ≫) yields σM .

Given a log trace and a process model, there may be many (if not infinitely many)
alignments. Returning to our example, we can provide three more alignments:

Alignments 3.1.1.

γ2 =
a ≫ d b e h

a b d ≫ e h
γ3 =

a d b ≫ e h

a ≫ b d e h

γ4 =
a ≫ d ≫ ≫ b ≫ e h

a c d e f b d e h

Intuitively γ4 is the worst alignment as it has a bigger number of misalignment
moves. To select the most appropriate alignment, we associate costs to undesirable
moves and select the alignment with the lowest cost.

Definition 3.1.3 (Cost of alignment). The cost function δ ∈ ALM → Q assigns costs to
legal moves. Moves where the log and the model agree have no costs, i.e., δ(a, (a, t)) = 0
for all a ∈ A. A move in the model also has no costs if the transition is invisible, i.e.,
δ(≫, (τ, t)) = 0 if t /∈ dom(l). A move in the model has a cost of δ(≫, (a, t)) > 0 if
l(t) = a and a ∈ A. Similarly, a move in the log has a cost of δ(a,≫) > 0. The cost of
an alignment γ ∈ A∗ is the sum of all costs: δ(γ) =

∑︁
(a,m)∈γ δ(a,m).

For simplicity, in this thesis we fixed a standard cost function δ1 that assigns
cost 1 to all visible model moves and log moves. The costs of our examples are:
γ1 = 2, γ2 = 2, γ3 = 2, γ4 = 4.
Using the cost function we can define optimal alignment:

Definition 3.1.4 (Optimal alignment). Let L ∈ B(A∗) be an event log with A ⊆ UA
and let SN ∈ USN be a system net with ϕ(SN) ̸= ∅.

∗ For σL ∈ L, an alignment γ between σL and a complete firing sequence of the
system net σM ∈ ϕf (SN) is optimal if the associated misalignment costs are
lower or equal to the costs of any other possible alignment γ′.

∗ λ(σL, SN) ∈ A∗ → A∗
LM is a deterministic mapping that assigns any log trace

σL to an optimal alignment.

The optimal alignments for our example is γ1, γ2, γ3. This shows optimal alignments
do not need to be unique.

Using these definitions we can illustrate how to compute fitness using alignments.
First we have to introduce the concept of worst alignment. The worst alignment is
an alignment with no synchronous moves but only log moves and model moves. It
is constructed as the sequence of log moves for all events, followed by the sequence
of model moves for each transition in the shortest path from the initial to the final
marking. For example:

3.1. PRELIMINARIES 19

Alignments 3.1.2 (Worst alignment).

γ5 =
a d b e h ≫ ≫ ≫ ≫ ≫

≫ ≫ ≫ ≫ ≫ a c d e h

The cost of our worst alignment is 10.
The fitness of a single trace σL is computed as follows:

fitness(σL, SN, δ) = 1−
δ(λN

opt(σ))

δ(λN
worst(σ))

For our example the fitness is:

fitness(σ1, SN, δstd) = 1− 2

(10)
= 0, 8

It is possible to compute the fitness of an event log using alignments approach with
the following more generic formula:

Definition 3.1.5 (Fitness).

fitness(σL, SN, δ) = 1−
∑︁

σ∈L L(σ) · δ(λN
opt(σ))∑︁

σ∈L L(σ) · δ(λN
worst(σ))

The fitness metric has the same meaning as in token replay approach. The fitness
metric computes a value between 0 and 1. A trace that perfectly fits the system net
would yield a fitness value of 1 and a trace that does not fit the system net at all would
yield a fitness value of 0.

In conclusion, alignments are powerful because they can explain where and which
deviations occur. For example, we can indicate that a specific activity is often skipped
or that some other activity occurs at times it is not supposed to happen. Moreover,
observed behavior is related to modeled behavior in a precise manner. Another
advantage respect to token replay approach is that alignments can be defined for any
process notation, including Petri nets having duplicate and silent activities. In the
following subsection, we present the algorithm implemented to compute alignments.

3.1.3 Conformance Checking Algorithm
To compute alignments is used the plug-in implemented in ProM "Replay a log on Petri
Net for conformance analysis". The plug-in takes a Petri net model and the event-log
as inputs, then it produces alignments as output (see Figure 3.3 for an example).

The problem of finding alignments can be expressed the following way: given a
synchronous product Petri net and a cost function, provide the cheapest firing sequence
from the initial marking to the final marking.

To construct the synchronous product we start from the original Petri net model.
Then we add the trace as a sequential Petri net and the synchronous transitions.
Synchronous moves are created by pairing each activity in the trace to a transition
in the model that corresponds to the same activity. In Figure 3.4 the original net is
colored gray, the net constructed by the trace is yellow and the synchronous transitions

20 Chapter 3

Figure 3.3: Visualization of the result of "Replay a log on Petri Net for conformance
analysis" plug-in of ProM software. We can see for each line, the alignment
corresponding to a trace.

Figure 3.4: Synchronous product Petri net. In gray is pictured the original net; in yellow the
transitions corresponding to activities in the trace, and in green the synchronous
transitions.

are green. Starting from this new net we need to find the shortest execution, where
the length of the path is defined by the cost function. It is clear that this is a search
problem. The search space is the statespace of the synchronous product model. Each
node is a combination of a state in the model and the remaining events in the trace.
Each arc is a move on model, move on log or a synchronous move.

The plug-in provides different search algorithms to find the shortest path. Some
example can be using Dijikstra algorithm or A* algorithm. The most recent algorithm
and more efficient [4] is the Iterative A* technique, in the plug-in is called "Splitting
replayer assuming at most 127 tokens at each place" (Figure 3.5). The core of this
algorithm is, of course, an A* search technique. In every iteration, a marking is
selected for expansion. This marking m is chosen such that it minimizes the cost
to reach that marking from the initial marking g(m) plus the estimated remaining
cost h(m). The algorithm stops if the final marking mf is reached. The innovation
introduced is to reconsider the heuristic function h(m) by exploiting knowledge of the
traces being aligned. Essentially, it is used the original trace to guarantee progress
in the depth of the search by splitting the marking equation (heuristic function) into
a number of sub-problems which together provide a more accurate under estimation
of the remaining cost. It is used the A* algorithm itself to decide when to split the

3.2. DECOMPOSITION-BASED APPROACH 21

Figure 3.5: Configuration of the parameters to build alignments in the plug-in "Replay a log
on Petri Net for conformance analysis". Note that the standard configuration
uses the Iterative A* technique.

marking equation1. In [4] is shown that the technique leads to significant improvements
in computation time.

3.2 Decomposition-Based Approach

In the last few years, information technology and global digitalization has grown
exponentially in both academic and industry field. One of the consequences of this
phenomenon is the incredible growth of data. The term Big Data was coined in this
sense: it illustrates the spectacular growth of data and the potential economic value of
such data in different industry sectors. In previous chapters, we have already presented
how Process Mining can be a powerful instrument in analyzing data, with the aim of
improve processes.

However, the incredible growth of event data is also posing new challenges in Process
Mining world. As event logs increase, Process Mining techniques need to become
more efficient and highly scalable. To overcome this problem, new methods have been
invented. One idea is using a divide and conquer approach [6]. This approach intends to
decompose the model and compute the algorithm for each sub-models. The assumption
is that computing the problem into smaller entities is easier than computing the entire
problem.
Decomposition approach can be used in two fields of Process Mining:

∗ to decompose process discovery, we split the set of activities into a collection of
partly overlapping activity sets.

∗ In Conformance Checking, we decompose the process model into smaller partly
overlapping model fragments. If the decomposition is done properly, then any
trace that fits into the overall model also fits all the smaller model fragments
and vice versa.

In this thesis we aim to create a new algorithm for computing Conformance Checking
using this approach.

1We leave to the reader a more accurate description of the algorithm. It can be found in [4] and [5]

22 Chapter 3

Figure 3.6: Petri net with n parallel activities.

Figure 3.7: A possible decomposition of the net in Figure 3.6.

3.2.1 Decomposition in Conformance Checking

In [7] authors prove that the complexity of Conformance Checking problems are ex-
ponential with the size of the model. Using the Petri net in Figure 3.6, we show an
example of how complexity can increase. The complexity of a Petri net is measured by
counting how many possible traces it can accept. In the initial configuration, we have
a token in initial place that can be fired by transition t0. Consequently, t0 produces n
tokens in the following places and can be consumed by any of the n parallel transitions.
This Petri net admits n! possible traces, that is of course non-linearly increase with
respect to n.
According to the decomposition approach, we split the model into subnets and then

compute the problem. In this case, we can decompose the Petri net into three subnets:
the initial stage and two subnets with half of the n parallel transitions for each. At
this point we can execute the Conformance Checking for each subnet. The possible
number of traces accepted becomes (n2)!.
We propose a more practical example. If n = 6, then n! = 6! = 720, but 6

2 ! = 6 that is
a really smaller number respect to 720 traces.

However, the decomposing approach must be aware of some aspects. First, it is
important to decompose process model into model fragments in a valid way. Moreover,
we have to be sure that Conformance Checking can be done locally in the subnets by
using correspondingly sublogs. It is important to adapt cost function and fitness with
decomposition.

The definition of valid decomposition is presented in [7]. If we consider a system
net SN , it is decomposed into a collection of subnets {SN1, SN2, ..., SNn} such that

3.2. DECOMPOSITION-BASED APPROACH 23

Figure 3.8: System net SN1. Source: [1]

Figure 3.9: Valid decomposition D1 of the system net SN1. Source: [1]

the union of them is the original system net. A decomposition of a Petri net is valid if
each place and invisible transition resides in just one subnet. Moreover, if there are
multiple transitions with the same label, they should reside in the same subnet. Only
unique visible transitions can be shared among different subnets. In other words, each
subnet must be independent from the others.

Definition 3.2.1 (Valid decomposition). Let SN ∈ USN be a system net with labeling
function l. D = {SN1, SN2, ..., SNn} ⊆ USN is a valid decomposition if and only if:

∗ SN i = (N i,M i,M i) is a system net with N i = (P i, T i, F i, li) for all 1 ≤ i ≤ n,

∗ li = l ↾ T i for all 1 ≤ i ≤ n,

∗ P i ∩ P j = ∅ for 1 ≤ i < j ≤ n,

∗ T i ∩ T j ⊆ Tu
(SN) for 1 ≤ i < j ≤ n, and

∗ SN =
⋃︁

1≤i≤n SN
i.

D(SN) is the set of all valid decompositions of SN .

We can see an example of valid decomposition of the Petri net SN1 (Figure 3.8), in
Figure 3.9. In practical words, the net has been cut along some transitions, which are
called border activities. It is evident that these activities are shared by the subnets.
This overlapping property can be used during the process of merging to pass from local
results to the overall result.

24 Chapter 3

Definition 3.2.2 (Border activities). Let SN = (N, I,O) ∈ USN be a system net with
N = (P, T, F, l). Let D = {SN1, SN2, ..., SNn} ∈ D(SN) be a valid decomposition
of SN . For all 1 ≤ i ≤ n, SN i = (N i, Ii, Oi) is a subnet with N i = (P i, T i, F i, li).
Ab(D) = {l(t)|∃1≤i<j≤nt ∈ T i ∩ T j} is the set of border activities of the valid decom-
position D.
For an activity a ∈ rng(l), SNb(a,D) = {SN i|SN i ∈ D ∧ a ∈ A∨ (SN i)} is the set of
subnets that contain a as an observable activity.

A border activity can only be an activity that has a unique label. In Figure 3.9, the
valid decomposition D1 has the set of border activities {a, b, c, d, l,m, n, o, p}. Unique
activities may appear in multiple subnets (as they can be border activities). Instead,
non-unique activities will appear in exactly one subnet.
The border activity a in our example appears in subnets SN1

1 , SN
2
1 , SN

3
1 , i.e. SNb(a,D1) =

{SN1
1 , SN

2
1 , SN

3
1 }.

A few algorithms exist for the decomposition of Petri nets, we illustrate them in the
following section.

Once we give the definition of a valid decomposition, we have to show that is possible
to compute alignments for each subnet by using correspondingly projected event logs.
In [7] is proved an important theorem which shows that any trace that fits the overall
process model can be decomposed into smaller traces that fit the individual model
fragments. Moreover, if the smaller traces fit the individual model fragments, then
they can be composed into an overall trace that fits into the overall process model.

Theorem 3.2.1 (Conformance checking can be decomposed [7]). Let L ∈ B(A∗) be an
event log with A ⊆ UA and let SN ∈ USN be a system net. For any valid decomposition
D = {SN1, SN2, ..., SNn} ∈ D(SN): L is perfectly fitting system net SN if and only
if for all 1 ≤ i ≤ n : L ↿Av(SNi) is perfectly fitting SN i.

The proof is available in [7]. By applying this theorem, we can compute the
percentage of fitting traces in the overall event log. Let consider the fitting trace
σ3 = ⟨a, e, i, l, d, g, j, h, k, n, p, q⟩ and SN1 (Figure 3.8). Under decomposition D1, it is
possible to obtain the subalignments by first projecting the trace on the subnets in
Figure 3.9 and later aligning each subtrace with the corresponding subnet:

Alignments 3.2.1 (Optimal alignment of σ3).

γ3 =
a ≫ e i l d g j h k n p q

a b e i l d g j h k n p q

Alignments 3.2.2 (Optimal subalignments of σ3).

γ1
3 =

a

a
γ2
3 =

a ≫

a b
γ3
3 =

a d

a d
γ4
3 =

≫ e i l

b e i l
γ5
3 =

γ6
3 =

d g j h k n

d g j h k n
γ7
3 =

l p

l p
γ8
3 =

n p

n p
γ9
3 =

p q

p q

Knowing just the percentage of traces fitting may be not sufficient. We should find
a way to compute the cost of the overall alignments.

3.2. DECOMPOSITION-BASED APPROACH 25

A naive approach to aggregate the results per subcomponent, would be to sum up all
the misalignment costs of the subalignments under the standard cost function. For our
example, if we sum the costs of the subalignments we would get a total of 2. However,
the cost of the optimal alignment γ3 is 1. The wrong result occurs because of border
activity b appears in two different subnets SN2

1 and SN4
1 . For this reason, an adapted

definition of cost function is required to avoid counting moves which involve border
activities multiple times.

Definition 3.2.3 (Adapted cost function). Let D = {SN1, SN2, ..., SNn} ∈ D(SN)
be a valid decomposition of some system net SN and δ ∈ ALM → Q a cost function.
The adapted cost function δD ∈ ALM → Q for decomposition D is defined as follows:

δD(a,m) =

{︄
δ(a,m)

|SNb(α(a,m),D)| if α(a,m) ̸= τ

δ(a,m) otherwise

It follows the definition of an adapted fitness, hereafter referred as decomposed
fitness metric.

Definition 3.2.4 (Decomposed fitness metric). Let L ∈ B(A∗) be an event log
and let SN = (N, I,O) ∈ USN be a system net with N = (P, T, F, l). Let D =
{SN1, SN2, ..., SNn} ∈ D(SN) be a valid decomposition of SN . For all 1 ≤ i ≤ n,
SN i = (N i, Ii, Oi) is a subnet with an observable activity set Ai

v = Av(SN
i). For a

log trace σL ∈ L, σi
L = σL ↾Ai

v
is the projection of σL on the activity set of subnet

SN i.

fitD(σL, SN, δ) = 1−
∑︁

i∈{1,...,n} δD(λ(σi
L, SN

i))

moveM (SN) +moveL(σL)

For an event log L, its decomposed fitness metric is computed as follows:

fitD(L, SN, δ) = 1−
∑︁

σL∈L

∑︁
i∈{1,...,n} δD(λ(σi

L, SN
i))

|L| ∗moveM (SN) +
∑︁

σL∈L moveL(σL)

In the decomposed fitness metric, the misalignment costs of each subalignments are
first summed using the adapted cost function. Then, the total is normalized using the
same value as the undecomposed relative fitness metric so that both metric values are
normalized in the same manner. Let us consider again the example above of trace σ3.
The decomposed fitness metric is computed as fitD(σ3, SN1, δ1) =

23
24 ≈ 0, 958, that is

identical of the fitness metric of the overall trace and net.
However, this is not guaranteed with just this premises. In fact, local results do not
consider the total structure of the net. Consequently, the minimum cost alignment for
a subnet may appear particular expensive for the entire net. In paper [7] is proved
that the decomposed fitness metric provides an upper bound to the fitness computing
using the full alignment and the overall log and net. Let us see another example. We
always consider the net in Figure 3.8 and the valid decomposition D1 in Figure 3.9,
but we use another trace σ4 = ⟨a, b, e, i, l, d, g, h, n, j, k, p, q⟩. The optimal alignment
and optimal subalignments are as Alignment 3.2.3 and 3.2.4:

Alignments 3.2.3 (Optimal alignment of σ4).

γ4 =
a b e i l d g h n j k ≫ p q

a b e i l d g h ≫ j k n p q

26 Chapter 3

Alignments 3.2.4 (Optimal subalignments).

γ1
4 =

a

a
γ2
4 =

a b

a b
γ3
4 =

a d

a d
γ4
4 =

b e i l

b e i l
γ5
4 =

γ6
4 =

d g h n k ≫

d g j ≫ k n
γ7
4 =

l p

l p
γ8
4 =

n p

n p
γ9
4 =

p q

p q

The cost of the overall alignment γ4 is equal 2. Instead, applying the adapted cost
function the total cost of the subalignments is 1, that is a lower bound according to
costs and consequently an upper bound for fitness. This happens because the moves
involving border activity n are not identical between subalignments γ6

4 and γ8
4 ; the

moves involving border activity n in the two subalignments are not in agreement and
we can see a conflict.

To overcome this problem and to compute exactly fitness, in [1] is defined the
property of border agreement : sequences of moves involving the same border activity
have to be in agreement across all subalignments.

Definition 3.2.5 (Border agreement). Let L ∈ B(A∗) be an event log and let SN =
(N, I,O) ∈ USN be a system net with N = (P, T, F, l). Let D = SN1, SN2, ..., SNn ∈
D(SN)be a valid decomposition of SN . For all 1 ≤ i ≤ n, SN i = (N i, Ii, Oi) is a
subnet with an observable activity set Ai

v = Av(SN
i).

For a border activity a ∈ Ab(D), let aLM = {(a, (a, t)), (≫, (a, t)), (a,≫)} be the set
of legal moves for activity a, where t ∈ T such that l(t) = a. Let SN i ∈ SNb(a,D)
be a subnet that has the border activity a. For a log trace σL ∈ L, σi

L = σL ↾Ai
v

is the projection of σL on the activity set of SN i. γi ∈ A∗
LM denotes an optimal

alignment between the sublog trace σLi and some complete firing sequence of a subnet
σi
M ∈ ϕf (SN

i).
The set of subalignments γ1, ..., γn are under border agreement on a border activity
a ∈ Ab(D) if, and only if, γi ↾aLM

= γj ↾aLM
, for all SN i, SN j ∈ SN b(a,D). The set of

subalignments γ1, ..., γn are under total border agreement (t.b.a.) if, and only if, border
agreement is achieved one by one on all the border activities in γ1, ..., γn following
the order of their occurrences across γ1, ..., γn, starting with the first occurring border
activity in subnet SN i ∈ D where Ii ≥ I.

Given the properties of a sequence, there is border agreement if the following three
conditions are satisfied:

∗ γi ↾aLM
has an equal number of moves as γj ↾aLM

.

∗ γi ↾aLM
has the same move types as γj ↾aLM

, i.e. if γi ↾aLM
has one log move,

then γj ↾aLM
must also have one log move.

∗ The order of moves in γi ↾aLM
and γj ↾aLM

are the same.

Applying this definition, it is easy to see that subalignments of trace σ4 are not
under total border agreement.

If the total border agreement is not satisfied, the decomposed fitness metric coincides
with an upper bound of the overall fitness. Instead, when the border agreement property
is satisfied, the decomposed fitness metric corresponds exactly with the overall metric.

3.2. DECOMPOSITION-BASED APPROACH 27

Figure 3.10: Labeled Petri net. Source: [7]

Theorem 3.2.2 (Exact value for decomposed fitness metric under total border
agreement). Let L ∈ B(A∗) be an event log and let σL ∈ L be a log trace. Let
SN = (N, I,O) ∈ USN be a system net and let D = {SN1, SN2, ..., SNn} ∈ D(SN)be
a valid decomposition of SN. For all 1 ≤ i ≤ n, SN i = (N i, Ii, Oi) is a subnet with an
observable activity set Ai

v = Av(SN
i).σ1

L, ..., σ
n
L are the subtraces from the projection

of σL onto the activity sets of SN1, ..., SNn such that σi
L = σL ↾Ai

v
. γi is an optimal

subalignment between σi
L and some complete firing sequence of the corresponding subnet

σi
M ∈ ϕf (SN

i).
Let γ1, ..., γn be the set of subalignments and let them be under total border agreement.
The decomposed fitness metric computed using this set of subalignments equals the
relative fitness metric computed with the overall alignment between σL and SN :

fit(σL, SN, δ) = fitD(σL, SN, δ)

For the log L, if for all the log traces in L, their corresponding set of subalignments
is under total border agreement,

fit(L, SN, δ) = fitD(L, SN, δ)

The proof of this theorem is available in [1].

3.2.2 Decomposition Algorithms for Splitting Petri Nets
After presenting the theory behind decomposing Petri nets, we present two of the most
wide-spreadly employed algorithms to split models that guarantee the result to be a
valid decomposition.

Maximal Decomposition The idea and the implementation of this algorithm are
presented in [7]. The aim is to split the original net into individual subnets as small
as possible. An example of a maximal decomposition of the model in Figure 3.10 is
depicted in Figure 3.11. This approach assumes the original system net to be fully
connected. This is not limiting: isolated transitions or places can be removed as they
do not influence the behavior of the original net. By removing isolated nodes, the

28 Chapter 3

Figure 3.11: Maximal decomposition of the system net shown in 3.10. Source: [7]

Figure 3.12: A Petri net, its workflow graph and the RPST and SESE decomposition. (a)
Petri net. (b) Workflow Graph and SESE decomposition. (c) RPST. Source:
[7]

construction of maximal decomposition is simplified.

The creation of the maximal decomposition is based on partitioning the edges which
connect via undirected path involving as few as possible transitions/places, including
invisible transition. After that, the sets that share non-unique observable activities
are merged. Based on the new partitioning of the edges, subnets are created. In
this way the requirement that visible transitions with the same label must reside in
one subnet of valid decomposition is satisfied. Consider the Petri net in figure 3.10:
[[(t1, c2)]] = {(t1, c2), (c2, t4), (t6, c2)}. (c2, t4) and (t6, c2) are added to [[(t1, c2)]]
because c2 is not a visible transition. (t6, c1) and (c5, t6) are not added to [[(t1, c2)]]
because t6 is a visible transition. In our example, all visible transitions have a unique
label, so we can directly create subnets by the partitioning of the edges. From [[(t1, c2)]]
is created SN3.

In [7] is proved that maximal decomposition is a valid decomposition, we leave this
proof to the reader as in this thesis is used the next algorithm to split the model.

Single-Entry Single-Exit (SESE) decomposition Another important decompo-
sition algorithm is based on the idea of Single-Entry Single-Exit (SESE). In [6] the
authors proposed the algorithm for constructing the Refined Process Structure Tree

3.2. DECOMPOSITION-BASED APPROACH 29

(RPST), i.e., a hierarchical structure containing all the canonical SESEs of a model.
First, we define what is a SESE. SESE is a special type of subgraph with a very
restricted interface with respect to the rest of the graph.

Definition 3.2.6 (SESE). A set of edges S ⊆ E is a SESE (Single-Exit-Single-Entry)
of graph G = (V,E) iff GS has exactly two boundary nodes: one entry and one exit.
A SESE is trivial if it is composed of a single edge. S is a canonical SESE of G if it
does not partially overlap with any other SESE of G, i.e., given any other SESE S′ of
G, they are nested (S ⊆ S′ or S′ ⊆ S) or they are disjoint (S ∪ S′ = ∅).

The starting point of SESE decomposition is to consider Petri net as a worflow
graph. A worflow graph is a directed graph where no distinctions are made between
places and transitions. Afterwards, it is possible to compute the RPST, that is the
tree composed of the set of all the canonical SESEs of a workflow net, such that, the
parent of a canonical SESE S is the smallest canonical SESE that contains S. The
root of the tree is the entire graph, and the leaves are the trivial SESEs.
In [8], the computation of the RPST is significantly simplified and generalized reducing
the implementation effort considerably. In Figure 3.12 it is possible to see an example
of a Petri net, its corresponding workflow net and its RPST.

Intuitively, each SESE may represent a subprocess within the main process (i.e.,
the interior nodes are not connected with the rest of the net), and the analysis of every
SESE can be performed independently. This means we can use the RPST of a net to
select a possible set of SESEs, forming a decomposition. Carmona et al. introduce and
define a SESE decomposition [9]:

Definition 3.2.7 (SESE decomposition). Consider the RPST decomposition of WF-
net, where S represents all the SESEs in the RPST. We define a transverse-cut over
the RPST as a set of SESEs D ⊆ S such that any path from the root to a leaf of RPST
contains one and only one SESE in D. Given a transverse-cut D = {S1;S2; ...Sn}, let
the decomposition DD be defined as DD = {SNS1;SNS2; ...SNSn}, where SNSi is
the Petri net determined by the SESE Si, and the projection of the initial and final
markings on the places of the subnet.

Algorithm 1 generates a decomposition which limits the maximum size of each
component to a fixed threshold of activities k, details how to perform a SESE decom-
postion and in order to control the size and complexity of individual items, according
to the use. The algorithm keeps a set of nodes that conforms the decomposition (D)
and a set of nodes to consider (V). Initially V contains the roof of RPST, which is
the entire net. Then, the algorithm checks, for each node v to consider, if the number
of arcs of SESE v is less than or equal to k. If this is the case, v is included in the
decomposition, otherwise, v is discarded and the RPST children of v is included into
the nodes to consider. The algorithm proposed has linear complexity with respect to
the size of the RPST, and termination is guaranteed by the fact that the size of the
component is reduced in every iteration.

A decomposition based directly on SESEs is not necessarily a valid decomposition.
This is because we do not distinguish between places and transitions. It may happen
that a place becomes a border node or that boundary places/transitions may be
shared among subnets. To overcome this problem we introduce the concept of bridging.
This technique consists of: transforming each place boundary found into a transition
boundary, creating explicit subnets (called bridges) for each boundary place. The

30 Chapter 3

Algorithm 1 k-decomposition algorithm

procedure k-dec(RPST, k) ▷
V = {root(RPST)}
D = 0
while V ̸= ∅ do

V ← pop(V)
if |v.arcs()| ≤ k then

D = D
⋃︁
{v}

else
V = V

⋃︁
{children(v)}

end if
end while
return D

end procedure

Figure 3.13: Example of bridging technique. (a) Petri net with a SESE decomposition. (b)
A SESE decomposition. (c) A SESE decomposition with bridging. Source: [9]

3.2. DECOMPOSITION-BASED APPROACH 31

bridges contain all the transitions connected with the boundary place, and they are in
charge of keeping the place synchronized among subnets. In addition, the boundary
places together with the arcs connected to them are removed from the original subnets.
We present an example in Figure 3.13. In this case, the boundary place p is removed
from S1 and S2. Then the bridge B1 is created. The resulting decomposition is a valid
decomposition. In [9] it is proved that SESE decomposition using bridging is a valid
decomposition.
In this thesis, we use this algorithm to perform decomposition. We discuss how it has
been integrated in our algorithm in Chapter 4.

3.2.3 Decomposition-Based Algorithms for Conformance Check-
ing

In previous section we define how to split Petri nets in order to compute alignments in
each of the sub model, and how to do this in a valid way. Now we present complete
divide and conquer approaches that first split the net and event log into fragments,
then they compute alignments, and finally they merge the results to compute the
overall conformance.

Pseudo Alignments

Sometimes it is sufficient an approximation of the fitness between alignments and
process model. For this reason the plug-in "Decomposed Replay Algorithm" is being
introduced. The plug-in has been implemented in the DecomposedReplayer package
of ProM 6. The algorithm takes as inputs the model depicted as an Accepting Petri
net2 and the event log.

First, the model and log are separated according to one of decomposition algorithms
chose by the user, producing an array of sub-models and one of sub logs. For each of
them, the alignments are computed. Fractions of the model are treated as independent
Petri net, so for each subpetri is called the method that compute the replay. At this
moment, the result is an array of subalignments needed to be merged together. In [10]
is presented the procedure used to merge subalignments into optimal alignments if it
is possible, otherwise it produces so-called pseudo alignments. We describe briefly this
algorithm as it is also used in our approach.

First, let introduce the concept of pseudo alignment. For arbitrary decomposed
alignments, a merge trace alignment may not exist. This happens if the property of
total border agreement is not satisfied. In other words this occurs if in subalignments
are present some conflicts. In such cases, the result of merging those subalignments is a
so-called pseudo alignment. Using these pseudo-alignments, the algorithm can handle
conflicts between the decomposed alignments. A pseudo alignment is constructed in a
pessimistic way:

∗ in case of activity conflicts, the most expensive of the conflicting legal moves is
added to the resulting pseudo alignment;

∗ in case of model move conflicts, one of these model moves is selected, and added
to the pseudo-alignment.

2An Accepting Petri net is a Petri which is specified also the set of final markings instead of just
the initial marking.

32 Chapter 3

In [10] it is proved that a pseudo alignment always exists, and it may not coincide
with a valid alignment. However, having as result a pseudo alignment may be useful
as its cost represent a lower bound for the overall alignment, consequently its fitness
is an upper bound. The algorithm proceeds by applying three alignment stitching
rules, followed by two pseudo-alignment stitching rules. The alignment stitching rules
construct a merged trace alignment, if possible. If this succeeds, we know that the
result is again an alignment, and that the reported costs are exact, and not just a lower
bound. Otherwise, we need a pseudo-alignment stitching rule to be able to continue.

Definition 3.2.8 (Stitching function Y). Let H be the set of all possible trace
pseudo-alignments of L and N , and let Hi be the set of all possible trace alignments
of Li and N i. The function Y ∈ (HxA∗xH1x...xHn)→ H returns the first argument
concatenated by the merged trace pseudo-alignment of the third and following argu-
ments (h1, ..., hn), where the second argument (σ) is used to guide the stitching. As a
result, Y (⟨⟩, σ, h1, ..., hn) returns the merged trace pseudo-alignment of (h1, ..., hn).

Let describe the first alignment stitching rules:

∗ Alignment Stitching Rule 1 (All done): it is a simple rule that detects
when the algorithm is done.

∗ Alignment Stitching Rule 2 (Activity w/o conflict): this rule allows
the algorithm to continue if all relevant decomposed alignments agree on the
first activity in the trace. If so, this activity is now dealt with and so are
the corresponding legal moves in the relevant decomposed alignments. For the
irrelevant decomposed alignments, nothing changes.

∗ Alignment Stitching Rule 3 (Transition w/o conflict): in this case the
algorithm continues if all relevant decomposed alignments agree on a next model
move. If so, these legal moves are now dealt with.

As already written, applying these rules will result in an alignment if the algorithm
ends and Rule 1 can be applied. However, it may be that no rule is applicable before
reaching the end of one or more decomposed alignments.
If some conflicts are present the following two rules are applied. However, the result
will be a pseudo alignment.

∗ Pseudo-alignment Stitching Rule 1 (Activity w/ conflict): this rule
allows the algorithm to continue if the relevant decomposed alignments disagree
on the next legal move containing the first activity in the trace, that is, a
synchronous or log move. If so, the most expensive of the conflicting legal moves
is added to the resulting pseudo alignment, the activity in the trace is now dealt
with, and so are all the conflicting moves in the relevant decomposed alignment.

∗ Pseudo-alignment Stitching Rule 2 (Transition w/ conflict): this rule
that allows the algorithm to continue if the relevant decomposed alignments
disagree on a next model move. If so, one of these model moves is selected, and
added to the pseudo-alignment, and all corresponding model moves are now dealt
with.

This procedure has been implemented in the LogAlignment package of ProM 6, and
it is used in "Decomposed Replay Algorithm" plug-in.

The Decomposed Replay algorithm returns the results of this merging procedure.
Consequently, the resulting fitness is an upper bound of the overall alignments.

3.2. DECOMPOSITION-BASED APPROACH 33

Figure 3.14: Overview of the Recomposing Replay Algorithm. Source: [1]

Figure 3.15: New decomposition D2 after one recomposing interation. Source: [1]

Recomposing Replay Algorithm

As written above, the algorithm to compute pseudo-alignments produces just an ap-
proximation of the overall fitness of a process model. In [1], authors present a novel
method to compute the exact overall result by using the property of total border
agreement (Definition 3.2.5): Recomposing Conformance.

The main idea is to iterative merge the subnets with conflicts in just one subnet
and perform again the Conformance Checking. In this way the disagreeing subnets
can not have conflicts anymore.

As illustrated in Figure 3.14, the first step is to decompose the Petri Net using a
valid decomposition. This can be performed using the splitting algorithms we have seen
before Maximal Decomposition or Single-Entry Single-Exit Approach. Following this
initial decomposition, the log is projected into the subnets obtaining the corresponding
sublogs. At this point, subalignments are computed.

34 Chapter 3

In step 3 of fig. 3.14, the decomposed fitness metric is calculated. The fitness values
for those alignments computed under total agreement are recorded. Consequently, the
associated traces are marked as done, as it has been possible to compute the exact
fitness value. For the remaining traces, we need to resolve the border disagreements
using the recomposing approach.

Let consider the Petri net in Figure 3.8, its initial decomposition D1 in fig. 3.9 and
the trace σ5 = ⟨a, b, e, i, d, g, j, h, k, b, e, i, l, d, g, j, h, k, n, p, q⟩. Alignment 3.2.5 depicts
the resulting subalignments:

Alignments 3.2.5.

γ1
5 =

a

a
γ2
5 =

a b b

a b ≫
γ3
5 =

a d d

a d ≫
γ4
5 =

b e i ≫ b e i l

b e i l b e i l

γ5
5 = γ6

5 =
d g j h k ≫ d g j h k n

d g j h k n d g j h k n

γ7
5 =

l p

l p
γ8
5 =

n p

n p
γ9
5 =

p q

p q

In this subalignments we can detect border agreement problems for activities b, d, l,
and n. The algorithm can select one of more activities that cause these problems, and
merge the corresponding subnets. In our example, the subnets SN2

1 , SN
3
1 , SN

4
1 , SN

5
1 ,

SN6
1 , SN

7
1 and SN8

1 are recomposed so that activity b, d, l, and n are no longer
border activities. This produces a new decomposition D2 figured in 3.15. At this
point, a new Conformance Checking is performed using the new decomposition and
the corresponding sublogs. The new subalignments are the following:

Alignments 3.2.6.

γ10
5 =

a

a
γ12
5 =

a d g j h k ≫ ≫ ≫ d g j h k n p

a d g j h k n p o d g j h k n p

γ11
5 =

a b e i ≫ ≫ ≫ b e i l p

a b e i l p o b e i l p
γ13
5 =

p q

p q

However, the results can not be merged together again as total border agreement
is not satisfied. We need to perform recomposition another time. In this case, the
problematic activity is p. Similarly to previous iteration, the algorithm recomposes
the subnets which present p and produce a new decomposition. After this, the total
border agreement property is satisfied, so it is possible to compute the decomposed
fitness value that will correspond to the exact fitness value.
The algorithm can be implemented with some termination conditions:

∗ all log traces have been either aligned under total border agreement or have been
rejected because of the number of border conflicts is over a given threshold;

∗ the overall time threshold has been surpassed;

3.2. DECOMPOSITION-BASED APPROACH 35

∗ having aligned a target percentage of traces in the log under total border agree-
ment or the overall fitness interval value is narrow enough;

∗ the maximum number of iterations is reached.

In this case, the result will be a fitness interval. These settings can be modified
while starting the plug-in.

This algorithm has been implemented as the plug-in Recomposing Replay Algorithm
in the DecomposedReplayer package of ProM6.7. As this approach is the newest
decomposing technique, in Chapter 5 we compare our algorithm with this one.

Chapter 4

Greedy Approach to Compute
Alignments of Process Models
and Events Logs

In this chapter, our new approach to perform Conformance Checking using decomposition
is described. A deeper explanation of the main idea and implementation is provide.

In previous chapter, we have described two algorithms for performing Conformance
Checking: Pseudo Alignments and Recomposing Replay Algorithm. Both of these
algorithms offer advantages in the problem of computing alignments. In [10] and [1]
some experiments are presented which show these approaches improve computation time
respect to the classic algorithm existing at that moment. However, both approaches
have certain limitations. The pseudo-alignments approach produces just an estimation
of the overall fitness, which may not always be accurate. On the other hand, the
Recomposing Replay Algorithm yields true alignments as the final result. Nevertheless,
for complex model, it may require several iterations to resolve border disagreements
between subnets. This could lead to longer computation times due to the enormous
number of recomposing steps needed to be pass through. Additionally, recomposed
subnets may be as large as the original model. Furthermore, when processing a trace in
the log, if the number of border conflicts exceeds a prefixed threshold, all sub-alignments
are immediately merged, resulting in a pseudo-alignment.
To address these issues, we tried to contribute by creating a new decomposition-
based algorithm. In this chapter, we first describe how this approach works and the
underlying idea. Subsequently, we present the implementation and discuss the problems
encountered during the deployment.

4.1 Algorithm

We have learned that achieving total border agreement is necessary to compute
exact fitness value. This implies that subalignments must not have conflicts in their
moves during calculation. Our objective is to develop an algorithm that does not
require multiple recompositions of the subnets to resolve conflicts, in order of reducing
computation time.

37

38 Chapter 4

Figure 4.1: System Net SN2

The idea is to maintain the initial decomposition of the Petri net and iteratively change
subalignments to satisfy the total border agreement condition. In other words, for
each trace, we compute the optimal subalignment of the corresponding subnet. If
conflicts arise, one of the subalignments is chosen, and its next-best subalignment is
computed. This process is repeated until no more conflicts are present or a predefined
threshold number of iterations is reached. In the latter case, total border agreement is
not satisfied, resulting in a pseudo alignment.
Our motivation for using next-best subalignments stems from the computational time
expense associated with the replay method. Therefore, our approach aims to save time
during this phase in two ways:

∗ the replay method involves instantiating other objects as configuration before
performing replay. While this configuration differs for each subnet, it remains the
same for every trace. We store these configurations before calculating optimal
subalignments, eliminating the need to compute them for each trace in the log.

∗ In Recomposing Replay Algorithm replay is done at every iteration as the decom-
position of the net changes. In our approach, we compute optimal subalignments
only once for each trace and store them. The next-best subalignment operation
since the replay has already been calculated. This approach is expected to speed
up the process, as the iterations would be very rapid.

First, we denote what is the next-best subalignment. In Chapter 3, we provided
the definition of optimal alignments and highlighted that they are not unique. For the
same trace, multiple alignments with different costs exist. Let imagine ordering the
multitude of possible alignments from the optimal ones to the worst. Once we have
computed the optimal one, we can descend through this structure until we reach the
worst alignment. Therefore, given a subalignment, the next-best subalignment is the
next subalignment in our ordered list, its cost is equal or greater than the original one.

Now, we present the pseudo-code of our algorithm, and then we explain the various
phases in detail.

The algorithm is essentially structured in three phases: splitting net and log,
computing subalignments and finding/resolving conflicts, merging subalignments.

4.1. ALGORITHM 39

Algorithm 2 Greedy Approach for Decomposed Replay
Input: System Net SN, event log L
Output: The set A = set of alignments between the event log L and the System

Net SN
procedure Greedy Approach for Decomposed Replay Algorithm

A :=empty
Split SN into a valid decomposition using SESE approach, i.e. D =

{SN1, ..., SNn} ∈ D(SN)
Split L according to D, i.e. DL = {DL1, ..., DLn}
for each trace σk ∈ L do

Compute Γk := (γi
k)i∈{1,...,n} optimal subalignments between subnets D and

the projected subtraces DLk = {DL1
k, ..., DLn

k}
while conflicts are present do

γMAX
k := subalignment with the major number of conflicts

γMAX′

k := nextalignment(γMAX
k)

Update Γk with the new γMAX′

k

end while
Merge subalignments into new alignment γk
ADD(A, γk)

end for
return A

end procedure

Figure 4.2: Decomposition D2 of the Petri net SN2 depicted in Figure 4.1

Phase1 : Splitting Petri Net and Event Log

As outlined in Algorithm 2, the initial steps involve decomposing the net and the
log. The decomposition of the system net must adhere to the properties of a valid
decomposition; otherwise, Conformance Checking would not be feasible (see Section
3.2). We use the SESE-based decomposition to split the Petri net.

Following the initial decomposition, the log is projected onto the subnets of the
decomposition to obtain sublogs. At this point, we have an array of subnets and an
array of lists of subtraces. Implementation details will be discussed in the next section.

Consider the Petri Net SN2 depicted in Figure 4.1. After the splitting procedure,
the result is the decomposition D2 depicted in Figure 4.2. For the sake of simplicity,

40 Chapter 4

we consider the event log L2 with just one trace σ0 = ⟨A,G,D⟩. The decomposed
event log is DL2 = {σ1

0 = ⟨A⟩, σ2
0 = ⟨A⟩, σ3

0 = ⟨⟩, σ4
0 = ⟨G⟩, σ5

0 = ⟨G,D⟩, σ6
0 = ⟨D⟩},

that is the projection of the trace onto the decomposition.

Phase2 : Computing Subalignments and Resolving Conflicts

At this point, for each trace of the log we compute the optimal subalignments. If they
are under total border agreement condition, the algorithm skips to next phase, and it
merges the result. Otherwise, we need to find which subalignment has the greatest
number of conflicts. Let compute the optimal subalignments of the trace σ0 of our
example:

Alignments 4.1.1 (Subalignments of trace σ0: iteration 0).

γ1
0 =

A

A
γ2
0 =

A ≫

A B
γ3
0 =

≫

≫

γ4
0 =

G

≫
γ5
0 =

G D

G D
γ6
0 =

D

D

We can calculate the number of conflicts between other subalignments:

γ1
0 = 0 γ2

0 = 1 γ3
0 = 1 γ4

0 = 1 γ5
0 = 1 γ6

0 = 0

The subalignments γ2
0 and γ3

0 are in conflict as the first one present the model move B,
instead γ3

0 is an empty alignment. Note that γ3
0 is the alignment of subnet SN3 which

presents the border activity B. This means that it should not be empty.
The other conflict is caused by activity G, as γ5

0 presents a synchronous move, instead
γ4
0 a log move.

It is not unusual that there are more alignments with the same number of conflicts. The
heuristic to select which one to compute the next-best subalignment is the following:

∗ the function returns the subalignments with the maximum number of conflicts if
it is unique;

∗ otherwise from the set of subalignments that has the max number of conflicts it
returns:

– the alignment with just log moves;
– or the alignment with the minimum cost.

The use of a heuristic is naturally greedy and may not return optimal alignments. In
our example, subalignment γ4

0 is selected, so its next-best subalignment is computed.
The new combination becomes the following:

Alignments 4.1.2 (Subalignments of trace σ0: iteration 1).

γ1
0 =

A

A
γ2
0 =

A ≫

A B
γ3
0 =

≫

≫

γ4
0 =

≫ G

C G
γ5
0 =

G D

G D
γ6
0 =

D

D

4.1. ALGORITHM 41

It is clear that conflict caused by activity G has been solved, as we have changed
the alignment γ4

0 . Although, conflict between activity B is still present and one with
conflict C appears. Thus, we need to perform another iteration. This time the number
of conflicts between other subalignments are:

γ1
0 = 0 γ2

0 = 1 γ3
0 = 2 γ4

0 = 1 γ5
0 = 0 γ6

0 = 0

Intuitively, we compute the next-best subalignment of γ3
0 as it owns the greatest number

of conflicts. The new combination is:

Alignments 4.1.3 (Subalignments of trace σ0: iteration 2).

γ1
0 =

A

A
γ2
0 =

A ≫

A B
γ3
0 =

≫ ≫

B C

γ4
0 =

≫ G

C G
γ5
0 =

G D

G D
γ6
0 =

D

D

At this point, the algorithm checks another time if some conflicts are present. The
conflict with activity B is being solved, and no new conflicts have arisen. This means
the subalignments satisfy total border agreement condition and we can go to the next
phase.

Phase3: Merging subalignments

At this stage, we are able to merge subalignments into a new alignment. This is
achieved by the stitching rules proposed in Pseudo Alignments’ algorithm in Section
3.2.3. Resuming, if no more conflicts are present in subalignments, i.e. total border
agreement condition is satisfied, we can apply the first three Alignment Stitching Rules,
and producing an alignment. After applying the merge algorithm, the overall alignment
of our example is:

γ0 =
A ≫ ≫ G D

A B C G D

Finally, we can calculate the cost of the resulting alignment. Note that it is not
used the adapted cost function for decomposed approach as we use the algorithm to
merge subalignments into an alignment. The result is stored in set A which contains
the overall alignment for the event log L. The algorithm starts again to Phase2 with
the next trace of the event log. When alignments of all traces have been computed,
they are returned to the user, providing the overall fitness value and the number of
iterations each trace performs.

The result of our algorithm is shown in Figures 4.3 and 4.4. Figure 4.3 shows how
the moves of all alignments are projected onto the Petri net model. This allows us
to quickly gain an insight into frequencies of occurrences of activities and deviations.
Each transition is filled in with a blue color whose intensity grows with the number of
moves for that transition. Inside each transition, below the activity name two numbers
are shown in brackets (x/y) which indicate that the alignments contain x synchronous
moves and y model moves for the transition. Figures 4.4 enumerates the set of resulting

42 Chapter 4

Figure 4.3: Visualization of the result of our approach implemented in ProM. Here the
moves of all alignments are projected into occurrences of activities.

Figure 4.4: Other visualization of the result of our approach implemented in ProM. The
plug-in provides the alignments computed using our approach. The green moves
are synchronous moves, the purple ones are model moves instead yellow ones
are log moves.

alignments computed with our approach, with the relative cost and information.

Note that our approach is guarantee to only return optimal alignments for perfect
fitting traces. Instead, if traces are not perfectly fitting we do not guarantee for optimal
alignments, as computing just the next-best alignment we can choose a combination
without conflict, but with a cost that is greater than the optimal one (recall the greedy
nature of the approach).

4.1.1 Improved Algorithm
The termination of our algorithm is provided when no more conflicts are present
among the subalignments. Consequently, it may end after an enormous number of
iterations. Moreover, just computing the next-best alignment it is difficult to find the

4.1. ALGORITHM 43

right sequence of subalignments without testing all the possible combinations.

In fact, in some cases the algorithm chooses the wrong subalignment to start the
searching. That happens because of the heuristic component of this technique.
We use as parameter of selection the number of conflicts. However, this does not ensure
that the chosen subalignment is the one that need to change in order to solve border
disagreement.

Considering this problem, we improve the algorithm with the purpose of having
more accurate results without spending too much time in iterations.
In the previous example, we assume to save the set of subalignments as a list, where
every time the next-best subalignment is computed, the list is updated by replacing the
old alignment with the new one. In this way, we do not take track of each alignment
computed. Instead of a simple list, we use an array of lists. The length of the array is
the number of subnets. Each list contains the subalignments calculated so far, such
that the one in the first position is the optimal. When the next-best subalignment is
calculated, it is added to the corresponding list. Thus, in the last position of each list,
the newest subalignments are present, and they are used to performing Phase2.
Consider the Petri net in Figure 4.1, its decomposition in Figure 4.2 and the new trace
σ1 = ⟨B,A,G,D⟩. After Phase1 we obtain the following optimal subalignments:

Alignments 4.1.4 (Subalignments of trace σ1: iteration 0).

γ1
1 =

A

A
γ2
1 =

B A ≫

≫ A B
γ3
1 =

B ≫

B C

γ4
1 =

≫ G

C G
γ5
1 =

G D

G D
γ6
1 =

D

D

The number of conflicts for each alignment are:

γ1
1 = 0 γ2

1 = 2 γ3
1 = 2 γ4

1 = 0 γ5
1 = 0 γ6

1 = 0

The first subalignment selected is γ3
1 as it owns the max number of conflicts and its

cost is smaller respect to γ2
1 .

The algorithm continues iterating for x times. If after that the right combination has
not been found yet, we restart the searching. The first explored subalignment, in this
case γ3

1 , is blocked and it can not be selected. This because it is the right item to
achieve a combination without disagreements.

At this point, the algorithm uses the same heuristic to select another alignment.
Its next-optimal alignment may already have been calculated and saved in the data
structure. In this manner, it is not necessary to calculate the next-best alignment
again, as we have already done this operation in the previous phase. Then it checks
the conflicts and iteration continues.
Back to our example, γ2

1 is selected and the next-best optimal alignment is:

γ2
1 =

≫ B A

A B ≫

44 Chapter 4

Figure 4.5: Visualization of ProM to select our algorithm

This solves the border disagreements as conflicts caused by activity B are no more
present, so the algorithm delivers this sequence to the merging method.
To improve the algorithm and to extend the number of combinations to check, it is
possible to change the blocked subalignments in two different ways:

∗ if after j iterations conflicts have not yet been resolved, the algorithm blocks
the next-best subalignments of the first blocked. This is because the right
subalignment may be skipped during the searching phase.

∗ If after freezing y subalignments of the same subnets we have not yet reached
the total border agreement condition, we change the blocked alignment, with
someone with another index.

In this way it is possible to explore more combination in the searching space, without
exponentially increasing time since most of the alignments has been already calculated.
If after a prefixed threshold of iterations we have not been able to find a correct
combination, the result is a pseudo alignment. In chapter 5 we discuss the results of
our approach, even in terms of number of alignments and subalignments computed.

4.2 Implementation
This algorithm has been implemented as a plug-in in the Process Mining software
ProM. In Figure 4.5 we can see the visualization to start the plug-in. It takes in input
a Petri net model and the related event log. Then it produces the replay as output,
in other words the total alignments computed using our method (an example of the
visualization is in Figure 4.4).
In the previous section we present the idea and the procedure behind our approach.
Now we explain in detail the implementation and how we assume to save computational
time respect to existing algorithms.

4.2.1 Splitting Petri Net and Event Log
The first step of the algorithm is to split the two inputs. In the first place, we handle
the Petri net.

4.2. IMPLEMENTATION 45

Figure 4.6: Visualization of the configuration for splitting a Petri net from the plug-in "Split
Accepting Petri Net". On the right is possible to select which decomposition
strategy use.

ProM already provides some algorithms to deal this problem. In particular, we use the
plug-in "Split Accepting Petri Net" which produces an array of subnets. The plug-in
offers to configure the decomposition as it is depicted in Figure 4.6. It is possible to
change the strategy to decompose the model and which activities to not split. In our
algorithm, this plug-in is automatically called so the user does not have to select any
configuration. The model is separated using SESE-based strategy and every activity
can be decomposed by default. The return value is an array which each item is a
subnet of the original Accepting Petri net.

At this point, we can split the event log using another existing plug-in: "Split Event
Log", which is also integrated in our code. It creates an array of sublogs. The first log
in the array will contain the given log projected onto the activities of the first subnet
in the model array, and so on.
In summary, after these operations we obtain two arrays: one containing the decompo-
sition of the Petri net and the other sublogs for each subnets, i.e. each item i of the
array is a list of subtraces projected to the subnet i.

4.2.2 Computing Subalignments
The second phase of our approach is to compute subalignments for each subnets and
then checking if some conflicts are present.
To perform replay and compute an alignment, Prom offers different strategies, one
of them has been presented in the previous Chapter in 3.1.3. However, we need a
procedure that can provide all the multitude of existing alignments, from the optimal
to the worst, in an iterative way (we want to compute first the optimal one, and then
when we asked that it returns the next-best). "Replay a Log on Petri Net for All
Optimal Alignments" (Figure 4.7) accepts in input a Petri net model and the event log,
it returns all the optimal alignments computed for each trace. Its configuration can be

46 Chapter 4

Figure 4.7: Visualization of the starting of the plug-in "Replay a Log on Petri Net for All
Optimal Alignments" in Prom

Figure 4.8: Visualization of the result of "Replay a Log on Petri Net for All Optimal
Alignments" plug-in. It is computed all the possible alignments of trace case_9
from fitness 1 to fitness equal to 0.8

changed in order to compute alignments down to a specific fitness value. In Figure 4.8
it is depicted the multitude of alignments for trace case_9 from the best one (fitness
value equal 1) to the alignment which its fitness coincide with the given threshold.

Intuitively the working of this plug-in is very similar to what we are looking for, thus
we implemented a new algorithm that compute alignments in this way, but according
to our needs. The new class is called NextAlignmentTreeAlg and essentially it
calculates the replay. In order to compute the replay, this class needs a particular
configuration that is different for each subnet, but it is the same for traces in the same
sublog. This means that we can compute configurations just one time for each subnet
and then use them when performing replay for each trace of the log.

4.2. IMPLEMENTATION 47

Creating Configurations to Perform Replay

After Phase1 of our algorithm, for each subnet an instantiation of class NextAlign-
mentTreeAlg is created and the following parameters are setted:

∗ initial marking of the corresponding subnet;

∗ final markings of the corresponding subnet;

∗ function cost that maps each transition of the model;

∗ function cost that maps each event of the sublog;

∗ info and classifier of the event log.

In this way we store in memory every class ready to perform the replay when called
with a subtrace. Then we can go to the next step without loosing time.

Computing Subalignments

At this point, the environment for computing alignments has been setted and we can
start to perform the replay. This operation is done for each trace of the log.
For each subnet, the corresponding instantiation of NextAlignmentTreeAlg calls
its method replayLog(). It, essentially, takes the subnet, the subtrace and the already
existing configuration, to compute the replay. Recalling from chapter 3, the calculation
of a replay can be seen as a search problem. We use the A* searching algorithm
to provide the cheapest firing sequence of the model. To compute the replay, it is used
the AllOptAlignmentsTreeThread<PHead, DijkstraTail> which performs
the searching and returns one (or more) alignments between a trace and a model. It
provides the method getOptimalRecord(). On its first call, the A* algorithm is
used to compute an optimal alignment between a model and a trace. Then it returns
a Record, an object which stores little of information needed per volatile state in the
A* Algorithm. Using this object, we can compute the resulting alignment.

The method getOptimalRecord() can be repeatedly calling to compute more
alignments starting from the optimal one. This way, the algorithm guarantees that all
states which are on a shortest path from the source to the target node (that in our case
is the worst alignment) will be visited (note that this does not imply that all paths will
be found). Back to our class, we instantiate a thread and then we call the first time
the method getOptimalRecord(). The resulting Record is used to compute the
alignment. The thread used is also stored in memory, as it will be used to compute
the next-best alignment. It will be sufficient to call the getOptimalRecord() to
calculate the next.

Data Structure to Store Subalignments

At this moment, we have computed an optimal subalignment for each subnet and the
corresponding thread. Optimal subalignments are stored in a data structure already
mentioned in the previous Section (4.1.1). It is an array which length is the number of
subnets. Each item of the array is a list which contains the subalignments computed
so far. Consider the previous example in Figure 4.2 and trace σ0 = ⟨A,G,D⟩. The
optimal subalignments are stored in data structure as presented in Figure 4.9. Each

48 Chapter 4

Figure 4.9: Array of subalignments of trace γ0 and Petri net SN2. Each column corresponds
to a subnet. In the first row are present the optimal subalignments computed.

Figure 4.10: Array of subalignments of trace γ0 and Petri net SN2 after one iteration, i.e.
computing the next-best subalignment operation. The subalignments of subnet
number four is selected, so its next-best is stored in the second row.

Figure 4.11: Petri net SN3

column corresponds to a subnet. In the first row the optimal subalignments computed
in the previous phase are present. After we checked conflicts and we selected the one
alignment to perform the next, the data structure is updated by adding to the right list
the next-best subalignment. In our example, subalignment γ4

0 is selected, its next-best
is added in the list as figured in 4.10. In the next iteration, the algorithm to check
conflicts will use the configuration of item in position [0; 1], [0; 2], [0; 3], [1; 4], [0; 5], [0; 6],
in other words the last item of each list.
Using this method of storing, we have all the history of computed subalignments and
we can check more configurations as described in the improved version of the algorithm
(Section 4.1.1).

4.2. IMPLEMENTATION 49

Figure 4.12: Decomposition D3 of System Net SN3 in picture 4.11.

4.2.3 Checking Conflicts

The next step is to iterative check if some conflicts are present between the subalign-
ments and then select the one with the bigger number of disagreements. To achieve this,
we implemented a method which taking the combination of subalignments, provides
the number of conflicts for each subalignment.

For each subnet, the algorithm checks only the subalignments corresponding to the
subnets which has some common activities with it. If we consider our example SN2

and its decomposition in Figure 4.2, the subnet SN1 has the activity A in common
with just subnet SN2.
The number of conflicts for each subnet is the number of moves that are in disagreement.
A move can be in disagreement just if it is a border activity. So for each subalignment
we check just the activities that are in common with the other subnets.
Let call current subalignment the one alignment for which we are counting conflicts
and next subalignment the subalignment that it is necessary to compare with, i.e.
calculated from a subnet with border common transitions.

The first conflict we take in account is if the current subalignment is empty, but
the next subalignment presents some moves corresponding to their common activities.
This is the case of the previous example of trace σ0 and its subalignments computed
in 4.1.1. Let consider γ3

0 as the current subalignment and as the next subalignment
γ2
0 . γ3

0 is an empty alignment, but γ2
0 presents a model move for activity B which

is a common activity of their subnets SN3 and SN2. Consequently, the counter of
conflicts is incremented as the number of disagreements.

Otherwise, if current subalignment is not empty, we can start to check its moves. To
better understanding the mechanism, we use as example the more complex Petri net
SN3 in Figure 4.11 and its decomposition pictured in 4.12. Let compute the optimal
subalignments of trace σ2 = ⟨a, g, b, d, c, d, f, j, e, h,m⟩ :

Alignments 4.2.1 (Subalignments of trace σ2: iteration 0).

γ1
2 =

a g

a ≫
γ2
2 =

a b d c d

a b d c ≫
γ3
2 =

g d d e h

≫ d d e h

50 Chapter 4

Figure 4.13: Representation of algorithm to check conflicts. In the first iteration, it checks
the d synchronous move. As it is present also in the next subalignment, the
cursor is updated to this position. In the following iteration, the d log move is
checked. There is a conflict as the next alignment presents a d synchronous
move.

γ4
2 =

d d f τ j ≫ m

d ≫ f τ j ≫ m

We try to compute the number of conflicts between γ2
2 (current subalignment) and

γ3
2 (next subalignment). In Figure 4.13 we can see the steps of our algorithm. We start

checking each move of the current subalignment that are in common with the next. In
our case, the two subnets S2 and S3 share just activity d. The first activities of γ2

2

are a and b that are not common activities, so we skip to check the synchronous move
d. Now the algorithm searches in next subalignment a move with the same activity,
if it is not of the same type, there is a conflict and the counter is incremented. In
γ3
2 the first move with a common activity is the synchronous move d. Its type is the

same as the current move, so there is no conflict between these two moves. At this
point we update the cursor of the next subalignment in order that it will point to the
next move, and we can continue the search for the rest of the alignment as the correct
move has been found. We pass to check the next move in γ2

2 that is a log move d. The
cursor of next subalignment points to the next common move that is a synchronous
move. This is a conflict as it should have the same type of current move, so the counter
is updated. Note that in this way, we consider conflict also if common activities are
in the wrong position. If in γ3

2 were a log d move and then a synchronous move, the
algorithm would count two conflicts.

However this method is not sufficient to find every possible conflicts. We also check
if some common activities are present in the current subalignment but not in the next
and vice versa.

In conclusion, the method returns the numbers of conflicts calculated for each sub-
alignments. They are used from the heuristic function to select for which subalignment
compute the next-best. At each iteration, this method is called. If some conflicts
are present, we select one subalignment and compute its next-best just calling the
function getOptimalRecord() described above. The subalignments data structure
is updated, so the conflicts are checked again using the new combination.

4.3. IMPLEMENTATION PROBLEMS ENCOUNTERED 51

4.2.4 Merging Subalignments

As already mention, the final step is to merge the sequence of subalignments into just
one alignment. This is done after achieving the right combination of subalignments with-
out border disagreements, or when the number of iterations reached a specific threshold.

To merge subalignments, the plug-in "Merge Log Alignments" is used which imple-
ments the five Stitching Rules described in Section 3.2.3. This plug-in as been adapted
to our needs and it is embedded in our code. The main modification is that it works
for trace and not for the event log. Thus, it produces one alignment from the set of
subalignments, and it is called for each trace of the event log.

The resulted alignment may be a pseudo alignment if the algorithm stops before to
solve all conflicts.

4.3 Implementation Problems Encountered

During the implementation of the algorithm we encountered different problems we
tried to solve. In this section we enumerate these issues and their related solutions.

4.3.1 Empty Subtraces

The decomposition of an event log may produce empty subtraces according to the trace.
Back to our example using Petri net SN2 in Figure 4.1 and the trace σ0 = ⟨A,G,D⟩,
the decomposed trace is the set of subtraces DL2 = {σ1

0 = ⟨A⟩, σ2
0 = ⟨A⟩, σ3

0 = ⟨⟩, σ4
0 =

⟨G⟩, σ5
0 = ⟨G,D⟩, σ6

0 = ⟨D⟩}. Subtrace σ3
0 is empty as the overall trace does not present

any of the activities of the corresponding subnets SN3.

The plug-in "Replay a Log on Petri Net for All Optimal Alignments" on which
we rely, always only return an empty alignment (i.e. an alignment with no moves)
when the original trace is empty (i.e. containing no events). However, there are some
cases in which this is not correct. We recall the combination for the trace σ0 after one
iteration (this is the same of 4.1.2):

γ1
0 =

A

A
γ2
0 =

A ≫

A B
γ3
0 =

≫

≫

γ4
0 =

≫ G

C G
γ5
0 =

G D

G D
γ6
0 =

D

D

As already explained, the conflict here is caused by activities B and C in subalignments
γ2
0 , γ3

0 and γ4
0 . Intuitively, γ3

0 should present model moves of transition B and C to
compute the correct alignment and to solve all conflicts. However, as the subtrace is
an empty trace, the replay will never compute a no-empty alignment, so we need to fix
this bug.

Our idea is to modify the structure of the subnets, adding a fictions transition.
In this way, when there are no problems in computing alignments, this transition

52 Chapter 4

Figure 4.14: Example of three subnets of the System net SN2 modified in order to solve
the issue of empty alignments. In (1) it is pictured the initial subnet; in (2)
the final subnet and in (3) the generic case. The added part is highlighted.

move is removed from the subalignment. If an empty alignment is selected to cal-
culate its next-best (i.e. a non-empty alignment is expected to be returned), the
subtrace is modified adding the fictions transition. In this way, the replay algorithm
is forced to produce an alignment. In conclusion, the fictions transition move is removed.

Our idea is to modify the structure of the subnets, adding a fictions transition
"Dummy". Every time we produce an alignment, the move corresponding to this
fictions transition is removed from the alignment. If an empty alignment is selected to
calculate its next-best (i.e. a non-empty alignment is expected to be returned), the
subtrace is modified by adding the event "Dummy" which is mapped to the fictions
transition. In this way, the replay is forced to produce a non-empty alignment as the
trace is not empty anymore. Note that an empty subalignment is not always wrong. It
may happen that it does not cause any conflict.

The subnets are modified in this way according to their nature (we refer to Figure
4.14 for explanation):

∗ if the subnet is the initial part of the original net, we add just the transition
"Dummy" after the initial place, and it is connected to the first activity (subnet
1);

∗ if the subnet has a final place, the highlighted part in subnet 2 is added to the
original one;

∗ otherwise, the generic subnet is modified by adding the highlighted part in subnet
3. The red place is marked as final, and it is reachable from the last transitions.
In this way it is possible to achieve an empty alignment and to loop to the
beginning of the original subnet if it is necessary.

4.3. IMPLEMENTATION PROBLEMS ENCOUNTERED 53

4.3.2 Memory Issue
In ProM, there are ad-hoc data structures designed to store the resulting alignments.
However, these objects are large in terms of memory occupation. Since our algorithm
needs to compute and retain in memory a large number of alignments, the available
memory can quickly be filled up, leading to out-of-memory errors.

To address this issue, the ProM heavy alignment object representation is replaced
by a matrix of Strings with two rows and N columns, where N is the number of
moves in the alignment to be represented. The first row corresponds to the log moves,
and the second row represents the model moves. In the case of synchronous moves,
the name of the activity, represented as a String object, will be present in both rows.
The symbol ≫ is encoded as a NULL String pointer.

Chapter 5

Experiments

In this chapter are present the experiments to test the goodness of our algorithm respect
to the existing ones. First we describe the preliminary steps to produce our dataset, then
we provide the results of our experiments. In conclusion we discuss the results and the
future works regarding our approach

This chapter is dedicated to experiments aimed at verifying the effectiveness of
our new algorithm described in the previous chapter. Specifically, our goal is to
test the algorithm by providing it with input from large process models, as the
decomposed Conformance Checking methods are particular beneficial in these cases.
Furthermore, we aim to compare its results with existing Conformance Checking
plug-ins, utilizing "Replay a log on Petri Net for conformance analysis" as a classic
approach and "Recomposing Replay Algorithm" for comparison with a decomposition-
based technique.
Before presenting the results, we will describe the Process Mining tools used in this
thesis and outline the preliminary steps taken to create the dataset. Finally, we will
provide a discussion of the experiments.

5.1 Preliminary Steps

The experiments were conducted using a dataset consisting of different process models
to represent the variability of possible scenarios. The dataset includes synthetically
generated process models and their corresponding event logs. Ten processes were
randomly generated using the PLG2 tool, encompassing large processes containing
combinations of common workflow patterns such as XOR, AND, loops, and invisible
transitions. Process Log Generator (PLG2) is an open-source software that can generate
random process models based on general complexity parameters, such as the maximum
depth, the maximum number of AND or OR branches a model can have. The model is
generated as a BPMN model but can be easily converted into a Petri net. PLG2 is
also capable executing a given process model to generate event logs. Event logs can be
produced with any number of traces. Additionally, the software provides the option to
adjust the value of noise in logs. Our dataset for experiments was generated using this
tool. However, to introduce the noise factor, another technique was utilized. We will
describe in detail how we generate our process models and event logs.

55

56 Chapter 5

Figure 5.1: Petri Net P0 of dataset. It presents 206 activities and 92 gateways.

Table 5.1: Characteristics of the synthetic nets.

Name # Activities # Getaways Initial Decomposition

P0 43 22 20

P1 67 32 22

P2 101 50 30

P3 106 50 42

P4 116 50 41

P5 128 56 47

P6 133 32 43

P7 140 54 58

P8 191 76 87

P9 206 92 75

The characteristics of the models are shown in Table 5.1. The size of the models
generated were progressively increased to challenge the algorithms under evaluation,
with the largest model consisting of 206 activities and 92 gateways, as depicted in
Figure 5.1. Logs were generated from the models using simulation, and various
operations were applied to emulate different plausible noise scenarios. Each log has
1000 cases.

Initially, no-noise logs were generated using the PLG2 tool. No-noise logs are
perfectly fitting with the corresponding models, indicating that all the behavior
observed in the log can be matched to the behavior modeled by the model. As a result,
the log can be replayed perfectly on the model, and the fitness value equals to 1. Note
that this is not particularly significant for our results, as the subalignments computed
would always be under the total border agreement condition, and no iterations would
be required. Logs with noise were produced using the ProM plug-in "Add, Swap and
Remove Events". This plug-in takes a Petri net model and the corresponding event
log as input. Noise can be introduced at different levels by adding, swapping and
removing events from the trace. The plug-in allows modification of the maximum
probability of introducing noise, ranging from 0 to 0.8. In Figure 5.2 the noise
configuration is illustrated. Our logs were modified using all three parameters to
achieve noises with a maximum probability of 6% and 14%.

5.2. RESULTS 57

Figure 5.2: Visualization of the noise configuration of plug-in "Add, Swap and Remove
Events" implemented in ProM.

5.2 Results
Our algorithm has been tested on a desktop with an Intel Core i7-10875H processor,
32 GB RAM, running Windows 10 Pro and using a 64-bit version of Java 8.
In this section, we present the results of our experiments, starting with the simplest
scenario where the model and log are perfectly fitting, and then introducing noise factors.
We tested the improved version of our algorithms (Section 4.1.1), which may return
pseudo-alignments. The fitness values computed are only for those traces for which
an alignment was computed. We will compare our results with the implementation
for the approach that does not employ decomposition, and for the approach based on
Recomposition (see Section 3.1.3 and 3.2.3).

5.2.1 Noiseless Scenario

We initially conducted experiments with the simplest scenario where the model and
log are perfectly fitting. In this section, we present Conformance Checking results for
logs without noise ("no-noise" logs). The objectives of this section are:

∗ to compare and analyze computation times of replays under the three different
approaches;

∗ to compare the fitness values of our greedy approach with respect to the other
two methods.

The results of our algorithm are shown in Table 5.2. Here, we observe that the time
used to compute alignments increases with the size of models, as expected, because
it must compute more subalignments. Since there is no noise in our event logs, all
the fitness values are equal to 1. In Conflicts column, the numbers of traces with
conflicts are shown, i.e. the algorithm goes through iterations computing the next-best
subalignment to resolve border disagreements. As expected, no trace presents conflicts,

58 Chapter 5

Table 5.2: Results about Greedy Approach for Decomposed Replay in noiseless scenario.

Greedy Approach

Name Activities Time (s) Fitness Conflicts # Pseudo
Alignments

P0 43 5,1 1 0 0

P1 67 6,59 1 0 0

P2 101 8,8 1 0 0

P3 106 11,2 1 0 0

P4 116 10,736 1 0 0

P5 128 11 1 0 0

P6 133 12 1 0 0

P7 140 18,1 1 0 0

P8 191 29,8 1 0 0

P9 206 25 1 0 0

and no pseudo-alignments were returned.
Table 5.3 presents results compared with the other two algorithms. All algorithms

were able to complete all alignments and compute the correct fitness value. More
significant are results about computation time. Consider the graph in Figure 5.3, where
the three different computation times are depicted: the Greedy approach is in blue, the
classic approach (i.e. without using decomposition) is in green, and the Recomposition
algorithm is in gray. It is evident that the classic approach is faster than the other
two methods. Regarding the two decomposition-based approaches, the time of Greedy
decomposition is better for only a few nets: P2, P5, P7, P9. However, we expected
that the classical approach was the faster one; since the decomposition effort is not
counter-balanced by an actual reduction of the complexity to compute alignments.

5.2.2 Noisy Scenario

In this section, we present Conformance Checking results for logs with noise. This
means that there are discrepancies between the modeled and observed behavior such
that the fitness value is less than 1. Similar to previous experiments, the goals are to
compared computation times and fitness values with the two existing approaches.

For comparison purposes, the processes and models are the same as in the previous
section, but noise is included in the logs during their generation, as discussed in the
section on preliminary steps (Section 5.1). Each algorithm is tested with the introduc-
tion of noise of 6% and 14% for each process.

In each experiment, a 30-minutes time limit is set, and replays still running after
the time limit are stopped and deemed infeasible. Both the Greedy Algorithm and
Recomposing Replay produce a number of pseudo-alignments. During fitness analysis,

5.2. RESULTS 59

Table 5.3: Results about computation time and fitness between three algorithms in noiseless
scenario.

Greedy approach Classic Recomposition

Name Time(s) Fitness Time(s) Fitness Time(s) Fitness

P0 5,1 1 2 1 2,287 1

P1 6,59 1 2 1 5,54 1

P2 8,8 1 2 1 13,2 1

P3 11,2 1 1 1 5,98 1

P4 10,736 1 1 1 9,95 1

P5 11 1 1 1 20,89 1

P6 12 1 1 1 4,3 1

P7 18,1 1 10 1 38,2 1

P8 29,8 1 16 1 23,82 1

P9 25 1 6 1 45,4 1

Figure 5.3: Graph representing computation time for each algorithm in noiseless scenario.
The processes are ordered by number of activities. For each of them the time
expressed in seconds are compared with three methods.

we remove those traces from event log, ensuring that every algorithm computes the
fitness. The percentage of sub-alignments computed compared to the number of traces
that present conflicts for the Greedy Approach is reported in Table 5.4. Additionally,
the number of traces presenting conflicts and requiring the algorithm to start the
search again to resolve disagreements is reported.

The classic approach computes exact results for any kind of traces and noise (expect
for not reliable alignments, but they are not present in our experiments). The graph
presented in Figure 5.4 shows the percentage of pseudo-alignments computed by the
Greedy Approach and Recomposition Replay. Note that the percentage of traces whose

60 Chapter 5

Table 5.4: Results about Greedy Approach for Decomposed Replay

Greedy Approach

Name Noise Activities Conflicts Pseudo
Alignments

Solved
Alig.

P0 6% 43 832 19 47

P0 14% 43 976 64 141

P1 6% 67 811 23 90

P1 14% 67 858 55 154

P2 6% 101 924 125 104

P2 14% 101 993 373 82

P3 6% 106 850 185 118

P3 14% 106 1000 301 127

P4 6% 116 547 87 61

P4 14% 116 536 168 153

P5 6% 128 915 241 97

P5 14% 128 997 500 73

P6 6% 133 902 235 111

P6 14% 133 994 410 105

P7 6% 140 989 201 56

P7 14% 140 1000 717 73

P8 6% 191 997 17 128

P8 14% 191 1000 653 34

P9 6% 206 519 451 26

P9 14% 206 1000 800 27

5.2. RESULTS 61

Figure 5.4: Graphs representing percentage of pseudo-alignments computed by Greedy
Approach and Recomposition Replay. The first graph presents the traces with
6% of noise, the second one presents the traces with 14% of noise. With complex
nets and more noise, Recomposition Replay results touch almost the 100% of
pseudo-alignments.

Figure 5.5: Graph representing computation time for each algorithm in a scenario with
noise equal to 6%. The processes are ordered by number of activities. For each
of them the time expressed in seconds are compared with three methods. Note
that times are shown in a logarithmic scale.

reached the threshold (i.e. the fitness is not computed) increases with the growth of
model and noise. Both of two algorithms are not able to compute alignments for all
traces in event logs. In the next section we discuss these results and how to improve
our algorithm.

6% noise

First, we report the computation times and fitness for the three algorithms using traces
with a maximum noise of 6%. The results of our experiments are shown in Table 5.5.
Considering computation time with the help of graph in 5.5, computation times are
shown on a logarithmic scale. Classic approach is the faster algorithm, except for the
last three models (more complex models) where our Greedy Approach takes slightly
less time. There are clear performance gains from adopting Greedy Approach instead

62 Chapter 5

Table 5.5: Results about computation time and fitness between three algorithms with
noise=6%

Greedy approach Classic Recomposition

Name Time(s) Fitness Time(s) Fitness Time(s) Fitness

P0 6,4 0,91 3 0,91 44,81 0,91

P1 49 0,91 6 0,91 78,5 0,91

P2 12 0,89 7 0,89 444,39 0,89

P3 34,4 0,87 10 0,87 405 0,87

P4 17,2 0,83 2 0,83 389 0,83

P5 17,3 0,90 5 0,90 332 0,90

P6 16,5 0,88 5 0,88 344,5 0,88

P7 30 0,93 34 0,93 1875,2 0,93

P8 44,7 0,92 46 0,93 2037 0,93

P9 56,1 0,90 68 0,90 ERROR ERROR

Figure 5.6: Graph representing fitness values for each algorithm in a scenario with noise
equal to 6%. The processes are ordered by number of activities. The fitness are
computed for decomposition approaches using just the traces which produce
alignment (i.e. exact fitness can be calculated). Note that all three techniques
return the same results for each model.

of Recomposition Replay.
Recomposition Replay was not able to compute alignments for Process P9 and pro-
duced an unexpected error.

The graph in Figure 5.6 shows fitness values between the three algorithms. Recall
that the metric is calculated only for traces for which results are alignments for both
decomposition-based algorithms. For each model, the three techniques are tested for
fitness with just this traces.

It is evident that all three algorithms produce the same result for each model.

5.2. RESULTS 63

Table 5.6: Results about computation time and fitness between three algorithms with
noise=14%

Greedy approach Classic Recomposition

Name Time(s) Fitness Time(s) Fitness Time(s) Fitness

P0 7,71 0,84 3 0,84 108,71 0,84

P1 93,11 0,91 18 0,93 314,6 0,93

P2 20,60 0,79 15 0,79 575,2 0,79

P3 401 0,70 26 0,70 462,8 0,70

P4 40,61 0,85 3 0,85 458,13 0,85

P5 22,9 0,79 10 0,79 388,4 0,79

P6 21,00 0,73 13 0,73 469,77 0,73

P7 240 0,86 174 0,86 613,00 0,86

P8 77,18 0,85 373 0,86 2166,40 0,86

P9 367 0,85 226 0,85 1863,00 0,85

Figure 5.7: Graph representing computation time for each algorithm in a scenario with
noise equal to 14%. The processes are ordered by number of activities. For each
of them the time expressed in seconds are compared with three methods. Note
that times are shown in a logarithmic scale.

As the classic approach returns only optimal alignments, using our dataset, both
decomposition-based methods deliver optimal alignments too.

14% noise

At this point we increased the level of noise at 14%. The results of experiments are
depicted in Table 5.6. In Figure 5.7 are shown the results about computation times
between the three algorithms using a logarithmic scale. Even in this scenario, the
classic approach is the faster algorithm except for P8, where the Greedy Approach
is better in terms of performance. With the growth of noise, Recomposition Replay

64 Chapter 5

Figure 5.8: Graph representing fitness values for each algorithm in a scenario with noise
equal to 14%. The processes are ordered by number of activities. The fitness
are computed for decomposition approaches using just the traces which produce
alignment (i.e. exact fitness can be calculated).

time increases as we expected (more conflicts mean the need for more recomposition
iterations). Our Greedy method remains the best among decomposition approaches.

Regarding fitness, results are shown in Figure 5.8. Similarly to the previous scenario,
the metric is computed only for those traces which produce alignments in all algorithms.

As in previous scenario, all methods deliver the same value, with the exception of
models P8 and P1. Here, Greedy approach produces a fitness smaller respect to the
classic approach (which always generates the correct result). We were aware of this
possibility as our algorithm does not guarantee optimal alignments if traces are not
perfectly fitting.

5.3 Discussion and Future Works

This section discusses the results that were reported in the previous section. Consid-
ering the computation times of the three different solutions, the classic approach is
the faster. However, in Recomposition Replay paper ([1]), the authors conclude that
there are performance gains from adopting recomposition approach compared to the
classic one. This is because the algorithm was not tested with the classic approach
using the A* iterative algorithm, as it had not been introduced yet. The previous
search algorithms were much slower, so Recomposition Replay was a valid and faster
alternative. Another factor that negatively influenced Recomposition performance is
the presence of noise. In [1] the noise introduced was not as high as in our tests. In
fact, the resulting alignments in the nosy scenario in that paper have a fitness ranging
from a maximum of 0,999 to a minimum of 0,947. Instead, the fitness computed
in our experiments goes down to a minimum of 0,70. This means that as the noise
increases, the number of disagreements also increases. Consequently, the number of
recomposition iteration growths, and the Recomposition approach takes more time.

Recomposition Replay may be a valid alternative to the current classic technique
in an environment of very large model (larger than the ones we used i.e. more than
200 activities) but with a not high quantity of noise. Note that in reality, processes
could have even higher noise levels than the one we tested, so this scenario may not be

5.3. DISCUSSION AND FUTURE WORKS 65

so interesting.The Greedy Approach turns out to be faster than the Recomposition
method but slower than classic approach. This means that the idea of maintaining
the same decomposition of the model and trying to solve conflicts by just changing
the subalignments is valid.However, the real issue with both decomposition-based
techniques is the feasibility of computing exact fitness values; they can not compute
all alignments, only pseudo-alignments, for many traces. As already mentioned, this
might not be a problem if an estimation of the fitness is sufficient. Although, from our
experiments, the classic technique is able to compute exact and optimal results within
a shorter amount of time.

Regarding those traces for which Greedy approach provides the alignments, we have
seen that this algorithm is valid. Hence, we believe that it may be a valid alternative
of the Recomposition approach in the same domain described above: huge models and
less noise.

Considering our experiments, we will study what may be the next steps in order to
improve our algorithm.

Improving search algorithm to produce replay

As described in Section 4.2, we use the same algorithm as the plug-in "Replay a Log
on Petri Net for All Optimal Alignments", but adapted and incorporates into our
code. This algorithm provides the functionality of iteratively returning the next-best
alignment and uses the standard A* search algorithm to compute the replay.

A possible enhancement is to create an ad-hoc procedure that utilizes the faster A*
iterative search algorithm to compute the replay and can provide all possible alignments,
not just the optimal ones.

Checking all possible combinations of subalignments

In the last column of Table 5.4 it is shown that by changing the starting subalignments
of the search to find the right combination of subalignments, the algorithm is able to
compute alignments for which the first search was not able to find.

Expanding this idea, a possible upgrade is to change how we search for the right
combination by creating a searching tree where each node is a possible combination,
and one or more subalignments are changed by computing the next-best. The root is
the configuration of all optimal subalignments. In Figure 5.9 a naive representation of
the searching tree is shown.
Each node may be expanded iteratively and can be chosen using the same heuristic
(i.e. with a higher number of conflicts) or by inserting a random component. Using
this representation, it is possible to revisit those combinations that have already been
checked. If all combinations are tested, the right one will be selected eventually.

The implementation of this approach was not feasible within the timeframe of this
project. The domain involves huge process models, consequently, they will have a
vast number of possible combinations to test. This may impact memory usage, as all
different combinations should be stored and linked to each other. We attempted to
mimic this procedure in our improved version of the algorithm, where we tested more
combinations by starting the search from different subalignments. However, the aim of

66 Chapter 5

Figure 5.9: Naive representation of searching tree to check all possible subalignments com-
bination. The subalignments are depicted using letters. In the root are present
the combination of just optimal subalignments. Then subalignment A, B and
C are selected sequentially to compute their next-best alignments. The search
goes on by selecting one subalignments and computing its next-best.

this thesis was to test if it may be sufficient to use just next-best operation to solve
conflict problems. Therefore, we limit the number of checked configurations to avoid
exceeding both time and memory constraints.

Chapter 6

Conclusions

With the increasing of the amount of data, Process Mining researches are exploring
new techniques to enhance existing methods. Conformance Checking analysis is one
of the main fields effected by this growth. To improve the performance of existing
algorithms, a new approach was proposed.
Decomposition-based approach has become a widely explored and well-documented
branch of Process Mining research. In this thesis, we analyzed existing decomposition-
based techniques such as Pseudo-Alignments and the more reliable Recomposition
Replay. Before that, we formalized how to achieve a valid decomposition of a model
and how this may be used in Conformance Checking domain.
Pseudo-Alignments algorithm produces just an estimation of the overall fitness, whereas
Recomposition Replay guarantees exact fitness as subalignments computed are merged
under the total border agreement condition. However, achieving this state may require
many recomposition iterations, where the decomposition of the net changes, and replay
is done again.

With our work, we aimed to find a trade-off between these two approaches. We
wanted to resolve total border disagreements changing the subalignments instead of
the decomposition of the net. In this way, we intended to save time, as the replay is
done just one time, and subalignments are modified using the next-best subalignment
operation.

This Conformance Checking approach was implemented as a plug-in in the ProM
software. The last part of our work is dedicated to experiments in which we tested
our algorithms compared to the classic approach and the recomposition method. The
final results revealed both positive and negative aspects of the new algorithm. In our
analysis, it emerged that both decomposition-based approaches became obsolete with
the introduction of the new search algorithm A* Iterative to compute replay in classic
plug-in. However, our future work could consist of implementing our decomposition
method using this search algorithm instead of simple A*.

The experiments show that in any case, this new technique can be a valid alter-
native to the Recomposition Replay as it significantly improves performance. This
means that the idea of just modifying subalignments instead of changing the whole
net decomposition is worthwhile of further exploration. One significant issue about
our work is that it is not able to compute alignments for all traces in the log. This is

67

68 Chapter 6

because we limit the search of combinations of subalignments in order to save time
and space in memory. One possible upgrade is to improve the search for the right
combination of subalignments (i.e. one without conflicts) using the same idea of
modifying subalignment by computing the next-best.

In conclusion, we proposed a valid alternative to the existing decomposition-based
algorithm Recomposition Replay, which is also not able to compute the exact fitness
for very complex problem and a considerable amount of noise except by employing a
huge quantity of time. We are confident that with the suggested changes, this could
also be a viable opponent for the younger classic algorithm.

References

Articles and Papers
[1] W. L. J. Leea, H. Verbeek, J. Munoz-Gamaa, et al. “Recomposing conformance:

Closing the circle on decomposed alignment-based conformance checking in
process mining.” In: Information Science (2018) (cit. on pp. 6, 23, 26, 27, 33, 37,
64).

[2] W. M. v. d. Aalst and C. Stahl. “Modeling Business Process: a Petri net-Oriented
Approach”. In: (2011) (cit. on p. 7).

[3] W. M. v. d. Aalst. “Process Mining: data science in action”. In: (2016) (cit. on
pp. 9–11, 14, 16, 17).

[4] B. F. van Dongen. “Efficiently Computing Alignments”. In: Accepted for BPM
11080 (2018) (cit. on pp. 20, 21).

[5] B. F. van Dongen. “Efficiently Computing Alignments: Algorithm and Data
structures”. In: Business Information Processing 342 (2018) (cit. on p. 21).

[6] H. Völzer, J. Vanhatalo, and J. Koehler. “The refined process structure tree”. In:
Data and Knowledge Engineering 68 (2009), pp. 793–818 (cit. on pp. 21, 28).

[7] W.M.P. v. d. Aalst. “Decomposing Petri nets for process mining: A generic
approach.” In: Distrib Parallel Databases 31 (2013), pp. 471–507 (cit. on pp. 22,
24, 25, 27, 28).

[8] H.Völzer, A.Polyvyanyy, and J.Vanhatalo. “Simplified computation and general-
ization of the refined process structure tree”. In: International Workshop on Web
Services and Formal Methods 6551 (2010), pp. 25–41 (cit. on p. 29).

[9] J. Carmona, J. Munoz-Gama, and W. M. v. d. Aalst. “Single-entry single-exit
decomposed conformance checking”. In: nformation Systems 46 (2014), pp. 102–
122 (cit. on pp. 29–31).

[10] W.M.P. v. d. Aalst and H.M.W. Verbeek. “Merging Alignments for Decomposed
Replay”. In: International Conference on Applications and Theory of Petri Nets
and Concurrency (2016) (cit. on pp. 31, 32, 37).

[11] W. M. v. d. Aalst, A. Adriansyah, A. K. A. d. Medeiros, et al. “Process Mining
Manifesto”. In: International conference on business process management (2011),
pp. 169–194.

69

70 Chapter 6

[12] B.F. van Dongen, A. K. A Medeiros, H. M. W. Verbeek, et al. “The ProM
Framework: A New Era in Process Mining Tool Support”. In: Lecture Notes in
Computer Science 3536 (2005), pp. 444–454.

[13] H. M. W. Verbeek, H.M.W. Munoz Gama, and Aalst W.M.P. v. d. “Divide
and conquer: a tool framework for supporting decomposed discovery in process
mining”. In: The Computer Journal 60 (2017), pp. 1649–1674.

[14] W.M.P. v. d. Aalst. “Distributed Process Discovery and Conformance Checking”.
In: International Conference on Fundamental Approaches to Software Engineering
(2012).

[15] M. de Leoni, J. Munoz-Gama, J. Carmona, et al. “Decomposing Alignment-Based
Conformance Checking of Data-Aware Process Models.” In: Lecture Notes in
Computer Science 8841 (2014).

Web Pages
[16] Official ProM Software site. url: https://promtools.org.

[17] Official PLG2 Software site. url: https://plg.processmining.it.

[18] Official XES standard site. url: https://www.xes-standard.org.

[19] Official Process Mining site. url: https://www.processmining.org.

https://promtools.org
https://plg.processmining.it
https://www.xes-standard.org
https://www.processmining.org

	
	Summary
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Process Mining Fundamentals
	2.1 Process Mining
	2.2 Notations and Definitions
	2.2.1 Basic Notations
	2.2.2 Petri Net
	2.2.3 Event Logs

	2.3 Tools for Process Mining
	2.3.1 ProM
	2.3.2 XES

	3 Conformance Checking
	3.1 Preliminaries
	3.1.1 Token-Replay Conformance Checking
	3.1.2 Alignment-Based Conformance Checking
	3.1.3 Conformance Checking Algorithm

	3.2 Decomposition-Based Approach
	3.2.1 Decomposition in Conformance Checking
	3.2.2 Decomposition Algorithms for Splitting Petri Nets
	3.2.3 Decomposition-Based Algorithms for Conformance Checking

	4 Greedy Approach to Compute Alignments of Process Models and Events Logs
	4.1 Algorithm
	4.1.1 Improved Algorithm

	4.2 Implementation
	4.2.1 Splitting Petri Net and Event Log
	4.2.2 Computing Subalignments
	4.2.3 Checking Conflicts
	4.2.4 Merging Subalignments

	4.3 Implementation Problems Encountered
	4.3.1 Empty Subtraces
	4.3.2 Memory Issue

	5 Experiments
	5.1 Preliminary Steps
	5.2 Results
	5.2.1 Noiseless Scenario
	5.2.2 Noisy Scenario

	5.3 Discussion and Future Works

	6 Conclusions
	References

